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Andreev bound states arise in low-dimensional con�ned systems, coupled to supercon-
ductors. They show great similarity to the highly sought-after Majorana bound states, yet
they lack the desirable non-Abelian statistics or topological protection. Except for these,
Andreev bound states possess a multitude of unique and interesting properties. This thesis
explores several of these properties, using semiconductor quantum dots as a measurement
tool. In addition, quantum dots are hybridized with Andreev bound states to form novel
systems, including Andreev molecules, and Kitaev chains.

In the theory section, we introduce several basic concepts, followed by a discussion
of the properties of Andreev bound states and similar Yu-Shiba-Rusinov states. We then
extend the concept of Andreev bound states to Kitaev chains in various implementations.

In the �rst chapter, we use a quantum dot as both a spin and energy �lter to probe an
Andreev bound state. We observe pure spin states despite the strong spin-orbit interaction
in the host semiconductor. Utilizing a three-terminal measurement setup, we can change the
spin-relaxation process of the Andreev bound state by changing tunnel barrier strengths.

Next, we con�gure a quantum dot as a charge sensor to study Andreev bound states. We
observe smooth changes in ground state charge due to hybridization of the even-occupation
states. We additionally detect abrupt loading of electrons during the singlet-doublet
transition, which agrees with a change of ground state parity. Having used quantum dots as
a measurement tool, we then hybridize themwith Andreev bound states to form an Andreev
molecule. We demonstrate readout of the ground state parity of the combined system
using the charge sensor. We argue that parity-to-charge conversion in semiconductor-
superconductor systems is a viable scheme for reading out Kitaev chains and associated
qubits.

We proceed by strongly coupling two quantum dots to a single Andreev bound state.
This coupling mediates tunneling and Cooper pair splitting processes between the quantum
dots, e�ectively constituting a Kitaev chain. For each Andreev bound state, we can �nd two
gate voltages at which the rates of these processes are equal and non-zero. Spectroscopic
measurements reveal localized Majorana zero modes on the quantum dots that are robust
against local electrostatic changes.

Engineering Kitaev chain-based qubits requires consistently �nding Majorana zero
modes. In the �nal experimental chapter of this thesis, we present an algorithm that
tunes gate voltages until Majorana zero modes emerge in Kitaev chains. We employ a
neural network to estimate the relative Cooper pair splitting and tunneling rates from
spectroscopic measurements. These estimates are then input into a gradient descent
algorithm until the rates are balanced, and Majorana zero modes emerge. We present
statistics on the algorithm’s performance and conclude that it is a vital tool in elevating
Kitaev chains from the realm of fundamental study to quantum information.
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We then propose a series of future experiments, based on our current �ndings. Notably,
we explore the possibility of storing quantum information in the spin degree of freedom of
a superconductor using Yu-Shiba-Rusinov states.
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Andreev-gebonden toestanden ontstaan in laag-dimensionale begrensde systemen die
zijn gekoppeld aan supergeleiders. Ze vertonen grote gelijkenis met de veelgezochte
Majorana-gebonden toestanden, maar missen de gewenste niet-Abeliaanse statistieken
of topologische bescherming. Behalve deze karakteristieken bezitten Andreev-gebonden
toestanden een veelvoud aan unieke en interessante eigenschappen. Dit proefschrift onder-
zoekt verschillende van deze eigenschappen met behulp van halfgeleider kwantumstippen
als meetinstrument. Bovendien worden kwantumstippen gehybridiseerd met Andreev-
gebonden toestanden om nieuwe systemen te vormen, waaronder Andreev-moleculen en
Kitaev-ketens.

In de theoretische sectie introduceren we verschillende basisconcepten, gevolgd door
een bespreking van de eigenschappen van Andreev-gebonden toestanden en vergelijkbare
Yu-Shiba-Rusinov-toestanden. Vervolgens breiden we het concept van Andreev-gebonden
toestanden uit naar Kitaev-ketens in verschillende implementaties.

In het eerste hoofdstuk gebruiken we een kwantumstip als zowel een spin- als energie-
�lter om een Andreev-gebonden toestand te onderzoeken. We observeren pure spintoestan-
den ondanks de sterke spin-baan koppeling in de gast-halfgeleider. Door gebruik te maken
van een driepuntsmeting kunnen we het spin-relaxatieproces van de Andreev-gebonden
toestand veranderen door de sterkte van de tunnelbarrières aan te passen.

Vervolgens con�gurerenwe een kwantumstip als een ladingensor omAndreev-gebonden
toestanden te bestuderen. We observeren geleidelijke veranderingen in de grondtoestand-
lading als gevolg van de hybridisatie van de even-bezettings toestanden. We detecteren ook
abrupte belading van elektronen tijdens de singlet-doublet-overgang, wat overeenkomt
met een verandering van de grondtoestand-pariteit. Na het gebruik van kwantumstip-
pen als meetinstrument, hybridiseren we ze met Andreev-gebonden toestanden om een
Andreev-molecuul te vormen. We demonstreren de uitlezing van de grondtoestand-pariteit
van het gecombineerde systeem met behulp van de ladingensor. We stellen dat pariteit-
naar-ladingconversie in halfgeleider-supergeleider-systemen een haalbaar schema is voor
het uitlezen van Kitaev-ketens en de bijbehorende qubits.

We gaan verder door twee kwantumstippen sterk te koppelen aan een enkele Andreev-
gebonden toestand. Deze koppeling bemiddelt tunneling- en Cooper-paar-splitsingsprocessen
tussen de kwantumstippen, waardoor het geheel e�ectief een Kitaev-keten vormt. Voor
elke Andreev-gebonden toestand kunnen we twee gate-spanningen vinden waarbij de
tempo’s van deze processen gelijk en niet-nul zijn. Spectroscopische metingen onthul-
len gelokaliseerde Majorana-nulmodi op de kwantumstip die robuust zijn tegen lokale
elektrostatistische veranderingen.

Het ontwerpen van qubits op basis van Kitaev-ketens vereist dat Majorana-nulmodi
consistent gevonden kunnen worden. In het laatste experimentele hoofdstuk van dit proef-
schrift presenteren we een algoritme dat gate-spanningen afstemt totdat Majorana-nulmodi
verschijnen in Kitaev-ketens. We maken gebruik van een neuraal netwerk om de relatieve
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Cooper-paar-splitsing en tunneling-snelheden te schatten op basis van spectroscopische
metingen. Deze schattingen worden vervolgens ingevoerd in een gradient-afdaal-algoritme
totdat de tempo’s in balans zijn en de Majorana-nulmodi verschijnen. We presenteren sta-
tistieken over de prestaties van het algoritme en concluderen dat het een vitaal hulpmiddel
is voor het verhe�en van Kitaev-ketens als subject van fundamenteel onderzoek naar een
toepassing van kwantumtechnologie.

We stellen vervolgens een reeks toekomstige experimenten voor, gebaseerd op onze hui-
dige bevindingen. In het bijzonder verkennen we de mogelijkheid om kwantuminformatie
op te slaan in de spintoestand van een supergeleider met behulp van Yu-Shiba-Rusinov-
toestanden.
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Be like the rocky headland on which the waves constantly break.
It stands �rm, and round it the seething waters are laid to rest.

- Marcus Aurelius
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1.1 I�������� ��� S�������������� G��
Sub-gap states are a contradictio in terminis; they are single-electronic states within an
energy gap that excludes single-electronic states. Yet, their existence is ubiquitous, with
physicists routinely observing sub-gap states, unwillingly at times. Sub-gap states emerge
from the interplay between superconductivity and quantum con�nement. Their study is
deeply rooted in history and continues to have a lasting impact. When Heike Kamerlingh
Onnes cooled down a wire fashioned from mercury to 4.2 K, he was stumped to �nd its
electrical resistance dropped to zero. The year was 1911, and superconductivity had been
discovered. It did not take the Nobel Committee long to recognize Kamerlingh Onnes’
�ndings, as they awarded him the prize in 1913 “for his investigations on the properties of
matter at low temperatures which led, inter alia, to the production of liquid helium”. Many
scientists will remember Kamerlingh Onnes as the founding father of superconductivity, as
it remain a highly active �eld of research. Then in 1933, Meissner observed that supercon-
ductors can act as perfect diamagnets [1]. Two years later, the London brothers proposed
equations that govern the electromagnetic behavior of superconductors, for which they
had to introduce the penetration depth [2]. 24 years had passed since the discovery of
superconductivity and there were only a handful of observations and phenomenological
explanations.

It would take until 1950 for Ginzburg and Landau to propose their theory of super-
conductivity [3]. There was �nally a systematic theory that could explain numerous
phenomena in superconductors, though a microscopic interpretation was still lacking.
Then in 1953, Pippard identi�ed the need for a second length scale of superconductivity,
which is now known as the coherence length [4]. A year later, Corak and co-workers
performed speci�c heat measurements on superconductors. [5]. They realized that the
speci�c heat was dominated by a term ���/�B� at low temperatures, which suggests a gap
in the single-electron density of states of size �. This energy gap was con�rmed by the
landmark, microscopic explanation of superconductivity by BCS in 1957 [6]. An attractive
electron-electron interaction makes the Fermi surface of free electrons unstable. Electrons
will then pair up within an energy window of size � around the Fermi level. The formation
of Cooper pairs makes single-electronic sub-gap states energetically unfavorable. It is
therefore unexpected to be able to inject electrons into a superconductor at energies below
the superconducting gap.

In the same year that the BCS theory was published, Abrikosov detailed how magnetic
�elds can pierce superconductors when the penetration depth is larger than the coherence
length [7]. He predicted the formation of a lattice of supercurrent vortices around �eld lines.
A year later, Bogoliubov introduced his namesake transformation [8]. He showed that the
excitations of a BCS ground state are superpositions of electrons and holes. Notably, there
were no single-electron excitations below the gap. Later, the Bogoliubov transformation
would be used to show that sub-gap states are in fact electron-hole superpositions. In 1960,
Abrikosov and Gor’kov detailed how a �nite concentration of paramagnetic impurities in
a superconductor can close the energy gap [9]. Much of the research during this decade
established the absence of electronic states in the superconducting gap. During the next
decades, multiple physicists would predict the exact opposite.

In 1963, De Gennes and Saint-James predicted that transport resonances below � can
occur in slabs of normal metal deposited on a superconductor [10]. A year later, Caroli, De
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Gennes and Matricon predicted the existence of bound states in the vortices discovered by
Abrikosov [11]. These sub-gap states are referred to as Caroli-deGennes-Matricon (CdGM)
states. Then in 1964, Andreev proposed his titular “Andreev re�ection” process, where an
electron incident on a superconductor can re�ect as a hole [12]. Not only did it explain
the heat �ow across a normal-superconductor (NS) interface, it also provided a convincing
mechanism for sub-gap conductance.

Inspired by Abrikosov and Gor’kov’s work from 1960, Yu, Shiba and Rusinov indepen-
dently considered how adding a single classical spin to a superconductor would in�uence
the superconducting spectrum. Yu published his work in Acta Physica Sinica in 1965 [13].
Shiba published in Progress of theoretical Physics in 1968 [14]. Rusinov published in JETP
letters in 1969 [15]. All three found that single ferromagnetic impurities could induce sub-
gap states in the superconductor. The mechanism relies on an exchange coupling between
the impurity and quasiparticles in the superconductor, similar to the Kondo e�ect [16].
These sub-gap states are now referred to as Yu-Shiba-Rusinov (YSR) states.

In the same year as Rusinov’s publication, Kulik showed that Andreev re�ections in a
superconductor-normal-superconductor (SNS) geometry can result in sub-gap states [17].
These are what we now refer to as Andreev bound states (ABSs). While originally identi�ed
in phase-biased systems, ABSs have become almost synonymous with sub-gap states.
In 1972, Machida and Shibata also predicted sub-gap states for non-magnetic impurities
without Coulomb interaction (� = 0) [18]. They write that “This new mechanism is caused
by the resonance scattering due to localized impurities, though Shiba insists that there
should not exist any bound state in this case”. They found that neither ferromagnetism,
charging energy, nor phase di�erences are required for the formation of sub-gap states.

A year later, Rowell reported the experimental observation of sub-gap states in normal-
superconductor-insulator-normal (NSIN) heterostructures [19]. They related their �ndings
to the predictions made by De Gennes and Saint-James. In 1989, Hess et al. used the
newly-found technique of scanning tunneling microscopy (STM) to perform tunneling
spectroscopy in the center of vortices in a type-II superconductor [20]. As the experiment
was performed using a metallic tip at 1.85 K, the temperature broadening of tunnel spec-
troscopy did not allow them to resolve discrete states. Soon after, the experimental data
was reproduced theoretically by Shore et al., who found that the results could be explained
by the sub-gap states predicted by Caroli, De Gennes and Matricon [21]. In 1993, Riedel
and Bagwell calculated the current-voltage relation of NIS junctions [22]. Interestingly,
they also considered an NIS system with an impurity in the metal, which also led to sub-gap
states. In 1997, Yazdani et al. used STM to probe magnetic impurities on superconducting
surfaces [23]. They found sub-gap states that were consistent with the predictions of Yu,
Shiba and Rusinov. Then in 2001, Giazotto et al. reported resonant sub-gap transport in
a GaAs-Nb heterostructure that was consistent with the predictions of De Gennes and
Saint-James [24]. There was an additional transport resonance at the Fermi level, which
they attributed to �nite size e�ects.

Distinguishing a single, discrete sub-gap state from a sub-gap transport resonance can
be non-trivial. For example, an induced gap in a normal metal also enters as a sub-gap
resonance, but consists of a continuum of states. Obtaining a �nite level spacing in a metal
is challenging, as its dimensions would have to be smaller than the Fermi wavelength,
which is on the order of Angstroms. STM was important in observing the �rst discrete
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sub-gap states, as it allowed the study of individual atoms or vortices. Discrete states
can also be found in semiconductors, as their low e�ective mass allows for �nite level
spacing. The experimental introduction of quantum dots made it more straightforward
to create discrete states. In 2009, Grove-Rasmussen et al. observed sub-gap transport
in superconductor-quantum dot-superconductor (S-QD-S) systems fabricated on carbon
nanotubes [25]. They state that “the unusual sub-gap features observed in odd occupied
dots are caused by an interplay between MAR [multiple Andreev re�ections, red.] and
quantum Shiba states”. This careful phrasing highlights the di�culty in telling transport
resonances apart from sub-gap states. A year later, Pillet et al. found sub-gap states in
carbon nanotubes as well, which they identi�ed as Andreev bound states [26]. Since
then, there have been many publications on sub-gap states which go far beyond their �rst
observation. These include chains of ferromagnetic atoms on superconductors [27], CdGM
states coupled to YSR states [28] and Andreev molecules in double quantum dots [29].
Interestingly, a hitherto undiscovered state was reported recently. In 2023, Schneider et
al. observed sub-gap surface states on non-magnetic Ag islands on a bulk superconductor
using STM [30]. They identi�ed these as Machida-Shibata states, as there was no Coulomb
interaction. It is debatable whether these states di�er signi�cantly from Andreev bound
states. However, unlike the YSR states commonly observed in STM, they are non-magnetic.
While sub-gap states are frequently observed in both impurities on superconductors and
semiconductor-superconductor hybrids, the two communities remain relatively separated,
and retain their own naming conventions.

Figure 1.1: Timeline of selected publications on sub-gap states. We categorize the states as: Machida-Shibata
(MS), Yu-Shiba-Rusinov (YSR), Andreev bound state (ABS), de Gennes Saint-James (dGSJ) and Caroli-deGennes-
Matricon (CdGM).

Many sub-gap states have been predicted, named, and observed. They have been found
in many device geometries, using di�erent spectroscopic techniques. In �gure 1.1, we show
a timeline of selected publications on sub-gap states. While the distinction between these
states can be arbitrary, there is historic value in understanding how they were proposed
and observed for the �rst time. After all these years the paradox remains the same: why
does a superconductor admit the addition of single electrons when its Fermi surface has
become unstable due to an attractive electron-electron interaction? Fundamentally for
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a state to become sub-gap, the total energy needs to be lowered upon coupling to the
superconductor. This can happen due to a phase di�erence between superconductors,
exchange-coupling, Coulomb interactions, resonant tunneling or vortex formation. Has
every possible mechanism been explored, or are there still undiscovered sub-gap states in
the wild?

1.2 I� P����� �� H������
To con�ne a system is to impose rules on it. First and foremost, one limits the extent of
the system to manually de�ned boundaries. If the system extent is small enough, i.e. on
the order of the Fermi wavelength, additional rules are imposed on the system. These are
given by quantum mechanics, where states can only exist at quantized energies. This can
be seen in atoms, where one cannot add electrons outside the orbits. Fundamentally, these
rules follow from many observations of our universe, which appears to behave according
to principles. We focus on two important ones. The �rst being the Pauli exclusion principle,
which states that every electronic quantum state can only be occupied by one electron.
The second one is Heisenberg’s uncertainty principle, which states that some pairs of
observables cannot be known with high certainty simultaneously. The most famous
example is the conjugate pair of position and momentum. In Bohr’s model of atomic
orbits, electrons orbit the nucleus at a �xed momentum and a �xed path. As this would
require both to be known with high accuracy, it breaks in view of Heisenberg’s uncertainty
principle. Instead, we are left with a probability distribution of the electron location for
any given momentum.

Con�nement is not only restricted to atoms, but is also relevant in solid state physics.
A semiconductor can also be con�ned, as its Fermi wavelength is typically around � 10nm,
which is readily accessible by modern electron lithography. The aforementioned rules
apply here too, including electron level quantization, particle conservation and the Pauli
exclusion principle. A con�ned semiconductor, a quantum dot, is therefore an excellent
platform for quantum information processing. The large level spacing of electronic states
makes it possible to decode quantum information into the spin degree of freedom. The
Pauli exclusion principle prevents electrons in a single orbital from having the same spin
state. As con�nement can be changed using electrostatic gates, the information can move
and interact with other qubits, allowing for two-qubit gates. Ultimately, it is the rules
resulting from con�nement that allows for quantum information to be well-de�ned in
quantum dots.

Superconductivity, on the other hand, is nature’s way of breaking rules. To start, one
can have a current without any dissipation, which is impossible in normal conductors.
For superconducting reservoirs, the total number of particles is conserved in a way that
allows for �uctuations by pairs of electrons. Superconductors also break the concept of
a Fermi surface, as it becomes unstable due to a positive attraction between electrons of
arbitrary magnitude. As discussed in the section above, this result in a gap in the single-
electronic states around the Fermi level. Heisenberg’s uncertainty principle also applies to
superconductors, only this time for the conjugate variables of phase and charge. This is
ultimately the cause of the particle number �uctuations, as a grounded superconductor
has a �xed phase.

Introducing superconductivity in a con�ned system presents physicists with an odd
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dilemma: which rules are maintained and which are broken? Is charge well-de�ned, which
is generally the case for a con�ned semiconductor. Is con�nement maintained? The discrete,
semiconducting states are ultimately only separated from a continuum of metallic states
by the superconducting gap. Nature always �nds a way of resolving con�ict, which is
illustrated by Andreev re�ection. Here, an electron in a conductor is incident on an interface
with a superconductor. There are no single-electronic states in the superconducting gap, so
it cannot be transmitted across the interface. On the other hand, provided that momentum
is conserved in the conductor, it cannot simply reverse its momentum. Andreev solved this
apparent paradox by proposing that the electron retrore�ects as a hole, creating a Cooper
pair in the superconductor. This is allowed due to the particle number �uctuations in the
superconductor.

When a con�ned semiconductor is tunnel-coupled to a superconducting reservoir, its
discrete levels hybridize with the superconductor to form sub-gap states. This captures
the information of the superconducting condensate, as well as the quasiparticles, in a
single state in a semiconductor. Metaphorically, this is like having the whole world in a
grain of sand. We emphasize that the sub-gap state remains coherent when coupled to a
superconductor, in contrast to coupling a semiconductor to a normal lead, where the discrete
state is drowned out by the continuum of metallic states. Sub-gap states acquire particle-
hole symmetry from the parent superconductor. Their even states are now a superposition
of an empty and fully-occupied orbital, due to Andreev re�ection with the superconductor.
As a result, the average charge of the even state can be anywhere between 0 and 2�, where
� is the electron charge. Depending on the charging energy of the semiconductor, sub-gap
states can also have an odd ground state in the absence of a magnetic �eld. Crucially, sub-
gap states can be manipulated via electrostatic gates, allowing for the �ne-tuning of their
electrochemical potential and coupling to the superconductor. This outlines the bene�ts of
semiconductor-superconductor hybrids: controllable superconducting properties in a single
state. It is this property that enables applications unique to hybrids, such as Andreev spin
qubits, Kitaev chains, superconducting diodes, coupling spin qubits over large distances,
triplet superconductivity and more.

1.3 O������ �� T��� T�����
In this thesis, we have studied quantum dots coupled to Andreev bound states in various
forms. We �rst introduce the theoretical concepts relating to the experimental work in
chapter 2. Here, we place the emphasis on quantum dots, sub-gap states, their charge and
Kitaev chains.

