
A benchmark study on SEM aberration
retrieval

Ruben Dortland

Bachelor End Project
AP/AM Double Bachelor
TU Delft

Delft, July 9, 2024
Supervisors: A.M. Gheidari, K. Vuik

Secondary supervisors: J.L.A.
Dubbeldam, I. Zadeh



Preface and acknowledgements
This report is written as the Bachelor End Project of the double bachelor Applied Physics and
Applied Mathematics at the TU Delft.
I want to thank all people involved in this project. A couple of names need to be mentioned
explicitly. First, I want to thank my supervisors Ali Gheidari and Kees Vuik, for being patient
with me, and providing support throughout the entire process of my research and writing of
my report. I also want to thank Diederik Maas and Maurice Krielaart for guiding me through
the first steps of my project, and Yifeng Shao for providing me with some useful insight into
aberrated wavefront simulations. Finally, I want to thank Sarnia Fazlali for helping me with the
aberration retrieval code as her initial template for the code helped the process of this research
significantly, and Joost Verbaan for providing insightful discussions during the time we were
writing our theses at the ImPhys department.

i



Abstract
This report focuses on the process of aberration coefficient retrieval for measurements of a
Scanning Electron Microscope (SEM). The main goal is the verification of a modified aberra-
tion coefficient retrieval method described in an article by Uno et al. (2005) [1]. This method
first extracts spot profiles, represented by Point Spread Functions (PSFs), from a through-focus
series of SEM images using Fourier analysis. The size and shape of a PSF characterize the
performance of a SEM. Afterward, it determines characteristics from these PSFs to obtain
aberration coefficients.
The process consisted of three parts: probe shape extraction, PSF analysis, and aberration co-
efficient calculation, which included a consistency test. The original method was changed to
include clarification for the use of complex conjugates of functions in the Fourier domain, the
proper statistical definition of standard deviation as characteristic of the width of a PSF, the
curvature definition used in the method, and contour tracing around a PSF to exclude points
outside the contour. These adaptations were made to clarify the methods described in the ref-
erence article.
This modified method was tested against generated PSFs that used the wave-optical description
of five different aberrations. By increasing the value of these individual simulated aberration
coefficients C ′

n with factors s ∈ [1, S], S ∈ N, the consistency of this retrieval method could be
determined by calculating the ratio Q between simulated and retrieved aberration coefficients
as a function of the factor s.
The spot shape extraction method was implemented and assessed successfully, as the shapes of
the generated PSFs were successfully retrieved, and the use of complex conjugates of functions
in the Fourier domain resulted in rotated spot shapes.
Contour tracing around the retrieved PSFs had mixed results. For all aberrations, it presented
a good measure of the spot shape. The implementation of an algorithm that excluded points
pj outside the contour was not accurate for one test aberration: two-fold astigmatism A2. The
contour tracing algorithm excludes important parts of the shapes of the PSFs. From research
into the characteristics asymmetry µ, width σ, and curvature ρ it could be inferred that the first
two characteristics µ and σ represent the mean and standard deviation of discrete probability
mass functions. Curvature ρ has no such direct statistical equivalent, it was concluded however
that this characteristic presented a good measure for the effect of third-order spherical aberra-
tion in a PSF.
Results could not indicate that this wave-optical description of aberrations is consistent with
all of the coefficients retrieved using the modified method of aberration coefficient retrieval
as the ratio Q remained consistent for defocus Cdf , three-fold astigmatism A2 and third-order
spherical aberration Cs as a function of the factors s.
Continued research into this method of aberration retrieval is recommended, specifically in the
definitions of the characteristic curvature ρ, more advanced contour tracing, and the digitiza-
tions of aberration coefficients. More assessment and modification of this method of aberration
coefficient retrieval can allow for a more comprehensive understanding of the method, which
will eventually contribute to an automatic aberration corrector that could speed up SEM mea-
surements significantly.
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Introduction
In classic light optics, there is a physical limit to the resolution of any optical instrument. This
is called the Abbe diffraction limit, named after the German physicist who found this limit in
1873 [2]. Consequently, there is a minimum resolvable distance for any optical instrument that
uses light for image formation, including light microscopes. Since then, many new methods
for microscopy have been developed that can bypass the diffraction limit. However, these new
methods bring other complications in technology.
The Electron Microscope is one of these new microscopy methods. As the name suggests, an
electron microscope uses electrons to create images like a classic microscope uses light (pho-
tons). The wavelength of an electron is much smaller than that of light, which means that the
diffraction limit of an electron microscope is also smaller. There are various types of electron
microscopes, and in this report, we will focus on the Scanning Electron Microscope [3], SEM
for short. Also see figure (1a), which shows a state-of-the-art SEM developed by Hitachi in
(1a). The MInT department uses a variant of this microscope.

An SEM scans the surface of a sample with electrons. The electrons originate from an elec-
tron source and are passed through various electron lenses and coils in a vacuum that force
the electrons into a narrow beam. This beam is focused on the sample with an energy range of
50-30.000 eV, depending on the voltage under which the SEM operates, and it forces secondary
electrons on the surface of the sample to scatter in various directions at various intensities. The
scattered electrons are then detected by a detector [4], and from there, the detected electrons
are imaged in an intensity reading, resulting in a high-resolution image. This process is also
illustrated in figure (1b) [3].

(a) State of the art SEM, developed by Hitachi [5]. (b) Schematic view of an SEM [3].

Figure 1: State-of-the-art SEM, developed by Hitachi (left) and a schematic view of a Scanning
Electron Microscope (right).

This high-resolution image is not so easily obtained, however. Many complications reduce the
overall quality of the measured image aside from the diffraction limit. One such complication
occurs when focusing the electron beam on the sample. If the beam is not perfectly focused
on the sample, or if there are imperfections in the lenses or other parts of the microscope, the
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beam can get distorted or spread out, lowering the image’s resolution. We call the resulting blur
and distortion aberrations: deviations from the ideal image, which would be obtained with a
perfect beam. These aberrations can occur due to various phenomena and are characterized by
aberration coefficients. Understanding and researching the profile of the spot with which an
electron beam in SEM hits a sample, and how the spot changes with an imperfectly focused
beam due to aberrations is therefore very important. Extensive research has already been done
in both the calculation of aberration coefficients [6], and in the development of aberration cor-
rectors [7] [8] [9], where extra components are added to an electron microscope to diminish,
or ’cancel out’ the effects of aberrations that occur in the optical system. This research will
eventually contribute to an automatic aberration corrector, which will speed up measurements
with the SEM at the MInT department significantly.

In this report, the main goal is to describe the process of spot profile and aberration coefficient
retrieval for SEM imaging systems. This is accomplished by first calculating and extracting the
probe shape, represented by the Point Spread Function (PSF), of an SEM image in under, just,
and over focus. From there, using line profiles through the PSFs, the aberration coefficients are
calculated. This method is verified using simulated PSFs with five test aberration coefficients
Cn of low order by computing the aberration coefficient ratio Q(Cn) between simulated and
retrieved coefficients, and seeing if Q(Cn) remains constant. In Chapter 2, the theoretical sec-
tion of the research is described. Chapter 3 discusses the code used to determine a spot profile
and a selected group of aberration coefficients, as well as the test we will use to determine the
accuracy of this method. Chapter 4 presents the results of these experiments, and in Chapter
5 we discuss various limitations and complications concerning spot shape retrieval, as well as
deviations of the results from measured spot shapes. Finally, we conclude the report in Chapter
6, with presented recommendations.
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Theory

Introduction
This chapter contains a concise overview of the theory needed to extract aberration coefficients
from a series of SEM images. First, the optical system representing SEM imaging is defined,
and from there the definition of the Point Spread Function is given. Secondly, line profiles are
introduced and applied to under- and over-focus point spread functions to determine the char-
acteristics of the profiles: width σ, asymmetry µ, and curvature ρ. Lastly, the equations that
calculate the aberration coefficients from these characteristics are discussed.

Optical system
The main goal of this project is to visualize and analyze the electron probe of an SEM. The
first step is obtaining an expression for this probe. Figure (2) depicts an illustration of the
image formation process of an SEM. From the objective lens, a focused primary electron beam
lands on a sample. The surface of the sample absorbs these electrons and scatters secondary
electrons. The intensity of these secondary electrons is measured by a detector, from which an
image is formed. The sample is assumed to be of negligible height (2D). Let f(x, y) denote the

Figure 2: Schematic view of the image formation of a Scanning Electron Microscope (exagger-
ated). From the objective lens, a focused primary electron beam (red) lands on the sample. The
sample absorbs (red dots) these electrons, and scatters secondary electrons (blue). The inten-
sity of these secondary electrons is measured by a detector, from which an image is formed.

surface of the sample and g(x, y) the probe intensity profile, or Point Spread Function (PSF).
The imaging process of an SEM is described as a 2D convolution of the PSF g(x, y) over the
sample surface f(x, y) to create an image h(x, y) [10]:

h(x, y) =

∫ ∞

−∞

∫ ∞

−∞
f(u, v)g(u− x, v − y) du dv + γ(x, y), (1)
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where (x, y) denote the coordinates of a pixel. An additional term γ(x, y) representing the
noise during an SEM measurement at coordinate (x, y) is added.
Equation (1) can be reformulated in the Fourier domain:

H(X, Y ) = F (X, Y )G(X, Y ) + Γ(X, Y ). (2)

