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MuCoMiD: A Multitask Graph Convolutional
Learning Framework for miRNA-Disease
Association Prediction

Ngan Dong*, Stefanie Mucke “, and Megha Khosla

Abstract—Growing evidence from recent studies implies that microRNAs or miRNAs could serve as biomarkers in various complex
human diseases. Since wet-lab experiments for detecting miRNAs associated with a disease are expensive and time-consuming,
machine learning techniques for miRNA-disease association prediction have attracted much attention in recent years. A big challenge
in building reliable machine learning models is that of data scarcity. In particular, existing approaches trained on the available small
datasets, even when combined with precalculated handcrafted input features, often suffer from bad generalization and data leakage
problems. We overcome the limitations of existing works by proposing a novel multitask graph convolution-based approach, which we
refer to as MuCoMiD. MuCoMiD allows automatic feature extraction while incorporating knowledge from five heterogeneous biological
information sources (associations between miRNAs/diseases and protein-coding genes (PCGs), interactions between protein-coding
genes, miRNA family information, and disease ontology) in a multitask setting which is a novel perspective and has not been studied
before. To effectively test the generalization capability of our model, we conduct large-scale experiments on the standard benchmark
datasets as well as on our proposed large independent testing sets and case studies. MuCoMiD obtains significantly higher Average
Precision (AP) scores than all benchmarked models on three large independent testing sets, especially those with many new miRNAs,
as well as in the detection of false positives. Thanks to its capability of learning directly from raw input information, MuCoMiD is easier
to maintain and update than handcrafted feature-based methods, which would require recomputation of features every time there is a
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change in the original information sources (e.g., disease ontology, miRNA/disease-PCG associations, etc.). We share our code for
reproducibility and future research at https:/git.I3s.uni-hannover.de/dong/cmtt.

Index Terms—Data integration, disease, graph representation learning, MiRNA, multitask

1 INTRODUCTION

BEGINNING in the early 2000 s, the biological dogma that
proteins are responsible for most functions in a cell
began to shift, and new classes of non-coding, regulatory
RNAs became points of interest. The highly conserved class
of microRNAs (miRNAs) with an approximate length of 22
nucleotides were first considered ”junk” DNAs without any
function. However, they later emerged as regulators in cell
development, maturation, differentiation, and apoptosis, as
well as cell signaling, cellular interactions, and homeosta-
sis [1], [2], [3].

MicroRNAs fulfill their diverse functions by regulating
gene expression of protein-coding genes (PCGs) after
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transcription. The transcribed messenger-RNA (mRNA) of
PCGs can be directly bound by miRNAs, which leads to
cleavage or destabilization of the mRNA and represses the
translation into proteins [4]. Each miRNA can have hun-
dreds of target mRNAs and each mRNA can be regulated
by more than one miRNAs, resulting in complex networks
that are yet to be fully understood. The mutation of miR-
NAs or changes in their expression can have widespread
consequences that can be hard to predict.

Consequently, several associations between miRNAs and
diseases have been confirmed using biological experiments
leading to the belief that miRNAs could be potential bio-
markers in certain diseases such as cancers or immune-
related diseases [5], [6], [7], [8], [9], [10], [11]. Besides unveil-
ing a deeper understanding of the molecular pathogenesis
of diseases, identifying potential associations between miR-
NAs and diseases can also help in the treatment and discov-
ery of possible drug targets.

Owing to the significance of the problem and the time-con-
suming nature of biological experiments, recent years have
seen an upsurge in machine learning approaches [12], [13],
[14], [15], [16] for predicting miRNA-diseaseassociations. Suc-
cessfully predicting miRNA-diseaseassociations can lead to
information prioritization in biological wet-lab experimenta-
tion, which will result in considerable time and cost savings.
From a machine learning perspective, the problem of predict-
ing miRNA-diseaseassociations can be formulated as a link
prediction problem in a bipartite graph, where miRNAand
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disease form the two sets of nodes. However, as is typical to
many biomedical applications, a major challenge for building
generalizable and eventually well-performing models for the
miRNA-disease association prediction problem is data scar-
city. For example, the total number of miRNAand disease
nodes (without any preprocessing and removal of duplicates)
in the standard HMDD v2.0 [17] database are 578 and 383,
respectively, with a total of 6,447 associations (links). These
networks are, therefore, not only small with respect to the
node set but are also sparsely connected. Even worse, the
known association set is biased towards some well-studied
diseases (~10% of the most well-studied diseases account for
~60% of the known associations, and ~20% of the most well-
studied diseases account for ~80 of the known associations).

Data Scarcity often leads to biased and non-generalizable mod-
els. Earlier attempts to address data scarcity rely on creating
additional secondary features based on the initial feature set
by computing intra-node similarities, e.g., miRNA functional
similarity. So much so, these secondary features that encode
miRNA functional similarity are pre-computed and are even
deposited in well-known databases like MISIM [18]. The first
problem associated with using such similarity-based input
features is that as these features are derived from the training
association data, the predictions become even more biased
towards well-annotated diseases with many known associ-
ated miRNAs [19]. Moreover, errors in the training associa-
tions will be further exaggerated in the derived secondary
features. Second, most secondary feature-based approaches
cannot work effectively for new miRNAs or new diseases, i.e.,
instances for which no prior known associated disease (or
miRNA) is available.

More worrying is the problem of data leakage when using
pre-computed miRNA functional similarities indiscrimi-
nately from available databases. Dong and Khosla [20] find
that most of the existing works that employ pre-computed
similarities in model building ignore the actual train/test
split giving rise to data leakage. In other words, some of the
associations which are to be tested by the models are
already presented in the association networks that are used
to compute the similarity features. Finally, the small dataset
size for the miRNA-diseaseprediction task prohibits the
utility of flexible and more expressive modern representa-
tion learning approaches.

1.1 Present Work
We overcome the above limitations by avoiding the creation
of secondary features altogether. Instead, our approach
attempts to address the data scarcity and bias issues by inte-
grating knowledge from multiple heterogeneous sources of
information available for miRNA and diseases in addition to
the miRNA-disease associations. Combining multiple data
sources allows us to compensate for missing or unreliable
information in any single data type and leads to more reli-
able predictions. Our key contribution is to model the inte-
gration of heterogeneous knowledge sources into a common
representation space that can be trained end-to-end using
modern representation learning machinery.

