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Abstract

This paper explores the possibility of using ma-
chine learning to improve the profits generated by
an energy management system for so called pro-
sumer households. Which are households with
their own energy production, consumption, and
storage. The commonly used deterministic algo-
rithms only take the current data into account when
deciding on how much power to buy or sell. But,
if there are flexible energy costs and future energy
consumption and production data is available, bet-
ter choices can be made. For example, you could
store energy at a cheaper time for later usage when
the prices are higher. To make these decisions,
a new algorithm was created. In this paper dif-
ferent machine learning models are evaluated for
generating the future data. The final simulations
will use the improved algorithm use the data pre-
dicted by these models. For a prosumer with a 10
kWh battery and which produces 70% of its own
total energy consumption, the machine learning al-
gorithm decreased the total energy cost by around
7%. While this does show that machine learning
is a viable option to increase the efficiency of an
energy management system, there is still much im-
provement possible to get closer to the theoretical
24% reduction.

1 Introduction
With renewables becoming increasingly popular [IEA, 2021],
the demand for an efficient energy management system also
grows. For a prosumer household, which is a household with
its own energy production and storage, an energy manage-
ment system monitors the energy being consumed and pro-
duced, and it makes decisions on when to buy and sell en-
ergy. By making sure that the system buys and sells energy
on the most profitable times, we are not only able to increase
the profits that the complete system generates, but we also in-
crease the environmental benefits due to a more stable energy
grid [Silva et al., 2020].

Most current system still make use of deterministic algo-
rithms, but this research project explores the possibility of

using machine learning to improve the efficiency. The base-
line deterministic algorithm that is used for comparison is de-
scribed in the following paper [Norbu et al., 2021]. It makes
use of the basic approach of storing excess energy until the
batteries are full and using this stored energy when there is
more demand than production. If the battery is already com-
pletely full or empty, the extra energy will be sold or bought
respectively. This approach works perfectly with the assump-
tion of a consistent price for buying and selling energy, but
when also considering flexible prices, it might be better to
store the extra energy when the price is low and use it at a
later time when the price is higher.

To research if machine learning can be used to improve
the efficiency of an energy management system, the project
will be divided into three parts. The first part of the research
project will be about creating a more efficient energy man-
agement system which assumes perfect knowledge about the
future energy demand, production, and prices. Depending on
the circumstances, it must be able to decide how much en-
ergy to buy or sell energy to decrease the total energy bill of
a household. Then the second part will be about how accu-
rate machine learning methods are for predicting the future
energy data. The machine learning models that will be eval-
uated for extending the timeseries data are ARIMA, ETS, K-
neighbors and Neural networks. The final part will combine
this generated future data with the improved energy manage-
ment system and run multiple simulations on prosumers with
the baseline and the improved algorithm. comparing these
results will show if machine learning is a viable option to in-
crease the efficiency of energy management systems.

The structure of the report is as follows. Firstly, section 2
will give a formal description of the research problem, then
section 3 contains more information on the improved algo-
rithm works and what machine learning models have been
used. Section 4 shows how the experiment has been setup
and what the results are, with section 5 discussing if the gath-
ered results are valid. Then finally section 6 concludes the
project and discusses future work.

2 Problem Description
The main aim of this research project is to determine if ma-
chine learning can improve the efficiency of an energy man-
agement system. These energy management systems are
needed in households where there is not only energy con-



sumption, but also energy storage and production. These so-
called prosumer households need to make decisions on what
to do with their energy at a certain time. For example, they
can either store or sell excess energy and either buy energy
or withdraw from the battery when there is more energy de-
mand than production. The baseline algorithm from the pa-
per [Norbu et al., 2021] uses a relatively simple deterministic
approach of only selling or buying power when battery is al-
ready completely full or empty as shown in figure 1.

Figure 1: Flowchart of the baseline algorithm

However, this approach only works optimally when the buy
and sell prices of energy are constant. And due to the energy
prices fluctuating based on the total energy production and
consumption on the grid, this is not always the case. If we use
the baseline algorithm with these changing energy prices, it
becomes apparent that there is room for improvement. Con-
sider for example a prosumer with a consumption of 1000
watts for two hours and a battery 1 kWh of energy stored,
then if the first hour the energy price is 20 cents per kWh and
the second hour 30 cents, it is sensible to use the 1 kWh of
stored power at the second hour and buy 1 kwh at the first
hour to use directly. By making this decision the energy cost
will be 20 cents instead of 30 cents.

