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Abstract
Water injection in the aquifer induces deformations in the soil. These mechanical
deformations give rise to a change in porosity and permeability, which results in
non-linearity of the mathematical problem. Assuming that the deformations are very
small, the model provided by Biot’s theory of linear poroelasticity is used to determine
the local displacement of the skeleton of a porous medium, as well as the fluid flow
through the pores. In this continuum scale model, the Kozeny–Carman equation is
commonly used to determine the permeability of the porous medium from the
porosity. The Kozeny–Carman relation states that flow through the pores is possible at
a certain location as long as the porosity is larger than zero at this location in the
aquifer. However, from network models it is known that percolation thresholds exist,
indicating that the permeability will be equal to zero if the porosity becomes smaller
than these thresholds. In this paper, the relationship between permeability and
porosity is investigated. A new permeability-porosity relation, based on the
percolation theory, is derived and compared with the Kozeny–Carman relation. The
strongest feature of the new approach is related to its capability to give a good
description of the permeability in case of low porosities. However, with this
network-inspired approach small values of the permeability are more likely to occur.
Since we show that the solution of Biot’s model converges to the solution of a saddle
point problem for small time steps and low permeability, we need stabilisation in the
finite element approximation.

Keywords: Kozeny–Carman relation; Percolation threshold; Biot’s poroelasticity
model; Finite element method; Saddle point problem; Spurious nonphysical
oscillations

1 Introduction
For the description of different physical processes, such as consolidation, it is of a pivotal
importance to have a valid estimation of permeability. The permeability of porous media
is usually expressed as a function of some physical properties of the interconnected pore
system such as porosity. Although it is natural to assume that the permeability depends
on the porosity, it is not simple to formulate satisfactory theoretical models for the re-
lation between them, mainly due to the complexity of the connected pore space. One of
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the most widely used permeability-porosity relationships is the Kozeny–Carman relation
[13, 24]. This relation assumes that the connectivity of a porous space does not vary in
time, either by assuming a pore space that stays fully connected or by taking the effective
porosity initially and assuming no loss of connectivity. Therefore, the Kozeny–Carman re-
lation assumes that flow through the porous medium is possible as long as the porosity is
nonzero. Hence, this relation is not capable of predicting blocking of the flow if the poros-
ity is too low in some parts of the porous medium leading to two or more disconnected
regions. Moreover, it is empirically proven that the permeability decreases dramatically
with decreasing porosity [7], indicating that the Kozeny–Carman relation is less accurate
at low porosities. To improve the behaviour of this relation for small values of the porosity,
Mavko and Nur [26] incorporated a simple porosity adjustment into the Kozeny–Carman
relation, by taking the percolation threshold into account. This approach resulted in a bet-
ter prediction of the permeability for low porosities. However, in the work of Mavko and
Nur the percolation threshold was chosen empirically to give a good fit for the experimen-
tal data. Another approach to take into account the percolation threshold was presented
by Porter et al. [30], based on the work of Koltermann and Gorelick [22], who adapted the
Kozeny–Carman equation to represent bimodal grain-size mixtures.

In the literature, the relationship between the permeability and the porosity is also de-
rived using upscaling-based approaches, in case the underlying pore geometry of a repre-
sentative elementary volume is prescribed [34]. Application of these approaches provides
a link from the micro- to macroscopic behaviour of the material and allows the deriva-
tion of effective properties. Starting from mathematical models at the pore scale, such as
the Stokes equation for fluid flow, an averaging procedure is performed in order to derive
effective models. Possible averaging methods that may be applied to these equations are
volume averaging [48] and two-scale asymptotic expansion [4]. The effective permeability
tensor is given as the integral over solutions of auxiliary cell problems which are defined
on the representative elementary volume. Upscaling methods directly enable calculating
the full, potentially anisotropic, permeability tensor and one only needs the geometric in-
formation in terms of a representative elementary volume as input [34]. In contrast, well-
established relations such as the Kozeny–Carman equation relate the porosity to a scalar
permeability coefficient. Another upscaling method is the fast marching method (FMM),
that is employed by Sharifi et al. [36] as an efficient tool for permeability upscaling. Their
approach is based on the minimisation of the difference between dynamic behaviours of
fine-scale and up-scaled reservoir models that is provided by the FMM. Upscaling ap-
proaches are also used to derive Biot’s poroelasticity theory. Mikelić and Wheeler [27] de-
rived the Biot–Allard equations via the use of homogenisation and asymptotic expansions
in the space and time variables, the quasi-static Biot’s system is then obtained by taking
the singular limit of the more general dynamic Biot–Allard’s system. In [42], the model
for linear thermo-poroelasticity with nonlinear convection is derived using homogenisa-
tion. While the nonlinear quasi-static thermo-poroelastic equations are obtained using
the two-scale asymptotic expansion method [12].

