<]
TUDelft

Delft University of Technology

Software-Based Mitigation for Memory Address Decoder Aging

Kraak, Daniél; Gursoy, C. C.; Agbo, I. O.; Taouil, M.; Jenihhin, M.; Raik, J.; Hamdioui, S.

DOI
10.1109/LATW.2019.8704595

Publication date
2019

Document Version
Accepted author manuscript

Published in
2019 IEEE Latin American Test Symposium (LATS)

Citation (APA)

Kraak, D., Gursoy, C. C., Agbo, I. O., Taouil, M., Jenihhin, M., Raik, J., & Hamdioui, S. (2019). Software-
Based Mitigation for Memory Address Decoder Aging. In 2019 IEEE Latin American Test Symposium
(LATS) (pp. 1-6). Article 8704595 IEEE. https://doi.org/10.1109/LATW.2019.8704595

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/LATW.2019.8704595
https://doi.org/10.1109/LATW.2019.8704595

Software-Based Mitigation
for Memory Address Decoder Aging

D.H.P. Kraak*, C.C. Giirsoy', 1.0. Agbo*, M. Taouil*, M. Jenihhin, J. Raik, S. Hamdioui*
*Delft University of Technology, THE NETHERLANDS
{D.H.PKraak, I.0.Agbo, M.Taouil, S.Hamdioui} @tudelft.nl

Tallinn University of Technology, ESTONIA
{Cem, Maksim, Jaan} @ati.ttu.ee

Abstract—Integrated circuits typically contain design margins
to compensate for aging. As aging impact increases with technol-
ogy scaling, bigger margins are necessary to achieve the desired
reliability. However, these increased margins lead to a reduced
performance and lower yield. Alternatively, mitigation schemes
can be deployed to reduce the aging. This paper proposes a
software-based method to mitigate the aging of the memory’s
address decoder logic due to Bias Temperature Instability. The
method is based on periodically applying a rejuvenation appli-
cation on top of a user application. The goal of the rejuvenation
application is to recover aged transistors of the critical paths
of the address decoder. The experimental results show that
the proposed method significantly reduces aging in cases when
applications consist of memory access patterns that result in an
unbalanced stress in the address decoder logic. In particular, it
reduces the degradation of the address decoder’s setup delay by
up to 43% with an execution overhead of only 1%.

Index Terms—memory, address decoder, aging, mitigation

I. INTRODUCTION

The aggressive downscaling of CMOS technology has been
the main driver of the improvements in the performance and
functionality of Integrated Circuits (ICs) over the past decades.
However, due to several challenges, the rate of downscaling
and its benefits have started to decrease [1]-[3]. One of the
challenges of downscaling is that it worsens the reliability
of ICs due to increased time-dependent variability. Time-
dependent variability consists of variations that occur during
the operational lifetime of the IC. They include environmental
variations, such as supply voltage and temperature fluctuations,
and aging variations due to, for example, Bias Temperature
Instability (BTI) [4]. In order to guarantee a high quality
and reliable product at optimal design, it is crucial to assess
this variability and provide appropriate mitigation schemes. In
this work, we investigate an aging mitigation scheme for the
address decoder logic of memories. Several works report that
delay faults in the decoder logic are a major contributor to the
total amount of customer returns [5], [6]. These delay faults,
for instance due to aging, may cause a delayed selection of
the requested address, the selection of a wrong address, or
the selection of multiple addresses, resulting in read failures
or write failures. Hence, understanding the impact of aging on
the address decoder logic and providing appropriate mitigation
schemes is an important part of designing reliable memories.

This work was supported through the projects TRACE (CATRENE, Grant
16ES0488K-16ES0502, 16ES0737), PRYSTINE (ECSEL, Grant 783190), and
RESCUE (EU Horizon 2020, Grant 722325).

Previous works on SRAM aging mitigation have mainly
focused on the memory cells; examples are [7]-[11]. Most
of these works aim at balancing the probability of writing
zeroes and ones to the memory cells, as this minimizes
the degradation due to BTI. The proposed schemes are ei-
ther hardware-based or software-based. The hardware-based
schemes add additional hardware that encodes the data written
to the memory cells such that it has a more equal probability
of writing either a zero or a one [7]-[9]. The software-based
schemes extend the memory’s lifetime through smart data
allocation at the software-level in order to distribute the stress
on the memory cells [10], [11]. In contrast to the memory cells,
mitigation schemes for the memory’s peripheral circuitry (e.g.,
sense amplifier, write driver, address decoders) have received
significantly less attention. To the best of our knowledge,
only one mitigation scheme has been proposed, which targets
the sense amplifier [12]. Mitigation schemes for the other
peripheral circuitry, such as the address decoder, timing circuit,
and write driver, have not yet been researched.