To this end, we propose a Multitask graph Convolutational
neural network for miRNA-Disease association prediction,
which we refer to as MuCoMID for brevity. MuCoMiDallows
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automatic feature extraction while incorporating knowledge
from five heterogeneous biological information sources (asso-
ciations between miRNA /diseases and protein-coding genes
(PCGs), interactions between PCGs, miRNA family informa-
tion, and disease ontology) in a multitask setting. Instead of
pre-calculated secondary features for miRNA and disease as
in previous works, we employ graph convolution operation
(with ReLU activation) over the corresponding biological net-
works to automatically learn informative representations for
miRNA and disease at training time.

The added side tasks serve as regularizers and help us to
incorporate domain knowledge. For example, a miRNA m
regulates a set of proteins p that are responsible for some
biological functions. Moreover, disruptions in the biological
functions of p lead to certain disease condition d. Then m
has some influence over disease d via p. The additional tasks
of predicting miRNA-PCG association and disease-PCG
association help us encode such influences by embedding m
and d closer in the representational space. Besides, we
employ an adaptive loss balancing technique to fine-tune the
multitask loss gradients. This allows us to utilize the full
power of multitask learning without resorting to exhaustive
hyperparameter search.

We conduct an extensive evaluation of our approach in
comparison to earlier works on existing benchmark datasets
retrieved from the HMDD v2.0 [17] and HMDD v3.0 [21] data-
bases. In addition to standard benchmark datasets, we also
construct and test on new and large independent testing sets.
We finally present case studies for specific diseases to show-
case the utility of our approach in (i) differentiating between
"true positives” and “false positives” and (ii) predicting the
associations of novel diseases for which no prior miRN Aasso-
ciation information is available in the training set.

Our Contributions. To summarize, we make the following
contributions:

e We model the miRNA-disease association prediction
problem as a multitask learning problem, incorporating
heterogeneous domain knowledge, which is a novel
perspective and has not been studied before for the
current problem.

e  We construct four new large testing sets for testing in
the transductive (when miRNA and disease nodes in
the testing set are also present during training) and
the inductive settings (when the testing set contains
many new miRNAor disease nodes).

e We conduct large-scale experiments, ablation stud-
ies, and case studies for specific diseases to showcase
the superiority of our approach.

e We release all the code and data used in this work
for reproducibility and future research at https://
git.13s.uni-hannover.de/dong/cmtt.

2 PROBLEM STATEMENT AND RELATED WORK

The miRNA-disease association data can be represented
using a bipartite graph G,,s = (M, D, E) where M is the set
of nodes representing miRNAs and D denotes the set of dis-
ease nodes. Each edge e = (m,d) € E denotes the associa-
tion between the miRNAnode m and disease node d. We
are then interested in the following problem statement.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2023 at 12:35:46 UTC from IEEE Xplore. Restrictions apply.
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Problem Statement. Given the bipartite graph G,,a = (M, D, E),
we are interested in (i) predicting missing links among the given
nodes (transductive setting) and (ii) predicting new links for unseen
novel miRNAor disease nodes (inductive setting).

2.1 Related Work

Existing computational approaches for miRNA-diseaseasso-
ciation prediction can be broadly grouped into three classes:
scoring-based, network topology and machine learning based
methods.

Assuming that the miRNA pairs linked to common diseases
are functionally more related, scoring-based methods [18], [22]
proposed scoring systems to prioritize miRNA-diseaseassocia-
tions. A more sophisticated scoring scheme integrating infor-
mation from miRNAand disease similarity networks was
proposed in [23]. Network-based approaches [24], [25], [26]
construct miRNAs and/or disease similarity networks and
aim at efficiently transferring known miRNA-disease associa-
tion labels between similar miRNAs and/or similar diseases
in the network. Chen et al. [24] employ random walks with
restarts over the miRNA functional similarity network and pri-
oritize candidate miRINA-disease associations using the final
stable random walk transition probability.

More closely related to our work is the third category of
machine learning-based methods. Approaches in this cate-
gory mainly rely on using secondary or handcrafted features
to construct similarity networks from which latent node fea-
tures are extracted using graph-based representation learn-
ing techniques. Epmpa [12] extracts edge perturbation-based
features from the miRNA-disease heterogeneous network
and then trains a Multilayer Perceptron regression model to
prioritize miRNA-disease associations. NNMDA [27] com-
bines information from five different miRNA similarities
and two disease similarities to build a heterogeneous net-
work for feature learning and association prediction. [28]
incorporates information from multiple domains, for exam-
ple, miRNA-IncRNA and miRNA-PCG association, miRNA-
drug association, disease-IncRNA, disease-PCG association,
disease-drug association, to build a heterogeneous informa-
tion network for feature extraction. The graph-based fea-
tures, along with the miRNAk-mer feature (calculated from
the miRNA sequence) and disease semantic similarity, are
concatenated to form the input to a Random Forest classifier
for association prediction. Non-graph based approaches like
Dsmpa [13] extracts latent features from input handcrafted
features consisting of miRNA functional, disease semantic,
and miRNAsequence similarities. Those latent features are
then fed to a classifier to perform the miRNA-disease associ-
ation prediction task.

Another line of works include Nmcen [16], MMGCN [29],
and DimiG [15] which propose end-to-end learning approaches
in which graph convolution networks (GCNs) [30] are
employed for extracting latent features of miRNA and disease
nodes.

The reliance on handcrafted features based on existing
association data limits the applicability of existing techni-
ques. First, as most handcrafted-based methods rely on pre-
calculated similarity features deposited in public databases,
these methods are hard to update. When more data corre-
sponding to the raw information sources become available
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(i.e., recently discovered miRNA-disease associations, dis-
ease ontology updates, more PCG associations information,
etc.), new input features need to be generated before retrain-
ing the model. Second, besides the limitations concerning
model generalization and data leakage (as already dis-
cussed in Section 1), a majority of these approaches cannot
work effectively for new miRNAor disease nodes that have
not been observed in the training data.

3 PROPOSED APPROACH

Given the input bipartite miRNA-disease network G,,q, we
treat the miRNA-disease association problem as a binary clas-
sification where the label for an input pair node (m, d) is 1 if
there is a known association between them and 0 otherwise.