In chapter 3, we detail how spin-polarized quantum dots can be used to probe the spin
of sub-gap states. Based on spin-dependent transport we study individual Andreev bound
states in a semiconductor-superconductor hybrid. We also study the relaxation mechanism
of the excited states, as we can control the sub-gaps states’ coupling to electron reservoirs.

In chapter 4, we study the charge of Andreev bound states using a quantum dot charge
sensor. While sub-gap states usually refer to single-electronic states, we can directly probe
the many-body ground state. While these states do not typically have a charging energy,
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they can have well-de�ned charge. We �nd that the average charge can change by twice
the electron charge without a change of ground state parity. Finally, we create an Andreev
molecule by coupling a quantum dot to the hybrid. We see that the charge is coherently
distributed over the two systems.

In chapter 5, we have coupled two quantum dots through an Andreev bound state.
The strong coupling between each quantum dot and the Andreev bound state results in
Andreev re�ection on the quantum dots. We show that we can engineer a two-site Kitaev
chain using this system, with stronger interaction strengths than for normal quantum dots.

Poor Man’s Majorana zero modes can emerge in a two-site Kitaev chain in a parameter
sweet spot. We can tune to this sweet spot by varying the Andreev bound state energy
using an electrostatic gate. In chapter 6, we use a convolutional neural network to identify
this sweet spot based on conductance measurements. We then use a gradient descent
algorithm to vary the Andreev bound state energy until a sweet spot is reached.

We �nally present conclusions from this thesis in chapter 7. In addition, we introduce
possible research directions for the near future.
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This chapter serves to provide the reader with the necessary phenomena and models
related to the experimental sections of the thesis. These include quantum dots, sub-gap
states, charge sensing and Kitaev chains. While each of these topics comprises an expansive
volume of literature, we introduce the reader to the bare minimum required to understand
the subsequent chapters of this thesis. For the sections involving superconductivity, a BCS
ground state is taken as a starting point, its derivation will not be reproduced.

2.1 ������ D���
In condensed matter, quantum dots are metals or semiconductors that are con�ned in
all three dimensions, e�ectively creating a zero-dimensional system. This con�nement
can be realized in two ways. First, quantum dots can be directly synthesized, in the form
of nanometer sized structures. Second, they can be formed from a larger system, by
electrostatically con�ning a small section. These electrostatically-de�ned quantum dots
are isolated from their environments, allowing their electrostatic potential to be changed
by voltage sources through gate electrodes. This leads to numerous e�ects, including one-
by-one electron transport, Coulomb blockade and quantum �uctuations. Quantum dots
can be tunnel-coupled to other systems, such as a superconductor or another quantum dot.
If this coupling is controlled by a gate voltage, it allows for a tunable hybridization between
the two systems. The resulting combined systems can take various forms, including double
quantum dots, sub-gap states and Kitaev chains. A key characteristic of quantum dots is
their sensitivity to changes in their electrostatic environment, making them highly e�ective
as charge sensors. Given the prevalence of quantum dots in the chapters of this thesis, we
provide a basic explanation in this introductory chapter.

2.1.1 S������E������� B��
When a conductor is con�ned to lower dimensions, two signi�cant changes occur. First,
the electronic energy levels become quantized as the system size approaches the Fermi
wavelength. Second, the electrostatic cost of adding charges can exceed the thermal
energy. While both e�ects are relevant for quantum dots, the latter is responsible for the
quantization of charge on the dot, and is classical in nature. The “Single-Electron Box”
(“SEB”) model captures the electrostatic e�ects of small conductors, and can reproduce
certain phenomena associated with quantum dots.

In Figure 2.1a, we show a schematic drawing of a SEB. Here, a �oating conductor (“the
island”) is coupled to a grounded metal lead with a capacitance �. A tunnel barrier between
the lead and island allows electrons to tunnel in and out. The island is also coupled to a
metallic gate electrode with a capacitance �g. This gate has an electrostatic potential, �g,
with respect to the grounded lead. As we change �g using, for example, a voltage source,
we are charging one of the capacitor plates, with the other being the island. An e�ective
charge � = �g�g is then induced on the island, which changes the electrostatic potential.
For a parallel plate capacitor, the electrostatic potential is given by � = �2/2�. Similarly,
we can write down the total electrostatic energy of the island as [1]:

�el =
�C
2 �� �

�
� �

2
�

�2

2�g
(2.1)



2

18 2 T�����

Cg

C

Vg

a b

c

Figure 2.1: Electrostatic energy and occupation values of a single-electron box. a. Schematic overview of a
single-electron box, showing a gate electrode (yellow) with an electrostatic potential, �g, coupled to an island
(gray) with a capacitance �g. A grounded, metallic lead (black) has a capacitance � to the island, and allows
electron to tunnel in or out. b. Electrostatic energy, �el, for varying �g for di�erent amounts of excess electrons
on the island, � . The black, dotted line indicates the lowest energy occupation of the island. c. � corresponding
to the lowest �el for varying �g.

Where � is the elementary charge, � is the amount of excess electrons on the island,
�2/2�g is the work performed by the voltage source, and �C = �2/(�+�g) is the charging
energy, which governs the energy cost of adding electrons to the island. In Figure 2.1b we
show �el, for varying �g, for di�erent occupations of the island. Note that we dropped the
�nal term in Equation (2.1) as it does not depend on � . For a given � , the electrostatic
energy increases parabolically with �g�g. This is equivalent to an ordinary capacitor,
where changing �g increases the electric �eld line density between the island and the gate,
resulting in a greater electrostatic energy. Unlike a normal capacitor, electrons can tunnel
between the lead and the island. The number of excess electrons on the island can therefore
change to minimize �el. The black, dotted line in Figure 2.1b indicates �el of the lowest
energy occupation.

Figure 2.1c shows � corresponding to the lowest �el for varying �g. � changes dis-
continuously at the charge-degeneracy points and is constant otherwise. This “Coulomb
staircase” shows that the island is charged, one electron at a time, by an external voltage
source. Note that the physics described here is largely classical in nature, except for the
quantization of charge (electrons) and transport across a large potential barrier (tunneling).
Electrons can be added at any energy, as long as the energy cost of charging the island is
met. When the electronic levels in the island become discrete, electrons can only be added
to discrete orbitals. The parabola’s of di�erent � are then no longer equidistant, as the
energy di�erence between orbitals becomes comparable to �C.
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We can de�ne the electrochemical potential, which describes the energy di�erence between
two subsequent occupations, as [2]:

�(� ) = �el(� )��el(� �1) = �C�
� �

1
2
�
�
��

(2.2)

We see that �(� ) = 0 at �/� = � �1/2, which is de�ned as the “charge-degeneracy point”,
as the two charge states have the same energy. Here, a transport cycle is possible if the SEB
has a second lead. An electron can then tunnel from the �rst lead into the island with � �1
electrons, leaving it in the � occupation which has the same �el at charge degeneracy. An
electron can then tunnel out into the second lead, leaving the island in the � �1 occupation
again.

To understand the charge transfer mechanism, we compare the electrostatic cost of
adding one or two electrons to the island. First, we simplify Equation (2.2) by setting � = 1
to consider the �rst electron added to the island and de�ne:

� � �(1) = �el(1)��el(0) = �C�
1
2
�
�
��

(2.3)

Throughout this thesis, we use � to indicate the energy cost of adding an electron to an
empty SEB or quantum dot. Likewise, the cost of adding the �rst two electrons at �xed � is:

�el(2)��el(0) = �C�2�2
�
� �

= 2�+�C (2.4)

This electrostatic energy cost can be supplied by the voltage source that charges the island
by varying �g. At �xed �g, we can also add or remove electrons by applying a potential
di�erence between the two leads, which is de�ned as the bias voltage �bias. When the
leads are biased, electrons are injected into or removed from the island with an energy
���bias. For �|�bias| < �, the electrons do not have enough energy to change the island
occupation. Energy conservation prevents a transport cycle, which places the island in
Coulomb blockade. For � < �|�bias| < 2�+�C a transport cycle between the leads and the
island is possible. Electrons tunnel one-by-one, as the double occupation of the island is
energetically forbidden. This is the reason why a SEB with a second lead is referred to as a
single-electron transistor. For 2�+�C < �|�bias|, the double occupation of the island lies in
the bias window. Another transport channel opens in addition to one-by-one tunneling,
which causes an increase in current.

We note that �C sets the scale for the energy di�erences between island occupations. If
temperature becomes on the order of the charging energy (�C � �B� ), thermal excitation can
overcome the energy di�erences between di�erent occupations. Charge is then ill-de�ned
in the island, as � can vary for any value of �g.

2.1.2 D����������� D���
In the previous section, classical observables were su�cient for describing the electro-
statics of a single-electron box. Here, we replace the excess charge, � , by the quantum
mechanical number operator �� = �†� ��. In this section, we provide a phenomenological
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model that covers the most important aspects of double quantum dots. These systems
consist of two quantum dots that are coupled by capacitance, tunneling, or both. We
simplify the interactions of the two quantum dots using the constant interaction model,
which has two assumptions [3]. First, the total capacitance sets the energy scale of the
Coulomb interactions. Second, the single electron levels are independent of these inter-
actions. We additionally assume that tunnel-coupling the QDs does not a�ect any of the
capacitances. Figure 2.2a shows a schematic drawing of a double quantum dot, highlighting
the relevant capacitances and voltages.

QD2QD1 QD2

V1 V2

C C

C’ C’

Cm

ta b=

|2, 0⟩|0, 0⟩ |1, 0⟩

|2, 1⟩|0, 1⟩ |1, 1⟩

|2, 2⟩|0, 2⟩ |1, 2⟩

Figure 2.2: The electron occupation of a double quantum dot. a. Schematic diagram of a double quantum
dot. Two quantum dots are coupled with a tunnel coupling, �, and a mutual capacitance, �m. Each quantum dot
has a gate electrode with an electrostatic potential, �1/2 respectively. The gates have a capacitance � to their
corresponding quantum dot, and a cross-capacitance �� to the other dot. Each quantum dot is connected to a
grounded lead. b. Charge expectation value of the left quantum dot, ��1� for varying gate voltages �1 and �2.
Only a single orbital is considered for each quantum dot. For the calculations, we used: � = 1, �� = 0.1, �m � 0,
� = 0.1. The superimposed text indicates the ground state of the double quantum dot in the |�1,�2� basis. The
dashed circle highlights the hybridization of the |0,1� and |1,0� states.

We can write the Hamiltonian of the total system as [4]:

� =�
�

� �
QD +�m

QD +�T

��
QD =

��C
2 ����

��
� �

2

�m
QD =

�mC
2 ��1�

�1
� ��

�2�
�2
� �

�T = �(�†1 �2 + �†2 �1)

Where ��C = �2
�� �

1
1�(�2

m/�
2
� )�

is the charging energy of the left/right quantum dot (QD) and
�t = � +�� +�m. Here, �m is the mutual capacitance between the two QDs. If �m � 0,
charge added to one QD a�ects the electrostatic energy of the other. We parametrize this
part of the Hamiltonian, �m

QD, by the mutual charging energy �mC = �2
�m �

1
(�2

� /�2
m)�1�

. The



2.1������ D���

2

21

gate electrodes have a �nite capacitance to both QDs, so we can write the induced charge
as:

�
�1
�2�

=
�
� ��

�� ���
�1
�2�

Where � is the capacitance between the gate and its corresponding QD, and �� is the
cross-capacitance to the other dot. Finally, we add a phenomenological tunnel Hamiltonian,
�T, which is parametrized by the tunnel coupling, �, and allows electrons to hop between
the two QDs [5].

In Figure 2.2b we show ��1� for varying gate voltages �1 and �2, which is known as a
“charge stability diagram”. We see that ��1� changes abruptly at �1 � 0.5�C and �1 � 1.6�C.
This behavior is comparable to Figure 2.1, where the gate voltage changes the electrostatic
energy, causing a change in occupation of the island. However, ��1� is additionally a�ected
by �2 in two ways. First, the induced charge on QD1, �1, is directly changed by �2 through
the cross capacitance (��) or mutual capacitance (�m). Second, the tunnel coupling between
the two QDs causes the charge states to hybridize. This is emphasized by the dashed circle
in Figure 2.2b, which shows an avoided crossing between the |0,1� and |1,0� states, known
as an “interdot charge transition”. Here, a single electron is localized on both QDs, causing
its energy to depend on both �1 and �2. The two charge states hybridize to form bonding
and anti-bonding states [4]:

�� = � |0,1�+� |1,0�

�� = � |0,1��� |1,0�

Where � and � depend on �1,2 and �. The two charge states can lower their total energy up
to an amount |� | by forming a bonding state. If quantum dots are considered to be arti�cial
atoms, then a double quantum dot is an arti�cial molecule. The hybridization of QD levels
is the basis of many physical phenomena, including charge qubits, spin qubits, Kitaev
chains, Andreev molecules and more.

S������E������� B�� C����� S�����
When the interaction between two QDs is purely capacitive, electrons do not form (anti)-
bonding states. However, the electrostatic potential of one QD does become directly
sensitive to the occupation of the other. In Figure 2.3a, we show a double quantum dot
system with a mutual capacitance, �m, between the 2 QDs. Similar to Equation (2.3), we
can de�ne the electrochemical potentials of both QDs as:

�1 � �el(1,0)��el(0,0) =
�C
2

�
1
�
(��1�C +��2�mC +���2�C)+�mC ��2� (2.5)

�2 � �el(0,1)��el(0,0) =
�C
2

�
1
�
(��2�C +��1�mC +���1�C)+�mC ��1� (2.6)

Here, we use the same de�nitions as in Section 2.1.2 and limit ourselves to only the 0 and 1
occupations of the QDs. We can then de�ne each QD’s occupation as ���� = ���(��). Each
QD’s electrochemical potential depends on the occupation of the other with proportionality
given by �mC .

Figure 2.3b shows ��1� for varying �1 and �2. For the calculation of ��1� and �2, we have
set �mC ��2� = 0 in Equation (2.5) to prevent a self-consistent equation. This approximation
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Figure 2.3: Single-electron box charge sensor. a. Schematic diagram of a capacitively-coupled double quantum
dot. There is a mutual capacitance, �m, between the two QDs. QD2 is tunnel coupled to a normal lead with
a potential that varies with a frequency, �, and amplitude, �RF. b. The ground state occupation of QD1, ��1�,
for varying �1 and �2. The superimposed white line indicates �2 = 0, at which the 0 and 1 occupations of QD2
are degenerate. We have used � = 1, �� = 0.05 and �m = 0.25 for the calculations. c. Schematic sketch of the
electrostatic energy, �el, of the 0 and 1 occupations of QD2 at �1 = 0V. �RF changes the occupation of the ground
and excited states cyclically around the working point, � 0

2 . Black arrows indicate the work performed by the AC
voltage, red arrows indicate the dissipative relaxation processes. d. The rates at which electrons tunnel into (�+)
and out of (��) the SEB for varying �2. e. The inverse of the Sisyphus resistance, 1/�sis, for varying �1 and �2.
For the calculation we used �0 = 0.1, �B� = 0.01 and � = 0.02. We have calculated �2 using the same capacitances
used for panel b.

amounts to a lack of back-action of QD2 on QD1. We see that ��1� depends on both �1 and
�2 because the cross-capacitance �� causes �2 to directly a�ect the electrostatic potential of
QD1. The white, superimposed line indicates �2 = 0, for which QD2 is at charge degeneracy.
Aside from cross-capacitance, �2 also depends on �1 through the occupation of QD1, given
by �mC �� �1. As �� �1 changes abruptly when an electron enters or leaves QD1, �2 changes
abruptly too. An experimental measurement that probes �2 can be used to infer the ground
state occupation of QD1, which is known as “charge sensing” [6]. One such technique
requires a QD with a source and drain electrode. A change in electrochemical potential
can then move the QD in or out of Coulomb blockade, causing a sharp change in current.
In keeping with the SEB described in Section 2.1.1, we will detail how a QD with a single
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lead can also be used as a charge sensor.

S������� R���������
We now couple the lead of QD2 in Figure 2.3a to an AC voltage source with an RMS
amplitude, �RF, and angular frequency, �. We shall refer to QD2 as a single-electron box
(SEB), considering it has a single lead. If we consider the circuit, we might naively expect
the resistance to be � =�{�T +�C

� }, where �T is the impedance of the tunnel junction and
�C
� is the summed impedance of the two parallel gate capacitances. The discrete nature

of electron charge adds an extra source of dissipation however, which is referred to as
“Sisyphus resistance” [7]. Figure 2.3c shows an energy diagram that highlights the origin
of this dissipation. We �x the plunger gate voltage of QD2 at an arbitrary �2 = � 0

2 , at
which the ground state occupation of SEB is 0. �RF, changes the electrostatic energy, �el,
of the 0 and 1 occupations of the SEB over time. We choose �RF such that the AC voltage
can change the ground state occupation, as indicated by the black arrows in Figure 2.3c.
We model the SEB as a zero-dimensional system coupled to a three-dimensional electron
reservoir and write the rate at which electrons tunnel into (�+) and out of (��) the SEB as:

�± =
�0

1+ �±�2/���
(2.7)

Here, �0 is the constant tunnel rate, which is weighted by the Fermi-Dirac distribution of
the normal lead. �B� is the Boltzmann energy and �2 is the electrochemical potential of QD2
as de�ned in Equation (2.6). We calculate �2 using the parameters as used for Figure 2.3b
and show (�±) for varying �2 in �gure 2.3d. The system always remains in the ground
state if � � �0, leading to a change in occupation near the charge degeneracy point. If
� � �0, QD2 can remain in the same occupation, which becomes the excited state after
crossing the charge-degeneracy point. When an electron tunnels between the lead and
QD2, the SEB reaches its ground state again. The di�erence in �el is then dissipated in the
lead by the emission of a phonon, after which the cycle repeats. This leads to an average
dissipation per cycle, �sis, which mirrors the myth of Sisyphus.

For a resistor subject to a symmetrized noise spectrum, we can relate resistance and
dissipation as: ���� = � 2

RF/�sis. We note that this excludes the asymmetry between emission
and absorption of bosons resulting from zero-point �uctuations. This implies that the Sisy-
phus dissipation vanishes at zero temperature. However, the residual rate of spontaneous
emission ensures that bosons will continue being emitted at zero temperature [8]. We note
that QD devices are typically operated at temperatures of � 10mK, at which the stimulated
emission rate is typically vanishing in size for weak coupling of the SEB to the photon
bath [9]. For a broader discussion on the relevant impedances of a driven SEB, see Ref. [9].
We note that the authors of Ref. [9] mainly consider relaxation due to photons, yet the
concept of Sisyphus dissipation applies broadly across all types of bosons. We neglect the
dissipation due to spontaneous emission and write the Sisyphus resistance as [10]:

�sis =
�B�
(��)2

1+�20/�
2

�0
cosh2

�
�2

2��� �
(2.8)

Where � is the lever arm of the plunger gate and � is the angular frequency of the AC
voltage signal.



2

24 2 T�����

We show 1/�sis for varying �1 and �2 in Figure 2.3e. We see that �sis is highly gate-
dependent, and reaches a minimum at the Coulomb resonance, which corresponds to
�2 = 0. When ��1� changes, there is an abrupt change in �sis. If QD2 is embedded in a
radio-frequency (RF) re�ectometry circuit, this change in resistance can be observed as
a dip in re�ected signal amplitude [11]. Under suitable conditions, a change in re�ected
RF amplitude can then be related to a change in ��1�, which allows SEBs to be used as
charge sensors. We note that the resistive process described here goes hand-in-hand with
a reactive process, resulting in a “tunneling capacitance”. This will a�ect the phase of the
re�ected RF signal in addition to the magnitude.

While we consider a system driven by a generic AC voltage, Sisyphus resistance is
usually associated with RF re�ectometry techniques. Typical lead-QD tunneling rates are
on the order of � 10�eV, which corresponds to a frequency of � 2.4GHz. If � = �/2� �
2.4GHz, the QD always remains in the ground state, meaning there will be negligible
dissipation. SEB charge sensors are a good application when the addition of a drain
electrode is not trivial, such as in 1D nanowires. We note that the absence of a DC current
implies that SEB charge sensors are not a�ected by shot noise, unlike their source-drain
charge sensor counterparts [12].

2.2 S���G�� S�����
In the previous section, we described the properties of quantum dots that arise due to
con�nement. This section deals with the e�ects of coupling con�ned systems to super-
conductors, which produces bound states within the superconducting energy gap. The
emergence of sub-gap states has been derived by numerous physicists in numerous ge-
ometries. These include: non-magnetic impurities coupled to superconductors by Machida
and Shibata [13], 2D normal metal-superconductor heterostructures by De Gennes and
Saint James [14], classical spins coupled to superconductors by Yu, Shiba and Rusinov [15–
17], vortices in type-II superconductors by Caroli, De Gennes and Matricon [18] and
superconductor-normal-superconductor (SNS) interfaces by Andreev and Kulik [19, 20].
While terminology varies wildly, the physics that uni�es these states is quite general.
We can coarsely segment sub-gap states in semiconductor-superconductor systems into
two types: interacting and non-interacting, which we refer to, for lack of better terms, as
Yu-Shiba-Rusinov states and Andreev bound states, respectively.