In this work, we propose software-based mitigation to
reduce the aging of the memory’s address decoder. This is
achieved by periodically running a rejuvenation application
on top of a user application. The rejuvenation application
mitigates aging by recovering transistors in the critical paths.
It is worth noting that the rejuvenation approach has already
been successfully applied to mitigate aging in the datapaths of
CPUs [13]. Nevertheless, its potential has not yet been inves-
tigated for other circuits, such as memories. The contributions
of this work are as follows:

1) It proposes software-based mitigation to reduce aging
in the memory’s address decoder logic. It specifically
achieves this by periodically running a rejuvenation ap-
plication.

2) It evaluates, as a case study, the effectiveness of rejuve-
nation to mitigate aging of the data memory’s address
decoder logic due to BTL.

3) It investigates the impact of different user applications,
rejuvenation applications, and execution overheads.

The rest of this paper is organized as follows: Section II
provides the background. Section III presents the proposed
methodology. Section IV discusses the experimental setup
and performed experiments. Section V presents the obtained
results. Section VI provides a brief discussion. Finally, Sec-
tion VII concludes this work.

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

65 nm @ 10 years aging, Vdd=1.1V, T=400K

static NBTI @

0.0 0.2 0.4 0.6 0.8 1.0
P,

Fig. 1: Threshold voltage shift AVrg, as a mathematically
convenient function of signal probability P,.

II. BACKGROUND

This section discusses the used method to model NBTI-
induced delays and, subsequently, the address decoder and its
metric.

A. Hierarchical Modelling of NBTI-Induced Delays

Bias Temperature Instability (BTI) is an aging mechanism
that takes place inside the MOS transistors and causes an in-
crement in the threshold voltage Vg of transistors. It happens
under negative gate stress for PMOS transistors, referred to as
Negative BTI (NBTI) and under positive gate stress for NMOS
transistors, referred to as Positive BTI (PBTI). NBTI is con-
sidered to be the most important aging mechanism in deeply
scaled CMOS technologies [4]. Therefore, to model aging, we
focus on modelling NBTI in this work. The approach for this
is discussed next.

In [13], an approach for fast, yet accurate modeling of
NBTI-induced delays at the gate level is proposed that can
be summarized by the following steps:

o Step A (at the transistor level): Obtain a technology and
environment dependent curve of the threshold voltage
shift as a function of the transistor’s gate input signal
probability AVrp,(P,).

o Step B (at the gate level): Obtain technology and environ-
ment dependent curves of the gate delay degradation as
a function of the threshold voltage shift A¢(AVrg,) for
each gate type in the netlist (e.g. INV, 2NAND, 2NOR).
It implies one-time SPICE electrical simulations of the
related logic cells.

e Step C (at logic paths): Identify NBTI-critical paths
at the gate level. This step involves the simulation of
application-specific gate signal probabilities and static
timing analysis for the nominal and NBTI-induced path
delays.

In the NBTI effect analysis, we rely on a reaction-diffusion
(R-D) based predictive model for dynamic NBTI presented
in [4], [14]. This model predicts the long term threshold
voltage V7, degradation due to NBTI at a time ¢ > 1,000s
at high frequencies [4]. It captures the dependence of NBTI
on a gate input signal probability P, (probability that pMOS
transistor is under stress) in addition to its dependence on
other key process and design parameters as presented in [4].

Inverter @ 10 years aging, Vdd=1.1V, T=400K

— poly= 3.2V, + 0.7Vny,
*e SPICE

N
o

35
30
325

420

10

5
0
0 50 100 200 250

150
AV (MV)

Fig. 2: Dependence of the gate output delay At on the AVrg,
in an INV gate. Results of SPICE simulations (black dots) and
of the mathematically convenient function (blue curve).

