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Abstract

This thesis analyzes the occurence of the quantum Zeno effect in a qubit in different situations.
A system with a particle with spin 1/2, which represents a qubit, and detector is considered.
The detector is modeled by a coordinate q, which has a Gaussian distribution with dispersion σ.
There is the free evolution of the qubit and the interaction with the detector. Moreover, there
are calculated algebraic expressions for the probabilities of the qubit to be in one of its states at
certain moments in time by considering the wave function and density matrix at that time and
consequently tracing out the detector coordinate q. Furthermore, there is done an analysis using
plots of the evolution of these probabilities in time for different situations.

In the situation with one continuous measurement and no free evolution, the qubit remains in its
initial state, as expected.

In the situation where periods of only free evolution and only measurements alternate, the proba-
bilities keep the same value during the measurement, so then the evolution of the system freezes,
and the probabilities evolve in a sine form during the free evolution, in line with the expectation.
To neglect free evolution during the measurement, tm � tev is assumed, so there are no series of
fast subsequent measurements or a continuous measurement. In this case, the quantum Zeno effect
does not occur.

Furthermore, we consider the situation where periods of only free evolution and periods with a
measurement during free evolution alternate. Now the oscillations continue in time, due to the
ongoing free evolution. The larger the influence of the interaction between the qubit and detector
during the measurement and the smaller the influence of the magnetic field of the free evolution,
the higher the equilibirium position of the oscillations of the probability for the qubit to remain in
its initial state is in time. Moreover, the amplitude of these oscillations is smaller. However, due
to the free evolution the qubit always has a probability to undergo a transition to its other state.
The continuous measurement does not freeze the evolution of the system totally. The quantum
Zeno effect does not occur.

In the situation where the dispersion σ of the detector coordinate q goes to 0, there is a per-
fect measurement. The larger σ, the larger the measurement error in the detector resulting in
dissipation of the system. The oscillations of the probabilities damp in time.

Recommendations for further research include plotting the evolution of the probabilities for a
longer period in time with another integration tool. Also, it would be interesting to work out the
assumptions done in this analysis to more realistic conditions. Furthermore, another distribution
of the detector coordinate q and other qubit states might be interesting to work out in follow-up
research.
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1 Introduction

The quantum Zeno effect is a phenomenon known from the quantum optics. The first general
derivation of the effect was presented in 1974 [4] and the comparison with Zeno’s paradox has been
done in 1977 [7]. Since this moment, the effect has been observed a few times in different settings,
like on ions in a two level quantum system [12], in an unstable quantum system [10] and as the
modulation of the rate of quantum tunnelling in an ultra-cold lattice gas by the intensity of light
used to image the atoms [9]. It is an interesting tool in the field of quantum information processing.
There are lots of promising applications, like in error-correcting codes, entanglement production
and state preparation. It is also used in commercial atomic magnetometers [6]. However, there is
still a lot to be learned as well. This report will give theoretical insight in the quantum Zeno effect
in qubits.

The purpose of this research is to see if the quantum Zeno effect appears in a qubit in a specific
initial state. A system with a particle with spin 1/2, which represents a qubit, and detector with
coordinate q and Gaussian initial state, is considered. There is the free evolution of the qubit,
described by H0 = Bσz, with B the magnetic field, and the interaction with a detector, described
by Hint = g(t)qσx with g(t) the interaction strength between the qubit and detector.

The evolution of the wave function of the system is determined by applying the Schrödinger
equation. We consider two different situations. First, there has been taken into account a time
interval of only free evolution alternated with a time interval of only measurement. Subsequently,
we consider a time interval of only free evolution alternated with a time interval of measurement
during free evolution. These two cases have first been analyzed by assuming the dispersion σ → 0
and then without this assumption. Moreover, the density matrix has been determined and traced
out over the detector coordinate. Consequently, the probabilities that the qubit remains in its
initial state or undergoes a transition to its other state have been calculated for different settings
of parameters. Finally, the quantum Zeno effect is analyzed.

Chapter 2 of this report discusses the theoretical background. This is followed by a description
of the calculations and a discussion of the results in chapter 3. The conclusions drawn from
these results as well as recommendations for comparable and follow-up research, follow in chapter
4.
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2 Theoretical background

In order to better understand the quantum Zeno effect in qubits that is treated in this report,
it is useful to have an overview of the theory behind this. This theory includes a description
of the evolution of a system in time, the time ordering operator, qubits, the density matrix and
trace, the Rabi frequency, the collapse of the wavefunction and something about the quantum Zeno
effect.

2.1 System evolution

The evolution of a system in time is described by the time-dependent Schrödinger equation
[5]

ih̄
d

dt
|ψ(t)

〉
= Ĥ|ψ(t)

〉
. (2.1.1)

with i the imaginary unit, h̄ the reduced Planck constant, ψ the state vector of the quantum
system, t the time and Ĥ the Hamiltonian operator. If the initial state is known, there are two
ways to solve this differential equation.
Solving this differential equation directly gives

|ψ(t)
〉

= T exp
(∫ t

0

− iĤ

h̄
dt′
)
|ψ(0)

〉
(2.1.2)

with T the time ordering operator, discussed in the next subsection.

Working out the exponential gives the evolution of a system in time.
Another way [2] is to calculate the eigenstates ψ1, ψ2,..., ψn with corresponding eigenvalues λ1,
λ2,..., λn of the Hamiltonian. The solution of 2.1.1 is of the form

|ψ(t)
〉

= c1exp(λ1t)ψ1 + c2exp(λ2t)ψ2 + ...+ cnexp(λnt)ψn (2.1.3)

with c1, c2, ... , cn constants. These constants are calculated by filling in the state at different
moments in time.
A physical realizable state has to be normalized, so ψ has to satisfy the following equation

∫ ∞
−∞
|ψ(x, t)|2dx = 1 (2.1.4)

where x is the position of the system at time t.

2.2 Time ordering operator

The time ordering operator T is defined as follows

T (A(t)B(t′)) =

{
A(t)B(t′), if t < t′

B(t′)A(t) if t′ < t

with A and B time dependent operators [13].
Let C be another time dependent operator. T works a lot on integrals in exponentials in this
article. Then it gives, approaching the integral by a sum,

T exp
(

i

∫ t

0

C(t)dt
)
≈ T exp

(
i
∑
n

C(tn)
)

= expiC(t1))exp(iC(t2))exp(iC(t3))... (2.2.1)

with t1 < t2 < t3 < ....
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2.3 Qubits

A classical bit has the two possible states 0 and 1. Two possible states for a qubit are |0
〉

and |1
〉
,

but it can also be in a superposition of these two states, namely

|ψ
〉

= α|0
〉

+ β|1
〉

(2.3.1)

with |ψ
〉

the state of the qubit and α and β complex numbers. The qubit states are normalized
so the complex numbers satisfy the relation |α|2 + |β|2 = 1. So in general a qubit’s state is a unit
vector in a two-dimensional complex vector space. When we measure a qubit, we get either the
result |0

〉
with probability |α|2 or the result |1

〉
with probability |β|2 [8].

2.4 Density matrix and trace

The density matrix ρ of a quantum system with a mixture of states |ψi
〉

with respective probabilities
pi is given by [11]

ρ =
∑
i

pi|ψi
〉
〈ψi
∣∣. (2.4.1)

All the postulates of quantum mechanics can be reformulated in terms of the density matrix. It
is most commonly used for the description of quantum systems whose state is not known and the
description of subsystems of a composite quantum system.
The diagonal elements ρnn of ρ give the probability of occupying a quantum state |n

〉
. The off-

diagonal elements are complex and have a time dependent phase factor that describes the evolution
of coherent superpositions.
Let ρ be a two dimensional density matrix. Since ρ is hermitian, we have ρ12∗ = ρ21.
The equation of motion for the density matrix follows from the definition of ρ and the time
dependent Schrödinger equation. This results in the Von Neumann equation

∂ρ

∂t
= − i

h̄
[H, ρ]. (2.4.2)

The probability pi to find the system with density matrix ρ in state ψi is given by the following
equation

pi =
〈
ψi|ρ|ψi

〉
. (2.4.3)

These states |ψi
〉

are orthogonal.

Let ρ =

(
ρii ρij
ρji ρjj

)
.

Consider a qubit with two states; |0
〉

= 1√
2

(
1
1

)
and |1

〉
= 1√

2

(
1
−1

)
. With equation 2.4.3 follows

that the probability that the qubit is in state |0
〉

is given by

p
( 1√

2

(
1
1

))
=
ρii + ρij + ρji + ρjj

2
(2.4.4)

and the probability that the qubit is in |1
〉

is given by

p
( 1√

2

(
1
−1

))
=
ρii − ρij − ρji + ρjj

2
. (2.4.5)
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The trace of a matrix plays an important role when working with the density matrix. It is defined
as follows for matrix A,

tr(A) =
∑
i

Aii. (2.4.6)

The expectation value of an observable M is easy to calculate using the trace, when the density
matrix ρ is known. The following equation is valid

〈
M
〉

= tr(ρM). (2.4.7)

Another important equation which is valid for the density matrix is

tr(ρ) = 1. (2.4.8)

Consider two physical systems A and B, whose state is described by a density matrix ρAB . The
reduced density operator ρA for system A is defined by

ρA = trB(ρAB). (2.4.9)

with trB the partial trace over system B. This is defined by

trB(ρAB) = trB(|a1

〉
〈a2

∣∣⊗ |b1〉〈b2∣∣) = |a1

〉
〈a2|tr(|b1

〉
〈b2
∣∣) = |a1

〉〈
a2|
〈
b2|b1

〉
(2.4.10)

with |a1

〉
and |a2

〉
in the state space of system A and |b1

〉
and |b2

〉
in the state space of system

B. The ⊗ symbol denotes the tensor product of state spaces of component physical systems. The
partial trace trB maps the density matrix ρAB on a composite space HA ⊗ HB onto the density
matrix ρA on HA.

2.5 Rabi frequency

Consider a 2-level system undergoing a free evolution driven by a magnetic field. It will begin
to oscillate between its two states. The continual change between this states is known as Rabi
oscillation and the frequency that this occurs is called the Rabi frequency. An application of this
frequency can be found in subsection 3.2.

2.6 Collapse of the wavefunction

When a wave function is initially in a superposition of several eigenstates, it reduces to a single
eigenstate of the observable due to interaction with the external world. This is the collapse of the
wave function. A quantum system evolves in time by continuous evolution and by collapse of the
wave function. Observables represent classical variables. The observer measures the classical value
of the observable. This is the eigenvalue of the eigenstate to which the wave function collapses.
The wave function collapses to an eigenstate of the observable with a certain probability.

2.7 Quantum Zeno effect

The quantum Zeno effect is the inhibition of transitions between quantum states by frequent
measurements [5]. So an unstable particle which is continuously observed will never decay. Consider
a system starting in the excited state ψ2. Take the ground state ψ1. An obervation that the state
has not decayed causes a collapse of the wavefunction to ψ2. The probability that the state decays
after this collapse grows quadratically in time for short enough time, so we can say p2→1 = αt2

with α a constant. If we observe the system at n regular time intervals, from t = 0 to t = T , the

probability that the system is still in state ψ2 after n measurements is
(

1− α(Tn )2
)n
≈ 1− α

nT
2.
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For n→∞ this probability becomes 1. This suggests that a continuously observed unstable system
never decays at all. This is known as the quantum Zeno effect.
Misra and Sudarshan [7] were the first to call the effect by that name. In their article they gave
a proof of their theorem. However, they assumed ideal measurements and continuous obervations
and recommended to do more research on the collapse of the state vector and the outcomes of
successive measurements.
Cook [3] proposed the following experiment on a trapped ion to demonstrate the quantum Zeno
effect on an induced transition. Consider three energy levels of the ion. The level structure is
shown in the following figure.

Figure 1. Energy-level diagram of the ion in Cook’s proposed demonstration of the quantum Zeno effect.

Assume that spontaneous emission is negligible during the experiment. The state of the two level
system formed by level 1 and 2 can be measured by use of level 3. This level has a strong optical
transition to level 1 and can only decay to level 1. The state measurement is made by applying an
optical pulse to the 1→ 3 transition. If the ion is in level 1 at the start of the pulse, it is promoted
to level 3, from which it decays to level 1 by sending scattered photons. If the ion is in level 2, it
scatters no photons.

The ion starts in level 1. Cook proposed to drive the 1 → 2 transition with an on-resonance π
pulse (a square pulse of duration T = π

Ω with Ω the Rabi frequency) while simultaneously applying

n short measurement pulses, each pulse applied at times τ = kT
n . Each measurement pulse set the

coherences ρ12 and ρ21 on 0, because the wave function was reduced. The emission of a photon
constitutes a measurement, so the pulse length has to be long enough so that when the system is
in level 1, the probability to emit at least one photon is high. After n measurements he found the
probability that the ion starting in level 1 was in level 2 was

p2(T ) =
1

2

(
1− exp(−π

2

2n
)
)
. (2.7.1)

This probability goes to 0 when n→∞. Then the quantum Zeno effect appears.
However, spontaneous emission can only be ignored for sufficiently short time intervals between
measurements. Otherwise there would be no quantum Zeno effect.

In 1989, Itano et al. [12] observed the quantum Zeno effect for a two-level atomic system. They did
an experiment very similar to the proposed experiment of Cook. This was done with approximately
5000 9Be+ ions. These were cooled to below 250 mK. A resonant radiofrequent pulse was applied,
which, if applied alone, would cause all the ions in the ground state to go to an excited state.
After the pulse was applied, they measured whether the ions emitted photons or not. Those

5



measurements suppressed the evolution of the system into the excited state. They found for the
probability that the ion starting in level 1 was in level 2

p2(T ) =
1

2

(
1− cosn(

π

n
)
)
. (2.7.2)

Their results are shown in figure 2a and 2b. Equation 2.7.1 was in agreement with the probabil-
ities they found by measurements. The decrease of the transition probabilities with increasing n
demonstrates the quantum Zeno effect.

(a) Graph of the experimental and calculated 1 → 2
transition probabilities as a function of the number of

measurement pulses n found by Itano et al.

(b) Graph of the experimental and calculated 2 → 1
transition probabilities as a function of the number of

measurement pulses n found by Itano et al.

Figure 2.

There are more experiments done where the quantum Zeno effect is observed.

In 2001, Mark G. Raizen et al. [10] observed the quantum Zeno effect for an unstable quantum
system. This was done how it originally was proposed by Sudarshan and Misra. Cold sodium atoms
were trapped in an accelerating optical lattice. For a large acceleration the atoms could escape the
trapping potential via tunneling. The number of atoms remaining trapped during the initial period
of non-exponential decay was measured repeatedly. Depending on the frequency of measurements,
there was observed a decay, suppressed as compared to the unperturbed system.

In 2015, Mukund Vengalattore et al. [9] demonstrated a quantum Zeno effect as the modulation of
the rate of quantum tunnelling in an ultra-cold lattice gas by the intensity of light used to image
the atoms.

6



3 Results and discussion

3.1 Definition of variables and parameters

Consider a system, a particle with spin 1/2, and a detector with coordinate q, which we assume to
be continuous, and momentum p. The particle with spin 1/2 represents a qubit. The system evolves
under the Hamiltonian H0 = Bσz

1, with B a magnetic field and σz a Pauli spin matrix, so there is
the free evolution of spin. A measurement is done by measuring the x-component of the spin and
the measurement reading on the detector is the shift of momentum p. The interaction Hamiltonian
is given by Hint = g(t)qσx, with g(t) the interaction strength between the system and detector and
σx a Pauli spin matrix. The detector coordinate q is taken dimensionless, so g(t) has the dimension

of energy. The initial state of the detector is taken Gaussian, |φ(0)
〉
∝ exp

(
− (q−q0)2

2σ

)
, with q the

detector coordinate, q0 the mean of the detector coordinate q and σ the dispersion.

There follow subsections in which the system evolves under only H0, Hint or a combination of these
Hamiltonians. We define certain dimensionless parameters and variables in each subsection, in
which we can express all the probabilities, wave functions and density matrices. These parameters
and variables are defined as follows.

In subsection 3.2, the system evolves only under H0. In this case, we define the dimensionless
parameter α = Btev

h̄ , with tev the duration of one period of free evolution.

In subsection 3.3, the system evolves only underHint. In this case, we define two variables, q′ = q√
2σ

and q′0 = q0√
2σ

. The parameter 1√
σ

is dimensionless, so these variables are dimensionless.

In subsection 3.4, the system alternately evolves under H0 during tev and Hint during tm.
In the case of σ → 0, we define two dimensionless parameters α and β and together with the
dimensionless variables q and q0, we can express all the calculated probabilities, wave functions
and density matrices in these parameters and variables. Set α = Btev

h̄ and β = gtm
h̄ .

In the case of σ 6→ 0, we define two dimensionless parameters α and β together with two dimen-
sionless variables q′ and q′0. We can express all the calculated probabilities, wave functions and

density matrices in these parameters and variables. Set α = Btev
h̄ , β = gtm

√
2σ

h̄ . and define two
variables, q′ = q√

2σ
and q′0 = q0√

2σ
. The parameter 1√

σ
is dimensionless, so these variables are

dimensionless.

In subsection 3.5 there is always free evolution, also during measurements. The system alternately
evolves under H0 during tev and H = H0 +Hint during tm.
In the case of σ → 0, we define four dimensionless parameters, from which three dependent on the
variable q, so α, β(q), γ(q) and δ(q). Together with the dimensionless variables q and q0, we can
express all the calculated probabilities, wave functions and density matrices in these parameters

and variables. Set α = Btev
h̄ , β(q) =

tm
√
B2+g2q2

h̄ , γ(q) = B√
B2+g2q2

and δ(q) = gq√
B2+g2q2

.

The following restrictions are valid for γ(q) and δ(q): γ(q)2 + δ(q)2 = 1 and 0 ≤ γ(q) ≤ 1 and
0 ≤ δ(q) ≤ 1.
In the case of σ 6→ 0, we have again the dimensionless variables q′ = q√

2σ
and q′0 = q0√

2σ
. We define

four dimensionless parameters, from which three dependent on the variable q′, so α, β(q′), γ(q′)

and δ(q′). Set α = Btev
h̄ , β(q′) =

tm
√
B2+2σg2q′2

h̄ , γ(q′) = B√
B2+2σg2q′2

and δ(q′) = gq′
√

2σ√
B2+2σg2q′2

.

The following restrictions are valid for γ(q′) and δ(q′): γ(q′)2 + δ(q′)2 = 1 and 0 ≤ γ(q′) ≤ 1 and
0 ≤ δ(q′) ≤ 1.

The values of the parameters will be mentioned at every plot. All the plots in this thesis are made
in Python [1].

1B includes here the Bohr magneton µB so B has the dimension of energy.
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3.2 System evolution of free spin

In this section, we study a qubit which freely evolves under influence of a magnetic field. We will
demonstrate how the probabilities of the qubit to be in one of its states develop in time.

Consider a system, a particle with spin 1/2, which represents a qubit, that can be in two states:

|0
〉

= 1√
2

(
1
1

)
and |1

〉
= 1√

2

(
1
−1

)
. The system evolves under the Hamiltonian H0 = Bσz, with B

a magnetic field and σz a Pauli spin matrix, so there is the free evolution of spin. Take the initial
state of the spin an eigenstate of the spin in the x-direction

|ψ(0)
〉

=
1√
2

(
1
1

)
, (3.2.1)

so in qubit terms the initial state of the qubit is |0
〉
.

The free evolution of the qubit is calculated by solving Schrödingers equation 2.1.1. This gives

|ψ(t)
〉

= exp
(
− i

h̄

∫ t

0

Bσzdt
′
)
|ψ(0)

〉
. (3.2.2)

Since B and σz do not depend on time, we set α̂ = − i
h̄Bt. The Taylor series of the exponential

function give

exp(α̂σz) =

∞∑
n=0

(α̂σz)
n

n!
=

∞∑
n=0

(α̂σz)
2n

(2n)!
+

∞∑
n=0

(α̂σz)
2n+1

(2n+ 1)!
. (3.2.3)

Since σz =

(
1 0
0 −1

)
, we notice that σ2

z = I. As a result, σ2n
z = I and σ2n+1

z = σz. This

gives

exp(α̂σz) = I

∞∑
n=0

α̂2n

(2n)!
+ σz

∞∑
n=0

α̂2n+1

(2n+ 1)!
(3.2.4)

and with the Taylor series of the hyperbolic cosine and hyperbolic sine, this gives

exp(α̂σz) = I cosh(α̂)+σz sinh(α̂) =

(
cosh(α̂) + sinh(α̂) 0

0 cosh(α̂)− sinh(α̂)

)
=

(
exp(α̂) 0

0 exp(−α̂)

)
.

(3.2.5)

With the initial state given as in equation 3.2.1 and substituting α̂ = − i
h̄Bt, the system evolves

as follows in time,

|ψ(t)
〉

=
1√
2

(
exp(− i

h̄Bt)
exp( ih̄Bt)

)
. (3.2.6)

The density matrix of this system is given by

ρ =
1

2

(
1 exp(−2 ih̄Bt)

exp(2 ih̄Bt) 1

)
(3.2.7)

using equation 2.4.1.
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At t = 0 the qubit is in state |0
〉

= 1√
2

(
1
1

)
. The probability that the qubit is in this state at time

t is, using equation 2.4.4, given by

P0(t) =
1

2
+

1

2
cos(

2

h̄
Bt) (3.2.8)

and the probability that the qubit is in state 1√
2

(
1
−1

)
is, using equation 2.4.5, given by

P1(t) =
1

2
− 1

2
cos(

2

h̄
Bt). (3.2.9)

The corresponding plot of P0 and P1 against time is shown in figure 3. The dimensionless parameter
is α = π. The Rabi frequency is given by f = h̄

π .

Figure 3. Graph of the probability of being in state 0 P0 (continuous line) or in state 1 P1 (dashed line) as
function of t

h̄
with t the time.

3.3 Measurement of a system neglecting free evolution

In this section, we study a qubit, which only evolves under the influence of a detector. We will
demonstrate how the probabilities of the qubit to be in one of its states develop in time.

Consider a system, a particle with spin 1/2, and a detector with coordinate q and momentum p.