2.2.1 A������ B���� S�����
Andreev bound states emerge as a result of Andreev re�ection at the interface between a
superconductor and a normal metal. An electron in a normal metal, incident on a super-
conductor cannot enter as there are no single-electronic states within the superconducting
gap. To conserve momentum, a Cooper pair is created in the superconductor and a hole is
retro-re�ected in the normal metal. If the hole approaches a superconductor again, it is
retro-re�ected as an electron. This repeated process results in a bound state with a single-
electron energy below the superconducting gap, which is de�ned as an Andreev bound
state (ABS). These states were �rst observed in carbon nanotubes with two phase-biased,
superconducting leads [21]. All device geometries presented in this thesis involve only
semiconductors coupled to a single, grounded superconductor, which excludes a phase
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di�erence.
Most descriptions of sub-gap states start from a superconducting Anderson impurity

model. We postpone the discussion of this model to Section 2.2.2, and o�er the simplest
description of an ABS �rst. We consider a single electronic orbital in the basis: |0� , |�� , |�� , |2�.
Then, we write the Hamiltonian as:

�AL =

�
�
�
�
�
�

0 0 0 �
0 �� �Z

2 0 0
0 0 �+ �Z

2 0
� 0 0 2�+�C

�
�
�
�
�
�

(2.9)

Here, � is the electrochemical potential as de�ned in Equations (2.3) and (2.4), �Z is the
Zeeman energy, � is the coupling to the superconductor and �C is the charging energy. By
including �, we couple the 0 and 2 occupancies of the orbital. This can be seen heuristically
as the result of Andreev re�ection at the superconductor interface. While � conserves
Fermion parity, it breaks particle conservation. To obtain this Hamiltonian, we have taken
the parent gap to be the largest energy scale of the system: (���). This approximation is
known as the “superconducting atomic limit”, where the proximity e�ect is parametrized
by � [22, 23]. We note that equation (2.9) is a many-body Hamiltonian, which is convenient
for including interactions such as �C.

We can diagonalize this Hamiltonian by performing a Bogoliubov transformation, where
we de�ne new operators:

�†� = ��†� � ���

�†� = ���+��†�
(2.10)

The excitations described by these operators are de�ned as “Bogoliubons”. They have
the same expression as the single-electronic excitations of a BCS ground state of a bulk
superconductor. We �nd the following eigenstates in the even-parity sector after diagonal-
ization:

|��� = � |0�� � |2� �2 =
1
2

�
�
�
�

1+
�+ �C

2�
(�+ �C

2 )
2 +�2

�
�
�
�

|�+� = � |0�+� |2� �2 =
1
2

�
�
�
�

1�
�+ �C

2�
(�+ �C

2 )
2 +�2

�
�
�
�

(2.11)

The 0 and 2 charge states hybridize into two singlet states with energies.

�± =
�C
2

+�±

�

�
�+

�C
2 �

2

+�2

At the symmetric point (� = ��C/2), we have �2 = �2, which means that the singlet states
are a perfect combination of the 0 and 2 charge states. Here, the energy di�erence between
the two singlet states has its minimum at 2�.

The odd-parity states, {|�� , |��}, have energies ��,� = �±�Z/2 and are una�ected by
superconductivity in the superconducting atomic limit. The Bogoliubon operators act on
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the lower singlet state and describe transitions to the odd states:

�†� |��� = |�� �†� |��� = |�� (2.12)

Single-particle

�
†

�
= vd

†

�
+ ud

�

�
†

�

Excitation

�
†

�
= vd

�
+ ud

†

�

�
†

�

Semiconductor

c
†

�

c
�

�
†

�
= �

†

+
�

†

�
= �

�

�

�

� �

� �

� �

� �

This formalism is known as the excitation picture, where the lower singlet state is
taken as the reference point [24]. Alternatively, we could de�ne other Bogoliubon operators
that act on |�� as a reference state:

�†� |�� = |��� �†+ |�� = |�+�

This is known as the single-particle picture, which de�nes a �lled spin-down band and
an empty spin-up band as the vacuum state; �� |�� = �+ |�� = 0 [25]. Here, �†� creates a
quasiparticle at negative energy and �†+ creates one at positive energy. As the vacuum state
is not the BCS ground state, we consider the excitation picture as a better description of
an ABS. The box at the top of the page provides a schematic comparison of the various
pictures. The excitations described by equation (2.12) occur at energies:

�ex� = ������ =
�Z
2

+

�

�
�+

�C
2 �

2

+�2�
�C
2

�ex� = �����+ = �
�Z
2

+

�

�
�+

�C
2 �

2

+�2�
�C
2

(2.13)

We conclude that we started from a many-body Hamiltonian with interactions in equa-
tion (2.9) and arrived at a non-interacting Hamiltonian that describes single particle excita-
tions from the singlet ground state:

� �
AL = ��ex�

†
� ��+��ex�

†
� �� (2.14)

We now de�ne |�� � |��� and will only refer to this state as the singlet. The reason being
that the |�+� state is always higher in energy than the |��� state and does not participate in
electron transport as a result.

A������ B���� S���� T��������
In tunneling spectroscopy, we observe four sub-gap resonances; at ±�ex� and at ±�ex� . For
describing electron transport through an ABS, we adopt the semiconductor picture. Here
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we double the degrees of freedom and rewrite equation (2.14) such that it now has two
positive energy and two negative energy excitations:

� SM
AL =

�
�
�
�
�
�

��ex 0 0 0
0 ��ex 0 0
0 0 ���ex 0
0 0 0 ���ex

�
�
�
�
�
�

We combine this semiconductor picture Hamiltonian with the Mahaux-Weidenmuller
expression to compose a scattering matrix for a single, normal lead [26]:

� =
�
�ee �eh
�he �hh�

= 1�2��� (��� SM
AL + ��� †� )�1� †

� = �lead

�
1
2� �

� � � �
�� �� �� ���

� (2.15)

Where � �
AL = diag(��ex,��ex,���ex,���ex). The scattering matrix relates incoming and outgo-

ing modes in the leads: �out = ��in. Here, � describes the coupling of the ABS to modes
in a single, normal lead in the wide-band limit. �lead parametrizes the lead-ABS coupling,
� is the excitation energy and �, � are de�ned according to Equation (2.11). The system
described by this scattering matrix is shown in Figure 2.4a. Here, a normal island is coupled
to a normal lead (yellow) and a superconducting lead (blue). Figure 2.4b shows the ground
state of the ABS for varying � and �. Because of the characteristic shape, this phase diagram
is known as “the dome”. When the island-superconductor coupling is weak, the system
can be in either a singlet or a doublet ground state, depending on �. In the limit �� 0, the
0 and 2 occupations are not coupled, and the system is e�ectively a quantum dot.

We show the ABS spectrum for � = 0.15�C in Figure 2.4c. Here, we compute the
Andreev re�ection rate, |�eh|2, for varying � at each excitation energy, �. We see that the
ABS crosses zero-energy, resulting in a characteristic “eye-shape”. Note that there is only a
single, normal lead in the system, making Andreev re�ection the only possible transport
process. |�eh|2 vanishes at large |�|, which is explained by the � and � components of the
singlet. In a single Andreev re�ection process, an electron tunnels into the ABS with an
amplitude �, while a hole tunnels out with an amplitude �. The combined amplitude of
this process therefore scales with the product ��. The � and � components corresponding
to Figure 2.4c are shown in panel f. We see that � and � change sharply when they cross
over. The product �� is only �nite around �� = �C/2, meaning that the Andreev re�ection
rate is negligible elsewhere.

Figure 2.4d shows the spectrum for � = �C/2. Here, the ABS has a single zero crossing
at �� = �C/2. From Figure 2.4g, we note that � and � change less sharply, allowing Andreev
re�ection over a larger range of �. Figure 2.4e shows the spectrum for � = �C. The ABS
is now always in the even ground state, as the energy of the singlet state is signi�cantly
lowered by coupling to the superconductor. Figure 2.4h shows that � and � are both �nite
over the entire range of �. In some semiconductor-superconductor devices, � can be
changed directly by a tunnel gate, meaning that any point in the phase diagram can be
accessed.
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Figure 2.4: Superconducting atomic limit transport and ground states a. Schematic overview of the
model, showing a normal lead (yellow) tunnel-coupled to an island (gray) with a coupling, �lead. A grounded,
superconducting lead (blue) with an in�nite superconducting gap � is coupled to the conductor with a tunnel
coupling �. b. The ground state of the island for varying � and electrochemical potential of the ABS, �. The
system can have an even, singlet ground state, or an odd, doublet ground state. c-e. Andreev re�ection rate, |�eh |2,
for varying � and excitation energy, �. These are evaluated for di�erent values of �, indicated by the colored
horizontal lines in panel b. f-h. Wave functions components of the singlet, �2 and �2, for varying �. These
are evaluated for di�erent values of �, indicated by the colored horizontal lines in panel b. All calculations are
performed for �lead = �C/40. The gray shading indicates the � values for which the system has a doublet ground
state, and the singlet is the excited state.

We conclude that the superconducting atomic limit provides a compact description
of ABSs that can be utilized for calculating transport properties and composing phase
diagrams. Note that we described Andreev bound states as non-interacting earlier, while we
did add a charging energy term in this section. For a small �C compared to the parent gap,
�, this is justi�ed. If � is not signi�cantly larger, the atomic limit is not justi�ed, and more
complicated models are need, such as the Anderson model. Note that we have completely
omitted the states of the parent superconductor in Equation (2.9). This is a reasonable
approximation when � is very large compared to �C and quasiparticle occupation of the
parent superconductor is too energetically expensive to consider. In realistic devices,
�C/� can become non-negligible, forcing us to consider the states of the superconductor
explicitly. Because this breaks down the superconducting atomic limit, we have to start
from a strongly interacting system.

2.2.2 S�������������� A������� I�������M����
While superconductivity stimulates the pairing of electrons, Coulomb repulsion quenches
it, as phase and charge are conjugated variables [� ,�] = �2� [1]. This trade-o� is captured
well by the superconducting Anderson impurity model which describes a quantum dot
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coupled to a superconductor [27]:

� = �QD +�T +�SC (2.16)

Here, �QD describes a single orbital of a QD:

�QD =�
�

��†��� +�C�
†
� ���

†
� ��+

�Z
2
(�†� ��� �†� ��) (2.17)

Where �Z is the Zeeman energy, � the electrochemical potential and �C is the charging
energy. Note that this is identical to the Hamiltonian de�ned in Equation (2.9), minus the
term coupling the 0 and 2 occupations. The Hamiltonian of the superconductor is given by:

�SC =�
��

���
†
����� ���

�

(�†���
†
���+h.c.) (2.18)

Where �� is the single-electronic energy at momentum � and � is the s-wave supercon-
ducting gap, which is taken to be real, constant and not a�ected by the quantum dot. We
assume that the superconductor has a negligible Zeeman energy compared to the QD. The
superconductor and semiconductor are coupled by:

�T = ��
��

(�†���� +h.c.) (2.19)

Where �T conserves spin and is parametrized by �. While the superconducting Anderson
model is powerful enough to explain many phenomena of impurities coupled to supercon-
ductors, it is not analytically solvable. It is common to limit the sum over � in Equation (2.18)
to a bandwidth given by the Debye frequency �D. Yet the simplest way to make Equa-
tion (2.16) exactly solvable, is to replace the sum over � by a single superconducting orbital.
This is referred to as the “zero-bandwidth limit” and the resulting Hamiltonian of the
superconductor is given by [28, 29]:

� 0
SC =�

�

��†��� ��(�†� �
†
� +h.c.) (2.20)

We can then rewrite Equation (2.16) as:

�ZBW = �QD +�T +� 0
SC (2.21)

Which is a 16 by 16 Hamiltonian, composed of the number states of the QD and the
superconducting orbital. We will apply perturbation theory to reduce the basis and obtain
a more intuitive picture of the states described by this Hamiltonian. First, we diagonalize
� 0
SC with a Bogoliubov transformation and write:

� 0
B = � �

�
�2 +�2 +�

�

�
�2 +�2�†� �� (2.22)

in the basis {|��� , |�� , |�� , |�+�}. Where the Bogoliubov operators are de�ned according
to Equation (2.10). We note that this Hamiltonian is identical to the excitation picture
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of an ABS in the superconducting atomic limit, without Zeeman or charging energy, as
de�ned in equation (2.12). This similarity is arti�cial, as we have created a discrete state in
equation (2.22) by discarding all metallic orbitals but one. This is comparable to stating
that a single orbital in a metal resembles the Hamiltonian of a QD without charging or
Zeeman energy. Nevertheless, equation (2.22) has been used successfully in literature to
describe ABSs in SNS devices [30]. Furthermore, equation (2.21) is a good approximation
of a QD coupled to a single ABS, as seen in chapter 5.

We now �x the single-electronic level of the superconductor at the Fermi level (� = 0)
and write:

�B
SC � � 0

B |�=0 =

�
�
�
�
�

�� 0 0 0
0 0 0 0
0 0 0 0
0 0 0 �

�
�
�
�
�

(2.23)

We now rewrite the Hamiltonian that couples the superconductor to the quantum dot to
account for the Bogoliubon basis:

�B
T =

�
�
2 �

�†� (��+ �†� )+ �†� (��� �†� )+h.c.� (2.24)

And write the perturbed Hamiltonian, �P, as:

�P = �QD +�B
T +�B

SC (2.25)

Where the unperturbed part, �QD +�B
SC, is diagonal, and we consider �B

T as a perturbation
parametrized by the superconductor-semiconductor coupling, �. We partition the Hamilto-
nian into low-, and high-energy subspaces. Then, we integrate out the high-energy states
of Equation (2.25) using the pymablock package [31]. This procedure is closely related
to Schrie�er-Wol� transformations or Löwdin partitioning.

BCS S������ S�����
In section 2.2.1, we only considered the states of the QD, and neglected the state of the
superconductor. We now aim to obtain the same Hamiltonian, while including states of
the superconductor. We consider a single orbital in a QD, coupled using spin-conserving
tunneling to a single orbital in a superconductor (equation (2.21)). We write the combined
states of the QD and superconductor in the basis |�QD,�SC�, where the superconductor
states are written in the Bogoliubov basis: {|��� , |�� , |�� , |�+�}. We include the full system
when noting fermion parity, as opposed to only the QD states. First, we will consider
the superconducting atomic limit, where �� �C, �. This allows us to compare our results
directly with the superconducting atomic limit expression detailed in section 2.2.1. For
large �, quasiparticle occupation of the superconductor is energetically expensive, so we
exclude the states in which a single quasiparticle occupies the superconductor:

|�,�� , |�,�� , |�,�� , |�,�� even (2.26)
|0,�� , |0,�� , |2,�� , |2,�� odd (2.27)
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We also exclude all the states involving the high-energy singlet |�+� for the superconducting
orbital, as they are � 2� higher in energy than the |�� state:

|0,�+� , |2,�+� even (2.28)
|�,�+� , |�,�+� odd (2.29)

This reduces our even-parity basis to only the |0,�� and |2,�� states, where the QD is empty
or doubly-occupied and the superconductor is in the lowest-energy singlet state. Then, we
�nd second order corrections in � and write down the e�ective Hamiltonian as:

�P
AL = �

��+ �2
���� �

� �C��+2�+ �2
�C��+�

�

� �
�2 �

�C
2 ���

(�+�) (�C��+�)

(2.30)

Here, � is an e�ective coupling between the 0 and 2 occupations of the QD, arising from
virtual processes involving higher-energy states. For � � � we obtain �AL � �2/� in
leading order, which is a well-known result for the superconducting atomic limit [22, 23].
In Figure 2.5a, we compare the eigenstates of equation (2.30) with the results found in
literature, as discussed in section 2.2.1. Figure 2.5a shows the wave function amplitudes of

Figure 2.5: Perturbative zero-bandwidth model eigenstates and excitation energies for large �. The
calculations were performed for �C = 0.1�, � = 7.5�. a. Wave function amplitudes of the singlet ground state for
varying �. The markers indicate the probability amplitudes of the |0,�� and |2,�� states found from perturbation
theory. The lines show the BCS coe�cients of the singlet state, as found from the superconducting atomic
limit. b. Excitation energies of the lowest-energy even state to the lowest-energy odd state of the ABS. The
markers indicate the energy di�erence between the lowest-energy even and odd-parity eigenstates found from
perturbation theory. The lines show the excitation energy found from the superconducting atomic limit as de�ned
in Equation (2.13).

the |0,�� and |2,�� states. The solid lines show �2 and �2 calculated from Equation (2.11)
using the same parameters as the perturbative result, with �AL � �2/�. We see that the
agreement between the present result and the analytic expression for the superconducting
atomic limit is excellent. Deviations are negligible for �C/2� �, beyond which higher-
order terms become relevant. To �nd the excitation energies, we �rst �nd the energies
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of the |�,�� and |�,�� states. We diagonalize the odd-parity Hamiltonian, which includes
corrections up to second order in �:

�odd =
�

��+�+ �2
2(��C����)

+ �2
2(��+�) +

�Z
2 0

0 ��+�+ �2
2(��C����)

+ �2
2(��+�) �

�Z
2 �

(2.31)

Where we set �Z = 0 in the absence of an external magnetic �eld. Figure 2.5b shows
the di�erence between the lowest-energy even and odd states. We conclude that we
can reproduce the superconducting atomic limit results for an ABS using second order
perturbation theory, starting from a zero-bandwidth Hamiltonian.

We have only considered eigenstates where the superconductor is in the singlet state.
This is justi�ed when � is the largest energy scale in the system, as the odd-occupancy
states of the superconductor are � higher in energy than the singlet state. The solutions are
only valid in the interval ��+�C < � < ���C, as the denominators of the even and odd
Hamiltonians will diverge otherwise. In the superconducting atomic limit, the excitation
energy grows perpetually with increasing �. This is a result of excluding states where a
quasiparticle occupies the superconductor, which typically bound the energy of sub-gap
states. By comparing the perturbation theory result with the superconducting atomic limit
in equation (2.30), we have validated our model with a result that is known from literature
in the limit �� �C, �. However, �C and � can be non-negligible for realistic semiconductor-
superconductor devices. When we introduce strong interactions on the QD (�C � �), we
need to enlarge the basis to include quasiparticle occupation of the superconductor. Before
studying this intermediate limit, we �rst consider the case �C � �.

2.2.3 Y��S�����R������ S�����
The superconducting atomic limit can be seen as a limiting case of a superconducting
Anderson impurity model, where ���. Yu, Shiba and Rusinov derived the emergence
of sub-gap states in the opposite limit, where �C � � [15–17]. To do so, they started
from the s-d model, which was �rst used to propose the double-exchange mechanism of
ferromagnetism [32]. Here, an impurity is tunnel-, and exchange-coupled to conduction
band electrons in a metal. This can famously lead to an electron cloud in the metal that
screens the impurity spin, known as the Kondo e�ect. If the metal becomes a superconduc-
tor, the magnetic impurity causes local Cooper pair breaking. A Yu-Shiba-Rusinov (YSR)
state arises due to this interplay between a localized spin and superconductivity. We now
explicitly write down the state of the superconductor in addition to the impurity in the
basis |�impurity,�SC�. The even state consists of an exchange singlet/triplet formed between
an electron in the impurity and a quasiparticle in the superconductor: |�,��± |�,��. The
odd state is a superposition of a single electron in the impurity and a single quasiparti-
cle in the superconductor: |�,��� |0,��. The energy cost of exciting a quasiparticle in a
superconductor is roughly � (see Equation (2.23)). In the superconducting atomic limit,
this cost is taken to be in�nite, meaning we do not consider the quasiparticle occupation
of the superconductor. For YSR states, this approximation breaks down.

While originally derived for classical spins in superconductors, YSR states have been
identi�ed in ferromagnetic atoms on superconducting substrates [33], and quantum dots
coupled to superconductors as well [34]. Because ABSs were already strongly associated
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with low-dimensional semiconductors coupled to superconductors, the question arose as
to their distinction. To obtain a state that is as di�erent as possible from the ABSs shown
in the previous section, we use perturbation theory to �nd Hamiltonians for sub-gap
states in the limit �C � �. We note that a de�ning characteristic of YSR states is the
existence of a superconducting, metallic screening cloud, which is not captured by the
zero-bandwidth model. However, we can reproduce other signatures of YSR states by
replacing this continuum of states with a single, superconducting orbital. Notably, the zero-
bandwidth model predicts the formation of a singlet state with quasiparticle occupation of
the superconductor. We shall refer to these as zero-bandwidth YSR (ZBW-YSR) states to
distinguish them from the actual YSR states.