The values of the involved technology and environmental
parameters can be summarized by a parameter ~ in the
following form:

P,
1-P,
Note that Equation 1 is valid only for dynamic stress, as
AVr, becomes infinite when P, reaches the value 1. There-
fore, the upper limit of AVrp, is defined by static NBTI
models [4]. Equation 1 represents a convenient mathematical
function of the threshold voltage V7, degradation depen-
dence on the signal probability for the gate input signal P, (x;)
of a pMOS transistor. In the equation, n = 1/6 represents the
variety of the dominant diffusion species (H or Hs) expressed
by the time exponent parameter and v = 0.0904 represents a
parameter that incorporates the selected technology and envi-
ronmental variables. In Fig. 1, the corresponding dependence
is illustrated for PTM 65 nm technology [15] after 10 years of
NBTI-induced degradation at constant temperature 7' = 400K
with supply voltage Vpp = 1.1V. The calculated value of
AVryp, for static NBTI is 0.27V. The model allows fast
estimation of NBTI-induced Vg, shifts.

A set of SPICE simulations for each logic cell is used to
create a polynomial curve to model the gate delay degradation
(see Fig. 2):

Atgate =Ax AVTHp(Xi) + o (AVTHP(Xi))Q (2)

|AVTHp| = 7/(

)" (1)

Here, Atgq:c is the gate output delay increase (in percentage)
compared to the nominal gate delay, AVrg,(z;) is the change
of Vrp, for the stressed pMOS transistor at the gate input
x;, while A and p are technology dependent constants. For
example, in our experiments A and p are set to 0.7 and 3.2
for the INV gate.

In case a logic gate consists of multiple cascaded pMOS
transistors, both their physical location relative to the output
node and their 1 — 0O input transition impact the gate
delay degradation. Each combination of gate input values is
modelled by different values of the constants A and g in
Equation 2.

The path delays are calculated by processing the gate-level
netlist, gate by gate, from inputs to outputs, both with and
without aging.

Post-decoders
Pre-decoders
A7 N —— | WLO
Ab al .
el >l 3:8
A4 o
A3 - . .
st 138 :
Al N :
” . - WL255
ol | 2:4 = s,
A decoder_enable
(from timing)

(2)
I setup delay | margin |
I I l
decoder enable | | I
predecoder_outs : >:< :)
(b)

Fig. 3: (a) Schematic of the wordline decoder. (b) Setup delay
metric of the wordline decoder.

B. Address Decoder

Memories typically contain logic to access certain rows in
the memory cell array, referred to as the wordline decoder, and
logic to select the respective column, referred to as the column
decoder. In general, the wordline decoder is more critical, as
memories typically have more rows than (selectable) columns.
Therefore, for this study, we limit our analysis to the wordline
decoder.

In this work, we consider a 8-to-256 wordline decoder.
Fig. 3a shows a simplified diagram of its design. It is im-
plemented using a hierarchical architecture that consists of a
pre-decoder stage and a post-decoder stage. The pre-decoder
stage is implemented using two 3-to-8 decoders and one 2-to-4
decoder. The post-decoder stage consists of 256 post-decoders
that are implemented using AND-gates. Their output is used
to activate one of the wordlines of the memory cell array. Each
set of inputs to these AND-gates is a unique combination of the
outputs from the pre-decoders. Hence, only one wordline can
be activated at a time. In addition, an ‘enable_decoder’ signal
is connected to the input of these AND-gates. The period
during which the wordline is activated can be controlled using
this signal. In general, it is driven by a timing circuit in the
memory.

An important metric of the wordline decoder is its setup
delay. 1t is illustrated in Fig. 3b for our wordline decoder
design; it is defined as the maximum propagation delay of
the pre-decoders and, thus, it equals the critical path of the
pre-decoder logic. In addition, the margin of the decoder is
shown in Fig. 3b. It is defined as the time between the pre-
decoder outputs being ready and the activation of the decoder
through its decoder_enable port. In case the setup delay is too
high (the margin is negative), wrong signals are applied to the
inputs of the post-decoder’s AND-gates. This may result in a
delayed activation of the wordline, the selection of a wrong
wordline, or the selection of multiple wordlines, potentially

Address Memory
L4 Lad
o Cell
peration
CPU . sy
<« -D[Tlmmgl Col Decoder
) 1/0

Fig. 4: Schematic of a CPU and memory.

causing a read failure or a write failure. Hence, a lower setup
delay results in a more reliable memory.

III. PROPOSED METHODOLOGY

In this section, we first present the concept of mitigating
the degradation of the memory’s address decoder through
additional software programs and, subsequently, our approach
to evaluate the effectiveness of the proposed rejuvenation
method.