To overcome the challenges of data scarcity, we propose
MuCoMIDin which we focus on effectively integrating hetero-
geneous biological information while learning to predict missing
or new miRNA-disease associations. Instead of relying on sec-
ondary or handcrafted features, we exploit additional
knowledge sources to learn the input representation auto-
matically at training time. Also, recent works indicate that
PCGs are the most important links between miRNAs and
their associated diseases [31] since changes in miRNAs lead
to differently regulated PCGs, which in turn can cause dis-
eases. Therefore, in addition to the miRINA-disease associa-
tion prediction task (formulated as a binary classification
problem), we add miRNA-PCG and disease-PCG associa-
tion confidence score prediction (formulated as regression
tasks) as two additional side tasks to incorporate additional
domain knowledge and prevent overfitting.

In summary, MuCoMiDemploys different ways of inte-
grating domain knowledge at different stages of the model
building process. In particular, information from three dif-
ferent biological networks, namely, miRNA family, PCG-
PCG interaction, and disease ontology, is directly used to
learn the node representations during training. Besides, the
miRNA-PCG and disease-PCG associations are employed
to build additional regularization objective functions. Incor-
porating various information sources helps compensate for
the lack of information in a single data source. It also helps
in mitigating the data scarcity problem.

In the following, we describe the three modules of MuCo-
MiD(also depicted in Fig. 1): (i) input graph construction, (ii)
graph convolution based feature extraction, and (iii) multitask
optimization/learning.

3.1 Input Graph Construction
We start by describing the construction or retrieval of vari-
ous biological networks that we leverage as additional sour-
ces of information and the corresponding rationale.

miRNA family, G,,. A miRNA family is the group of miR-
NAs that share a common ancestor in the phylogenetic tree.
MiRNAs that belong to the same family usually have highly
similar sequence secondary structures and tend to execute
similar biological functions [32]. Similar miRNAs would
tend to participate in the mechanisms of similar diseases. We
retrieve the miRNA family information from the mirBase
database [33]. The miRNAnetwork G,, is an unweighted
undirected graph in which there is a connection between
node A and node B if A and B belong to the same family.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2023 at 12:35:46 UTC from IEEE Xplore. Restrictions apply.
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Fig. 1. A schematic diagram of MuCoMID. MuCoMiDconsists of three main modules: (i) input graph construction in which we build networks corre-
sponding to the available side information from miRNAfamily, PCG-PCG interactions, and disease ontology (ii) the second module takes the con-
structed networks as input and generates the nodes’ representation according to their local neighbors (iii) finally, one classifier for miRNA-
diseaseassociation prediction, two regressors for miRNA-PCG and disease-PCG association confidence score prediction are added. The second
and third modules get trained jointly using a multitask loss. The multitask loss is a weighted sum of the three individual task losses and is optimized
using a dynamic loss balancing technique. We use different colors to differentiate between embedding layers corresponding to different types of

nodes. Green is used for miRNA, gray is for PCG, and pink is for disease.

Fig. 2 presents an illustration of the miRNA family network
generated from our data.

Disease Ontology, G,. The disease ontology [34] represents
the disease etiology classes. A directed connection between
two diseases exists if there exists a is-a relationship between
them. Similar diseases can be expected to associate with
similar miRNAs. The disease ontology network G, is an
unweighted directed network in which there is a directed
connection from A to B if B is a parent of A. G, can be visual-
ized as a directed tree which contains only directed connec-
tion between children and parents nodes. Each tree layer
represents one layer of abstraction. The uppermost layer

Fig. 2. An illustration of the miRNA family network. Each miRNA family
forms a cluster in the network.

represents the most general disease category. An illustration
of the disease ontology is given in Fig. 3.

PCG-PCG Interaction, G,,. PCGs interact with PCGs to carry
out biological functions. Therefore, given the fact that protein-
coding gene p; activates the expression of protein-coding
gene ps, if the miRNA m can regulate p; then there should be
some relation between m and ps. In other words, information
from the protein-protein interaction network will bring addi-
tional insights into the indirect relationship between miR-
NAs/diseases and the rest of the PCGs with which a direct
interaction is not known. We download the PCG interaction
data from the STRING v10.5 database [35]. As a preprocessing
step, we retain only the PCG nodes that have at least one
known association with miRNAs or diseases. We then divide
the PCG-PCG interaction confidence scores by 1,000 to con-
vert them to the [0,1] range and further filter out any PCG-
PCG interaction with a confidence score smaller than 6,. The
results reported in Section 5 correspond to 8, = 0.3 as it leads
to the highest AP score on the NoveL-Diseasttest set. The PCG

Disease

disease by
infectious agent

It 4 ..
- ' ]
: .
H .

viral infectious bacterial
disease infectious disease

fungal infectious
disease

A

subcutaneous
mycosis
Fig. 3. An illustration of the disease ontology. Directed edges denote
‘is_a’ relations.
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Fig. 4. An illustration of PCG-PCG interactions. The edge color intensity
reflects the connection confidence score.

network G, is an undirected weighted network in which the
edge weights are the normalized PCG-PCG interactions’ con-
fidence scores. An example of the PCG-PCG interaction net-
work is presented in Fig. 4 where the edge color intensity
represents the interaction confidence score. The higher the
score, the darker the color is.

3.2 Graph Convolution-Based Feature Extraction
Having constructed the relevant networks, we next extract
informative node representations using the node neighbor-
hood information. As we have no input node features, we
use three embedding layers to encode the feature represen-
tation for miRNA, disease, and PCG nodes. As illustrated in
Fig. 1, the green boxes represent the embedding layer and
hidden representation for miRNA, gray is used for PCG,
and pink is employed for disease. Those embedding layers
are initialized randomly and will get updated during the
model training process.

An embedding layer is essentially a look-up table where
the ith row corresponds to the learned representation of the
ith node. The node embedding is then passed as an input
feature to the graph convolutional layer. A graph convolu-
tional layer is essentially a linear layer that transforms the
node feature as an aggregation of representations of its 1-
hop neighbors. In particular, for the input adjacency matrix
A and the node embedding matrix X, we obtain trans-
formed the node feature matrix X' as follows:

X =D PAD1/2XW, 1)

where A = A + I, I is the identity matrix, D is the degree
matrix of A, and W is the trainable weight matrix of the
graph convolutional layer. We pass the transformed repre-
sentation through a ReLU activation to obtain the final
representation as follows:

X" = maz(0,X') (2)

As the graph semantics are different for each network, no
parameter sharing is employed at this stage. We use three
separate graph convolutional layers to extract the represen-
tations for miRNA, PCG, and disease nodes. These learned
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representations will be fed as input to the multitask optimi-
zation/learning module explained in the next section.

