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Abstract

The growing number of distributed energy resources (DER) connected to the low- and medium
voltage grid has prompted the development of Virtual Power Plants. Virtual Power Plants
can aggregate and dispatch DER to gain revenue in the Day-Ahead market, however as a
Balancing Responsible Party it can risk imbalance cost due to the errors between the Day-
Ahead forecast and actual production of renewable energy. Industrial loads can provide
demand response by making deliberate changes to their energy consumption which can assist
in the reduction of imbalances in a Virtual Power Plant portfolio. This thesis provides a
technical analysis of the ability of industrial processes to minimize the imbalances in Virtual
Power Plants due to Day-Ahead forecast errors of renewable energy.
Literature on industrial demand response was reviewed to identify the advantages and disad-
vantages of major industrial processes to operate as a flexible load in a short-term redispatch
scheme. Suitable processes included refrigerated warehouses, chlor-alkali-, hydrogen- and
aluminum production plants, owing to their high ramp-rate, low complexity, fast response
time or ability to shift load consumption in time. On the other hand, less suitable processes
included the steel-making, cement production and paper & pulp industry due to inefficiencies
at partial load, significant inter-dependencies of processes or high utilization rates.
An analysis was performed on the capability of the chlor-alkali and hydrogen industry to
minimize imbalances in a Virtual Power Plant. To this purpose, a simulation setup was
developed in Python of a Virtual Power Plant comprising PV (300 MW) and onshore wind
energy (300 MW), a chlor-alkali (203.5 MW) and hydrogen plant (193.4 MW), and a controller
based on Model Predictive Control (MPC). The industrial plants were modelled in detail
using OpenModelica which could be simulated in Python as Functional Mock-up Units. An
innovative MPC was developed with the objective to minimize imbalances due to the errors
between Day-Ahead bids and actual energy production by adjusting the energy consumption
of the industrial plants. The industrial process dynamics were successfully implemented in the
MPC by integrating Hammerstein Wiener models based on simulated input-output data of the
chlor-alkali and hydrogen plant. Historical data was used to provide a realistic presentation
of the Day-Ahead forecast errors in a renewable energy portfolio. A simulation study was
performed for the month of October and the results show that industrial demand response by
the chlor-alkali and hydrogen plant can significantly reduce imbalances from 12947 MWh to
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1277 MWh (-90.1%). The major cause for the remaining imbalances is the limited capacity
of the hydrogen and chlorine storage, whereas imbalances did not result from operation at
a high utilization rate or from ramp-rate limitations of the industrial plants. The MPC
could adequately adjust the energy consumption of the industrial plant while ensuring that
constraints on process variables were respected.

A sensitivity analysis showed that the imbalances are strongly affected by the storage capacity.
Halving the storage capacity of the industrial plants compared to the base-case significantly
increased the imbalances to 4149 MWh (+225%) since storage level limits were reached more
frequently. Doubling the storage capacity nearly eliminated the imbalances (-99%) as the
storage levels limits were not reached. The utilization rate of the industrial plants showed
minor effects on the imbalance minimization between 80 to 90%, whilst from 95% imbalances
increased significantly up to 2891 MWh (+126%) due the lack of regulation capacity for
reducing positive imbalances. Furthermore, it was shown that without a correction to the
Day-Ahead bids to guide storage levels towards the midway level, the imbalances rise majorly
to 6643 MWh (+420%) as a result of continuously positive or negative Day-Ahead errors.
Prediction horizon length and the accuracy of the imbalance forecast had no influence on
the imbalance minimization ability of the MPC owing to the favorably high ramp rate of the
industrial plants. Finally, the imbalance minimization performance of the industrial plants
could be maintained successfully even when restricting the ramp frequency of individual
production units by increasing the number of separately controllable electrolyser sub-groups.

This study shows there is a significant potential for industrial processes to minimize imbal-
ances in Virtual Power Plants. The results of this research can assist in the development of
Virtual Power Plants that aim at reducing their imbalances and it can contribute to a wider
participation of industrial processes in distributed energy systems.
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Chapter 1

Introduction

1-1 Background issue

In 2015, countries around the world have signed the Paris Agreement in order to restrict the
global temperature rise to 2 degrees [1]. One of the main trajectories to reduce the greenhouse
gas emissions and thereby limit the increase of global temperature is the transition from a
carbon-intensive to a low-carbon and renewable energy system. The intended transition
faces some challenges, however, notably regarding the integration of renewable energy in
the power system and the phasing out of conventional power generators [2]. Renewable
energy resources such as solar and wind energy are significantly influenced by environmental
and climatic factors. Therefore, their output is strongly volatile and uncertain which makes
balancing energy demand and supply in the grid increasingly difficult. Furthermore, the
traditional power system is designed for power flow in a single direction. Namely, large-scale
conventional generators produce power which is transported by the high-voltage network and
then distributed by a medium-voltage and low-voltage network where it is used by consumers.
Renewable resources increasingly feed power directly into the medium-voltage or low-voltage
networks which can lead to technical issues such as transmission congestion and voltage
and frequency instabilities [3]. Moreover, the conventional synchronous generators perform
an important function by providing ancillary services, such as frequency restoration and
reserve power provision, which helps protect the power system reliability [4]. Replacing the
conventional generators with renewable energy sources will require new entities to provide
ancillary services. The challenges mentioned above motivate the development of innovative
power plants based on renewable energy resources that can produce energy for wholesale
markets and/or provide ancillary services to protect the power system reliability. The Virtual
Power Plant is a concept that could meet the above mentioned criteria.

1-2 Literature review

A Virtual Power plant (VPP) is an aggregation of distributed energy resources connected in a
single system. At the core of the Virtual Power Plant is the energy management system which
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2 Introduction

dispatches the energy resources in order to maximize profit in wholesale electricity markets
or to support the power system reliability. Virtual Power Plants integrate distributed energy
resources (DER) which are electric power resources directly connected to the medium-voltage
and low-voltage distribution networks, rather than the high voltage transmission network [5].
DER comprise a wide variety of energy technologies including generation units (i.e. wind and
solar energy), storage devices (i.e. batteries), energy conversion systems (i.e. fuel cells and
electrolysers) and controllable loads.
Several motivations and incentives drive the development of Virtual Power Plants. As men-
tioned, a rising number of DER are being connected to the low-voltage and medium-voltage
grids which can cause network reliability issues if their dispatch is uncontrolled [5]. Virtual
Power Plants aggregate multiple DER in a single portfolio and can coordinate their dispatch
such that network constraints are not violated [6]. Furthermore, the aggregation of DER
in a Virtual Power Plants grant small-scale DER access to the wholesale markets. This can
improve the revenue per DER unit and, additionally, increase the visibility of DER to the net-
work operators [7]. Virtual Power Plants are also able to integrate large shares of renewable
energy resources in their portfolio while still being a reliable and secure source of energy [7].
To be more specific, the variability and uncertainty of renewable energy can be compensated
by intelligently dispatching the controllable DER units in the Virtual Power Plant. Finally,
Virtual Power Plants can be designed to provide ancillary services, such as frequency control,
voltage control and black start capability, similar to conventional generators [8]. With its
ability to provide both energy for wholesale electricity markets and ancillary services, Virtual
Power Plants can hence assist in the phasing-out of conventional fossil fuel based generators
[7].
Virtual Power Plants can participate in the Day-Ahead Energy market to make revenue [9].
The Day-Ahead market is a wholesale electricity market where producers and consumers can
buy/sell energy a day before the delivery [10]. Participants in the Day-Ahead market need to
send bids for each of the 24 hours of the next day before a market deadline, which is 12.00 CET
in the Netherlands. After the deadline, the market operator determines the Day-Ahead price
for each hour and contracts the nominated bids of the consumers/producers. In literature,
Virtual Power Plants are often assumed to be a Balancing Responsible Party [11, 9, 12].
BRP’s are obliged to execute the Day-Ahead market schedule and they are held financially
responsible for any deviations from the schedule. These deviations are known as imbalances
and can be defined as the difference between the planned energy consumption/production
in the Day-Ahead market and actual energy exchange with the grid during an Imbalance
Settlement Period (ISP) [13]. An Imbalance Settlement Period consists of 15 minutes. The
sum of all imbalances of BRP’s comprise the system imbalance which the Transmission System
Operator (TSO) needs to eliminate by activating balancing power. BRP’s are incentivized
to minimize their individual imbalances through the imbalance pricing system. A BRP will
be remunerated if its individual imbalances help restore the total system imbalance, however
it is penalized if the imbalances increased the total system imbalance in an ISP [10]. The
remuneration/penalty depends on the imbalance price which is highly volatile and difficult to
predict [10].
Virtual Power Plants with renewable energy resources rely on energy forecasts to determine
the bids on the Day-Ahead market. Because of errors in this Day-Ahead forecast due to
uncertainty of renewable energy production, a deviation between the actual renewable energy
production and the Day-Ahead bid can occur leading to imbalances. With the volatile and
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1-2 Literature review 3

uncertain imbalance price, Virtual Power Plants may risk high imbalance cost and therefore
multiple studies have started focusing on the minimization of imbalance cost or volumes. In
Ref. [11], a scheduling strategy was developed for a Virtual Power Plant with renewable
energy generation, energy storage and controllable loads that operates in the Day-Ahead
market. The anticipated imbalance cost due to Day-Ahead forecast errors were minimized
during the Day-Ahead bidding phase by using stochastic optimization. In Ref. [14], an
optimal bidding strategy for the Day-Ahead market was developed for a Virtual Power Plant
with wind energy, energy storage and controllable loads. In this study, the intraday market
was also used to correct the deviations between the Day-Ahead bid and the actual energy
exchange with the grid. Various studies have applied a control system that can continuously
redispatch flexible resources in the Virtual Power Plant close to real-time in order to minimize
imbalance costs or volumes. A control system known as Model Predictive Control (MPC) is
often utilized to this purpose which relies on the rolling horizon principle. The term rolling
horizon refers to the repeated solving of a time-dependent model to determine control inputs
over a planning horizon, of which only the first input is implemented, and moving the planning
horizon a step forward in time after each solution step. In Ref. [12], a two-staged optimization
was developed for a Virtual Power Plant with wind energy and a biomass CHP. In the first
stage, stochastic optimization is used to calculate the Day-Ahead bids and in the second
phase a Model Predictive Control unit continuously redispatches a biomass plant to minimize
imbalance cost. A similar two-stage optimization was developed in Ref. [15], but in this case
flexible micro-CHP systems were used to minimize balancing cost. In Ref. [13], a Model
Predictive Control unit was developed to minimize imbalances in a Virtual Power Plant by
redispatching controllable loads.

As shown in the references above [13, 11, 14], several types of flexible resources can be in-
tegrated in a Virtual Power Plant portfolio which can be redispatched close to real-time.
These flexible resources include energy storage, flexible generation units and controllable loads
amongst others. Controllable loads can make deliberate changes to their energy consumption
from their regular demand profile which is known as Demand Response (DR). The industrial
sector hosts several processes with the ability to provide demand response [16]. Furthermore,
industrial processes also possess favorable characteristics for implementing demand response
such as a high energy intensity per actor and availability of necessary infrastructure such as
sensors, metering technologies and personal operators [17]. Thus far, research on industrial
demand response in Virtual Power Plants is limited [18, 19, 20]. In Ref. [18], a scheduling
algorithm for a Virtual Power Plant with wind energy, conventional generators, and industrial
loads (iron melting and steel companies) was developed. Mixed Integer Non-Linear Program-
ming was used to schedule the generators and industrial loads such that profits in multiple
energy markets were maximized. In Ref. [19] and Ref. [20], the same Virtual Power Plant
setup as in [18] was used, however in [19] different types of demand response programs were
evaluated and in [20] a risk management study in the case of contingencies was included.

Recently, studies on demand response in the industrial sector have highlighted the importance
of integrating nonlinear dynamics of the industrial process during the scheduling [21, 22, 23,
24]. This is necessary in order to avoid generating load schedules that would result in a
violation of constraints of the industrial process. In Ref. [21], a MPC was developed to
schedule industrial air separation units under time-varying prices such that operational cost
can be minimized. Data-driven, low-order models for the MPC were developed using input-
output data of complex, high fidelity models such that lower computation times could be
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achieved while still including the relevant nonlinear dynamics of the plant. In Ref. [23] the
scheduling of air separation units was examined in more detail with the aim of minimizing
operational costs in the Day-Ahead market and the Californian real-time market. In Ref. [22],
a first-principles model was developed of a chlor-alkali plant which was used in a scheduling
algorithm to minimize operational cost in the Day-Ahead market. Finally, in Ref. [24] input
and output data of the first principles chlor-alkali model of Ref. [22] was used to identify
a data-driven model that could be solved with less computational effort and the model was
used in an optimization to maximize profits in the Day-Ahead and Real-Time market.

1-3 Research goals

Virtual Power Plants can trade in the Day-Ahead market to gain revenue, however as a
Balancing Responsible Party it can risk high balancing cost due to errors in the Day-Ahead
forecast of renewable energy. In order to minimize imbalances, Virtual Power Plants can
integrate resources in the portfolio that can be dispatched near real-time [13, 15, 12] including
flexible industrial processes which can provide demand response [17]. The present research on
demand response in Virtual Power Plants, however, mainly focuses on the residential sector
[13, 11, 14] whilst studies that use demand response provided by industrial processes are
limited [19, 18, 20]. Furthermore, the focus of these limited studies is mainly on economic
factors such as profit maximization in wholesale markets rather than on the technical ability
of these industries to minimize imbalances. In addition, the studies generally apply simplistic
process models in the optimization problem that may neglect important dynamics and could
generate schedules that violate process constraints. Based on the current research it is evident
that a thorough technical analysis of the ability of industrial demand response to minimize
imbalances in Virtual Power Plants is lacking.
Therefore, the research objective of this study is:

Investigating the ability of Industrial Demand Response to Minimize Energy
Imbalances in Virtual Power Plants due to renewable energy forecast errors.

This main research objective will be addressed with the following three research questions:

1. What are the advantages and disadvantages of major processes in the industrial sector
to provide demand response for the minimization of imbalances?

2. What is the capability of the chlor-alkali and hydrogen production process to minimize
energy imbalances in Virtual Power Plants caused by Day-Ahead forecast errors of
renewable energy?

3. What is the effect of important parameters of the control system and the industrial
plants on the minimization of imbalances?

The contribution of the thesis consists of the following:

1. The integration of nonlinear dynamics of industrial processes in the control model of
a Model Predictive Control unit to enable scheduling without violating process con-
straints.
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2. An analysis of the ability of two major chemical industries to minimize energy imbal-
ances of a renewable energy based Virtual Power Plant.

3. An innovative control algorithm that can reschedule industrial loads while limiting the
ramping frequency of the individual production units.

1-4 Research approach

The first research question will be answered by reviewing the literature on demand response
provided by major industrial processes. The processes will be evaluated based on their suit-
ability to operate in a short-term redispatch control system which is necessary for imbalance
minimization. Based on the literature two processes are chosen to be integrated in the Virtual
Power Plant in this thesis, namely the chlor-alkali and hydrogen process, which are realistic
plants operating in the Port of Rotterdam. The second research question will be answered
by modelling and simulating a Virtual Power Plant using open-source software as much as
possible. The Virtual Power Plant consists of renewable energy, the two industrial plants and
a controller based on Model Predictive Control (MPC) that redispatches the industrial plants
to minimize imbalances. The third research question is answered by simulating the Virtual
Power Plant with varying values of relevant parameters of the controller and industrial plants.

1-5 Thesis structure

This thesis is structured as followed: Chapter 1 provides the research topic, literature re-
view, research objectives and research approach. In Chapter 2, the background on Virtual
Power Plants and Model Predictive Control is explained, and literature on industrial demand
response is described. Chapter 3 introduces the setup of the Virtual Power Plant and de-
scribes the modelling of the renewable resources and the chlor-alkali and hydrogen plant in
the Virtual Power Plant. In Chapter 4, the development of the MPC is described which will
minimize the imbalances in the Virtual Power Plant. Chapter 5 presents the results of the
base-case simulation and the effect of varying parameters on the minimization of imbalances.
Finally, in Chapter 6 the conclusion of the thesis will be described and recommendations for
further study are included.
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Chapter 2

Background

2-1 Virtual Power Plants

Virtual Power Plant are distributed energy systems that can coordinate the dispatch of Dis-
tributed Energy Resources (DER) to maximize profits in energy wholesale markets or protect
the grid reliability. These DER are energy technologies connected to the medium- and low-
voltage networks, rather than the high-voltage networks. This section will elaborate on the
concept of the Virtual Power Plant by describing the definition, components and operation
in electricity markets.

2-1-1 Definition

The Virtual Power Plant is still in the development phase and its definition is not yet har-
monized in scientific literature. For instance in Ref. [25], a Virtual Power Plant is defined
as "a cluster of dispersed generation units (either fossil fuel and/or renewable energy based),
flexible loads and storage systems that are grouped to operate as a single entity". In Ref. [26]
a Virtual Power Plant is a "“A portfolio of Distributed Energy Resources, which are connected
by a control system based on information and communication technology (ICT). The VPP
acts as a single visible entity in the power system, is always grid-tied and can be either static
or dynamic". Most of the definitions share that a VPP is an aggregation of distributed energy
resources that are coordinated by a single entity with the goal to provide grid services and/or
make revenue in wholesale markets.

In this thesis, the comprehensive definition by the Fenix project in Europe is used [27]:

"A Virtual Power Plant (VPP) aggregates the capacity of many diverse DERs, it creates a
single operating profile from a composite of the parameters characterizing each DERs and
can incorporate the impact of the network on aggregate DERs output. A VPP is a flexible
representation of a portfolio of DERs that can be used to make contracts in the wholesale
market and to offer services to the system operator"
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Virtual Power Plants have several similarities with microgrids [6]. Microgrids are a set of
electrical loads, generation units and storage units that are connected to the electric grid
by means of a single point of connection and linked by a control system [28]. However,
there are two main differences, namely: 1) Virtual Power Plants are always grid-tied whereas
microgrids can operate in islandic mode, disconnected from the main grid, and 2) Virtual
Power Plants can aggregate DER that are geographically dispersed, whilst in microgrids the
DER are located in the same geographic area [6]. Some other differences have been mentioned
in Ref. [28], namely that the capacity of microgrids is often smaller (KW to several MW)
than that of Virtual Power Plants, and microgrids have a stronger focus on serving local
consumption whereas Virtual Power Plants see consumption as a flexibility resource to be
offered in energy markets.

The definition of Virtual Power Plants often strongly overlaps, if not coincides, with that
of Aggregators. For instance in ref. [29], an aggregator is defined as "a company who acts
as an intermediary between electricity end-users and DER owners and the power system
participants who wish to serve these end-users or exploit the services provided by these
DERs", which does not provide a clear distinction with a Virtual Power Plant. Thus far no
academic work has attempted to either unify or distinguish Aggregators and Virtual Power
Plants, hence scientific literature [30, 31], companies [32] and institutions [33] often use the
terms interchangeably. To remain consistent, this thesis applies the term Virtual Power Plant
and the term Aggregator will not be used further on.

2-1-2 Components

Virtual Power Plants consist of energy resources, namely distributed generation, energy stor-
age and flexible loads, and an Energy Management System [34]. These components are
described briefly below.

• Distributed generation units produce electricity and consist of renewable energy re-
sources and conventional energy sources. Examples of distributed renewable energy
resources are wind, PV and small hydropower systems, whereas examples of conven-
tional energy resources include diesel generators, micro-gas turbines and biodiesel or
biogas generators.

• Energy storage technologies convert power into an energy form that can be stored and
reconverted back to electrical energy. Common examples are flywheels, batteries and
hydrogen storage systems. The storage technologies can have different applications
depending on their technical characteristics such as response rate, energy and power
density, and storage capacity.

• Flexible loads are energy consumers that can make deliberate changes to their consump-
tion pattern, for instance in response to varying prices or financial incentives. Making
deliberate changes to the consumption pattern is known as Demand Response which
will be explained further in Section 2-3.

• The Energy Management System (EMS) is responsible for the scheduling and dispatch
of the Virtual Power Plant energy resources. An EMS can perform multiple functions
such as providing forecasts of energy generation, load consumption and energy prices,
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and coordinating power flow between components. The objectives of the EMS can be
widespread, including maximizing profits, improving the power quality, and minimizing
greenhouse gas emissions.

2-1-3 Electricity markets and imbalances

Virtual Power Plants can participate in various electricity markets to gain revenue. In this
thesis, two markets are considered namely the Day-Ahead and Imbalance market. The time-
line of these markets are shown in Figure 2-1. In the Day-Ahead market, participants can
buy/sell energy for the next day [10]. The energy is traded in hourly products and it should
be produced/consumed at the hour for which the energy has been sold/bought. Every day,
participants bid the minimum/maximum price for which it wants to sell/buy a certain energy
quantity at each hour of the next day before the market deadline. In the Netherlands, this
deadline is at 12:00 CET [10]. After the deadline, the market operator takes all bids into
account and it calculates the market clearing price. If the production/consumption bid of
the market participant is below/above the market clearing price, the bid is nominated and
the participant is required to produce or take-off the amount of energy it has bid in that
particular hour.

Figure 2-1: Day-Ahead and Imbalance market timeline

The imbalance market takes place in real-time and operates with time periods of 15 minutes
which are known as Imbalance Settlement Periods (ISP) [10]. An imbalance is the difference
between the Day-Ahead market bid of a market participant and its actual energy exchanged
with the power system within an ISP [13]. Imbalances can be negative if the market partici-
pant has a shortage, or positive if the participant has a surplus compared to the Day-Ahead
bid. The system imbalance is the net sum of all individual imbalances of market participants
per ISP [13]. To eliminate the system imbalance, the Transmission System Operator (TSO)
needs to activate balancing power thereby ensuring that demand and supply are balanced at
all times.

Participants in the Imbalance Market are known as Balancing Responsible Parties (BRP) [35].
In most countries, every consumer/producer connected to the power system should be part
of a BRP. BRP’s are financially responsible for their imbalances and they are incentivized
to minimize imbalances in their portfolio by means of the imbalance price mechanism [36].
Through this mechanism, a BRP receives an imbalance price if their individual imbalances

Master of Science Thesis R.F.J. Tetteroo



10 Background

helped reduce the system imbalance, however it pays an imbalance price if the individual im-
balances aggravated the system imbalance within an ISP. The imbalance price is determined
during the Imbalance Settlement period and it depends on the cost the TSO made for acti-
vating the balancing power that eliminates the system imbalance [36]. Because the imbalance
price is volatile and difficult to predict, imbalances can be a significant cost for BRP’s.

In between the Imbalance and Day-Ahead market, there is an Intraday market. In the Intra-
day market of the Netherlands, participants can buy/sell energy as quarter hourly products
throughout the day up to 5 minutes before the actual consumption/production time and it
can be used for the correction of the imbalance position of a BRP. The Intraday market is
not taken into account in this thesis due to its low liquidity.

2-1-4 Internal balancing

Literature often assumes a Virtual Power Plant is a single BRP that is financially responsible
for its individual imbalances. An important source of imbalances in Virtual Power Plants are
the errors between the Day-Ahead forecast of renewable energy and the actual production [15].
Therefore, various studies focus on minimizing imbalance volumes or costs in Virtual Power
Plants which can be achieved by redispatching flexible components near real-time. This is
known as internal balancing [15] and a common control method to perform this rescheduling
is Model Predictive Control [15].