Z������������� Y��S�����R������ ������
Starting from the full, 16x16 zero-bandwidth Hamiltonian of Equation (2.25), we will now
derive a smaller Hamiltonian that captures the formation of ZBW-YSR states in the limit
�C � �, �. The Hamiltonian conserves spin, and we limit ourselves to zero magnetic �eld.
We �rst exclude the states from our basis where the spins of the QD and the superconducting
orbital are aligned:

|�,�� , |�,��

As before, we exclude all the states involving the high-energy |�+� state for the supercon-
ducting orbital. Finally, we limit ourselves to � ���C/2, where the QD is at half-occupancy
(i.e. in the middle of the dome shown in �gure 2.4). The 0 and 2 occupations of the QD are
then �C/2 higher in energy than the 1 occupation, so we exclude the following states:

|�,�� , |�,�� even (2.32)
|0,�� , |0,�� , |2,�� , |2,�� odd (2.33)

We indicate these states in the higher energy subspace in �gure 2.6a. For the low energy
subspace, we consider states where the QD and superconductor spins are anti-parallel:
{|�,�� , |�,��}. We then write the Hamiltonian of the even-parity states that includes �rst
and second order perturbations in �, and expand it around � = ��C/2 to �rst order in �:

�E
YSR = �

�� � �
� �� ��

� �
4�C�2

�2C�4�2

(2.34)

Here, � is an e�ective exchange term that arises from virtual coupling through higher-
energy states. It reduces to (� = 4�2/�C) for �/�C � 0, which is identical to the exchange
constant of tunnel-coupled double quantum dots [35]. Diagonalizing the Hamiltonian
yields two exchange-coupled states:

�(1,1) =
1
�
2
(|�,��� |�,��) �S = ��2�

�0(1,1) =
1
�
2
(|�,��+ |�,��) �T = �

(2.35)
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These are the even-parity ZBW-YSR states, where an electron in the QD and a quasiparticle
in the superconductor form a singlet or triplet state, respectively. We can see that the
lowest-energy state is a singlet for � > 0 and a triplet for � < 0. At �nite magnetic �eld,
both the spins in the QD and the superconductor Zeeman-split. If the g-factors of the two
are equal, the energy of the �(1,1) and �0(1,1) states does not change. While comparable
g-factors have been observed in Ge/SiGe QDs coupled to germanosilicide superconductors,
this is not commonly the case [36]. In III-V semiconductors coupled to Al, the large g-factor
di�erence creates an energy di�erence of �QDZ ��SCZ between the |�,�� and |�,��. This makes
the |0,�� and |2,�� states energetically favorable.

For the odd states, we limit the basis to the |�,��, |�,�� states and use the Hamiltonian
de�ned in equation (2.31). Then, we diagonalize the even and odd parity Hamiltonians to
obtain the eigenstates and eigenergies. We calculate the excitation energies by subtracting
the lowest-energy even and odd states.

a
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Figure 2.6: Zero-bandwidth Yu-Shiba-Rusinov states in the large �C limit. The calculations were performed
for �C = 10� and � =��C/2, in the absence of an external magnetic �eld. a. Schematic diagram of the unperturbed
states of the zero-bandwidth Hamiltonian at � = ��C/2. Red (green) numbers indicate energies of the high (low)
energy subspace. b. Excitation energies of the lowest-energy state for varying tunnel-coupling, �. The lines
indicate the energy di�erence between the lowest-energy even and odd-parity eigenstates found from perturbation
theory. The dashed, gray lines indicate the energy of the parent gap. The superimposed text indicates the ground
state (parity). c. The e�ective exchange coupling, � , for varying �.

We show the excitation energy at � =��C/2 in Figure 2.6b for varying �. When � = 0, the
superconductor and QD are decoupled, the ground state is |�,�� and the lowest excitation is
at � = �. When � increases, the energy of the even state is lowered, resulting in a sub-gap
state. At � � 0.15�C, a phase transition occurs and the ZBW singlet, �(1,1), becomes the
ground state. For ABSs, Andreev re�ection couples the even states and results in a BCS
singlet � |0�� � |2�. For YSR states, the formation of the screening cloud in a superconductor
around an impurity results in an even-parity screened state. The mechanism is comparable
to the Kondo e�ect, as it is an exchange process that lowers the energy of the bound
state [37]. We conclude that a BCS singlet is not strictly necessary for the emergence of
sub-gap states.

In Figure 2.6c we show the e�ective exchange coupling, � , for varying �. This exchange
e�ectively �ips the QD spin and couples the |�,�� , |�,�� states. This is comparable to the
spin of an impurity �ipping due to scattering with conduction band electrons in the metal.
� increases parabolically in � and is positive for �C > 2�, resulting in opposite spins for the
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lowest-energy state. We note that the ZBW-YSR states closely resemble those found in
two-electron double QDs [2]. We have purposefully labeled the exchange singlet and triplet
states with �(1,1) and �0(1,1) to make the analogy with double QDs. A major di�erence
is the broken particle conservation in ZBW-YSR states, as the 0 and 2 occupations of
the superconductor are coupled through �. Furthermore, the charging energy of most
superconductors in hybrid systems is signi�cantly lower than for QDs. In addition, the
electrochemical potential is �xed for grounded superconductors. Despite these di�erences,
certain concepts can carry over between ZBW-YSR states and double QDs. It might, for
example, be possible to encode quantum information in the spin degree of freedom of
quasiparticle states in a superconductor (see section 7.5).

We have used perturbation theory on the ZBW model to derive an e�ective model that
captures a number of basic phenomena of YSR states, including exchange coupling and sub-
gap excitation energies. Amore accurate system description requires more superconducting
orbitals, and di�erent methods such as density matrix renormalization group. Also, we
limited ourselves to the regime �C � �, � to obtain eigenstates that are maximally di�erent
from the ones presented in Section 2.2.1. In realistic semiconductor-superconductor devices,
the magnitude of �, � and �C can become comparable. The distinction between YSR states
and ABSs fades in those regimes, requiring a more complicated system description.

2.2.4 A������ B���� S���� Y��S�����R������ C��������
The states presented in Sections 2.2.1 and 2.2.3 have predictive value in certain regimes,
but are both unphysical. The superconducting atomic limit �nds a BCS singlet composed
of the |0,�� and |2,�� states, mediated by virtual coupling through the |�,�� and |�,�� states.
Conversely, the �C �� limit �nds a ZBW singlet composed of the |�,�� and |�,�� states,
mediated by virtual coupling through the |0,�� and |2,�� states. While our discussion is
limited by the approximations of the zero-bandwidth model, we will now look for an
intermediate regime that might generalize to a crossover between ABSs and YSR states.

For � = �C/2, all the even parity states in �gure 2.6a become degenerate at � = ��C/2,
meaning that we cannot partition them into low-, and high-energy subspaces anymore.
We now include all the even states of �gure 2.6a in our basis: {|0,�� , |2,�� , |�,�� , |�,��} and
write down the Hamiltonian with perturbations up to second order in �.

�E =

�
�
�
�
�
�

�� 0 �
�
2�
2 �

�
2�
2

0 �C��+2�
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�2 �
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2 +��

(���) (�C +�+�)

(2.36)

Here, � is an e�ective coupling between the |�,�� and |�,�� states, comparable to the term
in Equation (2.34). We can perform a basis rotation of these states to further simplify the
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Hamiltonian:

� �
E = ��E�† =

�
�
�
�
�

�� 0 �� 0
0 � ��+2� � 0
�� � �2� +� 0
0 0 0 �
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�
�

� �

�
�
�
�
�
�

1 0 0 0
0 1 0 0
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(2.37)

Where the new basis is:
|0,��

|2,��

�(1,1) =
1
�
2
(|�,��� |�,��)

�0(1,1) =
1
�
2
(|�,��+ |�,��)

(2.38)

We see that the |0,�� and |2,�� states are indirectly coupled through the �(1,1) state. The
�0(1,1) state is not coupled to any of the other states.

We now include all the odd states of �gure 2.6a in the basis: {|�,�� , |0,�� , |2,��}. For
clarity, we do not write the � states, as they are degenerate and completely decoupled from
the � states, as the Hamiltonian conserves spin. We include perturbations in � up to �rst
order and write the odd-parity Hamiltonian as:

�O =

�
�
�
�
�

��+�
�
2�
2 �

�
2�
2�

2�
2 0 0

�
�
2�
2 0 �C +2�

�
�
�
�
�

(2.39)

We see that the |0,�� , |2,�� states are indirectly coupled through the |�,�� state. This
implies that the odd ground state will be a superposition of single-spins in the QD and
quasiparticles in the superconductor. We can then compute the spectrum and eigenstates
of the even-, and odd-parity states. Figure 2.7a shows the excitation energy calculated from
the lowest eigenenergies of the even-, and odd-parity Hamiltonians. We see a sub-gap state
that crosses zero-energy, resulting in a characteristic eye-shape. Figure 2.7b shows the wave
function components of the even-parity ground state, where we have omitted the �0(1,1)
state which is never occupied. The BCS singlet components, |0,�� and |2,��, cross-over at
� = ��C/2, which is consistent with the superconducting atomic limit description of ABSs.
However, the �(1,1) component of the wave function also increases at � = ��C/2, resulting
in a nearly-perfect combination of ZBW and BCS singlet components. We have manually
chosen the parameters of �C, �, and � to �nd this ground state with nearly equal |0,��, |2,��
and �(1,1) components. We present this state as an illustration of the crossover between
ABSs and YSR states, which we will discuss in more detail in the following section.

Figure 2.7c shows the wave function components of the odd-parity ground state. Here,
the |0,�� , |2,�� states have �nite weight for all values of �. This indicates that the single
spin is delocalized between the QD and the superconducting orbital.
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Figure 2.7: Zero-bandwidth states in the ABS-YSR crossover regime. The calculations were performed for
�C = 7.5�, and � = 5�. a. Excitation energy for varying �. b. Wave function amplitudes of the lowest-energy even
state for varying �. c. Wave function amplitudes of the lowest-energy odd state for varying �.

ABS�YSR ����� ������� ��� ��� �������������� �����
The combination of �C, � and � in Figure 2.7 was chosen to �nd a cross-over state, which
has properties belonging both to ABSs and YSR states. We can write down the state as:
|�� = � |0,��+ � |2,���� |�(1,1)�. It has the co-existence of BCS singlet correlations (0 and
2) and ZBW singlet correlations (�,� and �,�). To �nd the crossover between ABSs and
YSR states, we can quantify these properties in a phase diagram. Figure 2.8a shows BCS

Figure 2.8: ABS-YSR phase diagram for varying �C and �. The calculations were performed for � = ��C/2,
where the QD is at half-occupancy. a. BCS correlations of the lowest-energy even state, ��†� �

†
� �, for varying

�C and �. b. Exchange coupling of the lowest-energy even state, | ��QD � ��SC�, for varying �C and �. c. Ground
state parity for varying �C and �, where the blue line indicates the boundary between the even and odd ground
states. The white dotted line indicates �C = 2��2. d. Spin expectation value of the QD for the lowest-energy
odd state, ��Z

QD�, for varying �C and �. The blue line of panel c is included to indicate the ground state parity.
e. Co-existence of BCS and exchange singlet correlations of the lowest-energy even state, ������

†
� �� +h.c.�, for

varying �C and �. The blue, dashed line indicates the values of �C and � for which the combined BCS and
exchange singlet correlations are largest.

correlations of the lowest-energy even state on the QD, de�ned as ��†� �
†
� +h.c.� We see

that the BCS correlations are largest when � is greater than �C. This is consistent with
an Andreev bound state, which has weak interactions and a BCS singlet ground state.
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Figure 2.8b shows the exchange coupling between the QD and the superconductor of the
even state. The exchange term is largest when �C is greater than �, which is consistent
with an interacting YSR state where an electron in the QD and a quasiparticle in the
superconductor form a singlet. Figure 2.8c shows the ground state parity of the system,
where 0 denotes even and 1 denotes odd. We see that the phase boundary approaches
�C = 2��2 asymptotically, which is indicated by the white, dotted line. This value is known
for the ��� limit, and similar phase diagrams can be found in Fig. 3 of [29] and Fig. 9
of [28]. We note that the phase boundary behaves asymptotically for �C �� as well, which
is di�erent from the aforementioned references. We attribute this di�erence to our usage
of perturbation theory, which breaks down when � � �, as in the bottom right corner of
�gure 2.8c. Figure 2.8d shows the spin expectation value of the lowest-energy odd state on
the quantum dot, ��zQD�. For low �/� and �C/�, ��zQD� decreases up to a minimum of �1/2.
Here, the spin is perfectly shared between the QD and the superconductor. Figure 2.8e
quanti�es the co-existence of the BCS and ZBW singlets, given by ������

†
� ��+h.c.�. This

term is a product of all the wave function components of the lowest-energy even state,
���, and is largest for the values of �C and � that lie on the blue dashed line. At low �/�,
this line roughly follows �C = 2�. The crossover term decreases when �C becomes larger,
as the state gradually evolves into a pure exchange singlet, associated with a ZBW-YSR
state. This term also decreases for increasing � as the state becomes a pure BCS singlet
associated with an ABS.

Figure 2.9: ABS-YSR phase diagram for varying � and �. The calculations were performed for � = ��C/2,
where the QD is at half-occupancy. a. BCS correlations of the lowest-energy even state, ��†� �

†
� �, for varying �

and �. b. Exchange coupling of the lowest-energy even state, | ��QD � ��SC�, for varying � and �. c. Ground state
parity for varying � and �. d. Spin expectation value of the QD in the odd ground state, ��Z

QD�, for varying � and
�. e. Co-existence of BCS and exchange singlet correlations of the lowest-energy even state, ������

†
� �� +h.c.�, for

varying � and �. The blue, dashed line indicates the values of � and � for which the combined BCS and exchange
singlet correlations are largest.

This phase diagram can also be studied for varying � and � at �xed �C. We note that
in reality, coupling a QD to a superconductor renormalizes the charging energy, which
is not captured in this model. Figure 2.9a shows BCS correlations of the lowest-energy
even state on the QD. For large �/�, quasiparticle occupation of the superconductor is
energetically expensive, and the ground state is a BCS singlet. As � increases for low
�/�C, the BCS correlations increase initially. Here � < �, for which the approximation



2.2 S���G�� S�����

2

39

that � is a perturbation to the Hamiltonian is not justi�ed anymore. The Kondo e�ect
becomes relevant in this parameter regime, which the ZBW model does not capture. For
large �/�C, the ground state becomes a ZBW singlet for increasing �. This can be seen
from the exchange correlations as well, as shown in Figure 2.9b. Figure 2.9c shows the
ground state parity of the system, where 0 denotes even and 1 denotes odd. Increasing �
favors an even-parity ground state, whereas increasing � results in an odd-parity ground
state. Figure 2.9d shows the spin expectation value of the lowest-energy odd state on the
quantum dot. For increasing �, the QD spin becomes localized more on the superconductor.
Finally, Figure 2.9e shows the cross-over between the BCS and ZBW singlet components of
the lowest-energy even state. As � increases, these correlations remain present for a larger
range of � values.

We conclude that there is a gradual crossover from a BCS singlet to a ZBW singlet
and that a phase diagram can be composed based on the nature of the even state. The
phase diagram of the ground state parity shown in �gure 2.8c shows good agreement
with literature for ���. Notably, our model uses only 3 basis states in the even parity
subspace, and captures BCS correlations and spin-exchange of sub-gap states. While the
conclusions are limited by the approximations of the zero-bandwidth model, we feel that
the crossover behavior shown in this section can be expected for YSR states and ABSs.

T�� ABS�YSR ������
Coupling con�ned electronic states to bulk superconductors remains a complicated problem.
A complete description would require a full BCS density of states for the superconductor,
and electron interactions for the normal system. The problem can be simpli�ed for certain
parameter regimes of the parent gap, the charging energy and the coupling to the super-
conductor. As a result, di�erent device geometries are interpreted using di�erent models.
The interest in the Lutchyn-Oreg model motivated the study of quasi-one-dimensional
semiconductors coupled to a bulk superconductor [38, 39]. The desire to probe the bulk
of these systems led to the appearance of grounded superconductors, which quenches
the charging energy of semiconductor states. This simpli�es the system signi�cantly, and
motivated the usage of the superconducting atomic limit (�� �C), where the even ground
state is a BCS singlet and the sub-gap states are referred to as ABSs. The superconducting
atomic limit is straightforward to interpret, but fairly inaccurate when interactions appear
on the QD.

On the other hand, electron-electron interactions were already studied within the
context of the Kondo e�ect. This led to the study of quantum dots coupled to supercon-
ductors (�C � �), where superconductivity competes with the Kondo e�ect [40]. Here,
interactions on the QD cannot be discarded, as in the case of semiconductors coupled to
grounded superconductors. The system is well-described by the superconducting Ander-
son impurity model, which requires powerful mathematical techniques such as numerical
renormalization group (NRG) to solve [41]. Here, the sub-gap states are referred to as
YSR states, which are named in reference to ferromagnetic impurities in superconductors.
The zero-bandwidth model can to a degree capture the interactions of the impurity with
quasiparticle states in the superconductor. Recently, Baran et al. have shown that including
a few superconducting orbitals gives results that are comparable to the NRG solution of
the superconducting Anderson model [42]. YSR states are also found in superconductor-
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QD-superconductor systems, in which the phase di�erence between the superconductors
has to be considered too [43].

There are also quasi-one-dimensional semiconductorswhich are coupled to �oating thin-
�lm superconductors. Here, the semiconductor has a charging energy, though generally
lower than in a quasi-zero-dimensional QD. The system is then referred to as an island, in
which the superconducting gap and semiconducting charging energy can be comparable
(�C � �). If the superconductor also acquires a charging energy, it leads to an interacting
continuum [44]. As a result, the system needs to be described by a particle-conserving
Hamiltonian, such as the Richardson model [45].

We have outlined three typical geometries in which sub-gap states are studied exper-
imentally, i.e. grounded-superconductor hybrids, QDs coupled to superconductors and
islands. While many phenomena are universal across these geometries, the terminology
and models used can vary wildly. This echoes the time when sub-gap states were �rst
predicted to exist in numerous geometries. Each model can give quantitatively di�erent
predictions for the singlet-doublet phase boundary. The zero-bandwidth model used in
this section deviates signi�cantly from the superconducting Anderson model in certain
limits, such as �/� � 0. We do note that the zero-bandwidth model captures a QD coupled
to an ABS quite well, as is discussed in chapter 5. Finally, we note that sub-gap states have
been mostly studied using tunneling spectroscopy. Only recently have observables other
than the spectrum been studied, including electronic compressibility, spin and ground state
charge.

2.3 C����� �� S���G�� S�����
In the previous section, we discussed YSR states and ABSs, as well as their crossover. These
states can undergo quantum phase transitions where the ground state parity changes.
For QDs, a change in ground state parity leads to a change in charge of 1�. This is not
necessarily true for ABSs, where the even ground state is a superposition of an empty and
a full orbital. In this section, we discuss the charge of sub-gap states.

2.3.1 S������A������ B��
To give an overview of the charge properties of sub-gap states, we create a toy model that is
an extension of the single-electron box (see Section 2.1.1), and can be considered a variant
of a Cooper pair box with �J = 0 [46]. In Figure 2.10a, we show a sketch of the system that
consists of a �oating piece of conductor, tunnel coupled to a grounded, superconducting
lead and capacitively coupled to a gate electrode, kept at a potential �g. The capacitances
between the gate and the lead to the island are �g and � respectively. From Section 2.1.1,
we recall that for a single-electron box (SEB):

�C =
�2

(�+�g)

� = �C�
1
2
�
�g�g
� �

The coupling to the superconductor induces sub-gap states in the island, which we consider
in the superconducting atomic limit as described in Section 2.2.1. We now limit the
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Figure 2.10: Electrostatic energy and occupation values of a Single-Andreev Box. a. Schematic overview
of the model, showing a gate (yellow) with an electrostatic potential, �g, coupled to an island (gray) with a
capacitance �g. A grounded, superconducting lead (blue) with an in�nite superconducting gap � is coupled to
the conductor with a tunnel coupling � and capacitance �. b. Fermion expectation value, ��� of the lowest energy
even state of the island, for varying �g, at di�erent values of �/�C. c. Electrostatic energy, �el, for varying �g of
di�erent occupations of the island. The black lines correspond to integer occupations of the island, disregarding
superconductivity, with � � {0,1,2}.

island to only hosting a single Andreev Bound State (ABS) that has a singlet ground state
|��= � |0��� |2� or an odd ground state. We can then write down the occupation expectation
value as:

��� =

����
�����

��|�|�� = 2�2 = 1�
�+ �C

2�
(�+ �C

2 )2+�2
even GS

1 odd GS
(2.40)

Where � is the coupling to the superconductor. Figure 2.10 shows ��� for varying �g, at
di�erent values of �/�C. We see that when the superconductor is decoupled from the island
(� = 0), ��� is always an integer, as for a normal SEB. When � is increased, ��� smoothly
changes with �g. This is due to the island exchanging charge with the superconductor due
to Andreev re�ection, which hybridizes the 0 and 2 occupations. When �� |�+�C|, we
can approximate the average occupation as ��� � 1� (�+�C/2)/�. This is shown by the
black, dashed line in �gure 2.10b. In this regime, � ���/��g � const. The average charge of
the ABS increases linearly with the gate voltage, similarly to the charge induced on the
island by the gate, ��g�g.