A. Concept

Fig. 4 shows a simplified schematic of a CPU and memory
and the bus through which they are connected. During the
execution of any application, CPUs fetch instructions from the
memory and they also execute memory-related instructions.
In both cases, this triggers read/write operations to/from the
memory. These memory operations determine the workload of
the memory and, thus, they strongly impact its aging [16], [17].
The idea proposed in this paper is to optimize the memory
instructions issued by applications in order to mitigate the
memory’s aging. Thus, the aging of the memory is mitigated
at the software level.

This software-based memory mitigation can be applied as
follows: a rejuvenation application is periodically run at a
certain execution overhead of an original user application [13].
This rejuvenation application mitigates the memory aging
by performing instructions that put critical transistors in the
memory into relaxation. The rejuvenation application can, for
instance, be applied during idle times of the user application.

B. Approach

Fig. 5 illustrates the used flow to evaluate the potential of
rejuvenating the address decoder. As can be seen, it consists
of four steps, which are described next.

1. Simulate user application: In the first step, the signal
probabilities of the inputs of the logic gates of the memory
address decoder are determined for a user-application. This is
achieved by simulating the execution of a user application on a
register-transfer (RTL) level CPU and a gate-level netlist of the
memory’s address decoder logic. This gate-level netlist of the
address decoder is connected to the address bus of the RTL
CPU; this ensures that it receives the correct input stimuli,
which are necessary to determine its workload. Then, during
simulation, the signal probabilities of the logic gates of the
address decoder are measured, which will be used in later
steps.

i RTL CPU + :
o Gate-Level Decoder _______!

I—______________—I
1 User application |

_______ T

[1. Simulate user application]

i Rej. application !

_______ e

[2. Simulate rej. application]

i Signal Probabilities P, | 1 Signal Probabilities P, ,.ivenation |
S — e
[3. Calculate signal probabilities]4—: Overhead (q) !

Fig. 5: Used flow to evaluate rejuvenation of the memory
address decoder logic.

2. Simulate rejuvenation application: In this step, the signal
probabilities of the inputs of the logic gates of the address
decoder are determined for the rejuvenation application. This
step is similar to the first step. The only difference is that,
here, the execution of a rejuvenation application is simulated
instead of a user application.

3. Calculate signal probabilities: In this step, the signal prob-
abilities of the previous two steps are combined, i.e., the signal
probabilities are calculated for the case where the rejuvenation
application is executed after the user application. A new signal
probability (say P,) is derived using the following equation:

Pz = Pz,user : (1 - Q) + Pz,reju’uenation - q (3)

Here, P, e is the signal probability of a gate input signal
when the user application is executed while P, ,¢juvenation
when the rejuvenation application is executed, and ¢ the exe-
cution overhead of the rejuvenation application. This formula
is applied for all the gate input signals of the address decoder.
It is worth noting that this approach ignores the overhead
of switching between the user and rejuvenation applications.
However, this switching overhead is very small and, thus, has
a negligible impact.

4. Calculate critical path delay: In the final step, the critical
path delay of the aged address decoder is calculated. This is
achieved by analyzing the gate-level description of the decoder
using the hierarchical NBTI modelling method discussed in
Section II. Here, the signal probabilities from the previous
step are used as the workload for the aging.

IV. EXPERIMENTAL SETUP

In order to evaluate the potential of rejuvenation for address
decoders, we perform a case study on the wordline decoder
of the data memory of the open-source Plasma processor [18]
using the flow from Fig. 5. The Plasma is an RTL-description

TABLE I: Configuration of Simulation Setup.

Processor MIPS Plasma @ 200 MHz
Instruction Memory | 8 kB (8192 addresses)
Data Memory 8 kB (8192 addresses)

of a 32-bit CPU with a MIPS instruction set. The key
configuration parameters of the Plasma setup are listed in
Table I. In addition, we implemented the wordline decoder
of Fig. 3a at the gate-level with Inverters and 2-input NAND
gates using 65 nm PTM technology [15]. Buffers were added
at the outputs of the pre-decoders to compensate for their
high fan-out to the post-decoders. This gate-level decoder is
connected to the most significant address bits of the Plasma’s
data memory. The execution of different user- and rejuvena-
tion applications is simulated using ZamiaCAD [19]. Using
ZamiaCAD’s scripting support, the signal probabilities of all
gate inputs are measured.