The particle with spin 1/2 represents the qubit, which can be in two states: |0
〉

= 1√
2

(
1
1

)
and

|1
〉

= 1√
2

(
1
−1

)
. Take the initial state of the spin an eigenstate of the spin in the x-direction

|ψ(0)
〉

=
1√
2

(
1
1

)
, (3.3.1)

so in qubit terms the initial state of the qubit is |0
〉
. Take the initial state of the detector Gaus-

sian

|φ(0)
〉
∝ exp

(
− (q − q0)2

2σ

)
(3.3.2)

with q the detector coordinate which is assumed to be continuous, q0 the mean of the detector co-
ordinate q and σ the dispersion. The initial state is the product state |Φ(0)

〉
= |ψ(0)

〉
|φ(0)

〉
.

Neglect the free evolution of the system. One continuous measurement is done by measuring the
x-component of the spin. So the system evolves only under the interaction Hamiltonian, given by
Hint = g(t)qσx, with g(t) the interaction strength between the system and the detector which is

9



non-zero during a long period of time, q the detector coordinate and σx a Pauli spin matrix. When
doing a measurement, the wave function will collapse to an eigenstate of the observable, in this

case σx. These eigenstates are 1√
2

(
1
1

)
and 1√

2

(
1
−1

)
.

The system evolves as follows in time, denoted by t,

|Φ(t)
〉

= exp
(
− i

h̄

∫ t

0

Hintdt
′
)
|Φ(0)

〉
. (3.3.3)

Assuming g(t) to be independent in time, we get

|Φ(t)
〉

= exp(− i
h̄
gqσxt)|Φ(0)

〉
. (3.3.4)

Take β̂ = − i
h̄gqt.

The Taylor series of the exponential function give

exp(β̂σx) =

∞∑
n=0

(β̂σx)n

n!
=

∞∑
n=0

(β̂σx)2n

(2n)!
+

∞∑
n=0

(β̂σx)2n+1

(2n+ 1)!
. (3.3.5)

Since σx =

(
0 1
1 0

)
, we notice that σ2

x = I. As a result, σ2n
x = I and σ2n+1

x = σx. This gives

exp(β̂σx) = I

∞∑
n=0

β̂2n

(2n)!
+ σx

∞∑
n=0

β̂2n+1

(2n+ 1)!
(3.3.6)

and with the Taylor series of the hyperbolic cosine and hyperbolic sine, this gives

exp(β̂σx) = I cosh(β̂) + σx sinh(β̂) =

(
cosh(β̂) sinh(β̂)

sinh(β̂) cosh(β̂)

)
. (3.3.7)

Substituting β̂ = − i
h̄gqt in equation 3.3.7, this results in

exp(β̂σx) =

(
cos( 1

h̄gqt) −i sin( 1
h̄gqt)

−i sin( 1
h̄gqt) cos( 1

h̄gqt)

)
. (3.3.8)

We find using equation 3.3.4 and the initial state, the following normalized state

|Φ(t)
〉

=
1√

2
√
πσ

exp
(
− (q − q0)2

2σ

)
exp(− i

h̄
qgt)

(
1
1

)
. (3.3.9)

The density matrix ρ is calculated by the following equation

ρ = |Φ(t)
〉
q

〈
Φ(t)|q† . (3.3.10)

Set q = q†, since q is a real observable coordinate. The density matrix is then given by

ρ =
1

2
√
πσ

exp
(
− (q − q0)2

σ

)(
1 1
1 1

)
. (3.3.11)

Now the dectector coordinate q is traced out by taking the partial trace over q in order to get the
density matrix only dependent on the qubit coordinates i = |0

〉
and j = |1

〉
. This is given by equa-

tion 2.4.6 and this gives, the sum approached by an integral since q is a continuous variable,

10



ρii,ij,ji,jj = trqρ =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)(
1 1
1 1

)
dq. (3.3.12)

Working out this integral for ρii gives

ρii = trqρ =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
dq =

[
erf( q−q0√

σ
)

4

]∞
−∞

=
1

2
. (3.3.13)

The same calculation is done for ρij , ρji and ρjj . At t = 0 the qubit is in state |0
〉

= 1√
2

(
1
1

)
. The

probability that the qubit is in this state at time t is, using equation 2.4.4, given by

P0(t) = 1 (3.3.14)

and the probability that the qubit is in state 1√
2

(
1
−1

)
is, using equation 2.4.5, given by

P1(t) = 0. (3.3.15)

So the qubit will remain in its initial state and will not undergo a transition to another state. This

is in line with the expectation, since the initial state of the qubit is 1√
2

(
1
1

)
and when doing an

instant measurement of the observable σx on the qubit, it will remain with probability 1 in the
eigenstate of this observable, so its initial state. The wavefunction will collapse to state |0

〉
. This

is also in line with the quantum Zeno effect. Since we do a continuous measurement, the qubit will
never undergo a transition to another state.

The corresponding plot for P0 and P1 against time is given in figure 4.

Figure 4. Graph of the probability of being in state 0 P0 (continuous line) or state 1 P1 (dashed line) as function
of t

h̄
with t the time.

3.4 System evolution of a series of measurements alternated with free
evolution of the spin

In this section, we study a qubit, which alternately evolves under influence of a magnetic field 2

and a detector 3. We will demonstrate how the probabilities of the qubit to be in one of its states
develop in time and see if the quantum Zeno effect can be observed.

2This represents the free evolution of the qubit.
3This represents a measurement done on the qubit.
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Consider the same system as in subsection 3.3, so a particle with spin 1/2, and a detector with
coordinate q and momentum p. The particle with spin 1/2 represents the qubit, which can be in

two states: |0
〉

= 1√
2

(
1
1

)
and |1

〉
= 1√

2

(
1
−1

)
. Now the system evolves also under the Hamiltonian

H0 = Bσz, with B a magnetic field and σz a Pauli spin matrix, so there is the free evolution of
spin. Take again the initial state of the spin an eigenstate of the spin in the x-direction

|ψ(0)
〉

=
1√
2

(
1
1

)
, (3.4.1)

and the initial state of the detector Gaussian

|φ(0)
〉
∝ exp

(
− (q − q0)2

2σ

)
(3.4.2)

with q the detector coordinate which is assumed to be continuous, q0 the mean of the detector
coordinate q and σ the dispersion. The initial state of the system is the product state |Φ(0)

〉
=

|ψ(0)
〉
|φ(0)

〉
.

Consider a series of measurements. Each measurement is performed at time tk = kT
n during

tm under the Hamiltonian Hint. Assume T to be finite. The system evolves under H0 during
tev between the measurements, so then there is only free evolution. We take tm � tev so that
we can neglect the Hamiltonian H0 during the measurements. So during the free evolution we
have g(t) = 0 and during the measurement we have B = 0. The periods of free evolution and
measurement alternate. The wavefunction evolves during tev + tm as

|Φ(tev + tm)
〉

= T̂ exp
(
− i

h̄

∫ tev+tm

tev

Hintdt
′
)

exp
(
− i

h̄

∫ tev

0

H0dt
′
)
|Φ(0)

〉
(3.4.3)

with T̂ the time ordering operator.

3.4.1 Situation σ → 0

In this subsection, the wavefunctions, density matrices and probabilities are expressed in the
following dimensionless terms: 1

h̄Btev,
1
h̄gqtm and 1

h̄gq0tm. These can be expressed as follows

in the parameters α = Btev
h̄ and β = gtm

h̄ and the dimensionless variables q and q0. 1
h̄Btev = α,

1
h̄gqtm = βq and 1

h̄gq0tm = βq0.

First, there is a period of length tev of free evolution of the system. We already derived in subsection
3.2 the following result

exp
(
− i

h̄

∫ tev

0

H0dt
)

= exp
(
− i

h̄
Btevσz

)
=

(
exp(− i

h̄Btev) 0
0 exp( ih̄Btev)

)
. (3.4.4)

With the initial state given, we solve Schrödingers equation and derive that the system is in the
following normalized state after time tev,

|Φ(tev)
〉

=
1√

2
√
πσ

exp
(
− (q − q0)2

2σ

)exp
(
− i

h̄Btev

)
exp

(
i
h̄Btev

)  . (3.4.5)

So this is the state after time tev. Now there will be done a measurement during tm. The system
evolves as follows under the interaction Hamiltonian,

|Φ(tev + tm)
〉

= exp
(
− i

h̄

∫ tev+tm

tev

Hintdt
)
|Φ(tev)

〉
. (3.4.6)
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Assume g(t) to be independent in time.4 We find using equations 3.3.8, 3.4.5 and 3.4.6, the
following normalized state at time tm + tev,

|Φ(tev + tm)
〉

=
1√

2
√
πσ

exp
(
− (q − q0)2

2σ

)cos
(

1
h̄gqtm −

1
h̄Btev

)
− i sin

(
1
h̄gqtm + 1

h̄Btev

)
cos
(

1
h̄gqtm + 1

h̄Btev

)
− i sin

(
1
h̄gqtm −

1
h̄Btev

) .

(3.4.7)

So the evolution of the wave function at discrete moments in time k(tev + tm) with k an integer is
given by applying the matrix

A = exp
(
− i
h̄

∫ tev+tm

tev

Hintdt
)

exp
(
− i
h̄

∫ tev

0

H0dt
)

=

(
exp(− i

h̄Btev) cos( 1
h̄gqtm) −i exp( ih̄Btev) sin( 1

h̄gqtm)
−i exp(− i

h̄Btev) sin( 1
h̄gqtm) exp( ih̄Btev) cos( 1

h̄gqtm)

)
(3.4.8)

a number of times on the initial wave function for each time period consisting of a period of free
evolution followed by a period of a measurement. After each measurement, the probability that
the qubit is in its initial state |0

〉
and the probability that the qubit is in its other state |1

〉
is

calculated using the density matrix.

The density matrix ρ at time tev + tm is calculated by the following equation

ρ(tev + tm) = |Φ(tev + tm)
〉
q

〈
Φ(tev + tm)|q† . (3.4.9)

Set q = q†. 5 The density matrix 6 is then given by

ρ(tev + tm) =
1

2
√
πσ

exp
(
− (q − q0)2

σ

)(α̃(tev + tm) β̃(tev + tm)

γ̃(tev + tm) δ̃(tev + tm)

)
(3.4.10)

with α̃(tev + tm) = cos2
(

1
h̄gqtm −

1
h̄Btev

)
+ sin2

(
1
h̄gqtm + 1

h̄Btev

)
,

β̃(tev + tm) = cos
(

1
h̄gqtm + 1

h̄Btev

)
cos
(

1
h̄gqtm −

1
h̄Btev

)
+ sin

(
1
h̄gqtm + 1

h̄Btev

)
sin
(

1
h̄gqtm −

1
h̄Btev

)
+ i
(

cos
(

1
h̄gqtm −

1
h̄Btev

)
sin
(

1
h̄gqtm −

1
h̄Btev

)
− cos

(
1
h̄gqtm + 1

h̄Btev

)
sin
(

1
h̄gqtm + 1

h̄Btev

))
,

γ̃(tev + tm) = cos
(

1
h̄gqtm + 1

h̄Btev

)
cos
(

1
h̄gqtm −

1
h̄Btev

)
+ sin

(
1
h̄gqtm + 1

h̄Btev

)
sin
(

1
h̄gqtm −

1
h̄Btev

)
+ i
(

cos
(

1
h̄gqtm + 1

h̄Btev

)
sin
(

1
h̄gqtm + 1

h̄Btev

)
− cos

(
1
h̄gqtm −

1
h̄Btev

)
sin
(

1
h̄gqtm −

1
h̄Btev

))
and δ̃(tev + tm) = cos2

(
1
h̄gqtm + 1

h̄Btev

)
+ sin2

(
1
h̄gqtm −

1
h̄Btev

)
.

Now the dectector coordinate q is traced out by taking the partial trace over q in order to get the
density matrix only dependent on the qubit coordinates i = |0

〉
and j = |1

〉
. This is given by equa-

tion 2.4.6 and this gives, the sum approached by an integral since q is a continuous variable,

ρii,ij,ji,jj(tev + tm) = trqρ(tev + tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)(α̃(tev + tm) β̃(tev + tm)

γ̃(tev + tm) δ̃(tev + tm)

)
dq.

(3.4.11)

4The evolution of the wave function at discrete moments in time for g(t) time dependent is given in the appendix
in subsection 5.3.1.

5This assumption is made at every moment in time and it will not be noticed anymore.
6Indeed tr(ρ) = 1 and ρ12∗ = ρ21. These conditions are valid for every density matrix in this report.
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In this subsection, we consider the case where σ → 0. Consequently, the exponential approaches

the Dirac delta function around q0, so exp
(
− (q−q0)2

σ

)
→ δ(q − q0). This gives in equation

3.4.11

ρii,ij,ji,jj(tev + tm, q0) ≈ 1

2

(
α̃(tev + tm, q0) β̃(tev + tm, q0)

γ̃(tev + tm, q0) δ̃(tev + tm, q0)

)
(3.4.12)

with α̃(tev + tm, q0) = cos2
(

1
h̄gq0tm − 1

h̄Btev

)
+ sin2

(
1
h̄gq0tm + 1

h̄Btev

)
,

β̃(tev + tm, q0) = cos
(

1
h̄gq0tm + 1

h̄Btev

)
cos
(

1
h̄gq0tm − 1

h̄Btev

)
+ sin

(
1
h̄gq0tm + 1

h̄Btev

)
sin
(

1
h̄gq0tm − 1

h̄Btev

)
+ i
(

cos
(

1
h̄gq0tm − 1

h̄Btev

)
sin
(

1
h̄gq0tm − 1

h̄Btev

)
− cos

(
1
h̄gq0tm + 1

h̄Btev

)
sin
(

1
h̄gq0tm + 1

h̄Btev

))
,

γ̃(tev + tm, q0) = cos
(

1
h̄gq0tm + 1

h̄Btev

)
cos
(

1
h̄gq0tm − 1

h̄Btev

)
+ sin

(
1
h̄gq0tm + 1

h̄Btev

)
sin
(

1
h̄gq0tm − 1

h̄Btev

)
+ i
(

cos
(

1
h̄gq0tm + 1

h̄Btev

)
sin
(

1
h̄gq0tm + 1

h̄Btev

)
− cos

(
1
h̄gq0tm − 1

h̄Btev

)
sin
(

1
h̄gq0tm − 1

h̄Btev

))
and

δ̃(tev + tm, q0) = cos2
(

1
h̄gq0tm + 1

h̄Btev

)
+ sin2

(
1
h̄gq0tm − 1

h̄Btev

)
.

At t = 0 the qubit is in state |0
〉

= 1√
2

(
1
1

)
. The probability that the qubit is still in this state at

tm + tev is, using equation 2.4.4, given by

P0(tm + tev, q0) =
1

2
+

1

2
cos
( 2

h̄
Btev

)
(3.4.13)

and the probability that the qubit is in its other state |1
〉

= 1√
2

(
1
−1

)
is, using equation 2.4.5,

given by

P1(tm + tev, q0) =
1

2
− 1

2
cos
( 2

h̄
Btev

)
(3.4.14)

As expected, P0(tm + tev, q0) + P1(tm + tev, q0) = 1. 7

Now the second period, consisting of a period of free evolution and a measurement, takes place.
The state after t = 2tev + 2tm is given by applying two times matrix A, calculated in equation
3.4.8, on the initial state. This gives

|Φ(2tev + 2tm)
〉

= A2|Φ(0)
〉

=
1√

2
√
πσ

exp
(
− (q − q0)2

2σ

)(
Φi
Φj

)
(3.4.15)

with Φi = exp(− 2i
h̄ Btev) cos2( 1

h̄gqtm)−i(1+exp( 2i
h̄ Btev)) sin( 1

h̄gqtm) cos( 1
h̄gqtm)−sin2( 1

h̄gqtm) and

Φj = exp( 2i
h̄ Btev) cos2( 1

h̄gqtm)− i(1+exp(− 2i
h̄ Btev)) sin( 1

h̄gqtm) cos( 1
h̄gqtm)− sin2( 1

h̄gqtm).

The density matrix at 2tev + 2tm is given by

ρ(2tev+2tm) = |Φ(2tev+2tm)
〉〈

Φ(2tev+2tm)| = 1

2
√
πσ

exp
(
− (q − q0)2

σ

)(α̃(2tev + 2tm) β̃(2tev + 2tm)

γ̃(2tev + 2tm) δ̃(2tev + 2tm)

)
(3.4.16)

7For every moment in time P0 + P1 = 1 is valid.
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with α̃(2tev + 2tm) = 1
8 exp(−4 ih̄Btev)

(
− 2i exp(8 ih̄Btev) sin( 2

h̄gqtm) + 2i exp(2 ih̄Btev) sin( 4
h̄gqtm)

−2i exp(6 ih̄Btev) sin( 4
h̄gqtm)−i exp(8 ih̄Btev) sin( 4

h̄gqtm)+8 exp(4 ih̄Btev)+2i sin( 2
h̄gqtm)+i sin( 4

h̄gqtm)
)

,

β̃(2tev+2tm) = − 1
8 exp(−4 ih̄Btev)

(
4 exp(4 ih̄Btev) cos( 2

h̄gqtm)−2 exp(2 ih̄Btev) cos( 4
h̄gqtm)+2 exp(6 ih̄Btev) cos( 4

h̄gqtm)

+ exp(8 ih̄Btev) cos( 4
h̄gqtm) + 2 exp(2 ih̄Btev)− 4 exp(4 ih̄Btev)− 2 exp(6 ih̄Btev)− exp(8 ih̄Btev)

− 4 cos( 2
h̄gqtm)− cos( 4

h̄gqtm)− 3
)

,

γ̃(2tev+2tm) = 1
8 exp(−4 ih̄Btev)

(
−4 exp(4 ih̄Btev) cos( 2

h̄gqtm)+4 exp(8 ih̄Btev) cos( 2
h̄gqtm)−2 exp(2 ih̄Btev) cos( 4

h̄gqtm)

+2 exp(6 ih̄Btev) cos( 4
h̄gqtm)+exp(8 ih̄Btev) cos( 4

h̄gqtm)+2 exp(2 ih̄Btev)+4 exp(4 ih̄Btev)−2 exp(6 ih̄Btev)

+ 3 exp(8 ih̄Btev)− cos( 4
h̄gqtm) + 1

)
and

δ̃(2tev+2tm) = 1
8 exp(−4 ih̄Btev)

(
2i exp(8 ih̄Btev) sin( 2

h̄gqtm)−2i exp(2 ih̄Btev) sin( 4
h̄gqtm)+2i exp(6 ih̄Btev) sin( 4

h̄gqtm)

+ i exp(8 ih̄Btev) sin( 4
h̄gqtm) + 8 exp(4 ih̄Btev)− 2i sin( 2

h̄gqtm)− i sin( 4
h̄gqtm)

)
.

Again we take the partial trace over the detector coordinate q in order to get the density matrix
only dependent on the qubit coordinates i = |0

〉
and j = |1

〉

ρii,ij,ji,jj(2tev + 2tm) = trqρ(2tev + 2tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)(
α̃(2tev + 2tm) β̃(2tev + 2tm)

γ̃(2tev + 2tm) δ̃(2tev + 2tm)

)
dq.

(3.4.17)

In this case σ → 0, so again exp
(
− (q−q0)2

σ

)
→ δ(q − q0). This gives in equation 3.4.17

ρii,ij,ji,jj(2tev + 2tm, q0) ≈ 1

2

(
α̃(2tev + 2tm, q0) β̃(2tev + 2tm, q0)

γ̃(2tev + 2tm, q0) δ̃(2tev + 2tm, q0)

)
(3.4.18)

with α̃(2tev+2tm, q0) = 1
8 exp(−4 ih̄Btev)

(
−2i exp(8 ih̄Btev) sin( 2

h̄gq0tm)+2i exp(2 ih̄Btev) sin( 4
h̄gq0tm)

−2i exp(6 ih̄Btev) sin( 4
h̄gq0tm)−i exp(8 ih̄Btev) sin( 4

h̄gq0tm)+8 exp(4 ih̄Btev)+2i sin( 2
h̄gq0tm)+i sin( 4

h̄gq0tm)
)

,

β̃(2tev + 2tm, q0) = − 1
8 exp(−4 ih̄Btev)

(
4 exp(4 ih̄Btev) cos( 2

h̄gq0tm)− 2 exp(2 ih̄Btev) cos( 4
h̄gq0tm)

+2 exp(6 ih̄Btev) cos( 4
h̄gq0tm)+exp(8 ih̄Btev) cos( 4

h̄gq0tm)+2 exp(2 ih̄Btev)−4 exp(4 ih̄Btev)−2 exp(6 ih̄Btev)

− exp(8 ih̄Btev)− 4 cos( 2
h̄gq0tm)− cos( 4

h̄gq0tm)− 3
)

,

γ̃(2tev + 2tm, q0) = 1
8 exp(−4 ih̄Btev)

(
− 4 exp(4 ih̄Btev) cos( 2

h̄gq0tm) + 4 exp(8 ih̄Btev) cos( 2
h̄gq0tm)

−2 exp(2 ih̄Btev) cos( 4
h̄gq0tm)+2 exp(6 ih̄Btev) cos( 4

h̄gq0tm)+exp(8 ih̄Btev) cos( 4
h̄gq0tm)+2 exp(2 ih̄Btev)

+ 4 exp(4 ih̄Btev)− 2 exp(6 ih̄Btev) + 3 exp(8 ih̄Btev)− cos( 4
h̄gq0tm) + 1

)
and

δ̃(2tev + 2tm, q0) = 1
8 exp(−4 ih̄Btev)

(
2i exp(8 ih̄Btev) sin( 2

h̄gq0tm)− 2i exp(2 ih̄Btev) sin( 4
h̄gq0tm)

+2i exp(6 ih̄Btev) sin( 4
h̄gq0tm)+i exp(8 ih̄Btev) sin( 4

h̄gq0tm)+8 exp(4 ih̄Btev)−2i sin( 2
h̄gq0tm)−i sin( 4

h̄gq0tm)
)

.

The probability that the qubit is in state |0
〉

after 2tev+2tm is, using equation 2.4.4, given by

P0(2tm + 2tev, q0) =
3

4
− 1

4
cos(

2

h̄
gq0tm) +

1

4
cos(

4

h̄
Btev) +

1

4
cos(

4

h̄
Btev) cos(

2

h̄
gq0tm) (3.4.19)

and the probability that the qubit is in state |1
〉

is, using equation 2.4.5, given by

P1(2tm + 2tev, q0) =
1

4
+

1

4
cos(

2

h̄
gq0tm)− 1

4
cos(

4

h̄
Btev)−

1

4
cos(

4

h̄
Btev) cos(

2

h̄
gq0tm). (3.4.20)
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The calculations of the probabilities at t = 3tev + 3tm and at t = 4tev + 4tm have been done in the
same way and are given in the appendix in subsection 5.1.1.