Here (X, Y ) denotes the spatial frequency coordinate and H , G, F and Γ are the Fourier trans-
forms F of their spatial domain functions h, g, f and γ respectively.
For the case Γ = 0, the complex PSF g(x, y) is obtained from equation (2) by using the inverse
Fourier transform F−1:

g(x, y) = F−1[G(X, Y )] = F−1

[
H(X, Y )

F (X, Y )

]
(3)

Probe shape extraction
Consider three SEM images that depict the same sample f . The first is measured with a just-
focused probe g. The second gu and third go probes are measured with an under- and overfo-
cused probe respectively. From equation (2) with Γ = 0, we obtain the following system of
equations:

H(X, Y ) = F (X, Y )G(X, Y ),

Hu,o(X, Y ) = F (X, Y )Gu,o(X, Y ).
(4)

By dividing these functions and rearranging the equation, we get the following expression for
the Fourier Transform of the under- and over-focused PSF of the electron probe, also called the
Optical Transfer Function:

Gu,o(X, Y ) = G(X, Y )
Hu,o(X, Y )

H(X, Y )
. (5)

From here, obtaining the complex PSF gu,o is done using the inverse Fourier transform F−1:

|gu,o| = |F−1[Gu,o]|, (6)

where |gu,o| denotes the modulus of gu,o, since a PSF can only be visualized as its modulus in
2D. Equations (5) and (6) give us a template for calculating a defocused probe, when the ideal,
just focused probe g is known [1].

Point spread function
The point spread function (PSF) is a function that describes the performance of an optical
system. If an imaging system is ideal, the PSF g(x, y) would equal a two-dimensional Dirac-
delta function δ(x, y), such that equation (1) gives h(x, y) = f(x, y). In practice, however, this
is not the case. Various factors, such as diffraction, limit the resolution of the image.
To clarify, take the sample surface f(x, y) to be the USAF Test chart of 256 by 256 pixels [11].
After convolving the sample with a PSF of arbitrary size (not equal to the Dirac-delta function),
the image becomes slightly blurred. This is illustrated in figure (3a).
The size of the PSF also affects the resulting image. A larger PSF leads to a blurrier image,
and a smaller PSF results in a sharper image, see figures (3b) and (3c). The effectiveness of
an optical system is often characterized by the size and shape of its PSF, where a smaller PSF
indicates a better-performing system.
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(a)

(b)

(c)

Figure 3: The effect of the PSF visualized. The sample (left column), a USAF Test chart (256
by 256 pixels), is convolved with a PSF of arbitrary size (middle column). The resulting image
is a blurred chart (right column). Furthermore, if the size of the PSF is increased, the image
becomes even more blurry. A smaller PSF gives a sharper image. If a high-resolution image is
to be obtained, the PSF must therefore be as small as possible.

Diffraction and the Airy disk
When it comes to the limitations of an optical system, the most important one to discuss is
diffraction. This phenomenon occurs when rays (electron or light) pass through an aperture
to be focused on a sample. When assuming a perfect lens with a circular aperture, the best-
focused spot obtainable in an optical system limited by diffraction is the Airy disk [12], named
after George Biddel Airy (1801-1892). The Airy disk is a PSF characterized by a centered
bright spot surrounded by concentric circles of decreasing intensity, see figure (4).
The radius rAiry from the center of the bright spot in the center to the first zero (radius to first
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(a) A computer-generated Airy disk from diffracted
white light[12]. (b) 1D Airy pattern.[12]

Figure 4: Computer-generated Airy disk from diffracted white light (left) and a 1D representa-
tion of an Airy pattern (right).

zero intensity) is rAiry ≈ 20 − 40nm for a standard SEM measurement. Since the Airy disk
is the diffraction-limited ideal probe shape, it is used as the just-focused PSF g(x, y). A 2D
Airy pattern is often approximated by a Gaussian function, see figure (5) [12]. The differences
between an Airy pattern and a Gaussian function become more apparent when approaching the
first zero at distance rAiry from the center of the Airy pattern. As r =

√
x2 + y2 → rAiry, the

Figure 5: Radial cross-section through an Airy pattern (solid line) and the Gaussian function
used to approximate the Airy pattern (dashed). It is clear to see that for the intensity points
larger than 0.2, the Airy pattern and Gaussian are very similar [12].

Gaussian function differs from the Airy pattern. Up to intensity 0.2, the normalized Gaussian
and Airy patterns are very similar. This Airy disk function g(x, y) is therefore approximated by
a normalized Gaussian function [12], with mean µAiry = 0 and standard deviation σAiry related
to the Airy radius rAiry in the following way:

σAiry =
0.84

1.22
rAiry ≈ 0.689rAiry. (7)
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It follows that the Gaussian function g(x, y) used as the just focused PSF is:

g(x, y) = exp

(
−x2 + y2

2σ2
Airy

)
. (8)

Point spread function in wavefront optics
So how is the shape of the PSF formed? For that, let us take to look at Wavefront optics. From
quantum physics, it can be inferred that electrons are not only describable as particles but also
as waves. The electrons passing through the objective lens can therefore be expressed as a
spherical wavefront [13]. Ideally, this wavefront is diffracted and then converges to a single
focal point on the image plane when passing through the objective lens. Due to limitations of
the optical system, the phase of the diffracted wavefront shifts in various locations. This results
in the wavefront landing on the image plane in a distorted, stretched shape, called the aberrated
wavefront. This shape is defined as the complex Point Spread Function of the system. Given the
ideal, diffracted wavefront S(x, y), the aberrated wavefront W (x, y) is described as follows:

W (x, y) = S(x, y) exp (−iΦ(x′, y′)), (9)

where Φ(x′, y′) is the aberrated phase, with (x′, y′) the gradient (or angle/orientation) of image
plane coordinates (x, y). The optical system is illustrated in figure (6). Plane waves with
wavelength λ ∼ 10−12m, describing the electron beam in a typical SEM measurement, travel
in the positive z-direction and enter a circular pupil plane with radius ρ0, which represents
the objective lens of the SEM (see figure (1b)), and Cartesian coordinates (u, v). The action
of passing through the pupil deforms the plane wave into an aberrated wavefront W . The
wavefront travels from the pupil plane and creates an intensity profile I on the image plane
(x, y) at a distance from the pupil plane. Ideally, the distance between the pupil and image
plane is the focal length f of the objective lens. It is for this reason we define the image plane
to be located on z = 0, the pupil plane is therefore located on z = −f . The focal length f and
aperture radius ρ0 define the Numerical Aperture NA of the system:

NA ≡ ρ0
f
, (10)

where the Numerical Aperture is assumed small, NA ≤ 20mrad.

The intensity profile I can be equated to the absolute value of the complex PSF g(x, y).
Furthermore, this complex intensity profile g(x, y) is also described by the diffraction integral
[14] in Cartesian coordinates:

g(x, y) =

∫ ∞

−∞

∫ ∞

−∞
W (X, Y ) exp (−i

2π

λ
(Xx+ Y y)) dX dY, (11)

where W is defined in equation (9). The aberrated phase function Φ(x, y) is an infinite poly-
nomial series with coefficients Cm

n that serve as weights for each polynomial of power m of
the series [1]. These coefficients are defined as aberration coefficients. By simulating Φ for a
small set of aberrations, the method used for aberration retrieval can be tested.
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Figure 6: Geometry of the optical system described by wavefront optics. From the left, plane
waves with wavelength λ enter a circular pupil. The action of passing through the pupil distorts
the plane wave into an aberrated wavefront W . An ideal spherical wavefront S is also depicted
as a reference. The aberrated wavefront travels further in the positive z-direction until it lands
on the image plane denoted by coordinates (x, y), and forms an intensity profile I , which is
the measurable quantity in an SEM. This intensity profile is equal to the absolute value of the
complex PSF g(x, y) defined in equation (6). The image plane is ideally placed at focal length
f from the pupil with radius ρ0. These quantities define the Numerical Aperture of the pupil
NA ≡ ρo/f .

Aberrations
There are other limiting factors of an optical system aside from diffraction. Imperfections in the
alignment or design of various components in the SEM, as well as the electron beam voltage,
influence the shape of the spot with which the electron beam hits the sample. The resulting
deviations in the spot shape of an optical system due to these imperfections are called aberra-
tions. In this report, we focus on a subset of geometrical aberrations up to the second order and
include third-order spherical aberration. [13]. In wavefront optics, aberrations express them-
selves in the aberrated phase function Φ, see equation (9). This function Φ is a polynomial up
to infinite order, with coefficients Cn determining the weight of each part of the polynomial.
These coefficients are called aberration coefficients. By measuring an SEM image out of fo-
cus, various aberrations express themselves more clearly in their PSFs. Figure (7) [1] depicts
how the shape of the probe changes with various aberrations: each shape depicts a different
aberration and has its own coefficient. The just-focus probe shapes change very little compared
to the out-of-focus probes. When calculating aberrations from SEM images, this probe shape
is often approximated by a Gaussian function.
Figure (7) also shows how the probe shapes differ for under- and over-focus: aberrations are
well-represented in the under- and over-focus probe shapes. The aberrations are arranged based
on their order [1], denoted in their subscripts, except for defocus Cdf , which is first-order, and
third-order spherical aberration Cs. This report focuses on geometrical aberrations up to sec-
ond order and includes third-order spherical aberrations. Without aberrations, the probe is the
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Figure 7: Simulated probe shapes for under, just and over focus depicting aberrations up to
second order. The orders of the aberrations are denoted in the subscripts of the coefficients,
except for defocus Cdf , which is first-order, and third-order spherical aberration Cs [1].

same size and shape under- and over-focus. The first-order aberrations are defocus Cdf ∈ R
and first-order astigmatism A1 ∈ C. Cdf is characterized by the difference in size between
the probes and A1 by the longitudinal and transversal stretching when under- and over-focus.
The second-order aberration coma B2 ∈ C can be identified by the intensity trails on one
side, and astigmatism (second-order) A2 ∈ C by the three-fold symmetry in the probe shape.
Furthermore, the probe shapes are the same between under- and over-focus. Finally, spheri-
cal aberration Cs ∈ R is distinguishable by the intensity distribution differences between the
under- and over-focus probes. Important to note is the fact that A1, A2, and B2 are complex.
The aberrations that these coefficients represent are not radially symmetrical, as can be seen in
figure (7). The argument of these aberration coefficients determines the orientation of the probe
shape.