The user- and rejuvenation-applications are implemented
as assembly programs. They consist of read operations at
different memory addresses. Note that it is sufficient to include
only read operations due to the fact that we are interested
in the impact on the decoder’s setup delay. The setup delay
corresponds to the delay of the pre-decoders, whose workload
is determined by the requested addresses (see Fig 3a). Hence,
it is sufficient to simulate the relative amount of accesses
between the addresses to correctly model the workload of the
address decoder. Two applications for rejuvenation are imple-
mented: a universal rejuvenation application and an wunused
addresses rejuvenation application. The universal rejuvenation
application iterates over all memory addresses, while the
unused addresses application only iterates over the addresses
that are not accessed by the user application. Both rejuvenation
applications ensure that all possible address combinations are
applied to the decoder and, thus, all PMOS transistors recover
from aging for a certain amount of time.

Using this setup, we perform the following experiments:

1) Impact of Workload: We investigate the effect of reju-
venation for several different user workloads. Each user
workload accesses a different range of addresses. We
assume that all addresses within this range are accessed
an equal amount of times. These workloads mimic dif-
ferent applications with varying memory access behavior.
We include both the universal method, as well as the
unused addresses method for the rejuvenation sequences.
We keep the execution overhead (i.e., ¢ in Equation 3) at
a fixed number of 1%.

2) Impact of Execution Overhead: We investigate the
effect of rejuvenation for several execution overheads for
the universal rejuvenation sequence. The used execution
overheads are 0.1%, 1%, and 10%. For this experiment
we use the same user workloads as in the first experiment.

For each experiment, we measure the decoder’s setup delay
while assuming it has been aged for 10 years at 400K and a
nominal supply voltage of 1.1 V. Next, it is compared to the
setup delay at time-zero (i.e., no aging).

20 10 years aging @ 400K, nominal VDD

10 years aging @ 400K, nominal VDD

151

10

Setup Delay Degradation (%)

[0-31] [0-63] [0-95] [0-127] [0-159] [0-191] [0-223] [0-255]
Accessed Wordline Range

Fig. 6: Degradation and rejuvenation of the wordline decoder.

V. EXPERIMENTAL RESULTS
A. Impact of Workload

Fig. 6 shows the degradation of the setup delay of the
wordline decoder. Along the x-axis, different user workloads
are shown. They are modelled by different ranges of accessed
wordlines. For example, range [0 — 31] means that the user
application only accesses the first 32 wordlines of the memory
(first 32 rows of the memory cell array). Hence, it mimics
an application that only uses a small portion of the available
memory. For each range, it is assumed that the wordlines
within it are accessed an equal amount of times. In the figure,
the degradation is shown for the baseline case without rejuve-
nation and for cases where the universal and unused addresses
rejuvenation sequences are applied with a 1% overhead. The
following observations can be made from the figure:

o The degradation of the decoder’s setup delay strongly
depends on the workload. In general, the degradation is
higher for workloads that access smaller address ranges and
it becomes lower as the workload accesses bigger address
ranges. For instance, the degradation is up to 18.64% for
the user workload with the range [0 — 31], while it is only
6.15% for the user workload with the range [0 — 255].
The workloads with a smaller access range give a higher
degradation due to the fact that a lot of the logic gates will
be stuck at the same value. Hence, these gates experience
a high stress. The lower the accessed range, the more gates
will experience a high stress and, therefore, there is a higher
probability that gates that contribute to the critical path are
affected.

« Applying rejuvenation results in a significantly lower degra-
dation in most cases. For example, the degradation is
13.87% without rejuvenation for the user workload with
range [0-223], while it is only 7.89% in case the unused
addresses sequence is applied; the relative degradation is up
to 43% lower at only a 1% run-time overhead. This shows
the potential of mitigating the degradation of the memory’s
address decoder by applying low overhead rejuvenation
sequences. The rejuvenation is effective mostly due to
static NBTI stress in many paths. Static stress results in

20

I No Rejuvenation I No Rejuvenation

3 Universal @ 1% overhead 3 Universal @ 0.1% overhead

[Unused Addresses @ 1% overhead [Universal @ 1% overhead
15k [Universal @ 10% overhead ||
10r]] B B

Setup Delay Degradation (%)

[0-31] [0-63] [0-95] [0-127] [0-159] [0-191] [0-223] [0-255]
Accessed Wordline Range

Fig. 7: Impact of rejuvenation overhead on wordline decoder.