We then calculate the electrostatic energy of the singlet state as:

�el =
�C
2 �2�

2�
�
� �

2
(2.41)

We neglect any energetic contribution from superconductivity and show �el for varying
�g in Figure 2.10c. Here, we see that as � increases, the energy of the singlet state starts



2

42 2 T�����

to match that of the 1 occupation. The hybridization between of the 0 and 2 occupations
becomes stronger as the island-superconductor coupling increases.

In a normal SEB, charge in the island is well-de�ned if two conditions are met. First,
�C � �B� , which ensures that the energy di�erences between charge states cannot be over-
come by thermal �uctuations. It can be argued that charge is generally not well-de�ned for
the single-Andreev box, as the even state does not have integer charge anymore. However,
Fermion parity does remain well-de�ned. While �C creates an energy di�erence between
the even and odd occupations of a SEB, this is ful�lled by � in the single-Andreev box.
Even for �C � �, the energy di�erence between the ABS singlet and doublet occupations
is still on the order of �. If �� �B� , thermal �uctuations cannot change the ground state
parity. Charge is then well-de�ned for the odd ground state, and bounded between 0 and
�2� for the even ground state. We do note that quasiparticle poisoning is required and
inherent to superconducting devices, causing the Fermion parity of the island to �ip over
time. In �gure 2.10, we neglected quasiparticle poisoning by assuming the ABS is always
in its ground state.

To have well-de�ned charge in a SEB, the coupling between the island and the normal
lead cannot be too strong. If a SEB is shorted to ground, there is no distinction between
charge states in the island or in the ground itself. Therefore, � is no longer quantized and
�el = 0 can always be achieved by having �� = � [1]. If the island is strongly coupled to the
superconductor in a single-Andreev box (���C), the occupation behaves as � ��� � ��g�g,
as shown by the dashed black line in Figure 2.10b. The island occupation, ���, is now a
continuously changing variable, comparable to the case of the grounded single-electron
box, except the single-Andreev box does have a �nite �el, and 0 � ��� � 2. For � � �,
the singlet state becomes a nearly perfect superposition of the 0 and 2 occupations for a
larger range of �g. The even state charge is then hard to distinguish from the odd state
charge, even though the states have di�erent energies. We note that in the limit ��� the
assumptions of the superconducting atomic limit break down, and the even ground state
becomes more than a BCS singlet, as discussed in Section 2.2.4.

2.3.2 E������� F����� �� H������
We have seen that the coupling of a sub-gap state to a grounded superconductor a�ects
its electrostatic properties. This distance also a�ects the electric �eld emanating from the
state, because of screening by the superconductor. In Figure 2.11a we show the electrostatic
potential of a point charge in a 2D InSb system with a grounded superconductor on top.
We treat the superconductor as an in�nite grounded plane, and calculate the electrostatic
potential, � , at a location �, using the method of images [47]:

� (�) =
1

4����0 �
�

|�� � �� |
�

�
|�+ � �� |�

(2.42)

Where �� is the dielectric constant of InSb, � is distance of the point charge to the super-
conductor, and we set � = ��. The black lines in Figure 2.11a indicate contours of constant
� for � = 9nm. The blue arrows show the electric �eld, �� = ��� . As the point charge is
closer to the superconductor, it starts to form an electric dipole with its image charge, and
the potential drops o� like � � 1/�2. Figure 2.11b shows � for a point charge at a distance
� = 90nm away from the superconductor. We see that � decays more slowly away from
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Figure 2.11: Nanowire longitudinal section electrostatics. a. Electrostatic potential, � , of a point charge in an
InSb nanowire located 9nm away from a grounded superconductor (blue). Blue arrows indicate the electric �eld,
�� = ��� . b. Same as a., for a point charge 90nm away from the superconductor. c. Fermion expectation value,
��� of the singlet ground state of an ABS, for varying chemical potential, �. d. � at the location of the blue circle
in panels a and b, for an ABS singlet ground state for varying �, at di�erent distances to the superconductor. The
ABS is modeled as a point charge.

the point charge than in panel a. The larger � causes the point charge to act increasingly
like an electric monopole as opposed to a dipole.

To estimate � resulting from an ABS in a hybrid nanowire, we replace the point
charge � = �� by the charge expectation value of an ABS in the singlet ground state,
� = �� �� �. Figure 2.11c shows �� � for varying chemical potential, �. In Figure 2.11d, we
show � calculated at the blue circle in panels a and b, for varying � at three values of �. As
the ABS charge becomes closer to the superconductor, the electrostatic potential at the
blue circle decreases gradually. This implies that the charge of sub-gap states becomes
harder to observe as they are localized closer to the interface with the superconductor. In
these calculations, we have assumed that the ABS does not change for varying �.

2.3.3 C����� S������ S���G�� S�����
When we introduced the charge of sub-gap states in the previous section, we limited
the electrostatics to zero-dimensions. In truth, sub-gap states are found in quasi one-
dimensional (nanowires) or two-dimensional (2DEG) systems. Because of con�nement,
the wave function of sub-gap states can be localized in di�erent parts of the system. The
distance of a sub-gap state to a grounded superconductor can a�ect its observable charge
in two ways. Firstly, the charging energy (�C) and coupling to the superconductor (�) are
highly dependent on the distance, and a�ect how the ABS charge responds to a gate voltage.
Secondly, the electrostatic potential decays more rapidly as the ABS is localized closer to
the superconductor, as discussed in the previous section. While both will a�ect how a
charge sensor can be used to measure the charge of a sub-gap state, we will disregard the
dependence of � and �C on distance as it highly depends on the microscopics of devices.
We modify the constant interaction model of a double quantum dot (see Equations (2.5)
and (2.6)) to make a phenomenological model of a SEB that is electrostatically coupled to
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an ABS:

�SEB(�) =
�SEBC

2
� ���2 +� (�)� ���1 (2.43)

�ABS = �ABSC �
1
2
�
�g�1
� �

� ���2 (2.44)

Where � is distance of the ABS to the superconductor, � is the lever arm of the SEB
and � is the cross-capacitance. � (�) is the electrostatic potential at the location of the
SEB, which is calculated using Equation (2.42), where the ABS is approximated as a point
charge in the middle of the hybrid segment. We calculate the charge of the ABS using the
superconducting atomic limit (see Section 2.2.2 for details):

� = �� ��� =

���
����

�2��2 = 1� �ABS+�ABSC /2�
(�ABS+�ABSC /2)2+�2

even GS

�� odd GS

a

VRF(ω)

d

InSb
Al
Gate

Wavefunction Dielectric

V1 V2
b c d

ABS SEB

Figure 2.12: Charge Sensing Sub-Gap States with a single-electron box. a. Schematic sketch of a longitudinal
cut of an InSb nanowire, with a grounded Al shell. The sub-gap state is modeled as a point charge in the hybrid
segment, indicated by the yellow cylinder. The single-electron box (SEB) is modeled as a point charge in the
bare InSb segment indicated by the yellow sphere. Electrical �eld lines between the ABS and the Al, and the
ABS and the SEB are schematically sketched. The electrochemical potential of the sub-gap state and the SEB
are controlled by two bottom gates with voltages �1/2 respectively. � is the distance between the sub-gap state
and the top facet of the nanowire. The hybrid section has a length � = 250nm and a diameter � = 100nm. For
the ABS, we set � = 80�eV and �g = 0.001pF. For panels b and c, we use �ABSC = 40�eV, and �ABSC = 250�eV for
panel d. b.-d. The inverse of the Sisyphus resistance, 1/�sis, for varying �1 and �2 for � = {10nm, 20nm, 20nm}
and �/�ABSC = {2, 2, 1/3} respectively. We have used �C = 5mV and a lever arm of ��� = 0.4 for the SEB, and
a cross-capacitance of �� = 0.01 between the sub-gap state and the SEB. The blue line in panel b indicates the
position of the Coulomb resonance for � = 0. The green lines in panels c and d indicate the SEB Coulomb
resonance for ��� = 0 and ��� = 2. We used Equation (2.8) for the calculations of the Sisyphus resistance, with:
� = 30mK, � = �/2� = 300MHz and �0 = 40�eV.
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The system is sketched in Figure 2.12a. Here, a longitudinal cross-cut of a semiconductor
nanowire with a single Al top facet is shown. The ABS is modeled as a point charge in the
hybrid, the SEB is located in the bare InSb segment. A normal lead is connected to an AC
voltage and is tunnel-coupled to the SEB.

Figure 2.12b.-d. show the inverse of the Sisyphus resistance of the SEB, 1/�sis, for
varying �1 and �2, for di�erent values of �. In Figure 2.12b, The ABS is localized 5nm
away from the grounded superconductor. We see that the Coulomb resonance of the SEB
is changed gradually by �1. This shift can result from the change in occupation of the ABS,
or the cross-capacitance, �. The superimposed, blue line shows the Coulomb resonance for
� = 0. Here, we can faintly observe curvature in the shift of the resonance, in the absence
of cross-capacitance. The small distance between the ABS and the grounded Al draws the
electric �eld lines away from the SEB, which makes the ABS charge hard to distinguish
from a more trivial shift due to cross-capacitance.

In Figure 2.12c, we can observe the curvature in the shift of the SEB Coulomb resonance
more clearly, in addition to the linear shift from cross-capacitance. Here, the electric
�eld lines between the ABS and SEB are screened less, due to the larger distance to the
superconductor. The changing occupation of the ABS has a larger e�ect on the SEB’s
electrochemical potential as compared to panel b. The curvature stems from the gradual
change of ��� from 0 to 2. The green lines indicate the SEB Coulomb resonance for ��� = 0
and ��� = 2.

In Figure 2.12d, we use the same distance as in panel c, but a larger �ABSC = 250�eV.
Because of the larger charging energy, the ABS now has a doublet ground state for a range
of �1 and �2 values. The change in ground state parity of the ABS causes a discontinuous
jump in the Coulomb resonance of the SEB. This is comparable to charge sensing of non-
superconducting systems, where electrons are loaded one-by-one onto a quantum dot,
see Figure 2.3. We note that for an ABS, the slope of the Coulomb resonance in the odd
ground state is di�erent from the one in the even ground state. This can be attributed
to the gradual change of ��� in the singlet ground state, compared to ��� = 1 for the odd
ground state. Figure 2.12d implies that ground state parity can be inferred from charge
sensing measurements. This is not universally true for sub-gap states, notably in Kitaev
chains, which will be discussed in section 2.4.4

We note that the models used here are highly simpli�ed. The electrostatic calculations
are performed while assuming point charges and in�nite ground planes, as opposed to
�nite systems. In reality, the charging energy and semiconductor-superconductor coupling
depend strongly on the wave function pro�le. Furthermore, the ABS is modelled in the
superconducting atomic limit, which is not valid as �C � �. Nevertheless, we conclude that
the model predicts certain charge sensing signatures that will be shown in chapter 4.

2.4 M������ K����� C�����
In sections 2.2.2 and 2.2.3 we discussed the e�ects of coupling quantum dots (QDs) to
superconductors. We limited ourselves to a single QD to study the superconducting prox-
imity e�ect on a con�ned system. When two QDs are coupled to the same superconductor,
they both acquire particle-hole symmetry. A Cooper pair can then be split or formed in
the superconductor, and the electrons can tunnel into or out of the dots. We also limited
ourselves to zero magnetic �eld in the preceding chapters. When an external magnetic
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�eld is applied, time-reversal symmetry is broken. Based on symmetries, systems can
be categorized into certain classes. A system with particle-hole symmetry and broken
time-reversal symmetry is a class D system. A one-dimensional, class D system has a �2
topological invariant, meaning it can be described by a topological invariant with two
possible values. At the transition from topologically trivial to non-trivial, Majorana zero-
modes (MZMs) are predicted to appear the ends of the one-dimensional class D system.
In 2001, Kitaev proposed that this symmetry class can be realized in a spinless, in�nite,
one-dimensional tight-binding chain [48]. Unfortunately, an electronic implementation of
the Kitaev chain is necessarily a spin-1/2 system with Kramer’s degeneracy, and will have
time-reversal symmetry. In 2010, the Lutchyn-Oreg modeled was introduced to �nd MZMs
in semiconductor-superconductor hybrids with spin-orbit interaction and an external mag-
netic �eld [38, 39]. Whereas the Kitaev chain model is discrete, this model is continuous.
In 2012, Sau and Das Sarma proposed a direct implementation of the Kitaev chain model in
QDs coupled to superconductors [49]. Formally, this system will only be topological for
an in�nite number of QD. In the same year, Leijnse and Flensberg predicted that MZMs
could even appear in a minimal chain, consisting of two QDs coupled through a single
superconductor [50]. While these “Poor Man’s Majorana zero modes” are not topologically
protected, they do share properties with MZMs that appear in topologically non-trivial
systems, including non-Abelian statistics, robustness to local perturbations and more. In
this section, we will discuss minimal Kitaev chains realized in di�erent geometries.

2.4.1 N����������� D�� K����� C����
Leijnse and Flensberg consider two fully spin-polarized QDs that are coupled through
a grounded superconductor, which is shown in �gure 2.13a. The system Hamiltonian is
almost identical to the double QD detailed in section 2.1.2:

� = �1�1 +�2�2 + ��†1 �2 +��†1 �
†
2 +H.c. (2.45)

Here the subscripts 1 and 2 denote the left and right QDs, and � is the tunnel coupling. The
term ��†1 �

†
2 describes the addition of an electron to both QDs simultaneously, and does not

appear for normal double QDs. This is the “superconducting pairing” term as described by
Kitaev, and can be realized by coupling the QDs through a superconductor. The processes
associated with � and � are sketched in �gure 2.13b,c.

We denote the combined state of the double QD in the number basis, |�QD1,�QD2�, and
write the Hamiltonian in the basis {|00�, |10�, |01�, |11�}:

� =

�
�
�
�
�

0 0 0 �
0 �1 � 0
0 � �2 0
� 0 0 �1 +�2

�
�
�
�
�

(2.46)

If we diagonalize the Hamiltonian for � = �, we obtain the following eigenstates:
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Figure 2.13: A minimal Kitaev chain based on normal quantum dots. a. A schematic diagram of the system.
Two quantum dots (QDs) are tunnel coupled through a grounded superconductor. Each QD is coupled to a normal
lead with magnitude �. b. Sketch of the tunneling process, �, between the QDs. c. Sketch of the superconducting
pairing, �, between the QDs. d-f. Calculate conductance of the left lead, �LL, for varying electrochemical potential
of the QDs, �1 and �2, for �/� values of {1/2,2,1}. The bias of both leads is 0. The superimposed text indicates
the states that hybridize most strongly. g. �LL, for varying �/� and bias of the left lead, �. Here, both QD levels
are kept at the Fermi level: �1 = �2 = 0. h. �LL, for varying �1 and �. Here, �2 = 0 and � = �. i. �LL, for varying
�1 and �2, and � for � = �.

|��� =
1
�
2
(|00�+ |11�), ��� = �

|��� =
1
�
2
(|10�+ |01�), ��� = �

|��� =
1
�
2
(|00�� |11�), ��� = ��

|��� =
1
�
2
(|10�� |01�), ��� = ��

(2.47)

At each energy � = ±�, there is a degenerate even-parity and odd-parity state. An
electron can be added or removed at the Fermi level to change the ground state parity of
the system. To obtain a transport description of the system, we write the Hamiltonian in
the semiconductor picture (see section 2.2.1):

� =

�
�
�
�
�

�1 � 0 �
� �2 �� 0
0 �� ��1 ��
� 0 �� ��2

�
�
�
�
�

(2.48)

Having obtained a non-interacting single-electronic Hamiltonian, we can calculate the
scattering matrix using the Mahaux-Weidenmuller formula:

� = 1+2��� [���+ ��� †� ]�1� † (2.49)
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Where � is the excitation energy and:

� =

�
�
2�

�
�
�
�
�

1 0 0 0
0 0 �1 0
0 1 0 0
0 0 0 �1

�
�
�
�
�

Here, � denotes the tunnel coupling between each QD and its respective lead. We calculate
the conductance as �LL(�) = |�eeLL|

2 � |�heLL|
2 � 1. In �gure 2.13d we show �LL at � = 0

for varying �1 and �2 for �/� = 0.5. We see an avoided crossing between the Coulomb
resonances of the QDs. There is only �nite conductance for �1, �2 values close to resonance,
which we attribute to transport processes involving both QDs. There is no local Andreev
re�ection process on the normal QDs, resulting in no local conductance when only one
QD is on resonance with the lead. The avoided crossing seen in �gure 2.13d indicates
hybridization between the |1,0� and |0,1� states, which is commonly seen for interdot
transitions in normal double QDs. In �gure 2.13e, we show �LL for varying �1 and �2
for �/� = 2. Here, the avoided crossing is now oriented along the diagonal, indicating
hybridization between the |0,0� and |1,1� states. This coupling violates particle conservation
on the QDs, and is only possible due to the QDs exchanging charge with superconductor.
This hybridization shows that Cooper pair splitting can coherently couple the even-parity
states. In �gure 2.13f, we show �LL for varying �1 and �2 for � = �. Here, the odd-parity
and even-parity states hybridize with the same strength. The result is a degenerate even-,
and odd-parity ground state as shown in equation (2.47), signaling the appearance of Poor
man’s Majorana zero modes.

In �gure 2.13g we show �LL for varying � and �, at �1 = �2 = 0. We see four particle-
hole-symmetric peaks; two with energies � �� and two with energies � +�. This shows
the linear splitting of the zero-energy state with �/�, which is characteristic for a two-site
Kitaev chain. In �gure 2.13h we show �LL for varying �1 and �, at �2 = 0 and � = �. Here,
we see a zero-energy state that does not split upon changing �1, which is a manifestation
of the local protection of Poor Man’s Majorana states. In �gure 2.13i we show �LL for
varying �1,�2 and �, at � = �. We see that the zero-energy state splits quadratically upon
perturbing both QD electrochemical potentials. This quadratic protection is expected for a
two-site chain, and increases polynomially for an increasing number of sites.

When more sites are added, the excited states (see equation (2.47)) form bands and
the system becomes topological [49]. The minimal Kitaev chain model for normal QDs
is a breakthrough work because of its bottom-up approach of topology. We can verify
that � = � for each added pair, and see that the zero-energy state becomes more robust
to global and local perturbations. However, it does require � and � to be mediated by a
superconductor. In practice, these amplitudes are severely limited by the coherence length
of the superconductor. Also, the model does not detail how the ratio of � and � can be
changed electrostatically.

2.4.2 P����������������� D�� K����� C����
In the previous section, we discussed the minimal Kitaev chain model based on normal QDs
coupled through a grounded superconductor. As the superconducting coherence length
can limit the tunneling amplitudes, it is desirable to �nd a di�erent way of mediating
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the even and odd coupling. One possibility is to replace the bulk superconductor by a
semiconductor-superconductor system. The induced coherence length can be signi�cantly
longer than the bulk one, allowing for stronger coupling of the QDs [51]. Speci�cally,
the combination of con�nement and the proximity e�ect leads to Andreev Bound States
(ABSs) appearing in the hybrid segment. The system of two QDs coupled through a
semiconductor-superconductor section is sketched in �gure 2.14a.

When the QDs are tunnel-coupled to an ABS (see section 2.2.2), their 0 and 2 occupations
hybridize with an amplitude:

�ind =
�2 + �2SO
2���A

+�(�4, �4SO) (2.50)

Where � (�SO) is the spin-conserving (�ipping) tunnel rate between the QD and the ABS,
�A is the ABS’ excitation energy, and �,� its singlet wave function components. We note
that this is di�erent from directly coupling a QD to a bulk superconductor, as the ABS is a
single, discrete state. The result is the formation of zero-bandwidth states Yu-Shiba-Rusinov
states on the QDs, see section 2.2.4 for discussion. We use the {|�� , |��} basis states for each
QD and exclude the |�� state by assuming an in�nitely large Zeeman energy. Assuming

�1,S |H |S,1� = �
O
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Figure 2.14: A minimal Kitaev chain bases on proximitized quantum dots. a. A schematic diagram of the
system. Two quantum dots (QDs) are tunnel coupled to an ABS in a hybrid segment. Each QD is coupled to a
normal lead with magnitude �. b. Sketch of an elastic co-tunneling process between the QDs. c. Sketch of a
crossed Andreev re�ection process between the QDs. d-f. Calculate conductance of the left lead, �LL, for varying
electrochemical potential of the QDs, �1 and �2, for �SO, �SO values of {�/2,2�, �}. The bias of both leads is 0. The
superimposed text indicates the states that hybridize most strongly. g. �LL, for varying �E/� and bias of the left
lead, �. Here, both QD levels are kept at the Fermi level: �1 = �2 = 0. h. �LL, for varying �1 and �. Here, �2 = 0
and �E = �O. i. �LL, for varying �1 and �2, and � for �E = �O.