The Kozeny–Carman equation is based on only having spherical grains in the porous
medium, whereas these grains can have various shapes. In this sense, the Kozeny–Carman
relation represents a limit case. Another limit case is the assumption that the voids be-
tween the grains are represented by straight channels. In this study, we briefly introduce
a new approach for the permeability that is derived on a micro-scale network model. At
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Figure 1 An illustration of a rectangular network

the pore-scale, this network model offers a detailed description of the porous medium
[6]. The current modelling framework deals with the latter limit case, and can be used for
general network topologies (such as rectangular, triangular and cubic arrangements of the
channels). In contrast with the Kozeny–Carman equation, the new network-inspired ap-
proach yields that the permeability is nonzero only if the porosity is larger than a specific
percolation threshold, that depends on the topology of the network. This means that the
new approach may give a better prediction of the permeability in physics problems where
abrupt changes in the porous medium occur resulting in a loss of connectivity of the con-
nected pore space. In addition, the current model provides a computational framework to
determine the percolation threshold for any given network with straight channels, which
implies that there is no need for fitting on the basis of experiments if the network topology
is known. This numerically determined threshold value agrees very well with the known
values of the percolation thresholds from the literature. The new permeability-porosity
approach is derived from percolation theory, which is a branch of probability that de-
scribes the effects of randomness arising from the porous media structure [11].

In percolation theory, the nodes of the network are called sites and the edges are called
bonds. This leads to two approaches: site percolation and bond percolation. In this paper,
we consider the bond percolation approach, whose basic idea can be explained as follows.
Consider a network such as shown in Fig. 1. Whether a bond is open or closed depends
on a certain probability and it is independent of the neighbouring bonds. If one bond is
open and the nearest neighbours are closed, it is said that a 1-cluster is formed. If two
adjacent bonds are open, they form a 2-cluster and so on. If the probability p of a bond
being open increases, then larger clusters are created. There exists a critical probability at
which the first cluster that spans the entire network from the inlet to the outlet is obtained.
For infinite networks, this critical probability is well defined and it is called the percolation
threshold pc [6].

Some macroscopic properties of porous media are mainly determined by the connectiv-
ity of the pore system [6]. Hence, it is possible to find a relation between the permeability of
a porous medium and the percolation properties using the network model. For instance,
if each of the open bonds conducts a fluid and there exists a cluster that spans the net-
work from the inlet to the outlet, then a volumetric flow is possible through the network.
By adding more open bonds to the cluster, the volumetric flow through the network may
increase. Since the number of open bonds represents the porosity of the network, it is pos-
sible to find a relation between the volumetric flow and the porosity [2, 49]. In addition,
Darcy’s law gives a relationship between the permeability of the porous medium and the
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volumetric flow. As a result, a relation between the permeability and the porosity can be
derived.

The applicability of these permeability-porosity relations will be demonstrated using
two illustrative numerical examples. In these examples, flow of an incompressible fluid
through a linearly elastic, saturated porous medium is modelled, using the classical the-
ory of poroelasticity. Originally developed by Biot [8], poroelasticity theory assumes a
superposition of solid and fluid components and couples the mechanical deformation of
a porous solid with fluid flow through its internal structure. This approach is valid in the
infinitesimal deformation range. Poroelasticity problems exist widely in the real world,
making this theory of a great interest due to its applicability in various branches of science
and engineering (see e.g. [5, 14, 32, 37, 39]).

In order to investigate the difference between the Kozeny–Carman approach and the
equation based on the percolation theory, the boundary conditions in both academic
poroelasticity examples are chosen such that a decrease in porosity is realised in some
parts of the computational domain. This decrease in porosity will lead in both relations
to a decrease in the permeability of the porous medium. When using the finite element
method to solve the poroelastic equations, it is well known that the numerical solution
of these equations may exhibit nonphysical oscillations in the pressure field for low per-
meabilities and short time steps [18, 43]. Under these conditions, the resulting finite el-
ement discretisation approaches saddle point problems. Hence, a considerate numerical
methodology in terms of possible spurious oscillations is needed. Therefore, a Galerkin fi-
nite element method based on Taylor-Hood elements has been developed, combined with
the stabilisation technique proposed in [1, 33]. Another stabilised finite element method
is employed by Wan [44], Korsawe and Starke [23] and Tchonkova et al. [40], based on the
Galerkin least-squares method.

Poroelasticity problems have been attracting attention from the scientific computing
community [21, 47] (and references therein). Another class of numerical methods that are
used to solve the poroelasticity equations are the finite volume method combined with
a nonlinear multigrid method as adopted by Luo et al. [25]. In addition, stabilised finite
difference methods using central differences on staggered grids are used by Gaspar et al.
[16, 17] to solve Biot’s model. However, the numerical solution of poroelasticity equa-
tions has been traditionally associated with finite element methods [3, 29]. Furthermore,
a monolithic approach for solving the quasi-static two-field poroelasticity equations is em-
ployed in this paper, which involves solving the coupled governing equations of flow and
geomechanics simultaneously at every time step. Another approach that is widely used
in coupling the flow and the mechanics in porous media is the fixed stress split method
[10, 28]. Hong et al. [19, 20] applied the fixed stress splitting scheme to multiple-network
poroelasticity systems.