2-2 Model Predictive Control

Model Predictive Control is a method to control a process or system while satisfying con-
straints and it is used in a wide range of applications such as chemical processing, indoor
climate regulation and vehicle control. MPC consists of solving an optimization problem at
each time-step to calculate control inputs for a process [37]. To make predictions about the
behaviour of process, the MPC integrates a simplified internal model in the optimization.
Unlike other control approaches, MPC can integrate set-points, specific goals and dynamics
of the system in the control algorithm. Furthermore, a very important advantage of MPC
is the ability to take constraints into account explicitly. In Figure 2-2 a diagram is shown
of a Model Predictive Control unit. The term ’plant’ is often used for the process that is
controlled by the MPC and this term is also used in this thesis. For the internal model of the
MPC, this thesis will adopt the term ’control model’.

A key feature of MPC is the rolling horizon principle. A rolling horizon means that each
time-step the MPC calculates optimal control actions over a certain prediction horizon. Only
the first control input is implemented by the plant after which the MPC shifts a step forward
in time and the optimization is performed again. By using this rolling horizon principle, a
MPC can take into account the most recent predictions and integrate feedback from the plant
to determine the optimal control signals. In Figure 2-3 the rolling horizon principle of a MPC
is shown.

R.F.J. Tetteroo Master of Science Thesis



2-3 Demand Response: a suitability analysis of major industries 11

Figure 2-2: Model Predictive Control scheme

Figure 2-3: Rolling horizon principle in Model Predictive Control

2-3 Demand Response: a suitability analysis of major industries

This section will explain the concept of demand response and provide an analysis of the
suitability of major industries to perform demand response in a short-term redispatch scheme
as well as a discussion on the industries to be integrated in the Virtual Power Plant of this
thesis.
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2-3-1 Definition and Classification

Demand Response can be defined as changes to the electricity consumption of end-use cus-
tomers from their regular consumption profile. It comprises all the intended modifications
meant to adjust the timing/level of instantaneous demand, or to change the total electricity
consumption of end-use customers [38]. Demand response is part of a collection of actions
referred to as Demand Side Management (DSM) [39]. Four types of demand response actions
are possible on the end-use consumer side, of which two examples are shown in Figure 2-4:

Load reduction or increasing refers to the deliberate temporary decrease, or increase, of
the energy consumption of the end-use customer without changing their energy consumption
during other periods [38].

Load shifting refers to moving the energy consumption within time. Load shifting does not
result in lost production for consumers, however costs for the rescheduling may still apply
especially for industrial consumers.

Generation decreasing or increasing is the temporary up- or down regulation of produc-
tion capacity at consumers [38].

Changing the consumed energy carrier is a relatively new type of demand response.
It can be performed by consumers with technologies that can operate flexibly with different
energy carriers (i.e. hybrid boilers that can switch between using electricity or gas to produce
heat) [40].

Figure 2-4: Example of load curtailment and load shifting

Demand Response can be organized in price-based and incentive-based programs. In price-
based programs, participants are exposed to dynamic energy prices that reflect the real-time
cost of electricity [41]. In incentive-based programs, participants receive a monetary reward
for partaking in a demand response program [38]. An incentive-based program known as
Direct Load Control (DLC) is applied in the Virtual Power Plant in this thesis. In DLC
programs, utilities such as Virtual Power Plants can remotely control the energy consumption
of equipment of actors participating in the program.
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2-3-2 Demand Response in the Industrial Sector

The industrial or secondary sector consists of the companies and activities that process raw
materials to develop products which are sold by the tertiary sector to consumers. Industrial
processes have a high technical potential to provide demand response and often have much
of the necessary infrastructure already installed [17]. This section provides an overview of
the advantages and disadvantages of major industries in providing demand response and a
discussion on the industries that will be integrated in the Virtual Power Plant.

Refrigerated Warehouses

Refrigerated warehouses consist of facilities and premises dedicated to store refrigerated prod-
ucts. In the Netherlands, refrigerated warehouses consume around 0.34 PJ [42] and there are
around 45 large refrigerated warehouses with a power consumption above 0.5 MW [43]. Refrig-
erated warehouses can be used for load shedding by turning off cooling equipment or lightning
and for load shifting by pre- or post cooling thereby making use of the high thermal capac-
ity of the products. There are several beneficial characteristics of refrigerated warehouses
related to demand response including the high energy consumption of the sector especially
during peak periods, the limited effect of short-term interruptions of power consumption on
the product quality owing to the high thermal inertia of products and the relatively simple
processes involved in refrigeration [17]. Furthermore, refrigerated warehouses only require a
notification time of 15 minutes, hence they can respond relatively rapidly to demand response
requests [44], and their control systems are suitable for automated demand response programs
[17]. On the other hand, implementing demand response in refrigerated warehouses meets
with various challenges, such as the small temperature band that is allowed in many products
[45] and the difficulty to establish a baseline energy consumption profile [46]. Furthermore,
refrigerated warehouses can require a relatively long time after a demand response event to
return to the desired warehouse temperature [47].

Cement Mills

Cement milling is an energy intensive industry which consists of grinding cement klinker and
combining it with other compounds to produce cement. In the Netherlands, there are two
cement plants with a combined electrical energy consumption of around 478.5 TJ [48]. The
grinding process requires most of the electrical energy consumption, namely 70% of total
electricity consumption in most plants and 90-100% in the Netherlands specifically. Potential
advantages of cement mills for providing demand response include that grinders can be start-
ed/stopped within minutes and the control system of cement plants can be automated which
allows for participating in automated demand response programs [17]. Furthermore, multiple
studies [49, 50] and actual plants [51] have shown cement mills can perform load shifting. On
the other hand, there are some disadvantages as well. Interviews with actual cement plant
owners performed in Ref. [16], indicate that cement milling is mostly considered for load
shedding rather than shifting because of high utilization rates, limited storage capacities and
up/downstream process dependencies. In addition, the grinding process in cement mills is an
on/off process which results in a poor granularity of the demand response energy provided
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[52]. Finally, the grinding process is preferably operated at steady-state and interruptions
should weigh up against start-up/shut-down cost[51].

Metal production industry

Steel manufacturing - Steel manufacturing is highly energy intensive and responsible for nearly
7 percent of the global total carbon dioxide emissions globally [53]. Most energy is used in
the scrap melting process which can be performed by blast or electric arc furnaces [54].
Electric arc furnaces can be used for demand response, but blast furnaces cannot since there
is no electricity consumption. The single steel manufacturing plant in the Netherlands is
located in Ijmuiden (Tata Steel) which consumes around 3% of the total Dutch electricity
consumption [54]. There are some challenges with demand response in steel manufacturing.
Steel manufacturing has a high interdependence of processes making it one of the most difficult
industries to schedule for demand response [17]. Furthermore, most processes run at 100%
capacity and require long start-up and shut-down times. These interruptions can not be
recovered via load shifting and losing production by load shedding is not considered financially
attractive [55]. In the Netherlands, Tata Steel uses blast furnaces which do not rely on
electricity and can therefore not be scheduled for load shedding or shifting [55].

Aluminium production - The main energy consuming process in the aluminium production is
smelting which is an electrolytic process that converts alumina to aluminium [17]. Smelting
of alumina occurs in high-temperature pots onto which a DC current is applied. The current
to individual pots can be finely regulated and also complete pot lines can be turned on/off.
In the Netherlands, nearly all of the electricity for aluminium production is consumed by
the company Aldel. It consumes around 150 MW power at full load and about 6.6 PJ
of electricity per year in total [56]. Aldel is currently operating as a ’virtual’ battery by
providing 15 MW up- and 15 MW down regulation in the ancillary services market [57].
Aluminium production seems a very suitable industry for providing demand response. Firstly,
aluminum production is not a complicated process to schedule, as opposed to many other
industrial processes such as cement production or steel manufacturing [17]. Furthermore,
power consumption of the process can be adjusted within seconds with a high degree of
granularity and with high ramp-rates. Additionally, short-term power interruptions have
limited effects on product quality owing to the high thermal mass of the pots [17]. Also with
new technical developments aluminium production can not only reduce load consumption,
but also increase their consumption [58]. A major disadvantage is the high utilization rate,
therefore load shedding is more commonly considered for aluminium production than load
shifting [59, 16].

Chlor-Alkali process

The chlor-alkali process uses electrolysis to produce chlorine, hydrogen and sodium-hydroxide
(caustic soda). The Netherlands has three chlor-alkali facilities which are located in Rotter-
dam and Delfgauw (Nouryon) and Bergen op Zoom (Sabic) and together they consume around
6.6 PJ of electricity per year [60]. The plant in the Port of Rotterdam is responsible for a con-
siderable power consumption of 200 MW. The chlor-alkali process has several advantageous
features for providing demand response. Firstly, the chlor-alkali process can rapidly respond
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to demand response requests since the current to the electrolysers can be quickly reduced or
increased and it has a high ramp-rate. For instance, ramping from minimum to maximum
power consumption can be achieved within 30 minutes according to [61]. Furthermore, the
chlor-alkali process has potential to perform load shifting by using the intermediate chlorine
storage [22, 24, 62, 63]. However, load shifting does require an overcapacity of electrolysers.
Recently, some chlor-alkali companies are actually installing additional electrolyser capacity
to enable load shifting. For instance, Nouryon is adding production capacity to the Rotterdam
plant such that the chlorine production can be adjusted based on a variable energy supply
[64]. Challenges with the use of the chlor-alkali process for demand response are the high
utilization rate (>80% [16]) which can limit the potential for load shifting. Furthermore, the
chlorine storage size is generally restricted for safety regulations [62]. Although the storage
size could be limited, recently it was discussed that the storage size could be considered larger
if the chlorine is converted to other chemical intermediates [65].

Paper & Pulp industry

The paper & pulp industry comprise the factories involved in the production of paper and
cardboard. In the Netherlands, there are around 20 factories with a total electricity and heat
consumption of 4.7 PJ and 11.9 PJ respectively [66]. One major flexibility potential in pulp
production can be found in the mechanical process known as refining which consumes most
of the electricity. According to ref. [16], advantages of paper & pulp plants for providing
demand response are the high energy consumption per actor and availability of storage tanks
which would allow for load shifting. However, challenges are involving with demand response
in the paper & pulp industry, including the longer ramp-up time and unreliability of start-ups
of refiners whenever the mechanical process has been shut down. Furthermore, paper quality
can deteriorate significantly by operating refiners at partial load. Demand response could
also be provided by installing electric boilers to cover the thermal demand as was shown in
Ref. [67], however the paper & pulp industry currently relies mostly on gas-fired boilers and
CHP systems.

Hydrogen plants

The Dutch Climate Agreement states the ambition to realize a hydrogen electrolysis capacity
of 500 MW by 2025 and 3-4 GW by 2030 which is to be powered by renewable energy
resources [68]. Considering 3000 full-load hours per year [69], this would mean the electricity
consumption of hydrogen electrolysis would be 5.4 PJ in 2025. Currently, there are two types
of market-ready electrolysers for hydrogen production, namely Proton Exchange Membrane
(PEM) and Alkaline electrolysers. Important advantages of PEM over alkaline electrolysis are
the higher power density, increased cell efficiency, and rapid dynamic performance. On the
other hand, alkaline electrolysis is a more established technology and it is still less expensive
[70]. PEM electrolysers are able to ramp up/down to minimum/maximum loads within
seconds, which makes it particularly suitable for integration with renewable energy resources
and providing demand response on a short notice. Challenges with the development of large-
scale hydrogen from electrolysis are the high cost. However, some reports state that costs
may significantly drop owing to economies of scale and technological improvements and prices
for hydrogen from electrolysis might therefore become competitive with fossil-based hydrogen
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by 2030 [71]. Storage of hydrogen is also challenging because of the low density and low
condensation point of gaseous hydrogen. Hydrogen can be stored above ground in domes at
elevated pressure and this is expected to be the main storage method in the initial development
stage of the hydrogen infrastructure in the Netherlands [72]. In the future, when the increased
share of renewable energy will require more hydrogen infrastructure, more large-scale storage
facilities will be required such as empty gas fields and salt caverns.

2-3-3 Discussion on industrial processes for integration in Virtual Power Plant

In this thesis, two industrial processes will be integrated in the Virtual Power Plant to perform
demand response such that energy imbalances can be minimized. Several criteria have been
set-up for deciding on the industrial process:

1. The process can perform load shifting. This thesis aims to follow the approach of
[73] in which chemical plants are used as grid-level batteries by using an overcapacity
of production units and intermediate storage tanks. A benefit of load shifting is that
it limits the need for focusing on the costs since there is no loss of production such as
with load shedding.

2. The process is located within the Port of Rotterdam. The Port of Rotterdam
is the largest industrial cluster in the Netherlands and representative of an industrial
site. Selecting processes within an actual industrial cluster increases the applicability
of this thesis.

3. The process can ramp-up/down power significantly within an ISP. Since im-
balance volumes in Virtual Power Plants are changing every ISP of 15 minutes, the
industrial process needs to be able to ramp up/down significantly during this time
period.

Based on the literature review, which is summarized in Table 4-2, and the above mentioned
criteria, the chlor-alkali process and hydrogen plant were chosen to be integrated in the
Virtual Power Plant. Although the steel industry has a high nominal power consumption,
the interdependence of processes, long response-rate and lack of options for load shifting make
the industry less suitable for dispatching close to real-time. Additionally, there is no steel
plant located in the Port of Rotterdam. The aluminum industry has significant advantages
such as the ability for part-load operation, limited process complexity and high ramp-rates.
Yet, the aluminum plant of Aldel is also not located in the Port of Rotterdam. For cement
mills, the poor granularity of the adjustable power consumption limits the ability to minimize
imbalances in a Virtual Power Plant. In the paper & pulp industry, a major disadvantage is
the longer time for starting-up which would not be suitable for mitigating imbalances that
change every 15 minutes. Furthermore, there can be a negative effect of part-load operation
on the required paper quality. Refrigerated warehouses are suitable candidates for application
in the Virtual Power Plant owing to the fast response rate and potential for load shifting.
However, a major challenge is determining a baseline energy consumption which is outside
the scope of this study.
The chlor-alkali process has a fast-response and high ramp rate. There is also a chlor-alkali
plant of Nouryon located in the Port of Rotterdam which has a high electricity consumption
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(200 MW) and may thereby serve demand response for a large Virtual Power Plant. Further-
more, the Nouryon plant is currently increasing their production capacity to provide demand
response and to keep up production during maintenance, which indicates an overcapacity
of the production units could be assumed. Moreover, there is an intermediate storage tank
present to store the chlorine which allows for load shifting.

Hydrogen plants based on electrolysis also display high ramp rates which allows them to
quickly change their power consumption. Although currently the hydrogen plant develop-
ments in the Port of Rotterdam are in the feasibility study phase, it is the vision to built
around 500 MW of hydrogen electrolysis capacity by 2025 including a 200 MW plant of Shell.
Since these hydrogen plants will be powered by renewable energy, it may be assumed that
an overcapacity of electrolysers will be present. Furthermore, the current plans indicate an
intermediate storage will be available onsite [72] which combined with the overcapacity would
allow for load shifting.
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Chapter 3

Virtual Power Plant

3-1 Virtual Power Plant system

The Virtual Power Plant in this thesis consist of renewable energy resources, two industrial
plants, and a Model Predictive Control unit. The renewable resources are a portfolio of
300 MW PV and 300 MW onshore wind power and the industrial plants are a 203.5 MW
chlor-alkali plant of Nouryon and 193.4 MW hydrogen plant of Shell as shown in Figure 3-1.

Figure 3-1: Virtual Power Plant with renewable energy, an MPC and industrial plants

Several assumptions based on literature are applied to the Virtual Power Plant in this thesis:

• The Virtual Power Plant sells energy on the Day-Ahead market. It is assumed all Day-
Ahead energy bids are accepted since renewable energy is prioritized on merit-order
owing to its low marginal cost [74].
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20 Virtual Power Plant

• The Virtual Power Plant is considered to be a Balancing Responsible Party (BRP)
following [15]. The imbalances of the Virtual Power Plant are defined as the difference
between the Day-Ahead bid and the actual energy exchanged with the grid within an
ISP [13].

• The flexible industrial plants are contracted by the Virtual Power Plant in a Direct
Load Control program [75]. Following the USEF Whitepaper for Aggregators [76], it is
assumed that the Virtual Power Plant can have control over sub-processes rather than
the complete chlor-alkali and hydrogen plant. In this thesis, the Virtual Power Plant
will be able to control 24 chlor-alkali and 24 hydrogen electrolysers, the compressors
and the storage tanks.

• The chlor-alkali and hydrogen plant provide demand response by temporarily increas-
ing/decreasing chlorine and hydrogen production respectively and storing the chemicals
in an intermediate storage. They thereby operate as a grid-level battery as described
in [73, 22]. The demand response energy quantity provided to the Virtual Power Plant
is the difference between the plant’s nominal and actual energy consumption during an
ISP [77].

• A Model Predictive Control unit of the Virtual Power Plant is responsible for adjusting
the energy consumption the industrial plants such that imbalances are minimized while
preventing violation of important process constraints.

The objective of this thesis is to analyse the ability of the chlor-alkali and hydrogen plant
to minimize imbalances caused by the deviation between the Day-Ahead bids and actual
renewable energy generation in a Virtual Power Plant. To this purpose, a Model Predictive
Control (MPC) unit has been developed which will be explained in Chapter 4. The physical
components of the Virtual Power Plant will be accurately represented by using historical data
for the renewable energy resources and detailed first-principles models for the chlor-alkali and
hydrogen plant. The development of these components is described in detail in the following
Sections 3-2 and 3-3.

3-2 Renewable Energy - Day-Ahead forecast and actual production

Imbalances in the Virtual Power Plant portfolio result from the error between the Day-Ahead
forecast and actual production of renewable energy. Following the approach of [15], historical
renewable energy data is used to generate the Day-Ahead error time-series for the Virtual
Power Plant. The data consists of time-series of Day-Ahead forecast and actual renewable
energy generation of PV and onshore wind in 2020 from Belgium which was extracted from
the website of Elia, the Belgium Transmission System Operator [78, 79]. The data-set has a
granularity of 15 minutes which coincides with the length of an Imbalance Settlement Period
(ISP). The Day-Ahead forecast and actual production time-series have been normalized and
scaled to meet the size of a 300 MW solar and 300 MW onshore wind portfolio using the
following formulas [15]:

PP V,V P P (t) =
PP V Data,Elia(t)

NationalPV Capacity
· 300MW (3-1)
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3-2 Renewable Energy - Day-Ahead forecast and actual production 21

PW ind,V P P (t) =
PW indData,Elia(t)

NationalWindCapacity
· 300MW (3-2)

Also, the Day-Ahead forecast data has been averaged at each hour such that the energy
production at each ISP within an hour is equal. This averaging has been performed since
the Day-Ahead market operates with hourly bids and the Transmission System Operator
assumes that the energy production of a BRP per ISP is equal to a quarter of the hourly
bid. By differencing the actual renewable energy production and the Day-Ahead forecast, the
Day-Ahead forecast errors can be calculated as shown with the following formula:

PDA,error(t) = PRE,actual(t)− PRE,DAforecast(t) (3-3)

These Day-Ahead forecast errors will directly result in imbalances in the Virtual Power Plant
unless demand response is provided by the industrial plants.
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Figure 3-2: Renewable energy Day-Ahead forecasts and actual production

The renewable energy time-series used in this thesis are shown in Figure 3-2. Note that
power production (MW) has been converted to energy production per ISP (MWh/ISP) by
multiplying the 15-minute power data by 1

4 . The top-left plot shows the PV Day-Ahead
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22 Virtual Power Plant

energy forecast and actual production of the Virtual Power Plant. The PV production is
higher in spring/summer than in autumn/winter owing to the higher position of the sun
above the horizon which increases the solar irradiation per squared meter. In the top-right
plot, the wind energy forecast and production is shown. The wind energy production is higher
in autumn/winter than in spring/summer. This can be explained by the higher average wind
speeds during the autumn/winter and the lower air temperature which increases the density
of the air passing through the rotor swept area. The bottom-left plot shows the sum of
the PV and onshore wind Day-Ahead energy forecast and actual production of the Virtual
Power Plant. Although there is not a clear trend, it can be seen that somewhat more energy
is produced during February-June, than during July-January. Finally, the bottom-right plot
shows the difference between the total Day-Ahead forecast and actual power production which
are the Day-Ahead forecast errors.

These Day-Ahead forecast errors have been fitted to a probability density distribution func-
tion as shown in Figure 3-3. It is evident from the figure that the Cauchy distribution provides
a good fit. Based on the data, the mean Day-Ahead forecast error is 0.16 MWh/ISP with a
standard deviation of 5.63 MWh. The mean indicates that the positive and negative imbal-
ances over the course of the year cancel each-other out. Finally, the minimum and maximum
Day-Ahead forecast error is -36.13 MWh/ISP and 41.71 MWh/ISP respectively.
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Figure 3-3: Renewable energy forecast errors fitted with a Cauchy probability distribution

There are other options to create Day-Ahead forecast error time-series, such as through devel-
oping prediction models based on ARMA, ARIMA, SARIMA or Neural-Networks. However
the development of prediction models is not a goal in this thesis. Furthermore, the scaled
national data provides a good representation of a Virtual Power Plant portfolio with PV and
onshore wind energy resources that are geographically dispersed.

3-3 Industrial plants

This section describes the modeling of the chlor-alkali and hydrogen plants in the Virtual
Power Plant. The plants have been developed in OpenModelica, which is an open-source
software for modelling, simulation and optimization of dynamic systems. The plants are
high-fidelity, non-linear models that closely represent the actual chlor-alkali and hydrogen
production process. These OpenModelica plants will serve two purposes in this thesis. The
first purpose is to simulate the actual plant response to control signals calculated by the
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3-3 Industrial plants 23

MPC. This can validate the ability of the MPC controller to dispatch complex plants without
violating important process constraints. The second purpose of the plants is to generate
realistic input-output data that is needed for the identification of the control model of the
MPC.

3-3-1 Chlor-Alkali plant

The most important components of a chlor-alkali plant are the electrolysers which produce
chlorine and caustic soda [80]. Currently, the main electrolyser type in the industry is the
membrane electrolyser [81] which is comprised of a stack of individual chlor-alkali cells. The
electrolyser cells contain an anode that is fed with NaCl(aq) and a cathode which is fed with
NaOH(aq). By applying a voltage difference on the cell, the following reactions occur:

Anode 2Cl−(aq) −→ Cl2(g) + 2e−

Cathode 2H2O(l) + 2e− −→ H2(g) + 2OH−(aq)
Total Reaction 2NaCl(aq) + 2H2O(l) −→ Cl2(g) +H2(g) + 2NaOH(aq)

In order to maintain electrical balance in the cell, sodium ions are able to travel through the
membrane from the cathode to the anode. The produced chlorine gas exits the electrolyser
and then goes through a liquification process, which requires a compression step, after which
it is stored in a tank.

Figure 3-4: Components of a chlor-alkali simulator developed in OpenModelica

The next sections describe the modelling and validation of a detailed chlor-alkali simulator
developed in OpenModelica which is based on [22, 82]. The simulator consists of a chlor-alkali
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membrane electrolyser with 160 cells, a compressor and a storage model. The simulators can
be multiplied as many times as desired to match the number of electrolysers in the whole
plant, which is 24 electrolysers in this thesis. Note that the subscript c has been added to
several variables to avoid overlap with the hydrogen simulator described in Section 3-3-2. An
overview of the parameters and variables for the OpenModelica model can be found in Table
A-1 in the Appendix.