Unfortunately, there is not a pattern in these calculated probabilities. Therefore, the next proba-
bilities are calculated numerically according to the same method as the algebraic expressions were
determined. The wavefunction at time t = ktev + ktm with k = 0, 1, 2, ..., n is given by Ak|Φ(0)

〉
with A given in equation 3.4.8 and n < ∞ an integer. Consequently, the density matrix is calcu-
lated for each k and then the detector coordinate q is traced out in order to get the density matrix
only dependent on qubit coordinates. This is done in the limit of σ → 0. From this resulting
matrix, the probabilities are calculated that the qubit is in state |0

〉
and in state |1

〉
. The first

four numeric determined probabilities correspond with the values of the algebraic calculated prob-
abilities. In this way, the probabilities are known on discrete moments in time ktev + ktm with
k = 0, 1, 2, ..., n.

We also want to know what the probabilities of the qubit states are during each period of time
evolution and during each period of measurement. Therefore, define matrix Aev and Am as fol-
lows.

Aev(t) = exp
(
− i

h̄
H0t

)
=

(
exp(− i

h̄Bt) 0
0 exp( ih̄Bt)

)
(3.4.21)

and

Am(t) = exp
(
− i

h̄
Hintt

)
=

(
cos( 1

h̄gqt) −i sin( 1
h̄gqt)

−i sin( 1
h̄gqt) cos( 1

h̄gqt)

)
. (3.4.22)

The time t is divided in small steps of length ∆t. The wavefunction Akev|Φ(0)
〉

with k = 0, 1, 2, ..., n
is calculated for each k during tev, with tev = n∆t and n < ∞ an integer. Then a measurement
is done during tm and the wavefunction AlmA

n
ev|Φ(0)

〉
with l = 0, 1, 2, ...,m is calculated for each

l during tm, with tm = m∆t and m < ∞ an integer. Then there is free evolution again and
the wavefunction AkevA

m
mA

n
ev|Φ(0)

〉
is calculated for each k during tev. During the subsequent

measurement, the wavefunction AlmA
n
evA

m
mA

n
ev|Φ(0)

〉
is calculated for each l during tm, etc. For

each time step, the density matrix is calculated using the wave function. The density matrix only
dependent on qubit coordinates |0

〉
and |1

〉
is determined by taking the partial trace over the

detector coordinate q in the limit of σ → 0. From this matrix, the probabilities that the qubit
is in state |0

〉
and in state |1

〉
are determined. As a result, the behaviour of the probabilities

continuously in time is known by taking ∆t→ 0.

Since in this case σ → 0, the dispersion of the detector coordinate q is zero so the detector
coordinate q has one value q0. 8 There is a perfect measurement. When q0 = 0, there is no

interaction between the detector and the qubit. Hint =

(
0 0
0 0

)
in this case. There is only free

evolution so the probabilities will evolve in time as described in subsection 3.2.

A result of the first three periods of free evolution alternated with a measurement and of the first
40 points in time at k tev+tm

h̄ with k = 0, 1, ..., 40 is seen in figure 5. The dimensionless parameters,
defined in subsection 3.1 9, are α = π

2 and β = π
20 , so in the limit of tm � tev, and the dimensionless

variable q0 = 1, so there is interaction between the detector and the qubit.

8exp
(
− (q−q0)2

σ

)
→ δ(q − q0), so this is mathematically correct.

9Remember α = Btev
h̄

and β = gtm
h̄

.
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(a) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

2 and β = π
20 .

Bottom graph: Step function where 0 denotes a period of
free evolution and 1 a period of a measurement as

function of t
h̄ with t the time.

(b) Graph of the probability of being in state |0
〉
P0

(circles) or state |1
〉
P1 (triangles) as function of t

h̄ with t
the time at discrete points; α = π

2 and β = π
20 .

Figure 5.

When there is free evolution, the system evolves under the Hamiltonian H0 and as noticed in
subsection 3.2, the probabilities of the qubit to be in state |0

〉
or |1

〉
will evolve in time according

to a sine form between 0 and 1. When a measurement is done, the system evolves under Hint. The

eigenvectors of the observable σx in Hint are 1√
2

(
1
1

)
and 1√

2

(
1
−1

)
, so respectively |0

〉
and |1

〉
.

In this situation with parameters α = π
2 and β = π

20 , the measurement is done when the qubit is
with a probability 1 in one of its states. When doing a measurement at that moment, the wave
function will collapse to this state with probability 1 and the qubit will remain in this state. As
we can see in figure 5b, where the probabilities in which state the qubit is are plotted after each
measurement, the expected period of figure 5a will repeat like this in time. This is in line with the
expectation.

A stronger measurement results in the same plot. The interaction between the qubit and detector
becomes larger by increasing gq0. Hint is directly proportional to gq0. However, since there is
only a measurement and no free evolution during the period of measurement, the evolution of the
probabilities will freeze during this period, regardless of the strength of the measurement.

Now we take other parameter values for α and β, namely α = π
4 and β = π

40 , so still in the limit
of tm � tev. Again, q0 = 1.

(a) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

4 and β = π
40 .

Bottom graph: Step function where 0 denotes a period of
free evolution and 1 a period of a measurement as

function of t
h̄ with t the time.

(b) Graph of the probability of being in state |0
〉
P0

(circles) or state |1
〉
P1 (triangles) as function of t

h̄ with t
the time at discrete points; α = π

4 and β = π
40 .

Figure 6.

As can be concluded from figure 6b, the sine pattern from figure 6a will repeat. Now the mea-
surement is done at moments in time when the qubit is with a probability of 1 or 1

2 in one of its
states. The wavefunction will collapse with a probability of 1 to the state where the qubit already
is in, when the measurement is done at a moment when the qubit is with a probability of 1 in one
of its states. When the measurement is done at the moment that the qubit is with a probability of
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1
2 in one of its states, the wavefunction will collapse with a probability of 1

2 to one of those states
during the measurement. So during the measurement, these probabilities freeze. This is in line
with our expectation.

Again, a stronger measurement will result in the same plot.

3.4.2 Situation σ 6→ 0

In this section, the wavefunctions, density matrices and probabilities are expressed in the following
dimensionless terms: 1

h̄Btev,
1
h̄gqtm, 1

h̄gq0tm and ( 1
h̄gtm)2σ. These can be expressed as follows in

the dimensionless parameters α = Btev
h̄ , β = gtm

√
2σ

h̄ . and the dimensionless variables, q′ = q√
2σ

and

q′0 = q0√
2σ

. 1
h̄Btev = α, 1

h̄gqtm = βq′, 1
h̄gq0tm = βq′0 and ( 1

h̄gtm)2σ = β2

2 . The initial state of the

detector is expressed as follows in the dimensionless variables, |φ(0)
〉

= exp
(
− (q′ − q′0)2

)
.

The integral in the expression by calculating the partial trace over the detector coordinate q will
now be calculated without the assumption σ → 0. Consider this case at t = tev + tm. The integral
from equation 3.4.11 is calculated for each matrix element, resulting in the following equations for
ρii, ρij , ρji and ρjj . Equations 3.4.23 and 3.4.24 are worked out completely in appendix subsection
5.2.10

ρii(tev + tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
α̃(tev + tm)dq

=
1

2
+ 2 exp(−(

1

h̄
gtm)2σ) cos(

1

h̄
gtmq0) sin(

1

h̄
gtmq0) cos(

1

h̄
Btev) sin(

1

h̄
Btev)

(3.4.23)

ρij(tev + tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
β̃(tev + tm)dq

=−
exp(−( 1

h̄gtm)2σ)

4

(
i sin(2(

1

h̄
Btev +

1

h̄
gtmq0)) + i sin(2(

1

h̄
Btev −

1

h̄
gtmq0))

− 2 exp((
1

h̄
gtm)2σ) cos(

2

h̄
Btev)

)
(3.4.24)

ρji(tev + tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
γ̃(tev + tm)dq

=
exp(−( 1

h̄gtm)2σ)

4

(
i sin(2(

1

h̄
Btev +

1

h̄
gtmq0)) + i sin(2(

1

h̄
Btev −

1

h̄
gtmq0))

+ 2 exp((
1

h̄
gtm)2σ) cos(

2

h̄
Btev)

) (3.4.25)

ρjj(tev + tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
δ̃(tev + tm)dq

=
1

2
− 2 exp(−(

1

h̄
gtm)2σ) cos(

1

h̄
gtmq0) sin(

1

h̄
gtmq0) cos(

1

h̄
Btev) sin(

1

h̄
Btev)

(3.4.26)

So the result of equation 3.4.11 is ρii,ij,ji,jj(tev + tm) =

(
ρii(tev + tm) ρij(tev + tm)
ρji(tev + tm) ρjj(tev + tm)

)
.

The probability that the qubit is still in state |0
〉

at tev+tm is, using equation 2.4.4, given by

10All the other integrals in this subsection are calculated using the same sort of steps.
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P0(tm + tev) =
1

2
+

1

2
cos(

2

h̄
Btev) (3.4.27)

and the probability that the qubit is in state |1
〉

is, using equation 2.4.5, given by

P1(tm + tev) =
1

2
− 1

2
cos(

2

h̄
Btev). (3.4.28)

Consider the general case of the partial trace at t = 2tev + 2tm. The integral from equation
3.4.17 is calculated for each matrix element at this moment in time, resulting in the following
equations

ρii(2tev + 2tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
α̃(2tev + 2tm)dq =

1

2
+ 2 exp(−4(

1

h̄
gtm)2σ) cos(

1

h̄
gtmq0) sin(

1

h̄
gtmq0) cos(

1

h̄
Btev) sin(

1

h̄
Btev)

(
2(2 cos2(

1

h̄
gtmq0)

+ exp(3(
1

h̄
gtm)2σ)− 1) cos2(

1

h̄
Btev)− exp(3(

1

h̄
gtm)2σ)

)
(3.4.29)

ρij(2tev + 2tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
β̃(2tev + 2tm)dq =

1

16

(
− i exp(−4(

1

h̄
gtm)2σ) sin(

4

h̄
Btev + 4

1

h̄
gtmq0)− 2i exp(−(

1

h̄
gtm)2σ) sin(

4

h̄
Btev + 2

1

h̄
gtmq0)

+ 2 exp(−(
1

h̄
gtm)2σ) cos(

4

h̄
Btev + 2

1

h̄
gtmq0)− 2i exp(−(

1

h̄
gtm)2σ) sin(

4

h̄
Btev − 2

1

h̄
gtmq0)

+ 2 exp(−(
1

h̄
gtm)2σ) cos(

4

h̄
Btev − 2

1

h̄
gtmq0)− 4 exp(−(

1

h̄
gtm)2σ) cos(2

1

h̄
gtmq0)

− i exp(−4(
1

h̄
gtm)2σ) sin(

4

h̄
Btev − 4

1

h̄
gtmq0)− 2i exp(−4(

1

h̄
gtm)2σ) sin(

2

h̄
Btev + 4

1

h̄
gtmq0)

− 2i exp(−4(
1

h̄
gtm)2σ) sin(

2

h̄
Btev − 4

1

h̄
gtmq0)− 2i sin(

4

h̄
Btev) + 4 cos(

4

h̄
Btev) + 4i sin(

2

h̄
Btev) + 4

)
(3.4.30)

ρji(2tev + 2tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
γ̃(2tev + 2tm)dq =

1

16

(
i exp(−4(

1

h̄
gtm)2σ) sin(

4

h̄
Btev + 4

1

h̄
gtmq0) + 2i exp(−(

1

h̄
gtm)2σ) sin(

4

h̄
Btev + 2

1

h̄
gtmq0)

+ 2 exp(−(
1

h̄
gtm)2σ) cos(

4

h̄
Btev + 2

1

h̄
gtmq0) + 2i exp(−(

1

h̄
gtm)2σ) sin(

4

h̄
Btev − 2

1

h̄
gtmq0)

+ 2 exp(−(
1

h̄
gtm)2σ) cos(

4

h̄
Btev − 2

1

h̄
gtmq0)− 4 exp(−(

1

h̄
gtm)2σ) cos(2

1

h̄
gtmq0)

+ i exp(−4(
1

h̄
gtm)2σ) sin(

4

h̄
Btev − 4

1

h̄
gtmq0) + 2i exp(−4(

1

h̄
gtm)2σ) sin(

2

h̄
Btev + 4

1

h̄
gtmq0)

+ 2i exp(−4(
1

h̄
gtm)2σ) sin(

2

h̄
Btev − 4

1

h̄
gtmq0) + 2i sin(

4

h̄
Btev) + 4 cos(

4

h̄
Btev)− 4i sin(

2

h̄
Btev) + 4

)
(3.4.31)
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ρjj(2tev + 2tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
δ̃(2tev + 2tm)dq =

1

2
− 2 exp(−4(

1

h̄
gtm)2σ) cos(

1

h̄
gtmq0) sin(

1

h̄
gtmq0) cos(

1

h̄
Btev) sin(

1

h̄
Btev)

(
2(2 cos2(

1

h̄
gtmq0)

+ exp(3(
1

h̄
gtm)2σ)− 1) cos2(

1

h̄
Btev)− exp(3(

1

h̄
gtm)2σ)

)
(3.4.32)

So the result of equation 3.4.17 is ρii,ij,ji,jj(2tev+2tm) =

(
ρii(2tev + 2tm) ρij(2tev + 2tm)
ρji(2tev + 2tm) ρjj(2tev + 2tm)

)
.

The probability that the qubit is in state |0
〉

after 2tev + 2tm is given by

P0(2tm + 2tev) =
3

4
+

1

4
cos(

4

h̄
Btev)−

1

4
exp(−(

1

h̄
gtm)2σ) cos(2

1

h̄
gtmq0)

+
1

4
exp(−(

1

h̄
gtm)2σ) cos(

4

h̄
Btev)cos(

2

h̄
gtmq0)

(3.4.33)

and the probability that the qubit is in state |1
〉

is given by

P1(2tm + 2tev) =
1

4
− 1

4
cos(

4

h̄
Btev) +

1

4
exp(−(

1

h̄
gtm)2σ) cos(2

1

h̄
gtmq0)

− 1

4
exp(−(

1

h̄
gtm)2σ) cos(

4

h̄
Btev)cos(

2

h̄
gtmq0).

(3.4.34)

The calculations of the probabilities at t = 3tev + 3tm are done in the same way and given in the
appendix in subsection 5.1.2.

The general case for the probabilities at t = 4tev + 4tm was a really long expression, so those
calculations are not included. Unfortunately, again there is not a pattern in these calculated
probabilities. Therefore, the next steps are calculated numerically. This is done in the same
way as described at the end of subsection 3.4.1, but now the partial trace is calculated without
the simplification of σ → 0. An integration tool is used in Python [1]. The first three numeric
determined probabilities correspond with the values of the algebraic calculated probabilities.

We also calculated numerically the probabilities during the first three periods of time evolution
and measurement. This is done in the same way as described at the end of subsection 3.4.1 with
matrices Aev and Am, but now without the simplification of σ → 0.

σ indicates the degree of spread in the detector coordinate q. σ = 0 indicates a perfect measure-
ment. When σ > 0, there is a measurement error in the detector. The larger σ, the bigger the
error and the harder it is for the detector to do a proper measurement and to tell correctly in which
state the qubit is. This results in dissipation of the system. The oscillations in the probabilities
will damp.

When σ = 0 and q0 = 0, we notice that the algebraic calculated probabilities at tm + tev and
2tm + 2tev correspond with the expressions of the probabilities when there is only evolution, as
expected. This is harder to notice in the calculated probabilities at 3tm + 3tev, but the values of
these probabilities are the same as the values during only free evolution at this moment.

When σ > 0 and q0 = 0, there will be some interaction between the qubit and detector, since
there are values of q which are unequal to 0. There is integrated from −∞ to ∞ over q by the
calculation of the partial trace over q so these values are taken along in this calculation. Since
there is only a measurement and no free evolution during the period of measurement, the strength
of the measurement does not matter and the probabilities will freeze during this period.

When we compare the algebraic expressions of the probabilities at tm + tev in the cases of σ → 0
and σ > 0, we see no difference. When we compare the expressions at 2tm + 2tev, we notice that
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all the terms dependent on βq′0 and also a term dependent on α are multiplied with exp(−β
2

2 ).
The expressions of the probabilities at 3tm + 3tev are harder to compare since they are quite
different, but also at this moment in time we notice that all the terms dependent on βq′0 and also

terms dependent on α, which represent the free evolution, are multiplied with exp(−nβ
2

2 ) with n
an integer. So probably after tm + tev, there are exponentials dependent on β2 in the algebraic
expressions of the probabilities, which cause damping of the oscillations of the probabilities. The
larger β, the larger σ, so the faster the oscillations will damp. The dissipation of the system will
go faster.
So also in the algebraic expressions we see the damping of the oscillations of the probabilities,
caused by σ.

A result of the first three periods of free evolution and measurement and the first 40 points in time
at k tev+tm

h̄ with k = 0, 1, ..., 40 is given in the following figure. The dimensionless parameters from
subsection 3.1 11 are α = π

2 and β = π
20 and the variable q′0 = 1.

(a) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

2 and β = π
20 .

Bottom graph: Step function where 0 denotes a period of
free evolution and 1 a period of a measurement as

function of t
h̄ with t the time.

(b) Graph of the probability of being in state |0
〉
P0

(circles) or state |1
〉
P1 (triangles) as function of t

h̄ with t
the time at discrete points; α = π

2 and β = π
20 .

Figure 7.

These are the same plots as in figures 5a and 5b. So the simplification σ → 0 did not make any
difference for these parameter values. From equations 3.4.33 and 3.4.34 follows that for α = π

2 the
exponentials dependent on β2 cancel to each other. This will probably happen to all the damping
terms at every moment in time with this value of α.

Now the plots are made for the parameters α = π
4 and β = π

40 and the variable q′0 = 1. Now the
first 80 points in time at k tev+tm

h̄ are plotted instead of the first 40 points.

(a) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

4 and β = π
40 .

Bottom graph: Step function where 0 denotes a period of
free evolution and 1 a period of a measurement as

function of t
h̄ with t the time.

(b) Graph of the probability of being in state |0
〉
P0

(circles) or state |1
〉
P1 (triangles) as function of t

h̄ with t
the time at discrete points; α = π

4 and β = π
40 .

Figure 8.

11Remember α = Btev
h̄

, β = gtm
√

2σ
h̄

and q′0 = q0√
2σ

.
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There are differences between the results when σ → 0 and in this case when σ 6→ 0 at these
parameter values. The probabilities now freeze at different values than 0, 0.5 or 1 at ntev + ntm
with n = 2, 3, ... in comparison to the case when σ → 0 at these parameter values, shown in figure
6. As can be concluded from equations 3.4.27 and 3.4.28, there is no damping of the free evolution
at tev + tm. However, in the expressions of the probabilities at 2tev + 2tm and 3tev + 3tm, the
exponential damping terms are present and the free evolution is damped. This will continue in
time, as we can see in figure 8b.

Now plots are made for a larger g
√
σ. So β increases while α and q′0 remain the same.

(a) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

4 and β = π
20 .

Bottom graph: Step function where 0 denotes a period of
free evolution and 1 a period of a measurement as

function of t
h̄ with t the time.

(b) Graph of the probability of being in state |0
〉
P0

(circles) or state |1
〉
P1 (triangles) as function of t

h̄ with t
the time at discrete points; α = π

4 and β = π
20 .

Figure 9.

As can be seen by comparison with figures 6 and 8, the larger β so g
√
σ, the faster the oscillations

caused by the free evolution will damp. Indeed, the larger σ, the larger the measurement error in
the detector and the larger the dissipation of the system.

The quantum Zeno effect can occur when doing fast subsequent measurements or a continuous
measurement. In this subsection tm � tev was assumed such that H0 could be neglected during
measurements. For fast subsequent measurements and a continuous measurement we want tev �
tm, so this is not the right situation for the quantum Zeno effect to occur. However, when only a
measurement is done without evolution, the system freezes. The probabilities for the qubit to be
in one of its states remain the same. Since there is no free evolution during the measurement, this
is expected.

3.5 System evolution of a series of measurements during free evolution
of the spin alternated with only free evolution of the spin

In this section, we study the same system as in subsection 3.4, but in this subsection there is
during the measurement also free evolution. So periods of only free evolution and periods of
a measurement, executed by the detector under the same circumstances as before, during free
evolution alternate. Consequently, we will demonstrate how the probabilities of the qubit to be in
one of its states develop in time and see if the quantum Zeno effect can be observed.

Consider the same system as in subsection 3.4, so a particle with spin 1/2, and a detector with

coordinate q and momentum p. The particle represents the qubit with the states |0
〉

= 1√
2

(
1
1

)
and |1

〉
= 1√

2

(
1
−1

)
. Take again the initial state of the spin an eigenstate of the spin in the

x-direction

|ψ(0)
〉

=
1√
2

(
1
1

)
, (3.5.1)
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and the initial state of the detector Gaussian

|φ(0)
〉
∝ exp

(
− (q − q0)2

2σ

)
(3.5.2)

with q the detector coordinate which is assumed to be continuous, q0 the mean of the detector
coordinate q and σ the dispersion. The initial state of the system is again the product state
|Φ(0)

〉
= |ψ(0)

〉
|φ(0)

〉
.

Now there is during the period of measurement also free evolution, so the Hamiltonian under which
the system evolves is in this case given by Ĥ = Ĥ0 + Ĥint. The wave function |ψ(t)

〉
evolves in

this case as follows in time

|ψ(t)
〉

= exp
(
− i

h̄

∫ t

0

(Bσz + g(t′)qσx)dt′
)
|ψ(0)

〉
. (3.5.3)

We will write this exponential in matrix form and derive an expression for |ψ(t)
〉
.