2 Governing equations
The model provided by Biot’s theory of linear poroelasticity with single-phase flow [8] is
used in this study to determine the local displacement of the grains of a porous medium
and the fluid flow through the pores, assuming that the deformations are very small. The
fluid-saturated porous medium has a linearly elastic solid matrix and is saturated by an in-
compressible Newtonian fluid. Let Ω ⊂R

2 denote the computational domain with bound-
ary Γ , and x = (x, y) ∈ Ω . Furthermore, t denotes time, belonging to a half-open time inter-
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val I = (0, T], with T > 0. The initial boundary value problem for the consolidation process
of an incompressible fluid flow in a deformable porous medium is stated as follows [1, 45]:

–∇ · σ ′ + ∇p = 0 on Ω × I; (1a)

∂

∂t
(∇ · u) + ∇ · v = 0 on Ω × I, (1b)

where σ ′ and v are defined by the following equations

σ ′ = λ tr(ε)I + 2με; (2)

ε =
1
2
(∇u + ∇uT)

; (3)

v = –
κ

η
∇p. (4)

In the above relations, σ ′ and ε denote the effective stress and strain tensors, p the pore
pressure, u the displacement vector, v Darcy’s velocity, λ and μ the Lamé coefficients; κ the
permeability of the porous medium and η the fluid viscosity. The parameter values used
in this paper are given in Table 5. In addition, appropriate boundary and initial conditions
are specified in Sect. 4.

3 The permeability-porosity relations
In this study, we consider the spatial dependency of the porosity and the permeability of
the porous medium. The porosity θ is computed from the displacement vector using the
porosity-dilatation relation (see [31, 41])

θ (x, t) = 1 –
1 – θ0

exp(∇ · u)
, (5)

with θ0 the initial porosity. Subsequently, the permeability can be determined using the
Kozeny–Carman equation [46]

κ(x, t) =
d2

s
180

θ (x, t)3

(1 – θ (x, t))2 , (6)

where ds is the mean grain size of the soil. The Kozeny–Carman relation assumes that the
permeability becomes zero if and only if the porosity also becomes zero. A new approach
for the relation between the porosity and the permeability is inspired by the fluid flow
through a network, where the fluid flows into the edges (channels) of the network. The
network-inspired relation takes into account that a certain number of the channels are
removed randomly, therefore the fluid can not flow through those particular channels
causing an alteration in the permeability and the porosity of the network. The number
of removed channels increases from 1% of the total number of channels to 100%. For a
certain number of removed channels, there are no connected paths anymore between the
inlet and the outlet. In this case, the fluid will stop flowing and the permeability will be
expected to become zero. For an arbitrary network topology, the network-inspired relation
states:

κ(x, t) =

⎧
⎨

⎩
0, θ < θ̂ ,
θ–θ̂

θ0–θ̂
κ0, θ ≥ θ̂ ,

(7)
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Figure 2 The normalised permeability as function of the
normalised porosity for the Kozeny–Carman relation and
the network-inspired relation, with θ̂ = 0.5θ0

where κ0 is the initial permeability. The percolation threshold porosity θ̂ = pcθ0, represents
the minimal porosity needed to have connection via voids or channels from one end to
the other, and is dependent on the topology of the network. For θ̂ = 0.5θ0, the normalised
permeabilities (κ/κ0) for the network-inspired relation and the Kozeny–Carman relation
are depicted in Fig. 2 as function of the normalised porosity (θ/θ0). In the coming section,
we will show how the permeability-porosity relation (7) is derived using a network model.

3.1 The network-inspired permeability-porosity relation
In this section, we explain the procedure followed to obtain the network-inspired
permeability-porosity relation. According to Balberg [2] and Wong [49], it is possible to
obtain a relation between the number of open bonds (or channels) in the network No and
the flow rate through the network Q. This relation is determined by a power law as follows:

Q ∝ (No – N̂)b for No > N̂ , (8)

in which N̂ is the number of bonds corresponding with the percolation threshold porosity
and b is an exponent that can be determined by theory or via computer simulations. A
similar relation between the permeability κ and the porosity θ will be obtained in this
section.

First, we consider a network with all channels open and with a pressure gradient 	p
imposed over the horizontal direction of the network. Second, we assume that mass con-
servation holds in each node of the network ni, hence

∑

j∈Si

qij = 0, (9)

where Si = {j | node nj is adjacent to node ni}, and qij is the flow rate in the channels con-
nected to node ni. This flow rate is given by the Poiseuille flow

qij =
πr4

8ηl
	pij, (10)

where r and l are the radius and the length of a channel between two neighbouring nodes,
respectively, and 	pij is the pressure drop.