There will be multiple problems that need to be answered
to make a proper conclusion. The first problem will be to cre-
ate an improved algorithm that is able to make these optimal
decisions. This improved algorithm will need to be able to
consider the future energy prices and monitor the battery lev-
els to buy and sell energy at the most profitable times. Then
the second problem will research the ways of getting the fu-
ture data. For a given prosumer, the energy consumption,
production, and prices must be predicted accurate enough for
the final algorithm to use. The final problem will be assess-
ing a combination of the improved algorithm and the predic-
tions from the machine learning models, and the results will
be compared against the baseline algorithm. Since this report
will only show the differences between the two algorithms,
the purchase prices for the energy systems like the battery
and the wind generator are the same for both simulations and
will thus not be included in the calculated energy costs.

3 Improved energy management system
To determine if machine learning can have an impact on the
efficiency of an energy management system, there are mul-
tiple parts that will need to be researched. Firstly, an algo-
rithm will need to be designed to make the optimal decisions
based on future data. Then machine learning can be used for
generating data. And finally, the improved algorithm will be
compared against the baseline algorithm.

3.1 Improved algorithm
The main algorithm for deciding when to buy or sell energy
uses the greedy approach. The simulation will start for a pro-
sumer with the battery lever at 0% and using the future en-
ergy production and consumption data, the battery level for
the next time points will be calculated. This will be contin-
ued until the algorithm finds a point n where the battery will
run out of energy or overflow. Then the algorithm will go
back in time from this point n searching for the optimal point
m to buy or sell the required energy while keeping in mind the
limits of the battery. When the optimal time has been found,
the possible adjustment will be made at the point m and the
battery level will be changed accordingly, now the algorithm
can continue at point n until it reaches the end or needs to
make another adjustment. If, when searching for the optimal
price, the algorithm finds the battery already at its limit, it
will use the best price found so far. The process of making
an adjustment is shown in figure 2. When the algorithm finds
the battery level negative (requires grid energy), it will search
for the cheapest price. This price is at timepoint 3 and thus
the algorithm will buy the extra energy at this timepoint and
make the adjustment.

Figure 2: Improved algorithm buying energy at a cheaper timepoint

The algorithm keeps track of the amount of energy bought,
sold, and stored at each timepoint. With this information the
total energy costs of the system can be calculated. To take
battery efficiency losses and battery degradation into account
the prices used, when searching for the best price, will be al-
tered to reflect this. If at a certain timepoint the energy price
is 10 cents and we have a usage of 200 watts, these first 200
watts can be bought for 10 cents per kWh, but if more power
is required it will be stored in the battery instead. When the
battery is used to store extra power, there will be a so-called



levelized cost of storage. This LCOS value is the extra cost
per kWh when storing power. On current batteries this cost is
still extremely high but is predicted to decline in the upcom-
ing years [Vonsien and Madlener, 2020]. For this research
project, the LCOS value is set to a relatively low 25 cents per
kWh, resulting for the example that all the energy over 200
watts will cost 35 cents per kWh instead of 10 cents. This
results in only rare cases where the battery will charge from
the grid. For the simulation we assume that a surplus of en-
ergy for the wind generator will always be used to charge the
battery. In conclusion, most of the time the charging of the
battery at an earlier timepoint will instead come down to not
withdrawing energy from the battery and letting it charge by
the wind generator.

3.2 Machine learning
To generating accurate future data there are many possible
methods. For this project two main methods have been used
Firstly, there are the algorithms which find certain trends or
averages in previous data. These models give good average
predictions but are less sensitive for sudden peaks and take a
lot of data to train. Examples of these models are:

• ETS: Exponential smoothing models are able to find
the Error, Trend and Seasonal components of a dataset
(Where error is the component that is left after removing
the Trend and seasonal components). These components
can then each be combined by adding, multiplying, or
even not including it at all. By combining these compo-
nents in various ways and with different parameters, the
performance of the model can be improved. For this re-
search project, the AutoETS model from [Löning et al.,
2019] is used to minimize the amount of parameter tun-
ing required.

• ARIMA: Instead of making predictions based on the ac-
tual values, this model uses the differences between con-
current values to predict if the next value will increase or
decrease. While the default version is not able to effec-
tively use seasonal trends, the AutoARIMA model from
[Löning et al., 2019] also uses a seasonal component.