Electrolyser - Electrochemical model

The voltage in a chlor-alkali cell consists of three components, namely the thermodynamic,
kinetic and ohmic voltage [22].

Vcell,c = Vequ,c + Vact,c + Vohm,c (3-4)

The thermodynamic voltage, or equilibrium voltage, is described with the Nernst equation
which calculates the reduction potential of an electrochemical reaction using the standard
electrode potential, temperature and activities of the chemical compounds [82, 80]:

Vequ,c = Vrev,c + R · Tc

2 · F · α

ln

√
P ano

Cl2

Cano
Cl

+ 2.302 · (14 + log (Ccat
OH))

 (3-5)

where, Vequ,c is the equilibrium voltage, Vrev,c is the reversible voltage, R is the universal gas
constant, Tc is the cell temperature, F is the Faraday constant, α is a multiplication factor,
P ano

Cl2
is the partial pressure of gaseous chlorine and Cano

Cl is the concentration of chlorine ions
in the anode and Ccat

OH is the concentration of hydroxide ions in the cathode.

The kinetic or activation voltage results from a resistance to the kinetics of the electrochemical
reactions in the anode and cathode [80]:

Vact,c = 0.03 ·
(

log Ic

Ae,c
− log (12)

)
+ 0.05 ·

(
log Ic

Ae,c
− log (30)

)
(3-6)

where, Vact,c is the kinetic or activation voltage, Ic is the current through the electrolyser cell
and Ae,c is the surface area of the electrolyser cell.

The ohmic voltage Vohm,c is caused by the resistance across the electrolyte, the separator and
cell hardware, and is it described with the following equation [22, 83]:

Vohm,c = Ic ·
2.6125 · 10−4 − 1.75 · 10−6(Tc − 273)

Ae,c
(3-7)

Electrolyser - Material balance model

The production of H2 and Cl2 in the chlor-alkali electrolyser stack is described with Faraday’s
law:
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Ṅ cat,out
H2,c = Ṅano,out

Cl2
= ηF ·Ncells,c · Ic

2 · F (3-8)

The molar flows Ṅano,out
Cl2

and Ṅ cat,out
H2,c indicate the total production of chlorine and hydrogen

of an electrolyser stack comprising Ncells,c cells [22]. Under the operating temperature of the
chlor-alkali electrolysers in this thesis there is no build-up of gas in the cell due to the low
solubility of H2 and Cl2 [84].

The mass balance of chloride ions in the anode is described by [22]:

dnano
cl

dt
= Cano,in

NaCl · V̇in − Cano
NaCl · V̇ − 2 · ṅano,out

Cl2
(3-9)

where, nano
Cl is the amount of moles of Cl−1 ions in the anolyte, Cano,in

NaCl is the concentration of
NaCl in the inlet flow ˙Vin, Cano

NaCl is the concentration of NaCl in the outflow V̇ , and ṅano,out
Cl2

is
the molar production of Cl2(g). The number 2 in front indicates that per mole Cl2 produced,
two moles of Cl−1 ions are consumed.

The hydroxide ion balance in the cathode is governed by:

dncat
OH

dt
= Ccat,in

NaOH · V̇in − Ccat
NaOH · V̇ + 2 · ṅano,out

Cl2
(3-10)

where, ncat
OH is the amount of moles of OH−1 in the catholyte, Ccat,in

NaOH is the concentration of
NaOH in the inlet flow V̇in and Ccat

NaOH is the concentration of NaOH in the outlet flow V̇ .
The last part of the equation, 2ṅano,out

Cl2
, indicates that per mole of Cl2 produced, two moles

of OH−1 ions are produced.

The water balance equations for the anode and cathode compartment are as followed [22]:

dnano
H2O

dt
= (55.56·103−CNaCl

ano,in)·V̇in−V̇ ·
nano

H2O

V
+DH2O ·Ae,c

δV
(ncat

H2O−nano
H2O)−0.6·ṅano,out

Cl2
(3-11)

dncat
H2O

dt
= (55.56 · 103−CNaOH

cat,in ) · V̇in− V̇ ·
ncat

H2O

V
− DH2O ·Ae,c

δV
· (ncat

H2O −nano
H2O)− 2.3 · ṅano,out

Cl2

(3-12)

where nano
H2O and ncat

H2O are the number of moles of H2O in the anolyte and catholyte respec-
tively, DH2O is the diffusivity of water molecules across the membrane, Ae,c is the electrode
surface area of the cell, δV is the membrane thickness. At the anode, the −0.6 · ṅano,out

Cl2
indicates that 0.6 moles of water evaporates per produced mole of Cl2. At the cathode, the
-2.3 ṅano,out

Cl2
consists of the evaporation of 0.3 moles of water and the consumption of 2 moles

of water per mol of Cl2 produced.

The flow rates into and out of the cell are the same (V̇in = V̇ ), hence the cell volume V
remains constant.

Master of Science Thesis R.F.J. Tetteroo



26 Virtual Power Plant

Electrolyser - Thermal model

The thermal model of the electrolyser is described with a lumped heat capacity equation,
since the production of gaseous Cl2 and H2 can provide enough mixing to assume a uniform
temperature in the electrolyser [22]:

Ncells,c ·nt ·Cpt ·
dTc

dt
= Ncells,c ·(ṅin

t ·Cin
pt,c ·Tin,c− ṅout

t ·Cpt,c ·Tc)−Q̇rxn−Q̇evp−Q̇loss,c +Q̇gen,c

(3-13)
where nt is the total number of moles inside the electrolyser and Cpt,c and Cin

pt,c are the lumped
heat capacities of the cell and inlet flow rate respectively.
The part between brackets is the sensible heat loss due to electrolyte flowing in and out of
the cell. The heat capacities Cpt,c and Cin

pt,c are calculated by summing the contribution of
each species [22]:

Cpt,c =
∑

i

xi · Cp,i (3-14)

where xi indicates the mole fraction of species i, and Cp,i is the heat capacity of species i.
Q̇rxn refers to the heat generated because of the chemical reactions:

Q̇rxn = Ṅano,out
Cl2

·∆Hrxn (3-15)

where Ṅano,out
Cl2

refers to the production of chlorine gas and ∆Hrxn indicates the enthalpy of
the reaction.
The term Q̇evp integrates the heat loss due to gases leaving the cell. The major contribution
to this heat loss is the evaporation of water, which can be described with the following formula
[22]:

Q̇evp = 0.9 · Ṅano,out
Cl2

·∆Hvap (3-16)

where, ∆Hvap is the latent heat loss per mol of water. The value of 0.9 is the sum of the
water evaporating from the anode (0.6 mol) and cathode (0.3 mol).
The electrolyser stack also experiences a heat loss to the environment, because of the difference
between the stack and the ambient temperature. This heat loss is captured by the component
Q̇loss,c as follows [22]:

Q̇loss,c = 1
Rth,c

· (Tc − Tamb) (3-17)

where Rth,c the thermal resistance of the stack of cells and Tamb is the ambient temperature.
The heat generation due to a current flowing through an electrolyser with resistance is de-
scribed with Q̇gen,c. This heat generation component is equal to the electrical power input of
the chlor-alkali electrolyser.

Q̇gen,c = Pc = Ncells,c · Vcell,c · Ic (3-18)

where, Pc is the power consumed by the electrolyser.
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Compressor

A compressor increases the pressure of the chlorine gas from atmopheric pressure to 0.3 MPa
during the liquification process [22]. The expression that describes how the temperature of
the chlorine gas depends on the initial temperature, and initial and final pressure is shown
below:

Tf,c = Ti,c

[
Pf,c

Pi,c

]nc−1
nc

(3-19)

where Ti,c and Tf,c are the initial temperature before compression and final temperature after
compression respectively, Pi,c and Pf,c are the pressure before and after compression respective
and nc is the polytropic exponent. By assuming the chlorine gas behaves as an ideal gas, the
work that needs to be performed to achieve the compression is [22]:

W th
comp,c = R · Ti,c ·

nc

nc − 1

([
Pf,c

Pi,c

nc−1
nc

]
− 1

)
(3-20)

where W th
comp,c is the theoretical energy required for the compression of a mol of produced

chlorine gas andR is the universal gas constant. The electrical input needed for the compressor
can be found by dividing the theoretical work with the polytropic efficiency:

W elec
comp,c =

W th
comp,c

ηpc
(3-21)

where W elec
comp,c is the actual energy required for the compression of a mol of Cl2 and ηpc is

the polytropic efficiency. The polytropic efficiency can be calculated using the polytropic
exponent n and the adiabatic exponent k.

ηpc = (k − 1)/k
(nc − 1)/nc

(3-22)

where the adiabatic exponent of diatomic gases k is calculated as follows:

k = Cp

Cv
= 1.4 (3-23)

Storage model

The storage model can be described by a simple mass balance using the following equation
[22]:

dMs,c

dt
= Ṁin,c − Ṁout,c (3-24)

where Ms,c is the total amount of moles of Cl2 stored in the pressured storage, and Ṁin,c and
Ṁout,c are the molar flow rates of Cl2 in and out of the storage. A constant molar outflow is
assumed, which is equal to the Cl2 production at nominal production.
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Validation

The OpenModelica simulator in this thesis was validated with the chlor-alkali electrolyser that
was developed in Ref. [22, 82] in the dynamic modelling software gProms. In Figure 3-5, the
effect of current density step from 0.4 to 0.5 A

cm2 on the cell voltage, temperature and NaCl
concentration is shown. After the current density step, the cell voltage rises instantaneously
because the current in the ohmic voltage Vohm,c equation is immediately increased. Then
the cell voltages reduces slightly, since the temperature rise in the cell causes the ohmic
resistance to drop. Furthermore, the step in current density increases the consumption of
Cl− ions thereby lowering the concentration of NaCl in the anolyte until a new equilibrium
is reached. Moreover, when increasing the current density the heat production increases
which causes the cell temperature to rise until there is a new temperature equilibrium. The
OpenModelica model in this thesis coincides well with the model developed in gProms by [82].
This is because several improvements to the model in literature of [22] were implemented in
the OpenModelica model in this thesis. These improvements were suggested to and adopted
by the authors of Ref. [22] after which they published a corrigendum with the improvements
in [82]. During further correspondence, the simulation results of their updated gProms model
and the OpenModelica model of this thesis were compared which showed both models are
completely in agreement.

0 1 2 3 4
Time (hours)

0.40

0.42

0.44

0.46

0.48

0.50

Cu
rre

nt
 d

en
sit

y 
(A

/c
m

2)

Current density

Model literature
OpenModelica model thesis

0 1 2 3 4
Time (hours)

3.06

3.08

3.10

3.12

3.14

3.16

Vo
lta

ge
 (V

)

Voltage

Model literature
OpenModelica model thesis

0 1 2 3 4
Time (hours)

205

210

215

220

Co
nc

en
tra

tio
n 

(g
/l)

Concentration NaCl
Model literature
OpenModelica model thesis

0 1 2 3 4
Time (hours)

87

88

89

90

91

92

93

Te
m

pe
ra

tu
re

 (C
)

Temperature

Model literature
OpenModelica model thesis

Figure 3-5: Responses of the OpenModelica model and literature model to a step increase of
current density from 0.4 to 0.5 A

cm2
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When performing a steady state simulation at the rated current density of 0.6 A
cm2 and a cell

temperature of 90 °C, it was shown that the power consumption per electrolyser is 8.48MW .
Hence for a plant with 24 electrolysers this amounts to 203.5 MW which well represents the
200 MW chlor-alkali plant of Nouryon. The compressor power needed for the whole plant is
1.1 MW which is less than 0.6% of the total plant power consumption. For simplification,
the power consumption of the compressor model has been omitted in the simulation study in
this thesis.

3-3-2 Hydrogen plant

The hydrogen plant in this thesis consists of twenty-four Proton Exchange Membrane (PEM)
electrolysers, a compressor and a storage unit. The electrolyser is based on a 46 KW PEM
electrolyser that was experimentally tested and modeled in [85] and [86]. This is a high
pressure electrolyser with 60 PEM cells in series each with a cell area of 290 cm2. The
reactions taking place in a PEM electrolyser resulting from an applied voltage difference are
as followed:

Anode H2O(l) −→ 2H+ + 1
2O2(g) + 2e−

Cathode 2H+(aq) + 2e− −→ H2(g)

Total Reaction H2O(l) −→ H2(g) + 1
2O2(g)

After production, the hydrogen at the outlet of the PEM electrolysers is compressed to 100
bar to allow for above-ground storage [87]. Since the 46 KW PEM electrolyser has a much
smaller capacity than the chlor-alkali electrolyser, it is assumed that one hydrogen electrolyser
unit in this thesis consists of a series of 160 x 46 KW PEM electrolysers as shown in Figure
3-6 below.

Figure 3-6: Components of hydrogen electrolyser simulator in OpenModelica
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The following section describes the PEM electrolyser simulator developed in OpenModelica,
which consists of 160 x 46 KW high pressure PEM electrolysers in series, a compressor and a
storage unit. The simulator can be multiplied 24 times to represent the whole hydrogen plant.
An overview of the parameters and variables for the OpenModelica model can be found in
Table A-2 in the Appendix.

Electrolyser - Electrochemical model

The voltage model of the PEM cell is tripartite and consists of the open-circuit, activation
and ohmic voltage [85, 86].

Vcell,h = Vocv,h + Vact,h + Vohm,h (3-25)

The open circuit voltage can be described by using the Nernst equation [86]:

Vocv,h = Vrev,h + R · Th

2 · F ln (
ppH2 ṗp

0.5
O2

ppH2O
) (3-26)

where Vocv,h is the open circuit voltage, Vrev,h is the reversible voltage, R is the universal gas
constant, Th is the cell temperature, F is the Faraday constant, ppH2 , ppO2 and ppH2O are
the partial pressures of H2, O2 and H2O respectively. The reversible voltage is modeled using
the following empirical equation [86]:

Vrev,h = Vstd,h − 0.0009(Th − Tstd) (3-27)

where Vstd is the reversible voltage at standard conditions and Tstd is the temperature at
standard conditions which is 298.15 K.

The activation or kinetic voltage is the voltage required for the electrochemical reaction to
start. The contribution from the anode is most important and has been modeled as follows
[86]:

Vact,h = R · Th

2 · αano · F
· asinh( jdens

2 · j0,an
) (3-28)

where αano is an experimentally determined value, F is the Faraday constant, jdens is the
current density and j0,an is the exchange current density. The exchange current density is the
current density in the absence of net electrolysis and at zero overpotential, and it is described
as followed:

j0,an = j0,an,std · exp ·
(
−Eexc

R
·
( 1
Th
− 1
Tstd

))
(3-29)

where, j0,an,std is the exchange current density at standard conditions and Eexc is the activa-
tion energy required for electron transport in the anode.

The ohmic voltage results from the resistance to ion flow in the PEM cell and can be described
by [85, 86]:
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Vohm,h = Rmem · jdens (3-30)

where, Vohm,h is the ohmic overpotential and Rmem is the cell membrane resistance. The
membrane resistance can be described with the following formula:

Rmem = 1
σmem

· δmem (3-31)

where, σmem is the membrane conductivity and δmem [m] is the membrane thickness. The
membrane conductivity describes the degree of permeability of ions through the membrane
and it can be calculated with the following formula:

σmem = σmem,std · exp
(
Epro

R

( 1
Th
− 1
Tstd

))
(3-32)

where σmem,std is the membrane conductivity at standard conditions and Epro is the activation
energy needed for proton transport in the membrane.

Electrolyser - Mass flow model

The production rates of hydrogen and oxygen is governed by Faraday’s Law, and they can be
modelled as followed [85, 86]:

ṄH2,h = Ncells,h · Ih

2 · F · ηf (3-33)

ṄO2 = Ncells,h · Ih

4 · F · ηf (3-34)

ṄH2O = Ncells,h · Ih

2 · F · ηf (3-35)

where ṄH2,h, ṄO2 and ṄH2O are the molar production rates of H2 and O2 respectively, Ncells,h

is the amount of cells in a 46 KW PEM electrolyser stack and ηf is the Faraday efficiency.
The value of 2, 4 and 2 in the equations above indicate the number of electrons needed for
the production of a mol of H2, O2 and H2O.

Electrolyser - Pressure model

The water vapour exerts a pressure on the PEM cell which is calculated with the following
equation [85, 86]:

ppH2O = 6.1078 · 10−3 · exp
(

17.2694 · Th − 273.15
Th − 34.85

)
(3-36)
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where the ppH2O is the partial pressure of water vapour. Under the assumption of ideal gas
behaviour, the partial pressures of H2 and O2 can be derived using Dalton’s law of partial
pressures [86]:

ppH2 = pcat − ppH2O (3-37)

ppH2 = pano − ppH2O (3-38)

where ppH2 and ppO2 are the partial pressures of H2 and O2 respectively, and pcat and pano

are the partial pressures of H2 and O2 at the outlet respectively. A negative pressure gradient
of 1 bar from cathode to anode is implemented in order to reduce stress on the membrane
[86].

Electrolyser - Thermal model

The thermal model of the electrolyser can be described by an energy balance equation using
a lumped capacitance model [85, 86]:

Ns,h · Cpt,h ·
dTh

dt
= Ns,h · (Q̇gen,h + Q̇pump,loss − Q̇cool − Q̇loss,h −

∑
j

ṅj ·∆hj) (3-39)

where Ns,h is the amount of 46 KW PEM electrolysers in series, Cpt,h is the lumped thermal
capacity of the 46 KW PEM electrolyser system and Th is the operating temperature of the
electrolyser stack.

The electrolysis heat generation Q̇gen,h is the heat generated due to operating at a potential
above the thermoneutral potential [86]:

Q̇gen,h = (Vcell,h − Vtn) · Ih ·Ncells,h (3-40)

where Vcell,h is the cell voltage, Vtn is the thermoneutral voltage, Ih is the current across the
electrodes of the PEM electrolyser stack and Ncells,h is the number of cells in a 46 KW PEM
electrolyser stack.

In the study of [85] it was found that the pump that supplies the electrolyser with water was a
source of heat. Therefore, Q̇pump,loss is the heat flow from the pump towards the electrolyser.

Q̇pump,loss = Q̇elec · ηpump (3-41)

where, Q̇pump,loss is the heat transferred to the electrolyser due to the pump operation, Q̇elec

is the electrical input to the water pump, and ηpump is the electrical efficiency of the pump.

Q̇cool refers to the heat flow that is removed from the electrolyser from the cooling system.
The modelling of the cooling system is outside the scope of this thesis and as in [86] it is
assumed that Q̇cool can attain a range of values.
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The heat loss to the ambient Q̇loss,h is due to the difference between the ambient temperature
and operating temperature of the electrolyser [85, 86]:

Q̇loss,h = 1
Rth,h

· (Th − Tamb) (3-42)

where Qloss,h is the heat loss to the environment, Rth is the thermal resistance of the elec-
trolyser stack and Tstd is the temperature at standard conditions.

The final term indicates the enthalply that is removed from the system due to the produced
H2 and O2 that leaves the electrolyser [85, 86]:

∑
j

Ṅj ·∆hj = ṄH2,h · Cp,m,H2 · (Th − Tamb) + ṄO2 · Cp,m,O2 · (Th − Tamb) (3-43)

where, ṄH2,h and ṄO2 refer to the molar production rate of H2 and O2 of a 46 KW PEM
electrolyser.

The heat capacities of H2 and O2 depend on the operating temperature and can be described
with two empirical formulas:

Cp,m,H2 = (29.11− 1.92 · 10−3 · Th + 4.0 · 10−6 · T 2
h − 8.7 · 10−10 · T 3

h ) (3-44)

Cp,m,O2 = (25.48 + 1.52 · 10−2 · Th − 7.16 · 10−6 · T 2
h + 1.31 · 10−9 · T 3

h ) (3-45)

where Cp,m,H2 and Cp,m,O2 is the heat capacity of H2 and O2 gas respectively.

Compressor model

A single stage centrifugal compressor is used to increase the pressure of the hydrogen gas
from 35 to 100 bar which is generally needed for large-scale above ground storage [87]. The
compressor model equations used for the chlor-alkali plant have been applied in this section
[22]:

W th
comp,h = R · Ti,h

nh

nh − 1 ·

Pf

Pi

nh−1
nh

− 1

 (3-46)

W elec
comp,h =

W th
comp,h

ηp,h
(3-47)

ηp,h = (k − 1)/k
(nh − 1)/nh

(3-48)

k = Cp

Cv
= 1.4 (3-49)

Master of Science Thesis R.F.J. Tetteroo



34 Virtual Power Plant

where W th
comp,h is the theoretical energy required for the compression of a mol of produced

hydrogen, W elec
comp,h is the actual energy required for the compression of a mol of H2, R is the

universal gas constant, ηp,h is the polytropic efficiency and k and nh are the polytropic and
adiabatic exponent respectively.

Storage model

The storage model can be described by a simple mass balance using the following equation:

dMs,h

dt
= Ṁin,h − Ṁout,h (3-50)

where Ms,h is the total amount of moles of H2 stored in the pressured tank, and Ṁin,h and
Ṁout,h are the molar flow rates of H2 in and out of the storage. A constant molar outflow is
assumed, which is equal to the H2 production at nominal conditions.

Validation

The hydrogen plant developed in OpenModelica in this thesis is validated with the experi-
mental data found in ref. [85] and the dynamic model developed in [86] of the high pressure
46 KW PEM electrolyser. In the left graph of Figure 3-7, the polarization curve of the PEM
electrolyser is shown which relates the cell voltage to the applied current density. A typical
shape of the I-V curve can be seen and the experimental data of [85] coincides well with the
model developed in OpenModelica. Furthermore, on the right plot the thermal response of
the electrolyser developed in literature [86] and the OpenModelica model developed in this
thesis to the application of a constant current of 400 A is shown. Following the procedure
in [86], the temperature is allowed to rise from a cold start at 25 °C to 55.8 °C after which
a cooling load of 6911 W per 46 KW electrolyser is applied. A good agreement between the
temperature transient of the model in literature and the OpenModelica simulator can again
be seen.
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Figure 3-7: Responses of thesis and literature model to step increase of current density
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At a current density of 1.6 A
cm2 , which is considered the rated current density in this thesis,

and an electrolyser temperature of 55 °C, the power consumption of the hydrogen plant
with its twenty-four hydrogen electrolysers is 193.4 MW. This closely represents the power
consumption of the hydrogen plant that will be developed in the Port of Rotterdam by Shell
of 200 MW. The rated power consumption per large-scale hydrogen electrolyser is then 8.08
MW. The compressor power of the plant is 0.91 MW which is only around 0.5% of the total
plant’s power consumption. For simplification, the power consumption of the compressor
model has been omitted in the simulation study.
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Chapter 4

Model Predictive Control for
Imbalance Minimization

4-1 Virtual Power Plant operation

The daily operation of the Virtual Power Plant in this thesis consists of a Day-Ahead bidding
phase and an Intraday redispatch phase during which imbalances are minimized (see Figure
4-1). The focus of this study is on the Intraday redispatch phase for which a Model Predictive
Control (MPC) unit has been developed.

Figure 4-1: Energy Management System with a Day-Ahead and intraday redispatch phase

The operation of the Virtual Power Plant can be explained as follows, starting with the
Intraday redispatch phase:
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1. Each time step, the MPC integrates the current states of the plants, which are the
cell temperature of the electrolysers and the hydrogen/chlorine storage levels, into the
control model.