A linear system for the pressure pi in each node arises from substituting Eq. (10) in
Eq. (9). This system is solved via a direct method and, subsequently, the flow rate in each
channel is computed via Eq. (10). Finally, the flow rate through the network Q is computed
by the summation of the flow rates in the channels that are connected with the outlet of the
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network. After this, we randomly close the channels, starting with 1% of the total number
of channels in the network until that 100% of the channels is closed. In each stage, 500
simulations are performed and in each simulation, the linear system for the pressure is
solved and the flow rate through the network is computed. From the computed flow rate
Q, the permeability of the network can be determined using Darcy’s law

κ = –
Q
A

ηL
	p

, (11)

where A is the cross-sectional area of the network and L is the length over which the
pressure gradient is taking place. In addition, there is a direct relation between the porosity
of the network and the volume of the open channels Vo

θ =
Vo

Vt
θ0, (12)

in which Vt is the total volume of the channels. This procedure yields a relation between
the permeability and the porosity of the network. In the coming sections, this procedure
will be demonstrated for three two-dimensional networks: rectangular, triangular and tri-
angular unstructured.

3.1.1 Rectangular network
We start by describing the results obtained for a rectangular network (see Fig. 1). In this
case, we use a network with Nx = 100 horizontal nodes and Ny = 60 vertical nodes. We
computed the fraction of closed channels fc = Vc/Vt , that is needed to obtain a normalised
permeability κn = κ/κ0 such that ki – 0.05 < κn < ki + 0.05, where ki ∈ {0.1, 0.2, . . . , 0.9}. In
Fig. 3, the histograms for ki = 0.1, ki = 0.5 and ki = 0.9 are shown. The mean μ̄ and the

Figure 3 The histograms of the fraction of closed channels fc for the rectangular network
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Table 1 The mean μ̄ and the standard deviation σ of the distribution of fc for the rectangular
network

μ̄ σ

0.05 < κn < 0.15 0.4789 0.0037
0.15 < κn < 0.25 0.4188 0.0026
0.25 < κn < 0.35 0.3678 0.0023
0.35 < κn < 0.45 0.3195 0.0022
0.45 < κn < 0.55 0.2717 0.0019
0.55 < κn < 0.65 0.2240 0.0018
0.65 < κn < 0.75 0.1760 0.0016
0.75 < κn < 0.85 0.1273 0.0014
0.85 < κn < 0.95 0.0777 0.0012

Figure 4 An illustration of a triangular network

standard deviation σ of the distribution of fc depend on the normalised permeability κn

as presented in Table 1.

3.1.2 Triangular network
In this section, we present the results obtained with a triangular network as shown in Fig. 4.
The number of nodes in the horizontal direction Nx = 100 and the number of nodes in the
vertical direction Ny = 60. The coordination number of the interior nodes is eight or four
(see Fig. 4). In Fig. 5, the histograms for ki = 0.1, ki = 0.5 and ki = 0.9 are depicted. In
addition, the values of the mean μ̄ and the standard deviation σ of the distribution of fc

are presented in Table 2.

3.1.3 Triangular unstructured network
Finally, we present the results obtained with a triangular unstructured network such as
shown in Fig. 6. The total number of nodes in this network is 6921. The histograms of the
fraction of closed channels for some values of the normalised permeability are depicted
in Fig. 7. Moreover, in Table 3, the values of the mean μ̄ and the standard deviation σ of
the distribution of fc are given.

This method is also used to compute fc for κn = 0. The mean μ̄ of the smallest value
of fc for which holds κn = 0 is depicted in Table 4. Since θ/θ0 = 1 – fc, we observe from
the results obtained with the different networks that the permeability becomes zero for
porosities below a certain threshold. These percolation thresholds are different for the
different networks used in this study, as can be seen in Table 4. The values are in good
agreement with the literature [38]. We also observe that, for all three networks, the relation
between the permeability and the porosity exhibits an almost linear increase for values of
the porosity larger than the percolation threshold. Moreover, the slope of these linear lines
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Figure 5 The histograms of the fraction of closed channels fc for the triangular network

Table 2 The mean μ̄ and the standard deviation σ of the distribution of fc for the triangular network

μ̄ σ

0.05 < κn < 0.15 0.6226 0.0077
0.15 < κn < 0.25 0.5522 0.0086
0.25 < κn < 0.35 0.4882 0.0099
0.35 < κn < 0.45 0.4240 0.0102
0.45 < κn < 0.55 0.3604 0.0105
0.55 < κn < 0.65 0.2975 0.0108
0.65 < κn < 0.75 0.2333 0.0111
0.75 < κn < 0.85 0.1687 0.0104
0.85 < κn < 0.95 0.1052 0.0103

Figure 6 An illustration of a triangular unstructured network

depends on the percolation threshold and hence on the network topology. The normalised
permeabilities, for the different network topologies used in this paper and for the Kozeny–
Carman equation, are depicted in Fig. 8.
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Figure 7 The histograms of the fraction of closed channels fc for the triangular unstructured network

Table 3 The mean μ̄ and the standard deviation σ of the distribution of fc for the triangular
unstructured network

μ̄ σ

0.05 < κn < 0.15 0.6030 0.0066
0.15 < κn < 0.25 0.5385 0.0062
0.25 < κn < 0.35 0.4773 0.0059
0.35 < κn < 0.45 0.4168 0.0063
0.45 < κn < 0.55 0.3555 0.0062
0.55 < κn < 0.65 0.2938 0.0063
0.65 < κn < 0.75 0.2308 0.0061
0.75 < κn < 0.85 0.1667 0.0059
0.85 < κn < 0.95 0.1024 0.0049

Table 4 The percolation threshold for different network topologies

Network type fc pc

Rectangular 0.5065 0.4935
Triangular 0.6768 0.3232
Triangular unstructured 0.6562 0.3438

Figure 8 The network-inspired versus Kozeny–Carman
based permeability-porosity relations
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4 Problem formulation
The following numerical experiments are designed to study the different relations for the
porosity and the permeability. In both experiments, the boundary conditions are chosen
such that a decrease in porosity is realised in some parts of the computational domain.