For these five aberrations, the aberrated phase Φ(x′, y′) is defined for complex gradient
coordinate u′ = x′ + iy′ [1]:

Φ(u′) =
2π

λ
Re

{
1

2
Cdf |u′|2 + 1

2
A1ū′2 + B̄2|u′|2ū′ +

1

3
A2ū′3 +

1

4
Cs|u′|4

}
, (12)

where ū′ denotes the complex conjugate of u′. With this equation and the diffraction integral,
it is possible to check if aberration retrieval methods are consistent for these five geometrical
aberrations.

Defocus

Defocus Cdf ∈ R [13] occurs when the sample is not located at the focal distance from the
objective lens. The coefficient Cdf is a measure of the distance between the actual focal distance
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and the location of the sample.

Two-fold astigmatism

Two-fold astigmatism A1 ∈ C [13] is caused by a difference in the horizontal and vertical
focusing power of the objective lens. The lens is assumed to be a perfect circle. Of course, this
can never be the case. Astigmatism causes the stretching of the under- and over-focus PSFs
gu,o. A1 ∈ C, indicating that the stretching can be oriented in any rotational direction, related
to the argument of A1, arg(A1). If A1 ∈ R, it means that the focusing power of the objective
lens differs in the cardinal directions (x, y).

Second-order Coma

Coma B2 ∈ C [13] occurs when electron rays enter the objective lens when not parallel to the
optical axis. This causes the electron rays to diverge outward as the angle with which the rays
enter the objective lens results in a comet-like shape in the image plane. In the PSFs gu,o, this
results in a skewed intensity distribution. The effect of B2 does not differ between under- and
over-focus.

Three-fold astigmatism

Three-fold astigmatism A2 ∈ C is similar to two-fold astigmatism A1 in that the focusing
power of rays entering the objective lens differs depending on where the rays enter the lens. As
the name suggests however, three-fold astigmatism exhibits three-fold symmetry in the PSFs
|gu,o|, and unlike A1, the effect of A2 does not differ between under- and over-focus.

Third-order spherical aberration

Spherical aberration Cs ∈ R [13] is caused by a difference in radial focusing power of the
rays entering the objective lens. As rays enter the objective lens further away from the optical
axis, their focusing power is altered based on the differing focusing power of the lens. If Cs

is positive, this causes the intensity distribution to be bimodal under focus, and unimodal over
focus [15]. Third-order spherical aberration is the most important aberration discussed in this
report, as the SEM of the ImPhys department has a spherical aberration corrector, and it is the
most prominent aberration in SEM measurements.

Probe shape line profiles
To compute the aberration coefficients for a set of under- and over-focus probes, we take N line
profiles of the probes, with angle θk = kπ

N
, with k = 0, · · · , N − 1 through the center of the

probe. Imagine it like cutting a cake through its diameter N times, with the PSF representing
the cake. From these line profiles, we calculate three characteristics [1]: asymmetry µ, width
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σ, and curvature ρ using all points on the profile pj , defined below:

µ =
1

W

∑
j

jpj,

σ =

√
1

W

∑
j

(j − µ)2pj,

ρ =
σ2

T

∑
j ̸=0

1

|j|
(pj − p0)pj,

(13)

with j = 0,±1,±2, · · · denoting the position on the line profile, j = 0 the center of the probe,
and W =

∑
j pj , T =

∑
j p

2
j . Note that the definition of σ is slightly different than in the

source [1], which most likely used the assumption that µ = 0 for calculating σ.

Characteristics
The characteristics µ and σ are defined as equivalent to the mean and standard deviation of a
probability mass function respectively. The mean µ is used to represent the asymmetry of the
line profile: if µ ̸= 0, then the line is not symmetric around the center of the line. Similarly
the standard deviation σ can be used to represent the width of the line profile: an increase
in σ indicates a higher variance of the line profile, and therefore the width of the line profile
increases.
For curvature ρ there is no direct statistical equivalent. The expression for ρ seems to indicate
the measure of a weighted difference between the intensity of the centroid p0 and pj . This
is illustrated more clearly in figure (8) [1]. From the left, an electron beam with trajectories
for spherical aberration crosses the image plane in the center of the image. In front of the
image plane (under focus), the probe profile has a different shape than the probe profile behind
the image plane (over focus). The mean µ and standard deviation σ stay the same for under-
and over-focus. Furthermore, the center of the profile p0 differs for under- and over-focus.
The definition of curvature ρ describes a weighted distance between a point p0 and pj . The
difference in curvature between under and overfocus is therefore a good measure for the effect
of third-order spherical aberration Cs.

Aberration coefficients
The aberration coefficients are computed from the characteristics for each line profile of angle
θk [1], described in Table 1, together with their typical order of magnitude O and symmetry.
Note the dependence on exp (iαθk), with α denoting the symmetry of the aberration. For
rotationally symmetric aberrations defocus Cdf and spherical aberration Cs, α = 0.
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Figure 8: From the left, an electron beam with trajectories for spherical aberration crosses the
image plane in the center of the image. In front of the image plane (under focus), the probe
profile has a different shape than the probe profile behind the image plane (over focus). The
mean µ and standard deviation σ stay the same for under- and over-focus. Furthermore, the
center of the profile p0 differs for under- and over-focus. The definition of curvature ρ describes
a weighted distance between a point p0 and pj . The difference in curvature between under and
overfocus therefore represents the effect of spherical aberration best. [1].

Table 1: Aberrations with their order of magnitude O, symmetry and digitization. Note the
dependence on exp iαθk, with α denoting the symmetry of the aberration. For rotationally
symmetric aberrations defocus Cdf and spherical aberration Cs, α = 0.

Aberration O (in m) Symmetry Coefficient Digitization
Defocus 10−8 Rotational Cdf

1
N

∑N
k=1(σu,k − σo,k)

Astigmatism 10−8 Two-fold A1
2
N

∑N
k=1(σu,k − σo,k) exp (i2θk)

Coma 10−7 One-fold B2
2
N

∑N
k=1(µu,k + µo,k) exp (iθk)

Astigmatism 10−6 Three-fold A2
2
N

∑N
k=1(µu,k + µo,k) exp (i3θk)

Spherical aberration 10−3 Rotational Cs
1
N

∑N
k=1(ρu,k − ρo,k)
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Methods

Introduction
This section presents an overview of the methods used to determine aberration coefficients from
a series of images hu, h and ho. First, the complex-valued under- and over-focus PSFs gu and
go are obtained. After normalizing and cropping these PSFs, contours are traced around their
shapes, and their centroids are calculated. Next, we trace N line profiles through the center of
the probe, and for each line profile the characteristics described in equation (13) are computed.
We then calculate the aberration coefficients as described in Table 1. Lastly, the benchmark
used for this method of aberration retrieval is described.

Through-focus series
Figure (9) depicts a through-focus series of three images that will serve as an example. A just-
focused image h is depicted on the left, under-focus hu in the middle, and the over-focus image
ho on the right. The images depict an SEM measurement of a gold on carbon test specimen
[16], particle sizes have a range of 5− 150nm. The field of view is V = 2.6 µm and the image
is 3072× 2188 pixels in size.

(a) Just-focus image h (b) Under-focus image hu (c) Over-focus image ho

Figure 9: Through-focus series of images depicting an SEM measurement of a gold on carbon
test specimen [16], with particle sizes 5 − 150 nm. The field of view is V = 2.6 µm and the
image is 3072× 2188 pixels in size.

Hanning window
Before the PSFs can be extracted from this through-focus series, the images are first windowed
using a window function [17]. The 2D Fourier Transform is applied to the through-focus series
of images by using the 2D Fast Fourier Transform (FFT) algorithm. The transformed images H
and Hu,o are subject to errors from leakage as a result [18]. To correct this problem, a window
function is applied to the images before the FFT, in our case we use a Hanning window. The
windowed images are shown in figure (10).
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Figure 10: Through-focus series of images from figure (9), windowed using a Hanning window
[17]. Because the 2D FFT algorithm is used in the process of PSF extraction, a Hanning
window function is applied to the images h and hu,o before the FFT.