2. The MPC predicts the actual renewable energy production, QRE,act[t:t+N], by reading
the time-series file developed in Chapter 3 and compares it to the Day-Ahead bids,
QDA,bids[t:t+N], to generate the imbalance prediction, Qimb[t:t+N], over the prediction
horizon N.

3. The MPC performs an optimization to calculate the control inputs for the electrolysers
which minimize the imbalances Qimb[t:t+N] while respecting constraints of the unit.
The control inputs of the first time step are sent to the industrial plants and consists of
a power set-point and a cooling input for the electrolyser.

4. The simulators of the electrolysers developed in Chapter 4 implement the control inputs
and simulate the time step, hence the time changes from t to t + 1. The output of the
plant simulators consists of the temperatures of the hydrogen/chlor-alkali electrolysers
and the hydrogen/chlorine storage levels at t + 1.

5. The cell temperatures simulated by the plant and predicted by the MPC are sent to a
state estimator. The state estimator uses the error between the simulated and predicted
temperature to calculate a new state vector that represents temperature in the MPC.

6. Finally, the state vectors that represent the cell temperature and the storage levels at t
+ 1 are sent to the MPC.

Every day at 12:00 CET, the MPC loop is interrupted for the Day-Ahead bidding phase in
which the bids for the Day-Ahead market are generated. The bids are determined by the Day-
Ahead forecast of renewable energy production and a correction term which is implemented
to ensure the storage levels do not keep operating at their limits over time. The Day-Ahead
bidding procedure consists of the following steps:

1. At 12:00 CET, the Virtual Power Plant records the expected position of the hydrogen
and chlorine storage level at t = 12:00+N and calculates the total energy ∆Qstor,tot that
would need to be bought/sold in the Day-Ahead market to return the storage levels back
to 50%.

2. A Day-Ahead optimization is performed to sell ∆Qstor,tot during times of high prices in
case there is a surplus of chemicals in the storage, and buy ∆Qstor,tot during times of low
prices if tanks are in a deficit compared to the midway level. The prices are historical
Day-Ahead prices of 2020 in Belgium obtained from ENTSO-E Transparency and these
can be found in Figure A-1 in the Appendix [88]. The additional energy bought or sold
on the Day-Ahead market at each hour is QDA,stor[0.00:24.00].

3. A Day-Ahead forecast of the renewable energy portfolio, QRE,DA[0.00:24.00], is per-
formed to which the QDA,stor[0.00:24.00] of the previous step is added/subtracted to
produce the final QDA,bid[0.00:24.00]. This Day-Ahead forecast is read from the time-
series file developed in Chapter 3.
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4. These final Day-Ahead bids QDA,bid[0.00:24.00] are sent to the MPC and provide the
reference trajectory of the next day.

This simulation loop has been developed in Python. To this purpose, the Day-Ahead forecast
and actual renewable energy production time-series developed in Chapter 3 were imported
using Pandas, a library for data analysis and manipulation. Furthermore, the MPC and Day-
Ahead optimization were developed in Pyomo which is a Python package for formulating and
analysing optimization problems. Finally to simulate the industrial plants, the OpenModel-
ica simulators were converted to Functional Mock-up Units (FMU). These FMU’s could be
imported and simulated in Python using the FMPy library.

4-2 Model Predictive Control development

4-2-1 Control model development

MPC requires an internal model of the industrial plants, which is referred to in this thesis
as a control model. The integration of process dynamics in the control model of chemical
plants is crucial to avoid generating schedules that would violate process constraints [89].
Although detailed first principles models can be used, such as the OpenModelica simulators,
these are highly nonlinear and contain a large amount of irrelevant variables for scheduling.
Furthermore, the resulting nonlinear optimization problem (NLP) can be intractable within
a scheduling slot or produce sub-optimal solutions [24].

4-2-2 Hammerstein-Wiener model for nonlinear dynamics

In Ref. [24, 90, 91], Hammerstein-Wiener models are proposed to describe nonlinear dynam-
ics. A Hammerstein-Wiener model consists of a linear dynamic block sandwiched between a
static nonlinear input and output block (see Figure 4-2). The sequential block structure of
Hammerstein-Wiener models provides several benefits including the opportunity to use prior
knowledge of the system, the high accuracy of the models and the ease of development which
are convenient aspects for control purposes [92]. Hammerstein-Wiener models can be identi-
fied using input-output data of real plants, or simulators thereof. The nonlinear blocks can
be described with various functions such as polynomials and piecewise linear equations. The
benefit of piecewise linear functions is that it can allow the optimization problem to convert
into a Mixed-Integer Linear Problem (MILP) which can be solved with less computational
effort and towards a global optimum.

Constraints can be put on the ’inner’ input and output variables, v(t) and w(t), rather than
the ’real’ input and output variables, u(t) and y(t), which can reduce computation time [24].
Furthermore, in case an input (or output) nonlinear block is monotonic, i.e. continuously
increasing or decreasing, it is not part of an important equation in the optimization function
and the input (or output) variable is bounded, i.e. u(t) = [umin, umax], the non-linearity can
be effectively removed from the optimization by bounding the ’inner’ input (output) variable,
i.e. v(t) = [F (umin), F (umax)] [24, 90]. This significantly reduces the optimization problem
complexity and improves the computation time. Here, F () refers to the piecewise linear
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Figure 4-2: General structure of Hammerstein-Wiener model

function of an input nonlinear block. For a thorough explanation on the parameterization
and replacement of ’real’ and ’inner’ variables in Hammerstein-Wiener models, the reader is
recommended to read [91].

To avoid unnecessarily complicating the MPC, only a subset of the variables of the full-order
model or the actual plant need to be integrated in the control model. These are process
variables that: 1) are included in the objective function, and 2) can violate constraints during
transitions, such as temperature for instance [24].

Chlor-Alkali - Cell Temperature & Current Density

The nonlinear dynamics of the chlor-alkali plant considered in this thesis are that of the
electrolyser temperature and current density. The electrolyser temperature is an output which
should remain between 85-90 °C and it depends on two inputs namely power consumption
PCl2 and inlet temperature Tin [24]. The inlet temperature range in chlor-alkali plants is
commonly between 70-80 °C [80]. The power input range at which the electrolyser operates
could be determined by simulating the OpenModelica model using a current density input
between 0.3-0.6 °C which is a regular operating range for membrane chlor alkali electrolysers
[22]. This resulted in a power consumption between 3.81-8.50 MW per electrolyser, which is
in good agreement with the power consumption range of the chlor-alkali model developed in
[22].

With the range of the inputs and output known, an identification and validation set was
created each consisting of 1445 step responses with a duration of 3.75 h which is enough time
for electrolyser temperature to completely reach equilibrium. Random values for the input
variable PCl2 and Tin within their respective range were chosen, but the combination always
resulted in an electrolyser temperature, TCl2 , within 85-90 °C. A subset of the identification
data-set is shown in Figure 4-7.

Matlab System Identification was used to identify the Hammerstein-Wiener models, as in
[91, 24, 90], due to the lack of open-sources options. Piecewise functions were chosen to
represent the nonlinear blocks such that the optimization problem turns into a Mixed Integer
Linear Problem as in [90] whereas the linear block was represented by a transfer function
which was converted to a state-space representation after the identification procedure. The
standard transfer function setting in Matlab with 3 poles and 2 zeros was used as varying this
setting did not improve the fit significantly. Some important remarks about the nonlinear
blocks:
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• PCl2 - the ’real’ power input cannot be removed from the control model as it is necessary
for calculating various equations such as the power balance [24]. Hence, the aim was to
identify a nonlinear block with limited breakpoints to reduce the binary variables.

• Tin and TCl2 - The ’real’ inlet temperature and cell temperature can be removed from
the control model as they are not needed in another equation and therefore they can
be replaced by bounds on the ’inner’ variables only [91]. The number of break-points
is not important since the piecewise function is not part of the control model, but to
avoid the need for binary variables completely it was aimed to identify a monotonically
increasing/decreasing piecewise function.
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Figure 4-3: Sub-set of input-output data for the identification of the chlor-alkali temperature
model

The final Hammerstein Wiener model is described below. For the input nonlinear block for
PCl2(t), a piecewise linear function with a single breakpoint was identified:

vpower,Cl2(t) =
{

2.80 · (PCl2(t)− 3.52)− 82.97 PCl2(t) ≤ 6.18[MW ]
3.33 · (PCl2(t)− 6.18)− 75.5 PCl2(t) ≥ 6.18[MW ]

(4-1)

where vpower,Cl2(t) is the ’inner’ power input. A nonlinear input block for inlet temperature
Tin was not necessary since this only marginally improved the fit.
The discrete linear state-space block comprises 6 state variables where it should be noted that
the sampling time of the state space model, ∆t, comprises an ISP (15 min):

~xCl2(t+ 1) = ACl2 · ~xCl2(t) +BCl2 · ~uCl2(t) (4-2)

wT,Cl2(t) = CCl2 · ~xCl2(t) (4-3)

where ~xCl2(t) is the state vector consisting of [x1Cl2
, x2Cl2

, x3Cl2
, x4Cl2

, x5Cl2
, x6Cl2

]T , ~uCl2(t)
is the input vector [vpower,Cl2(t), Tin(t)] which consists of the ’inner’ control input for power
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and the ’real’ control input for inlet temperature, and wT,Cl2(t) is the ’inner’ output variable
of electrolyser temperature. ACl2 is the state matrix, BCl2 is the input matrix, and CCl2 is
the output matrix which are shown in Section A-3 in the Appendix.
The nonlinear output block for TCl2(t) could be described with a piecewise linear function
with one break-point:

TCl2(t) =
{

0.22 · wT,Cl2(t) + 87.87 wT,Cl2(t) ≤ 5.00
0.22 · (wT,Cl2(t)− 5.00) + 88.98 wT,Cl2(t) ≥ 5.00

(4-4)

This piecewise function is monotonic, hence the ’real’ temperature can be ommitted from
the control model and replaced with bounds on the ’inner’ temperature without needing
additional binary variables [24].
The left plot in Figure 4-7 shows the temperature response of the OpenModelica and Hammer-
stein Wiener model to the same inputs in the validation data-set. The identified Hammerstein-
Wiener model is in good agreement with the validation data-set and according to Matlab
System Identification Toolbox a fit of 97.2% to the identification data of the OpenModelica
model was achieved. The right graph shows that the error between the OpenModelica and
Hammerstein-Wiener model mostly lies within -0.1 and 0.1 °C.
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Figure 4-4: Step response of HW model compared to validation data (left) and error plot (right)

The current density jCl2 is a nonlinear function of power consumption PCl2 and cell tempera-
ture TCl2 [24] and the variable should remain within bounds of 0.3-0.6 A/cm2 [22]. However,
at the tight operating temperature range at which the cell operates (85-90 °C), the effect of
cell temperature has a very limited influence on the current density, hence it is almost a linear
function of PCl2 only. Based on a parametric plot with the identification data of variables
jCl2 [A/cm2] and PCl2 [MW ] (left plot), a linear equation has been approximated which was
compared to the validation data set (right plot) in Figure 4-8. Note that this equation is valid
for a single chlor-alkali electrolyser.

jCl2(t) = 0.0639932 · (0.88 + PCl2(t)) (4-5)
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Figure 4-5: Linear approximation of current density vs power consumption of a chlor-alkali
electrolyser (left) and comparison with identification data (right)

Hydrogen - Cell Temperature & Current Density

A similar approach was used to identify a Hammerstein-Wiener model for the temperature TH2

of a hydrogen electrolyser which is based on inputs PH2 and Q̇cool. An operating temperature
range between 55-60 °C was assumed, because 60 °C is the maximum temperature of the
PEM electrolyser [85] and operating close to the maximum temperature is favorable for the
cell efficiency [93]. Furthermore, it was assumed that the PEM electrolyser operates at a
current density of 1.0-1.6 A/cm2 which is well within the current density range of state-of-
the-art PEM electrolysers of 0.6-2.0 A/cm2 [94]. After simulating the hydrogen electrolyser in
OpenModelica with this current density and temperature range, the minimum and maximum
power consumption could be identified as 4.8-8.0 MW. To be able to keep the temperature
between 55-60 °C at this power consumption range, a cooling load, Q̇cool, was required between
0.69-1.44 MW.
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Figure 4-6: Sub-set of input-output data for the identification of the hydrogen temperature HW
model

Master of Science Thesis R.F.J. Tetteroo



44 Model Predictive Control for Imbalance Minimization

With the operating range of the electrolyser defined, an identification and validation data-set
was developed with the OpenModelica model consisting of 1000 step responses that each last
a time-period of 7.5 h to ensure that the electrolyser temperature had reached equilibrium.
Values of the control inputs cooling load, Q̇cool, and power, PH2 were randomly chosen within
their bounds, however the combination always resulted in a cell temperature between 55-60
°C. A subset of the identification data is shown in Figure 4-6.

A Hammerstein-Wiener model was identified with a nonlinear input block, linear state-space
block and a nonlinear output block. Since PH2 will be required in the control model to
calculate the energy balance and current density [91] it was attempted to limit the number of
breakpoints of this nonlinear block. For the nonlinear input block of PH2 a piecewise linear
function with a single break point was identified:

vpower,H2(t) =
{

11.9 · Pin,H2(t)− 14.74 Pin,H2(t) ≤ 6.50[MW ]
10.71 · (Pin,H2(t)− 6.5) + 62.69 Pin,H2(t) ≥ 6.50[MW ]

(4-6)

The input nonlinear block for Q̇cool was described with a piecewise linear function with 6
breakpoints, again using the standard setting for identifying the linear model in Matlab:

v ˙Qcool,H2
(t) =



−58.81 · (Q̇cool(t)− 0.48)− 30.23 Q̇cool(t) ≤ 0.80[MW ]
−55.39 · (Q̇cool(t)− 0.80)− 49.27 0.80 ≤ Q̇cool(t) ≤ 0.94[MW ]
−52.47 · (Q̇cool(t)− 0.94)− 56.79 0.94 ≤ Q̇cool(t) ≤ 1.08[MW ]
−45.36 · (Q̇cool(t)− 1.08)− 64.00 1.08 ≤ Q̇cool(t) ≤ 1.20[MW ]
−43.47 · (Q̇cool(t)− 1.20)− 69.73 1.20 ≤ Q̇cool(t) ≤ 1.35[MW ]
−41.71 · (Q̇cool(t)− 1.35)− 76.14 Q̇cool(t) ≥ 1.35 · 106[W ]

(4-7)

where, vQ̇cool,H2
(t) marks the inner variable for cooling. Since the real variable, Q̇cool, was

not required in other equations in the control model and the piecewise function above is
monotonic, it could be replaced with bounds on the inner variable vQ̇cool,H2

(t) [24].

For the linear block, the standard setting with 3 poles and 2 zeros for the transfer function
provided an accurate dynamic model which after conversion provided a state-space represen-
tation with 6 state variables:

~xH2(t+ 1) = AH2 · ~xH2(t) +BH2 · ~uH2(t) (4-8)

wT,H2(t) = CH2 · ~xH2(t) (4-9)

where ~xH2(t) is the state variable vector of [x1H2
(t), x2H2

(t), x3H2
(t), x4H2

(t), x5H2
(t), x6H2

(t)]T ,
~uH2(t) is the input vector [vpower,H2(t), vQ̇,cool(t)] consisting of the ’inner’ input variables of
power and cooling load, and wT,H2(t) is the ’inner’ output variable of cell temperature. AH2

is the state matrix, BH2 is the input matrix, and CH2 is the output matrix which are shown
in Section A-3 in the Appendix.
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Finally, the nonlinear output block for cell temperature, TH2(t), consists of a piecewise linear
function with two breakpoints:

TH2(t) =


0.08 · (wT,H2(t)−−30) + 327.56 wT,H2(t) ≤ −21.07
0.22 · (wT,H2(t)−−21.07) + 328.25 −21.07 ≤ wT,H2(t) ≤ 64.67
0.27 · (wT,H2(t)− 64.67) + 347.69 wT,H2(t) ≥ 64.67

(4-10)

where, TH2(t) is the real output variable of the electrolyser temperature and wT,H2(t) is the
’inner’ temperature variable. The piecewise function is monotonic and the ’real’ electrolyser
temperature TH2(t) is not needed in the control model for another function so the nonlinear
block could be removed and replaced with bounds on the ’inner’ output variable wT,H2(t)
[91].

The identified Hammerstein-Wiener model is in good agreement with the validation data-set
and a fit of 95.75% was achieved. Below the agreement between the Hammerstein-Wiener
model and the validation data is shown, as well as an error plot for the whole validation
data-set where it can be seen that the error generally lies within -0.3 and 0.25 °C.
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Figure 4-7: Step response of HW model for hydrogen electrolyser and validation data (left) and
error plot (right)

Although the current density jH2 is a nonlinear function of power consumption PCl2 and cell
temperature TH2 , at the tight operating temperature range at which the electrolyser operates
(55-60 °C), the effect of electrolyser temperature on the current density was limited. Therefore
the current density is almost a linear function of PH2 only. Based on a parametric plot with
jCl2 and PH2 , a linear curve has been fitted which provides a good approximation (see Figure
4-8):

ji,H2 = 0.1875 · (0.533333 + Pi,H2(t)) (4-11)
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Figure 4-8: Linear approximation of current density vs power consumption of hydrogen electrol-
yser (left) and comparison with validation data (right)

4-3 MPC control problem formulation

This section describes the control problem formulation of the Model Predictive Controller
implemented in Python using the Pyomo package.

4-3-1 Nomenclature

An overview of all parameters and variables of the MPC controller can be found in Table
A-3, but to clarify the equations in the next sections some of the important terms are noted
below:

• t = Time [15 min]

• N = Prediction horizon [-]

• Gsub = Number of electrolyser sub-groups in the chlor-alkali plant [-]

• Ksub = Number of electrolyser sub-groups in the hydrogen plant [-]

• g = Electrolyser sub-group number g in the chlor-alkali plant[-]

• k = Electrolyser sub-group number k in the hydrogen plant [-]

• Cl2 = Subscript for chlor-alkali [-]

• H2 = Subscript for hydrogen [-]

R.F.J. Tetteroo Master of Science Thesis



4-3 MPC control problem formulation 47

4-3-2 Objective Function

The objective function in this thesis is a minimization function of positive and negative
imbalances, similar to ref. [13].

min
N∑

t=0
Q+(t) +Q−(t) + σ1 · (Lnorm,H2(t)− Lnorm,Cl2(t))2

+σ2 · (SCl2,low(t) + SCl2,up(t) + SH2,low(t) + SH2,up(t))
(4-12)

Where Q+ and Q− [MWh] indicate the positive and negative imbalances respectively within
an ISP and N is the prediction horizon. Furthermore, a penalty σ1 is added on the difference
between the normalized storage levels of the hydrogen and chlor-alkali plant Lnorm,H2(t)
and Lnorm,Cl2(t). The constraint ensures that the storage levels remain close to one another
thereby avoiding that one plant is forced to minimize imbalances by itself (for which it may not
have a sufficient regulation capacity) because the other industrial plant is already operating
at the storage limit. In addition, a penalty σ2 is placed on exceeding the lower and upper
limit of the chlorine and hydrogen tank using slack variables SCl2,low(t) and SCl2,up(t), and
SH2,low(t) and SH2,up(t). The slack variables prevent infeasible solutions when the storage
levels exceed the limits, which can occur if the predicted and simulated chemicals production
are not completely aligned.

4-3-3 System Constraints

Imbalances

The predicted imbalances by the MPC are the difference between the Day-Ahead bids and
the actual renewable energy production, which is implemented with the following constraint.

Qimb(t) = Qact(t)−QDA,bid(t) ∀t = 0, N (4-13)

where Qimb(t) is the predicted imbalance to be minimized, Qact(t) is the forecast of the actual
renewable energy production, and QDA,bid(t) is the energy bid in the Day-Ahead market dur-
ing an ISP. Qact(t) consists of the sum of the actual onshore wind and PV energy production
data which was developed in Chapter 3.

The following energy balance equation ensures that the predicted imbalances by the MPC
are equal to the demand response provided by the electrolysers of the industrial plants and
the remaining imbalances in the Virtual Power Plant portfolio.

24 ·
Gsub∑
g=1

Pg,dr,Cl2(t)
Gsub

· 900
3600 +24 ·

Ksub∑
k=1

Pk,dr,H2(t)
Ksub

· 900
3600 +Q+(t)+Q−(t) = Qimb(t) ∀t = 0, N

(4-14)

where the factor 24 indicates the number of electrolysers per plant, Pg,dr(t) and Pk,dr(t) is the
demand response provided by an electrolyser in sub-group g or k respectively and Gsub and
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Ksub indicate the number of electrolyser sub-groups in the chlor-alkali plant and hydrogen
plant. If for example, Gsub = 1 all 24 chlor-alkali electrolysers are gathered in a single
group that operate with the same power consumption, whereas if Gsub = 2 the chlor-alkali
electrolysers are divided in 2 sub-groups, each with 12 electrolysers, that can operate at a
different power consumption level. Q+(t) and Q−(t) are the remaining positive or negative
imbalances in the VPP portfolio, and Qimb(t) is the imbalance predicted by the MPC. The
factor 900

3600 converts power [MW ] to energy [MWh].

The demand response provided by an electrolyser is equal to the difference between the actual
power consumption, Pg,Cl2(t) and Pk,H2(t), and the nominal power consumption, Pnom,Cl2 and
Pnom,H2 :

Pg,dr,Cl2(t) = Pg,Cl2(t)− Pnom,Cl2 ∀t = 0, N, ∀g = 1, Gsub (4-15)

Pk,dr,H2(t) = Pk,H2(t)− Pnom,H2 ∀t = 0, N, ∀k = 1,Ksub (4-16)

Based on Ref. [15], constraints have been implemented that prevent the remaining imbalances
Q+(t) and Q−(t) to be much higher or lower than the predicted imbalances:

0 ≤ Q+(t) ≤ |Qimb(t)|+Qres ∀t = 0, N (4-17)

− |Qimb(t)| −Qres ≤ Q−(t) ≤ 0 ∀t = 0, N (4-18)

An additional term has been included, Qres, which is a small amount of reserve energy to
ensure that if the storage limits is exceeded, due to a small mismatch between the predicted
chemicals production by the MPC and simulated by the plants, the plants can return to
the storage level limit. The value chosen for Qres was 0.5 MWh/ISP which is a limited
amount compared to the Day-Ahead forecast errors which have a standard deviation of 5.08
MWh/ISP. Various other values for Qres were attempted which showed its influence on the
imbalance results is very small and 0.5 MWh/ISP could be safely assumed.

Power consumption & current density

The relation between the power input and current density of a chlor-alkali electrolyser could
be described with the identified empirical equation in Section 4-2-2:

jg,Cl2(t) = 0.0639932 · (0.88 + Pg,Cl2(t)) ∀t = 0, N, ∀g = 1, Gsub (4-19)

where jg,Cl2(t) is the current density and Pg,Cl2(t) is the power consumption per chlor-alkali
electrolyser in sub-group g. The current density is limited between an upper and lower limit:

jCl2,min ≤ jg,Cl2(t) ≤ jCl2,max ∀t = 0, N, ∀g = 1, Gsub (4-20)

where the lower limit is 0.3 A/cm2 and the upper limit is 0.6 A/cm2 for an industrial mem-
brane chlor-alkali electrolyser, based on Ref. [22, 80].