4.1 Problem with high pump pressure
In this numerical experiment, the infiltration of an incompressible fluid through a filter
into a two-dimensional area is considered, as shown in Fig. 9. During the infiltration, a high
pump pressure is used to inject water into the porous medium. Leading to a compression
of the material against the rigid right boundary Γ4.

The computational domain Ω is a two-dimensional rectangular surface with Cartesian
coordinates x = (x, y). In order to solve this problem, Biot’s consolidation model, as de-
scribed in Sect. 2, is applied on the computational domain Ω with width L and height H .
The fluid is injected into the soil through a filter placed on boundary segment Γ2. More
precisely, the boundary conditions for this problem are given as follows:

κ

η
∇p · n = 0 on x ∈ Γ1 ∪ Γ3; (13a)

p = ppump on x ∈ Γ2; (13b)

p = 0 on x ∈ Γ4; (13c)
(
σ ′n

) · t = 0 on x ∈ Γ1 ∪ Γ3 ∪ Γ4; (13d)

u · n = 0 on x ∈ Γ1 ∪ Γ3 ∪ Γ4; (13e)

σ ′n = 0 on x ∈ Γ2, (13f)

where t is the unit tangent vector at the boundary, n the outward unit normal vector and
ppump is a prescribed high pump pressure due to the injection of the fluid. Figure 9 shows
the definition of the boundary segments. Initially, the following condition is imposed:

u(x, 0) = 0 for x ∈ Ω . (14)

Figure 9 Sketch of the setup for the two-dimensional problem with high pump pressure
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Figure 10 Sketch of the setup for the two-dimensional squeeze problem

4.2 Squeeze problem
The infiltration of a fluid through a filter into a rectangular two-dimensional area is shown
in Fig. 10. In this numerical experiment, the porous medium is squeezed by applying a
vertical load on the middle of the top and bottom edges of the domain.

This problem is solved using Biot’s consolidation model, that is applied on the compu-
tational domain Ω with width L and height H . The fluid is injected into the soil through a
filter placed on boundary segment Γ3. The boundary conditions for this problem are given
as follows:

κ

η
∇p · n = 0 on x ∈ Γ1 ∪ Γ2 ∪ Γ4 ∪ Γ5; (15a)

p = ppump on x ∈ Γ3; (15b)

p = 0 on x ∈ Γ6; (15c)

σ ′n =
(
0, –σ ′

0
)T on x ∈ Γ1; (15d)

σ ′n = 0 on x ∈ Γ2 ∪ Γ3 ∪ Γ4; (15e)

σ ′n =
(
0,σ ′

0
)T on x ∈ Γ5; (15f)

u = 0 on x ∈ Γ6, (15g)

where t is the unit tangent vector at the boundary, n the outward unit normal vector, ppump

is a prescribed pump pressure due to the injection of the fluid and σ ′
0 is the intensity of a

uniform vertical load. Figure 10 shows the definition of the boundary segments. Initially,
the following condition is imposed:

u(x, 0) = 0 for x ∈ Ω . (16)

5 Numerical method
To present the variational formulation of problem (1a)–(1b), we first introduce the ap-
propriate function spaces. Let L2(Ω) be the Hilbert space of square integrable scalar-
valued functions, with inner product (f , g) =

∫
Ω

fgdΩ . And let H1(Ω) denote the subspace
of L2(Ω) of functions with first derivatives in L2(Ω). We further introduce the function
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spaces

W (Ω) =
{

w ∈ (
H1(Ω)

)2 : (w · n)|Γ1∪Γ3∪Γ4 = 0
}

;

Q(Ω) =
{

q ∈ H1(Ω) : q|Γ2 = ppump and q|Γ4 = 0
}

.

In addition, we consider the bilinear forms

a(u, w) = λ(∇ · u,∇ · w) + 2μ

2∑

i,j=1

(
εij(u), εij(w)

)
;

b(w, p) = (p,∇ · w);

c(p, q) =
(

κ

η
∇p,∇q

)
,

where the notation

(f , g) =
∫

Ω

f · g dΩ (17)

is used for the bilinear form c(p, q).The variational formulation for problem (1a)–(1b) with
boundary and initial conditions (13a)–(13f)–(14), consists of the following, using the no-
tation u̇ = ∂u

∂t : Find (u(t), p(t)) ∈ (W × Q) such that

a
(
u(t), w

)
– b

(
w, p(t)

)
= h(w) ∀w ∈ W ; (18a)

b
(
u̇(t), q

)
+ c

(
p(t), q

)
= 0 ∀q ∈ Q0, (18b)

with the initial condition u(0) = 0, and where

h(w) = –ppump

∫

Γ2

w · n dΓ ;

Q0(Ω) =
{

q ∈ H1(Ω) : q|Γ2∪Γ4 = 0
}

.