Then there are the algorithms which are able to recognize
situations. These algorithms can take a n number of inputs
and are trained to give a corresponding result. When pre-
dicting time series data, this property is utilized by using a
so-called sliding window as seen in figure 3. A sliding win-
dow has a certain length n, and this window will move over
one position at a time to go over a set of data. Using these
n items as input for the machine learning algorithm, we can
predict the next datapoint and move the sliding window over
to include this new datapoint. Then using this predicted dat-
apoint another future point can be predicted. This process
can be continued until the wanted number of points has been
predicted.

This type of algorithms is generally better at predicting
sudden spikes and run faster because they can for example
be trained on a subset of the available data and still produce
good results. Examples of these models are the following
models:

Figure 3: Sliding window with a window length of 5

• Neural network: This model makes use of layers of
nodes connected to each other. Starting at the input
layer, the nodes will have an activation value that cor-
responds with the inputs of the algorithm. These activa-
tions will then be passed on to the connected nodes of
the next layer with different weights, giving the nodes
in the next layer also a certain amount of activation.
This process will be continued to the final output layer,
which gives the corresponding output to the input. The
model is able to train on previous data by changing the
weights of the connections until it has the right results.
By changing for example the number of nodes and lay-
ers in the model, better performance can gained.

• K-neighbors: Given a certain input, this model compares
this to the previous gathered data and sorts the data on
the closest matching situations. Then the model can take
the K number of most similar situations and depend-
ing on the configuration, it takes the uniform average
of those situations or calculates the relative distance to
each and uses this to create a prediction.

Finally, for this research project there are also specific
models created for the energy production predictions. Be-
cause the dataset contains production data based on a wind-
mill, the prediction model is split into two parts. Firstly, there
is a neural network that takes as input the last n datapoints
for the wind speed, bearing, humidity, pressure, and temper-
ature. As output the models has a k number of nodes, which
correspond to the k number of next datapoints to predict. By
training this model on past data, the neural network is able to
make a direct prediction for the upcoming k datapoints of the
wind speed. Then the second part is a function fitting algo-
rithm that is able to find a correlation between given x and y
values. This model is used for finding the corresponding en-
ergy production data for each wind speed. Thus, by first us-
ing the neural network, a prediction for the next k wind speed
datapoints can be created. And those wind speeds can be con-
verted to the right energy productions by using the function
fitting algorithm.

3.3 Comparison
When comparing the baseline algorithm with the improved
algorithm, a set of prosumers will be used with each their own



energy production, demand, and storage. These prosumers
can be customized to evaluate different setups. The ratio be-
tween their produced and consumed energy can be changed
for each prosumer. Furthermore, the battery levels and the
length of the simulation can be changed. The results of these
simulations will be the total energy bills of the prosumers.

4 Experimental Setup and Results
• Demand: This dataset from [UK power networks, 2014]

contains the power demand data of 5567 households in
London over a period of 2.5 years. The datapoints are
given at an interval of 30 minutes. The dataset has been
processed by taking the average demand for a timepoint
at a specific date and using linear interpolation to fill in
missing entries. The resulting data only spans for one
year.

• Price: The datasets for both the import and export energy
prices are from [Octopus Energy, 2020]. The average
import price is 18 cents with a 10th percentile of 7 cents
and a 90th percentile of 40 cents. The average export
price is 11 cents with a 10th percentile of 4 cents and a
90th percentile of 23 cents.

• Weather: The weather data is gathered from the Kirk-
wall airport weather station located in Orkney, Scotland
and provided by [UKERC Energy Data Centre, 2020].
The wind measurements are taken at a height of 26 me-
ters above ground.

• Production: The power production data is based on the
weather data. To calculate the power production, the
same sigmoid function as in the paper [Norbu et al.,
2021] is used. The parameters of this sigmoid are
a=0.756 s/m and b=8.424 m/s with the following equa-
tion, with u as the input wind speed.

f(u, a, b) =
1

1 + e−a(u−b)

Using these datasets, a list of prosumers can be created
with different parameters. By setting different parameters we
are able to change the battery size of a prosumer, the amount
of energy production of a prosumer relative to its energy con-
sumption and length of the simulation. The amount of energy
production is set by a ratio variable. The energy production
pattern will be based on the production dataset, but it will be
scaled up or down according to the ratio. So, if a prosumer
has a total energy consumption of 100 kWh for a simulation
and a ratio of 70%, the total energy production of this pro-
sumer will be 70 kWh.