Pixel size
Pixel size is necessary to quantify when extracting Point Spread Functions from a through-focus
series. The coefficients are defined in m, but the images are divided into pixels. Calculating the
size of each pixel Psize is done easily when using a through-focus series:

Psize =
V

Imax

, (14)

where V is the field of view depicted in the image, and Imax is the maximum amount of pixels
on one axis. This quantity is vital for approximating the just focus PSF g, as the Gaussian
function is generated in pixels instead of m, so σAiry = 0.689

rAiry

Psize
pixels. When generating the

PSFs for the analysis of the PSF extraction method, the pixel size of the generated PSF needs
to match the pixel size of the image. Typically, Psize ∼ 10−10 m, and in the case of the gold on
carbon test sample shown in figure (9a), Psize ≈ 0.846 nm.

Point spread function extraction
From equations (5) and (6) the complex point spread functions gu and go are obtained and
normalized. These PSFs are shown as their absolute values in figure (11), cropped around the
center of the probe to more clearly see the difference, alongside the ideal, just-focused probe g.
This just-focused probe is approximated with a 2D Airy pattern approximated by a Gaussian
with mean µ = 0 and standard deviation as defined in equation (7), radius rAiry ≈ 20×10−9nm.
The cropped PSFs |gu| and |go| are used to determine the aberration coefficients defined in Table
1.
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Figure 11: Probe profiles extracted from the images in figure (9) From left to right: just-focused
g, under-focused |gu| and over-focused |go|.

Contours and centroids
After cropping the normalized PSFs |gu,o| ∈ [0, 1], a contour is traced around the shape of the
PSFs in Python [19], where a function traces a contour around the normalized probe at a certain
intensity level, pj = 0.2 is used as boundary value. We denote the contour sets Cu,o, containing
all points |gu,o| on and inside the contour. In other words, the contour Cu,o is traced around all
points (x, y) of |gu,o| that have intensity value |gu,o(x, y)| ≥ 0.2. This is shown in figure (12)
with the blue contours around the PSFs. Furthermore, the centroids are also calculated from
the contours by taking the coordinate mean of all points (x, y) in the contour, these are depicted
as the red dots in the figure (12). The coordinates of these centroids are denoted (xu,0, yu,0) and
(xo,0, yo,0) for under- and over-focus respectively.

Figure 12: under- and over-focus PSFs, |gu| and |go| (left and right respectively) with contours
Cu,o (blue) traced around them and centroids (xu,0, yu,0) and (xo,0, yo,0) (red) plotted in the
middle of the contour.
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Line profiles
The contours will serve as boundaries when determining the line profiles through the centroid
of the probes. We take N line profiles through the centroids of the probes, these line profiles
have angles θk = kπ

N
, k = 0, · · · , N−1. In this example, N = 80. First, the maximum distance

du from the centroid to the edge of the image is calculated. Let w and l denote the width and
length (in pixels) of the cropped PSF image. Then, the maximum distance from the centroid to
the edge of the cropped image is:

d = max (w − x0, l − y0). (15)

The number of points M is chosen as the minimum of the width and length of the cropped
images, omitting 4 pixels at the edge:

M = min (w, l)− 4, (16)

in the case of our example M = 159. We trace the line profiles as follows for each angle θk:

1. The direction vector v⃗k of the line profile is determined:

v⃗k =

(
cos θk
sin θk

)
(17)

2. From the centroid (xu,0, yu,0), which has intensity value p0 for j = 0, the coordinates of
the points pj on the profile line are computed for each j as follows:

(xj, yj) = (x0 + j
d

⌊M/2⌋
cos θk, y0 + j

d

⌊M/2⌋
sin θk), (18)

where ⌊M/2⌋ denotes the floor of M/2, i.e. M/2 rounded down to the nearest integer.

3. The coordinates (xj, yj) are rounded to the nearest integer, and from these coordinates
the intensity values pj are found in the PSF, but only if the coordinate is inside the contour
Cu,o. If not, its intensity is set to pj = 0.

The result is N line profiles through the centroid of the probe, each line profile with an angle
θk and M intensity points pj . This is illustrated in figure (13) for N = 80, M = 159. The
lines individually are not straight, because the coordinates (xj, yj) are rounded to the nearest
integer to select a specific pixel with intensity value pj . Figure (14) depicts 4 line profiles
for k = 0, 20, 40, 60 for under (left column) and over focus (right column) to illustrate this
process. On the top row, the PSFs with contours and centroids are shown, with 4 profile lines
drawn through the PSFs, centered on the centroid. On the second row the same profile lines are
plotted as an intensity function of j = ±1,±2, · · · ,±⌊M/2⌋. The points outside the contour
are automatically set to pj = 0.
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Figure 13: under- and over-focus PSFs, |gu| and |go|, with N = 80 line profiles on their
centroids. The lines are not straight because the coordinates (xj, yj) are rounded to the nearest
integer to select a specific pixel with intensity value pj .

Figure 14: 4 line profiles for k = 0, 20, 40, 60. Above the probe shapes with contours and
centroids are plotted alongside the profile lines. Below the normalized intensity of these same
profile lines are plotted as a function of j = ±1,±2, · · · ,±⌊M/2⌋. The points outside the
contour are automatically set to pj = 0.
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Characteristics
For each line profile with angle θk, three characteristics are calculated using equation (13):
width σ, asymmetry µ and curvature ρ.

The first two characteristics asymmetry µ and width σ are expressions for the discrete mean
and discrete standard deviation of a spatial probability distribution.

Aberration coefficients
Each aberration is defined as an average difference of characteristics between the under- and
over-focus probes, see Table 1. For example, defocus with coefficient Cdf is defined as the
average difference in width σ between under- and over-focus:

Cdf =
1

N

N∑
k=1

(σu,k − σo,k). (19)

The characteristics whose difference defines these aberration coefficients are chosen based on
how the PSFs change with these aberrations.

For all complex coefficients, which represent aberrations with two degrees of freedom (i.e.
A1, B2 and A2), the average difference for each θk is multiplied with a complex exponent
2 exp (iαθk), with α representing the symmetry of the aberration, and 2 representing the degrees
of freedom (see Table 1). The calculated aberration coefficients are depicted in Table 2. It is
assumed that the digitizations have the order of magnitude as defined in Table 1. Additionally,
figure (15) depicts the moduli of the extracted aberration coefficients in a horizontal bar plot.
We can see that two-fold astigmatism has the largest contribution. This concludes the process
of aberration coefficient retrieval.

Table 2: Aberration coefficients and their calculated values extracted from the spot shapes in
figure (12) based on the equations listed in Table 1.

Aberration coefficient Retrieved value O (in m)
Cdf 4.325 10−8

A1 0.07360 + i9.284 10−8

B2 −0.6404 + i0.082615 10−7

A2 −1.241 + i1.469 10−6

Cs −1.081 10−3

Coefficient extraction test
By generating PSFs using the diffraction integral, see equation (11), the method of calculating
aberration coefficients is tested. The extracted coefficients are then plotted in bar plots, to
check if the generated aberrations in the PSF are successfully extracted when compared to
other extracted aberrations. For example, if we add only Cdf = 0.5 µm, we simulate the effects
shown in figure (7) in a through-focus series. We do this for the five aberrations depicted in
figure (7).
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Figure 15: Bar plot depicting the moduli |Cn| of the extracted coefficients. We can see that
two-fold astigmatism |A1| has the largest value.

Benchmarking
To test this method of aberration retrieval, PSFs with known aberration coefficients are simu-
lated using the diffraction integral, see equation (11). Afterward, the aberrations are retrieved
using the methods described in this chapter, starting from drawing contours and calculating the
centroids. To this end, we define Q(Cn) as the ratio between the pre-determined aberration
coefficients C ′

n and the retrieved aberration coefficients Cn:

Q(Cn) =
Cn

C ′
n

(20)

For each aberration coefficient in Table 1, we start from an arbitrary value C ′
n,1, and calculate

Q(Cn, s) using the methods described in this chapter. The other aberration coefficients are set
to zero. We repeat this process for multiple factors sC ′

n,1 = C ′
n,s: with s ∈ [1, S], S ∈ N. If

the aberration retrieval method is accurate, the retrieved coefficients Cn,s should scale equally
to C ′

n,s with this factor. In other words, Q(Cn, s) should stay constant when plotted against s:

Q(Cn, s) =
Cn,s

sC ′
n,1

(21)

As an example, we generate an artificial PSF using a code that applies equation (11) to
generate under- and over-focus PSFs with predetermined aberration coefficients. Initially, we
add a small amount of spherical aberration C ′

s,1 = 60µm, with the second subscript 1 denoting
s ∈ [1, S]. We repeatedly generate PSFs with increasing amounts of C ′

s,s = sC ′
s,1. Let S = 50,

as such we generate 50 PSFs, only containing increasing amounts of Cs. Five of these PSFs are
shown in figure (16), for s = 10, 20, 30, 40, 50. For each PSF, we use the methods described
in this chapter to retrieve the aberration coefficient Cs, and then calculate Q(Cn, s) as defined
above for each retrieved coefficient. The other samples for S = 50 are shown in the appendix.
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(a) s = 10 (b) s = 20

(c) s = 30 (d) s = 40

(e) s = 50

Figure 16: Simulated PSFs imitating spherical aberration with coefficients C ′
s,s = sCs,1, C ′

s,1 =
60 µm, see Table 4. The PSFs are shown for s = 10, 20, 30, 40, 50. Additionally, their contours
and centroids are plotted, as a check if my code successfully retrieved the spot shape.
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Results

Introduction
This chapter presents the results of the experiments testing the aberration retrieval method. To
this end, we simulate various under- and over-focus PSFs imitating the shapes as presented in
figure (7). From there, we test the PSF extraction method by convolving the simulated PSF
with the gold on carbon test image in figure (9a), with a given field of view V = 2.59 µm, to
simulate a through-focus series of images. Next, the PSFs gu,o are extracted from this virtual
through-focus series. The aberration coefficient retrieval method described in the previous
chapter is then applied to both the simulated PSFs g′u,o and extracted PSFs gu,o. The moduli
of the retrieved coefficients from analyzing both g′u,o and gu,o are shown in a bar plot. Finally,
we compare the input coefficients used to simulate the PSFs g′u,o and the coefficients retrieved
from gu,o.
From these experiments, it is clear that the PSF extraction method is implemented successfully,
as the extracted shapes and coefficients of the PSFs gu,o do seem to match those of the simulated
PSFs g′u,o. However, the input coefficients used for simulating g′u,o do not match the retrieved
coefficients. There is a mismatch in magnitude for all coefficients and in the argument for the
complex coefficients A1, B2, and A2. Suggestions to match the arguments are made. Lastly, the
results of the Benchmark test described in the section on Methods are given for all aberration
coefficients. From these results, we infer that the coefficient retrieval method is consistent for
defocus Cdf , spherical aberration Cs, and two-fold astigmatism A2.