Subsequently, problem (18a)–(18b) is solved by applying the finite element method. Let
Pk

h ⊂ H1(Ω) be a function space of piecewise polynomials on Ω of degree k. Hence, we
define finite element approximations for W and Q as W k

h = W ∩ (Pk
h × Pk

h ) with basis
{φφφi = (φi,φi) ∈ (W k

h × W k
h ) : i = 1, . . . , nu} and Qk′

h = Q ∩ Pk′
h with basis {ψj ∈ Qk′

h : j =
1, . . . , np}, respectively [1]. Afterwards, we approximate the functions u(t) and p(t) with
functions uh(t) ∈ W k

h and ph(t) ∈ Qk′
h , defined as

uh(t) =
nu∑

i=1

ui(t)φφφi, ph(t) =
np∑

j=1

pj(t)ψj, (19)

in which the Dirichlet boundary conditions are imposed. Simultaneously, discretisation
in time is applied using the backward Euler method. Let τ be the time step size and de-
fine a time grid {tm = mτ : m ∈ N}, then the discrete Galerkin scheme of (18a)–(18b) is
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formulated as follows: For m ≥ 1, find (um
h , pm

h ) ∈ (W k
h × Qk′

h ) such that

a
(
um

h , wh
)

– b
(
wh, pm

h
)

= h(wh) ∀wh ∈ W k
h ; (20)

b
(
um

h , qh
)

+ τc
(
pm

h , qh
)

= b
(
um–1

h , qh
) ∀qh ∈ Qk′

0h, (21)

while for m = 0: u0
h = 0. The discrete Galerkin scheme for problem (1a)–(1b) with bound-

ary and initial conditions (15a)–(15g)–(16) is derived similarly.
In the network-inspired relation (7), the permeability is equal to zero for θ ∈ [0, θ̂ ]. Hence

for high percolation thresholds, is it more likely that the permeability goes to zero. From
an intuitive point of view, it can be seen that, as τκ → 0, the solution to the semi-discrete
problem inherits the properties of a Stokes-like equation, for which it becomes favourable
to use stabilisation techniques (possibly in combination with Taylor-Hood, mini-elements,
or Crouzeix-Raviart elements).

Since Biot’s poroelasticity problem converges to a saddle point problem as τκ → 0, the
Taylor-Hood elements can be used to solve this problem numerically. These elements rep-
resent finite element pairs that satisfy the inf-sup condition for the saddle point problem
[9, 15]. Although the inf-sup condition and the coercivity and boundedness of bilinear
form a(u, w) warrant existence and uniqueness of the finite element solution, the inf-sup
condition is not sufficient for reliable numerical solutions of Biot’s problem (1a)–(1b).
Since for low permeabilities and/or small time steps, the approximation to the pressure
exhibits nonphysical oscillations due to loss of the M-matrix property, as shown in [1].
In order to improve the monotonicity properties of the finite element scheme and to ob-
tain oscillation free approximations of the pressure, the stabilisation procedure outlined
in [1, 33] is applied in this study. Therefore, a stabilisation term is added to the continuity

equation in Biot’s model with stabilisation parameter β =
√

	x2+	y2

4(λ+2μ) .

6 Numerical results
The Galerkin finite element method, with triangular Taylor-Hood elements [31, 35], is
adopted to solve the discretised quasi-two-dimensional problem (1a)–(1b). The displace-
ments are spatially approximated by quadratic basis functions, whereas a continuous
piecewise linear approximation is used for the pressure field. From the system of equations
(1a)–(1b) and the boundary conditions (13a)–(13f) it is obvious that this two-dimensional
problem is symmetrical in the y-direction and that it can be reduced to a one-dimensional
problem. Aguilar et al. [1] solved this one-dimensional problem analytically and showed
that the finite element method with Taylor-Hood elements gives accurate numerical re-
sults. For the time integration, the backward Euler method is applied. The numerical in-
vestigations are carried out using the matrix-based software package MATLAB (version
R2015a).

The computational domain is a rectangular surface with width L = 2.0 m and height
H = 1.0 m. The domain is discretised using a regular triangular grid, with 	x = 	y = 0.02.
In addition, values for some model parameters have been chosen based on literature (see
Table 5).