R.F.J. Tetteroo Master of Science Thesis



4-3 MPC control problem formulation 49

The relation between the power input to the hydrogen electrolyser and the current density
can be described with the empirical equation developed in Section 4-2-2:

jk,H2(t) = 0.1875 · (0.533333 + Pk,H2(t)) ∀t = 0, N, ∀k = 1,Ksub (4-21)

where jk,H2(t) is the current density and Pk,H2(t) is the power consumption per hydrogen
electrolyser in sub-group g. The current density is limited between an upper and lower limit:

jH2,min ≤ jk,H2(t) ≤ jH2,max ∀t = 0, N, ∀k = 1,Ksub (4-22)

As discussed in Section 4-2-2, the bounds on the hydrogen electrolyser current density are 1
A/cm2 for the lower limit and 1.6 A/cm2 for the upper limit, which is within the range of
0.6-2 A/cm2 of state of the art PEM electrolysers.

Temperature

The Hammerstein-Wiener models developed in section 4-2-1 are included in the control model
to describe the nonlinear cell temperature dynamics of the chlor-alkali and hydrogen electrol-
ysers. Of the Hammerstein-Wiener models, only the nonlinear input blocks for power PCl2

and PH2 and the linear blocks were necessary in the control model. The piecewise functions
of their respective nonlinear blocks can be integrated efficiently in Pyomo with the Piecewise
function. The other nonlinear blocks for the ’real’ variables Q̇cool, TH2 and TCl2 could be
removed from the control model, and replaced with bounds on their ’inner’ variables without
additional binary variables. This is because their their piecewise functions are monotonic and
the ’real’ variables were not needed in another physical equation in the optimization, as was
also discussed in Section 4-2-2 [91]. An overview of the Hammerstein-Wiener model parts
inside and outside of the control model is shown below:

Figure 4-9: Parts of HW model inside and outside the control model (chlor-alkali

Below the temperature constraints of the control model for the chlor-alkali electrolysers are
shown using Hammerstein-Wiener model found in 4-2-2. The nonlinear input block for power
input, Pg,Cl2, to a chlor-alkali electrolyser was integrated with the following constraint:
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Figure 4-10: Parts of HW model inside and outside the control model (hydrogen)

vg,power,Cl2(t) =
{

2.80 · (Pg,Cl2(t)− 3.52)− 82.97 Pg,Cl2(t) ≤ 6.18[MW ]
3.33 · (Pg,Cl2(t)− 6.18)− 75.5 Pg,Cl2(t) ≥ 6.18[MW ]

∀t = 0, N, ∀g = 1, Gsub

(4-23)

where vg,power,Cl2(t) is the ’inner’ input variable and Pg,Cl2(t) is the ’real’ power consumption
input per electrolyser in sub-group g.

The next constraint bounds the inlet temperature of the electrolyte, Tg,in(t), that cools the
chlor-alkali electrolyser:

Tin,min ≤ Tg,in(t) ≤ Tin,max ∀t = 0, N, ∀g = 1, Gsub (4-24)

where, Tg,in(t) is the electrolyte inlet temperature per chlor-alkali electrolyser in subgroup g
which is bounded between 70-80 °C [80]

The following constraints integrate the linear state space model of the Hammerstein-Wiener
model for the chlor-alkali electrolyser:

~xg,Cl2(t+ 1) = ACl2 · ~xg,Cl2(t) +BCl2 · [vg,power,Cl2(t), Tg,in(t)] ∀t = 0, N, ∀g = 1, Gsub

(4-25)

wg,T,Cl2(t) = CCl2 · ~xg,Cl2(t), ∀t = 0, N, ∀g = 1, Gsub (4-26)

where ~xg,Cl2 is the state vector per chlor-alkali electrolyser in sub-group g, ACl2 and BCl2 are
respectively the state and input matrices of the state-space model, [vg,power,Cl2(t), Tg,in(t)] is
the input vector with the ’inner’ variable for power and the ’real’ variable for inlet temperature
per chlor-alkali electrolyser in sub-group g. wg,T,Cl2 is the ’inner’ temperature per electrolyser
in sub-group g and CCl2 is the output matrix of a chlor-alkali elecrolyser.
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With the next constraint, bounds are placed on the ’inner’ temperature variable of the chlor-
alkali electrolysers:

wT,Cl2,min ≤ wg,T,Cl2(t) ≤ wT,Cl2,max) ∀t = 0, N, ∀g = 1, Gsub (4-27)

By inserting the ’real’ temperature bounds in the piecewise linear equation 4-4, the bounds
on the ’inner’ temperature variable can be calculated. The operating temperature was set
between 85+0.2 °C and 90-0.2 °C, where the small margin of 0.2 °C is used to avoid violat-
ing the operating temperature due to the minor plant-model mismatch, which results in a
wT,Cl2,min of -12 and a wT,Cl2,max of 8.67. Since a Hammerstein-Wiener model is a black-box
model, these values carry no physical meaning.

Below the temperature constraints for the hydrogen electrolysers in the control model are
shown. The input nonlinear block that maps Pk,H2(t) to the ’inner’ input variable vk,power,H2(t)
for power was described with a piecewise function as mentioned in Section 4-2-2 and was im-
plemented as followed:

vk,power,H2(t) =
{

11.91 · Pk,H2(t)− 14.74 Pk,H2(t) ≤ 6.5[MW ]
10.71 · (Pk,H2(t)− 6.5) + 62.69 Pk,H2(t) ≥ 6.5[MW ]

∀t = 0, N, ∀k = 1,Ksub

(4-28)

where Pk,H2(t) and vk,power,H2(t) is the respectively ’real’ and ’inner’ power input per hydrogen
electrolyser in subgroup k.

The bounds on the ’inner’ variable for the cooling load of the electrolyser could be described
with the following constraint:

vQ̇,cool,min ≤ vk,Q̇,cool(t) ≤ vQ̇,cool,max ∀t = 0, N, ∀k = 1,Ksub (4-29)

where vk,Q̇,cool is the ’inner’ cooling load input per hydrogen electrolyser in subgroup k. The
bounds on the ’inner’ cooling load have been calculated a priori by inserting the ’real’ cooling
load bounds (0.69-1.44 MW) that were defined in Section 4-2-2 into the piecewise linear
equation 4-7 which results in a vQ̇,cool,min of -42.46 and a vQ̇,cool,max of -79.87.

The linear state-space model of the Hammerstein-Wiener model of a hydrogen electrolyser in
subgroup k was integrated using the following constraint:

~xk,H2(t+ 1) = AH2 · ~xk,H2(t) +BH2 · [vk,power,H2(t), vk,Q̇,cool(t)] ∀t = 0, N, ∀k = 1,Ksub

(4-30)

wTk,H2
(t) = CH2 · ~xk,H2(t) ∀t = 0, N, ∀k = 1,Ksub (4-31)

where ~xk,H2(t) is the state vector per hydrogen electrolyser, AH2 and BH2 are the state and
input matrix of the state space model, and [vk,power,H2(t), vk,Q̇,cool(t)] is the input vector
where vk,power,H2(t) is the ’inner’ power input and vk,Q̇,cool(t) is the ’inner’ cooling input.
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Furthermore, wTk,H2
(t) is the ’inner’ output temperature and CH2 is the output matrix of the

state space model.

The ’inner’ variable for temperature of a hydrogen electrolyser was bounded by integrating
the following constraint:

wT,H2,min ≤ wk,T,H2(t) ≤ wT,H2,max ∀t = 0, N, ∀k = 1,Ksub (4-32)

Rather than allowing the hydrogen electrolysers to operate freely within its operating range
(55-60 °C), it was of interest to observe the ability of the MPC to keep the temperature of the
hydrogen electrolysers at a set-point which was chosen at 57.5 °C. The ’inner’ temperature
bounds were calculated by inserting 57.5 °C into the piecewise linear function 4-10 which gave
a value of -10.49 for both wT,H2,min and wT,H2,max.

Since the nonlinear blocks of the ’real’ variables Q̇cool, TH2 and TCl2 were not part of the
control model, after each optimization the piecewise equations 4-7, 4-4 and 4-10 were used
respectively to convert the ’inner’ variables calculated by the MPC to the ’real’ values.

Ramp rates

The ramp rate up- and down of current density of the chlor-alkali electrolyser is restricted
using the following formula:

−bg,Cl2(t) ·∆jCl2,down ≤ jg,Cl2(t+ 1)− jg,Cl2(t) ≤ bg,Cl2(t) ·∆jCl2,up,

∀t = 0, N, ∀g = 1, Gsub

(4-33)

where ∆jCl2,down and ∆jCl2,up are the maximum ramps in current density. Based on Ref.
[80], membrane electrolysers could ramp with 0.15 A/cm2 per 15 minutes however this may
vary per plant. Therefore, a safe assumption was implemented that electrolysers can ramp
with 0.075 A/cm2 per ISP, which is half of 0.15 A/cm2 [80].

Since hydrogen PEM electrolysers can ramp between the minimum and maximum load within
seconds [70] which is well within the time-period of an ISP, there are no ramping limits
integrated:

− bk,H2(t) · ∞ ≤ jk,H2(t+ 1)− jk,H2(t) ≤ bk,H2(t) · ∞ ∀t = 0, N, ∀k = 1,Ksub (4-34)

As shown in the next section, the binary variables bg,Cl2(t) and bk,H2(t) have been integrated
to control the ramping frequency of the electrolysers.

Ramp frequency & sub-unit operation

Durability of capital intensive equipment is of major importance in industry. Demand re-
sponse requires dynamic operation of components which may lead to increased wear and tear,
and therefore participants in demand response programs may want to limit the frequency at
which their equipment is used [95]. Some works on degradation due to dynamic operation in
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electrolysis have shown negative effects [96] and others neutral/positive effects on the PEM
electrolyser performance from cycling PEM electrolysers [97]. Overall, the effect of intermit-
tent operation on the degradation of PEM electrolysers is still limitedly understood [98, 99]
with. Thus far no studies have been performed that analyse the effect of dynamic operation
on the durability of chlor-alkali electrolysers.
A ramp frequency limitation is implemented in this thesis which can help avoid potential
degradation and allow plant owners to decide how frequently the Virtual Power Plant can
adjust the power consumption of their equipment. It will be activated during several simu-
lation studies in the sensitivity section. A switching frequency constraint developed by [52]
was modified and implemented:

0∑
j=t−N

bg,Cl2(t) +
N∑

j=t

bg,Cl2(t) ≤ btot ∀t = 0, N, ∀g = 1, Gsub (4-35)

0∑
j=t−N

bk,H2(t) +
N∑

j=t

bk,H2(t) ≤ btot ∀t = 0, N, ∀k = 1,Ksub (4-36)

where b(t) is a binary variable which is 0 if the current density of the electrolysers remain
constant, or 1 if the electrolysers switches to a different current density at a time step. The
first section

∑0
j=t−N b(t) is the sum of ramps that have occurred up to N time-steps before

the current time-step, and the second section
∑N

j=t b(t) is the sum of ramps up to N time-
steps after the current time-step. The third section, btot, indicates the total number of ramps
allowed within N time-steps. The ramp frequency limit constraint ensures that within a time
period of N time steps the amount of current density changes, and therefore power changes,
of an electrolyser sub-group is never allowed to exceed btot.
In literature, the electrolysers in a chlor-alkali plant are often assumed to operate at the same
current density [22, 24, 62]. Under a ramp frequency limit, the operation as a single group
could reduce the ability to minimize imbalances since the imbalances require energy con-
sumption changes every time-step. Thus far, no study has considered organizing electrolysers
in plants in sub-groups, where each sub-group can operate with a different power set-point.
Since sub-groups could ramp one after another, this subdivision will help increase the ramping
frequency of the whole plant while respecting the ramping limits on single electrolysers.
In the base-case simulation, the number of sub-groups, Gsub and Ksub, is 1 per plant and
the ramp frequency is not limited. However, in the sensitivity analysis of this thesis, several
simulations will be performed with a variation in the number of sub-groups and ramping
frequency limits to observe their effect on the imbalance minimization ability of the industrial
loads.

Production & storage of Cl2 and H2

The production of chlorine in a chlor-alkali electrolyser is described using Faraday’s law with
the following constraint:

Ṅg,Cl2(t) = jg,Cl2(t) ·Ae,Cl2 ·Ncells,Cl2

2 · F ∀t = 0, N, ∀g = 1, Gsub (4-37)
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where Ṅg,Cl2 is the molar flow of chlorine per electrolyser in sub-group g, jg,Cl2 is the current
density per electrolyser in sub-group g and F is the Faraday constant. Ae,Cl2 is the surface
area of a chlor-alkali cell which is equal to 2.7 m2 and Ncells,Cl2 is the amount of cells which
is equal to 160 [80].

The normalized level of the chlorine storage can be described using the following constraint:

Lnorm,Cl2(t+ 1) = Lnorm,Cl2(t) + 24 ·
Gsub∑
g=1

Ṅg,Cl2(t) · 900
Gsub · Lmax,Cl2

∀t = 0, N (4-38)

where Lnorm,Cl2 is the normalized storage level of the chlorine tank,
∑24

g=1 Ṅg,Cl2 is the
summed molar chlorine production of all twenty-four electrolysers, 900 is the amount of
seconds in a time-step of 15 minutes and Lmax,Cl2 is the maximum capacity of the chlorine
storage. The maximum storage size has been chosen such that a full storage can an indepen-
dently supply customers for six hours, following the study of [22]. The maximum storage size
can be described with the following equation:

Lmax,Cl2 = 24 ·
Gsub∑
g=1

jCl2,nom ·Ae,Cl2 ·Ncells,Cl2

Gsub · 2 · F
· 6 · 3600 (4-39)

where jCl2,nom indicates the nominal current density per electrolyser in sub-group g, and the
6 · 3600 corresponds to the amount of seconds in 6 hours.

Finally, the chlorine storage level is not allowed to exceed a lower and upper boundary which
is achieved by implementing the following constraint

− SCl2,low(t) + 0.2 ≤ Lnorm,Cl2(t) ≤ 0.8 + SCl2,up(t) ∀t = 0, N (4-40)

The slack variables SCl2,low(t) and −SCl2,low(t) are implemented to avoid infeasible solutions
when storage limits are slightly exceeded which may occur when the simulated chlorine pro-
duction slightly deviate from the predicted production of the MPC.

The constraints for the hydrogen electrolysers can be similarly implemented with the main
difference that in equation 4-41 the 46 KW high-pressure electrolyser is put in series Nseries,H2

times to represent a large-scale hydrogen electrolyser:

Ṅk,H2(t) = jk,H22(t) ·Ae,H2 ·Ncells,H2 ·Nseries,H2

2 · F ∀t = 0, N, ∀k = 1,Ksub (4-41)

Lnorm,H2(t+ 1) = Lnorm,H2(t) + 24 ·
Ksub∑
k=1

Ṅk,H2(t) · 900
Ksub · Lmax,H2

∀t = 0, N (4-42)

Lmax,H2 = 24 ·
Ksub∑
k=1

jH2,nom ·Ae,H2 ·Ncells,H2 ·Nseries,H2

Ksub · 2 · F
· 6 · 3600 (4-43)

− SH2,low(t) + 0.2 ≤ Lnorm,H2(t) ≤ 0.8 + SH2,up(t) ∀t = 0, N (4-44)
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Since there is no information available on the size of the hydrogen storage of the Shell plant,
it is assumed that a full storage can independently supply customers for six hours similar to
the chlor-alkali plant.

There is no constraint implemented at the end of the prediction horizon N that would force
the storage levels to return to 50%. Such a constraint would strongly limit the ability to
minimize imbalances, as it frequently occurs that the Day-Ahead errors are continuously
positive/negative for a period longer than the prediction horizon. In those cases, the MPC
cannot perform load shifting since there are no negative imbalances to compensate for the
positive imbalances, and vice versa. This issue was present in the study of Ref. [13], where
demand response in the form of load shifting was not possible during continuously positive
or negative imbalances.

Therefore, in this thesis the hydrogen and chlorine storage levels are allowed to move freely
within limits of 20%-80% without a constraint at the end of the prediction horizon that forces
the storage levels to 50%. However, to ensure that the storage levels are not continuously
operating at the limits which reduces the ability to provide demand response, the Day-Ahead
market is used to sell/buy additional energy to guide the storage levels to the midway position.
This Day-Ahead bid correction is explained in Section 4-5.

4-4 State estimation

A Luenberger observer is implemented to provide the MPC with feedback of the simulated
cell temperature. Below the general structure of the Luenberger observer is shown:

~x(t+ 1) = A · ~x(t) + L · (vT,mpc(t)− vT,sim(t)) +B · ~u(t) (4-45)

where ~x(t) is the state vector of the state-space model in the MPC that predicts the tem-
perature of an electrolyser, vT,mpc(t) is the ’inner’ output value of temperature predicted by
the MPC, vT,sim(t) is the ’inner’ output value of temperature of the simulator. This is calcu-
lated after each optimization using the piecewise linear function that relates the ’real’ output
Tsim(t) to the ’inner’ output vT,sim(t)), ~u(t) is the input vector, A is the state matrix, B is the
input matrix and L is the Luenberger observer matrix. Adjusting the state-estimator matrix
is an intensive task in control theory. It often requires modifying the observer matrices in such
a way that a smooth feedback is achieved and a balance is found between the possible errors
in the plant measurements and control model of the MPC. Such an intense tuning process
is beyond the scope of this thesis; the following Luenberger observer matrices LCl2 and LH2

were determined with a process of trial and error and provided a smooth feedback:

LH2 =



0.624
14.5
−933
85264
87990
1673


LCl2 =



−5866
−5911
−185
−286
−375
30.7


(4-46)
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4-5 Day-Ahead bidding phase

At 12:00 CET, the Day-Ahead bidding takes place. The hourly bids on the Day-Ahead market,
QDA,bid[0.00:24.00] consist of the Day-Ahead forecast of renewable energy QDA,RE [0.00:24.00]
and a correction term called QDA,stor[0.00:24.00]. QDA,stor is an additional amount of energy
bought/sold on the Day-Ahead market to keep the storage levels returning to 50%.
The correction term QDA,stor[0.00:24.00] is calculated as followed. At 12:00 CET, the devia-
tion between the midway position and the last storage level prediction of the MPC Lnorm[12.00+N]
is used to calculate the amount of energy that needs to be bought/sold such that storage lev-
els return to 50%, which is called ∆Qstor,tot. The calculation of ∆Qstor,tot is described in
Section A-5 in the Appendix. Then, a Day-Ahead optimization is performed to sell (or buy)
this energy on the Day-Ahead market during times of high (or low) prices which provides
QDA,stor[0.00:24.00]. If the energy is bought/sold, then QDA,stor[0.00:24.00] is subtracted
from/add to the Day-Ahead forecasts, QDA,RE [0.00:24.00], to comprise the final Day-Ahead
bids, QDA,bid[0.00:24.00]. The next two sections explain the Day-Ahead optimization. All
variables and parameters of the Day-Ahead optimization can be found in Figure A-4 in the
Appendix.

4-5-1 Objective function

If ∆Qstor,tot is positive this means that the storage levels needs to be reduced, which can be
achieved by selling ∆Qstor,tot on the Day Ahead market. The objective of the Day-Ahead
optimization then becomes a maximization function:

max
24∑

t=0
QDA,stor(t) · PriceDA(t) (4-47)

If ∆Qstor,tot is negative, storage levels needs to be increased, which can be achieved by buying
∆Qstor,tot on the Day-Ahead market. The objective of the Day-Ahead optimization then
becomes a minimization function:

min
24∑

t=0
QDA,stor(t) · PriceDA(t) (4-48)

Day-Ahead prices of 2020 in Belgium are obtained from Elia, the Belgium Transmission
System Operator [88]. Since the economic analysis is not a core part of this study, it is
assumed that the Virtual Power Plant has a perfect forecast of the Day-Ahead energy prices.

4-5-2 Constraints

An equality constraint is implemented such that the sum of the energy bought/sold at each
hour of the next day is equal to the total energy needed ∆Qstor,tot:

24∑
t=0

QDA,stor(t) = ∆Qstor,tot (4-49)
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Constraints on the maximum energy bought/sold per hour are implemented to avoid that
the industrial plants are required to operate far from their nominal energy consumption and
theres is no regulation capacity available to correct the Day-Ahead forecast errors:

0 ≤ QDA,stor(t) ≤ Qmax ∀t = 0, 24 (4-50)

To return both storage levels from the limit to the midway position 628.1 MWh is required,
hence the maximum energy bought/sold should be at least 25.88 MWh per hour. In this
thesis, Qmax is set at 31.44 MWh per hour which gives the Virtual Power Plant some more
opportunity to buy/sell at low/high prices to make a profit from the correction method. Since
the additional energy bought/sold will create artificial errors which compound on the regular
Day-Ahead forecast errors, it is important that the industrial plants have enough regulation
capacity to eliminate the sum of both errors. As will be discussed in Section 4-6-1, together
the chlor-alkali and hydrogen plant have a regulation capacity of +21.75 MWh/ISP and -25.83
MWh/ISP. In Figure 4-11, it can be seen that even if this regulation capacity of the plants is
reduced by Qmax, which is 7.86 MWh/ISP, the regulation capacity will remain sufficient for
minimizing most of the Day-Ahead forecast errors.
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Figure 4-11: Regulation capacity industrial plants and annual Day-Ahead forecast errors

Finally after the Day-Ahead optimization, the Day-Ahead bids can be calculated using
QDA,stor[0.00:24.00]. The Day-Ahead bids will be lowered with QDA,stor if there was a storage
deficit predicted and additional energy had to be bought in the Day-Ahead market:

QDA,bid(t) = QDA,RE(t)−QDA,stor(t) ∀t = 0, 24 (4-51)

Day-Ahead bids will be increased with QDA,stor if there was a surplus predicted and additional
energy was sold in the Day-Ahead market:

QDA,bid(t) = QDA,RE(t) +QDA,stor(t) ∀t = 0, 24 (4-52)
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4-6 Simulation setup

This section describes the main parameters for the simulation of the base case and the sensitiv-
ity analysis. The simulations were performed on a MSI GP60 laptop with a Intel Core i5-4200
MHZ and 8 GB memory using the solver of Gurobi for Mixed Integer Linear Optimization
problems (MILP).

4-6-1 Base-case

The main parameters for the Virtual Power Plant and MPC in the base-case are shown in
Table 4-1. The time-steps of the Model Predictive Control unit are 15 minutes which is the
length of an Imbalance Settlement Period and a prediction horizon of 3 hours is chosen similar
to that in Ref. [100].