After a n number of prosumers has been created from the
datasets, there will be a simulation run with both the base-
line algorithm and the improved machine learning algorithm.
The improved machine learning algorithm is a variation on
the algorithm described in section 3.1, instead of having an
unlimited future vision range, now the range will be limited
to length of the predictions. So, for each time point i the ma-
chine learning algorithms will generate future data of a length
k, and then the improved algorithm determines the best time-
points to buy or sell energy. If the algorithm returns that there

should be an adjustment at the current time i, the adjustment
will be made. It will then continue to the next time point i
and do the same again. The corresponding machine learning
model for each dataset of the prosumer will be selected based
on the performance of the different models. During the sim-
ulations the training data will be the past data, so for the first
k timepoints the algorithm will only collect data and not yet
make predictions. After all the models have gathered enough
data, the predictions will start and the improved algorithm
will be used. The prediction length in all the experimental
simulations is 24 hours (48 timepoints)

The parameters of the models have mostly been chosen
on intuition and trial and error, since parameter tuning a ma-
chine learning model perfectly for a dataset can be a research
project on its own. Since the AutoETS and AutoARIMA
models from sktime [Löning et al., 2019] do some parame-
ter tuning themselves, only the seasonal period has been set.
For this value, a full day is used (48 datapoints of 30 minutes).
This is because most patterns repeat daily and if this value is
set higher, there is also much more data needed for fitting the
models. For the K-neighbors and neural network models, the
window length has been set to 100. This value is again cho-
sen to be a good tradeoff between using the largest amount
of available data (the last 100 timepoints) and not requiring
too much data to train the model. The k-neighbors model
uses 24 neighbors and a uniform weight, which are chosen
based on trial and error. Lastly, the neural network uses one
hidden layer with 100 nodes and the maximum number of
iterations has been increased to 500 to increase the training
performance. There are many more parameters that could be
altered, but for the scope of this project those have been left at
the default settings. The performance of the models is mea-
sured by using the RMSE. When a model makes a prediction,
the predicted data is compared to real values. The error for
each timepoint is squared and these squared values are then
summed together into a value x. By dividing x by the length
of the prediction, we get the MSE score. Then by taking the
square root of the MSE, the RMSE score is calculated. The
RMSE score gives an indication of how far away the predic-
tions are and it punishes models with higher variance more
due to squaring the error. Since the models will be run mul-
tiple times, a normal distribution is created of the resulting
RMSE scores. Next the performances of each of the predic-
tion models on the different data sets will be discussed.

4.1 Demand
Since the demand of a prosumer often takes on a certain pat-
tern (for example more usage in the morning and evening),
all of the models perform well. However, the situation recog-
nition models are better at adjusting to, or even predicting
energy spikes, which is very important to make sure the sim-
ulation stays accurate enough to make good decisions.

As seen in table 1, the k-neighbors is has both the lowest
RMSE score and the fastest runtime. Thus, for the total sim-
ulation this model will be used.

4.2 Prices
The patterns for the energy prices are similar to the energy
demand, but possibly due to the much higher volume of dif-



ML algorithm Mean Std Runtime (s)
ETS 196.6 85.8 283.7
ARIMA 169.2 68.1 16207.3
Neural network 196.3 94.7 42.9
K-neighbours 159.8 73.6 1.7

Table 1: RMSE scores of the demand in watts for 100 predictions

ferent prosumers and consumers having effect on the prices,
they are relatively more stable, and thus the models tend to
perform better. The models are evaluated on both the import
and export prices datasets.

ML algorithm Mean Std Runtime (s)
ETS 0.87 0.478 99.3
ARIMA 1.12 0.69 16405.8
Neural network 1.70 1.09 17.7
K-neighbours 1.54 0.94 0.9

Table 2: RMSE scores of the prices in cents for 50 predictions

While table 2 shows that the ETS model performs by far
the best on the dataset, for the improved algorithm, it is
more important that the timepoints with the highest and low-
est prices are predicted accurately than the actual amounts to
make good decisions. And, due to the much faster runtime of
the k-neighbors model, this model is instead used for the final
simulation.