B.

an accelerated increase of the threshold voltage (as shown
in Fig. 1). Hence, putting these transistors into relaxation
for a short period results already in a significantly lower
degradation and, therefore, the degradation of the critical
path delay decreases accordingly. The only case in which
the rejuvenation sequences have no impact is for the user
workload with address range [0-255]. This is due to the fact
that the workload already accesses all memory addresses
and, therefore, the decoder’s paths are stressed evenly.
The unused addresses sequence mitigates the degradation
more than the universal sequence. For example, the degra-
dation is 12.22% for the unused addresses sequence for the
user workload with range [0-127], while it is 12.84% for
the universal sequence. The unused addresses sequence has
a lower degradation due to the fact that it only accesses
addresses that are not accessed by the user-workload. There-
fore, the transistors that are under a high stress, are put into
relaxation for a longer amount of time compared to the
universal mitigation method.

The benefit of the unused addresses mitigation sequence
over the universal sequence increases as the user-workload
accesses a wider range of addresses. For instance, the degra-
dation is ~5% lower for the unused addresses sequence
as compared to the universal sequence in case of the user
workload with range [0-31], while it is ~24% lower in
case of the user workload with the range [0-223]. This is
due to the fact that when the unused addresses sequence
needs to access a smaller range of addresses, these addresses
can be selected for a longer period of time (at the same
execution overhead). Therefore, the critical transistors are
put into relaxation for a longer period. A drawback of
the unused addresses sequence is, however, that it must be
user application-aware; it should know which addresses are
accessed by the user application.

Impact of Execution Overhead

Fig. 7 shows the degradation of the setup delay of the word-

line decoder for the unused addresses rejuvenation sequence at
different execution overheads. Once again, different user work-
loads modelled by different ranges of accessed wordlines, are

shown along the x-axis. The figure reveals that the degradation
of the address decoder is lower in case mitigation is applied
at higher overheads. For instance, the degradation is 17.34%
for a 0.1% overhead for the user workload with the range
[0-31], while it is 13.45% and 9.2% for overheads of 1% and
10%, respectively. The higher rejuvenation overheads result in
a lower degradation due to the fact that the critical transistors
are put into relaxation for a longer period. Therefore, the
degradation of the critical path delay is lower.

VI. DISCUSSION
Based on this study, we conclude the following:

Improved Reliability: our experimental results reveal that
the application of rejuvenation sequences significantly reduces
the degradation of the address decoder. In the best case the
degradation of the decoder’s setup delay was reduced with
up to 43% at only a 1% execution overhead. Rejuvenation
of memory’s address decoder logic gives the biggest benefits
in case the address decoder has an unbalanced workload and
only a limited number of rows is accessed. This is due to
the fact that unbalanced workloads result in a static stress for
transistors along critical paths, which results in accelerated
aging. Hence, putting these transistors in recovery for a short
period gives a significantly lower degradation. This reduced
degradation of the address decoder leads to a memory with a
higher reliability and a prolonged lifetime.

Rejuvenation application: optimized rejuvenation applica-
tions, that take into account the user application, give a higher
mitigation. The reason for this is that they are able to put the
critical transistors into recovery for a longer period. This is
why the unused addresses rejuvenation sequence resulted in
a lower degradation (up to 24%) than the universal sequence.
Hence, if it is possible to profile the user application, it is
beneficial to deploy dedicated rejuvenation applications.

Costs: finally, the costs in terms of area, power, and
performance should be evaluated for our proposed mitigation
scheme. First, our proposed mitigation scheme does comes at
no area overhead due to the fact that it is fully software-based.
On the other hand, our proposed scheme results in a power
overhead due to the fact that a rejuvenation application is
executed periodically. The evaluated rejuvenation applications
are currently based on performing read operations. Such
operations typically have a relatively high power consumption
due to the (dis)charging of the memory’s bitlines [20]. The
address decoder’s workload is, however, only determined by
the applied address stimuli. Hence, to reduce the power
consumption, a custom instruction could be implemented that
only updates the address register.

Finally, our scheme also comes at a performance penalty
due to the fact that rejuvenation applications are applied at
a certain execution overhead. However, the results showed
that significant benefits are achieved already at only 1%
execution overhead. In addition, it is likely that the execution
overhead can be masked in a lot of cases by scheduling the
rejuvenation during idle times of user applications. In this case,
the performance penalty becomes negligible.

Therefore, it can be concluded that the proposed scheme
comes at zero to low overheads.