Parameters Value
PV capacity 300 MW
Wind capacity 300 MW
Time-step ∆t 15 min

Prediction horizon N 3 hours
Simulation period 1-30 October

Table 4-1: Virtual Power Plant and MPC parameters of base-case

The parameters of the chlor-alkali and hydrogen plant in the base-case are shown in Table
4-2. The chlor-alkali electrolysers can flexibly operate between a current density of 0.3-0.6
A/cm2 in accordance with [22], and the hydrogen PEM electrolysers can flexibly vary the
current density between 1-1.6 A/cm2 which is well within the 0.6-2 A/cm2 range of state-
of-the-art PEM electrolysers [94]. This consequently results in an energy consumption range
of 22.85-50.88 MWh/ISP and 28.8-48.35 MWh/ISP of the chlor-alkali and hydrogen plant
respectively. In the base-case, it is assumed that there is no limit on the ramp frequency and
there is 1 sub-group per plant. This means the 24 electrolysers in the chlor-alkali operate
with the same current density and the same goes for the 24 electrolysers in the hydrogen
plant. The utilization rate of the chlor-alkali plant is 80% following the average utilization
rate of the chlor-alkali industry in 2020 [81]. This utilization rate has been applied to the
hydrogen plant as well. This results in a nominal current density of 0.48 A/cm2 and 1.28
A/cm2 for the chlor-alkali and hydrogen plant respectively. The storage size is 6 hours of
chlorine production at nominal production as in Ref. [22, 24] which has been implemented in
the hydrogen plant as well.
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Parameters Chlor-Alkali plant (Nouryon) Hydrogen plant (Shell)
N electrolysers 24 electrolysers 24 electrolysers

P rated 203.5 MW 193.4 MW
E range 22.85-50.88 MWh/ISP 28.8-48.35 MWh/ISP
j nominal 0.48 A/cm2 1.28 A/cm2
j range 0.3-0.6 A/cm2 1-1.6 A/cm2

∆j Ramp rate 0.075 A/cm2 p. electrolyser ∞ p. electrolyser
T electrolyser 85-90 °C 55-60 °C

Ramp frequency Not restricted Not restricted
Nr. of sub-groups 1 x 24 electrolysers 1 x 24 electrolysers
Utilization rate 80% 80%
Storage size 6 hr of nom production 6 hr of nom production

Storage bounds 20-80% 20-80%

Table 4-2: Plant parameters base-case

The base-case was simulated in October. Since the energy production and forecast errors
change throughout the year, three other time-periods are simulated as well (January, April
and July) to observe if there are significant differences in the performance.

Reference

The simulation results need to be compared to a reference in order to assess the ability to
minimize imbalances. In the reference, the Virtual Power Plant does not apply industrial
demand response to minimize imbalances, hence the plants will operate at their nominal
consumption level and the imbalances will be exactly equal to the Day-Ahead forecast errors.

4-6-2 Sensitivity analysis

Next to the base-case, additional simulations will be performed using different values of pa-
rameters to assess their impact on ability of the chlor-alkali and hydrogen plant to minimize
imbalances. The following parameters will be studied:

• Storage capacity - It is important to assess the effect of the storage size of the chlor-alkali
and hydrogen plant as the storage size of Nouryon and Shell plant have been based on
literature whereas the actual capacity could be different. To assess the effect of the
storage capacity, simulations have been performed with the capacity of the chlor-alkali
and hydrogen plant down-scaled to 3 hours of nominal consumption, as in [62], and
up-scaled to 12 hours of nominal consumption as was assumed in [101].

• Utilization rates - Operating at utilization rates above 80% is common in the chemical
industry in general and in the chlor-alkali industry specifically [16]. At higher utilization
rates, the ability of industrial loads to increase load consumption above the nominal
level will be impaired which can limit the minimization of positive imbalances. For this
reason, simulations are performed with utilization rates of 85%, 90% and 95% for both
the chlor-alkali and hydrogen plant.
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• Day-Ahead bid correction - To generate the Day-Ahead bids, the Day-Ahead forecast of
renewable energy has been decreased/increased with an energy quantity that guides the
storage levels to the midway position as described in Section 4-5. In order to assess the
effect of this method, a simulation is performed without the Day-Ahead bid correction.

• Prediction horizon - Increasing the prediction horizon length could improve the decision
making of the MPC which can lead to lower imbalances, however it may also have limited
to no effect other than increasing the computation time of the optimization. To assess
the affect of prediction horizon length, two simulations are performed with a shorter
prediction horizon (1.5 hour) and longer prediction horizon (6 hours).

• Imperfect forecast - In the base-case, it is assumed that the MPC has a perfect forecast
of the actual power production of the renewable energy resources over the prediction
horizon. Therefore, there are no errors assumed in the forecast of the imbalances. As
a comparison, the impact of imperfect forecast on the MPC is assessed by using the
approach of Ref. [102] to generate the imperfect forecast time series.

• Ramp frequency & Sub-groups - Reducing the ramp frequency of the electrolysers could
reduce wear and tear cost and allow plant owners to choose how often the Virtual Power
Plant can modulate their equipment. However, lowering the ramp frequency can also
decrease the ability of the hydrogen and chlor-alkali plant to minimize imbalances, as the
imbalances require a ramp at each time-step. To overcome this issue, the electrolysers in
the industrial plants can be divided in sub-groups that can operate with a different power
consumption, such as 1x24, 2x12, 3x8 electrolysers per plant. In total 9 simulations will
be performed, in which ramping of electrolysers is allowed 12, 6, and 3 times per period
of twelve time-steps. The amount of electrolyser sub-groups will be varied between 1, 2
and 3 in each plant.

4-6-3 Overview of simulation studies

An overview of the simulation studies performed in this thesis are shown in Table 4-3 with
the parameters that will be varied. The remainder of the parameters of the simulations can
be found in Table A-3 and Table A-4 in the Appendix. Note that the storage capacity is
described in the amount of hours at the nominal production rate.

For the simulation studies with the varying ramp frequency limits and numbers of sub-groups,
a single week in October has been simulated (9-16 October) rather than the whole month.
The integration of the ramp frequency limit resulted in a higher computation time per time
step due to the addition of binary variables, hence it was decided to reduce the simulation
time-period to a week. The results of this section will therefore not be compared with the
base-case, but these simulation results will be compared amongst each other. Finally, it
is important to mention that the value noted in the ramp frequency column indicates the
number of ramps that are allowed per 12 time-steps.
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Simulation study Storage
capacities

Utilization
rate

DA bid
correction

Prediction
horizon

Forecast
accuracy

Ramp
freq.

Sub-
groups

Time
period

Reference - - - - - - - 1-30 Oct
Base-case 6 h 80% Yes 12 Perfect - 1 1-30 Oct
Time-period - Jan 6 h 80% Yes 12 Perfect - 1 1-30 Jan
Time-period - Apr 6 h 80% Yes 12 Perfect - 1 1-30 Apr
Time-period - July 6 h 80% Yes 12 Perfect - 1 1-30 July
Storage - low 3 h 80% Yes 12 Perfect - 1 1-30 Oct
Storage - high 12 h 80% Yes 12 Perfect - 1 1-30 Oct
Utilization rate # 1 6 h 85% Yes 12 Perfect - 1 1-30 Oct
Utilization rate # 2 6 h 90% Yes 12 Perfect - 1 1-30 Oct
Utilization rate # 3 6 h 95% Yes 12 Perfect - 1 1-30 Oct
Day-Ahead Bid correction - No 6 h 80% No 12 Perfect - 1 1-30 Oct
Prediction horizon - low 6 h 80% Yes 6 Perfect - 1 1-30 Oct
Prediction horizon - high 6 h 80% Yes 24 Perfect - 1 1-30 Oct
Forecast accuracy - imperfect 6 h 80% Yes 12 Imperfect - 1 1-30 Oct
Ramp freq. vs. sub-groups #1 6 h 80% Yes 12 Perfect 12 1 9-16 Oct
Ramp freq. vs. sub-groups #2 6 h 80% Yes 12 Perfect 12 2 9-16 Oct
Ramp freq. vs. sub-groups #3 6 h 80% Yes 12 Perfect 12 3 9-16 Oct
Ramp freq. vs. sub-groups #4 6 h 80% Yes 12 Perfect 6 1 9-16 Oct
Ramp freq. vs. sub-groups #5 6 h 80% Yes 12 Perfect 6 2 9-16 Oct
Ramp freq. vs. sub-groups #6 6 h 80% Yes 12 Perfect 6 3 9-16 Oct
Ramp freq. vs. sub-groups #7 6 h 80% Yes 12 Perfect 3 1 9-16 Oct
Ramp freq. vs. sub-groups #8 6 h 80% Yes 12 Perfect 3 2 9-16 Oct
Ramp freq. vs. sub-groups #9 6 h 80% Yes 12 Perfect 3 3 9-16 Oct

Table 4-3: Overview of simulation studies performed in this thesis
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Chapter 5

Results and Discussion

5-1 Reference imbalances

Figure 5-1 shows the Day-Ahead forecast errors in the month of October. The mean value of
the Day-Ahead forecast errors is 3.98 MWh/ISP which indicates that the renewable energy
production is generally under-predicted during the Day-Ahead bidding phase. Furthermore,
the standard deviation is 5.08 MWh/ISP and the minimum and maximum Day-Ahead forecast
error is -17.49 and 16.92 MWh/ISP.
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Figure 5-1: Day-Ahead forecast errors in October

In the reference no demand response is applied and the industrial plants operate at their
nominal capacity. Hence the Day-Ahead forecast errors are not corrected and they will directly
result in imbalances for the Virtual Power Plant. The imbalances are shown in Figure 5-2. The
total amount of reference imbalances is 12947 MWh which consists of 3471 MWh negative
and 9476 MWh positive imbalances. These reference imbalances provide a benchmark for
assessing the ability of the industrial plants to minimize imbalances by providing demand
response.
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Figure 5-2: Reference imbalances in October

5-2 Base-case

In this section, first the operation of the MPC will be explained by zooming in on the simula-
tion results of the first two days of October. Then, the amount of imbalances and the causes
for the imbalances are described for the month of October, followed by a comparison to the
imbalance minimization in the months of January, April and July.

5-2-1 Model Predictive Control operation

Figure 5-3 shows the error between the Day-Ahead bids and actual renewable energy produc-
tion in the Virtual Power Plant Portfolio for the first two days of October. At each time-step,
the MPC will forecast these errors after which it calculates the control inputs for the hydro-
gen and chlor-alkali electrolysers to minimize the errors. Note that the MPC is assumed to
have a perfect forecast of these errors in the base-case and the results provide a maximum
performance of the MPC. In the sensitivity analysis in Section 5-3, the perfect forecast results
will be compared with simulations using an imperfect forecast.

0 10 20 30 40
Time (Hours)

2

1

0

1

2

3

4

En
er

gy
 (M

W
h/

IS
P)

Error between Day-Ahead forecast and actual energy production

Figure 5-3: Error between Day-Ahead bids and actual renewable energy production first two days
of October

In Figure 5-4 and 5-5 the energy consumption of the chlor-alkali and hydrogen plant are
shown. The nominal energy consumption is indicated with the ’no demand response’ line in
red. For explaining the results, the term ’positive demand response’ will be used to indicate
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that the plants operate above the nominal consumption and ’negative demand response’
indicates that the plants operate below the nominal consumption. It can be observed that
the energy consumption of the plants follow the pattern of the errors between the Day-Ahead
bids and actual renewable energy production that was shown in Figure 5-3. For example,
during hours 12-17 the errors are positive which means that more energy is produced than
the Day-Ahead bid. Therefore, the chlor-alkali and hydrogen plant are requested to increase
their energy consumption above the nominal energy consumption (hence providing positive
demand response) such that imbalances in the Virtual Power Plant are avoided.
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Figure 5-4: Chlor-Alkali plant energy consumption in the first two days of October
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Figure 5-5: Hydrogen plant energy consumption in the first two days of October

Figure 5-6 shows the storage level for the first two days of October. It can be observed that
the storage levels increase when the plants operate above their nominal energy consumption
(for example between hours 12-17), and decrease when the plants operate below the nominal
energy consumption (for example in hours 40-43). This is because when the plant operates at
the nominal consumption the storage level remains constant since the production of chemicals
equals the consumption of chemicals from the storages. The storage levels of the chlor-alkali
and hydrogen plant almost completely overlap throughout the simulation which indicates that
the penalty on the deviation between the storage levels is successfully implemented. On hours
35-40, the storage levels reach the maximum limit which means that the plants cannot operate
above their nominal capacity during this time-period to provide positive demand response as
can be seen in Figures 5-4 and 5-5. Hence, the positive errors during hours 35-40 that can
shown in Figure 5-3 cannot be corrected and will cause imbalances in the Virtual Power Plant
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portfolio. In Figure 5-7 the imbalances are shown that occur in the first two days of October.
It can be observed that positive imbalances are indeed present when the storage levels are at
their maximum.
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Figure 5-6: Storage level hydrogen and chlor-alkali plant in the first two days of October
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Figure 5-7: Remaining imbalances in the first two days of October

Finally, the effect of providing demand response on the production of chlorine and hydrogen
can be seen in Figures 5-8 and 5-9. As can be seen the chlorine production and hydrogen
production follow the shape of the power consumption shown in Figure 5-4 and 5-5 since
the chemicals production via electrolysis is linearly related to the current density of the
electrolysers through Faraday’s law. The current density in its turn is approximately a linear
function of power consumption as was established in Section 4-2-2. Furthermore, it can be
noted that at the nominal production, which is equal to the nominal consumption shown in
the Figure 5-8, around 18.32 kg/s of chlorine is produced. This corresponds to a production
of 576 kt/year which is close to the annual production of the actual factory of Nouryon of
640 kt/year in 2016 [60]. The deviation can likely be explained by a slight difference in the
nominal current density assumed in this thesis and used in the actual factory. The nominal
hydrogen production in kg/s seems lower than that of chlorine, however when looking at this
in mol/s, the hydrogen production is actually higher with 0.44 mol/s compared to that of
chlorine of 0.25 mol/s.
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Figure 5-8: Chlorine production during the first two days of October
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Figure 5-9: Hydrogen production during the first two days of October

Temperature & current density control

The purpose of the MPC is to control the electrolysers of the plants such that constraints
on process variables are not violated. In Figure 5-10 the inputs inlet temperature and power
to one of the chlor-alkali electrolysers in the plant are shown, as well as the output cell
temperature predicted by the MPC and simulated by the plants. It can be seen that the MPC
kan keep the cell temperature of the chlor-alkali electrolysers between 85-90 °C by varying the
inlet temperature at different inputs of power consumption. The effect of increasing the power
input on the electrolyser cell temperature can be observed between hours 26-29. During this
period, power is increased whilst the inlet temperature remains constant which results in a
rise in the cell temperature from 85.2 to nearly 87 °C. Increasing the inlet temperature on the
other hand increases cooling of the electrolyser which can thereby lower the cell temperature.
This cooling effect can be observed during hours 2-6, when the power consumption is decreased
whereas inlet temperature is increased which leads to a constant cell temperature near 85 °C.
It can be observed in the bottom graph of 5-10 that the plots of the cell temperature predicted
by the MPC and simulated by the plants nearly overlap. Firstly, this results from the good
agreement between the dynamic Hammerstein-Wiener model in the MPC and the simulators
of the plant. Secondly, in each time step the Luenberger observer updates the states that
describe cell temperature in MPC by using the simulated temperature as feedback. In Figure
A-2 in the Appendix, it can be observed that the MPC could maintain the cell temperature
in the range of 85-90 °C for the whole month of October by varying the inlet temperature
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between 70-80 °C which is a normal operating range for industrial chlor-alkali electrolysers
[80]. These results indicate that the developed MPC is suitable for rescheduling the chlor-
alkali electrolysers while ensuring cell temperatures remain within bounds.
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Figure 5-10: Inputs and output of a single chlor-alkali electrolyser in the first two days of October

In Figure 5-11, the inputs power and cooling load to a single hydrogen electrolyser is shown as
well as the output cell temperature. To assess the ability of the MPC to keep an electrolyser
at a constant operating temperature, rather than a range as shown in Figure 5-10, a cell
temperature set point of 57.5 °C was introduced. In the top plot, it can be seen that the
power and cooling load show similar shapes. This can be explained by the fact that increasing
(or decreasing) power would result in a rise (or drop) in cell temperature, hence an increase (or
decrease) in the cooling load would be necessary to maintain the cell at the desired operating
temperature. In the bottom graph, it can be shown that the temperature predicted by the
Hammerstein-Wiener model in the MPC and simulated by the plants have a good agreement.
This again results from the fit between the Hammerstein-Wiener model that was identified
and the high-fidelity OpenModelica model as well as the operation of the Luenberger observer
that can integrate the simulated temperature as feedback to update the internal states of the
MPC. In Figure A-3 in the Appendix, it can be observed that the MPC can maintain the
operating temperature of an electrolyser near 57.5 °C for the whole simulation period by
controlling the cooling input to the electrolyser.
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Figure 5-11: Inputs and output of a single hydrogen electrolyser in the first two days of October

Another requirement is that the current density of the electrolysers remain within the bounds.
Although the current density is affected by both the power consumption and cell temperature
of the electrolyser, it was shown in Section 4-2-2 that within the tight temperature operating
range of the electrolysers, a linear approximation based on only the power input could be
sufficient for the control model. Figure 5-12 shows the current density predicted by the
MPC and simulated by the plants of a single chlor-alkali and hydrogen electrolyser. The
graphs show that the linear approximation of the control model is in close agreement with
the simulators. Furthermore, in Figure A-4 in the Appendix it is shown that the current
density remains within the respective bounds of 0.3-0.6 A/cm2 and 1.0-1.6 A/cm2 of the
chlor-alkali and hydrogen electrolyser during the whole month of October. It should be noted
that the linear approximations are suitable for describing the current density in the control
model in the operating cell temperature of 85-90 °C for the chlor-alkali electrolyser and 55-
60 °C for the hydrogen electrolyser. However, when the temperature would be allowed to
vary more widely, the electrolyser temperature will affect the voltage more significantly and
thereby the current density. The consequential reduction in the control model accuracy can
be solved by replacing the linear approximation with a Hammerstein-Wiener model using
both power and cell temperature as inputs and the current density as the output, as was
shown in Ref. [24].

Although the use of Hammerstein-Wiener models has shown suitable for describing nonlin-
ear process dynamics, there are also challenges with the application of Hammerstein-Wiener
models. Firstly, the Hammerstein-Wiener model is a generally a black-box model in which
the inner variables and equations have no physical representation. For Virtual Power Plant
operators this can make it more difficult to localize problems with the control model or es-
tablish the causes for infeasible solutions [103]. On the other hand, Hammerstein-Wiener
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Figure 5-12: Current density of a single chlor-alkali and hydrogen electrolyser in the first two
days of October

models can be used as a grey-box model that captures actual physical phenomena in the non-
linear and linear blocks thereby increasing the physical meaning of the model [104]. Secondly,
the Hammerstein-Wiener models are developed for a specific operating region and should
be updated regularly to take into account changes in the behaviour of the plant, such as a
degradation of the plant performance or a change of operating conditions. This can be solved
by using MPC structures that continuously update the control model based on plant mea-
surements (adaptive MPC) [105] and applying MPC approaches that switch between control
models depending on the operating region (gain-scheduled MPC) [106].

5-2-2 Imbalance minimization

Figure 5-13 shows the imbalances remaining after the simulation of the base-case for a time-
period of 30 days in October. In total there are 1277 MWh imbalances remaining in the
base-case of which 1277 MWh are positive imbalances and 0 MWh are negative imbalances.
This is a significant reduction of -90.1% compared to the reference imbalances of 12947 MWh
that are shown Figure 5-13 .

The cause for the imbalances can be revealed by looking the storage level of the hydrogen and
chlor-alkali plant in Figure 5-14. The time-periods at which the imbalances occur coincide
with the periods at which the storage levels reach the maximum limit. When the storage levels
have reached their maximum limit, the plants cannot operate above their nominal capacity to
provide positive demand response and thereby minimize the positive errors. Another cause for
imbalances could be the limited regulation capacity of the plants, which refers to the minimum
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Figure 5-13: Imbalances in the base-case during October

and maximum demand response that the plants can provide, expressed in MWh/ISP. In
Figure 5-15, the sum of the energy consumption of the chlor-alkali and hydrogen plant is
shown over the simulation period. It can be seen that the plants did not have to operate
at their minimum/maximum energy consumption, and hence the regulation capacity limits
are not a cause for the imbalances during the simulation period. Also, limits on the ramp-
up/down rate of the electrolysers could be a source of imbalances. During the simulation,
the maximum ramp that was required to minimize an imbalance was 9.69 MWh/ISP which
is well within the ramp rate ability of both plants combined which is -/+ 34.6 MWh/ISP.
This high ramp rate is made possible predominantly by the hydrogen plant with the PEM
electrolysers, which is capable of ramping down/up with -/+ 27.65 MWh/ISP, whereas the
chlor-alkali plant can reach ramp with -/+ 6.91 MWh/ISP. If the ramp rate would form
the only limiting factor, the renewable energy portfolio could be increased over 3 times the
current capacity (34.6 / 9.69 > 3) before the ramp-rate starts to become a limiting factor.
However in practise, such an upscale will result in a high amount of imbalances firstly due to
the limited storage and secondly due to the limit on the regulation capacity.
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Figure 5-14: Chlor-alkali and hydrogen storage level in base-case during October

From these results, it can be seen that applying industrial demand response can reduce
imbalances significantly compared to the reference in which demand response is not used to
correct imbalances (-90.1%). The imbalances can be explained by the limited storage capacity
of the industrial plants. The regulation capacity of the plants on the other hand is sufficient
as maximum and minimum energy consumption limits are not reached. Finally, the ramp-
rate does not impact the imbalance minimization by the chlor-alkali and hydrogen production
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Figure 5-15: Total energy consumption of hydrogen and chlor-alkali plants in base-case during
October

process since the ramping capability of the plants exceeds the maximum demand response
ramp required.
As a final remark, in this thesis a lower limit of 1 A/cm2 was assumed for the hydrogen elec-
trolysers, whereas literature indicates that the lower limit of PEM electrolysis could also be
lower such as 0.6 A/cm2 for example [94]. In the base-case simulation study, the assumption
of either 0.6 or 1 A/cm2 would not have affected the imbalance minimization results since the
lower energy consumption limit and therefore the lower current density limit of 1 A/cm2 is
never required to minimize negative imbalances, as is also visible in Figure 5-15. However, if
a minimum current density of 0.6 A/cm2 had been implemented, it would have increased the
load shedding capability of the hydrogen plant which would be visible by a large regulation ca-
pacity in Figure 5-15. This would have highlighted that a significant amount of load shedding
capability would remain mostly unused by the Virtual Power Plant since already at 1 A/cm2

the ability to minimize negative imbalances is sufficient. This feature could be addressed in
more detail in future studies, which could include an analysis to determine if the hydrogen
plant can participate in load shedding regimes next to the minimization of imbalances for the
Virtual Power Plant.

Comparison with different time-periods

To observe how the MPC performs at different time-periods than October, performance in the
months of January, April and July have also been simulated. Figure 5-16 and Table 5-1 shows
the simulation results of each month. As mentioned, the reference refers to the imbalances
that would occur if the Virtual Power Plant does not use demand response to correct the
Day-Ahead forecast errors. It can be observed that the minimization of imbalances using the
MPC is fairly similar and the reduction is within the range of -89.5 to -99.3%, being lowest
in July and highest in January.

Month January April July October (base-case)
Reference 9809 MWh 9301 MWh 10240 MWh 129747 MWh
Imbalances remaining 65 MWh 311 MWh 1077 MWh 1277 MWh
Reduction -99.3% -96.7% -89.5% -90.1%

Table 5-1: Imbalance minimization in several months of 2020
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Figure 5-16: Simulation of different months in the year

The reason for the limited remaining imbalances during January is the fact that storage limits
were reached only once whilst the regulation capacity of the industrial plants was sufficient
throughout the simulation. In April, imbalances resulted from a period of highly negative
forecast errors which caused the industrial plants to reach their lowest energy consumption
point and to operate at the lower storage level for a period of time. Finally in July, there
were multiple time periods in which the storage limits were reached resulting in an inability
to minimize imbalances.