�A � �, �SO, we can partition the odd occupations of the ABS into a high-energy subspace.
We then assume that the ABS is always in the |�� ground state and do not explicitly write
its state in our basis. Following Liu et al., we can then write an e�ective Hamiltonian for
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the QDs [52]:

�eff = �1�1 + �2�2 +�O(�
†
� �� + � †

� ��)+�E(�
†
� �

†
� + ����) (2.51)

Where �� = ���C/2��Z/2+
�
�2� +�2

�,ind is the energy cost of creating a Bogoliubon on
QD �. Here, �� is the electrochemical potential, ��C is the charging energy, �Z the Zeeman
energy and ��,ind is the induced gap. The e�ective couplings �O and �E are given by:

�� = ��,� |� eff
coupling| �,�� = �������� + ������� +������� �������� (2.52)

�� = ��,�|� eff
coupling| �,�� = �������� +������� + ������� � ������� (2.53)

Where ��,�� are the singlet components of QD �. Here, � is now an elastic co-tunneling
rate that involves virtual occupation of the ABS. The subscripts indicate the spin of the
excitation on both QDs. � is a crossed Andreev re�ection rate that is mediated by the
ABS. For normal QDs, � exclusively couples the odd states, and � the even states. For QDs
coupled to an ABS, this is no longer true. If a spin-up electron tunnels out of the left QD in
the |�� state, it leaves it in the |�� state. If this electron rotates to spin-down and tunnels
into the |�� state of the right QD, it leaves it in the |�� state too. In this way, spin-�ipping
tunneling, ���, can couple the |�,�� and |�,�� states. In addition, splitting a triplet Cooper
pair over the QDs, ���, also couples the |�,�� and |�,�� states. While both processes occur
concomitantly, the elastic co-tunneling and crossed Andreev re�ection rates depend on the
ABS energy [53, 54]. For simplicity, we choose their amplitudes manually and set:

��� = ��� = � ��� = ��� = �0

��� = ��� = �SO ��� = ��� = �SO

Here, � and �SO are the spin-�ipping, and spin-conserving tunneling rates. �0 is the rate
of splitting s-wave Cooper pairs. �SO is the rate of splitting parallel spin Cooper pairs.
To �nd a transport description of the system, we write the Bogoliubov-deGennes (BdG)
Hamiltonian in the semiconductor picture as:

�BdG =

�
�
�
�
�

�� �odd 0 �even
�odd �� ��even 0
0 ��even ��� ��odd

�even 0 ��odd ���

�
�
�
�
�

(2.54)

The states of this Hamiltonian describe single-particle excitations from the |�,�� state.
While the excitations of the system are Bogoliubons, the modes in the left and right leads
are electrons or holes:

�in/out = (|�� ��, |�� ��, |�� ��, |�� ��, |�� ��, |�� ��, |�� ��, |�� ��)in/out . (2.55)

To couple the double QD system to the leads, we perform a Bogoliubov transformation of
the lead modes:

��
†
L � †

R �L �R�
�
= �� ��

L†
� �L†� �R†� �R†� �L� �L� �R� �R� �

�
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We can then de�ne the W-matrices that couple the leads to the system as:

� † =

�
�
2�

�� =

�
�
2�

�
�
�
�
�

0 � 0 0 �� 0 0 0
0 0 0 � 0 0 �� 0
�� 0 0 0 �� � 0 0
0 0 �� 0 �� 0 0 �

�
�
�
�
�

We then write the scattering matrix as:

� = 1+2��� [�BdG��bias + ��� †� ]�1� † (2.56)

And we compute the conductance as: �LL(�) = |�eeLL|
2� |�heLL|

2�1.
In �gure 2.14d we show �LL at � = 0 for varying �1 and �2 for �0 = �, �SO = �SO = �/2.

We see an avoided crossing that indicates hybridization between the |�,�� and |�,�� states.
There is now also �nite conductance when only one QD is on resonance. We attribute this
to local Andreev re�ections resulting from the QD-ABS coupling. In �gure 2.14e, we show
�LL for varying �1 and �2 for �0 = �, �SO = �SO = 2�. Here, the avoided crossing is now
oriented along the diagonal, indicating hybridization between the |�,�� and |�,�� states. In
�gure 2.14f, we show �LL for varying �1 and �2 for �SO = �SO = �0 = �. Here, the odd-parity
and even-parity states hybridize with the same strength. The result is a degenerate even-,
and odd-parity ground state.

In �gure 2.14g we show �LL for varying �O and �, at �1 = �2 = 3�C/2. We see four
particle-hole-symmetric peaks: two inner ones at energies ±|�O��E| and two outer ones
at energies ±(�O +�E). This shows the linear splitting of the zero-energy state with �/�,
which is characteristic for a two-site Kitaev chain. In �gure 2.14h we show �LL for varying
�1 and �, at �2 = 0 and �O = �E. Here, we see a zero-energy state that does not split upon
changing �2. This is the local protection of Poor Man’s Majorana states. In �gure 2.14i
we show �LL for varying �1 = �2 and �, at �O = �E. We see that the zero-energy state
splits quadratically upon perturbing both QD electrochemical potentials. This quadratic
protection is expected for a two-site chain, and increases polynomially for an increasing
number of sites.

Although these �gure look almost identical to �gure 2.13, there are di�erences between
minimal Kitaev chains based on normal or proximitized QDs. First, the origin of the even
and odd coupling. For normal QDs, these are given by Cooper pair splitting from a bulk
superconductor, and direct tunneling. For proximitized QDs, the even and odd couplings
are both mediated by an ABS. Furthermore, elastic co-tunneling and crossed Andreev
re�ection can couple both even-, and odd-parity states. Second, the even ground state is a
superposition of the 0 and 2 occupations for proximitized QDs. This results in fractional
charge di�erences between the even and odd states, as compared to the 1� di�erence for
normal QDs. One e�ect of the proximity e�ect on the QDs is that the zero-energy state
is stable over a larger range of �� values than for normal QDs. A Kitaev chain realized
using QDs coupled to ABSs allows for a stronger coupling than using normal QDs. When
this coupling becomes too strong (i.e. �A � �, �SO), the odd states of the ABS can form
bonding/anti-bonding states with the QDs. They can then no longer be segmented into
a high-energy subspace. As a result, the ABS states have to be explicitly included in the
basis. An ABS then becomes a site of the chain, as opposed to a coupling element.
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2.4.3 A������ B���� S���������� D�� K����� C����
In the previous section, we discussed how the even states of a QD can hybridize upon
coupling it to an ABS. When the ABS excitation energy is larger than this coupling, its odd
states do not hybridize strongly with the QD. However, an ABS can have an odd-parity
ground state due to charging energy and/or an external magnetic �eld. When the ABS
excitation is then coupled to a QD level, the odd states can also hybridize. We consider
this process by starting from the |�,�� state, where the QD is occupied by a single spin
and the ABS is in the singlet state. The spin-down electron can tunnel from the QD to
the ABS, which forms the |0,�� state. We show a schematic drawing of this process in
�gure 2.15a. This spin-conserving tunneling process couples the global odd states of the
QD-ABS system. The spin can also precess due to spin-orbit during tunneling. Starting
from the |0,�� state, and up-electron can tunnel out of the ABS. If the electron rotates to
down and tunnels into the QD, the |�,�� state is formed. This process couples the even
states of the QD-ABS system and is sketched in �gure 2.15b. In section 2.4.2 we discussed
how an ABS can mediate elastic co-tunneling and crossed Andreev re�ection between QDs.
Here, we see that comparable odd and even couplings can also arise between an ABS and a
single QD.

Following Miles et al. [55], we write the Hamiltonian of an ABS coupled to a QD as:

� = �ABS +�QD +�� (2.57)

We treat the ABS in the superconducting atomic limit, see equation (2.9) for the corre-
sponding Hamiltonian. We also assume a large Zeeman energy to disregard all spin-up
states, and write the QD Hamiltonian as:

�QD = (�QD��Z)�
†
� ��+�QDC �†� ���

†
� ��. (2.58)

�� describes the tunnel coupling between the ABS and the QD and is given by:

�� = �(�†� ��+ �†� ��+�.�.)+ �so(��
†
� ��+ �†� ��+�.�.), (2.59)

Where � is the spin-conserving tunneling amplitude, and �so is the spin-�ipping tunneling
amplitude resulting from spin-orbit interaction. �� removes a down-electron from the ABS.

The basis of equation (2.57) can be split into even and odd parity subspaces, where we
consider the following states in the |� ,�� = |� �QD� |��ABS basis:

{|0,�� , |2,�� , |�,��} even

{|0,�� , |�,�� , |2,��} odd
(2.60)

Here |�� = � |0�� � |2� is the ABS singlet. Using equation (2.59), we can calculate the
e�ective couplings between the global even-parity states:

�2,�|�� |0,�� = 0

��,� |�� |0,�� = ��so
�2,�|�� | �,�� = ���so
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For the couplings of the global odd-parity states we have:

�0,� |�� | �,�� = ��

�0,� |�� |2,�� = 0

�2,� |�� | �,�� = ��

We can now segment the Hamiltonian into even-, and odd-parity subspace and write the
Hamiltonians in the basis of equation (2.60):

�E =
�
�
�
�

�S 0 ��so
0 2�QD +�QDC +�S ���so
��so ���so �QD��Z +��

�
�
�
�

and

�O =
�
�
�
�

�� �� 0
�� �QD��Z +�S ��
0 �� 2�QD +�QDC +��

�
�
�
�

Here �S = �C/2+��
�
(�+�C/2)

2 +�2 and �� = ���Z/2 are the ABS singlet and spin-
down state energies respectively. The Hamiltonian in the full basis of the even-, and
odd-parity states is then given by:

�total = �
�E 0
0 �O�

(2.61)

We then diagonalize both blocks of the Hamiltonian separately to �nd the lowest-energy
eigenstates: �E/O�0

E/O = �0E/O�
0
E/O.

In �gure 2.15c we show �0O��
0
E for varying �QD and �ABS for �SO = �/2where � = �QDC /10.

We see an anti-diagonal avoided crossing that indicates hybridization between the |0,�� and
|�,�� states, which signals �� > ��SO. We note that the global parity can also change with
�ABS when the QD is o�-resonance (e.g. at �QD = 0). This is a result of the ABS having an
odd ground state without coupling to the QD, due to �nite charging and Zeeman energies.
In �gure 2.15d we show �0O��0E for �SO = 3.5�. The diagonal avoided crossing shows the
hybridization between the |0,�� and |�,�� states, indicating ��SO > ��. The size of the avoided
crossing is smaller than in panel c. This is because � � � for the ABS, which means that
the singlet is dominated by the |2� state at this �ABS value. Then, �SO has to be signi�cantly
larger than � to satisfy ��SO > ��. In �gure 2.15e we show �0O��0E for �SO = 2.94�. Instead of
an avoided crossing, the zero-energy lines intersect to form a cross. This is a sign of the
even and odd couplings having the same magnitude: �� = ��SO. Here, the QD-ABS system
has a degenerate even-odd ground state with a gap of magnitude ��SO. We can see from
the zero-energy lines that local changes of �ABS or �QD do not split the state. Just as in the
case of QDs coupled through an ABS or a bulk superconductor, we can �nd Poor Man’s
Majorana zero modes in the QD-ABS system.

We note that for the proximitized QDs discussed in section 2.4.2, there was a limit
on the maximum QD-ABS coupling, given by �, �SO < �A. Stronger interaction or a lower
ABS excitation energy would make the ABS an explicit site of the chain, which is the
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Figure 2.15: A quantum dot-Andreev bound state minimal Kitaev chain. a. Sketch of a spin-conserving
tunneling process that couples the odd states of the QD-ABS system. b. Sketch of a spin-�ipping process that
couples the even states of the QD-ABS system. c-e. Di�erence between the lowest energy even-, and odd-parity
states, �0O � �0E, for varying �QD and �ABS for � = �QDC /10. We have used �SO/� values of {1/2,3.5,3.22}. The
superimposed text indicates the states that hybridize most strongly. The superimposed white lines indicate
�0O = �0E. f-h. �0O ��0E for varying �QD and �ABS for � = �QDC /5. We have used �SO/� values of {1/2,3.5,2.94}.

principle of the QD-ABS Kitaev chain. In �gure 2.15f-h., we show �0O��0E for � = �QDC /5,
which is twice as large as in panels c-e. We see that the zero-energy lines are more curved
than in panel c. We attribute this to the larger total interaction strength, � + �SO, which
increases the induced gap of the QD due to coupling to the ABS (see equation (2.50)). In
�gure 2.15h, the zero-energy lines intersect to form a cross again. However, due to the
curvature, a change of �ABS or �QD can now cause a splitting of the zero-energy state.
The system is now so strongly hybridized, that a local perturbation has become a global
perturbation. We can de�ne a maximum coupling strength based on the spacing of the �
and � excitations of the ABS. The energy di�erence of the two zero-crossings of the ABS is
given by: ��ABS =

�
(�ABSC +�Z)2�4�2. When �, �SO > ��ABS, the QD-ABS hybridization

becomes stronger than the level separation of the ABS. The system then becomes similar to
a strongly-coupled double QD, where the system e�ectively acts as one large QD. Increasing
� even more results in a larger induced gap on the QD, which can make an odd ground
state energetically unfavorable.

The main advantage of a QD-ABS Kitaev chain over a proximitized QDs Kitaev chain is
improved scalability. A three-site QD-ABS chain only needs 7 electrostatic gates, whereas a
three-site chain with QDs as sites needs 4 extra gates. However, electrostatically tuning the
QD-ABS chain to �� = ��SO is harder, as changes in gate voltages do not predictably a�ect
�/�SO. In a proximitized QD Kitaev chain, the elastic co-tunneling and crossed Andreev
re�ection rates can be tuned by changing the energy of the ABS that mediates them.

2.4.4 C����� S������ �M������ K����� C����
In the previous sections, we have seen how a robust zero-energy excitation can emerge in
various minimal Kitaev chain devices. This excitation signals the appearance of Poor Man’s
Majorana zero modes. Qubit states can be encoded in the parity of Majorana zero modes,
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making parity readout crucial for quantum information experiments involving Poor Man’s
Majorana states. Proposed readout techniques include circuit quantum electrodynamics [56,
57], quantum capacitance [58] and charge sensing [59]. To read out parity using a charge
measurement, it must �rst be converted into charge, and then sensed [60]. We can �nd
the average charge of a proximitized QD Kitaev chain by computing the ground state
occupation. We start by rewriting the Hamiltonian for two QDs coupled through an ABS
(see section 2.4.2) in the interaction picture, and separating the even-, and odd-parity
subspaces:

�even = �|�,�� |�����
0 ��
�� ��+ ����

|�,��
|��� �

(2.62)

�odd = �|�,�� |� ����
�� ��
�� ����

|�,��
|� ���

(2.63)

We can then diagonalize each Hamiltonian and �nd the lowest-energy eigenstate:

�even/odd�
0
even/odd = �0even/odd�

0
even/odd (2.64)

We show �0odd��0even for varying �1 and �2 in �gure 2.16a-c, for which we have used the
same parameters as for �gure 2.14e-f. As before, we see hybridization of di�erent QD states
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Figure 2.16: Ground state parity and occupation of a proximitized quantum dot Kitaev chain. a-c.
Di�erence between the lowest energy even-, and odd-parity states, �0O ��0E, for varying electrochemical potential
of the QDs, �1 and �2, for �SO, �SO values of {�/2,2�, �}. The superimposed text indicates the states that hybridize
most strongly. The superimposed white lines indicate �0O = �0E. d-f. Ground state charge expectation of the left
QD, ��1�, for varying �1 and �2 corresponding to panels a-c. The superimposed rhombus indicates the region
where 0.1 � ��1� � 0.9.

depending on the values of �SO,�SO,�0, �. We can de�ne operators for the local charge
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expectation of the left QD as:

�even1 =
�
2�L
1 �

(2.65)

�odd1 =
�

1
2�L�

(2.66)

Then we calculate the charge on the left QD depending on the ground state parity as:

��1� =

����
�����

�0,†
even�even1 �0

even �0E < �0O

�0,†
odd�

odd
1 �0

odd �0E > �0O

We show ��1� corresponding to panels a-c in �gure 2.16d-f. In panel d, we see that ��1�
changes abruptly with �1 when �2 is o�-resonance. This is due to the loading of electrons
onto QD 1 as the QD level dips below the Fermi level. ��1� changes gradually along the
anti-diagonal when QD2 is on resonance. This is due to the charge being localized on
both QDs, as seen for the interdot transitions of normal double QDs (see section 2.1.2).
In �gure 2.16e, we see that ��1� changes gradually along the diagonal. This can be explained
by the gradual evolution of the |�,�� state into the |�,�� state. A quasiparticle is removed
from each QD, while their combined parity stays even. Unlike panel d, the total charge on
the QDs is not conserved here. This is possible, as the QDs can exchange a Cooper pair
with the grounded superconductor. In �gure 2.16f we show ��1� for �E = �O. We see that
��1� changes abruptly due to �1 over most of the parameter space, except when QD2 is
on resonance. There, a rhombus-shaped region where ��1� = 1/2 is formed. For normal
QDs, the region where 0.1 � ��1� � 0.9 is 8� by 8�, which is indicated by the dashed gray
line. Assuming a typical plunger gate lever arm for the QDs of ��� = 1/3, and interaction
strength, 2� = 2� = 60�eV, this corresponds to a region in gate space of 0.72mV by 0.72mV,
which is within the resolution of conventional digital-analog converters that are commonly
used for voltage sources. This region corresponds to the cross formed by the Coulomb
resonances of both QDs as seen in �gure 2.16c. Here, there is a degenerate even-, and odd-
parity ground state that signals the appearance of Majorana zero modes. For both parities,
the charge expectation value is 1/2 � 2�L + 1/2, as seen from equations (2.65) and (2.66).
This means that parity can no longer be inferred from a charge measurement. To do so, we
need to implement a parity-to-charge conversion procedure before measuring.

P��������������� ����������
In a two-site Kitaev chain, the zero-energy state does not split upon changing the electro-
chemical potential of one QD. However, the wave function and charge expectation values
do change. We illustrate this by considering a minimal Kitaev chain with normal QDs (see
section 2.4.1) in the sweet spot (� = �). When the left QD is at the Fermi level (�1 = 0) and
the right QD is detuned by an amount �, we can write the Hamiltonian in the number basis
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of the left and right QD: {|0,0�, |1,0�, |0,1�, |1,1�} as:

� =

�
�
�
�
�

0 0 0 �
0 0 � 0
0 � � 0
� 0 0 �

�
�
�
�
�

There is a doubly degenerate ground state with eigenvalues of (� �
�
�2 +4�2)/2, and

corresponding eigenstates:

�odd = �
0 ���

�2+1
1�
|�|2+1

0
�

�even = �
���
�2+1

0 0 1�
|�|2+1�

Here, we de�ne � � (�+
�
�2 +4�2)/2�, which can be interpreted as the degree to which

the Majorana zero mode on the right QD is localized in di�erent parts of the system. We
can then write the charge expectation value of the left QD as:

��1� =
1

�2 +1

�
1 even GS
�2 odd GS

In the odd ground state, detuning the right QD increases ��1�. This is caused by theMajorana
wave function “leaking” to the left QD, which is required for the particle conservation
which is inherent to the odd ground state. In the even ground state, ��1� decreases upon
increasing �. The right QD becomes unoccupied as its energy is moved above the Fermi
level. Because the |0,0� and |1,1� states are paired in the even ground state, the left QD
will also become unoccupied, which violates particle conservation. In other words: �even
respects exchange symmetry when detuning one QD, while �odd does not. De�ning the
operator �� that exchanges the electrons in the QDS, we �nd: �odd ���

†
odd = 2�/(�2 + 1).

Fundamentally, this means that the electrons in the QDs are indistinguishable particles
only for � = � when both QDs are kept at the Fermi level. The electrons in the QDs remain
indistinguishable in the even ground state for � � 0. However, the even ground state does
break particle conservation upon detuning one QD: �even(�1 +�2)�

†
even = 2/(�2 +1). The

condition � = � is special as both the even- and odd-parity ground state respect particle-
conservation and exchange symmetry. To summarize: we can create a charge di�erence
between the even and odd ground state by detuning one QD. The ground state parity can
then be inferred by measuring charge on the other QD. We stress that the zero-energy does
not split in the process.