Test images
The method of aberration retrieval described in the Methods chapter of this report is tested
with the just-focus image depicted in figure (9a). After a Hanning window is applied, this test
image is convolved with simulated PSFs g′u and g′o that simulate the shapes in figure (7) with
added defocus coefficients Cdf = ±1 µm. We do this individually for each of the five presented
aberrations. An example is shown in figure (17). In (17a) the test image is shown on the left.
Next to the test image, an under-focus and over-focus image are shown in the middle and on
the right of (17). These images are created with simulated PSFs that simulate only spherical
aberration C ′

s = 5 mm. The simulated PSFs |g′u,o| that are convolved with h to simulate the
through focus images hu,o are shown in figure (17b). The images hu,o generated from the
test image, together with the simulated PSFs can be found in the appendix for the other four
aberrations.
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(a) Simulated through-focus series.

(b) Simulated PSF depicting the effects of positive spherical
aberration Cs. Under focus |g′u| on the left, over focus |g′o| on
the right.

Figure 17: Gold on carbon test image [16] after the application of a Hanning window. In (17a)
the tin-on-carbon test image is shown on the left. Next to the test image, under- and over-focus
images are shown in the middle and on the right respectively. These images are created with
simulated PSFs shown in (17b), that simulate only spherical aberration Cs = 5 mm.

PSF extraction
To test the extraction method, we compare the simulated PSFs |g′u,o| to the extracted PSFs |gu,o|.
The images depicted in figure (17a) are used as our just-, under- and over-focus images h, hu,
and ho respectively. For the reference just-focused probe g a Gaussian function as described
in equation (8), with Airy radius assumed rAiry = 20 nm. The rest of these probe shape
comparisons can be found in the appendix. The extracted shapes match the shapes of the
simulated PSFs used to generate the images. Results indicate that the PSF extraction method as
described in equations (5) and (6) are implemented successfully, as the shapes of the retrieved
PSFs in figure (18) do seem to match the shapes of the simulated PSFs in figure (17).

Aberration coefficient retrieval

Profile lines

Figure (19) depicts the same PSFs shown in figure (18), now with N = 80 profile lines traced
through the centroid of the probes, contained in the contours. All profile line points pj ̸∈ Cu,o

are automatically set to pj = 0. Below, an image depicting the profile lines for k = 0, 20, 40, 80
are shown.
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Figure 18: Extracted under- and over-focus PSFs |gu,o| with their contours (blue) and centroids
(red). The extracted shapes match the shapes of the simulated PSFs used to generate the
images, see figure (17b).

(a) N = 80 profile lines.

(b) Under focus profile lines. (c) Over focus profile lines.

Figure 19: Probe profiles for |gu,o| with N = 80 profile lines drawn through their centroids,
contained within the contours Cu,o. All profile line points pj ̸∈ Cu,o are automatically set to
pj = 0. Below, a plot depicting profile lines for k = 0, 20, 40, 80 are shown.
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Aberration coefficients

Figure (20) shows the modulus or absolute value of the aberration coefficients retrieved in a
bar plot. These coefficients are determined from the profile lines drawn and shown in figure
(19a) using equations (13) and Table 1. The coefficients retrieved from the extracted PSFs gu,o
in orange are compared to the coefficients retrieved by analyzing the original simulated PSFs
g′u,o (see figure (17b)) in blue. From the bar plot, it is clear that spherical aberration Cs is
the largest calculated aberration coefficient. There is a large difference in magnitude between
the retrieved coefficient in blue (simulated) compared to the coefficient in orange (extracted).
The resulting bar plots of the other simulated coefficients can be found in the Appendix. For
defocus Cdf , two-fold astigmatism A1 and coma B2, the retrieval method correctly selects the
simulated coefficients as the ones with the highest magnitude. For three-fold astigmatism A2,
coma is selected as the coefficient with the highest magnitude, after A2.

Figure 20: Bar plot depicting the modulus of the aberration coefficient retrieved using the line
profiles and equations in Table 1. Spherical aberration Cs is by far the largest coefficient.
However, the magnitude does not match the input coefficient C ′

s = 5 mm.

Simulated vs retrieved coefficients
The retrieved aberration coefficients Cn from simulating shapes with singular aberration coef-
ficients C ′

n are shown in Table 3. There is a mismatch in magnitude and argument for most
of the retrieved aberration coefficients. For defocus Cdf , the retrieved coefficients are always
negative compared to the input coefficients. Two-fold astigmatism A1 correctly retrieves the
highest magnitude of its real and imaginary parts A1,r and A1,i, but does not correctly retrieve
the argument of A1,i. Second-order coma B2 does not match in the slightest, not even in terms
of argument. The retrieval method mixes up the magnitudes of the real and imaginary parts of
B2. Additionally when simulating three-fold astigmatism, due to the similarities in definition
between B2 and A2, the method retrieves a larger amount of coma than three-fold astigmatism,
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even though no coma was simulated in the PSFs. Three-fold astigmatism is also similar to
coma, as the retrieval method also gives a larger magnitude to the imaginary part of A2 when
the simulated coefficient A′

2 is real, and vice versa for imaginary A′
2. Finally, spherical aberra-

tion Cs does have the correct sign, and the method does retrieve Cs as the coefficient with the
highest magnitude.
In conclusion, the aberration coefficient retrieval method does select the correct aberration co-
efficient for defocus Cdf , spherical aberration Cs, two-fold astigmatism A1 and coma B2 to
be the coefficient with the largest modulus magnitude, and not for three-fold astigmatism A2.
However, the arguments of A1, B2, and A2 do not match the input arguments. Further recom-
mendations and suggestions can be found in the next section on Discussion.

Table 3: Simulated vs retrieved aberration coefficients. There is a mismatch in magnitude and
argument for most of the retrieved aberration coefficients.

Aberration coefficients Input simulation (in µm) Retrieved value
Cdf 0.5 −29.56

−0.5 29.562
A1 = A1,r + iA1,i 0.2 + i0 1.651− i0.005930

−0.2 + i0 −1.651 + i0.005930
0 + i0.2 −0.006403− i10.29
0− i0.2 0.006403 + i10.29

B2 = B2,r + iB2,i 8 + i0 −1.147− i7.765
−8 + i0 2.422 + i8.699
0 + i8 8.847 + i2.288
0− i8 −11.40− i4.685

A2 = A2,r + iA2,i 20 + i0 4.459− i8.718
−20 + i0 −4.660 + i9.188
0 + i20 −9.163 + i4.614
0− i20 8.762− i4.430

Cs 5000 12148
−5000 −12148

Benchmark results
The results of benchmarking the aberration retrieval method are shown in this section. As in the
previous sections, the process is explained with spherical aberration Cs as an example. Images
of other aberrated PSFs can be found in the appendix.

First, the initial aberration coefficients C ′
n,1 are defined in Table 4. Next, under- and over-

focus PSFs |gu,o| are generated for s ∈ [1, S]. These are shown in the Methods chapter for Cs,
see figure (16), and in the appendix for Cdf , A1, B2 and A2. Finally, the (s,Q)-plots are shown
for spherical aberration Cs in figure (21a), defocus Cdf in figure (21b), two-fold astigmatism
A1 in figure (22), coma B2 in figure (23) and three-fold astigmatism A2 in figure (24). For the
simulations, we took N = 80 and S = 50. It is assumed that the retrieved coefficients are of
order magnitude as noted in Table 1.

From these (s,Q) plots it is clear that the retrieval of defocus Cdf , spherical aberration Cs

and three-fold astigmatism A2 remains consistent with the increase in coefficient. For two-fold
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astigmatism A1 and coma B2 this can not be said.

Table 4: Initial aberration coefficients C ′
n,1 for the simulations. The real and imaginary parts

of the coefficients are used individually, and the other coefficients are set to 0.

Aberration coefficient Value (in µm)
C ′

df,1 0.01

A′
1,r,1 0.01

A′
1,i,1 0.01

B′
2,r,1 0.2

B′
2,i,1 0.2

A′
2,r,1 1

A′
2,i,1 1

C ′
s,1 60

(a) Cs (b) Cdf

Figure 21: (s,Q) plot for third-order spherical aberration Cs in (21a) and defocus Cdf in (21b)
on the right. Initial C ′

s = 5 mm and C ′
df = 0.01 µm.