Computation-time

The computation time of the MPC is very suitable for minimizing imbalances as on average
less than 0.25 seconds was necessary for an optimization with 12 time-steps which is well
within the 15 minutes of an ISP. The fast computation time can be attributed to the limited
number of time-steps and the removal of most binary variables from the optimization as de-
scribed in Section 4-2-2. Eventually only 2 constraints with binary variables were necessary
in the optimization, whereas all other constraints were linear. The fast computational perfor-
mance shows that the MPC in this thesis is tractable and scale-able, i.e. could be extended
with additional components such as flexible loads and storage units, while it is still able to de-
scribe nonlinear process dynamics. Given the fast computational performance future studies
could consider reformulating the MPC to include stochastic or robust optimization thereby
incorporating the effect of uncertainty in the renewable energy production.

5-3 Sensitivity Analysis

5-3-1 Storage capacity

To observe the effect of the storage capacity on the imbalance minimization, simulation studies
have been performed with half the size and double the size of the hydrogen/chlorine storage.
The imbalances at the different storage capacities are shown in Figure 5-17. Reducing the
storage capacity to 3 hours of nominal production leads to 4149 MWh imbalances which
is an increase of 225% compared to the base-case. Note that the imbalances in the base-
case amount to 1277 MWh. On the other hand, raising the storage capacity to 12 hours of
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nominal production results in 18 MWh imbalances which is a reduction of -99% compared to
the base-case.
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Figure 5-17: Imbalances at with different storage levels

The reasons for the large effect of the storage capacity on the imbalance minimization can
be explained with Figures 5-18 and 5-19. As can be seen in Figure 5-18, the limits of the
storage at a capacity of 3 hours of nominal production are frequently reached and during
these periods demand response cannot be provided, hence resulting in a higher amount of
imbalances than in the base-case. In Figure 5-19, on the other hand, it can be observed that
at a capacity of 12 hours of nominal production the storage level limits are never reached.
In this case, the capability to provide demand response is no longer impeded by the storage
level limits and the imbalances can be eliminated almost completely.

It should be noted that during the simulation with the storage size doubled, the amount of
energy that could be bought per hour on the Day-Ahead market was also increased to 62.88
MWh/hour (which is 15.72 MWh/ISP) such that always enough energy could be bought to
return the storage levels to the midway level even if the storage limit was reached. However,
the artificial forecast errors of 15.72 MWh/ISP will compound on the regular Day-Ahead
forecast potentially leading to imbalances. Upon checking, the regulation capacity of the
industrial plants was reached several times in this simulation period, however this only lead
to a very limited amount of additional imbalances of 18 MWh.
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Figure 5-18: Storage levels at capacity of 3 h. of nominal consumption

Based on the results it can be shown that the ability to minimize imbalances is strongly
dependent on the storage capacity of the chlor-alkali and hydrogen plant. At half the storage
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Figure 5-19: Storage levels at capacity of 12 h. of nominal consumption

capacity, the storage level limits are more frequently reached resulting in a higher amount
of imbalances (4149 MWh) than the base-case (1277 MWh), whereas at double the storage
capacity imbalances can be almost eliminated (18 MWh).

5-3-2 Utilization rate

Since chemical plants often operate with higher utilization rates than the 80% assumed in
the base-case [16], the imbalance minimization has also been simulated at utilization rates of
85%, 90% and 95%. Figure 5-20 shows the imbalances at the different utilization rates. The
effect of the utilization rate is limited at 85% and 90% as the imbalances are 1150 MWh and
1121 MWh respectively which is close to the imbalance minimization at 80%. However, a
significant increase in imbalances can be observed at 95% to 2891 MWh (+126%).
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Figure 5-20: Imbalances at different utilization rates

The increase of imbalances at 95% can be explained with Figures 5-21 and 5-22. The figures
show the error between the Day-Ahead bids and actual renewable energy production that
needs to be eliminated by applying demand response (blue line) and the minimum/maximum
demand response that the plants can provide per ISP, known as the regulation capacity
(dashed black line). By increasing the utilization rate from 80% to 95% the demand response
that can be provided by increasing the energy production above the nominal decreases from
-21.75 MWh/ISP (top dashed black lines in Figure 5-21) to 5.37 MWh/ISP (top dashed
black lines in Figure 5-22). The positive errors exceed the maximum of 5.37 MWh/ISP more
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frequently than -21.75 MWh/ISP. Hence, at 95% the plants often cannot sufficiently increase
their energy consumption above the nominal consumption to minimize the errors.

Being able to vary the utilization rate between 80-90% without impacting the imbalances
raises the question whether the renewable energy portfolio is sized too small compared to the
size of the industrial plants. However, with the current renewable energy portfolio size, the
storage capacity is already the main limiting factor and it would restricts further up-sizing.
It can also be noted in Figure 5-22 that at the utilization rate of 95% the demand response
energy quantity that can be provided by load shedding remains largely unused. This unused
potential would increase even further if the PEM electrolysers of the hydrogen plant could
operate as low as 0.6 A/cm2 rather than the 1 A/cm2 assumed in this study. As mentioned,
it would be interesting for future studies to assess whether this load shedding potential can be
offered in additional energy markets, without impacting the ability to minimize imbalances
in the Virtual Power Plant.
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Figure 5-21: Day-Ahead errors and demand response capability of plants at 80% utilization rate
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Figure 5-22: Day-Ahead errors and demand response capability of plants at 95 % utilization rate

Based on these results, it can be argued that the chemical plants could be operated at utiliza-
tion rates between 80-90% without significantly impacting the ability to minimize imbalances.
However at 95% the utilization rate becomes an significant impairment to minimize imbal-
ances.
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5-3-3 Day-Ahead bid correction

A simulation was performed without the Day-Ahead bid correction described in Section 4-5
and it was compared to the base-case simulation (see Figure 5-23). Without the Day-Ahead
correction the amount of imbalances is 6643 MWh which is an increase of 420% compared
to the base-case (1277 MWh) and a decrease of -49% compared to the reference imbalances
(12947 MWh). The reason for the higher number of imbalances without the Day-Ahead
correction is because the storage limits are reached more frequently due to prolonged periods
of positive or negative Day-Ahead forecast errors. This can be observed in Figure 5-24 which
presents the Day-Ahead bids and the average storage level for the first 7 days of October
with (red line) and without the bid correction (blue line). The green dots in the bottom plot
indicate the moments in time the Day Ahead ahead bidding is performed and therefore when
the MPC is providing the last storage level prediction of t = 12:00+N to determine how much
energy needs to be bought/sold in the Day-Ahead market.
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Figure 5-23: Day-Ahead bids with and without correction for the storage level

The effect of the Day-Ahead correction on the storage level can be seen most clearly between
Day 1-3. On Day 1-2, the storage level (red line) reaches the maximum limit and to sell this
abundance of hydrogen/chlorine and reduce the storage levels, the Day-Ahead bids on Day
2-3 are therefore significantly increased. By increasing the Day-Ahead bids, the chlor-alkali
and hydrogen plant need shed more load on Day 2-3 which results in a steeper drop of the
storage levels towards the midway position. Without the correction (blue line), however, the
storage level remains close to the maximum limit which reduces the ability of the plants to
provide demand response and minimize positive imbalances.

The benefit of the Day-Ahead bid correction is the ability to sell a surplus of chemicals on
the Day-Ahead market at hours of high prices or replenish the chemicals at hours with low
prices during a deficit. In addition, the storage tanks are continuously guided towards the
midway position and the plants maintain the ability to provide demand response to minimize
imbalances. There are also some challenges with the Day-Ahead bid correction. Firstly, the
last storage level prediction is of t = 12:00 + N which is multiple hours before the actual
energy exchange on the Day-Ahead market starts and in the meantime the storage tanks
may have changed considerably. This can lead to an over/underestimation of the energy that
needs to be bought/sold in order return the storage tanks back to 50%. The problem would
be corrected by increasing the prediction horizon of the MPC at t = 12.00 up to 12 hours
ahead, however it should be studied whether the accuracy of the storage level prediction this
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Figure 5-24: Day-Ahead bids with and without correction for the storage level

far ahead would remain accurate. Secondly, by placing bids that deviate from the Day-Ahead
forecast of renewable energy, this method introduces artificial forecast errors. These artificial
errors compound on the Day-Ahead forecast errors and require sufficient regulation capacity
of the plants to the minimize both the Day-ahead forecast and artificial error. This method is
therefore particularly useful for industrial processes that have abundant regulation capacity,
but are limited by other parameters (i.e. storage, ramp-rate), such as the hydrogen and chlor-
alkali plant in this thesis. In addition, future work could focus on optimizing the constraint of
the maximum energy bought/sold per hour in the Day-Ahead market based on the regulation
capacity of the plants which can enhance the financial benefits of this method. Thirdly, the
storage level correction may act too late if for instance the additional energy is sold/bought
mostly, or in part, by the end of the next day rather than at the beginning. One of the
solutions here could be to investigate the use of the intraday market in the optimization to
partially buy/sell the energy on the same day rather than on the next day.

5-3-4 Prediction horizon MPC

The prediction horizon determines how far in the future imbalances can be predicted by the
MPC. In this thesis, the effect of the prediction horizon on the imbalance minimization has
been assessed by comparing the horizon of 3 hours (base-case) to 1.5 hours and 6 hours. Figure
5-26 shows the imbalances at different prediction horizons. As can be seen, increasing the
prediction horizon has reduced the amount of imbalances compared to the base-case namely
at 1.5 h the imbalances are 1538 MWh (+20%) whereas at 6 h the imbalances are 1070 MWh
(-16%). The reason for the reducing trend of imbalances with a growing prediction horizon
is the more accurate forecast of the amount of energy that needs to be bought/sold on the
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Day-Ahead market to return the storages to the midway level. With a longer prediction
horizon, the storage level prediction at 12:00 CET, Lnorm[t = 12.00 + N], is closer to the
actual storage level at 0:00 AM of the next day. This means a more accurate amount of
energy will be bought/sold in the Day-Ahead market.
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Figure 5-25: Effect of prediction horizon length on the minimization of imbalances

However, varying the prediction horizon does not affect the imbalance minimization perfor-
mance of the MPC during the intraday redispatch phase. This can be shown by simulating
the month of October without the Day-Ahead correction 5-3-3 such that the errors between
the Day-Ahead bids and the actual renewable energy production are exactly the same in each
of the simulations. In Figure 5-26, it can be seen that the ability of the MPC to minimize
imbalances is not affected by varying the prediction horizon and all imbalances are equal
to 6643 MWh. The fact the MPC performance is the same, independent of the prediction
horizon length was also described in Ref. [107] and can be explained by the high ramp rate
ability of the plants. The maximum ramp rate required to minimize an imbalance during the
simulation is 9.69 MWh/ISP which is well within the ramping ability of the chlor-alkali and
hydrogen plant of -/+34.6 MWh/ISP, as mentioned in Section 5-2-2. With this ramp rate,
the plants can reach a desired energy consumption set-point within one time step and thus
only an accurate one step ahead prediction is important. As indicated in Ref. [107], reducing
the ramp-rate of the plants would eventually make the prediction horizon length a factor of
importance. Yet, the aim of this thesis is to implement realistic parameters for the industrial
processes involved and the reduction of the ramp-rates would yield an unrealistic chlor-alkali
and hydrogen plant operation. The prediction horizon would also become important if the
MPC is used for economic objectives (Economic MPC) rather than minimizing imbalance
volumes. For example, if the goal is to minimize operational cost of the plants and they are
exposed to time-varying prices such as in Ref. [23], it is important to be able to predict prices
further into the future such that the MPC can make more informed decisions on when to
buy/sell energy. However, this study is a technical analysis and therefore including economic
factors in the MPC such as predictions of balancing prices is outside of its scope.

These results show that the prediction horizon length does not affect the performance of
the MPC to minimize imbalances. However, increasing the prediction horizon does allow
more accurate buying/selling of energy on the Day-Ahead market to return the storage levels
to the midway level. This lowers the imbalances as the amount of times that the storage
levels operates at the limits is reduced. It is noteworthy that despite the fact that the
prediction horizon does not affect the performance of the MPC, the application of the MPC
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Figure 5-26: Minimization of imbalances without Day-Ahead correction

remains important even at a prediction horizon of one time-step. The point is that the MPC
integrates a dynamic model of the cell temperatures amongst other and which ensures that
the rescheduling of the electrolysers while ensuring that temperature bounds are not violated.

5-3-5 Imperfect forecast MPC

In the base-case, the forecast of the MPC on the actual renewable energy production was
considered perfect, hence the MPC could also perfectly forecast the imbalances. In reality,
the actual renewable energy forecast will be affected by uncertainty and hence the imbalance
prediction will also be imperfect. To assess the effect of the forecast accuracy, a simulation
with an imperfect forecast of the MPC is performed using the approach of [102]. In this
approach, the forecast of the actual renewable energy production by the MPC progressively
degrades over the prediction horizon and it gets closer to the Day-Ahead forecast.

Figure 5-27: Imperfect forecast of actual renewable energy production by MPC

Figure 5-27 shows an example of the perfect and imperfect forecast of the MPC using this
approach. It can be seen that the imperfect forecast of the MPC accurately predicts the
actual renewable energy at t = 0, however it deteriorates along the prediction horizon until it
becomes equal to the Day-Ahead forecast at t = 3 hours. The grey area shows the Day-Ahead
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forecast errors, which are correctly predicted by the MPC at t = 0 yet increasingly become
less accurate along the prediction horizon. This approach takes into account the fact that the
MPC forecasts are more accurate at the beginning of the prediction horizon compared to the
end.
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Figure 5-28: Imbalances with perfect and imperfect forecast

The simulation results of the imperfect forecast are compared with the base-case in which
a perfect forecast was assumed (see Figure 5-28). As can be seen the imbalances with the
imperfect forecast are higher compared to the perfect forecast, namely they are 1556 MWh
which is an increase of +22% compared to the base-case of 1277 MWh. This can be ex-
plained similarly to the previous section on prediction horizon length. During the Day-Ahead
bidding phase, the storage prediction by the MPC during the Day-Ahead bidding phase,
Lnorm[12.00:N], is less accurate when using the imperfect forecast compared to the perfect
forecast. Therefore, the amount of energy that is bought on the Day-Ahead market to return
the storage tanks back to the midway level is also less accurate and the storage levels will
operate more frequently at the boundaries.
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Figure 5-29: Imbalances using perfect and imperfect forecast without the Day-Ahead storage
correction

As in the previous section on the prediction horizon length, additional simulations were per-
formed in which the Day-Ahead correction for the storage levels was omitted. The results are
shown in Figure 5-29 and indicate that the perfect and imperfect forecast both yield the same
amount of imbalances, namely 6643 MWh. The imperfect forecast does not affect the imbal-
ance minimization of the MPC due to the high ramp rate of the chlor-alkali and hydrogen
plants. As long as the imbalance forecast of the first time-step is correct, which is assumed
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to be the case following the approach of [102], the predictions after the first time-step do not
affect the minimization of imbalances.

5-3-6 Ramp frequency & Number of sub-groups

In the base-case scenario, it was assumed the chlor-alkali and hydrogen electrolysers could
change energy consumption every time-step. However, frequent modulation of electrolysers
may result in unwanted wear/tear cost and, furthermore, industrial plant operators may
wish to negotiate with the Virtual Power Plant operator how often their equipment can be
modulated. To study the effect of reducing the number of ramps, a limit on the ramping
frequency was set to 12, 6 and 3 ramps within a time-period of 12 steps. The time period of
12 steps was chosen since this is equal to the prediction horizon. These ramping limits mean
that on average respectively 4, 2 and 1 ramp(s) per hour are allowed to occur per electrolyser.
Note that imbalances change each 15 minutes which means the industrial plants should be
able to ramp 4 times per hour in order to eliminate all imbalances. To overcome the ramp
limit frequency, the electrolysers in the plants have been divided in sub-groups of which the
energy consumption can be separately controlled.

Since limiting the ramp rate frequency of electrolysers requires the introduction of binary
variables, as explained in Section 4-3-3, this comes at the cost of an increased computation
time per time-step. To reduce simulation time, a single week in October (9-16 October) was
simulated and Figure 5-30 shows the Day-Ahead forecast errors during this week. Unless these
Day-Ahead forecast errors are corrected using industrial demand response the imbalances
would be 1786 MWh.
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Figure 5-30: Day-Ahead forecast errors between 9-16 October

The results of simulating this week with the varying ramp frequency limits and number of
subgroups per plant are shown in Table 5-2. It can be observed that at a ramping limit of 12
times, which is on average 4 times per hour, all the imbalances are eliminated independent
of the amount of sub-groups. Firstly, the low amount of imbalances is because the storage
levels are not reached during this period and the regulation capacity of the plants is sufficient.
Secondly, a ramping limit of 12 in a time period of 12 steps allows each of the electrolysers to
ramp at every time-step which therefore does not restrict the ramping ability. Therefore, the
results with a ramp frequency of 12 steps can be seen as the maximum reduction in imbalances
possible. When setting the ramping limit of the electrolysers to 6 ramps, which is on average
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2 ramps per hour per electrolyser, some imbalances are observed but they still remain very
limited (0-13 MWh). This is because even at 1 sub-group per plant, the chlor-alkali and
hydrogen plant can ramp interchangeably and thereby combined they can reach a ramping
frequency of 4 times per hour. Finally however, at a limit of 3 ramps, which is on average
1 ramp per hour per electrolyser, the effect of ramp limits on the imbalance minimization
becomes important. At 1 subgroup, the imbalances result in 227 MWh and this high number
of imbalances occurs because the chlor-alkali and hydrogen plant can only ramp 2 times per
hour on average whilst the imbalances require a ramp frequency of 4 times per hour. In this
case the MPC has to make the decision when ramping of the sub-groups is most optimal for
minimizing imbalances. When the electrolysers per plant are sub-divided into 3 groups per
plant on the other hand the imbalances reduce significantly to 13.8 MWh. This is because
there are 3 sub-groups in the hydrogen plant and in the chlor-alkali plant respectively, hence
6 individually operable sub-groups in total, which can ramp after another and therefore allow
a ramping rate of 4 times per hour.

Ramp frequency per 12 time-steps 12 ramps 6 ramps 3 ramps
Nr. of sub-groups per plant 1 2 3 1 2 3 1 2 3
Imbalances (MWh) 0 0 0 13 0 9.1 227.0 30.8 13.8

Table 5-2: Imbalances during 9-16 October with varying ramp-frequencies and subgroups

The operation of the Virtual Power Plant with a ramp frequency of 3 per twelve time-steps and
with 3 sub-groups can be explained in more detail with Figures 5-31, 5-32 and 5-33. In Figures
5-31 and 5-32 the energy consumption is shown of hydrogen sub-group #1 with 8 electrolysers
and chlor-alkali sub-group #1 with 8 electrolysers. It can be seen that the ramp frequency
in these sub-groups is significantly lower than required for the rapidly changing Day-Ahead
forecast errors as shown in 5-30. However, by aggregating the energy consumption provided
by all different electrolyser sub-groups (3x8 of the hydrogen plant and 3x8 of the chlor-alkali
plant) as shown in Figure 5-33 it can be seen the industrial plants combined can provide the
Virtual Power Plant demand response with the same granularity as the Day-Ahead forecast
errors. For this simulation, the MPC optimizes the ramping moments and ramp height of
the individual subgroups which results in an elimination of nearly all imbalances from 1786
MWh to 9.1 MWh (-99.5%).
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Figure 5-31: Hydrogen sub-group #1 with 3 ramps and 3 sub-groups
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Figure 5-32: Chlor-alkali sub-group #1 with 3 ramps and 3 sub-groups

The results above show that a reduction of the ramping frequency of electrolysers does not
have to affect the imbalance minimization ability if the number of independently operating
sub-groups is increased. With the proposed method, Virtual Power Plants can offer industrial
consumers the option to choose a frequency at which their equipment can be modulated which
can be beneficial for reducing potential wear/tear cost. However, it should be noted that the
computation time significantly increased by implementing a ramp frequency especially with a
growing number of subgroups. At 3 sub-groups and 3 ramps per electrolyser the computation
time per solution often exceeded 20 seconds, which was the maximum solution time allowed
this thesis in order to restrict the simulation time. The rise in the computation time can
be explained by the growing number of binary variables caused by the increasing number of
sub-groups that each have a ramping frequency constraint. Given this observation, increasing
the number of sub-groups and implementing ramping limits could quickly lead to tractability
issues. Solutions to counter the tractability problem are to limit the maximum computation
time of the solver as was performed in this study, granted that a feasible solution can always
be found and the results are remain satisfactory. Furthermore, the optimality gap of the
solver could be increased.
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Figure 5-33: Total energy consumption of plants with 3 ramps and 3 sub-groups
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Chapter 6

Conclusion

Virtual Power Plants can integrate and redispatch distributed renewable energy resources to
gain revenue in the Day-Ahead market, however as a Balancing Responsible Party it can
risk high imbalance costs due to errors between the Day-Ahead forecast and actual energy
production. Several industrial processes have the capability to flexibly adjust their energy
consumption which could assist in the reduction of imbalances in a Virtual Power Plant
portfolio. In this thesis a technical analysis was performed to assess the ability of industrial
processes to minimize imbalances in Virtual Power Plants due to Day-Ahead forecast errors.

For the first research question, literature on industrial demand response was reviewed to
outline the advantages and disadvantages of major industrial processes for minimizing imbal-
ances by operating as a flexible load in a short-term redispatch scheme. Suitable processes
included refrigerated warehouses, chlor-alkali plants, hydrogen plants and aluminum produc-
tion plants, which presented advantages such as a high ramp-rate, low process complexity,
fast response time and ability to shift load consumption in time. On the other hand, less
suitable processes were the steel-making, cement production and paper & pulp industry due
to common disadvantages such as inefficiencies at partial load, significant inter-dependencies
of processes, high utilization rates and low ramping capabilities.

For the second research question, an analysis was performed to assess the capability of the
chlor-alkali and hydrogen industry to minimize imbalances in Virtual Power Plants due to er-
rors in the Day-Ahead forecast of renewable energy. A Virtual Power Plant was developed in
Python consisting of onshore wind (300 MW) and PV (300 MW), a chlor-alkali (203.5 MW)
and hydrogen plant (193.4 MW), and a Model Predictive Control (MPC) unit. High fidelity
models for the industrial plants were constructed in OpenModelica which could be simulated
as Functional Mock-up Units in Python and historical data was used to represent Day-Ahead
forecast errors in the renewable energy portfolio. The MPC developed in this thesis inte-
grated nonlinear dynamics of the industrial plants by using data-driven Hammerstein-Wiener
models. The objective of the MPC was to minimize imbalances by adjusting the energy con-
sumption of the industrial plants while respecting process constraints. A simulation study of
a base-case in the month of October showed that the chlor-alkali and hydrogen plant could
minimize imbalances significantly from 12947 MWh to 1277 MWh which is a reduction of

Master of Science Thesis R.F.J. Tetteroo



86 Conclusion

-90.1%. Simulations during the months of January, April and July showed similar high im-
balance reduction percentages between -89% and -99%. The ability to minimize imbalances
is mostly impaired by the limited storage capacity of the industrial plants. The utilization
rate and limited regulation capacity marginally contribute to the imbalances that remained.
Furthermore, the chlor-alkali and the hydrogen plant could ramp up and down significantly
within a time-step hence imbalances due to high ramps between imbalances were not present.