VII. CONCLUSIONS

This work clearly demonstrated the potential of periodically
running rejuvenation sequences to mitigate the degradation of
the memory’s address decoder. These rejuvenation sequences
are able to improve the reliability and increase the lifetime at
low overheads. They are especially interesting for cutting-edge
technology, which suffers from reduced lifetime. A possible
future direction of this work is to investigate the potential of
rejuvenation for other memory components.

REFERENCES

[1] J. Srinivasan, S.V. Adve et al., “The impact of technology scaling on
lifetime reliability,” in International Conference on Dependable Systems
and Networks, 2004, June 2004, pp. 177-186.

[2] S. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10-16, Nov 2005.

[3] S. Hamdioui, D. Gizopoulos et al., “Reliability challenges of real-time
systems in forthcoming technology nodes,” in DATE, March 2013, pp.
129-134.

[4] S. Bhardwaj, W. Wang et al., “Predictive modeling of the nbti effect for
reliable design,” in IEEE Custom Integrated Circuits Conference 20006,
Sept 2006, pp. 189-192.

[5] W. Needham, C. Prunty, and E.H. Yeoh, “High volume microprocessor
test escapes, an analysis of defects our tests are missing,” in Proceedings
International Test Conference 1998, Oct 1998, pp. 25-34.

[6] AJ. van de Goor, S. Hamdioui, and R. Wadsworth, “Detecting faults
in the peripheral circuits and an evaluation of sram tests,” in 2004
International Conference on Test, Oct 2004, pp. 114-123.

[7]1 S.V. Kumar, K.H. Kim, and S.S. Sapatnekar, “Impact of nbti on sram
read stability and design for reliability,” in 7th International Symposium
on Quality Electronic Design (ISQED’06), March 2006, pp. 6 pp.—218.

[8] A. Gebregiorgis, M. Ebrahimi e al., “Aging mitigation in memory arrays
using self-controlled bit-flipping technique,” in The 20th Asia and South
Pacific Design Automation Conference, Jan 2015, pp. 231-236.

[9] A. Valero, N. Miralaei et al., “On microarchitectural mechanisms for
cache wearout reduction,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 3, pp. 857-871, March 2017.

[10] C. Ferri, D. Papagiannopoulou et al., “Nbti-aware data allocation strate-
gies for scratchpad memory based embedded systems,” in 2011 12th
Latin American Test Workshop (LATW), March 2011, pp. 1-6.

[11] D. Papagiannopoulou, P. Prasertsom, and I. Bahar, “Flexible data allo-
cation for scratch-pad memories to reduce nbti effects,” in International
Symposium on Quality Electronic Design, March 2013, pp. 60-67.

[12] D. Kraak, I. Agbo et al., “Mitigation of sense amplifier degradation
using input switching,” in DATE, March 2017, pp. 858-863.

[13] M. Jenihhin, G. Squillero et al., “Identification and rejuvenation of nbti-
critical logic paths in nanoscale circuits,” Journal of Electronic Testing,
vol. 32, no. 3, pp. 273-289, Jun 2016.

[14] W. Wang, V. Reddy et al., “Compact modeling and simulation of circuit
reliability for 65-nm cmos technology,” IEEE Transactions on Device
and Materials Reliability, vol. 7, no. 4, pp. 509-517, Dec 2007.

[15] Y. Cao and W. Zhao, “Predictive technology model for nano-cmos design
exploration,” in 2006 Ist International Conference on Nano-Networks
and Workshops, Sept 2006, pp. 1-5.

[16] D. Kraak, I. Agbo et al., “Degradation analysis of high performance
14nm finfet sram,” in DATE, March 2018, pp. 201-206.

[17] 1. Agbo, M. Taouil et al., “Integral impact of bti, pvt variation, and
workload on sram sense amplifier,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 25, no. 4, pp. 1444—1454, April 2017.

[18] “Open cores plasma cpu project,” http://opencores.org/project,plasma.

[19] A. Tsepurov, G. Bartsch et al., “A scalable model based rtl framework
zamiacad for static analysis,” in VLSI-SoC, Oct 2012, pp. 171-176.

[20] A. Karandikar and K.K. Parhi, “Low power sram design using hierar-
chical divided bit-line approach,” in Proceedings International Confer-
ence on Computer Design. VLSI in Computers and Processors (Cat.
No0.98CB36273), Oct 1998, pp. 82-88.