(a) A1,r (b) A1,i

Figure 22: (s,Q) plot for two-fold astigmatism A1, with initial |A′
1,1| = 0.01 µm. On the left in

(22a), the test for only real A1,r, on the right in (22b) imaginary A1,i.
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(a) B2,r (b) B2,i

Figure 23: (s,Q) plot for second order coma B2, with initial |B′
2,1| = 0.2 µm. On the left in

(23a), the test for only real B2,r, on the right in (23b), imaginary B2,i.

(a) A2,r (b) A2,i

Figure 24: (s,Q) plot for three-fold astigmatism A2, with initial |A′
2,1| = 1 µm. On the left in

(24a), the test for only real A2,r, on the right in (24b) imaginary A2,i.
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Discussion

PSF extraction
The methods described in this report are largely based on the methods given in this article by
Uno et al. (2005) [1]. Some adaptations were made to the methods based on foundings during
the research. The article describes the convolution integral as follows:

h(x, y) =

∫ ∞

−∞

∫ ∞

−∞
f(u+ x, v + y)g(u, v) du dv + γ(x, y),

H(X, Y ) = F (X, Y )G(X, Y ) + Γ(X, Y ),

(22)

with G(X, Y ) representing the complex conjugate of G(X, Y ). This differs from the represen-
tations in equations (1) and (2). Experimentally this resulted in the retrieved PSFs gu,o being
rotated around its center by π rad when using both methods for PSF extraction. This is illus-
trated in figure (25). Figure (25a) shows the under- and over-focus PSFs extracted from the
through-focus series shown in figure (9) by using equations (1) and (2). Below, (25b) shows
the PSFs extracted from the same through-focus series, using the equations in (22). Finally,
figure (25c) depicts the same PSFs shown in figure (25b), rotated over π rad.

(a) (b) (c)

Figure 25: Extracted under- and over-focus PSFs from the through-focus series shown in figure
(9). On the left, (25a) shows the extracted under (first row) and over (second row) focus PSFs
obtained by using equations (1) and (2). In the middle, (25b) shows the PSFs extracted from the
same through-focus series, using the equations in (22). Finally, the right figure (25c) depicts
the same PSFs as in (25b), rotated over π rad.
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A consequence of changing this definition is that the orientation of the original digitiza-
tions for some aberration coefficients is no longer accurate, but this only results in retrieved
coefficients being rotated around a certain angle, which will be discussed next.

Rotation of the PSF
The rotation around π rad changes the orientation of some of the retrieved aberration coeffi-
cients. If the entire PSF is rotated around an angle α∗, then the angles θk of the profile lines
drawn through the PSF are also rotated around the same angle. Indeed, let θ∗k = θk + π, and
define the aberration coefficients in Table 1 with this θ∗k, we obtain the following digitizations
for the aberration coefficients:

C∗
df =

1

N

N∑
k=1

(σu,k − σo,k) exp (i0(θk + π)) = Cdf ,

A∗
1 =

2

N

N∑
k=1

(σu,k − σo,k) exp (i2(θk + π)) = A1 exp (i2π) = A1,

B∗
2 =

2

N

N∑
k=1

(µu,k + µo,k) exp (i(θk + π)) = B2 exp (iπ) = −B2,

A∗
2 =

2

N

N∑
k=1

(µu,k + µo,k) exp (i3(θk + π)) = A2 exp (i3π) = −A2,

C∗
s =

1

N

N∑
k=1

(ρu,k − ρo,k) exp (i0(θk + π)) = Cs.

(23)

Added are the expressions for exp (iαθk) for Cdf and Cs. These changes should be visible in
the signs of the retrieved aberration coefficients. Table 5 shows the retrieved coefficients C∗

n

from the under- and over-focus PSFs shown in figure (25a) on the left, and the coefficients Cn

retrieved from the PSFs in figure (25b) on the right. Indeed, the coefficients for coma B2 and
A2 change sign, though they are slightly shifted in value.

Table 5: Retrieved coefficients Cn from the under- and over-focus PSFs shown in figure (25a)
on the left, and the coefficients C∗

n retrieved from the PSFs in figure (25b) on the right.

Aberration coefficients Cn C∗
n O (in m)

Cdf 4.325 4.247 10−8

A1 0.07360 + 9.284i 0.07635 + 9.019i 10−8

B2 −0.6404 + 0.8262i 2.593− 0.3950i 10−7

A2 −1.241 + 1.469i 1.207− 1.685i 10−6

Cs −1.081 −1.185 10−3
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Contours, cropping, and centroids
First, the extracted PSFs |gu,o| are cropped. This cropping process influences the number of
points M selected on the profile line. Next, contours Cu,o are drawn around the shape of the
PSF. Finally, the centroids (xu,0, yu,0) and (xo,0, yo,0) of the shape based on the contours are
calculated. The reference article [1] did not include this process, in this research it served well
as a check for the probe shape extraction. Furthermore, the reference article did not specify
which ’center of the probe’ [1] was meant: the topological center of the probe or the weighted
center of the probe (the coordinate located on the average of all intensity points pj). The first of
these two was assumed in this report. The development of a similar method using the weighted
center of the probe is therefore suggested. Another recommendation is to select the number of
points on each profile line as a measure of the contour, instead of the image size.
The setting of pj = 0 for pj ̸∈ Cu,o was a good measure for the spot shape. However, for one
test aberration coefficient A1, this resulted in the exclusion of some outside points with values
pj ≥ 0.2. This is shown in figure (26). The extracted under-focus PSF for real A1,r is shown in
the left column and imaginary A1,i in the right column (see figures (A.14a) and (A.15a) in the
Appendix, section on Two-fold astigmatism), with four profile lines for k = 0, 20, 40, 80. Below
these PSFs, two plots depicting the same profile lines are shown: in the middle row (figures
(26c) and (26d)) the profile lines using the exclusion of all pj ≤ 0.2 is shown. In the final
row (figures (26e) and (26f)) the same lines without the exclusion of points outside the contour.
It can be seen that certain points pj ≥ 0.2 are excluded in (26c) that are included in figure
(26e). However, this issue does not present itself for the imaginary two-fold astigmatism test.
In figure (26d) it can be seen that the exclusion of points pj < 0.2 is implemented successfully.
Further research into the use of this contour tracing and exclusion of points outside the contours
is recommended.

Characteristics
The three characteristics used for calculating the aberration coefficients all represent a certain
property of the normalized PSFs they are extracted from. Below they are discussed.

Asymmetry

Asymmetry µ has the same representation as the mean of a discrete probability density function.
It is due to this definition that extra research into comparing these characteristics to properties
of probability density functions was done.
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(a) Under focus PSF depicting A1,r, with
four profile lines.

(b) Under focus PSF depicting A1,i, with
four profile lines.

(c) A1,r with contour exclusion. (d) A1,i with contour exclusion.

(e) A1,r with contour exclusion. (f) A1,i with contour exclusion.

Figure 26: Figure depicting the extracted PSFs depicting two-fold astigmatism. It can be seen
that certain points pj ≥ 0.2 are excluded in (26c) that are included in figure (26e). However,
this issue does not present itself for the imaginary two-fold astigmatism test. In figure (26d) it
can be seen that the exclusion of points pj < 0.2 is implemented successfully.

Width

The width characteristic σ has a slightly different representation in the article compared to this
report:

σ =

√
1

W

∑
j

j2pj, (24)

In statistics, the expression for 1
W

∑
j j

2pj represents the second order moment of a distribution.
Very little motivation is given for this expression, which most likely used the assumption that
µ = 0 in the expression found in equations (13). A fairly reasonable assumption, since the mean
µ is often located very close to j = 0 compared to the size of the line profile. Still, because µ is
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calculated anyway, it made sense to use the proper statistical definition of standard deviation.
No information is lost between the two definitions, just a slight shift. This is illustrated best by
coma B2, as it is an aberration defined by its asymmetry µ ̸= 0. Figure (27) depicts the PSFs
from figure (A.24a), with four profile lines for k = 0, 20, 40, 60 drawn through its centroid.
Below them is a plot of the same profile lines, and finally a plot of the two definitions of width
σ from equations (13) and (24) for each k, together with a plot of the difference. This is done
for under-focus.

(a) Extracted PSFs from figure (A.24a), with profile lines for k = 0, 20, 40, 60.

(b) Profile lines for k = 0, 20, 40, 60. (c) Definitions of σ with their difference.

Figure 27: PSFs from figure (A.24a), with four profile lines for k = 0, 20, 40, 60 drawn through
its centroid in (27a). Below them are plots of the same profile lines in (27b), and finally plots
of the two definitions of width σ from equations (13) and (24) for each k, together with a plot
of the difference in (27c). This is done for under-focus. Indeed, there is very little difference
between the σ calculated with equation (24) and the σ that uses (13).

Curvature

The curvature characteristic ρ is the only characteristic in the retrieval method that does not
directly represent a statistical property, unlike asymmetry µ, equivalent to the mean and width
σ representing the standard deviation. Some research into statistical equivalents did not result in
anything directly relatable to the curvature definition. It is recommended to continue research
into this characteristic, as it does seem to somewhat accurately describe the effect spherical
aberration has on the PSF of an optical system.
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Aberration coefficients
The five aberration coefficients presented in this report are defined as average differences be-
tween characteristics of the under- and over-focus PSFs |gu,o|, except B2 and A2. The coeffi-
cients are discussed in order of appearance.