We now apply this parity-to-charge conversion protocol to the proximitized QD Kitaev
chain. In �gure 2.17a, we schematically show a device design in which parity can be inferred
from a local charge measurement using a single-lead QD as a charge sensor (see �gure 2.3
for details). In �gure 2.17b we show ��1�, for varying �1 and �2 for �E = �O. We see the
diamond-shaped region where ��1� = 1/2 that signals a degenerate even-, and odd-parity
ground state. In �gure 2.17c we show �� |�1 |�� and �� |�1 |��, for varying �2 where we �x
the left QD at the Fermi level �1 = �C/2 = 7.5�. Here, � and � are the degenerate even-, and
odd-parity ground states. At �2 = �C/2 (gray hexagon), the even and odd ground states
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Figure 2.17: Parity-to-charge conversion protocol in aminimal Kitaev chain using proximitized quantum
dots. a. A schematic diagram of the system. Two QDs are tunnel coupled to an ABS in a hybrid segment. The left
QD is capacitively coupled to a single-electron box (SEB) charge sensor. The right QD is detuned over time with
an amplitude �2(�). The SEB is tunnel-coupled to a normal lead which is connected to an RF-re�ectometry set-up
used to probe the resistance of the SEB. b. Ground state charge expectation of the left QD, ��1�, for varying �1
and �2 for �E = �O. The superimposed text indicates the ground states. The orange triangle and gray hexagon
indicate the readout and starting point of the protocol respectively. c. ��1� for the odd-, and even-parity ground
states for varying �2 at �1 = �C/2. d. Schematic diagram of a readout pulse, where �2 is changed over time. e.
��1� for the odd-, and even-parity ground states as �2 changed over time.

have the same ��1�. Heuristically, this can be seen as a manifestation of topology, where
a local measurement of the system cannot detect Majorana zero modes. When the right
QD is detuned, a di�erence in ��1� is created between the even- and odd-parity ground
states. For �2 > 7.5�, the right QD level is above the Fermi level, which causes it to become
unoccupied. In the odd ground state, the left QD becomes occupied, as the total charge is
conserved. In the even ground state, the left QD becomes unoccupied as well, as a Cooper
pair is formed from an electron in each QD. In �gure 2.17d, we show a pulse sequence of �2
that moves the right QD from the Fermi level (gray hexagon) to the readout point (orange
triangle) and back again. We show the corresponding values of ��1� over the course of the
pulse in �gure 2.17e. At the readout point, the di�erence in ��1� between the even-, and
odd-parity ground states can be observed. At this point, an RF re�ectometry measurement
of the SEB can infer the parity based on the measured charge. We note that away from the
starting point (gray hexagon), a small change in �1 will split the zero-energy state. As the
parity becomes easier to distinguish, charge noise will also a�ect the parity states more.
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Semiconductor nanowires coupled to superconductors can host Andreev bound states
with distinct spin and parity, including a spin-zero state with an even number of electrons
and a spin-1/2 state with odd-parity. Considering the di�erence in spin of the even and
odd states, spin-�ltered measurements can reveal the underlying ground state. To directly
measure the spin of single-electron excitations, we probe an Andreev bound state using
a spin-polarized quantum dot that acts as a bipolar spin �lter, in combination with a
non-polarized tunnel junction in a three-terminal circuit. We observe a spin-polarized
excitation spectrum of the Andreev bound state, which can be fully spin-polarized, despite
strong spin-orbit interaction in the InSb nanowires. Decoupling the hybrid from the normal
lead causes a current blockade, by trapping the Andreev bound state in an excited state.
Spin-polarized spectroscopy of hybrid nanowire devices, as demonstrated here, is proposed
as an experimental tool to support the observation of topological superconductivity.

3.1 I�����������
Low-dimensional III-V semiconductors proximitized via coupling to superconductors have
been researched extensively in recent decades [1, 2]. Interest in these hybrid systems is
a result of their gate-tunability, strong response to magnetic �elds, and large spin-orbit
interaction, all combined with superconductivity [3, 4]. This makes superconductor–
semiconductor hybrids a candidate for creating a topological superconducting phase hosting
Majorana zero modes. However, the intrinsic disorder in these systems can lead to localized
Andreev bound states (ABSs) that reproduce many of the proposed Majorana signatures [5].
Proximitized InSb nanowires, such as those used in this work, can be tuned between three
regimes of superconductor-semiconductor coupling using electrostatic gates [6, 7]. When
the electron wavefunction is pushed toward the superconductor by negative gate voltage,
the nanowire is fully proximitized and the density of states exhibits a hard superconducting
gap. When the electron wavefunction is drawn into the semiconductor away from the
superconductor by positive gate voltage, the proximity e�ect weakens and the density of
states becomes gapless, i.e., the gap is soft. In the intermediate regime between these two,
a con�ned hybrid nanowire hosts discrete subgap ABSs, whose electrochemical potential is
controlled by gate. It was recently shown that an ABS spanning the entire superconductor-
nanowire hybrid length gives rise to non-local transport phenomena [8–12], including
equal-spin crossed-Andreev re�ection [13], which enables the formation of a minimal
Kitaev chain hosting Majorana bound states [14].

A con�ned semiconductor can host discrete quantum levels. Coupling the semicon-
ductor to a superconductor allows the two to exchange a pair of electrons in a process
known as Andreev re�ection. This couples the even-occupation levels of the semiconductor,
whereby they become ABSs with an induced pairing gap � [15–20]. While this exchange
of electrons does not conserve charge, the parity of an ABS remains well-de�ned: even
or odd. In the case of even parity, the ABS is in a singlet state which, within the atomic
limit [15], is of the form:

|�� = � |0�� � |2� (3.1)

where |0� denotes the state in which the ABS is unoccupied and |2� the state in which
it is occupied by two electrons. � and � are the relevant BCS coe�cients [15, 21]. The
odd-parity manifold consists of a doublet of two states, |�� and |��, which are degenerate
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in the absence of an external magnetic �eld �. The energies of the even singlet and odd
doublet states, as well as � and �, depend on �H, the energy of the uncoupled quantum
level with respect to the superconductor Fermi energy. Both are shown schematically in
Fig. 3.1a,b for Zeeman energy �Z = 3�. A �nite Zeeman energy �Z splits the doublet states
in energy, while the singlet does not disperse (Fig. 3.1c). An ABS can be excited from its
ground state to an excited state of opposite parity by receiving or ejecting a single electron
from a nearby reservoir. This parity-changing process requires an energy � , the energy
di�erence between the ground and excited states, as indicated in Fig. 3.1a,c. These excitation
energies are detected as conductance resonances in conventional tunneling spectroscopy
measurements [8, 22–26]. The ABS resonances split with an applied magnetic �eld when
the ground state is even and disperse to higher energy with an odd ground state [23]. These
ABS excitations are believed to be spin-polarized as they arise from transitions between
spinless and spin-polarized many-body states. Spin polarization weakens in the presence
of spin-orbit coupling, where ABSs become admixtures of both spins and di�erent orbital
levels [27]. A pseudo-spin replaces spin as the quantum number de�ning the doublet states,
and complete spin-polarization along the applied �eld direction is no longer expected [28].
Measurement of the spin polarization of ABS excitations may thus reveal the presence of
spin-orbit coupling in hybrid systems. So far, spin-polarized spectroscopy of comparable
Yu-Shiba-Rusinov states [29–31] has indeed revealed signatures of �nite spin polarization
on ferromagnetic adatoms [32–35]. It was further argued that the observation of fully
spin-polarized zero-energy edge modes in ferromagnetic chains is a strong signature of a
topological phase [36, 37].

In this work, we measure the spin-polarized excitation spectrum of a hybrid InSb
nanowire hosting anABS. This is done using a three-terminal setup consisting of a grounded
superconductor–semiconductor hybrid tunnel-coupled on one side to a spin-polarized
quantum dot (QD) and on the other side to a conventional tunnel junction. At low magnetic
�elds, we show complete spin polarization of the ABS, which reverses with increasing �elds.
At even higher �elds, we observe a persistent, spin-polarized zero-bias peak. Furthermore,
we show that the complete spin polarization of the ABS is responsible for a transport
blockade that can be lifted by coupling the ABS to a non-polarized electron reservoir. We
refer readers to a simultaneous submission by Danilenko et al. [38] for another report
reaching complementary conclusions.
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Figure 3.1: Tunnel spectroscopy in a three-terminal InSb-Al nanowire. a. Energy diagram showing the
evolution of the many-body Andreev bound state (ABS) spectrum with electrochemical potential �H for �Z = 3�.
The arrows illustrate the parity-changing transition energies � from the ground state to the �rst excited state.
b. The dependence of �2 and �2 on �H under the same conditions as a. c. Energy diagram showing the ABS
spectrum with the applied magnetic �eld creating Zeeman splitting �Z, at �H = 0. All calculations in a–c are
made in the atomic limit approximation with zero charging energy [15]. d. False-colored SEM image showing the
device studied throughout the paper. Normal leads are yellow, bottom gates red, the InSb nanowire green and the
grounded Al shell is blue. The normal contacts can be biased independently with respect to the grounded Al, the
current is measured left and right simultaneously. Scale bar is 200 nm. e. Schematic diagram of electron transport
using a quantum dot (QD) as a spin �lter. Finger gates de�ne a QD and a tunnel junction in the nanowire (blue
lines at the bottom sketch their potential pro�les). Lead electrochemical potentials are indicated by the dark
yellow rectangles. The left lead is biased at a voltage �L with respect to the grounded superconductor (blue). The
QD states are at a gate-tunable energy �QD. ABS excitation energies are shown as brown, horizontal lines. The
blue rectangles indicate the Al quasiparticle continuum. The potential landscape created by the gates is shown
schematically by the blue lines at the bottom of the panel. f. Tunneling spectroscopy result �R of the investigated
ABS for varying gate voltage �H for �RO = 500mV.

3.2 R������ ��� ����������
3.2.1 D����� ����������� ��� ������
The fabrication of the reported device follows Ref. [13]. An InSb nanowire was placed on
an array of bottom gates which are separated from the nanowire by a thin bilayer of atomic-
layer-deposited (ALD) Al2O3 and HfO2 dielectric of � 10 nm each. A thin Al segment of
length roughly 200 nm was evaporated using a shadow-wall lithography technique [39, 40].
Normal Cr/Au contacts were fabricated on both sides of the device (more details on substrate
fabrication can be found in Ref. [41]). Fig. 3.1d shows the device along with its gates.
Throughout the experiment, we keep the middle superconductor grounded. Both left and
right leads are voltage-biased independently with biases �L and �R, respectively. Similarly,
the currents on the left and right leads (�L and �R, respectively) are measured simultaneously.
The full circuit is shown in Supplementary Fig. 1 and is discussed in the methods.
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Fig. 3.1e sketches the energy diagram of electron transport in the device. The left
three gates de�ne a QD in the InSb segment above them, whose electrochemical potential
�QD is controlled linearly by �LP. The three gates on the right side de�ne a conventional
tunnel junction. Using this circuit, the hybrid can be probed in two ways. When the QD
is o�-resonance and the left side does not participate in transport, conventional tunnel
spectroscopy can be performed from the right. The resulting �R = d�R/d�R is shown
in Fig. 3.1f, revealing a discrete sub-gap ABS, described by the intermediate regime of
superconductor-semiconductor coupling [7]. The energy of the ABS disperses with �H,
which linearly relates to �H. All further results are obtained at �H = 363mV as indicated by
the blue line unless otherwise speci�ed. This places the ABS in the vicinity of its energy
minimum. The second way of examining the ABS is performing QD spectroscopy from
the left, by applying a �xed �L and varying the probed energy by scanning �QD. Setting
���L > �QD = |� | > 0 injects electrons into the ABS, while ���L < �QD = �|� | < 0 extracts
electrons from the ABS. In the presence of a Zeeman �eld, the QD charge transitions
become spin-polarized when 2�Z > �|�L|, allowing only spins of one type to tunnel across
it [42]. As a result, the QD is operated as a bipolar spin �lter with a �nite energy resolution
(see Methods and Supplementary Fig. 2). We use �,� to represent the two spin polarities
and label the QD chemical potentials �QD�,� to distinguish between them where necessary.

We note that our spin probe consists of only a single quantum state which becomes
fully spin-polarized under the presence of a large Zeeman �eld. This is di�erent from
conventional spin-polarized tunneling in scanning tunneling microscopy experiments,
where an exemplary Fe tip achieves 40-45% polarization [43]. In a more recent study using
a YSR-state on a STM tip as a spin probe, the �ltering mechanism using a single quantum
state is comparable to that reported in this paper [35].

3.2.2 Z������������ �������–������� �����������
Fig. 3.2a shows tunneling spectroscopy of the particular ABS shown in Fig. 3.1f for varying
�. The ABS conductance peak at |�R| � 200�V Zeeman-splits into two resonances, one
moving to higher and the other to lower energies. At � � 300mT, the low-energy states
cross at zero energy. This crossing has been identi�ed earlier [23] as a singlet–doublet
transition, where the ground state of the hybrid becomes the odd-parity |�� state. Next, we
perform QD spectroscopy by measuring �L as a function of �LP with �xed �L = ±400�V. For
each spin, the spectrum is obtained by converting �LP to �QD and then combining the two
bias polarities (see Methods and Supplementary Fig. 2). Fig. 3.2b and c show the resulting
QD spectroscopy for varying �. The QD functions as a �-�lter (panel b) or �-�lter (panel c)
for � > 100mT (blue dashed lines), where the QD Zeeman energy splitting exceeds |��L|
and only one spin is available for transport. The white triangle in Fig. 3.2b indicates missing
data for �L > 0. Finite current within this triangle arises due to peak-broadening in �L < 0
data (see Supplementary Fig. 4 for details).

The peaks observed in QD spectroscopy are also visible in tunneling spectroscopy
(see Supplementary Fig. 5 for comparison), although only one branch of the particle-hole-
symmetric peaks in �R remains for each QD spin. The down-�ltered ABS feature (panel
b) disperses with a negative slope. We understand this by examining the energy diagram
in Fig. 3.1c. For |�| < 300mT, the non-dispersing singlet is the ground state and the �rst
excited state is |��. Probing the ABS at positive energies injects spin-down electrons, which
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Figure 3.2: Spin-polarized quantum dot spectroscopy of an Andreev bound state across the Zeeman-
driven singlet–doublet transition. a. Tunneling spectroscopy of the hybrid for � applied along the nanowire
axis for �RO = 500mV and �H = 363mV. b., c. �L vs �QD and � using the quantum dot (QD) as a �-�lter (panel b)
and �- �lter (panel c). The blue dashed line at � = 100mT indicates the �eld above which the QD becomes a spin
�lter. d., e. �R vs �QD and � using the QD as a �-�lter (panel d) and �- �lter (panel e). f. Schematic energy diagram
of spin-polarized excitations for the singlet ground state Andreev bound state (ABS). A down spin can tunnel into
the ABS (upper) or an up spin can tunnel out (lower). g. Schematic energy diagram of spin-polarized excitations
for the doublet ground state ABS. A down spin can tunnel out of the ABS (upper) or an up spin can tunnel into it
(lower). h. The spin-polarization � = (� � � � �)/(� � + � �) calculated from panels b and c at ABS energies found
from panel a [44].

excites the singlet to |�� as illustrated in the upper part of Fig. 3.2f. Hence, these peaks
in electron transport move down with increasing �. At � � 300mT, the ABS undergoes
a quantum phase transition, after which the ground state is |��. To transition from |��
to |�� without participation of spin-up electrons, a down-polarized electron must be �rst
removed from the ABS, as shown in the upper part of Fig. 3.2g. Thus, the peak in current
is found only for �QD < 0. For � < 0.6T, the �-�lter data in panel c mirrors that of panel b.
This symmetry is understood by comparing the lower parts of Fig. 3.2f, g to the respective
upper ones. When the ABS allows injecting spin-down electrons, it also allows removing
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spin-up ones, due to |�� being a superposition of empty and doubly-occupied states.
Thus far, we have focused on the excitation of the ABS. To complete a transport cycle, the

ABS must also be able to relax back to the ground state. This can be done by either emitting
or accepting electrons from the right lead through the tunnel junction. As a consequence,
�nite QD-current �L is generally accompanied by �nite �R at the corresponding energy
and �eld, as shown in �g 3.2d, e. We observe the same sub-gap features as in panels b,c
con�rming that these are extended ABSs that couple to both normal leads. Upon crossing
the singlet–doublet transition, the ABS relaxation requires an opposite direction of electron
�ow, giving rise to the sign switching of �R at � = 0.3T [8, 10–13, 45]. The precise sign of
�R depends on �H as discussed in more detail in below.

We further quantify the spin-polarization of the ABS in Fig. 3.2h. We calculate the spin
polarization � = (� �� � �)/(� �+ � �), where � �, � � indicates the current measured using the
down- or up-polarized con�guration, using the data from Fig. 3.2b, c (see Supplementary
Fig. 5 for details and Methods for the de�nition of � �, � �). Before the singlet–doublet
transition, we see a fully spin-polarized ABS with � = ±1. The spin polarization reverses
immediately after the transition. At the singlet–doublet transition, we observe a zero-bias
peak with |� | < 1 as both spins can participate in transport. The non-vanishing calculated
� may be due to microscopic details in QD transport (see Methods).

We emphasize that we report on complete spin polarization, i.e., the rate of exciting the
ABS to the |�� by injecting an up-polarized electron is below noise level, which is � 1pA.
This indicates that no noticeable spin rotation occurs during tunneling between the QD and
ABS and their spin must be co-linear. Spin rotation is predicted to arise in the presence of
strong spin-orbit coupling, which was observed in a similar setup in our previous work [13]
(See Supplementary Fig. 7 for spin-polarized measurements conducted with that device,
showing incomplete spin-polarization). We attribute the absence of spin rotation for this
particular ABS to the large level spacing in both the QD (Supplementary Fig. 3) and the
ABS (Fig. 3.1d) preventing e�cient spin-mixing between di�erent orbital states [27]. See
Supplementary Fig. 9 for a large gate range measurement of QD levels splitting in �eld.

The presence of spin-�ip tunneling, induced by the spin-orbit interaction, could also
result in the lifting of the observed blockade [46]. Previously, such spin-�ip tunneling in
InAs-based double quantum dots was modulated by controlling the barrier separating the
QDs [47]. In Supplementary Fig. 10 we present spin-polarized spectroscopy taken with a
more positive tunnel gate value �LT, showing a small lifting of the spin blockade. Since we
do not expect the change in the tunnel gate voltage to signi�cantly a�ect the QD or the
ABS levels, we interpret the partial lifting of the spin blockade as resulting from spin-�ip
tunneling.

At higher �elds (� > 0.6T), we observe another low-energy ABS in tunneling spec-
troscopy. Above � � 0.75T, this ABS sticks to zero energy and is completely down-polarized
(Fig. 3.2h). While a persistent, spin-polarized zero-bias peak is a predicted signature of
Majorana bound states [48–50], the short length of our hybrid section excludes this inter-
pretation [51]. The interplay of spin-orbit coupling and con�nement is a knownmechanism
for the formation of persistent zero-bias conductance peaks in QDs coupled to supercon-
ductors, given precise tuning of the QD chemical potential [28]. Such states develop a spin
texture that has a global vanishing magnetic moment but is locally spin-polarized [52].
Our observation of a spin-polarized, persistent zero-bias peak is consistent with this inter-
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pretation. We emphasize that this state is �ne-tuned using �H (see Supplementary Fig. 8
where for a di�erent value of �H the zero-bias peak does not persist over a large range of
�) and further study is required to fully characterize such states.

3.2.3 G���������� �������–������� ����������
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Figure 3.3: Spin-polarized quantum dot spectroscopy of an Andreev Bound State during the gate-driven
singlet–doublet transition. a. Tunneling spectroscopy of the hybrid for varying �H. The external magnetic
�eld is �xed at � = 350mT and �RO = 500mV. b., c. �L vs �QD and �H using the quantum dot (QD) as a �-�lter
(panel b) and �-�lter (panel c). d., e. �R vs �QD and �H using the QD as a �-�lter (panel d) and �-�lter (panel e).
The non-local current changes sign three times, twice at the singlet–doublet transitions (black dotted lines) and
once at the Andreev bound state energy minimum (black dashed line). f. Linecuts of panels b and c at values
of �H indicated by the lines in g. Each pair of traces is o�set by 100 pA for readability. g. The spin-polarization
� = (� � � � �)/(� � + � �) found from panels b and c.

The singlet–doublet phase transition reported above can also occur upon gate-tuning
the electrochemical potential of the ABS, as illustrated in Fig. 3.1a. Fig. 3.3a shows tunneling
spectroscopy for varying �H at � = 350mT. The ABS crosses zero at �H = 0.357V and
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�H = 0.366V. Between these two crossings, the ground state of the ABS is |��. At higher
and lower values of �H, the ground state is the singlet |��. This is observed in the spin-
polarized spectroscopy shown in Fig. 3.3b,c. |�� can only be excited to |�� when spin-down
electrons tunnel into the hybrid or when spin-up electrons tunnel out. The doublet ground
state shows the opposite: The �-�lter peak in current is found only for �QD < 0 and the
�-�lter peak only for �QD > 0.