Assume that g(t) is time independent 12. We have Ĥ =

(
B gq
gq −B

)
. Let α̂ = − i

h̄ t. The Taylor

series of the exponential function give

exp(α̂Ĥ) =

∞∑
n=0

(α̂Ĥ)n

n!
=

∞∑
n=0

(α̂Ĥ)2n

(2n)!
+

∞∑
n=0

(α̂Ĥ)2n+1

(2n+ 1)!
. (3.5.4)

We notice that Ĥ2 = (B2 + g2q2)I. From this follows Ĥ2n = (B2 + g2q2)nI and
Ĥ2n+1 = (B2 + g2q2)nĤ. This gives

exp(α̂Ĥ) = I

∞∑
n=0

(B2 + g2q2)n
α̂2n

(2n)!
+ Ĥ

∞∑
n=0

(B2 + g2q2)n
α̂2n+1

(2n+ 1)!
(3.5.5)

and with the Taylor series of the hyperbolic cosine and sine, this gives

exp(α̂Ĥ) = I cosh(α̂
√
B2 + g2q2) + Ĥ

sinh(α̂
√
B2 + g2q2)√

B2 + g2q2
. (3.5.6)

Let β̂ = i
h̄ t
√
B2 + g2q2. This results in the following matrix

cosh(β̂) + B√
B2+g2q2

sinh(−β̂) gq√
B2+g2q2

sinh(−β̂)

gq√
B2+g2q2

sinh(−β̂) cosh(β̂)− B√
B2+g2q2

sinh(−β̂)

 . (3.5.7)

With the initial state given as in equation 3.2.1 and using equation 3.5.3, the wavefunction evolves
as follows in time,

|ψ(t)
〉

=
1√
2

cos( 1
h̄ t
√
B2 + g2q2)− i B+gq√

B2+g2q2
sin( 1

h̄ t
√
B2 + g2q2)

cos( 1
h̄ t
√
B2 + g2q2)− i −B+gq√

B2+g2q2
sin( 1

h̄ t
√
B2 + g2q2)

 . (3.5.8)

12The evolution of the wave function at discrete moments in time for g(t) time dependent is given in the appendix
in subsection 5.3.2.
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Series of measurements

Consider a series of measurements. Each measurement is performed at time tk = kT
n during tm

under the Hamiltonian H = Hint + H0, so now there is always free evolution of the system, also
during the measurements. The system evolves under H0 during tev between the measurements, so
then there is only free evolution. Assume g to be time independent. The wavefunction evolves as
follows

|Φ(tev + tm)
〉

= T̂ exp
(
− i

h̄

∫ tev+tm

tev

(Hint +H0)dt′
)

exp
(
− i

h̄

∫ tev

0

H0dt
′
)
|Φ(0)

〉
(3.5.9)

with T̂ the time ordering operator.

3.5.1 Situation σ → 0

In this section, the wavefunctions, density matrices and probabilities are expressed in the following
dimensionless terms or combinations of these terms: 1

h̄Btev,
1
h̄ tm

√
B2 + g2q2, 1

h̄ tm
√
B2 + g2q2

0 ,
B√

B2+g2q2
, B√

B2+g2q2
0

, gq√
B2+g2q2

and gq0√
B2+g2q2

0

. These can be expressed as follows in the dime-

sionless parameters α, β(q), γ(q) and δ(q) and the variables q and q0, which are dimensionless:
1
h̄Btev = α, 1

h̄ tm
√
B2 + g2q2 = β(q), 1

h̄ tm
√
B2 + g2q2

0 = β(q0), B√
B2+g2q2

= γ(q), B√
B2+g2q2

0

=

γ(q0), gq√
B2+g2q2

= δ(q) and gq0√
B2+g2q2

0

= δ(q0).

The evolution of the wavefunction during tev is the same as described in equations 3.4.3, 3.4.4 and
3.4.5. The wavefunction after tev is given by

|Φ(tev)
〉

=
1√

2
√
πσ

exp
(
− (q − q0)2

2σ

)exp
(
− i

h̄Btev

)
exp

(
i
h̄Btev

)  . (3.5.10)

Now |Φ(tev + tm)
〉

is given by

|Φ(tev + tm)
〉

= exp
(
− i

h̄

∫ tev+tm

tev

(Hint(t
′) +H0(t′))dt′

)
|Φ(tev)

〉
. (3.5.11)

Assume g to be time independent. The exponential is given in matrix form by equation 3.5.7 with
t the measuring time tm.

Applying this matrix to |Φ(tev)
〉

gives

|Φ(tev+tm)
〉

=
1√

2
√
πσ

exp
(
− (q − q0)2

2σ

)cos(β̂) exp(−α̂)− i B√
B2+g2q2

exp(−α̂) sin(β̂)− i gq√
B2+g2q2

exp(α̂) sin(β̂)

cos(β̂) exp(α̂) + i B√
B2+g2q2

exp(α̂) sin(β̂)− i gq√
B2+g2q2

exp(−α̂) sin(β̂)


(3.5.12)

with α̂ = i
h̄Btev and β̂ = 1

h̄ tm
√
B2 + g2q2.

Moreover, the evolution of the wave function at discrete moments in time k(tev + tm) with k =
0, 1, 2, ..., n with n <∞ an integer is given by applying the matrix

C = exp
(
− i

h̄

∫ tev+tm

tev

(H0 +Hint)dt
)

exp
(
− i

h̄

∫ tev

0

H0dt
)

=

exp(−α̂)
(

cos(β̂)− i B√
B2+g2q2

sin(β̂)
)

−i gq√
B2+g2q2

exp(α̂) sin(β̂)

−i gq√
B2+g2q2

exp(−α̂) sin(β̂) exp(α̂)
(

cos(β̂) + i B√
B2+g2q2

sin(β̂)
)
 (3.5.13)
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k times for each time period of time evolution and measurement on the initial wave function.

The density matrix ρ at time tev + tm is given by

ρ(tev + tm) =
1

2
√
πσ

exp
(
− (q − q0)2

σ

)(
α̃(tev + tm) β̃(tev + tm)

γ̃(tev + tm) δ̃(tev + tm)

)
(3.5.14)

with α̃(tev + tm) = 1 + Bgq
B2+g2q2 sin2( 1

h̄ tm
√
B2 + g2q2)(exp(−2i

h̄ Btev) + exp( 2i
h̄ Btev))

+ gq√
B2+g2q2

cos( 1
h̄ tm

√
B2 + g2q2) sin( 1

h̄ tm
√
B2 + g2q2)

(
i exp(−2i

h̄ Btev)− i exp( 2i
h̄ Btev)

)
,

β̃(tev + tm) = − exp(− 2i
h̄ Btev)

B2

B2+g2q2 sin2( 1
h̄ tm

√
B2 + g2q2) +

exp( 2i
h̄ Btev)

g2q2

B2+g2q2 sin2( 1
h̄ tm

√
B2 + g2q2) + exp(−2i

h̄ Btev) cos2( 1
h̄ tm

√
B2 + g2q2)

− 2i B√
B2+g2q2

exp(−2i
h̄ Btev) cos( 1

h̄ tm
√
B2 + g2q2) sin( 1

h̄ tm
√
B2 + g2q2),

γ̃(tev+tm) = − exp( 2i
h̄ Btev)

B2

B2+g2q2 sin2( 1
h̄ tm

√
B2 + g2q2)+exp(− 2i

h̄ Btev)
g2q2

B2+g2q2 sin2( 1
h̄ tm

√
B2 + g2q2)

+ exp( 2i
h̄ Btev) cos2( 1

h̄ tm
√
B2 + g2q2)

+ 2i B√
B2+g2q2

exp( 2i
h̄ Btev) cos( 1

h̄ tm
√
B2 + g2q2) sin( 1

h̄ tm
√
B2 + g2q2) and

δ̃(tev + tm) = 1− Bgq
B2+g2q2 sin2( 1

h̄ tm
√
B2 + g2q2)(exp(−2i

h̄ Btev) + exp( 2i
h̄ Btev))

+ gq√
B2+g2q2

cos( 1
h̄ tm

√
B2 + g2q2) sin( 1

h̄ tm
√
B2 + g2q2)

(
− i exp(−2i

h̄ Btev) + i exp( 2i
h̄ Btev)

)
.

Consequently, the detector coordinate q is traced out again in the same way as in subsection 3.4.1
in order to get the density matrix only dependent on the qubit coordinates i = |0

〉
and j = |1

〉
.

Equation 3.4.11 gives in this situation where σ → 0, so exp
(
− (q−q0)2

σ

)
→ δ(q − q0),

ρii,ij,ji,jj(tev + tm, q0) ≈ 1

2

(
α̃(tev + tm, q0) β̃(tev + tm, q0)

γ̃(tev + tm, q0) δ̃(tev + tm, q0)

)
(3.5.15)

with α̃(tev + tm, q0) = 1 + Bgq
B2+g2q2

0
sin2( 1

h̄ tm
√
B2 + g2q2

0)(exp(−2i
h̄ Btev) + exp( 2i

h̄ Btev))

+ gq0√
B2+g2q2

0

cos( 1
h̄ tm

√
B2 + g2q2

0) sin( 1
h̄ tm

√
B2 + g2q2

0)
(
i exp(−2i

h̄ Btev)− i exp( 2i
h̄ Btev)

)
,

β̃(tev + tm, q0) = − exp(− 2i
h̄ Btev)

B2

B2+g2q2
0

sin2( 1
h̄ tm

√
B2 + g2q2

0) +

exp( 2i
h̄ Btev)

g2q2
0

B2+g2q2
0

sin2( 1
h̄ tm

√
B2 + g2q2

0) + exp(−2i
h̄ Btev) cos2( 1

h̄ tm
√
B2 + g2q2

0)

− 2i B√
B2+g2q2

0

exp(−2i
h̄ Btev) cos( 1

h̄ tm
√
B2 + g2q2

0) sin( 1
h̄ tm

√
B2 + g2q2

0),

γ̃(tev+tm, q0) = − exp( 2i
h̄ Btev)

B2

B2+g2q2
0

sin2( 1
h̄ tm

√
B2 + g2q2

0)+exp(− 2i
h̄ Btev)

g2q2
0

B2+g2q2
0

sin2( 1
h̄ tm

√
B2 + g2q2

0)

+ exp( 2i
h̄ Btev) cos2( 1

h̄ tm
√
B2 + g2q2

0)

+ 2i B√
B2+g2q2

0

exp( 2i
h̄ Btev) cos( 1

h̄ tm
√
B2 + g2q2

0) sin( 1
h̄ tm

√
B2 + g2q2

0) and

δ̃(tev + tm, q0) = 1− Bgq0
B2+g2q2

0
sin2( 1

h̄ tm
√
B2 + g2q2

0)(exp(−2i
h̄ Btev) + exp( 2i

h̄ Btev))

+ gq0√
B2+g2q2

0

cos( 1
h̄ tm

√
B2 + g2q2

0) sin( 1
h̄ tm

√
B2 + g2q2

0)
(
− i exp(−2i

h̄ Btev) + i exp( 2i
h̄ Btev)

)
.

The probability that the qubit is in state |0
〉

after tev + tm is, using equation 2.4.4, given by

P0(tm + tev, q0) =
1

2
+

1

2
sin2

( 1

h̄
tm

√
B2 + g2q2

0

)
cos(

2

h̄
Btev)

g2q2
0 −B2

B2 + g2q2
0

− B√
B2 + g2q2

0

sin(
2

h̄
Btev) sin(

1

h̄
tm

√
B2 + g2q2

0) cos(
1

h̄
tm

√
B2 + g2q2

0)

+
1

2
cos(

2

h̄
Btev) cos2(

1

h̄
tm

√
B2 + g2q2

0)

(3.5.16)

and the probability that the qubit is in state |1
〉

is, using equation 2.4.5, given by
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P1(tm + tev, q0) =
1

2
− 1

2
sin2

( 1

h̄
tm

√
B2 + g2q2

0

)
cos(

2

h̄
Btev)

g2q2
0 −B2

B2 + g2q2
0

+
B√

B2 + g2q2
0

sin(
2

h̄
Btev) sin(

1

h̄
tm

√
B2 + g2q2

0) cos(
1

h̄
tm

√
B2 + g2q2

0)

− 1

2
cos(

2

h̄
Btev) cos2(

1

h̄
tm

√
B2 + g2q2

0).

(3.5.17)

The calculations of the probabilities at t = 2tev + 2tm are done in the same way and given in the
appendix in subsection 5.1.3.

Unfortunately, there in not a pattern in these calculated probabilities. Therefore, the next prob-
abilities are calculated numerically. This is done in the same way as described at the end of
subsection 3.4.1., but now using matrix C, defined in equation 3.5.13, instead of A.

We also want to know what the probabilities of the qubit states are during each period of only free
evolution and during each period of free evolution and measurement. Therefore, define matrix Cev
and Cmev,

Cev(t) = exp
(
− i

h̄
H0t

)
=

(
exp(− i

h̄Bt) 0
0 exp( ih̄Bt)

)
(3.5.18)

and

Cmev(t) = exp
(
− i

h̄
(H0 +Hint)t

)
=(

cos(β(q))− iγ(q) sin(β(q)) −iδ(q) sin(β(q))
−iδ(q) sin(β(q)) cos(β(q)) + iγ(q) sin(β(q))

) (3.5.19)

with β(q) = 1
h̄ t
√
B2 + g2q2, γ(q) = B√

B2+g2q2
and δ(q) = gq√

B2+g2q2
.

The time t is divided in small steps of length ∆t. The wavefunction Ckev|Φ(0)
〉

with k = 0, 1, 2, ..., n
is calculated for each k during tev, with tev = n∆t and n < ∞ an integer. Then, with still the
free evolution ongoing, a measurement is done during tm and the wavefunction ClmevC

n
ev|Φ(0)

〉
with l = 0, 1, 2, ...,m is calculated for each l during tm, with tm = m∆t and m < ∞ an integer.
Then there is free evolution again and the wavefunction CkevC

m
mevC

n
ev|Φ(0)

〉
is calculated for each

k during tev. During the subsequent measurement with ongoing evolution ClmevC
n
evC

m
mevC

n
ev|Φ(0)

〉
is calculated for each l during tm. For each time step ∆t, the probabilities that the qubit is in state
|0
〉

and in state |1
〉

are determined from the wavefunction using the same method as before. As a
result, the behaviour of the probabilities continuously in time is known by taking ∆t→ 0.

Since in this case, σ → 0, the dispersion of the detector coordinate q is zero so the detector
coordinate q has one value q0. There is a perfect measurement. When q0 = 0, this results in

Hint =

(
0 0
0 0

)
so then there is no interaction between the detector and qubit. As a result, there

is only free evolution during all the periods since there is no measurement. The probabilities will
evolve in time as described in subsection 3.2.

When B = 0 during the period of free evolution and measurement, there is no free evolution and
only measurement during that period, so in that case we get the same result as shown in subsection
3.4. When γ(q0) = 0 13, we have B = 0 or gq0 →∞ during all periods. If B = 0, there is no free
evolution during all periods, so then there is only a measurement and we get the result as shown
in subsection 3.3. If gq0 → ∞, the interaction between the qubit and detector has much more
influence than the free evolution, resulting in plots as shown in subsection 3.4.

13Remember γ(q) = B√
B2+g2q2

.
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When δ(q0) = 0 14, we have gq0 = 0 or B → ∞ during all periods. When gq0 = 0, there is
no measurement and only free evolution, resulting in the same results as in subsection 3.2. When
B →∞ during all periods, the free evolution will have much more influence than the measurement,
also resulting in the plot shown in subsection 3.2.

In this subsection, the strength of the measurement influences the resulting evolution of the prob-
abilities in time during the period of measurement with now also free evolution. When increasing
gq0, so increasing β(q0) and δ(q0), the interaction between the qubit and detector becomes larger,
since Hint is directly proportional to gq0. As a result of an increasing δ(q0), γ(q0) will decrease
because of the restriction on these parameters, γ(q0)2 + δ(q0)2 = 1. The influence of the measure-
ment will be bigger than the influence of the free evolution. This will result in an attempt to freeze
the free evolution. The larger the influence of the measurement, the more the free evolution will
be suppressed during the period of measurement and evolution.

A result of the first three periods of free evolution and measurement alternated with only free
evolution is shown in the following figure. We use the same value for the parameters α and β(q0)
as in figure 5. The plots are made for different values of γ(q0) and δ(q0) 15.

14Remember δ(q) = gq√
B2+g2q2

.

15α = 1
h̄
Btev , β(q) = 1

h̄
tm
√
B2 + g2q2, γ(q) = B√

B2+g2q2
, δ(q) = gq√

B2+g2q2
.
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(a) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

2 , β(q0) = π
20 ,

γ(q0) = 1 and δ(q0) = 0. Bottom graph: Step function
where 0 denotes a period of free evolution without a
measurement and 1 a period of free evolution with a

measurement as function of t
h̄ with t the time.

(b) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

2 , β(q0) = π
20 ,

γ(q0) = 3√
10

and δ(q0) = 1√
10

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

(c) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

2 , β(q0) = π
20 ,

γ(q0) = 2√
5

and δ(q0) = 1√
5

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

(d) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

2 , β(q0) = π
20 ,

γ(q0) = 1√
5

and δ(q0) = 2√
5

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

(e) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

2 , β(q0) = π
20 ,

γ(q0) = 1√
10

and δ(q0) = 3√
10

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

(f) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

2 , β(q0) = π
20 ,

γ(q0) = 0 and δ(q0) = 1.Bottom graph: Step function
where 0 denotes a period of free evolution without a
measurement and 1 a period of free evolution with a

measurement as function of t
h̄ with t the time.

Figure 10.

Six cases for γ(q0) and δ(q0) are plotted. When γ(q0) = 0 and δ(q0) = 1, gq0 → ∞ so the
interaction between the qubit and detector has much more influence than the free evolution. The
probabilities freeze during the period of free evolution and measurement, as expected. When
γ(q0) = 1 and δ(q0) = 0, gq0 = 0 so there is only free evolution the whole time. The probabilities
keep oscillating in a sine form, as if there is no measurement, as expected. Furthermore, the bigger
δ(q0) so the smaller γ(q0), the more the free evolution is suppressed during the periods of free
evolution and measurement. When δ(q0) increases, gq0 increases so the interaction between the
qubit and detector increases, since Hint is directly proportional to gq0. The resulting plots are in
line with the expectation.
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These graphs will continue like this in time, oscillating between 0 and 1. The quantum Zeno effect
does not occur. In this case there are no series of fast subsequent measurements or a continuous
measurement.

Another result of the first three periods of free evolution and measurement is shown in the following
figure. We now do not make the assumption of tm � tev, since H0 is not neglected during
measurements, so we can look to the case where tev � tm. The dimensionless parameters are
given by α = π

80 and β(q0) = π. The plots are made for different values of γ(q0) and δ(q0).

(a) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

80 , β(q0) = π,
γ(q0) = 1 and δ(q0) = 0. Bottom graph: Step function
where 0 denotes a period of free evolution without a
measurement and 1 a period of free evolution with a

measurement as function of t
h̄ with t the time.

(b) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

80 , β(q0) = π,

γ(q0) = 3√
10

and δ(q0) = 1√
10

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

(c) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

80 , β(q0) = π,

γ(q0) = 2√
5

and δ(q0) = 1√
5

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

(d) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

80 , β(q0) = π,

γ(q0) = 1√
5

and δ(q0) = 2√
5

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

(e) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

80 , β(q0) = π,

γ(q0) = 1√
10

and δ(q0) = 3√
10

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

(f) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

80 , β(q0) = π,
γ(q0) = 0 and δ(q0) = 1. Bottom graph: Step function
where 0 denotes a period of free evolution without a
measurement and 1 a period of free evolution with a

measurement as function of t
h̄ with t the time.

Figure 11.

There is now a long period of free evolution with measurement, alternated with a very short period
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of free evolution without measurement. Again six cases for γ(q0) and δ(q0) are plotted. When
γ(q0) = 0 and δ(q0) = 1, gq0 → ∞, so the interaction between the qubit and detector has much
more influence than the free evolution during the period of measurement and free evolution. The
probabilities freeze during this period. In the very short period of free evolution, the probabilities
evolve according to a sine form. When γ(q0) = 1 and δ(q0) = 0, gq0 = 0 so there is only free
evolution the whole time. The probabilities keep oscillating in a sine form between 0 and 1, as
if there is no measurement, as expected. Furthermore, the bigger δ(q0) so the smaller γ(q0), the
more the free evolution is suppressed during the period of free evolution and measurement, as can
be seen in the plots. The amplitude of the oscillations due to free evolution is smaller by a bigger
δ(q0). There is also a short period with only free evolution, in which the system evolves only under
H0, resulting in a part of a sine oscillation.

In the following figure the first 160 points at k tev+tm
h̄ with k = 0, 1, ..., 160 are plotted. As can be

concluded from this plot, the same cycle will start after a number of alternating periods.

Figure 12. Graph of the probability of being in state |0
〉
P0 (circles) or state |1

〉
P1 (triangles) as function of t

h̄
with t the time at discrete points; α = π

80
, β(q0) = π, γ(q0) = 1 and δ(q0) = 0.

In this case there are series of fast subsequent long measurements. The stronger the measurement,
the longer the probability for the qubit to remain in its initial state stays high in time. However,
the measurement does not freeze the evolution of the system totally. The quantum Zeno effect
does not occur.

3.5.2 Situation σ 6→ 0

In this section, the integrals which appear when taking the partial trace to trace out the detector
coordinate q were too difficult to calculate algebraically, so there are no algebraic expressions for
the probabilities at a certain moment in time. Since σ is unequal to 0, we define the following
dimensionless variables 16 q′ = q√

2σ
and q′0 = q0√

2σ
. Furthermore, we define four dimensionless pa-

rameters, from which three dependent on the variable q′, so α, β(q′), γ(q′) and δ(q′). Set α = Btev
h̄ ,

β(q′) =
tm
√
B2+2σg2q′2

h̄ , γ(q′) = B√
B2+2σg2q′2

and δ(q′) = gq′
√

2σ√
B2+2σg2q′2

. The following restrictions

are valid for γ(q′) and δ(q′): γ(q′)2 + δ(q′)2 = 1 and 0 ≤ γ(q′) ≤ 1 and 0 ≤ δ(q′) ≤ 1. Probably,
based on the former algebraic expressions, the wavefunctions, density matrices and probabilities
will be expressed in the following dimensionless terms or combinations of these terms: 1

h̄Btev,

1
h̄ tm

√
B2 + 2σg2q′2, 1

h̄ tm

√
B2 + 2σg2q′0

2, B√
B2+2σg2q′2

, B√
B2+2σg2q′0

2
,

√
2σgq′√

B2+2σg2q′2
,

√
2σgq′0√

B2+2σg2q′0
2

and ( 1
h̄ tm)2(B2 + 2σg2q′

2
). These can be expressed as follows in the dimensionless parameters α,

β(q′), γ(q′) and δ(q′) and the variables q′ and q′0, which are dimensionless:

1
h̄Btev = α, 1

h̄ tm
√
B2 + 2σg2q′2 = β(q′), 1

h̄ tm

√
B2 + 2σg2q′0

2 = β(q′0), B√
B2+2σg2q′2

= γ(q′),

16These variables are based on the initial state of the detector.
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B√
B2+2σg2q′0

2
= γ(q′0),

√
2σgq′√

B2+2σg2q′2
= δ(q′),

√
2σgq′0√

B2+2σg2q′0
2

= δ(q′0) and ( 1
h̄ tm)2(B2 + 2σg2q′

2
) =

β(q′)2.