Furthermore, the Lamé coefficients λ and μ are related to Young’s modulus E and Pois-
son’s ratio ν by

λ =
νE

(1 + ν)(1 – 2ν)
, μ =

E
2(1 + ν)

. (22)
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Table 5 An overview of the values of the model parameters

Property Symbol Value Unit

Young’s modulus E 35 · 106 Pa
Poisson’s ratio ν 0.3 –
Fluid viscosity η 1.307 · 10–3 Pa · s
Initial porosity θ0 0.4 –
Mean grain size ds 0.2 · 10–3 m
Pump pressure ppump 50 · 105 / 5 · 105 Pa
Uniform load σ ′

0 3 · 106 N/m2

Figure 11 Numerical solutions for the fluid velocity, the permeability and the porosity, at time t = 300,
obtained using the Kozeny–Carman relation

Figure 12 Numerical solutions for the fluid velocity, the permeability and the porosity, at time t = 300,
obtained using the network-inspired relation with pc = 0.3232

The impact of the permeability-porosity relation on the water flow is defined in this study
as the impact on the time average of the volumetric flow rate Qout at a distance L from
the injection filter. The initial permeability κ0 used in Eq. (7) is computed by the Kozeny–
Carman relation (6), in order to have a reliable comparison between the two relations. In
the generations of the simulation results, the time step size is chosen to be τ = 0.5.

6.1 Numerical results for the problem with high pump pressure
In order to obtain some insight into the impact of a high pump pressure on the water flow,
we present an overview of the simulation results in Figs. 11–13. In these simulations, water
is injected into the soil at a constant pump pressure of 50 bar. The simulated fluid veloc-
ity, permeability and porosity profiles that have been obtained using the Kozeny–Carman
relation are provided in Fig. 11, while the simulated results that have been obtained using
the network-inspired relation with pc = 0.3232, corresponding with a triangular structured
network, are provided in Fig. 12. In Fig. 13, the simulated results that have been obtained
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Figure 13 Numerical solutions for the fluid velocity, the permeability and the porosity, at time t = 300,
obtained using the network-inspired relation with pc = 0.4935

Figure 14 The time average of the volumetric flow rate
Qout as a function of the percolation threshold pc , using
	x =	y = 0.02

using the network-inspired relation with pc = 0.4935, corresponding with a rectangular
network, are depicted.

As shown in these figures, the injected water flows in the horizontal direction through
the domain from the inlet to the outlet. Furthermore, the magnitude of the velocity |v| in
the inlet is larger than in the outlet. Note that due to the continuity equation (1b), the fluxes
at the inlet and the outlet are not necessarily equal. The change in |v| can be explained by
the permeability profiles shown in Figs. 11(b)–13(b). In these figures we observe that the
permeability decreases almost linearly from the inlet to the outlet. In addition, the perme-
ability obtained using the Kozeny–Carman relation exhibits a larger decrease than the per-
meabilities obtained with the network-inspired model. The normalised permeability using
the Kozeny–Carman relation decreases from 1 to 0.4659, while the normalised perme-
abilities for the network-inspired relation decrease from 1 to 0.7519 and from 1 to 0.6684
for the triangular structured and the rectangular network respectively. This behaviour is
clarified by Fig. 8 and Figs. 11(c)–13(c). Due to boundary condition (13e), the values of
the normalised porosity in all three cases are almost the same in the outlet and are equal
to 0.8321. In Fig. 8, we see that for this value of the porosity, the normalised permeability
is the lowest for the Kozeny–Carman relation and the highest for the network-inspired
relation derived from the triangular structured network. This explains the difference in
decrease in the permeability profiles. Note that the values of the material properties in
Table 5 belong to a porous medium consisting of sand grains, hence a high pump pres-
sure will apparently not result in hydraulic fracturing. This study therefore neglects this
phenomenon.

In Fig. 14, the time average of the volumetric flow rate Qout is depicted for different val-
ues of the percolation threshold. As expected from Fig. 8, for low percolation thresholds
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Figure 15 The time average of the volumetric flow rate
Qout as a function of the percolation threshold pc , using
	x =	y = 0.04

Figure 16 Numerical solutions for the fluid velocity, the permeability and the porosity, at time t = 300,
obtained using the Kozeny–Carman relation

the network-inspired relation results in higher flow rates than the Kozeny–Carman re-
lation. Furthermore, the flow rate changes significantly as a function of the percolation
threshold. Hence the water flow depends on the topology of the network. The negative
values of the flow rate Qout for the very high values of the percolation threshold from the
network-inspired relation are caused by violation of the M-matrix property that gives loss
of monotonicity of the numerical solution. To demonstrate this, the problem is solved for a
coarser grid 	x = 	y = 0.04, as shown in Fig. 15. In this figure, it becomes even worse, and
we observe spurious oscillations for the network-inspired relation for percolation thresh-
olds larger than 0.85 approximately. The reason for this behaviour is that for large values
of the percolation threshold, the permeability goes to zero very soon. Therefore, even the
used stabilisation did not diminish the nonphysical oscillations. Probably a stronger stabil-
isation will alleviate these spurious oscillations. This was behind the scope of the current
paper.