Defocus

Due to the rotational symmetry of this aberration, the rotation of the retrieved PSFs around π
rad is of no consequence to the final digitized Cdf . Positive Cdf indicates that the sample is
located further away from the objective lens than the focal plane. It is therefore recommended
that the definition of defocus Cdf [1] should be multiplied by −1. A positive defocus coefficient
Cdf means that the under-focus PSF gu has a lower width σ than the over-focus PSF go, causing
the coefficient defined in Table 1 to be the negative of the actual defocus coefficient.

Two-fold astigmatism

The signs of the retrieved real A1,r aberration coefficients match the signs of the input coeffi-
cients A′

1,r, the retrieved imaginary A1,i is of opposite sign to the initial A′
1,i, one suggestion

would be to replace the original digitization presented in Table 1 with its complex conjugate.
This would in hindsight align the argument of A1 with the argument of A′

1. The digitized defi-
nition of A1 described in Table 1 seems to correctly determine the highest magnitude between
the real and imaginary parts of A1. This suggests that the definition of A1 is a representative
computational method for this aberration coefficient. However, the (s,Q) plot did not show a
constant Q for a factorized increase in simulated A′

1. Additionally, the contour excluded some
points pj that should have been included. Further research into the viability of this contour
tracing and exclusion method is therefore recommended.

Second-order Coma

In the PSFs gu,o, the effect of coma results in a skewed intensity distribution, which in turn
results in asymmetry µ ̸= 0. Furthermore, the effect of coma is the same for under- and over-
focus, see figure (7), so for the definition of B2, the average sum of the under- and over-focus
characteristics µo,u is calculated instead of the average difference. We see this done as well
for three-fold astigmatism A2. The rotation of the extracted PSF due to omitting the complex
conjugate signs on the functions, originally found in [1] and defined in equation (22) also
influences the orientation of the retrieved coefficients. The retrieved coefficients B2 do not
match the input of the PSFs used to generate the effects of coma. When there is only real
simulated B′

2, the digitization results in a largely imaginary B2, and the opposite is true as
well. This suggests an incorrect digitization of B2, or an incorrect representation in the PSF
simulation. Further research into the retrieval of coma B2 is recommended, specifically in the
retrieval of the argument of the coefficient. One suggestion would be to multiply the digitization
of B2 with exp (iπ

2
) in Table 1. This simple solution aligns the retrieved coefficients for coma

B2 with the orientation of B′
2. Additionally, due to the mismatch of magnitudes of the retrieved

coefficients, it is not possible to confirm consistency out of the (s,Q) plot.
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Three-fold astigmatism

For its definition, A3 is calculated with the average sum of the under- and over-focus charac-
teristics µu,o. This definition for three-fold astigmatism scales consistently with an increase
in A2, both real and imaginary. Like B2, the retrieved coefficients A2 do not match the input
coefficients, though more than coma. The sign of the retrieved coefficient is accurate, but the
magnitude of the retrieved A2 seems to favor the imaginary part when the input coefficient is
real, and vice versa. This once again suggests an incorrect digitization of A2 or an incorrect
representation of A2 in the PSF simulation. One suggestion, like with B2, is to multiply the
digization of A2 with exp (iπ

2
) to match the orientation of A′

2.

Third-order spherical aberration

Third-order spherical aberration is the most important aberration discussed in this report, as the
SEM of the ImPhys department has a spherical aberration corrector, and it is the most prominent
aberration in SEM measurements. The digitization seems to correctly determine whether there
is a large amount of spherical aberration, though the exact magnitude of the retrieved Cs is not
accurate. There is a difference of around factor 2 between the retrieved coefficient from the
simulated PSFs g′u,o and the coefficient from the extracted PSFs gu,o, see figure see figure (20).
This can be explained when taking a look at the profile lines drawn through both the simulated
PSFs (see figure (28)) and extracted PSFs (figure (18)). There is a significant decrease in the
difference between the intensity of the center of the PSFs. This results in a lower digitized

(a) Under-focus simulated PSF for C ′
s. (b) Over-focus simulated PSF for C ′

s

Figure 28: Profile lines for k = 0, 20, 40, 60 of the simulated PSFs in figure (17b), C ′
s = 5 mm.

When compared to the extracted PSF profile lines depicted in figure (19), it is clear that there is
a difference in the intensity of the center of the PSF and the overall intensity distribution of the
PSF. This results in a decrease in digitized Cs after extracting the PSFs from a through-focus
series.

Cs value. The retrieval method still extracts Cs as the largest contributing coefficient. Further
research into the exact identity of ρ and the digitization Cs is recommended, specifically how
this ρ of a line profile scales with increasing and decreasing defocus. This will determine if this
characteristic accurately represents the effect of spherical aberration Cs.
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Conclusion
In this report, the process of aberration coefficient retrieval from a through-focus series of SEM
images was assessed and tested. This process consisted of three parts: probe shape extraction,
PSF analysis, and aberration coefficient calculation, which included a consistency test.

Probe shape extraction
The probe shape extraction method from a through-focus series of images is successfully de-
scribed and implemented using Fourier analysis. The method originally described in [1] and
stated in equations (22) uses complex conjugate signs in its definition of the image formation
and extraction method, which resulted experimentally in probe shapes rotated over π rad. This
rotation resulted in the digitization of B2 and A2 changing signs, no significant change was
noted for the other three test aberration coefficients. Furthermore, the shapes of simulated
PSFs convolved with a test image were successfully retrieved, as the retrieved probe shapes
match the shapes of the PSFs used to create a simulated through-focus series. This extraction
method was possible due to the approximation of an Airy pattern with a Gaussian function with
mean µAiry = 0 and standard deviation σAiry = 0.689rAiry.

PSF analysis
The analysis of these extracted PSFs using line profiles and characteristics had mixed results.
The first two characteristics presented in [1] have been successfully identified as the mean µ and
standard deviation σ of a probability density function with mass function pj/W . The third (and
arguably most important) characteristic curvature ρ has no such statistical equivalent. However,
it could be inferred that ρ is a good measure of the effect of third-order spherical aberration.
Further research into the exact identity of this ρ is recommended; specifically how this ρ of
a line profile scales with increasing and decreasing defocus, to determine how accurate this
characteristic is for representing the effect of spherical aberration Cs.
Using the diffraction integral, and the wave-optical description of an aberrated phase function
Φ, PSFs representing the effects of singular aberrations were simulated and used as test sam-
ples for the aberration retrieval method.
Contour tracing around the retrieved PSFs had mixed results. For all aberrations, it presented
a good measure of the spot shape. The implementation of an algorithm that excluded points
pj outside the contour was not accurate for one test aberration: two-fold astigmatism A2. The
contour tracing algorithm excludes important parts of the shapes of the PSFs.

Aberration coefficient calculation
The values of the retrieved aberration coefficients Cn did not match the simulated coefficients
C ′

n in magnitude. One explanation for these differences would be a mismatch in PSFs when
generating a PSF and retrieving a PSF in terms of size and intensity distribution. A general
recommendation is to continue research into comparing simulated aberration coefficients and
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retrieved coefficients.
From the (s,Q) plots, the consistency of this described method of aberration retrieval can be
suggested for three of the five test aberrations: defocus Cdf , three-fold astigmatism A2 and
third-order spherical aberration Cs. For coma B2 and two-fold astigmatism A1, such a conclu-
sion could not be made.
Defocus Cdf is consistently negative when the simulated C ′

df is positive and vice versa. A sug-
gestion would be to multiply the digitization of Cdf with −1 to match its input.
Retrieved two-fold astigmatism A1 does not match the argument of the simulated input, further
research into the scaling of two-fold astigmatism A1 is recommended.
Coma B2 does not match the input coefficients in both argument and magnitude. The difference
in argument can be remedied by multiplying the digitization of B2 with exp (iπ

2
). Three-fold

astigmatism A2 does not match the argument of the simulated coefficient A′
2, and is not re-

trieved as the largest aberration coefficient in the simulations. More detailed research into the
viability of asymmetry µ as characteristic for B2 and A2 is therefore suggested. Third-order
spherical aberration does match the simulated coefficient C ′

s in sign, but not in magnitude.
There is a difference of around factor 2 between the retrieved coefficient from the simulated
PSFs g′u,o and the coefficient from the extracted PSFs gu,o. There is a significant decrease in the
difference between the intensity of the center of the PSFs. The method still retrieves Cs as the
largest aberration coefficient when analysing PSFs that depict only spherical aberration.
Furthermore, the coefficient Q diverges for larger values of s. One explanation for this is the
contour tracing. As the effect of spherical aberration increases, the intensity values of the nor-
malized over-focus PSF decrease, and as such more intensity points are left out of the spherical
aberration calculation. Continued research into the digitization of spherical aberration with
curvature ρ is suggested.
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Appendix

Introduction
The figures depicting the simulated through-focus series, extracted PSFs, retrieved aberration
coefficients, and (s,Q)-plot images mentioned in the section on Results are depicted in the
following subsections for spherical aberration Cs, defocus Cdf , two-fold astigmatism A1, coma
B2 and three-fold astigmatism A2.
Figure (A.1) depicts the windowed gold on carbon test image that serves as the just focus
image h (left), along with the just focus PSF g (right). For each aberration mentioned above,

Figure A.1: Windowed image depicting the gold on carbon test image that serves as just focus
image h on the left. On the right, the assumed just focus PSF g is shown, as defined in the
results, see figure (17).

this image h is convolved with simulated under and over-focus PSFs g′u,o simulating exactly one
of the five discussed aberrations, using the diffraction integral (see equation (11)) to simulate
a through-focus series hu,o. The two PSFs each have defocus Cdf = ±1 µm. The simulated
under and over-focus images hu,o are depicted on the left, together with the PSFs |g′u,o| used to
create the images on the right. For each pair of images and PSFs, under focus is shown left,
and over focus on the right. All images are depicted in pixels on x and y axis.