In this section we study again alternating periods of only free evolution and of a measurement
during free evolution, but now without the simplification of σ → 0. The integrals which appear
when taking the partial trace to trace out the detector coordinate q were too difficult to calculate
algebraically. Therefore, first of all the probabilities at k tev+tm

h̄ with k = 0, 1, 2, 3, ...n were deter-
mined numerically with the integrator tool in Python [1]. This is done in the same way as described
at the end of subsection 3.5.1, but now the partial trace is calculated without the simplification of
σ → 0.

We also calculated numerically the probabilities during the first three periods of only free evolution
alternated with the first three periods of a measurement during free evolution to know the behaviour
of the probabilities continuously during these periods. This is done in the same way as described
at the end of subsection 3.5.1, so by using Cev and Cmev, but now without the simplification of
σ → 0.

Since this is the most complete case, without the simplification of σ → 0 and with also free
evolution during the measurement, we will discuss this case extensively.

First of all, the case that no measurement is done is analyzed. This is the case when δ(q′0) = 0
so gq′0 = 0, so the system only evolves under H0. There is only free evolution, resulting in the
same results found in subsection 3.2. The dimensionless parameters are given as follows, α = π,
β(q′0) = 0, γ(q′0) = 1 and δ(q′0) = 0. The first three periods of free evolution are seen in figure
13.

Figure 13. Graph of the probability of being in state |0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄

with t the time; α = π, β(q′0) = 0, γ(q′0) = 1 and δ(q′0) = 0.

This will continue like this in time, in line with the expectation. The Rabi frequency is in this case
f = h̄

π .

Now the situation is analyzed when B = 0 at every moment in time, so α = 0 and γ(q′0) = 0. In this
case there is only a measurement without free evolution. This results in the following plot.
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Figure 14. Graph of the probability of being in state |0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄

with t the time; α = 0, β(q′0) = π, γ(q′0) = 0 and δ(q′0) = 1.

This is in line with our expectation. There is one continuous measurement, so the qubit remains
in its initial state, since this is an eigenstate of Hint under which the system evolves during the
measurement.

Now the situation is analyzed in which tev = 0, so there is one ongoing measurement during free
evolution. This is done for several values of γ(q′0) and δ(q′0) 17 under their restriction. The resulting
plots are given below.

(a) Graph of the probability of being in state |0
〉
P0

(continuous line) or state |1
〉
P1 (dashed line) as function

of t
h̄ with t the time; α = 0, β(q′0) = π, γ(q′0) = 1√

5
and

δ(q′0) = 2√
5

.

(b) Graph of the probability of being in state |0
〉
P0

(continuous line) or state |1
〉
P1 (dashed line) as function

of t
h̄ with t the time; α = 0, β(q′0) = π, γ(q′0) = 1√

2
and

δ(q′0) = 1√
2

.

(c) Graph of the probability of being in state |0
〉
P0

(continuous line) or state |1
〉
P1 (dashed line) as function

of t
h̄ with t the time; α = 0, β(q′0) = π, γ(q′0) = 2√

5
and

δ(q′0) = 1√
5

.

Figure 15.

When γ(q′0) = 1 and δ(q′0) = 0, there is only free evolution and no measurement. This was analyzed

17Remember γ(q′0) = B√
B2+2σg2q′0

2
and δ(q′0) =

√
2σgq′0√

B2+2σg2q′0
2

.
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in figure 13. When γ(q′0) = 0 and δ(q′0) = 1, there is one continuous measurement and no free
evolution, what was analyzed in figure 14.

Furthermore, plots are made for intermediary situations. Then we notice that the larger δ(q′0),
so the smaller γ(q′0), the smaller the amplitude of the oscillations and the higher the equilibrium
position of P0, so the lower the equilibirium position of P1. When doing a measurement during
free evolution, the wave function will evolve in time according to equation 3.5.9. This is a linear
combination of eigenvectors from the total Hamiltonian H with time dependent exponentials.
The qubit states are eigenvectors from Hint. As a result, when doing a measurement during free
evolution with a higher δ(q′0), so a stronger interaction between the qubit and detector and a bigger
part of Hint in H, the probability for the qubit to be in its initial state |0

〉
will be in a higher

range, and the probability for the qubit to be in state |1
〉

will be in a lower range. Furthermore,
when the part of Hint in H is bigger, the amplitude of the oscillations will be smaller since the
free evolution will have less influence.

Moreover, the oscillations damp. For larger δ(q′0), so larger gq′0
√
σ this damping goes faster. There

are probably terms dependent on σ in the expressions of the probabilities, like in the situation of
subsection 3.4.2, which cause this damping. This is in contrast to the case where σ → 0. Then
the probabilities did not damp and there were no damping terms in the algebraic expressions. σ
indicates a measurement error in the detector. The larger σ, the bigger the error and the harder
it is for the detector to tell in which state the qubit is, resulting in dissipation of the system. As
a result, the oscillations of the probabilities will damp.

The quantum Zeno effect states that a continuously observed system never decays at all. The
continuous measurement freezes the free evolution. When there is no free evolution, the system
freezes, as expected. However, when there is free evolution present, the wavefunction will decay to
a certain eigenstate of the Hamiltonian H = H0 +Hint, which is not a qubit state. Therefore, due
to the free evolution, the probabilities for the qubit to be in one of its states will keep oscillating,
but in a smaller range due to the continuous measurement. The value around the probabilities
oscillate is dependent on the strength of the magnetic field and the strength of the interaction
between the qubit and detector. The stronger the interaction between the qubit and detector and
the weaker the magnetic field, the smaller the probability is that the qubit undergoes a transition
to its other state. The quantum Zeno effect does not occur since the free evolution does not freeze
totally.

Now we look to the situation where tm � tev. We take the same value for α and β(q′0) 18 as in
figure 10. The values of the dimensionless parameters γ(q′0) and δ(q′0) 19 are changed. This results
in the following plots.

(a) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

2 , β(q′0) = π
20 ,

γ(q′0) = 1√
17

and δ(q′0) = 4√
17

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

(b) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

2 , β(q′0) = π
20 ,

γ(q′0) = 1√
101

and δ(q′0) = 10√
101

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

Figure 16.

18Remember α = Btev
h̄

and β(q′0) = 1
h̄
tm

√
B2 + 2σg2q′0

2.

19Remember γ(q′0) = B√
B2+2σg2q′0

2
and δ(q′0) =

√
2σgq′0√

B2+2σg2q′0
2

.
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In figure 16a, we set q′0 = 1 (q0 = 4 and σ = 8) and in figure 16b q′0 = 2√
6

(q0 = 2 and σ = 3).

As can be seen, the higher σ, the stronger the damping of the oscillations, so in this case the
dissipation of the system is indeed stronger. The higher δ(q′0), so gq′0, the stronger the interaction
between the qubit and detector, so the more influence the measurement has during the period of
the measurement during free evolution. This can be seen in figure 16b, since there the probabilities
freeze more than in figure 16a during this period. The difference in this case with figure 10 is that
there is now dissipation of the system, caused by terms dependent on σ.

In this case there is no quantum Zeno effect, since tm � tev. There is no series of fast subsequent
measurements or a continuous measurement.

Now we will look to the case where tev � tm. We consider fast subsequent measurements while
there is always free evolution. First, the parameters are taken as follows, α = π

20 and β(q′0) = π
2 .

γ(q′0) and δ(q′0) are changed under their restriction. This gives the following result for the first
three periods.

(a) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

20 , β(q′0) = π
2 ,

γ(q′0) = 1√
2

and δ(q′0) = 1√
2

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

(b) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

20 , β(q′0) = π
2 ,

γ(q′0) = 1√
5

and δ(q′0) = 2√
5

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

Figure 17.

Here are the results in this same sitution for the first 40 points in time at k tev+tm
h̄ with k =

0, 1, ..., 40.

(a) Graph of the probability of being in state |0
〉
P0

(circles) or state |1
〉
P1 (triangles) as function of t

h̄ with t

the time; α = π
20 , β(q′0) = π

2 , γ(q′0) = 1√
2

and

δ(q′0) = 1√
2

.

(b) Graph of the probability of being in state |0
〉
P0

(circles) or state |1
〉
P1 (triangles) as function of t

h̄ with t

the time; α = π
20 , β(q′0) = π

2 , γ(q′0) = 1√
5

and

δ(q′0) = 2√
5

.

Figure 18.

From these plots can be concluded like before that the stronger the interaction between the detector
and qubit and the smaller the influence of the free evolution, the higher the equilibrium position of
P0 and the smaller the amplitude of the oscillations. The initial state of the qubit is |0

〉
and this

is an eigenstate of Hint. The first measurement takes place when the qubit has a big probability
to be in this state, so the probability will stay high to be in this state, so P0 will oscillate around
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a higher value than P1.
Moreover, the oscillations of the probabilities damp, due to damping terms dependent on σ. Since
the periods of measurements are longer than the periods with only free evolution, the oscillations
damp out quite fast. From figure 18 can be concluded that the oscillations go further in time
and damp more. The discrete points are also in oscillating damping sine wave forms, since the
points are plotted every tev+tm

h̄ . The free evolution determines the period of the continuous sine
waves, so tm

h̄ causes a shift, resulting in these sine patterns in the plots of these discrete points in
time.

Finally, we take the same parameters as in figure 11. This gives the following results.

(a) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

80 , β(q′0) = π,

γ(q′0) = 1√
2

and δ(q′0) = 1√
2

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

(b) Graph of the probability of being in state |0
〉
P0

(circles) or state |1
〉
P1 (triangles) as function of t

h̄ with t

the time at discrete points; α = π
80 , β(q′0) = π,

γ(q′0) = 1√
2

and δ(q′0) = 1√
2

.

(c) Top graph: Graph of the probability of being in state
|0
〉
P0 (continuous line) or state |1

〉
P1 (dashed line) as

function of t
h̄ with t the time; α = π

80 , β(q′0) = π,

γ(q′0) = 1√
5

and δ(q′0) = 2√
5

. Bottom graph: Step

function where 0 denotes a period of free evolution
without a measurement and 1 a period of free evolution
with a measurement as function of t

h̄ with t the time.

(d) Graph of the probability of being in state |0
〉
P0

(circles) or state |1
〉
P1 (triangles) as function of t

h̄ with t

the time at discrete points; α = π
80 , β(q′0) = π,

γ(q′0) = 1√
5

and δ(q′0) = 2√
5

.

Figure 19.

The cases where γ(q′0) = 0 or δ(q′0) = 0 are the same as in the cases analyzed before and not shown
again.
In this case there are series of long fast subsequent measurements with ongoing evolution. The
probabilities damp, probably caused by a damping term in the expression of the probabilities de-
pendent on σ. Again when δ(q′0) is increased and γ(q′0) decreased, the amplitude of the oscillations
is smaller and the equilibrium position of P0 is higher.

We can conclude from the first 100 discrete points plotted on k tev+tm
h̄ with k = 0, 1, ..., 100 that

the oscillations will keep going in time. There is a vague sine form in these plots. This is caused
by the tm

h̄ term in k tev+tm
h̄ , since tev

h̄ determines the period of the sine waves. There is now a
longer period of measurement and free evolution and a shorter period of only free evolution which
alternate than in the case analyzed before. The biggest difference between figure 18a and 19b,
and 18b and 19d is that there are bigger oscillations in figure 18a and 18b. In figure 19b and 19d
there is noticed a really small oscillation. Moreover, the bigger δ(q′0), the smaller this oscillation.
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There is plotted a value of P0 and P1 every tev+tm
h̄ , so after each period of only free evolution of

duration tev and of a measurement during free evolution of duration tm. In the case of figure 19,
the period of measurement and free evolution is longer and the period of only free evolution shorter,
so the measurement is present during a longer period in time. This results in smaller oscillation
of the probabilities plotted every tev+tm

h̄ , since the measurement suppresses the free evolution and
consequently also the oscillations. Furthermore, the larger δ(q′0) so the stronger the measurement,
the smaller the amplitudes of the oscillations will be, since the free evolution is suppressed more
by the stronger measurement.
In figure 19 a few points deviate from the pattern. This is probably caused by an error in the
integrator used in Python [1].

In these cases we analyzed tev � tm, so a series of fast subsequent long measurement were executed.
The measurement does not freeze the free evolution of the system totally, so the quantum Zeno
effect does not occur.

36



4 Conclusions and recommendations

In this thesis, the quantum Zeno effect is analyzed in a qubit in different situations. For nearly
every situation, we determined algebraic expressions of the probabilities of the qubit to be in one
of its states at certain moments in time. This is done by calculating the wave function and density
matrix at that time and consequently tracing out the detector coordinate. Furthermore, we did
an analysis using plots of the evolution of these probabilities for each situation.

Conclusions

In the situation with only free evolution, the system evolves only under the Hamiltonian H0 and
formulas are derived for the evolution of the probabilities of the qubit states in time. These oscillate
in time in a sine form in line with our expectation.

In the situation with one continuous measurement, the system evolves only under the Hamil-
tonian Hint and the qubit remains in its initial state. Since there is no free evolution, this is
expected.

Moreover, we considered the situation where periods of only free evolution and only measurement
alternated. To neglect the free evolution during the measurement, tm � tev was assumed. First,
we made a simplification where the dispersion of the detector coordinate σ → 0 and then the
situation was analyzed without this simplification. In both situations, the probabilities had the
same value during the measurement and evolved in a sine form during the free evolution. The
difference between both situations was that the oscillations damped in the situation where σ 6→ 0,
caused by exponential terms dependent on σ in the algebraic expressions of these probabilities.
The larger σ, the larger the measurement error in the detector, so the faster the oscillations damp,
since the dissipation of the system is larger. In the situation where σ → 0, the oscillations did not
damp.
In this situation tm � tev, so there are no series of fast subsequent measurements or a continuous
measurement. The quantum Zeno effect did not occur.

Finally, we considered the situation where periods of only free evolution and periods with a mea-
surement during free evolution alternated. Again, we first made a simplification of σ → 0 and then
the situation was analyzed without this simplification. Now there was also free evolution during
the measurement, so the oscillations of the probabilities continued during this period. The larger
the influence of the interaction between the qubit and detector and the smaller the influence of
the magnetic field, the higher the equilibrium position of the probability for the qubit to remain
in its initial state and the smaller the oscillations of the probabilities. Again, in the case where
σ → 0 the probabilities did not damp, in contrast to the case where σ 6→ 0. The larger σ, the
faster the oscillations damp. This is probably again caused by exponential terms dependent on σ
which occur in this case and cause dissipation of the system.
When there is free evolution during the measurement, the probabilities keep oscillating. The mea-
surement does not freeze the evolution of the system totally, so the quantum Zeno effect does not
occur. However, the oscillations due to free evolution are smaller and the equilibrium position is
higher, when there is a strong continuous measurement.

Recommendations

In this report several assumptions are made. One of the recommendations for follow-up research
would be to work out this assumptions for more realistic conditions.

First of all, the interaction strength between the qubit and detector g is taken time indepedent in
this report and depends on the precise measurement setup. It would be interesting to see what
happens when g changes in time. Furthermore, we assumed the initial state of the detector to be
Gaussian. It might be interesting to take another initial state instead of a Gaussian. Moreover,
the dispersion σ was not related to spin. It would be interesting to see what happens when this
parameter becomes related to spin.

In this report, the alternating time intervals of in one case free evolution and measurement and
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in the other case free evolution without measurement and free evolution with measurement had
alternating the same length. It might be interesting to change the length of these intervals, so for
example first have a long period of free evolution without measurement, than have a short period
of free evolution with measurement, then a short period of free evolution without measurement,
etc.

It would be interesting to look to other qubit states and another initial state of the qubit. Now

eigenstates of Hint were taken. It could be interesting to look for example to

(
1
0

)
and

(
0
1

)
.

It might be interesting to see what happens when the free evolution is restricted, for example to
add an extra term in this Hamiltonian, H0. Furthermore, there could be done research to the
situation of no perfect decay of the wave function.

It would sometimes be interesting to look how the probabilities continuously evolve over a longer
period in time. However, the plots were made in Python 3.6.5. When attempting to calculate
the evolution of the probabilities further in time, the maximum number of subdivisions of the
integrator had been achieved. As a result, the error in these calculated probabilities became too
big. Perhaps an other integrator could be used or there could be done a numeric approach on these
integrals.
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5 Appendix

5.1 Algebraic expressions of probabilities further in time

We also determined algebraic expressions of the probabilities of the qubit states at moments fur-
ther in time than given in section 3.4 and 3.5.
In subsection 3.4, where the system alternately evolves under H0 and Hint, there are also expres-
sions of the probabilities at t = 3tev + 3tm and at t = 4tev + 4tm for the case of σ → 0 and at
t = 3tev + 3tm for the case of σ 6→ 0.
In subsection 3.5, where the system alternately evolves under H0 and H = H0 + Hint, there are
also expressions of the probabilities at t = 2tev + 2tm for the case of σ → 0.
These calculations are given in the following subsections 5.1.1, 5.1.2. and 5.1.3.

5.1.1 Series of measurements alternated with free evolution of the spin; σ → 0

The calculations of the algebraic expressions of the probabilities at t = 3tev+3tm and t = 4tev+4tm
are given below.

The state of the qubit after t = 3tev+3tm is given by applying three times matrix A from equation
3.4.8 on the initial state. This gives

|Φ(3tev + 3tm)
〉

= A3|Φ(0)
〉

=
1√

2
√
πσ

exp
(
− (q − q0)2

2σ

)(
Φi
Φj

)
(5.1.1)

with Φi = exp(− 3i
h̄ Btev) cos3( 1

h̄gqtm)− 2 exp(− i
h̄Btev) sin2( 1

h̄gqtm) cos( 1
h̄gqtm)

− exp( ih̄Btev) sin2( 1
h̄gqtm) cos( 1

h̄gqtm)− i exp(− i
h̄Btev) sin( 1

h̄gqtm) cos2( 1
h̄gqtm)

−i exp( ih̄Btev) sin( 1
h̄gqtm) cos2( 1

h̄gqtm)−i exp( 3i
h̄ Btev) sin( 1

h̄gqtm) cos2( 1
h̄gqtm)+i exp( ih̄Btev) sin3( 1

h̄gqtm)

and Φj = exp( 3i
h̄ Btev) cos3( 1

h̄gqtm)− 2 exp( ih̄Btev) sin2( 1
h̄gqtm) cos( 1

h̄gqtm)

− exp(− i
h̄Btev) sin2( 1

h̄gqtm) cos( 1
h̄gqtm)− i exp(− i

h̄Btev) sin( 1
h̄gqtm) cos2( 1

h̄gqtm)

−i exp( ih̄Btev) sin( 1
h̄gqtm) cos2( 1

h̄gqtm)−i exp(− 3i
h̄ Btev) sin( 1

h̄gqtm) cos2( 1
h̄gqtm)+i exp(− i

h̄Btev) sin3( 1
h̄gqtm).

The corresponding density matrix is given by

ρ(3tev+3tm) = |Φ(3tev+3tm)
〉〈

Φ(3tev+3tm)| = 1

2
√
πσ

exp
(
− (q − q0)2

σ

)(α̃(3tev + 3tm) β̃(3tev + 3tm)

γ̃(3tev + 3tm) δ̃(3tev + 3tm)

)
(5.1.2)

with α̃(3tev + 3tm) = cos6( 1
h̄gqtm) + sin6( 1

h̄gqtm) + sin( 1
h̄gqtm) cos5( 1

h̄gqtm)(i exp(− 6i
h̄ Btev)

−i exp( 6i
h̄ Btev)+i exp(− 4i

h̄ Btev)−i exp( 4i
h̄ Btev)+i exp(− 2i

h̄ Btev)−i exp( 2i
h̄ Btev))+3 sin2( 1

h̄gqtm) cos4( 1
h̄gqtm)

+sin3( 1
h̄gqtm) cos3( 1

h̄gqtm)(−3i exp(− 4i
h̄ Btev)+3i exp( 4i

h̄ Btev)−2i exp(− 2i
h̄ Btev)+2i exp( 2i

h̄ Btev))

+ 3 sin4( 1
h̄gqtm) cos2( 1

h̄gqtm) + sin5( 1
h̄gqtm) cos( 1

h̄gqtm)(2i exp(− 2i
h̄ Btev)− 2i exp( 2i

h̄ Btev)),

β̃(3tev+3tm) = exp(2i 1
h̄Btev) sin6( 1

h̄gqtm)+exp(−6i 1
h̄Btev) cos6( 1

h̄gqtm)+sin2( 1
h̄gqtm) cos4( 1

h̄gqtm)(exp(6i 1
h̄Btev)

+2 exp(4i 1
h̄Btev)+3 exp(2i

h̄ Btev)+2−exp(− 2i
h̄ Btev)−4 exp(−4i 1

h̄Btev))+sin4( 1
h̄gqtm) cos2( 1

h̄gqtm)(4 exp(− 2i
h̄ Btev)

+ 2− exp(2i 1
h̄Btev)− 2 exp(4i 1

h̄Btev)),

γ̃(3tev+3tm) = exp(−2i 1
h̄Btev) sin6( 1

h̄gqtm)+exp(6i 1
h̄Btev) cos6( 1

h̄gqtm)+sin2( 1
h̄gqtm) cos4( 1

h̄gqtm)(exp(−6i 1
h̄Btev)

+2 exp(−4i 1
h̄Btev)+3 exp(− 2i

h̄ Btev)+2−exp( 2i
h̄ Btev)−4 exp(4i 1

h̄Btev))+sin4( 1
h̄gqtm) cos2( 1

h̄gqtm)(4 exp( 2i
h̄ Btev)

+ 2− exp(−2i 1
h̄Btev)− 2 exp(−4i 1

h̄Btev)) and

δ̃(3tev + 3tm) = cos6( 1
h̄gqtm) + sin6( 1

h̄gqtm) + sin( 1
h̄gqtm) cos5( 1

h̄gqtm)(i exp( 6i
h̄ Btev)

−i exp(− 6i
h̄ Btev)+i exp( 4i

h̄ Btev)−i exp(− 4i
h̄ Btev)+i exp( 2i

h̄ Btev)−i exp(− 2i
h̄ Btev))+3 sin2( 1

h̄gqtm) cos4( 1
h̄gqtm)

+ sin3( 1
h̄gqtm) cos3( 1

h̄gqtm)(3i exp(− 4i
h̄ Btev)− 3i exp( 4i

h̄ Btev) + 2i exp(− 2i
h̄ Btev)− 2i exp( 2i

h̄ Btev))

+ 3 sin4( 1
h̄gqtm) cos2( 1

h̄gqtm) + sin5( 1
h̄gqtm) cos( 1

h̄gqtm)(2i exp( 2i
h̄ Btev)− 2i exp(− 2i

h̄ Btev)).
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Again we take the partial trace over the detector coordinate q and this gives, the sum approached by
an integral, the density matrix only dependent on the qubit coordinates i = |0

〉
and j = |1

〉

ρii,ij,ji,jj(3tev + 3tm) = trqρ(3tev + 3tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)(
α̃(3tev + 3tm) β̃(3tev + 3tm)

γ̃(3tev + 3tm) δ̃(3tev + 3tm)

)
dq.