3.3 Multitask optimization/learning

To effectively utilize information from the miRNA-PCG and
disease-PCG associations, we design a multitask objective to
train our model. In particular, for all input miRNA-disease,
miRNA-PCG, and disease-PCG pairs, we model the pairwise
representations as the elementwise products of the corre-
sponding node features. For example, for an miRNA-disease
input pair (m,d) denoted by nodes m and d, we obtain the
corresponding feature vector representation as:

11 11
Xmd = X m© X d

where X”,, and X”; correspond to the output representa-
tions of the graph convolution-based feature extraction for
nodes m and d, respectively.

Using the pairwise representations, we then predict the
existence of associations between miRNA-disease pairs and
the confidence scores of associations for miRNA-PCG and
disease-PCG pairs. In summary, we train our model with a
multitask loss function calculated from these three super-
vised tasks and use an adaptive loss balancing technique
to dynamically combine the three individual loss compo-
nents at training time. Details about individual task loss
and our optimization strategy are presented in the fol-
lowing sections.

3.3.1 MiRNA-Disease Binary Classification Task

Loss (L1)

We compute the probability of observing an association
between an miRNA-disease input pair (m, d) as:

Ymd = U(WﬂDxmd) 3

where w)p is a learnable weight matrix and o(z) = m
is the sigmoid function. We use binary cross entropy to cal-
culate the training loss for the miRNA-disease classification

module as follows:
Ly = Z —2malog Yma — (1 — zpma)log (1 — Yma) )
m,d
where z,,; denote the target label known for the correspond-

ing training pair.

3.3.2 MIRNA-PCG Regression Task Loss (L)

For an input miRNA-PCG pair (m, p), we compute the asso-
ciation confidence score as:

Ymp = 0 (Wi pXmp) ®)

where w),p is a learnable weight matrix and o(x) is the sig-
moid function. We use the sum of squared error to calculate
the training loss for the miRNA-PCG regression module as
follows:

EQ = Z(ymp - Zmp)27 6)

m,p

where z,,, denotes the target confidence score.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 09,2023 at 12:35:46 UTC from IEEE Xplore. Restrictions apply.
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3.3.3 Disease-PCG Regression Task Loss (Ls3)

We adapt the formula presented in Eq. (5) to compute the
association confidence score y,4, for a disease-PCG input
pair (d,p). L3 is then calculated using the sum of squared
error as in 6:

Ls = Yap — 2ap)’ )

d.p

where 24, denotes the target confidence score.

3.3.4 Multitask Optimization

We define the final loss for our model as the linear combina-
tion of three losses [36] as follows:

L=L+aLy+a3Lls, (®)

where as and o3 are the loss weights for the two side tasks.
Generally, multitask networks are difficult to train. Finding
the optimal combination of individual task losses is chal-
lenging and problem-specific. A task that is too dominant
during training will overwhelm the update signals and pre-
vent the network parameters from converging to robust
shared features that are useful across all tasks.

We follow the strategy presented in [36] and update o>
and a3 so that the difference between the two side tasks’
contribution at each time step ¢ is minimized. More specifi-
cally, at each time step ¢, the values for oy, and a3 are com-
puted dynamically as follows:

_ Ls(t—1)
@ (!) T L= D+ Lot—1)+ L3t —1)+ 1010 ®)
s (?) La(t = 1) (10)

T L) Lat— 1)+ L3t—1)+ 1010

We use an Adam optimizer with a learning rate of 1072 to
train the multitask model.

4 EXPERIMENTAL SETUP

4.1 MiRNA-Disease Association Datasets

We retrieve the set of miRNA-disease associations from the
HMDD v2.0 database [17] and the HMDD v3.0 database [21].
As pre-processing steps, we retain only the associations for
the miRNAs and the diseases for which the PCG association
information is available. The filtered data for the HMDD
v2.0 database, which from now on is denoted as HmDD2,
contains 2,303 known associations between 368 miRNAs
and 124 diseases. The filtered data for the HMDD v3.0 data-
base, which from now on is referred to as HmDD3, includes
8,747 known associations between 710 miRNAs and 311 dis-
eases. Statistics about the data is presented in Table 2.

4.2 MiRNA-PCG Association

We obtain the miRNA-PCG associations from the RAIN
database [37]. We include only the associations with the
PCGs that are associated with at least one Reactome path-
way [38] as these would be biologically more significant.
We then normalize the association confidence scores
retrieved from the database and filter out any miRNA-PCG
association with a confidence score smaller than a cut-off
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TABLE 1
Statistics for Datasets With Side Information
NETWORK |E| [Vinl |Val |Vp|
MIRNA-PCG 2,878 714 - 9,236
DISEASE-PCG 29,713 - 312 9,236
MIRNAFaMILY (G,,) 1,354 217 - -
DISEASE ONTOLOGY (Gy) 90 - 128 -
PCG-PCG (G,) 1,407,590 - - 9,236

|E| is the Number of connectionsfassociations. |V,,|, |Vy|, and |Vp| are the
Number of miRNAs, Diseases, and PCGs, Respectively.

TABLE 2
The miRNA-Disease Association Data Statistics Where |E],
|Vininnals |Viisease| Refer to the Number of associations/links,
miRNAs and Diseases Respectively

DATASET ‘E| |‘/mi1?NA ‘ |‘/disease |
Hwmpp2 2,303 368 124
Hwmpp3 8,747 710 311
HeLp-ourl 2,669 324 110
HEeLp-out2 6,641 692 303
NoveL-MIRNA 3,575 577 115
NoOVEL-DISEASE 5,308 346 295

threshold 6,,. The results presented in Section 5 correspond
to 6,, = 0.5 as it results in the highest AP score for the
NovEeL-Diseask testing set. In the end, the normalized confi-
dence scores of the retained miRNA-PCG associations are
used as the target values for the miRNA-PCG association
confidence score prediction side task. Statistics about the
data are presented in Table 1.