For the third research question, the effect of several parameters of the MPC and the industrial
plants on the imbalance minimization was evaluated. Halving the storage capacity of the
hydrogen and chlor-alkali tanks increased the imbalances significantly to 4149 MWh (+225%)
whereas doubling the storage capacity could almost completely eliminate the imbalances 18
MWh (-99%). Increasing the storage capacity significantly reduces imbalances since the
storage level boundaries are reached less often and therefore the industrial plants maintain the
ability to operate below/above the nominal energy consumption to provide demand response.
Varying the utilization rates between 80-90% limitedly affected the imbalances whilst at 95%
the imbalances increased significantly to 2891 MWh (+126%) since the ability to operate
above the nominal capacity was impaired which lead to positive imbalances. Omitting the
Day-Ahead bid correction that guides the storage levels to 50% majorly increased imbalances
to 6643 MWh (+420%) since continuously negative/positive imbalances keep the storage levels
operating at their limits for prolonged periods of time. The prediction horizon and forecast
accuracy of the MPC had limited to no influence on the imbalance minimization owing to
the favorably high ramping capability of the chlor-alkali and hydrogen plant. In fact, as long
as this first step-ahead forecast is accurate, the plants are able to reach the set-point and
minimize the imbalance completely owing to their high ramping ability. Finally, it was shown
that the imbalance minimization ability of the industrial plants can be maintained under a
limit on the ramping frequency of individual electrolysers by organizing the electrolysers into
separately controllable sub-groups in the industrial plants.
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Chapter 7

Recommendations

Based on the research several recommendations for future study can be provided.

• In this study, the parameters of the industrial plants were based on literature. In future
work, actual data of the chlor-alkali and hydrogen plants in the Port of Rotterdam could
be used which would strongly increase the applicability of the research. This data can
consist of actual storage sizes, utilization rates, chemical consumption by consumption
as well as data on the electrolysers such as the operating temperature, inlet temperature
range, ramp-rate and nr. of electrolysers in the plant.

• In this thesis, the chlor-alkali and hydrogen plant was chosen to be integrated in the
Virtual Power Plant owing to their favorable characteristics for short-term dispatch and
their location in the Port of Rotterdam. However, future work could focus on assessing
the ability of the aluminum production and refrigerated warehouse industry to minimize
imbalances. These processes both show similar favorable characteristics and their ability
to minimize imbalances in Virtual Power Plants has not been assessed.

• The PEM electrolysers in the plant of this thesis operate with a minimum current
density of 1 A/cm2. However, research indicates that PEM electrolysers could operate
as low as 0.6 A/cm2, which would strongly increase the ability to shed loads. In this
thesis, changing the lower limit from 1 to 0.6 A/cm2 would have a limited effect on
the imbalance minimization since the minimum current density of the electrolysers are
not reached during the simulation. However, future work could focus on implementing
a lower minimum current density for the PEM electrolysers and study whether it is
profitable to offer the additional load shedding capability in energy markets.

• The control model of the MPC in this thesis provides the ability to control the cell
temperature of the chlor-alkali and hydrogen electrolysers at different inputs of power.
Future work could consider focusing on expanding the control model to make it include
more process variables of the plant. Additional variables that can be included in the
control model by means of Hammerstein-Wiener models could be the concentration
of NaOH(aq) and NaCl2(aq) in the chlor-alkali electrolyser cell and the volumetric
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flow-rate of electrolyte into the cells. Expanding the control model of the MPC with
additional relevant process variables would increase the applicability of the controller
for a real hydrogen and chlor-alkali plant.

• The MPC in this thesis can integrate dynamics at the process time-frame in the schedul-
ing time-frame at which energy markets operate. Therefore it provides a good founda-
tion to be used for economic analyses in future study. The MPC can be included in a
study on maximizing profits for Virtual Power Plants that integrate industrial processes
in their portfolio to provide demand response in multiple energy markets or in studies
on minimizing imbalance cost rather than imbalance volumes of Virtual Power Plants.

• In this study, the Day-Ahead market was used to buy/sell additional energy which
allowed the storage levels to operate around the 50% level. The Day-Ahead optimization
that was implemented to this purpose can be improved in future work by tuning the
parameters, amongst others, of the maximum/minimum amount of energy that can be
bought per hour during the Day-Ahead optimization and the maximum ramp on the
hourly bids. Additionally, future work could consider incorporating the intraday market
to avoid the delay between the time that the additional energy is bought/sold and that
the energy becomes available to the industrial plants.
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Appendix A

Guiding tables and figures

A-1 Parameters and variables of OpenModelica plants

A-1-1 Chlor-Alkali plant

Symbol Description Value Ref.
α Multiplication factor [−] 0.5 [22]
Ae,c Cell membrane area [m2] 2.7 [22, 80]
Cano

Cl Concentration chloride ions in anode [ mol
m3 ]

Cano
NaCl Concentration of sodium chloride in outlet flow rate [ mol

m3 ]
Ccat

NaOH Concentration of sodium hydroxide in outlet flow rate [ mol
m3 ]

Ccat
OH Concentration chloride ions in cathode [ mol

m3 ]
Cano,in

NaCl Concentration of sodium chloride in inlet flow [ mol
m3 ]

Ccat,in
NaOH Concentration of sodium hydroxide in inlet flow rate [ mol

m3 ]
Cp,OH Heat capacity of chlorine [ J

mol·K ] 75 [22]
Cp,Cl Heat capacity of hydroxide [ J

mol·K ] 60 [22]
Cp,H2O Heat capacity of water [ J

mol·K ] 50 [22]
Cpt,c Lumped heat capacity of cell [ J

mol·K ]
Cin

pt,c Lumped heat capacity of inlet flow rate [ J
mol·K ]

DH2O Membrane diffusivity [ m2

s
] 2 · 10−10 [22, 84]

F Faraday constant [ C
mol

] 96485 [22]
∆Hrxn Heat consumed by the chlor-alkali reaction per mol [ J

mol
] 447 · 103 [22]

∆Hvap Heat consumed by evaporation of one mol of water [ J
mol

] 41 · 103 [22]
Ic Current in electrolyser [A]
k Adiabatic exponent [−] 1.4 [22]
Ms,c Amount of chloride in storage [mol]
Ṁin,c Molar flow rate of chloride into storage [ mol

s
]

Ṁout,c Molar flow rate of chloride out of storage [ mol
s

]
nc Polytropic exponent [−] 1.45 [22]
nano

H2O Amount of moles of water in anolyte [mol]
ncat

H2O Amount of moles of water in catholyte [mol]
ṅano,out

Cl2
Molar production of chlorine gas by cell [ mol

s
]

Ṅano,out
Cl2

Molar production of chlorine gas by stack [ mol
s

]
Ṅcat,out

H2,c Molar production of hydrogen gas by stack [ mol
s

]
ṅin

t Total molar inflow rate in cell [ mol
s

]
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ṅout
t Total molar outflow rate in cell [ mol

s
]

Ncells,c Number of cells in a chlor-alkali electrolyser [−] 160 [22, 80]
nano

cl Amount of moles of chloride ions in anolyte [mol]
ncat

H2O Amount of moles of water in catholyte [mol]
ncat

OH Amount of moles of hydroxide in catholyte [mol]
nt Total amount of moles in electrolyser cell [mol]
ηpc Polytropic efficiency [−]
P ano

Cl2 Pressure anode chamber [bar] 1.213 [22]
Pf,c Pressure of chlorine gas after compression [bar] 3.04 [22]
Pi,c Pressure of chlorine gas before compression [bar] 1.013 [22]
Pc Power consumed by electrolyser [watt]
Q̇evp Heat flow from evaporation [watt]
Q̇gen,c Heat generation from electrolysis [watt]
Q̇loss,c Heat loss to environment [watt]
Q̇rxn Heat flow from chemical reactions [watt]
R Universal gas constant [ J

molK̇
] 8.314 [22]

Rth,c Thermal resistance of electrolyser [ C
watt

] 0.167 [22]
Tamb Ambient temperature [K] 298.15 [22]
Tf,c Temperature of chlorine gas after compression [K]
Ti,c Temperature of chlorine gas before compression [K] 286.15 [22]
Tin,c Temperature of inlet flow [K]
Tc Temperature of electrolyser cell [K]
Vact,c Activation voltage [V ]
Vcell,c Cell voltage [V ]
Vequ,c Equilibrium voltage [V ]
Vohm,c Ohmic voltage [V ]
Vrev,c Reversible voltage [V ] 1.4 [22]
V Cell volume [m3] 0.2 [22]
δV Membrane thickness [m] 2.5 · 10−4 [22]
V̇ Outlet flow rate [ m3

s
]

V̇ in Inlet flow rate [ m3

s
]

W elec
comp,c Actual compression energy for a mole of chlorine [ J

mol
]

W th
comp,c Theoretical compression energy for a mole of chlorine [ watt

mol
]

xi Mole fraction of species i [−]

Table A-1: Parameters and variables of chlor-alkali OpenModelica model

A-1-2 Hydrogen plant

Symbol Description Value Ref.
αano Experimental constant [−] 0.7353 [85, 86]
Cp,m,H2 Heat capacity of hydrogen [J/(mol ·K)]
Cp,m,O2 Heat capacity of oxygen [J/(mol ·K)]
Cpt,h Heat capacity of a 46 KW PEM electrolyser [J/K] 162116 [85, 86]
δmem Membrane thickness [m] 178 · 10−6 [85, 86]
Eexc Activation energy for electron transport in anode [J ] 52994 [85, 86]
Epro Activation energy for proton transport [J ] 10536 [85, 86]
F Faraday constant [C/mol] 96485 [85, 86]
∆hj Enthaply of species j [J/mol]
Ih Current in electrolyser [A]
j0,an Exchange current density [A/cm2] 1.08 ·10−4 [85, 86]
jdens Current density [A/cm2]
k Adiabatic exponent [−] 1.4 [85, 86]
n Polytropic exponent [−] 1.609 [108]
Ms,h Amount of hydrogen in storage [mol]
Ṁin,h Molar flow rate of hydrogen into storage [mol/s]
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Ṁout,h Molar flow rate of hydrogen out of storage [mol/s]
ṅj Moles of species j [mol]
Ncells,h Nr. of cells in a 46 KW PEM electrolyser [−] 60 [85, 86]
Ns,h Nr. of 46 KW PEM electrolysers in series [−] 160
ṄH2,h Molar production rate of hydrogen [mol/s]
ṄH2O Molar consumption rate of water [mol/s]
ṄO2 Molar production rate of oxygen [mol/s]
ηpc Polytropic efficiency [−]
ηpump Electric efficiency of water pump [−] 0.75 [85, 86]
σmem,std Membrane conductivity at standard conditions [S/m] 10.31 [85, 86]
σmem Membrane conductivity [S/m]
pano Pressure in the anode [Pa] 29 · 105 [85, 86]
pcat Pressure in the cathode [Pa] 30 · 105 [85, 86]
Pf Pressure of hydrogen after compression [bar] 100 [87]
Pi Pressure of hydrogen before compression [bar] 30 [85, 86]
ppH2 Partial pressure of hydrogen [bar]
ppH2O Partial pressure of water [bar]
ppO2 Partial pressure of oxygen [bar]
Q̇cool Heat removal by cooling system [J/s]
Q̇elec Power consumption of water pump [J/s] 1100 [85, 86]
Q̇gen,h Heat generation from electrolysis [J/s]
Q̇loss,h Heat loss to ambient [J/s]
Q̇pump,loss Heat generation from water pump [J/s]
R Gas constant [J/(mol ·K)] 8.14 [85, 86]
Rmem Membrane resistance [Ω ·m2]
Rth,h Thermal resistance of 46 KW PEM electrolyser [K/(J · s)] 0.0668 [85, 86]
Ti,h Temperature of hydrogen before compression [K] 298.15 [109]
Tstd Temperature at standard conditions [K] 298.15 [85, 86]
Th Temperature of electrolyser [K]
Vact,h Activation voltage [V ]
Vcell,h Cell voltage [V ]
Vocv,h Open-circuit voltage [V ]
Vohm,h Ohmic voltage [V ]
Vrev,h Reversible voltage [V ]
Vstd,h Voltage at standard conditions [V ] 1.23 [85, 86]
Vtn Thermo-neutral voltage [V ] 1.48 [85, 86]
W elec

comp,h Actual compression energy for mole of hydrogen [J/mol]
W th

comp,h Theoretical compression energy for mole of hydrogen [J/mol]

Table A-2: Parameters and variables of hydrogen OpenModelica model
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A-2 Day-Ahead electricity prices Belgium of 2020
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Figure A-1: Day-Ahead prices of 2020 in Belgium

A-3 Matrices of state-space models

ACl2 =


2.68 −1.71 0.09 0 0 0
2.29 −1.30 0.07 0 0 0
0.05 −0.02 0.0012 0 0 0

0 0 0 2.80 −1.81 0.16
0 0 0 2.36 −1.36 0.12
0 0 0 0.11 −0.05 0.004

 BCl2 =


5.03 0
2.74 0

0.03125 0
0 5.12
0 2.77
, 0 0.0625

 (A-1)

CCl2 =
[
1 −0.98 0 1 −1 0]

]
(A-2)

AH2 =


1.65 −0.66 −0.01 0 0 0

1 0 0 0 0 0
0 0.008 0 0 0 0
0 0 0 1.63 0.64 −0.009
0 0 0 1 0 0
0 0 0 0 −0.008 0

 BH2 =


4 0
0 0
0 0
0 4
0 0
, 0 0

 (A-3)

CH2 =
[
0.64 −0.64 1.04 1 0.64 0.624 1.01]

]
(A-4)

A-4 Parameters and variables of MPC and Day-ahead optimization

A-4-1 Model Predictive Controller

Symbol Description Value Ref.
ACl2 State matrix of linear model for Cl2 electrolyser
Ae,Cl2 Cl2 electrolyser cell area [m2] 2.7 [80]
Ae,H2 H2 electrolyser cell area [m2] 0.29 [85, 86]
AH2 State matrix of linear model for H2 electrolyser
BCl2 Input matrix of linear model for Cl2 electrolyser
bg,Cl2 (t) Binary variable on ramping of Cl2 electrolyser in group g [−]
BH2 Input matrix of linear model for H2 electrolyser
bk,H2 (t) Binary variable on ramping of H2 electrolyser in group k [−]
btot Maximum nr. ramps per N time steps [−]
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CCl2 Output matrix of linear model for Cl2 electrolyser
CH2 Output matrix of linear model for H2 electrolyser
F Faraday constant [C/mol] 94865 [22]
g Cl2 electrolyser sub-group number g [−]
Gsub Number of sub-groups in Cl2 plant [−]
jCl2,max Max. current density of Cl2 electrolyser [A/cm2] 0.6 [22]
jCl2,min Min. current density of Cl2 electrolyser [A/cm2] 0.3 [22]
jCl2,nom Nominal current density of Cl2 electrolyser [A/cm2]
jg,Cl2 (t) Current density of Cl2 elec. in sub-group g at time t [A/cm2]
jH2,max Max. current density of H2 electrolyser [A/cm2] 1.6 [110]
jH2,min Min. current density of H2 electrolyser [A/cm2] 1
jH2,nom Nominal current density of H2 electrolyser [A/cm2]
jk,H2 (t) Current density of H2 elec. in sub-group k at time t [A/cm2]
∆jCl2,down Ramp-down of current density of Cl2 electrolysers [A/cm2] 0.075 [80]
∆jCl2,up Ramp-up of current density of Cl2 electrolysers [A/cm2] 0.075 [80]
k H2 electrolyser sub-group number g [−]
Ksub Number of sub-groups in H2 plant
Lmax,Cl2 Max Cl2 storage capacity [mol]
Lmax,H2 Max H2 storage capacity [mol]
Lnorm,Cl2 (t) Normalized storage level of Cl2 at time t [−]
Lnorm,H2 (t) Normalized storage level of H2 at time t [−]
N Prediction horizon [15min] 12 [100]
Ncells,Cl2 Amount of cells in Cl2 electrolyser stack [−] 160 [22]
Ncells,H2 Amount of cells in H2 electrolyser stack [−] 60 [85, 86]
Nseries,H2 Amount of 46 KW PEM electrolysers in series [−] 160
Ṅg,Cl2(t) Production of Cl2 per elec. in sub-group g at time t [mol/s]
Ṅk,H2 (t) Production of H2 per elec. in sub-group k at time t [mol/s]
σ1 Penalty on the storage level deviation [−] 1000
σ2 Penalty on the slack variables [−] 1000000
Pg,Cl2 (t) Power cons. per Cl2 electrolyser in sub-group g at time t [MW ]
Pg,dr,Cl2 (t) Demand response per Cl2 elec. in sub-group g at time t [MW ]
Pk,dr,H2 (t) Demand response per H2 elec. in sub-group k at time t [MW ]
Pk,H2 (t) Power cons. per H2 electrolyser in sub-group k at time t [MW ]
Pnom,Cl2 Nominal power cons. of Cl2 electrolyser [MW ]
Pnom,H2 Nominal power cons. of H2 electrolyser [MW ]
Q−(t) Negative imbalance at time t [MWh/ISP ]
Q+(t) Positive imbalance at time t [MWh/ISP ]
Qact(t) Actual renewable energy production at time t [MWh/ISP ]
QDA,bid(t) Energy bid in the Day-Ahead market at time t [MWh/ISP ]
Qimb(t) Imbalance forecast at time t [MWh/ISP ]
Qres Energy reserve [MWh] 0.5
Q̇cool,max Maximum cooling load of H2 electrolyser [MW ] 1.44
Q̇cool,min Minimum cooling load of H2 electrolyser [MW ] 0.69
Q̇k,cool(t) Cooling load per H2 electrolyser of sub-group k at time t [MW ]
SCl2,up(t) Upper slack variable on chlorine storage level at time t [−]
SCl2,low(t) Lower slack variable on chlorine storage level at time t [−]
SH2,up(t) Upper slack variable on hydrogen storage level at time t [−]
SH2,low(t) Lower slack variable on hydrogen storage level at time t [−]
t Time [15min]
∆t Time-step [min] 15
Tg,in(t) Inlet temp. per Cl2 elec. in sub-group g at time t [◦C]
Tin,max Max inlet temperature to Cl2 electrolyser [◦C] 80 [82, 80]
Tin,min Min inlet temperature to Cl2 electrolyser [◦C] 70 [80]
Tg,Cl2 (t) Temperature per Cl2 electrolyser in sub-group g at time t
Tmax,Cl2 Max temperature of Cl2 electrolyser [◦C] 90 [82, 80]
Tmin,Cl2 Min temperature of Cl2 electrolyser [◦C] 85 [82, 80]
Tk,H2 (t) Temperature per H2 electrolyser in sub-group g at time t
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Tmax,H2 Max temperature of H2 electrolyser [◦C] 60 [85, 86]
Tmin,H2 Min temperature of H2 electrolyser [◦C] 55
vQ̇,cool,max Max ’inner’ cooling input per H2 electrolyser [−] −79.87
vQ̇,cool,min Min ’inner’ cooling input per H2 electrolyser [−] −42.46
vg,power,Cl2 (t) Inner’ power input per Cl2 elec. in sub-group g at time t [−]
vk,Q̇,cool(t) Inner’ cooling input per H2 elec. in sub-group k at time t [−]
vk,power,H2 (t) Inner’ power input per H2 elect. in sub-group k at time t [−]
wg,T,Cl2 (t) Inner’ temperature per Cl2 elec. In sub-group g at time t [−]
wk,T,H2 (t) Inner’ temperature per H2 elec. in sub-group k at time t [−]
wT,Cl2,max Max ’inner’ temperature of Cl2 electrolyser [−] 8.6
wT,Cl2,min Min ’inner’ temperature of Cl2 electrolyser [−] −12
wT,H2,max Max ’inner’ temperature of H2 electrolyser [−] −10.49
wT,H2,min Min ’inner’ temperature of H2 electrolyser [−] −10.49
~xg,Cl2 (t) inner’ state vector per Cl2 electrolyser in sub-group g [−]
~xk,H2 (t) inner’ state vector per H2 electrolyser in sub-group k [−]

Table A-3: Parameters and variables of Model Predictive Controller

A-4-2 Day-Ahead optimization

Symbol Description Value
QDA,bid(t) Energy bid in Day-Ahead market [MWh/h]
QDA,RE(t) Actual renewable energy production [MWh/h]
QDA,stor(t) Energy bought/sold to return storage levels to 50% [MWh/h]
PriceDA(t) Day-Ahead energy price [EUR/MWh]
∆Qstor Total energy surplus/deficit to return storage levels to 50% [MWh]
Qmax Maximum energy bid in Day-Ahead market [MWh/h] 7.7
∆Qmax Maximum ramp of energy bids in Day-Ahead market [MWh/h] 3.85

Table A-4: Parameters and variables of Day-Ahead optimization

A-5 Energy calculation to return storage levels to midway level

The calculation of the energy needed to return the storage levels back to the midway level is described below,
using the chlorine storage tank as an example. First, the last prediction by the MPC of the chlorine storage
level Lnorm,H2 [12.00+N] is used to determine the deviation of the storage levels from the midway level.

∆Lnorm,Cl2 [12.00 +N ] = Lnorm,Cl2 [12.00 +N ] − 0.5 (A-5)

Then, re-arranging Faraday’s law the average current density at which the chlor-alkali electrolysers should
operate during the next day to return the storage levels to the original levels is:

∆jCl2 = − ∆Lnorm,H2 [12.00 +N ] · Lmax,Cl2

0.5 ·Ae,c ·Ncells,c ·Ns,c · 3600 · 24 · F (A-6)

javg,Cl2 = ∆jCl2 + jCl2,nom (A-7)

where javg,Cl2 is the average current density at which the chlor-alkali plant should operate for a day to return
the storage to the midway level, jCl2,nom is the nominal current density, ∆jCl2 is the average current density
above/below the nominal current density, Ae,c is the surface area of a single chlor-alkali cell, Nc is the amount
of cells per electrolyser, Ns,c is the amount of electrolyser stacks in the plant, 3600 ·24 is the amount of seconds
per day, and F is the Faraday constant.
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The average power consumption, Pavg,Cl2 (t), at which the electrolysers need to operate to return the storage
back to the midway level can be calculated by rewriting the empirical relationship between power and current
density.

Pavg,Cl2 (t) = javg,Cl2 (t)
0.0639932 − 0.88 (A-8)

After this, the average power consumption of the chlor-alkali electrolyser above/below the nominal power
production can be calculated:

∆Pavg,Cl2 (t) = Ncells,c · (Pavg,Cl2 (t) − Pnom,Cl2 ) (A-9)

where ∆Pavg,Cl2 is the difference between the nominal power consumption and the actual power profile needed
to return the chlorine storage back to the midway position.

Using ∆Pavg,Cl2 , the total energy that needs to be bought/sold to return the chlorine storage to the midway
position can be calculated:

∆Qstor,Cl2 = ∆Pavg,Cl2 · 24 · 3600
3600 (A-10)

where ∆Qstor,Cl2 indicates the amount of energy that needs to be bought/sold in the Day-Ahead market to
return the storage back to the midway position, the 24 · 3600 term indicates the amount of seconds in a day,
and the division by 3600 is used to convert MJ to MWh.

A-6 Simulation results
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Figure A-2: Input and output of chlor-alkali electrolyser during October
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