4.3 Production
For the wind energy production it is by far the hardest to cre-
ate an accurate prediction since there is not a real trend or
reoccurring situation if we only look at the past wind speeds.
Therefore, the extra weather dataset is used. Using the pur-
pose build neural network described in section 3.2 with the
last 3 weather timepoints as input, the model predicts the
wind speed predictions for the next 24 hours (48 timepoints of
30 minutes). This neural network uses 3 hidden layers with
250 nodes, and the ReLu function as activation. The func-
tion fitting algorithm is then able convert the wind speeds to
energy production. The RMSE score for the neural network
is based on the error for the wind speed predictions and the
RMSE score for the function fitting model is the error in en-
ergy predictions given perfect wind speed data.

In contrast to the other models, past wind data should al-
ready be available for training and thus create accurate pre-
dictions from the start. To mimic this effect, the wind model
is trained once at the start of the simulation on 5% of the
whole dataset and is then used for all the predictions.

ML algorithm Mean Std Runtime (s)
*Neural network 0.495 0.283 84.6
Energy correlation 0.032 0.121 21.63

Table 3: RMSE scores of production in m/s and watts for 1000 pre-
dictions

In table 3 we can see the RMSE of the wind speed and
the energy production models. The RMSE scores for the en-

ergy correlation appear to be extremely low. This is likely
because of how the wind energy dataset is generated. Since
there is a perfect sigmoid correlation between the wind speed
and energy production, the model is easily able to find this
correlation.

4.4 Total simulation
To determine if machine learning is a viable option to increase
the efficiency of an energy management system, the baseline
algorithm is compared against the improved algorithm with
both perfect data and machine learning data. As stated before,
the prediction length for all the experiments is set to 24 hours
(48 timepoints). The final run uses the k-neighbors model for
the energy demand and energy prices due to the good per-
formance and faster runtimes. For the energy production the
models in section 4.3 are used. The battery size for each pro-
sumer is set to 10 kWh. Furthermore, the simulation is run
on 100 different households for 1000 timepoints, so for 500
hours. Then the total cost per prosumer is calculated for both
algorithms and compared, the final costs only include the en-
ergy costs and battery inefficiencies. The base cost for the
whole setup is not included since they are the same for both
algorithms.

Figure 4: Comparison of the algorithms for 100 prosumers

As shown in figure 4, the improved algorithm using ma-
chine learning has a relative improvement on average of
around 6.8%. While this does show a positive result, it is
still only small amount compared to the possible 23.2% im-
provement.

5 Responsible Research
To show that the results are significant enough we can use a
normal distribution of the results as shown in figure 5. This
figure contains the relative improvements of the 100 pro-
sumers. By integrating the normal distribution for all im-
provements below 0%, we get a chance of 0.9%. Therefore,
we can conclude that there is a negligible chance that the re-
sults were based on a lucky run.

While the gathered results show a significant improvement,
there are still some concerns that might arise. Firstly, the
starting dates of the datasets used do not align properly, mak-
ing the simulation not fully represent real world data. How-
ever, since this report is about the comparison between two



Figure 5: Normal distribution of the final results

algorithms which both run on the same data, the result is still
valid. Secondly, the training data for the wind speed forecast-
ing partially overlaps with the testing data. This increases the
possibility that the neural network is overfitting for the testing
data and thus the performance increases. Furthermore, the en-
ergy production of the wind generator is artificially created.
However, since there are other papers [O’Brien and Ralph,
2015] which discuss forecasting wind generated power and
achieved a 97% accuracy score for 24-hour predictions, it is
clear that other researchers have even acquired better results
and thus the results of this report are still valid.

6 Conclusions and Future Work
The main research question, if the efficiency of an energy
management system can be improved with machine learning,
is shown to have a positive result. Firstly, for each of the dif-
ferent datasets, it is shown that a machine learning model is
able to make accurate predictions. Then combining these pre-
dictions with the improved algorithm, a relative improvement
of 7% is calculated.

However, while this report does explore a few different
timeseries prediction models, there are still many other meth-
ods out there and, with more in dept data analysis, better pa-
rameters can be selected. This is made obvious by the differ-
ence between the possible and achieved improvements. An-
other interesting future project would be to try and increase
the efficiency of the energy management system in a deter-
ministic way. The baseline algorithm in this report is rela-
tively basic and there might be better performing options.

Finally, it will be interesting to see how battery technology
will advance. By decreasing the degradation cost of storing
energy, the improved algorithm will be able to make more use
of the cheaper import prices and the relative improvements
will increase drastically.
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