4.3 Disease-PCG Association

We obtain the disease-PCG associations from the DISEASES
database [39]. Here also, we retain only the associations (i)
with the PCGs that are associated with at least one Reac-
tome pathway (ii) and have the normalized confidence
scores greater than or equal to a confidence cut-off threshold
6,4. The results presented in Section 5 correspond to 6; = 0.3
as it results in the highest AP score in the NovEL-DiseasEtest-
ing set. In the end, the normalized confidence scores of the
retained disease-PCG associations are used as the target val-
ues for the disease-PCG association confidence score predic-
tion side task.

Table 1 provides statistics of the three biological networks
as described in Section 3.1 and the two additional datasets
described in Sections 4.2 and 4.3. Details about the number
of miRNA-PCG, disease-PCG associations, and PCG-PCG
interactions with different confidence cut-off thresholds can
be found in Table 1 in the Supplementary file.

4.4 Our New Testing Sets

For small-size datasets like Hvpp2 and Hwmpp3, 5-fold CV
evaluation is limited as the size of the training and testing
sets become much smaller. While one can use Hwmpp2for
training and Hmpp3for testing, such evaluation is limited as
there are many overlapping associations in these two data-
sets. We, therefore, carefully construct the following four
independent tests using the Hvpp3 dataset. HMDD2is used as
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Novel -miRNA Held-out1 Novel - disease

Held-out2

Fig. 5. An illustration of the four large independent testing sets relations
where HeLp-out1= Novel-MmiIRNAN NoveL-Disease, Hewp-out2= NoveL-
MIRNAU NoveL-Disease= Hvpp3\ Hvbp2.

the training set for evaluation with the new testing sets. Let M2
and D2 be the set of all miRNAs and diseases in HMDD2,
respectively. The construction of the four independent test-
ing sets is described below.

HEeLp-outl for Transductive Testing. The HeLp-ourltest-
ing set contains only the associations that are present in
Hwpbbp3but not in Hvpp2. We further remove any associations
involving any miRNA that is not in M2 and any disease that is
notin D2. By doing that, we ensure that all nodes in the testing
set are partly observed during training. Finally, HELD-ouT1-
contains 2,669 known associations between 324 miRNAs and
110 diseases. We randomly generate the same number of neg-
ative samples from the set of unknown miRNA-diseasepairs.

Herp-out2 for Inductive Testing. We construct the HeLp-
out2testing set by including all miRNAand disease nodes
and their known associations that are present in Hvpp3but
not in HMpp2. Note that different from HgLp-outl, HELD-
ouT2might also contain the associations corresponding to
the miRNAand disease nodes that are not present in the
training set Hmpp2. HELD-OUT2cOonsists of 6,641 known asso-
ciations between 692 miRNAs and 303 diseases. We ran-
domly generate the same number of negative samples from
the set of unknown miRNA-diseasepairs.

NoveL-MIRNA. From the set of known associations in the
HELD-ouT2testing set, we remove any associations with the
diseases that are not in D2 to construct the NovEL-MIRNA-
testing set. NoveEL-MIRINA testing set consists of 3,575 associ-
ations between 577 miRNAs and 115 diseases. Regarding
the node set, NoveL-MIRN A contains data for 253 new miR-
NAs that are not observed in the training set Hmpp2. We
randomly generate the same number of negative samples
from the set of unknown miRNA-diseasepairs.

NoveL-Disgask. Similarly, for constructing the NoveL-Dis-
EAsttesting set, we remove any associations with the miRNAs
that are not in M2 from the HELD-0OUT2 testing set. NOVEL-DIsEA-
secontains 5,308 associations between 346 miRNAs and 295
diseases. Regarding the node set, NoveL-Disease contains data
for 185 new diseases that are not observed in the training set
Hwmpp2. We randomly generate the same number of negative
samples from the set of unknown miRNA-diseasepairs.

A schematic Venn diagram of the four large independent
testing sets is presented in Fig. 5. The corresponding statis-
tics are presented in Table 2. There are some inconsistencies
between the number of miRNAs in HeLp-outl, NoOvVEL-Dis-
EASE, and M2 or between the number of diseases in HELD-
out2, NoveL-MIRNA, and D2 because for some miRNAs and
diseases, all their known associations are already presented
in the training set (HMDD2). Therefore, they do not appear in
the known association set of the corresponding testing sets.
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4.5 Benchmarked Models

We compare our model with seven recently proposed meth-
ods: Ermpa [12], NEMII [40], NmvGen [16], Dempa [13], DimiG
2.0[13], MMGCN [29], and GCSENET [41]. More details about
our benchmarked models are given in Section 1 in the Supple-
mentary file. Among the state-of-the-art methods, Epmparelies
on the network topology for feature extraction. NEMII learns
structural embedding from the miRNA-disease network. The
model also exploits the miRNA family and disease ontology
information to enrich its input features. Nmmcen, DimiG 2.0,
MMGCN, and GCSENErtutilize GCNs for feature learning.
While Dempaemploys autoencoders for feature transforma-
tion. DmiIG 2.0, MMGCN, and GCSENErtintegrate similar
information sources as those used by MuCoMID. Neverthe-
less, DiMIG 2.0 utilizes the disease-PCG associations to con-
struct the model training objective and the miRNA-PCG
associations to build the input network for feature learning.
MMGCN exploits miRNA-PCG and disease-PCG associa-
tions to calculate the input similarity matrices. GCSENETuses
miRNA-PCG and disease-PCG associations to construct the
learning objective for its feature extractor.

4.6 Testing Setup and Evaluation
As in previous works, we perform 5-fold CV for testing on
the Hvpp2 and Hwpp3datasets. We run 5-fold CV with 5
random initializations. In other words, for each dataset, we
run each model 5 x 5 = 25 times and report the average per-
formance with the standard deviation.

To test on our new testing sets, we train all models on the
HwmpDp2 dataset. We run the experiments 5 times with ran-
dom initializations and report the average performance
scores along with the standard deviation.