(5.1.3)

Again σ → 0, so this gives in equation 5.1.3

ρii,ij,ji,jj(3tev + 3tm, q0) ≈ 1

2

(
α̃(3tev + 3tm, q0) β̃(3tev + 3tm, q0)

γ̃(3tev + 3tm, q0) δ̃(3tev + 3tm, q0)

)
(5.1.4)

with α̃(3tev + 3tm, q0) = cos6( 1
h̄gq0tm) + sin6( 1

h̄gq0tm) + sin( 1
h̄gq0tm) cos5( 1

h̄gq0tm)(i exp(− 6i
h̄ Btev)

−i exp( 6i
h̄ Btev)+i exp(− 4i

h̄ Btev)−i exp( 4i
h̄ Btev)+i exp(− 2i

h̄ Btev)−i exp( 2i
h̄ Btev))+3 sin2( 1

h̄gq0tm) cos4( 1
h̄gq0tm)

+sin3( 1
h̄gq0tm) cos3( 1

h̄gq0tm)(−3i exp(− 4i
h̄ Btev)+3i exp( 4i

h̄ Btev)−2i exp(− 2i
h̄ Btev)+2i exp( 2i

h̄ Btev))

+ 3 sin4( 1
h̄gq0tm) cos2( 1

h̄gq0tm) + sin5( 1
h̄gq0tm) cos( 1

h̄gq0tm)(2i exp(− 2i
h̄ Btev)− 2i exp( 2i

h̄ Btev)),

β̃(3tev+3tm, q0) = exp(2i 1
h̄Btev) sin6( 1

h̄gq0tm)+exp(−6i 1
h̄Btev) cos6( 1

h̄gq0tm)+sin2( 1
h̄gq0tm) cos4( 1

h̄gq0tm)

(exp(6i 1
h̄Btev) + 2 exp(4i 1

h̄Btev) + 3 exp( 2i
h̄ Btev) + 2− exp(− 2i

h̄ Btev)− 4 exp(−4i 1
h̄Btev))

+ sin4( 1
h̄gq0tm) cos2( 1

h̄gq0tm)(4 exp(− 2i
h̄ Btev) + 2− exp(2i 1

h̄Btev)− 2 exp(4i 1
h̄Btev)),

γ̃(3tev+3tm, q0) = exp(−2i 1
h̄Btev) sin6( 1

h̄gq0tm)+exp(6i 1
h̄Btev) cos6( 1

h̄gq0tm)+sin2( 1
h̄gq0tm) cos4( 1

h̄gq0tm)

(exp(−6i 1
h̄Btev) + 2 exp(−4i 1

h̄Btev) + 3 exp(− 2i
h̄ Btev) + 2− exp( 2i

h̄ Btev)− 4 exp(4i 1
h̄Btev))

+ sin4( 1
h̄gq0tm) cos2( 1

h̄gq0tm)(4 exp( 2i
h̄ Btev)

+ 2− exp(−2i 1
h̄Btev)− 2 exp(−4i 1

h̄Btev)) and

δ̃(3tev + 3tm, q0) = cos6( 1
h̄gq0tm) + sin6( 1

h̄gq0tm) + sin( 1
h̄gq0tm) cos5( 1

h̄gq0tm)(i exp( 6i
h̄ Btev)

−i exp(− 6i
h̄ Btev)+i exp( 4i

h̄ Btev)−i exp(− 4i
h̄ Btev)+i exp( 2i

h̄ Btev)−i exp(− 2i
h̄ Btev))+3 sin2( 1

h̄gq0tm) cos4( 1
h̄gq0tm)

+sin3( 1
h̄gq0tm) cos3( 1

h̄gq0tm)(3i exp(− 4i
h̄ Btev)−3i exp( 4i

h̄ Btev)+2i exp(− 2i
h̄ Btev)−2i exp( 2i

h̄ Btev))

+3 sin4( 1
h̄gq0tm) cos2( 1

h̄gq0tm)+sin5( 1
h̄gq0tm) cos( 1

h̄gq0tm)(2i exp( 2i
h̄ Btev)−2i exp(− 2i

h̄ Btev)).

The probability that the qubit is in state |0
〉

after 3tev + 3tm is given by

P0(3tm + 3tev, q0) =
1

2
+

1

2
cos(

2

h̄
Btev) sin6(

1

h̄
gq0tm) +

1

2
cos(

6

h̄
Btev) cos6(

1

h̄
gq0tm)

+ sin2(
1

h̄
gq0tm) cos4(

1

h̄
gq0tm)(1 +

1

2
cos(

6

h̄
Btev) + cos(

2

h̄
Btev)− cos(

4

h̄
Btev))

+ sin4(
1

h̄
gq0tm) cos2(

1

h̄
gq0tm)(1 +

3

2
cos(

2

h̄
Btev)− cos(

4

h̄
Btev))

(5.1.5)

and the probability that the qubit is in state |1
〉

is given by

P1(3tm + 3tev, q0) =
1

2
− 1

2
cos(

2

h̄
Btev) sin6(

1

h̄
gq0tm)− 1

2
cos(

6

h̄
Btev) cos6(

1

h̄
gq0tm)

− sin2(
1

h̄
gq0tm) cos4(

1

h̄
gq0tm)(1 +

1

2
cos(

6

h̄
Btev) + cos(

2

h̄
Btev)− cos(

4

h̄
Btev))

− sin4(
1

h̄
gq0tm) cos2(

1

h̄
gq0tm)(1 +

3

2
cos(

2

h̄
Btev)− cos(

4

h̄
Btev)).

(5.1.6)

The state after t = 4tev + 4tm is given by applying four times matrix A from equation 3.4.8 on the
initial state. This gives
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|Φ(4tev + 4tm)
〉

= A4|Φ(0)
〉

=
1√

2
√
πσ

exp
(
− (q − q0)2

2σ

)(
Φi
Φj

)
(5.1.7)

with Φi = exp(− 4i
h̄ Btev) cos4( 1

h̄gqtm) + sin4( 1
h̄gqtm)− 2 sin2( 1

h̄gqtm) cos2( 1
h̄gqtm)

−3 exp(− 2i
h̄ Btev) sin2( 1

h̄gqtm) cos2( 1
h̄gqtm)−exp( 2i

h̄ Btev) sin2( 1
h̄gqtm) cos2( 1

h̄gqtm)+2i sin3( 1
h̄gqtm) cos( 1

h̄gqtm)

+2i exp( 2i
h̄ Btev) sin3( 1

h̄gqtm) cos( 1
h̄gqtm)−i sin( 1

h̄gqtm) cos3( 1
h̄gqtm)(1+exp(− 2i

h̄ Btev)+exp( 2i
h̄ Btev)

+ exp( 4i
h̄ Btev))

and Φj = exp( 4i
h̄ Btev) cos4( 1

h̄gqtm) + sin4( 1
h̄gqtm)− 2 sin2( 1

h̄gqtm) cos2( 1
h̄gqtm)

−3 exp( 2i
h̄ Btev) sin2( 1

h̄gqtm) cos2( 1
h̄gqtm)−exp(− 2i

h̄ Btev) sin2( 1
h̄gqtm) cos2( 1

h̄gqtm)+2i sin3( 1
h̄gqtm) cos( 1

h̄gqtm)

+2i exp(− 2i
h̄ Btev) sin3( 1

h̄gqtm) cos( 1
h̄gqtm)−i sin( 1

h̄gqtm) cos3( 1
h̄gqtm)(1+exp(− 2i

h̄ Btev)+exp( 2i
h̄ Btev)

+ exp(− 4i
h̄ Btev)).

The corresponding density matrix is given by

ρ(4tev+4tm) = |Φ(4tev+4tm)
〉〈

Φ(4tev+4tm)| = 1

2
√
πσ

exp
(
− (q − q0)2

σ

)(
α̃(4tev + 4tm) β̃(4tev + 4tm)

γ̃(4tev + 4tm) δ̃(4tev + 4tm)

)
(5.1.8)

with

α̃(4tev+4tm) = cos8( 1
h̄gqtm)+sin8( 1

h̄gqtm)+sin( 1
h̄gqtm) cos7( 1

h̄gqtm)(−i exp( 2i
h̄ Btev)+i exp(− 2i

h̄ Btev)

−i exp( 4i
h̄ Btev)+i exp(− 4i

h̄ Btev)−i exp( 6i
h̄ Btev)+i exp(− 6i

h̄ Btev)−i exp( 8i
h̄ Btev)+i exp(− 8i

h̄ Btev))

+4 sin2( 1
h̄gqtm) cos6( 1

h̄gqtm)+sin3( 1
h̄gqtm) cos5( 1

h̄gqtm)(6i exp( 4i
h̄ Btev)−6i exp(−4i

h̄ Btev)+3i exp( 2i
h̄ Btev)

− 3i exp(− 2i
h̄ Btev) + 5i exp( 6i

h̄ Btev)− 5i exp(− 6i
h̄ Btev)) + 6 sin4( 1

h̄gqtm) cos4( 1
h̄gqtm)

+sin5( 1
h̄gqtm) cos3( 1

h̄gqtm)(−8i exp( 2i
h̄ Btev)+8i exp(−2i

h̄ Btev)−7i exp( 4i
h̄ Btev)+7i exp(− 4i

h̄ Btev))

+ 4 sin6( 1
h̄gqtm) cos2( 1

h̄gqtm) + sin7( 1
h̄gqtm) cos( 1

h̄gqtm)(2i exp( 2i
h̄ Btev)− 2i exp(− 2i

h̄ Btev)),

β̃(4tev + 4tm) = cos8( 1
h̄gqtm) exp(− 8i

h̄ Btev) + sin8( 1
h̄gqtm) + sin2( 1

h̄gqtm) cos6( 1
h̄gqtm)(exp( 8i

h̄ Btev)

+ 2 exp( 6i
h̄ Btev) + 3 exp( 4i

h̄ Btev) + 4 exp( 2i
h̄ Btev) + 3− 3 exp(−4i

h̄ Btev)− 6 exp(−6i
h̄ Btev))

+ sin4( 1
h̄gqtm) cos4( 1

h̄gqtm)(−4 exp( 6i
h̄ Btev)− 7 exp( 4i

h̄ Btev)− 4 exp( 2i
h̄ Btev) + 2 + 8 exp(−2i

h̄ Btev)

+11 exp(−4i
h̄ Btev))+sin6( 1

h̄gqtm) cos2( 1
h̄gqtm)(4 exp( 4i

h̄ Btev)+6 exp(2i
h̄ Btev)−6 exp(− 2i

h̄ Btev)),

γ̃(4tev + 4tm) = cos8( 1
h̄gqtm) exp( 8i

h̄ Btev) + sin8( 1
h̄gqtm) + sin2( 1

h̄gqtm) cos6( 1
h̄gqtm)(exp(− 8i

h̄ Btev)

+ 2 exp(− 6i
h̄ Btev) + 3 exp(− 4i

h̄ Btev) + 4 exp(− 2i
h̄ Btev) + 3− 3 exp( 4i

h̄ Btev)− 6 exp( 6i
h̄ Btev))

+sin4( 1
h̄gqtm) cos4( 1

h̄gqtm)(−4 exp(− 6i
h̄ Btev)−7 exp(− 4i

h̄ Btev)−4 exp(− 2i
h̄ Btev)+2+8 exp(2i

h̄ Btev)

+11 exp( 4i
h̄ Btev))+sin6( 1

h̄gqtm) cos2( 1
h̄gqtm)(4 exp(− 4i

h̄ Btev)+6 exp(− 2i
h̄ Btev)−6 exp( 2i

h̄ Btev))

and

δ̃(4tev+4tm) = cos8( 1
h̄gqtm)+sin8( 1

h̄gqtm)+sin( 1
h̄gqtm) cos7( 1

h̄gqtm)(−i exp(− 2i
h̄ Btev)+i exp( 2i

h̄ Btev)

−i exp(− 4i
h̄ Btev)+i exp( 4i

h̄ Btev)−i exp(− 6i
h̄ Btev)+i exp( 6i

h̄ Btev)−i exp(− 8i
h̄ Btev)+i exp( 8i

h̄ Btev))

+4 sin2( 1
h̄gqtm) cos6( 1

h̄gqtm)+sin3( 1
h̄gqtm) cos5( 1

h̄gqtm)(6i exp(− 4i
h̄ Btev)−6i exp( 4i

h̄ Btev)+3i exp(− 2i
h̄ Btev)

− 3i exp( 2i
h̄ Btev) + 5i exp(− 6i

h̄ Btev)− 5i exp( 6i
h̄ Btev)) + 6 sin4( 1

h̄gqtm) cos4( 1
h̄gqtm)

+ sin5( 1
h̄gqtm) cos3( 1

h̄gqtm)(8i exp( 2i
h̄ Btev)− 8i exp(−2i

h̄ Btev) + 7i exp( 4i
h̄ Btev)− 7i exp(− 4i

h̄ Btev))

+4 sin6( 1
h̄gqtm) cos2( 1

h̄gqtm)+sin7( 1
h̄gqtm) cos( 1

h̄gqtm)(2i exp(− 2i
h̄ Btev)+2i exp(− 2i

h̄ Btev)).

Again we take the partial trace over the detector coordinate q and this gives, the sum approached by
an integral, the density matrix only dependent on the qubit coordinates i = |0

〉
and j = |1

〉

ρii,ij,ji,jj(4tev + 4tm) = trqρ(4tev + 4tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)(α̃(4tev + 4tm) β̃(4tev + 4tm)

γ̃(4tev + 4tm) δ̃(4tev + 4tm)

)
dq.

(5.1.9)

Again σ → 0, so this gives in equation 5.1.9
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ρii,ij,ji,jj(4tev + 4tm, q0) ≈ 1

2

(
α̃(4tev + 4tm, q0) β̃(4tev + 4tm, q0)

γ̃(4tev + 4tm, q0) δ̃(4tev + 4tm, q0)

)
(5.1.10)

with

α̃(4tev + 4tm, q0) = cos8( 1
h̄gq0tm) + sin8( 1

h̄gq0tm)

+ sin( 1
h̄gq0tm) cos7( 1

h̄gq0tm)(−i exp( 2i
h̄ Btev) + i exp(− 2i

h̄ Btev)− i exp( 4i
h̄ Btev) + i exp(− 4i

h̄ Btev)

− i exp( 6i
h̄ Btev) + i exp(− 6i

h̄ Btev)− i exp( 8i
h̄ Btev) + i exp(− 8i

h̄ Btev))

+ 4 sin2( 1
h̄gq0tm) cos6( 1

h̄gq0tm) + sin3( 1
h̄gq0tm) cos5( 1

h̄gq0tm)(6i exp( 4i
h̄ Btev) − 6i exp(−4i

h̄ Btev) +

3i exp( 2i
h̄ Btev)

− 3i exp(− 2i
h̄ Btev) + 5i exp( 6i

h̄ Btev)− 5i exp(− 6i
h̄ Btev)) + 6 sin4( 1

h̄gq0tm) cos4( 1
h̄gq0tm)

+sin5( 1
h̄gq0tm) cos3( 1

h̄gq0tm)(−8i exp( 2i
h̄ Btev)+8i exp(−2i

h̄ Btev)−7i exp( 4i
h̄ Btev)+7i exp(− 4i

h̄ Btev))

+4 sin6( 1
h̄gq0tm) cos2( 1

h̄gq0tm)+sin7( 1
h̄gq0tm) cos( 1

h̄gq0tm)(2i exp( 2i
h̄ Btev)−2i exp(− 2i

h̄ Btev)),

β̃(4tev+4tm, q0) = cos8( 1
h̄gq0tm) exp(− 8i

h̄ Btev)+sin8( 1
h̄gq0tm)+sin2( 1

h̄gq0tm) cos6( 1
h̄gq0tm)(exp( 8i

h̄ Btev)

+ 2 exp( 6i
h̄ Btev) + 3 exp( 4i

h̄ Btev) + 4 exp( 2i
h̄ Btev) + 3− 3 exp(−4i

h̄ Btev)− 6 exp(−6i
h̄ Btev))

+sin4( 1
h̄gq0tm) cos4( 1

h̄gq0tm)(−4 exp( 6i
h̄ Btev)−7 exp( 4i

h̄ Btev)−4 exp( 2i
h̄ Btev)+2+8 exp(−2i

h̄ Btev)

+11 exp(−4i
h̄ Btev))+sin6( 1

h̄gq0tm) cos2( 1
h̄gq0tm)(4 exp( 4i

h̄ Btev)+6 exp( 2i
h̄ Btev)−6 exp(− 2i

h̄ Btev)),

γ̃(4tev+4tm, q0) = cos8( 1
h̄gq0tm) exp( 8i

h̄ Btev)+sin8( 1
h̄gq0tm)+sin2( 1

h̄gq0tm) cos6( 1
h̄gq0tm)(exp(− 8i

h̄ Btev)

+ 2 exp(− 6i
h̄ Btev) + 3 exp(− 4i

h̄ Btev) + 4 exp(− 2i
h̄ Btev) + 3− 3 exp( 4i

h̄ Btev)− 6 exp( 6i
h̄ Btev))

+sin4( 1
h̄gq0tm) cos4( 1

h̄gq0tm)(−4 exp(− 6i
h̄ Btev)−7 exp(− 4i

h̄ Btev)−4 exp(− 2i
h̄ Btev)+2+8 exp(2i

h̄ Btev)

+11 exp( 4i
h̄ Btev))+sin6( 1

h̄gq0tm) cos2( 1
h̄gq0tm)(4 exp(− 4i

h̄ Btev)+6 exp(− 2i
h̄ Btev)−6 exp( 2i

h̄ Btev))

and

δ̃(4tev + 4tm, q0) = cos8( 1
h̄gq0tm) + sin8( 1

h̄gq0tm)

+ sin( 1
h̄gq0tm) cos7( 1

h̄gq0tm)(−i exp(− 2i
h̄ Btev) + i exp( 2i

h̄ Btev)− i exp(− 4i
h̄ Btev) + i exp( 4i

h̄ Btev)

− i exp(− 6i
h̄ Btev) + i exp( 6i

h̄ Btev)− i exp(− 8i
h̄ Btev) + i exp( 8i

h̄ Btev))

+ 4 sin2( 1
h̄gq0tm) cos6( 1

h̄gq0tm) + sin3( 1
h̄gq0tm) cos5( 1

h̄gq0tm)(6i exp(− 4i
h̄ Btev)− 6i exp( 4i

h̄ Btev)

+3i exp(− 2i
h̄ Btev)−3i exp( 2i

h̄ Btev)+5i exp(− 6i
h̄ Btev)−5i exp( 6i

h̄ Btev))+6 sin4( 1
h̄gq0tm) cos4( 1

h̄gq0tm)

+sin5( 1
h̄gq0tm) cos3( 1

h̄gq0tm)(8i exp( 2i
h̄ Btev)−8i exp(−2i

h̄ Btev)+7i exp( 4i
h̄ Btev)−7i exp(− 4i

h̄ Btev))

+4 sin6( 1
h̄gq0tm) cos2( 1

h̄gq0tm)+sin7( 1
h̄gq0tm) cos( 1

h̄gq0tm)(2i exp(− 2i
h̄ Btev)+2i exp(− 2i

h̄ Btev)).

The probability that the qubit is in the state |0
〉

at 4tev + 4tm is given by

P0(4tm + 4tev, q0) =
1

2
+

1

2
sin8(

1

h̄
gq0tm) +

1

2
cos(

8

h̄
Btev) cos8(

1

h̄
gq0tm)

+ sin2(
1

h̄
gq0tm) cos6(

1

h̄
gq0tm)(

3

2
+

1

2
cos(

8

h̄
Btev)− 2 cos(

6

h̄
Btev) + 2 cos(

2

h̄
Btev))

+ sin4(
1

h̄
gq0tm) cos4(

1

h̄
gq0tm)(1 + 2 cos(

2

h̄
Btev) + 2 cos(

4

h̄
Btev)− 2 cos(

6

h̄
Btev))

+ 2 cos(
4

h̄
Btev) sin6(

1

h̄
gq0tm) cos2(

1

h̄
gq0tm)

(5.1.11)

and the probability that the qubit is in the state |1
〉

is given by
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P1(4tm + 4tev, q0) =
1

2
− 1

2
sin8(

1

h̄
gq0tm)− 1

2
cos(

8

h̄
Btev) cos8(

1

h̄
gq0tm)

− sin2(
1

h̄
gq0tm) cos6(

1

h̄
gq0tm)(

3

2
+

1

2
cos(

8

h̄
Btev)− 2 cos(

6

h̄
Btev) + 2 cos(

2

h̄
Btev))

− sin4(
1

h̄
gq0tm) cos4(

1

h̄
gq0tm)(1 + 2 cos(

2

h̄
Btev) + 2 cos(

4

h̄
Btev)− 2 cos(

6

h̄
Btev))

− 2 cos(
4

h̄
Btev) sin6(

1

h̄
gq0tm) cos2(

1

h̄
gq0tm).

(5.1.12)

5.1.2 Series of measurements alternated with free evolution of the spin; σ 6→ 0

The calculations of the algebraic expressions of the probabilities at t = 3tev + 3tm are given
below.

The integral from equation 5.1.3 is calculated for each matrix element at this moment in time,
with as result the following equations.