Next, using equations (5) and (6), the under and over-focus PSFs gu,o are extracted and
compared to the shape of the simulated PSFs g′u,o. The reference just focus PSF g is again
assumed to be a Gaussian as described in equation (8), with Airy radius assumed rAiry = 20
nm. Their centroids (xu,0, yu,0), (xo,0, yo,0) and contours Cu,o are plotted in the same image as
well.

The aberration coefficient retrieval method is then applied to the simulated PSFs g′u,o and
the extracted PSFs gu,o. The resulting aberration coefficient magnitudes are shown in bar plots,
with blue representing the coefficients extracted from g′u,o and orange the extracted coefficients
from gu,o.

Lastly, five images for s = 10, 20, 30, 40, 50 that serve as samples for the (s,Q) plots in the
section on Results are shown with the contours and centroids.
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Spherical aberration

Through-focus series

(a) Simulated images hu,o (b) Simulated PSFs |g′u,o|

Figure A.2: Spherical aberration: Cs = −5 mm

PSF extraction

Figure A.3: Extracted PSFs |gu,o| from the images in figure (A.2a).

Retrieved aberration coefficients

Figure A.4: Barplot depicting the moduli of the extracted aberration coefficients in blue for the
PSFs in figure (A.2) and orange for the PSFs in figure (A.3).
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Defocus

Through-focus series

(a) Simulated under and over focus images hu,o (b) Simulated PSFs |g′u,o|

Figure A.5: Defocus C ′
df = 0.5 µm

(a) Simulated under and over focus images hu,o (b) Simulated PSFs |g′u,o|

Figure A.6: Defocus C ′
df = −0.5 µm

PSF extraction

(a) (b)

Figure A.7: Extracted PSFs |gu,o| from the images in figures (A.5a) on the left and (A.6a) on
the right.
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Retrieved aberration coefficients

(a) C ′
df = 0.5 µm (b) C ′

df = −0.5 µm

Figure A.8: Defocus

(s,Q) plot sample images

(a) s = 10 (b) s = 20

(c) s = 30 (d) s = 40

(e) s = 50

Figure A.9: Simulated PSFs imitating spherical aberration with coefficients C ′
df,s = sCdf,1,

C ′
df,1 = 0.01 µm, see Table 4. The PSFs are shown for s = 10, 20, 30, 40, 50.
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Two-fold astigmatism

Through-focus series

(a) Simulated under and over focus images hu,o (b) Simulated PSFs |g′u,o|

Figure A.10: Two-fold astigmatism A′
1,r = 0.2 µm, A′

1,i = 0

(a) Simulated images hu,o (b) Simulated PSFs |g′u,o|

Figure A.11: Two-fold astigmatism: A′
1,r = −0.2 µm, A′

1,i = 0

(a) Simulated images hu,o (b) Simulated PSFs |g′u,o|

Figure A.12: Two-fold astigmatism: A′
1,r = 0 , A′

1,i = 0.2µm

(a) Simulated images hu,o (b) Simulated PSFs |g′u,o|

Figure A.13: Two-fold astigmatism: A′
1,r = 0 , A′

1,i = −0.2µm
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PSF extraction

(a) (b)

Figure A.14: Extracted PSFs |gu,o| from the images in figures (A.10a) on the left and (A.11a)
on the right.

(a) (b)

Figure A.15: Extracted PSFs |gu,o| from the images in figures (A.12a) on the left and (A.13a)
on the right.

Retrieved aberration coefficients

(a) A′
1,r = 0.2 µm , A′

1,i = 0 (b) A′
1,r = −0.2 µm , A′

1,i = 0

Figure A.16: Two-fold astigmatism, real
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(a) A′
1,r = 0 , A′

1,i = 0.2 µm (b) A′
1,r = 0 , A′

1,i = −0.2 µm

Figure A.17: Two-fold astigmatism, imaginary

(s,Q) plot sample images

(a) s = 10 (b) s = 20

(c) s = 30 (d) s = 40

(e) s = 50

Figure A.18: Simulated PSFs imitating spherical aberration with coefficients A′
1,r,s = sA′

1,r,1,
A′

1,r,1 = 0.01 µm, see Table 4. The PSFs are shown for s = 10, 20, 30, 40, 50.
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(a) s = 10 (b) s = 20

(c) s = 30 (d) s = 40

(e) s = 50

Figure A.19: Simulated PSFs imitating spherical aberration with coefficients A′
1,i,s = sA′

1,i,1,
A′

1,i,1 = 60 µm, see Table 4. The PSFs are shown for s = 10, 20, 30, 40, 50.
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Coma

Through-focus series

(a) Simulated images hu,o (b) Simulated PSFs |g′u,o|

Figure A.20: Coma: B′
2,r = 8 µm, B′

2,i = 0

(a) Simulated images hu,o (b) Simulated PSFs |g′u,o|

Figure A.21: Coma: B′
2,r = −8 µm, B′

2,i = 0

(a) Simulated images hu,o (b) Simulated PSFs |g′u,o|

Figure A.22: Coma: B′
2,r = 0, B′

2,i = 8 µm

(a) Simulated images hu,o (b) Simulated PSFs |g′u,o|

Figure A.23: Coma: B′
2,r = 0, B′

2,i = −8 µm
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PSF extraction

(a) (b)

Figure A.24: Extracted PSFs |gu,o| from the images in figure (A.20a) on the left and (A.21a) on
the right.

(a) (b)

Figure A.25: Extracted PSFs |gu,o| from the images in figure (A.22a) on the left and (A.23a) on
the right.

Retrieved aberration coefficients

(a) B′
2,r = 8 µm, B′

2,i = 0 (b) B′
2,r = −8 µm, B′

2,i = 0

Figure A.26: Coma, real
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(a) B′
2,r = 0, B′

2,i = 8 µm (b) B′
2,r = 0, B′

2,i = −8 µm

Figure A.27: Coma, imaginary

(s,Q) plot sample images

(a) s = 10 (b) s = 20

(c) s = 30 (d) s = 40

(e) s = 50

Figure A.28: Simulated PSFs imitating spherical aberration with coefficients B′
2,r,s = sB′

2,r,1,
B′

2,r,1 = 0.2 µm, see Table 4. The PSFs are shown for s = 10, 20, 30, 40, 50.
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(a) s = 10 (b) s = 20

(c) s = 30 (d) s = 40

(e) s = 50

Figure A.29: Simulated PSFs imitating spherical aberration with coefficients B′
2,i,s = sB′

2,i,1,
B′

2,i,1 = 0.2 µm, see Table 4. The PSFs are shown for s = 10, 20, 30, 40, 50.
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Three-fold astigmatism

Through-focus series

(a) Simulated images hu,o (b) Simulated PSFs |g′u,o|

Figure A.30: Three-fold astigmatism:A2,r = 20 µm, A2,i = 0

(a) Simulated images hu,o (b) Simulated PSFs |g′u,o|

Figure A.31: Three-fold astigmatism:A′
2,r = −20 µm, A′

2,i = 0

(a) Simulated images hu,o (b) Simulated PSFs |g′u,o|

Figure A.32: Three-fold astigmatism: A′
2,r = 0, A′

2,i = 20 µm

(a) Simulated images hu,o (b) Simulated PSFs |g′u,o|

Figure A.33: Three-fold astigmatism: A′
2,r = 0, A′

2,i = −20 µm
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PSF extraction

(a) (b)

Figure A.34: Extracted PSFs |gu,o| from the images in figure (A.30a) on the left and (A.31a) on
the right.

(a) (b)

Figure A.35: Extracted PSFs |gu,o| from the images in figure (A.32a) on the left and (A.33a) on
the right.

Retrieved aberration coefficients

(a) A2,r = −20 µm, A2,i = 0 (b) A2,r = 20 µm, A2,i = 0

Figure A.36: Three-fold astigmatism, real

52



(a) A2,r = 0 , A2,i = 20 µm (b) A2,r = 0 , A2,i = −20 µm

Figure A.37: Three-fold astigmatism, imaginary

(s,Q) plot sample images

(a) s = 10 (b) s = 20

(c) s = 30 (d) s = 40

(e) s = 50

Figure A.38: Simulated PSFs imitating spherical aberration with coefficients A′
2,r,s = sA′

2,r,1,
A′

2,r,1 = 1 µm, see Table 4. The PSFs are shown for s = 10, 20, 30, 40, 50.
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(a) s = 10 (b) s = 20

(c) s = 30 (d) s = 40

(e) s = 50

Figure A.39: Simulated PSFs imitating spherical aberration with coefficients A′
2,i,s = sA′

2,i,1,
A′

2,i,1 = 1 µm, see Table 4. The PSFs are shown for s = 10, 20, 30, 40, 50.
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