Evaluation Metrics. We report the Area under the Receiver
Operating Characteristic (AUC) and the Average Precision
(AP) as our evaluation criteria. The reason for reporting AP
instead of the Area under the Precision-Recall curve (AUPR)
score is because AP provides a better performance estimate
than AUPR as discussed in our previous work [20]. AP is cal-
culated as the discrete sum of the changes in the recall at dif-
ferent thresholds instead of linear interpolation as that of
AUPR, which can be too optimistic in cases where the number
of thresholds (unique prediction values) is limited'. For our
case studies, we report the number of “true” positives found
at the top K highest prediction.

4.7 Hyperparameter Settings

4.7.1 MuCoMiD

In all experiments, we fix the number of training epochs to
200, the embedding size and the hidden dimension both to
32. We employ Adam optimizer with a learning rate of 1073
for training.

4.7.2 Benchmarked Models

For Epvpa, DBMDAand NMGeN, we use the code and setup
released in [20]. For NEMII, MMGCN, and GCSENET, we use
the same code and setup as published by the authors. We
emphasize that we substantially strengthened these methods

1. https:/ /scikit-learn.org/stable/ modules/generated /sklearn.
metrics.average_precision_score.html
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TABLE 3
Experimental Results for Benchmarked Models in the 5-Fold CV and Transductive Testing Setup

Method HMDD2 HMDD3 HeLp-ourl

AUC AP AUC AP AUC AP
Epmpa([12]) 0.744 £ 0.019 0.783 £. 017 0.520 £ 0.011 0.594 £ 0.010 0.427 + 0.038 0.49 £ 0.02
NEMII([40]) 0.837 £ 0.013 0.844 £ 0.017 0.898 £ 0.005 0.893 £ 0.006 0.705 £+ 0.0 0.642 £ 0.0
Nmcen([16]) 0.785+0.018 0.803+0.015 0.795+0.021  0.800 £0.018  0.623 £0.003  0.601 + 0.006
Dsmpa([13]) 0.553 £0.019  0.537 £0.015  0.749 £0.010  0.696 + 0.009 0.578 + 0.0 0.548 + 0.0
DmmiG 2.0([15]) 0.493 £+ 0.018 0.485 £+ 0.012 0.516 £ 0.006 0.508 £ 0.005 0.429 £+ 0.002 0.471 £ 0.003
MMGCN [29] 0.783 £0.014 0.780 £ 0.017 0.911 £0.04 0.913 £ 0.006 0.682 £ 0.004 0.627 £+ 0.006
GCSENET [41] 0.593 £0.095 0568 +£0.072  0.613+£0.098 0575+0.079  0.552+0.045 0.538 &+ 0.031
MuCoMID(ouURrs) 0.839 £+ 0.012 0.837 £ 0.015 0.916 £ 0.005 0.912 £ 0.006 0.684 + 0.003 0.68 + 0.005
Improvement over SOTA 0.2% -0.8% 0.5% -0.1% -2.9% 5.9%

in our work since, in the original models, the authors simply
take pre-calculated miRNA functional similarities from public
databases (MISIM). Besides, the disease semantic similarity is
originally proposed for the MESH ontology. Nevertheless,
such information is not available for our disease set, and also
using those pre-calculated miRNA functional similarities
would lead to data leakage [20]. We instead calculate the dis-
ease semantic similarity from the disease ontology [34] and
the miRNA functional similarity from the training data
associations. This further points to the limited applicabil-
ity of existing methods when the original information
sources are updated.

For DiMIG 2.0, we use the code and parameters shared by
the author. To test the model performance on our data, we
compare DimiG 2.0 with the input features as tissue expres-
sion profiles and DiviG 2.0 with the one-hot vectors on the
subset of our testing datasets that have miRNAexpression
profiles available. The two models acquire similar perfor-
mance. This implies that the use of tissue expression profiles
as node features does not affect the model performance. We
can, therefore, test the model on our data for which tissue
expression information is unavailable by using one-hot
encoding for input node features. The results reported in
Section 5 correspond to the model with one-hot vectors as
input features on our testing datasets without removing
miRNAs that do not have expression profiles.

5 RESULTS

5.1 Results on Small Testing Sets

Following previous works, we perform 5-fold CV experi-
ments on the Hmpp2 and Hwmpp3 datasets. The results are
shown in Table 3. The testing set size for this scenario is con-
siderably small and contains only 1/5th of the total associa-
tions. Such a train-test scenario allows us to quantify how
well the models learn but is limited in testing the generali-
zation power of the models.

MuCoMID gains a comparable performance compared with
state-of-the-art approaches. There are only minor differences
in MuCoMID’s and the benchmarked methods’” performance
on the two datasets. Nevertheless, among the compared mod-
els, NEMII performs the best on the Hmpp2dataset while
MMGCN achieves the highest scores on the larger set HmpD3.
In other words, no single benchmarked method claims its
superior in both datasets. For such a reason, we claim that

MuCoMID is better than all benchmarked models in the 5-fold
CV testing setup.

The performance of Epmpadrops considerably for the
Hwvmpp3dataset. Epmpalearns edge features in an unsuper-
vised manner corresponding to its contribution to a cycle of
a particular length. Usually, the cycle length parameter is
fixed to a small value due to an exponential increase in run
time with an increase in cycle length. Moreover, the task sig-
nal is not used in learning the edge features. The loss of per-
formance of Epmpain Hwmpp3can be attributed to the
limitation of finding the best cycle length hyperparameter
applicable for Hmpp3. This also limits the applicability of
this model to a larger variety of datasets. NEMII, NiMGcN
and MMGCN perform better than Dempadue to the higher
representational capacity of the employed GCNs and the
exploitation of additional graph structure information.

5.2 Results on Small Train but Large Testing Sets in
Transductive Setting

Table 3 shows the results corresponding to the HeLp-ourl-
testing set with a positivernegative sample rate of 1:1.
Table 2 in the Supplementary file provides additional results
regarding the larger negative sample rates. Recall that HmMpp2
is used as the training set. In this scenario, the testing set size
is much larger than the training set size allowing us to com-
pare the generalization capability of the models. In general,
NEMII acquires the highest AUC score, followed by MuCo-
MID with 2.9% lower. Regarding the AP score, MuCoMID
attains the highest with a gain of at least 5.9%. This result is
consistent with the experimental results for different positive:
negative test sample rates presented in Table 2 in the Supple-
mentary file. The overall drop in performance of all models in
this scenario as compared to the small testing set size cases
points to the hardness of this particular testing set.