ρii(3tev + 3tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
α̃(3tev + 3tm)dq =

1

2

(
exp(−9(

1

h̄
gtm)2σ)

((
(64 cos5(

1

h̄
gtmq0) + cos3(

1

h̄
gtmq0)(64 exp(5(

1

h̄
gtm)2σ)− 64)

+ (20 exp(8(
1

h̄
gtm)2σ)− 32 exp(5(

1

h̄
gtm)2σ) + 12) cos(

1

h̄
gtmq0)) sin(

1

h̄
gtmq0) cos5(

1

h̄
Btev)

+ ((24 exp(5(
1

h̄
gtm)2σ)− 24 exp(8(

1

h̄
gtm)2σ)) cos(

1

h̄
gtmq0)

− 48 exp(5(
1

h̄
gtm)2σ) cos3(

1

h̄
gtmq0)) sin(

1

h̄
gtmq0) cos3(

1

h̄
Btev)

+ 8 exp(8(
1

h̄
gtm)2σ) cos(

1

h̄
gtmq0) sin(

1

h̄
gtmq0) cos(

1

h̄
Btev)

)
sin(

1

h̄
Btev) + exp(9(

1

h̄
gtm)2σ)

))
(5.1.13)

44



ρij(3tev + 3tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
β̃(3tev + 3tm)dq =

− 1

2

(
exp(−9(

1

h̄
gtm)2σ)

((
(64i cos6(

1

h̄
gtmq0) + cos4(

1

h̄
gtmq0)(64i exp(5(

1

h̄
gtm)2σ)− 96i)

+ (28i exp(8(
1

h̄
gtm)2σ)− 64i exp(5(

1

h̄
gtm)2σ) + 36i) cos2(

1

h̄
gtmq0)

+ 8i exp(9(
1

h̄
gtm)2σ)− 14i exp(8(

1

h̄
gtm)2σ) + 8i exp(5(

1

h̄
gtm)2σ)− 2i) cos5(

1

h̄
Btev)

+ (−48i exp(5(
1

h̄
gtm)2σ) cos4(

1

h̄
gtmq0) + (48i exp(5(

1

h̄
gtm)2σ)− 32i exp(8(

1

h̄
gtm)2σ)) cos2(

1

h̄
gtmq0)

− 10i exp(9(
1

h̄
gtm)2σ) + 16i exp(8(

1

h̄
gtm)2σ)− 6i exp(5(

1

h̄
gtm)2σ)) cos3(

1

h̄
Btev)

+ (8i exp(8(
1

h̄
gtm)2σ) cos2(

1

h̄
gtmq0) + 2i exp(9(

1

h̄
gtm)2σ)

− 4i exp(8(
1

h̄
gtm)2σ)) cos(

1

h̄
Btev)

)
sin(

1

h̄
Btev)

+ (−32 exp(5(
1

h̄
gtm)2σ) cos4(

1

h̄
gtmq0) + (32 exp(5(

1

h̄
gtm)2σ)− 32 exp(8(

1

h̄
gtm)2σ)) cos2(

1

h̄
gtmq0)

− 12 exp(9(
1

h̄
gtm)2σ) + 16 exp(8(

1

h̄
gtm)2σ)− 4 exp(5(

1

h̄
gtm)2σ)) cos6(

1

h̄
Btev)

+ (32 exp(5(
1

h̄
gtm)2σ) cos4(

1

h̄
gtmq0) + (48 exp(8(

1

h̄
gtm)2σ)− 32 exp(5(

1

h̄
gtm)2σ)) cos2(

1

h̄
gtmq0)

+ 20 exp(9(
1

h̄
gtm)2σ)− 24 exp(8(

1

h̄
gtm)2σ) + 4 exp(5(

1

h̄
gtm)2σ)) cos4(

1

h̄
Btev)

(−16 exp(8(
1

h̄
gtm)2σ) cos2(

1

h̄
gtmq0)− 10 exp(9(

1

h̄
gtm)2σ) + 8 exp(8(

1

h̄
gtm)2σ)) cos2(

1

h̄
Btev)

+ exp(9(
1

h̄
gtm)2σ)

))
(5.1.14)

45



ρji(3tev + 3tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
γ̃(3tev + 3tm)dq =

1

2

(
exp(−9(

1

h̄
gtm)2σ)

((
(64i cos6(

1

h̄
gtmq0) + cos4(

1

h̄
gtmq0)(64i exp(5(

1

h̄
gtm)2σ)− 96i)

+ (28i exp(8(
1

h̄
gtm)2σ)− 64i exp(5(

1

h̄
gtm)2σ) + 36i) cos2(

1

h̄
gtmq0)

+ 8i exp(9(
1

h̄
gtm)2σ)− 14i exp(8(

1

h̄
gtm)2σ) + 8i exp(5(

1

h̄
gtm)2σ)− 2i) cos5(

1

h̄
Btev)

+ (−48i exp(5(
1

h̄
gtm)2σ) cos4(

1

h̄
gtmq0) + (48i exp(5(

1

h̄
gtm)2σ)− 32i exp(8(

1

h̄
gtm)2σ)) cos2(

1

h̄
gtmq0)

− 10i exp(9(
1

h̄
gtm)2σ) + 16i exp(8(

1

h̄
gtm)2σ)− 6i exp(5(

1

h̄
gtm)2σ)) cos3(

1

h̄
Btev)

+ (8i exp(8(
1

h̄
gtm)2σ) cos2(

1

h̄
gtmq0) + 2i exp(9(

1

h̄
gtm)2σ)

− 4i exp(8(
1

h̄
gtm)2σ)) cos(

1

h̄
Btev)

)
sin(

1

h̄
Btev)

+ (32 exp(5(
1

h̄
gtm)2σ) cos4(

1

h̄
gtmq0) + (−32 exp(5(

1

h̄
gtm)2σ) + 32 exp(8(

1

h̄
gtm)2σ)) cos2(

1

h̄
gtmq0)

+ 12 exp(9(
1

h̄
gtm)2σ)− 16 exp(8(

1

h̄
gtm)2σ) + 4 exp(5(

1

h̄
gtm)2σ)) cos6(

1

h̄
Btev)

+ (−32 exp(5(
1

h̄
gtm)2σ) cos4(

1

h̄
gtmq0) + (−48 exp(8(

1

h̄
gtm)2σ) + 32 exp(5(

1

h̄
gtm)2σ)) cos2(

1

h̄
gtmq0)

− 20 exp(9(
1

h̄
gtm)2σ) + 24 exp(8(

1

h̄
gtm)2σ)− 4 exp(5(

1

h̄
gtm)2σ)) cos4(

1

h̄
Btev)

(16 exp(8(
1

h̄
gtm)2σ) cos2(

1

h̄
gtmq0) + 10 exp(9(

1

h̄
gtm)2σ)− 8 exp(8(

1

h̄
gtm)2σ)) cos2(

1

h̄
Btev)

− exp(9(
1

h̄
gtm)2σ)

))
(5.1.15)

ρjj(3tev + 3tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
δ̃(3tev + 3tm)dq =

− 1

2

(
exp(−9(

1

h̄
gtm)2σ)

((
(64 cos5(

1

h̄
gtmq0) + cos3(

1

h̄
gtmq0)(64 exp(5(

1

h̄
gtm)2σ)− 64)

+ (20 exp(8(
1

h̄
gtm)2σ)− 32 exp(5(

1

h̄
gtm)2σ) + 12) cos(

1

h̄
gtmq0)) sin(

1

h̄
gtmq0) cos5(

1

h̄
Btev)

+ ((24 exp(5(
1

h̄
gtm)2σ)− 24 exp(8(

1

h̄
gtm)2σ)) cos(

1

h̄
gtmq0)

− 48 exp(5(
1

h̄
gtm)2σ) cos3(

1

h̄
gtmq0)) sin(

1

h̄
gtmq0) cos3(

1

h̄
Btev)

+ 8 exp(8(
1

h̄
gtm)2σ) cos(

1

h̄
gtmq0) sin(

1

h̄
gtmq0) cos(

1

h̄
Btev)

)
sin(

1

h̄
Btev)− exp(9(

1

h̄
gtm)2σ)

))
(5.1.16)

So the result of equation 5.1.3 is ρii,ij,ji,jj(3tev+3tm) =

(
ρii(3tev + 3tm) ρij(3tev + 3tm)
ρji(3tev + 3tm) ρjj(3tev + 3tm)

)
.

The probability that the qubit is in state |0
〉

after 3tev+3tm is, using equation 2.4.4, given by
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P0(3tm + 3tev) =(16 exp(−4(
1

h̄
gtm)2σ) cos4(

1

h̄
gtmq0) + (16 exp(−(

1

h̄
gtm)2σ)− 16 exp(−4(

1

h̄
gtm)2σ)) cos2(

1

h̄
gtmq0)

+ 6− 8 exp(−(
1

h̄
gtm)2σ) + 2 exp(−4(

1

h̄
gtm)2σ)) cos6(

1

h̄
Btev)

+ (−16 exp(−4(
1

h̄
gtm)2σ) cos4(

1

h̄
gtmq0) + (−24 exp(−(

1

h̄
gtm)2σ)

+ 16 exp(−4(
1

h̄
gtm)2σ)) cos2(

1

h̄
gtmq0)

− 10 + 12 exp(−(
1

h̄
gtm)2σ)− 2 exp(−4(

1

h̄
gtm)2σ)) cos4(

1

h̄
Btev)

+ (8 exp(−(
1

h̄
gtm)2σ) cos2(

1

h̄
gtmq0) + 5− 4 exp(−(

1

h̄
gtm)2σ)) cos2(

1

h̄
Btev)

(5.1.17)

and the probability that the qubit is in state |1
〉

is, using equation 2.4.5, given by

P1(3tm + 3tev) =1− (16 exp(−4(
1

h̄
gtm)2σ) cos4(

1

h̄
gtmq0)

+ (16 exp(−(
1

h̄
gtm)2σ)− 16 exp(−4(

1

h̄
gtm)2σ)) cos2(

1

h̄
gtmq0)

+ 6− 8 exp(−(
1

h̄
gtm)2σ) + 2 exp(−4(

1

h̄
gtm)2σ)) cos6(

1

h̄
Btev)

− (−16 exp(−4(
1

h̄
gtm)2σ) cos4(

1

h̄
gtmq0) + (−24 exp(−(

1

h̄
gtm)2σ)

+ 16 exp(−4(
1

h̄
gtm)2σ)) cos2(

1

h̄
gtmq0)

− 10 + 12 exp(−(
1

h̄
gtm)2σ)− 2 exp(−4(

1

h̄
gtm)2σ)) cos4(

1

h̄
Btev)

− (8 exp(−(
1

h̄
gtm)2σ) cos2(

1

h̄
gtmq0) + 5− 4 exp(−(

1

h̄
gtm)2σ)) cos2(

1

h̄
Btev).

(5.1.18)

5.1.3 Series of measurements during free evolution alternated with only free evolu-
tion of the spin; σ → 0

The calculations of the algebraic expressions of the probabilities at t = 2tev + 2tm are given
below.

The state of the qubit after t = 2tev + 2tm is given by applying two times matrix C from equation
3.5.13 on the initial state. This gives

|Φ(2tev + 2tm)
〉

= C2|Φ(0)
〉

=
1√

2
√
πσ

exp
(
− (q − q0)2

2σ

)(Φi
Φj

)
(5.1.19)

with Φi = exp(− 2i
h̄ Btev) cos2( 1

h̄ tm
√
B2 + g2q2

0)+sin( 1
h̄ tm

√
B2 + g2q2

0) cos( 1
h̄ tm

√
B2 + g2q2

0)(−i gq√
B2+g2q2

− i gq√
B2+g2q2

exp( 2i
h̄ Btev)− 2i gq√

B2+g2q2
exp(− 2i

h̄ Btev))

+ sin2( 1
h̄ tm

√
B2 + g2q2

0)(− Bgq
B2+g2q2 − g2q2

B2+g2q2 + Bgq
B2+g2q2 exp( 2i

h̄ Btev)−
B2

B2+g2q2 exp(− 2i
h̄ Btev))

and Φj = exp( 2i
h̄ Btev) cos2( 1

h̄ tm
√
B2 + g2q2

0)+sin( 1
h̄ tm

√
B2 + g2q2

0) cos( 1
h̄ tm

√
B2 + g2q2

0)(−i gq√
B2+g2q2

− i gq√
B2+g2q2

exp(− 2i
h̄ Btev) + 2i gq√

B2+g2q2
exp( 2i

h̄ Btev))

+sin2( 1
h̄ tm

√
B2 + g2q2

0)( Bgq
B2+g2q2− g2q2

B2+g2q2− Bgq
B2+g2q2 exp( 2i

h̄ Btev)−
B2

B2+g2q2 exp(− 2i
h̄ Btev)).

The density matrix is given by
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ρ(2tev+2tm) = |Φ(2tev+2tm)
〉〈

Φ(2tev+2tm)| = 1

2
√
πσ

exp
(
− (q − q0)2

σ

)(
α̃(2tev + 2tm) β̃(2tev + 2tm)

γ̃(2tev + 2tm) δ̃(2tev + 2tm)

)
(5.1.20)

with α̃(2tev + 2tm) = cos4( 1
h̄ tm

√
B2 + g2q2) + sin4( 1

h̄ tm
√
B2 + g2q2)

(
B4

(B2+g2q2)2

+ g4q4

(B2+g2q2)2 + 2 B2g2q2

(B2+g2q2)2 + 2 Bg3q3

(B2+g2q2)2 − Bg3q3

(B2+g2q2)2 exp(− 4i
h̄ Btev)−

Bg3q3

(B2+g2q2)2 exp( 4i
h̄ Btev)

)
+ sin3( 1

h̄ tm
√
B2 + g2q2) cos( 1

h̄ tm
√
B2 + g2q2)

(
B2gq

(B2+g2q2)
√
B2+g2q2

(i exp( 2i
h̄ Btev)− i exp(− 2i

h̄ Btev)

− 3i exp(− 4i
h̄ Btev) + 3i exp( 4i

h̄ Btev)) + g3q3

(B2+g2q2)
√
B2+g2q2

(i exp( 2i
h̄ Btev)− i exp(− 2i

h̄ Btev))
)

+ sin2( 1
h̄ tm

√
B2 + g2q2) cos2( 1

h̄ tm
√
B2 + g2q2)

(
2 B2

B2+g2q2 + 2 g2q2

B2+g2q2

+ Bgq
B2+g2q2 (exp( 2i

h̄ Btev) + exp(− 2i
h̄ Btev) + 3 exp( 4i

h̄ Btev) + 3 exp(− 4i
h̄ Btev)

)
+sin( 1

h̄ tm
√
B2 + g2q2) cos3( 1

h̄ tm
√
B2 + g2q2)(−i gq√

B2+g2q2
exp( 2i

h̄ Btev)+i
gq√

B2+g2q2
exp(− 2i

h̄ Btev)

− i gq√
B2+g2q2

exp( 4i
h̄ Btev) + i gq√

B2+g2q2
exp(−4i

h̄ Btev)),

β̃(2tev + 2tm) = cos4( 1
h̄ tm

√
B2 + g2q2) exp(− 4i

h̄ Btev)

+ sin3( 1
h̄ tm

√
B2 + g2q2) cos( 1

h̄ tm
√
B2 + g2q2)

(
4i B3

(B2+g2q2)
√
B2+g2q2

exp(−4i
h̄ Btev)

+ Bg2q2

(B2+g2q2)
√
B2+g2q2

(−2i+ 4i exp(−2i
h̄ Btev) + 2i exp( 4i

h̄ Btev))
)

+ sin2( 1
h̄ tm

√
B2 + g2q2) cos2( 1

h̄ tm
√
B2 + g2q2)

(
− 6 B2

B2+g2q2 exp(−4i
h̄ Btev)

+ g2q2

B2+g2q2 (1 + exp( 4i
h̄ Btev)− 2 exp(−2i

h̄ Btev) + 2 exp( 2i
h̄ Btev))

)
− 4i B√

B2+g2q2
exp(− 4i

h̄ Btev) sin( 1
h̄ tm

√
B2 + g2q2) cos3( 1

h̄ tm
√
B2 + g2q2),

γ̃(2tev + 2tm) = cos4( 1
h̄ tm

√
B2 + g2q2) exp( 4i

h̄ Btev)

+ sin3( 1
h̄ tm

√
B2 + g2q2) cos( 1

h̄ tm
√
B2 + g2q2)

(
− 4i B3

(B2+g2q2)
√
B2+g2q2

exp( 4i
h̄ Btev)

+ Bg2q2

(B2+g2q2)
√
B2+g2q2

(2i− 4i exp( 2i
h̄ Btev)− 2i exp(− 4i

h̄ Btev))
)

+ sin2( 1
h̄ tm

√
B2 + g2q2) cos2( 1

h̄ tm
√
B2 + g2q2)

(
− 6 B2

B2+g2q2 exp( 4i
h̄ Btev)

+ g2q2

B2+g2q2 (1 + exp(− 4i
h̄ Btev)− 2 exp( 2i

h̄ Btev) + 2 exp(− 2i
h̄ Btev))

)
+ 4i B√

B2+g2q2
exp( 4i

h̄ Btev) sin( 1
h̄ tm

√
B2 + g2q2) cos3( 1

h̄ tm
√
B2 + g2q2)

and

δ̃(2tev + 2tm) = cos4( 1
h̄ tm

√
B2 + g2q2) + sin4( 1

h̄ tm
√
B2 + g2q2)

(
B4

(B2+g2q2)2

+ g4q4

(B2+g2q2)2 + 2 B2g2q2

(B2+g2q2)2 + 2 Bg3q3

(B2+g2q2)2 + Bg3q3

(B2+g2q2)2 exp(− 4i
h̄ Btev) + Bg3q3

(B2+g2q2)2 exp( 4i
h̄ Btev)

)
+sin3( 1

h̄ tm
√
B2 + g2q2) cos( 1

h̄ tm
√
B2 + g2q2)

(
B2gq

(B2+g2q2)
√
B2+g2q2

(−i exp( 2i
h̄ Btev)+i exp(− 2i

h̄ Btev)

3i exp(− 4i
h̄ Btev)− 3i exp( 4i

h̄ Btev)) + g3q3

(B2+g2q2)
√
B2+g2q2

(i exp(− 2i
h̄ Btev)− i exp( 2i

h̄ Btev))
)

+ sin2( 1
h̄ tm

√
B2 + g2q2) cos2( 1

h̄ tm
√
B2 + g2q2)

(
2 B2

B2+g2q2 + 2 g2q2

B2+g2q2

+ Bgq
B2+g2q2 (− exp( 2i

h̄ Btev)− exp(− 2i
h̄ Btev)− 3 exp( 4i

h̄ Btev)− 3 exp(− 4i
h̄ Btev)

)
+ sin( 1

h̄ tm
√
B2 + g2q2) cos3( 1

h̄ tm
√
B2 + g2q2)(i gq√

B2+g2q2
exp( 2i

h̄ Btev)− i
gq√

B2+g2q2
exp(− 2i

h̄ Btev)

+ i gq√
B2+g2q2

exp( 4i
h̄ Btev)− i

gq√
B2+g2q2

exp(−4i
h̄ Btev)).

Again we trace out the detector coordinate q in the limit of σ → 0 in order to get the density
matrix only dependent on the qubit coordinates i = |0

〉
and j = |1

〉
. Equation 3.4.17 gives

ρii,ij,ji,jj(2tev + 2tm, q0) ≈ 1

2

(
α̃(2tev + 2tm, q0) β̃(2tev + 2tm, q0)

γ̃(2tev + 2tm, q0) δ̃(2tev + 2tm, q0)

)
(5.1.21)
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with α̃(2tev + 2tm, q0) = cos4( 1
h̄ tm

√
B2 + g2q2

0) + sin4( 1
h̄ tm

√
B2 + g2q2

0)
(

B4

(B2+g2q2
0)2

+
g4q4

0

(B2+g2q2
0)2 + 2

B2g2q2
0

(B2+g2q2
0)2 + 2

Bg3q3
0

(B2+g2q2
0)2 −

Bg3q3
0

(B2+g2q2
0)2 exp(− 4i

h̄ Btev)−
Bg3q3

0

(B2+g2q2
0)2 exp( 4i

h̄ Btev)
)

+ sin3( 1
h̄ tm

√
B2 + g2q2

0) cos( 1
h̄ tm

√
B2 + g2q2

0)
(

B2gq0

(B2+g2q2
0)
√
B2+g2q2

0

(i exp( 2i
h̄ Btev)− i exp(− 2i

h̄ Btev)

− 3i exp(− 4i
h̄ Btev) + 3i exp( 4i

h̄ Btev)) +
g3q3

0

(B2+g2q2
0)
√
B2+g2q2

0

(i exp( 2i
h̄ Btev)− i exp(− 2i

h̄ Btev))
)

+ sin2( 1
h̄ tm

√
B2 + g2q2

0) cos2( 1
h̄ tm

√
B2 + g2q2

0)
(
2 B2

B2+g2q2
0

+ 2
g2q2

0

B2+g2q2
0

+ Bgq0
B2+g2q2

0
(exp( 2i

h̄ Btev) + exp(− 2i
h̄ Btev) + 3 exp( 4i

h̄ Btev) + 3 exp(− 4i
h̄ Btev)

)
+sin( 1

h̄ tm
√
B2 + g2q2

0) cos3( 1
h̄ tm

√
B2 + g2q2

0)(−i gq√
B2+g2q2

0

exp( 2i
h̄ Btev)+i

gq0√
B2+g2q2

0

exp(− 2i
h̄ Btev)

− i gq√
B2+g2q2

0

exp( 4i
h̄ Btev) + i gq√

B2+g2q2
0

exp(−4i
h̄ Btev)),

β̃(2tev + 2tm, q0) = cos4( 1
h̄ tm

√
B2 + g2q2

0) exp(− 4i
h̄ Btev)

+ sin3( 1
h̄ tm

√
B2 + g2q2

0) cos( 1
h̄ tm

√
B2 + g2q2

0)
(
4i B3

(B2+g2q2
0)
√
B2+g2q2

0

exp(−4i
h̄ Btev)

+ Bg2q2

(B2+g2q2
0)
√
B2+g2q2

0

(−2i+ 4i exp(−2i
h̄ Btev) + 2i exp( 4i

h̄ Btev))
)

+ sin2( 1
h̄ tm

√
B2 + g2q2

0) cos2( 1
h̄ tm

√
B2 + g2q2

0)
(
− 6 B2

B2+g2q2
0

exp(−4i
h̄ Btev)

+
g2q2

0

B2+g2q2 (1 + exp( 4i
h̄ Btev)− 2 exp(−2i

h̄ Btev) + 2 exp( 2i
h̄ Btev))