6.2 Numerical results for the squeeze problem
The impact of the imposed vertical load on boundary segments Γ1 and Γ5 is shown in
Figs. 16–18, using the Kozeny–Carman relation and the network-inspired relation respec-
tively. In these simulations, water is injected into the porous medium at a constant pump
pressure equal to 5.0 bar. The simulated fluid velocity, permeability and porosity profiles
that are obtained using the Kozeny–Carman relation are provided in Fig. 16, while the
simulated results that are obtained using the network-inspired relation with pc = 0.3232,
corresponding with a triangular structured network, are provided in Fig. 17. In Fig. 18, the
simulated results that are obtained using the network-inspired relation with pc = 0.4935,
corresponding with a rectangular network, are depicted.
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Figure 17 Numerical solutions for the fluid velocity, the permeability and the porosity, at time t = 300,
obtained using the network-inspired relation with pc = 0.3232

Figure 18 Numerical solutions for the fluid velocity, the permeability and the porosity, at time t = 300,
obtained using the network-inspired relation with pc = 0.4935

In Figs. 16(a)–18(a), the impact of the imposed vertical load on the computational do-
main is shown. The magnitude of the velocity is small near the boundary segments where
the vertical load is applied and large in the middle near the symmetry axis y = H/2. In
the outlet, the magnitude of the velocity is maximal near the upper and lower bound-
ary segments and decreases towards the symmetry axis. In all three cases, the fluid flows
mainly in the horizontal direction. In the region where the load is imposed, the domain
is squeezed, resulting in a larger density of the grains. This leads to a lower porosity in
this region, with minimum values 0.8809, 0.8811 and 0.8810 for the Kozeny–Carman re-
lation, the triangular structured network-inspired relation and the rectangular network-
inspired relation respectively. The abrupt transition in the boundary condition between
boundary segments Γ1 and Γ2 (and between Γ4 and Γ5), which results in a discontinuous
force, results in a small numerical artefact at the location of these transitions. As expected
from Fig. 8 and the minimum values for the porosities, the decrease in permeability by
the Kozeny–Carman relation, as shown in Fig. 16(b), is larger than the decrease in the
porosities obtained using the network-inspired relation, Figs. 17(b) and 18(b).

In Fig. 19, the time average of the volumetric flow rate Qout is depicted for different
values of the percolation threshold. Similarly to the high pump pressure problem, the flow
rates for small values of the percolation threshold using the network-inspired relation are
higher than the flow rates obtained using the Kozeny–Carman relation. In addition, we
observe that the flow rate depends significantly on the percolation threshold and hence
on the topology of the network for high percolation thresholds.
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Figure 19 The time average of the volumetric flow rate
Qout as a function of the percolation threshold pc

7 Discussion and conclusions
In this paper, the network-inspired permeability-porosity relation is applied on two poroe-
lasticity problems. This numerical experiment is designed in order to analyse the applica-
bility of this microscopic relation on the macro-scale. Furthermore, we compare the re-
sults obtained with the network-inspired relation to the Kozeny–Carman relation which
is often used in these physical problems. In the first problem, a high pump pressure is
imposed in the inlet of a porous medium package. This high pressure forces the grains
to move towards the outlet. In the second problem the package is squeezed by applying
a load on the middle of the top and bottom edges of the domain. The purpose of consid-
ering these poroelasticity problems is to create a large density of the grains in the com-
putational domain which results in a decrease of the porosity. In these problems, Biot’s
model for poroelasticity is used to determine the water pressure and the displacements
of the grains that are needed to compute the porosity. From the porosity the permeability
is determined either by the network-inspired relation or by the Kozeny–Carman relation.
Depending on the topology, three different percolation thresholds, corresponding with a
rectangular network (pc = 0.4935), triangular structured network (pc = 0.3232) and trian-
gular unstructured network (pc = 0.3438), are distinguished. However, since the topology
of macro-scale porous media is not known, computations are also performed with per-
colation thresholds in the interval [0, 0.975] to investigate the influence of the percolation
threshold (and hence the topology of the porous medium) on the flow rate.

First, the problems are solved with the Kozeny–Carman relation, the network-inspired
relation based on the triangular structured network and the relation based on the rect-
angular network. From the numerical results we conclude that the permeability obtained
using the Kozeny–Carman relation exhibits a larger decrease than the permeabilities ob-
tained with the network-inspired relations, which is clarified by Fig. 8. In contrast, the
porosity profile is not affected significantly by the selected permeability-porosity relation.
Second, the time average of the volumetric flow rate was computed for percolation thresh-
olds in the interval [0, 0.975]. For low percolation thresholds the network-inspired relation
results in higher flow rates than the Kozeny–Carman relation, as expected from Fig. 8. In
addition, it is shown that the flow rate changes significantly as a function of the percolation
threshold which means that the water flow depends on the topology of the network. For
high percolation thresholds, spurious oscillations appeared due to the violation of the M-
matrix property in the discretisation matrix that resulted from the convergence of Biot’s
problem to the related saddle point problem. The results for these percolation thresholds
could be improved by using a finer grid.
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For the studied problems and the set of parameters chosen, we noticed that the ap-
plied permeability-porosity relations result in small changes in the porosity while a major
change is realised in the permeability profiles. A possible explanation for this behaviour
is that the relation between the velocity field and the change of the displacements in time
as stated in Eq. (1b), is not strong enough to lead to significant changes in the porosity
profile.
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