Among the benchmarked models, EPMbAaand DiviG 2.0per-
form the worst, suggesting that auto-encoders or handcrafted
topology-based features alone without parameter optimiza-
tion are not promising approaches for the current problem.
NEMII and MMGCN, which exploit multiple sources of infor-
mation, gain the highest performance scores. This further
emphasizes the importance of information integration.

5.3 Results on Inductive Setting Testing Sets

Table 4 shows the results corresponding to the inductive
setting testing sets with the positive:negative sample rate of
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TABLE 4
Experimental Results on the Large Inductive Setting Testing Sets With Many New miRNAs and Diseases

Method NoveL-MIRNA NoOVEL-DISEASE HEeLp-ouT2

AUC AP AUC AP AUC AP
EpmbDA 0.44 £ 0.028 0.529 £ 0.012 0.5+0.0 0.5+0.0 0.417 £0.071 0.513 £0.04
NEMII 0.68 + 0.0 0.652 + 0.0 0.709 + 0.0 0.68 £ 0.0 0.66 + 0.0 0.681 + 0.0
DG 2.0 0.452 £+ 0.001 0.480 £ 0.001 0.421 + 0.001 0.467 = 0.001 0.417 £0.003  0.465 £ 0.004
NmGeN 0.533 £+ 0.002 0.519 £0.005  0.672 £ 0.001 0.666 +0.003  0.534 +0.001  0.509 + 0.002
DsmDA 0.537 £0.0 0.518 +£ 0.0 0.569 £+ 0.0 0.551 £ 0.0 0.553 £ 0.0 0.595 + 0.0
MMGCN 0.556 £+ 0.025 0.504 0.711 £ 0.003 0.678 £+ 0.003 0.553 £0.03 0.493 +£0.02
GCSENET 0.543 £0.027  0.518+£0.016 0557 +0.053 0.536+0.034 0.557+0.031 0.517 £0.013
MuCoMID 0.701 £ 0.002 0.704 £ 0.002 0.649 + 0.005 0.658 + 0.006 0.667 £ 0.006 0.697 £ 0.007
Improvement over SOTA 3.1% 8.0% -8.7% -3.2% 1.1% 2.3%

1:1. Table 2 in the Supplementary file provides additional
results regarding the larger negative sample rates. Recall
that HmpDD2 is used as the training set. Note that HELD-oUT2is
more than three times larger than the training data and con-
tains new nodes that have not been seen in Hvpp2.

In general, MuCoMID works effectively also for the
inductive setting and outperforms all of its competitors on
two out of the three testing sets.

5.3.1 Input Features for Benchmarked Models

We note that except DmiG 2.0, none of the benchmarked
models can be directly used in inductive settings. These
methods rely entirely or partially on the known miRNA-dis-
ease associations to construct their input features.
Specifically for EPmMDA, which fully relies on the Gaussian
Interaction Profile kernel similarities extracted from the
known associations, input features for new miRNAand dis-
eases will be all zeros. NEMII, which concatenates the
extracted features from the miRNA-disease association net-
work with the miRNA family and the disease semantic sim-
ilarity features, will have part of its input features for new
miRNAs or new diseases as random values. Likewise, the
miRNA functional similarity for new miRNAs in the
MMGCN, NmvGeN, and Dempa, GCSENET models will be all
zeros. Therefore, a part of the miRNA-diseasepairs’ final
input representation in those models will be random values.

5.3.2 The NoveL-miRNAand HeLp-out2Testing Sets

These two testing sets contain known associations for hun-
dreds of new miRNAs, which are not observed in the train-
ing dataset.

MuCoMIiD versus DiMiG 2.0. Though DimiG 2.0can pre-
dict the association probabilities for new miRNAs and new
diseases, the differences in the two models’ architecture and
learning objectives lead to a significant difference in their
performance. Unlike MuCoMID and other state-of-the-art
models, DiMiIG 2.0is a semi-supervised method that uses
only disease-PCG associations during training but not the
known miRNA-disease associations. Also, DiMIG 2.0 is for-
mulated as a multi-label classification problem with large
but very sparse label matrices. The high sparsity of the
labels, along with the high class imbalance, leads to a degra-
dation in learning.

MuCoMID versus Other Methods. As discussed in Sec-
tion 5.3.1, Epmpa, NEMII, NmvceNn, MMGCN, Dswmpa, and

GCSENET have a part of the input features corresponding to
new miRNAs to be zeros or random values. For such rea-
sons, the performance of state-of-the-art methods drops sig-
nificantly on those two testing sets. MuCoMID significantly
outperforms all of its competitors with a gain of up to 8% in
AP score. Though the structural embeddings for new miR-
NAs and new diseases in the NEMII model are random, its
performance still ranks the second-highest, suggesting that
the miRNA family and disease semantic similarity features
are quite informative for the current classification problem.

5.3.3 The NoveL-DiseaseTesting Set

The NoveL-Diseasktesting set contains known associations for
185 diseases that are not observed during training. For this test-
ing set, MuCoMID is outperformed by NEMII and MMGCNby
small margins. We argue that the direct use of miRNA-disease
association training data to compute miRNAsimilarity or
structural embedding by NmceN, MMGCN, and NEMII leads
to their better performance (on the NoveL-Diseas dataset) than
MuCoMID. These models are usually biased towards giving
high scores to the well-known miRNAs (for which a lot of asso-
ciation information is already known in training data), leading
to overall better scores.

5.4 Ablation Study

We conduct an ablation study to analyze the contribution of
the additional tasks. The single task baseline (MuCoMID-
STT) employs a similar architecture as that of MuCoMID but
without the miRNA-PCG and disease-PCG association confi-
dence score prediction side tasks. In other words, it also
learns miRNA and disease representation from the miRNA
family and the disease ontology networks, respectively.
However, MUCOMID-STT only has one classifier layer for the
miRNA-diseaseassociation prediction task, instead of one
classifier and two regressors as that of MuCoMID.