)
− 4i B√

B2+g2q2
0

exp(− 4i
h̄ Btev) sin( 1

h̄ tm
√
B2 + g2q2

0) cos3( 1
h̄ tm

√
B2 + g2q2

0),

γ̃(2tev + 2tmq0) = cos4( 1
h̄ tm

√
B2 + g2q2

0) exp( 4i
h̄ Btev)

+ sin3( 1
h̄ tm

√
B2 + g2q2

0) cos( 1
h̄ tm

√
B2 + g2q2

0)
(
− 4i B3

(B2+g2q2
0)
√
B2+g2q2

0

exp( 4i
h̄ Btev)

+
Bg2q2

0

(B2+g2q2
0)
√
B2+g2q2

0

(2i− 4i exp( 2i
h̄ Btev)− 2i exp(− 4i

h̄ Btev))
)

+ sin2( 1
h̄ tm

√
B2 + g2q2

0) cos2( 1
h̄ tm

√
B2 + g2q2

0)
(
− 6 B2

B2+g2q2
0

exp( 4i
h̄ Btev)

+
g2q2

0

B2+g2q2
0
(1 + exp(− 4i

h̄ Btev)− 2 exp( 2i
h̄ Btev) + 2 exp(− 2i

h̄ Btev))
)

+ 4i B√
B2+g2q2

0

exp( 4i
h̄ Btev) sin( 1

h̄ tm
√
B2 + g2q2

0) cos3( 1
h̄ tm

√
B2 + g2q2

0)

and

δ̃(2tev + 2tm, q0) = cos4( 1
h̄ tm

√
B2 + g2q2

0) + sin4( 1
h̄ tm

√
B2 + g2q2

0)
(

B4

(B2+g2q2
0)2

+ g4q4

(B2+g2q2
0)2 + 2

B2g2q2
0

(B2+g2q2
0)2 + 2

Bg3q3
0

(B2+g2q2
0)2 +

Bg3q3
0

(B2+g2q2
0)2 exp(− 4i

h̄ Btev) +
Bg3q3

0

(B2+g2q2
0)2 exp( 4i

h̄ Btev)
)

+sin3( 1
h̄ tm

√
B2 + g2q2

0) cos( 1
h̄ tm

√
B2 + g2q2

0)
(

B2gq0

(B2+g2q2
0)
√
B2+g2q2

0

(−i exp( 2i
h̄ Btev)+i exp(− 2i

h̄ Btev)

3i exp(− 4i
h̄ Btev)− 3i exp( 4i

h̄ Btev)) +
g3q3

0

(B2+g2q2
0)
√
B2+g2q2

0

(i exp(− 2i
h̄ Btev)− i exp( 2i

h̄ Btev))
)

+ sin2( 1
h̄ tm

√
B2 + g2q2

0) cos2( 1
h̄ tm

√
B2 + g2q2

0)
(
2 B2

B2+g2q2
0

+ 2
g2q2

0

B2+g2q2
0

+ Bgq0
B2+g2q2

0
(− exp( 2i

h̄ Btev)− exp(− 2i
h̄ Btev)− 3 exp( 4i

h̄ Btev)− 3 exp(− 4i
h̄ Btev)

)
+ sin( 1

h̄ tm
√
B2 + g2q2

0) cos3( 1
h̄ tm

√
B2 + g2q2

0)(i gq0√
B2+g2q2

0

exp( 2i
h̄ Btev)− i

gq0√
B2+g2q2

0

exp(− 2i
h̄ Btev)

+ i gq0√
B2+g2q2

0

exp( 4i
h̄ Btev)− i

gq0√
B2+g2q2

0

exp(−4i
h̄ Btev)).

The probability that the qubit is in the state |0
〉

after 2tev + 2tm is, using equation 2.4.4, given
by
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P0(2tm + 2tev, q0) =
1

2
+

1

2
cos4(

1

h̄
tm

√
B2 + g2q2

0) cos(
4

h̄
Btev)

+ sin3(
1

h̄
tm

√
B2 + g2q2

0) cos(
1

h̄
tm

√
B2 + g2q2

0)
(
2

B3

(B2 + g2q2
0)
√
B2 + g2q2

0

sin(
4

h̄
Btev)

+ 2
Bg2q2

0

(B2 + g2q2
0)
√
B2 + g2q2

0

sin(
2

h̄
Btev)−

Bg2q2
0

(B2 + g2q2
0)
√
B2 + g2q2

0

sin(
4

h̄
Btev)

)
+ sin2(

1

h̄
tm

√
B2 + g2q2

0) cos2(
1

h̄
tm

√
B2 + g2q2

0)
(
− 3

B2

B2 + g2q2
0

cos(
4

h̄
Btev)

+
1

2

g2q2
0

B2 + g2q2
cos(

4

h̄
Btev) +

1

2

g2q2
0

B2 + g2q2
0

)
− 2

B√
B2 + g2q2

0

sin(
4

h̄
Btev) sin(

1

h̄
tm

√
B2 + g2q2

0) cos3(
1

h̄
tm

√
B2 + g2q2

0)

(5.1.22)

and the probability that the qubit is, using equation 2.4.5, in its other state |1
〉

is given by

P1(2tm + 2tev, q0) =
1

2
− 1

2
cos4(

1

h̄
tm

√
B2 + g2q2

0) cos(
4

h̄
Btev)

− sin3(
1

h̄
tm

√
B2 + g2q2

0) cos(
1

h̄
tm

√
B2 + g2q2

0)
(
2

B3

(B2 + g2q2
0)
√
B2 + g2q2

0

sin(
4

h̄
Btev)

+ 2
Bg2q2

0

(B2 + g2q2
0)
√
B2 + g2q2

0

sin(
2

h̄
Btev)−

Bg2q2
0

(B2 + g2q2
0)
√
B2 + g2q2

0

sin(
4

h̄
Btev)

)
− sin2(

1

h̄
tm

√
B2 + g2q2

0) cos2(
1

h̄
tm

√
B2 + g2q2

0)
(
− 3

B2

B2 + g2q2
0

cos(
4

h̄
Btev)

+
1

2

g2q2
0

B2 + g2q2
0

cos(
4

h̄
Btev) +

1

2

g2q2
0

B2 + g2q2
0

)
+ 2

B√
B2 + g2q2

0

sin(
4

h̄
Btev) sin(

1

h̄
tm

√
B2 + g2q2

0) cos3(
1

h̄
tm

√
B2 + g2q2

0).

(5.1.23)

5.2 Partial trace integral calculations

The integrals for the partial trace when σ 6→ 0 are all the same sort of integrals. The same steps are
used for each integral. The integrals in equations 3.4.23 and 3.4.24 are worked out in detail.

Equation 3.4.23

ρii(tev + tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
α̃(tev + tm)dq

=

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)(
cos2

( 1

h̄
gqtm −

1

h̄
Btev

)
+ sin2

( 1

h̄
gqtm +

1

h̄
Btev

))
dq

(5.2.1)

Let x = q, a = q0, b = σ, c = 1
h̄gtm and d = 1

h̄Btev.

This gives
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ρii(tev + tm) =

∫ ∞
−∞

1

2
√
πb

exp
(
− (x− a)2

b

)
cos2

(
(cx− d) + sin2(cx+ d)

)
dx

=

∫ ∞
−∞

1

2
√
πb

exp
(
− (x− a)2

b

)
cos2

(
cx− d

)
dx+

∫ ∞
−∞

1

2
√
πb

exp
(
− (x− a)2

b

)
sin2

(
cx+ d

)
dx

(5.2.2)

First we will solve∫ ∞
−∞

exp
(
− (x− a)2

b

)
sin2(cx+ d)dx

=

∫ ∞
−∞
−

(exp(i(cx+ d))− exp(−i(cx+ d))2 exp
(
− (x−a)2

b

)
4

dx

=

∫ ∞
−∞
−

exp
(
− (x−a)2

b + 2(2icx+ 2id)− 2icx− 2id
)

4
−

exp
(
− (x−a)2

b − 2icx− 2id
)

4
+

exp
(
− (x−a)2

b

)
2

dx

=− exp(2id)

4

∫ ∞
−∞

exp
(

2icx− (x− a)2

b

)
dx

− exp(−2id)

4

∫ ∞
−∞

exp
(
− 2icx− (x− a)2

b

)
dx+

1

2

∫ ∞
−∞

exp
(
− (x− a)2

b

)
dx

(5.2.3)

We are going to solve this in parts. Set u = bx+b(−ibc−a)

b
3
2

so dx =
√
bdu.

∫ ∞
−∞

exp
(

2icx− (x− a)2

b

)
dx =

∫ ∞
−∞

exp

(
−
( x√

b
−
√
b(2ic+ 2a

b )

2

)2

+
b(2ic+ 2a

b )2

4
− a2

b

)
dx

=

∫ ∞
−∞

√
b exp

(
− u2 + b(ic+

a

b
)2 − a2

b

)
dx =

√
π
√
b exp

(
b(ic+ a

b )2 − a2

b

)
2

∫ ∞
−∞

2 exp(−u2)√
π

du

=

[√π√b exp

(
b(ic+ a

b )2 − a2

b

)
2

erf(u)

]∞
−∞

=
√
π
√
b exp

(
b(ic+

a

b
)2 − a2

b

)
(5.2.4)

Now set u = bx+b(ibc−a)

b
3
2

so dx =
√
bdu.

∫ ∞
−∞

exp
(
− 2icx− (x− a)2

b

)
dx =

∫ ∞
−∞

exp

(
−
( x√

b
−
√
b(−2ic+ 2a

b )

2

)2

+
b(−2ic+ 2a

b )2

4
− a2

b

)
dx

=

∫ ∞
−∞

√
b exp

(
− u2 + b(ic− a

b
)2 − a2

b

)
dx =

√
π
√
b exp

(
b(ic− a

b )2 − a2

b

)
2

∫ ∞
−∞

2 exp(−u2)√
π

du

=

[√π√b exp

(
b(ic− a

b )2 − a2

b

)
2

erf(u)

]∞
−∞

=
√
π
√
b exp

(
b(ic− a

b
)2 − a2

b

)
(5.2.5)

Now set u = x−a√
b

so dx =
√
bdu.
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∫ ∞
−∞

exp
(
− (x− a)2

b

)
dx =

√
πb

2

∫ ∞
−∞

2 exp(−u2)√
π

du =
√
πb (5.2.6)

Now we are going to solve the other part.

∫ ∞
−∞

exp
(
− (x− a)2

b

)
cos2(cx− d)dx

=

∫ ∞
−∞

(exp(i(cx− d)) + exp(−i(cx− d))2 exp
(
− (x−a)2

b

)
4

dx

=

∫ ∞
−∞
−

exp
(
− (x−a)2

b + 2icx− 2id
)

4
−

exp
(
− (x−a)2

b − 2icx+ 2id
)

4
+

exp
(
− (x−a)2

b

)
2

dx

=
exp(−2id)

4

∫ ∞
−∞

exp
(

2icx− (x− a)2

b

)
dx

+
exp(2id)

4

∫ ∞
−∞

exp
(
− 2icx− (x− a)2

b

)
dx+

1

2

∫ ∞
−∞

exp
(
− (x− a)2

b

)
dx

(5.2.7)

These integrals are solved in equations 5.2.4, 5.2.5 and 5.2.6. Taking everything together gives

ρii(tev + tm) =
1

2
+ 2 exp(−bc2) cos(ac) sin(ac) cos(d) sin(d)

=
1

2
+ 2 exp(−(

1

h̄
gtm)2σ) cos(

1

h̄
gtmq0) sin(

1

h̄
gtmq0) cos(

1

h̄
Btev) sin(

1

h̄
Btev)

. (5.2.8)

Equation 3.4.23

ρij(tev + tm) =

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)
β̃(tev + tm)dq

=

∫ ∞
−∞

1

2
√
πσ

exp
(
− (q − q0)2

σ

)(
cos
( 1

h̄
gqtm +

1

h̄
Btev

)
cos
( 1

h̄
gqtm −

1

h̄
Btev

)
+ sin

( 1

h̄
gqtm +

1

h̄
Btev

)
sin
( 1

h̄
gqtm −

1

h̄
Btev

)
+ i
(

cos
( 1

h̄
gqtm −

1

h̄
Btev

)
sin
( 1

h̄
gqtm −

1

h̄
Btev

)
− cos

( 1

h̄
gqtm +

1

h̄
Btev

)
sin
( 1

h̄
gqtm +

1

h̄
Btev

)))
dq

(5.2.9)

Let x = q, a = q0, b = σ, c = 1
h̄gtm and d = 1

h̄Btev.

This gives

ρij(tev + tm) =

∫ ∞
−∞

1

2
√
πb

exp
(
− (x− a)2

b

)(
cos(cx+ d) cos(cx− d) + sin(cx+ d) sin(cx− d)

+ i
(

cos(cx− d) sin(cx− d)− cos(cx+ d) sin(cx+ d)
))

dx

(5.2.10)

We will solve it in parts. First we will use partial integration:
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∫ ∞
−∞

exp
(
− (x− a)2

b

)
sin(cx+ d) sin(cx− d)dx

=

[√
πberf(x−a√

b
) sin(cx− d) sin(cx+ d)

2

]∞
−∞

−
∫ ∞
−∞

erf(
x− a√

b
)
(

cos(cx− d) sin(cx+ d) + sin(cx− d) cos(cx+ d)
)
dx

(5.2.11)

∫ ∞
−∞

exp
(
− (x− a)2

b

)
cos(cx+ d) cos(cx− d)dx

=

[√
πberf(x−a√

b
) cos(cx− d) cos(cx+ d)

2

]∞
−∞

+

∫ ∞
−∞

erf(
x− a√

b
)
(

cos(cx− d) sin(cx+ d) + sin(cx− d) cos(cx+ d)
)
dx

(5.2.12)

So

∫ ∞
−∞

exp
(
− (x− a)2

b

)(
sin(cx+ d) sin(cx− d) + cos(cx+ d) cos(cx− d)

)
dx

=

[√
πberf(x−a√

b
) cos(cx− d) cos(cx+ d)

2
+

√
πberf(x−a√

b
) sin(cx− d) sin(cx+ d)

2

]∞
−∞

(5.2.13)

Now we solve another part. First we write everything in exponentials and use linearity.

∫ ∞
−∞

exp
(
− (x− a)2

b

)
sin(cx+ d) cos(cx+ d)dx

=
−i exp(2id)

4

∫ ∞
−∞

exp
(

2icx− (x− a)2

b

)
dx+

i exp(−2id)

4

∫ ∞
−∞

exp
(
− 2icx− (x− a)2

b

)
dx

(5.2.14)

We already solved these equations in 5.2.4 and 5.2.5.

In the same way we solve the following integral

∫ ∞
−∞

exp
(
− (x− a)2

b

)
sin(cx− d) cos(cx− d)dx

=
−i exp(−2id)

4

∫ ∞
−∞

exp
(

2icx− (x− a)2

b

)
dx+

i exp(2id)

4

∫ ∞
−∞

exp
(
− 2icx− (x− a)2

b

)
dx

.

(5.2.15)

Taking everything together gives

ρij(tev + tm) =− exp(−bc2)

4

(
i sin(2(cx+ d))− i sin(2(cx− d))− 2 exp(bc2) cos(2d)

)
=−

exp(−( 1
h̄gtm)2σ)

4

(
i sin(2(

1

h̄
Btev +

1

h̄
gtmq0)) + i sin(2(

1

h̄
Btev −

1

h̄
gtmq0))

− 2 exp((
1

h̄
gtm)2σ) cos(

2

h̄
Btev)

)
(5.2.16)
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5.3 Interaction strength g(t)

In this report we made the assumption that g(t) was time independent. We also worked out the
situation in which this is not the case. First for the situation where series of measurements were
alternated with free evolution of the spin (subsection 5.3.1) and consequently for the situation
where series of measurements during free evolution were alternated with only free evolution of the
spin (subsection 5.3.2).

5.3.1 Series of measurements alternated with free evolution of the spin

Assume g(t) is time dependent. This gives

|Φ(tev + tm)
〉

= exp
(
− i

h̄
qσx

∫ tev+tm

tev

g(t)dt
)
|Φ(tev)

〉
. (5.3.1)

Take β(tev, tm) = − i
h̄q
∫ tev+tm
tev

g(t)dt.

The Taylor series of the exponential function give

exp(β(tev, tm)σx) =

∞∑
n=0

(β(tev, tm)σx)n

n!
=
∞∑
n=0

(β(tev, tm)σx)2n

(2n)!
+
∞∑
n=0

(β(tev, tm)σx)2n+1

(2n+ 1)!
. (5.3.2)

and equivalent to equation 3.3.6, this gives

exp(β(tev, tm)σx) = I

∞∑
n=0

β(tev, tm)2n

(2n)!
+ σx

∞∑
n=0

β(tev, tm)2n+1

(2n+ 1)!
. (5.3.3)

With the Taylor series of the hyperbolic cosine and sine, this exponential results in

exp(β(tev, tm)σx) = I cosh(β(tev, tm))+σx sinh(β(tev, tm)) =

(
cosh(β(tev, tm)) sinh(β(tev, tm))
sinh(β(tev, tm)) cosh(β(tev, tm))

)
.

(5.3.4)

Substituting β(tev, tm) = − i
h̄q
∫ tev+tm
tev

g(t)dt in 5.3.4, we find using equations 3.4.5 and 5.3.1,

|Φ(tev+tm)
〉

=
1√

2
√
πσ

exp
(
− (q − q0)2

2σ

)cos
(

1
h̄q
∫ tev+tm
tev

g(t)dt− 1
h̄Btev

)
− i sin

(
1
h̄q
∫ tev+tm
tev

g(t)dt+ 1
h̄Btev

)
cos
(

1
h̄q
∫ tev+tm
tev

g(t)dt+ 1
h̄Btev

)
− i sin

(
1
h̄q
∫ tev+tm
tev

g(t)dt− 1
h̄Btev

) .

(5.3.5)

So in fact the evolution of the wave function at discrete moments in time k tev+tm
h̄ is now given

by applying the following matrix k times on the initial state for each time period consisting of a
period of free evolution followed by a measurement.

A2 = exp
(
− i

h̄

∫ tev+tm

tev

Hint(t)dt
)

exp
(
− i

h̄

∫ tev

0

H0dt
)

=

(
exp(− i

h̄Btev) cos( 1
h̄q
∫ tev+tm
tev

g(t)dt) −i exp( ih̄Btev) sin( 1
h̄q
∫ tev+tm
tev

g(t)dt)

−i exp(− i
h̄Btev) sin( 1

h̄q
∫ tev+tm
tev

g(t)dt) exp( ih̄Btev) cos( 1
h̄q
∫ tev+tm
tev

g(t)dt)

) (5.3.6)
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5.3.2 Series of measurements during free evolution alternated with only free evolu-
tion of the spin

Assume that g(t) is time dependent. We have Ĥ(t) =

(
B g(t)q

g(t)q −B

)
. The evolution of the

wavefunction is given by equation 3.5.3 and we can write this as

|ψ(t)
〉

= exp
(
− i

h̄

(
Bσzt+ qσx

∫ t

0

g(t′)
)
dt′
)
|ψ(0)

〉
(5.3.7)

or

|ψ(t)
〉

= exp
(
− i

h̄

(
Bt q

∫ t
0
g(t′)dt′

q
∫ t

0
g(t′)dt′ −Bt

))
|ψ(0)

〉
. (5.3.8)

Take X =

(
Bt q

∫ t
0
g(t′)dt′

q
∫ t

0
g(t′)dt′ −Bt

)
and set α̂ = − i

h̄ . The Taylor series of the exponential

function give

exp(α̂X) =

∞∑
n=0

(α̂X)n

n!
=

∞∑
n=0

(α̂X)2n

(2n)!
+

∞∑
n=0

(α̂X)2n+1

(2n+ 1)!
. (5.3.9)

We notice that X2 = (B2t2+q2(
∫ t

0
g(t′)dt′)2)I. From this follows X2n = (B2t2+q2(

∫ t
0
g(t′)dt′)2)nI

and X2n+1 = (B2t2 + q2(
∫ t

0
g(t′)dt′)2)nX. This gives

exp(α̂X) = I

∞∑
n=0

(
B2t2 + q2

( ∫ t

0

g(t′)dt′
)2)n α̂2n

(2n)!
+X

∞∑
n=0

(
B2t2 + q2

( ∫ t

0

g(t′)dt′
)2)n α̂2n+1

(2n+ 1)!

(5.3.10)

and with the Taylor series of the hyperbolic cosine and sine, and substituting α̂ = − i
h̄ , this

gives

exp(− i
h̄
X) = I cosh

(
− i

h̄

√
B2t2 + q2

( ∫ t

0

g(t′)dt′
)2)

+X
sinh

(
− i

h̄

√
B2t2 + q2

( ∫ t
0
g(t′)dt′

)2)√
B2t2 + q2

( ∫ t
0
g(t′)dt′

)2 .

(5.3.11)

We find the following matrix with γ̂ = i
h̄

√
B2t2 + q2

( ∫ t
0
g(t′)dt′

)2


cosh(γ̂) + Bt√
B2t2+q2

( ∫ t
0
g(t′)dt′

)2
sinh(−γ̂)

q
∫ t
0
g(t′)dt′√

B2t2+q2
( ∫ t

0
g(t′)dt′

)2
sinh(−γ̂)

q
∫ t
0
g(t′)dt′√

B2t2+q2
( ∫ t

0
g(t′)dt′

)2
sinh(−γ̂) cosh(γ̂)− Bt√

B2t2+q2
( ∫ t

0
g(t′)dt′

)2
sinh(−γ̂)

 .

(5.3.12)

With the initial state given as in equation 3.2.1 and using equation 5.3.8, the wavefunction evolves
as follows in time,
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|ψ(t)
〉

=
1√
2


cos
(

1
h̄

√
B2t2 + q2

( ∫ t
0
g(t′)dt′

)2)− i Bt+q
∫ t
0
g(t′)dt′√

B2t2+q2
( ∫ t

0
g(t′)dt′

)2
sin
(

1
h̄

√
B2t2 + q2

( ∫ t
0
g(t′)dt′

)2)
cos
(

1
h̄

√
B2t2 + q2

( ∫ t
0
g(t′)dt′

)2)− i −Bt+q
∫ t
0
g(t′)dt′√

B2t2+q2
( ∫ t

0
g(t′)dt′

)2
sin
(

1
h̄

√
B2t2 + q2

( ∫ t
0
g(t′)dt′

)2)
 .

(5.3.13)
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