Table 5 presents the results for MuCoMiDand MuCoMID-
STT on the both 5-fold CV and the independent testing
setup. MuCoMID performs comparably to its single task
variant on the 5-fold CV testing setup while significantly
supersedes its competitor on all of the large independent
testing sets with much less standard deviation values among
runs. These results are even more significant when consider-
ing the size of the testing data. The performance gain high-
lights the contribution of the two added side tasks. Since
PCGs are the most important links between miRNAs and
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TABLE 5
Ablation Study Results for Both the 5-Fold CV and the Independent Testing Setup
Method MuCoMID SINGLE TASK MuCoMID
AUC AP AUC AP

Hwmpbp2 0.839 £ 0.012 0.837 £0.015 0.843 + 0.01 0.843 + 0.016
Hwmpp3 0.916 + 0.005 0.912 £+ 0.006 0.916 + 0.004 0.913 + 0.005
HEeLp-outl 0.684 + 0.003 0.68 £+ 0.005 0.674 £ 0.094 0.663 £ 0.092
Novel-miRNA 0.701 £ 0.002 0.704 + 0.002 0.683 + 0.095 0.689 £ 0.096
Novel-disease 0.649 + 0.005 0.658 + 0.006 0.606 £ 0.084 0.618 £ 0.086
HeLp-out2 0.667 £ 0.006 0.697 + 0.007 0.618 £ 0.086 0.66 + 0.092
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Fig. 6. The number of true positives found in the top K highest prediction of MuCoMiDand MMGCNfor the Parkinson disease case study. FP refers to
the false positive:true positive sample rate that we add to the training data. The dense red line represents the number of true positives in the training

data.

their associated diseases [31], miRNA-PCG and disease-
PCG prediction tasks also bring additional insights into the
miRNA-disease association prediction problem.

6 THE PARKINSON DISEASE CASE STUDY

Parkinson disease (PD) is the second most common neurode-
generative disease worldwide [42]. Existing human associa-
tion studies for Parkinson disease resulted in inconsistent
findings with several “false positives” reported by [43].

In this case study, we aim to answer the question of “How
effectively can MuCoMiDhelp in identifying false positives?”.
Towards that, we manually construct a “gold standard”
dataset based on the data deposited in the HMDD databases
and the data collected from [43]. We mark 12 miRNAs as
“true positives” (those that are confirmed as true positives
in the meta analysis [43]), 33 miRNAs as “false positives”
(which are marked as positives in the HMDD databases but
are confirmed as negatives in the meta-analysis) and 116
miRNAs as “true negatives” (those that are confirmed as
negative by the meta-analysis). Note that among the 12 true
positive miRNAs, only 8 are marked as positive in the
HMDD databases.

Training and Testing Data Setup. We first construct the
training dataset by including diseases other than Parkinson.
Let H= Hmpp2U HmpD3. We remove any known associa-
tions for Parkinson disease from H to obtain the H' dataset.
As for Parkinson alone, the false positive rate is nearly 3

fold. We expect such a high number of false positives also
for other diseases. To mitigate the effect of high false-posi-
tive rates for other diseases, we construct H* from H' such
that each miRINA only associates with p diseases where p is
the average number of diseases associated with a particular
miRNA in H'. If the number of diseases associated with
miRNA m, is larger than u, we randomly sample u diseases
from the set of known associated diseases. If the number of
associated diseases for m; is smaller than u, we sample
with duplicates u diseases from the set of known diseases.
We follow the same strategy to obtain the negative samples
set for H*.

Next, we create the training subset corresponding to the
Parkinson’s disease associations, which we refer to as Py, 4.
The number of positive samples in Py, consists of 8
miRNA-Parkinson associations with 8 “true positive” miR-
NAs that appear in H and FP x 8 false positives Parkinson-
miRNA associations. In our experiment, F'P is varied over:
{0.25,0.5,0.75, 1, 2, 5, 10}. The negative samples in Py, con-
sist of every possible combination between Parkinson and
any miRNAs that are not “true positive” or “false positive”.

The Parkinson’s training data is the union of H* and
Pyy4in. The Parkinson’s testing data consists of all pairwise
combinations between Parkinson and 12 “true positive”
and 116 “true negative” miRNAs identified in [43].

Fig. 6 presents the number of true positives found in the
top K predictions of MuCoMiDand the MMGCN model on
the Parkinson testing set with varying false-positive rates.
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Note that for each false positive rate, we run each model
with 10 different sampled sets, and for each set, we run the
model 5 times to make the comparison as fair as possible.

With the increase in the false positive rate, there is a
decrease in the performance of both the models, which is intui-
tive. Remarkably, MuCoMID significantly outperforms its
competitor in differentiating between the “true positives” and
the “false positives”. “True positive” miRNAs consistently
appear in the top predictions generated by MuCoMID. While
for MMGCN, even with only 25% “false positives” added to
the training set, for K=8, there are only 2.92 “true positives”
(on average) found. On the other hand, the average number of
true positives (for K=8) found by MuCoMiDis 6.06. These
results highlight the added benefit of our proposed model. We
believe that the two added side tasks help inform the model
and prevent it from overfitting the noisy training association
data. At the same time, it further validates our concerns associ-
ated with secondary features-based methods. MMGCN, which
extracts the input features from the training associations, can-
not well differentiate the false positives from the true positives.
We observe similar results in comparison with other baselines.

Due to space constraints, the 3 case studies on predicting
the associations for novel diseases are provided in Section 3
of the Supplementary file.

7 CONCLUSION

We propose a multitask graph convolutional learning frame-
work, MuCoMID for the problem of predicting miRNA-dis-
ease associations. Our end-to-end learning approach allows
automatic feature extraction while incorporating knowledge
from five heterogeneous biological information sources. Incor-
porating multiple sources of information helps compensate for
the lack of information in any single source and, at the same
time, enables the model to generate predictions for any new
miRNA or disease. Unlike previous works, our model can be
employed in both transductive and inductive settings. To test
the generalization power of models, we test them on both the
existing benchmarked setup and on our constructed large
independent testing sets. Large-scale experiments in several
testing scenarios highlight the superiority of our approach. An
ablation study is added to highlight the side tasks’ contribu-
tion. We release all the code and data used in this study for
reproducibility and future research at https://git.13s.uni-
hannover.de/dong/cmtt.

We believe that our design principles will be of independent
interest to other biomedical applications where data scarcity is
a major challenge. In particular, the use of multitask learning to
integrate information from heterogeneous information sources
to overcome the problems of data scarcity and unreliability of
one single data type is a unique perspective and has not been
studied for computational problems in biomedicine.
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