The non-local relaxation current �R (panels d and e) shows three alternations between
positive and negative currents, for both spin polarizations. At lower values of �H, |�|2 � |�|2

and |�� � |0�. Therefore, the dominant relaxation mechanism from the excited |�� state
to the ground state |�� is an electron tunneling out of the ABS to the right lead, giving
rise to positive �R. At high �H, |�� � |2� and relaxation entails electrons tunneling into
the ABS and thus �R < 0. At the two singlet–doublet transitions (dotted lines in panel d),
the current sign reverses for the same reason discussed in Fig. 3.2d, e. At �H = 361mV
(dashed line in panel d), �H crosses zero and the e�ective charge of the ABS, |�|2 � |�|2,
switches sign. The non-local current also reverses direction, an e�ect investigated in detail
in literature [8, 10–13, 45].

Fig. 3.3g shows the corresponding spin polarization that was computed likewise to
Fig. 3.2h. Transport at positive �QD is seen to be fully down-polarized in the singlet ground
state. Likewise, states are up-polarized for negative �QD. Polarization appears as incomplete
in the |�� ground state. This is a measurement artifact due to using QDs as spin �lters.
The up-, and down-�lter transport peaks have �nite broadening due to temperature and
coupling to the leads. For ABSs close to zero, this can result in peaks at negative and
positive �QD overlapping, as seen in the dark blue linecut of Fig. 3.3f, giving imperfect
polarization.

A similar problem occurs for states close to the gap edge. We see that the higher energy
ABS always appears down-polarized at positive �QD and up-polarized at negative �QD.
Close to the gap edge, broadening results in tunneling into the Al density of states, in
addition to the ABS. The inability to distinguish between tunneling into the metallic and
semiconductor density of states makes the interpretation of spin polarization at higher
energies unreliable.

3.2.4 T�� A������ ����� ����� ���������� ���������
To emphasize the role of the right lead in relaxing the ABS, we show the e�ect of decoupling
it from the hybrid. Fig. 3.4a shows �R for varying �R and �RO at � = 200mT, for which the
ground state is singlet. Lowering the gate voltage �RO gradually decouples the hybrid from
the right normal lead, evident in the decay of �R. For �RO < 0.28V, the right junction is
fully pinched o�. Fig. 3.4b shows the corresponding QD spectroscopy using the �-�lter.
The transport at energies exceeding the superconducting gap is virtually una�ected by
the pinching-o� of the normal lead. Strikingly, transport between the QD and the ABS is
completely blocked for �RO < 0.28V. In addition, the non-local transport is suppressed at all
energies once the right lead is pinched o� (Fig. 3.4c). To understand this blockade, we �rst
consider the full transport cycle. Fig. 3.4d, e illustrate the ABS excitation and relaxation
processes. The ABS is excited from the singlet ground state to the |�� excited state by
ejecting an electron into the �-�lter QD (panel d). The spin-down electron in |��, however,
cannot tunnel out into the spin-up left QD again. For the ABS to transition back into the
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Figure 3.4: Blocking the Andreev bound state excited state relaxation. a. Tunneling-spectroscopy �R as a
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o� for �RO � 0.28V. b. Quantum dot (QD) spectroscopy �L for the �-�lter for varying �RO. Transport through
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from |�� to |�� via ejecting an electron into the QD. e. Schematic illustration of the ABS relaxation process.
Transitioning from |�� back to |�� is only possible via electron exchange with the right lead and becomes blocked
when parts to the right of the vertical black dashed line are pinched o�.

ground state and restart the transport cycle, the right side has to participate in its relaxation.
This is done by either receiving an up electron from the non-spin-polarized right lead or,
interestingly, by emitting a down electron to the right lead (panel e). As discussed above,
the singlet state is a superposition |0� and |2�, coupled via Andreev re�ection. Decoupling
the non-polarized right lead from the hybrid removes the only source of relaxation of the
ABS, resulting in the transport blockade seen in panel b. We emphasize that this di�ers
from the spin-�ltering e�ects discussed in previous sections, where incompatible spin states
between the QD and the ABS prevent the excitation of the ABS. It is instead similar to the
so-called Andreev blockade [53] where the excitation is allowed, but the relaxation process
is suppressed. Our current noise level of �1 pA gives a lower bound for the spin-relaxation
time of � 100 ns. ABS parity lifetimes of 10 �s or slower have been observed [54], which
is signi�cantly slower than we can resolve. We interpret this to mean that there are no
mechanisms in our system that can relax the ABS in less than 100 ns.
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3.3 C���������
In conclusion, we use a spin-polarized QD to characterize the spin-polarization of an
ABS. We show complete spin polarization of the ABS excitation process, signaling the
absence of signi�cant spin-orbit coupling in the measured regime. We further observe the
reversal of the ABS spin and charge when driving it through the singlet–doublet transition
using applied magnetic �eld or gate voltage. Furthermore, we note the appearance of a
spin-polarized zero-bias peak at higher magnetic �elds. This work establishes the use of
spin-polarized QDs as a spectroscopic tool allowing the study of the spin degree of freedom.
This can be utilized in the future to study topological superconductors, where a reversal
of the bulk spin-polarization is expected when the system is tuned to the topological
regime [55]. The predicted spin polarization of the arising Majorana zero modes can also
be observed in this way [56].

3.4 M������
3.4.1 D����� ������
Supplementary Fig. 1 shows a sketch of the device with the electrical circuit used for the
experiment. The Al was evaporated at two angles relative to the nanowire: 5 nm at 45� and
4.5 nm at 15�, forming a superconductor-semiconductor hybrid underneath. The Al shell is
kept grounded during the experiment. Voltage bias is applied on either the left lead (�L) or
the right (�R) while keeping the other lead grounded. The currents on both leads (�L and �R
on the left and right leads, respectively) are measured simultaneously. A small RMS AC
amplitude �AC

R = 4�eV is applied on top of �R for the tunneling spectroscopymeasurements.
All measurements are performed in a dilution refrigerator with a base temperature of 30mK.
The magnetic �eld is applied along the wire length. The quantum dot on the left was
formed by creating two tunnel junctions using �LT and �LO. Its electrochemical potential
is controlled by �LP. The tunnel junction on the right is formed by creating a single tunnel
junction with �RT. The electrochemical potential of the hybrid section is set using �H.
Pinching o� the tunnel junction as explained in Figure 4 was done by changing the value
of �RO.

3.4.2������ D�� S��� F�����
The QD is characterized by measuring the current on the left lead (�L) as a function of �L
and �LP. Supplementary Fig. 2a shows a single Coulomb diamond with an orbital level
spacing of � = 3.5meV, much larger than the superconducting gap and Zeeman energy
used throughout the experiment. The large level spacing allows us to treat the QD as a
single orbital near the Fermi energy, which is occupied by zero, one, or two electrons,
as indicated in the �gure (see measurement with an extended range of �L and �LP in
Supplementary Fig. 3). From this measurement we �nd a lever-arm for �LP of � = 0.4. The
current �L is completely suppressed for |��L| < 170�eV, indicating a hard gap and no local
Andreev re�ection for these gate settings [57]. The current on the right lead, �R, which
was measured simultaneously, shows similar features (Supplementary Fig. 2b). To analyze
the data, we �rst convert �LP to the electrochemical potential of the QD (�QD) at a �xed
negative or positive �L = ±400�V (orange and purple lines in panel a, respectively). For a
given negative bias ���L > 0 (see schematic drawing in Supplementary Fig. 2c), the Fermi
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energy of the lead lies above that of the hybrid segment. Hence, electrons are injected into
the hybrid when �QD is within the transport window: ���L > �QD > 0. We then convert
the value of �LP to �QD through �QD = �(��(�LP�� 0

LP)+ ��L), where � 0
LP is the gate voltage

at which the dot level is aligned with the applied bias. Note that �QD = ���L when the QD
is aligned with the bias edge �LP = � 0

LP. See Supplementary Fig. 4 for a comparison of raw
and processed data. In Supplementary Fig. 2d we plot |�L| vs �QD. The current shows two
peaks at � 270�eV and � 170�eV, which we interpret as the bulk superconducting gap
and the ABS energy, respectively. Similarly, for positive bias, the Fermi energy of the lead
lies below that of the hybrid segment and electrons tunnel out of the hybrid segment when
�QD is within the transport window (see schematic drawing in Supplementary Fig. 2e). In
Supplementary Fig. 2f, we plot |�L| vs �QD and see features that are symmetric to those
shown in panel d. We use the positive-bias data for �QD < 0 and negative-bias data for
�QD > 0. Juxtaposing the two halves yields the full spectrum in Supplementary Fig. 2g. The
spectrum obtained in this way is in qualitative agreement with the superimposed tunneling
spectroscopy results at the same �H. Therefore, measuring the current through the QD
enables us to obtain the ABS spectrum [58, 59]. Next, we apply an external magnetic �eld
to polarize the QD excitations. The even-to-odd QD charge transition (�LP � 369mV) now
involves only the addition and removal of electrons with spin �, while the odd-to-even
transition (�LP � 379mV) involves the addition and removal of electrons with spin � [27, 60].
As a result, the QD becomes a spin �lter, allowing spin-polarized spectroscopy [42, 61].

3.4.3 A������� �� �����������������
To compute � for Fig. 3.2h and 3.3h, we �rst �nd peaks in tunneling spectroscopy using a
standard peak-�nding procedure provided by the SciPy python package [62]. The peak
energies found from Fig. 3.2a are indicated by white dots in Supplementary Fig. 5a. Supple-
mentary Fig. 5b,c shows these peak energies, overlaid on the � and �-�lter data of Fig. 3.2.
For each of these energies, we �nally calculate � = (� �� � �)/(� �+ � �). The data processing
is done similarly for Fig. 3.3h.

This procedure correctly produces � = ±1 when spin-polarization is complete, i.e.,
� � = 0 while � � � 0 at a given �QD or vice versa. When polarization is incomplete, however,
our calculated � may di�er quantitatively from the true spin composition of the ABS. For
example, measuring an entirely non-polarized � = 0 requires � � = � �. In practice, since the
two spin �lters are di�erent QD charge degeneracies and di�er in gate voltage, � � is often
di�erent from � � even at zero �eld due to electrostatic e�ects on the tunnel rate, leading to
�nite calculated |� |. This is indeed the case in Fig. 3.2b, c. From Fig. 3.2h, we see |� | < 1
at � � 300mT. Because the ABS has � = ±1 before and directly after the singlet–doublet
transition, we conclude that its spin polarization, if any, must be weak.

3.5 D��� ������������
The data generated in this study, as well as the code used to analyse and plot it have been
deposited in a Zenodo repository that can be accessed freely at: https://doi.org/
10.5281/zenodo.7220682.

https://doi.org/10.5281/zenodo.7220682
https://doi.org/10.5281/zenodo.7220682
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3.6 E������� D���
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Figure 1: Device schematic and measurement setup. A quantum dot (QD) is de�ned by the three leftmost
�nger gates, �LO, �LP and �LT, below the nanowire. The middle gate �H controls the electrochemical potential
of the hybrid InSb-Al nanowire. A tunnel junction is de�ned using �RT. The voltages applied on each group of
�nger gates are schematically represented by the height of the voltage sources in the circuit diagram.
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structure of the quantum dot (QD). c., e. Energy diagrams schematically depicting QD spectroscopy. Negative
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Figure 3: Local Coulomb diamonds A measurement of �� for the quantum dot (QD) on the left side of the hybrid
for � = 0. The bias �L and dot gate �LP are varied. There is a conversion factor between the QD electrochemical
potential and the gate voltage. This is given by the capacitance between gate and dot relative to the total
capacitance: � = ��/���� . Because Coulomb blockade blocks transport in a speci�c bias-gate window, it is possible
to �nd this conversion factor. The black, dashed lines are a constant interaction model overlay for the � +1
Coulomb diamond, whose transitions are used as a spin �lter throughout the paper [63]. From the constant
interaction model we obtain � = 0.4± .01 and a charging energy �� = 3.4meV. The cyan lines indicate the next
orbital level, for which we �nd an orbital level spacing of � = 3.5meV. The green, dashed lines are a constant
interaction model overlay for the � th Coulomb diamond. From this model, we estimate an addition energy
�add = �� +� � 6.9meV. This is in agreement with the previously mentioned level spacing and charging energy.
We do note that the slopes of the green and black dashed lines do not completely agree. We attribute this to a
gate jump that occurred at the voltage indicated by the arrow.
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Figure 4: Quantum dot (QD) spectroscopy data processing. a. The raw data corresponding to main text Fig. 2.
All electron data was measured at �400 �eV, the hole data at 400 �eV. Magnetic �eld changes both the Andreev
bound state (ABS) and QD level energies, hence, a slope between �� and � is observed. �L drops rapidly after the
gate aligns the QD level with the bias window edge. This gate value � 0

LP is used as a reference to convert the gate
voltage to the electrochemical potential of the QD using �QD = �(��(�LP �� 0

LP)+ ��L). The values found for � 0
LP

are indicated by the black line in the plots. Note that the QD resonance moves out of the measurement range
for high �elds for spin-down holes. This results in missing data after converting � 0

LP to �QD. b. The processed
data after the gate voltage is converted to the QD electrochemical potential. The �eld-dependence of the QD
level energy is captured by � 0

LP, which allows us to arrive at a spectrum of the ABS. The black lines indicate
�QD = ���L. Everything above the gray line in the spin-down hole data is out of range for �LP. For the most part,
this is no problem, considering there is no hole transport for �QD > 0. However, the gray line crosses zero for
high �elds, which leads to the missing data as indicated by the black triangle. This corresponds to the white
triangle in main text Fig. 2.
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Figure 5: Correlated quantum dot and tunneling spectroscopy (main text Fig. 2). a. Tunneling spectroscopy
of the hybrid for varying external �eld strength. Positions of peaks in tunneling spectroscopy are found using a
standard peak-�nding procedure provided by the SciPy python package [62]. b., c. �L vs �QD and � using the
�-�lter (panel b) and �-�lter (panel c). Both are overlaid with the peak energies found from tunneling spectroscopy
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Figure 6: Spin-polarization of the Andreev bound state relaxation. a. Schematic of the transport cycle when
the quantum dot (QD) lead is grounded and the tunnel junction bias is �xed at ��R = �400�V. The non-polarized
tunnel junction can both excite and relax the Andreev bound state (ABS). When the QD is on-resonance with the
ABS, it provides a second path for the excited ABS to relax. b. Schematic energy diagram showing the evolution
of the many-body spectrum with the applied magnetic �eld. The arrows illustrate the transitions from the �rst
excited state to the ground state. c., d �L for varying � and �QD using the QD as a �-�lter (panel c) and �-�lter
(panel d). Similar to the results shown in Fig. 2, the spin-polarized measurement of the ABS shows only a single
sub-gap peak traveling to lower energy and crossing zero at � � 300mT. At low �elds, when the ground state of
the ABS is singlet, and the excited state is |��, the ABS can relax by emitting a down-polarized electron or an
up-polarized hole. At higher applied �elds, when the ground state becomes doublet, the selection rules reverse.
Contrary to our discussion so far, the absence of current when the ABS and QD spin are opposite is not associated
with a transport blockade, as the tunneling between the normal lead and the ABS proceeds regardless of the
presence of the QD.
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Figure 7: Spin-polarized spectroscopy of a second device. Measurements conducted on the device reported
on in Ref. [13], which has an Al length of 180 nm, with an additional 2Å of Pt grown at 30�. Here, the quantum
dot (QD) formed on the right side of the Andreev bound state (ABS) served as the spin-�lter for the spin-polarized
spectroscopy. Compared to Ref. [13], here the barrier between the spin-polarized QD and the ABS was tuned to be
much higher, reducing the transport between the QD and the ABS, and reducing the amount of spin-�ip tunneling.
a. The current through the QD �R as a function of �RD, for �xed �R = 1mV. The two resonances observed around
�RD = 790mV and �RD = 798mV serve as our � and � spin �lters respectively. Note the additional resonance at
�RD = 808mV, that we attribute to the next orbital level. Spin-orbit coupling on the QD can give rise to spin
mixing decreasing the e�ciency of the � spin �lter. b. The current through the QD �R as a function of �RD and �,
for �xed �R = 0.3mV. The two resonances evolve with the expected trajectory showing their spin polarization.
We determine �C and �eff using a lever arm of 0.34 for the �-�lter and 0.37 for the �-�lter. These are also used for
panels c-f. c., d. �R vs �QD and � using the QD as a �-�lter (panel a) and �-�lter (panel b). The QD acts as a spin
�lter for � > 75mT, indicated by the blue line. Below the blue line, both QD spins are within the bias window and
participate in transport. We note that the � �lter shows the expected behavior as discussed in the main text, with
some leakage current resulting from spin-�ip tunneling or spin-orbit e�ect in the ABS itself. The � �lter shows
little signs of polarization. We attribute this to strong spin mixing within the QD making it a poor spin-�lter. e., f.
�L vs �QD and � using the QD as a �-�lter (panel c) and �-�lter (panel d).
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Figure 8: Full conductance matrix of the Andreev bound state studied in the main text for di�erent
gate settings. See ref [10] for details on the measurement technique. The gates forming a quantum dot to the
left of the hybrid are recon�gured as a tunnel junction to measure non-local conductance. a. Local tunneling
spectroscopy on the left of the hybrid �LL = ��L/��L for varying �. b. Non-local conductance �LR = ��L/��R for
varying �. c. Non-local conductance �RL = ��R/��L for varying �. d. Local tunneling spectroscopy on the right
of the hybrid �RR = ��R/��R for varying �.
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Figure 10: Spin-polarized quantum dot spectroscopy of an Andreev bound state for di�erent gate
settings. All main text �gures were obtained for �LT = 135mV, while here we set �LT = 168mV.
a., b. �L vs �QD and �H using the quantum dot (QD) as a �-�lter (panel a) and �- �lter
(panel b) for � = 400mT. Peaks in �L can be seen for both negative and positive �QD,

indicating incomplete spin-polarization. We further see signatures of inelastic tunneling
compatible with the higher tunneling rate between the QD and the Andreev bound

state [64]. c. �L vs �QD and � at using the QD as a �-�lter for �H = 356mV. We observe
incomplete spin-polarization as in panels a and b.
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Yet, as has been said of him before, no theory of life seemed to him to be of any importance
compared with life itself. He felt keenly conscious of how barren all intellectual speculation is
when separated from action and experiment.

- Oscar Wilde
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The proximity e�ect of superconductivity on con�ned states in semiconductors gives
rise to various bound states such as Andreev bound states (ABSs), Andreev molecules and
Majorana zero modes. While such bound states do not conserve charge, their Fermion
parity is a good quantum number. One way to measure parity is to convert it to charge �rst,
which is then sensed. In this work, we sense the charge of ABSs and Andreev molecules in
an InSb-Al hybrid nanowire using an integrated quantum dot operated as a charge sensor.
We show how charge sensing measurements can resolve the even and odd states of an
Andreev molecule, without a�ecting the parity. Such an approach can be further utilized
for parity measurements of Majorana zero modes in Kitaev chains based on quantum dots.

4.1 I�����������
Majorana zero modes (MZMs) are predicted to appear at the ends of a 1D chain of spin-
polarized, electronic sites with superconducting pairing [1–3], which can be implemented
using quantum dots (QDs) coupled to superconductors [4, 5]. Even a minimal, two-site
Kitaev chain hosts MZMs in a parameter sweet spot [6–8], and was recently realized
in a semiconductor-superconductor hybrid nanowire [9]. MZMs in Kitaev chains are
predicted to be robust to local perturbations and obey non-Abelian statistics, allowing for
the demonstration of Ising anyon fusion rules and braiding [10, 11]. Qubit states can be
encoded in the parity of pairs of MZMs, making parity readout crucial for any quantum
information experiment involving MZMs. Proposed readout techniques include circuit
quantum electrodynamics [12, 13], quantum capacitance [14] and charge sensing [15]. To
read out parity using a charge measurement, it must �rst be converted into charge, and then
sensed [16]. Although charge sensing has been applied to semiconductor-superconductor
hybrids before, it has never been used to detect fractional charge di�erences [17, 18]. This
can potentially be necessary for parity readout in Kitaev chains, given that the charge
di�erence between the even and odd ground states can range from 0 to 1�. In this work, we
present charge sensing measurements of a hybrid semiconductor-superconductor system.
First, we measure the charge of an Andreev bound state (ABS) in its even and odd Fermion
parity ground states. Then, we couple a QD to an ABS to form an Andreev molecule, and
infer its ground state parity from tunnel spectroscopy and charge sensing measurements.
As opposed to transport, charge sensing does not alter the parity itself, highlighting its
potential as a tool for MZM parity readout in Kitaev chains.

4.2 R������
4.2.1 D����� ����������������
�gure 1a shows an SEM image of the device measured in this work. An InSb nanowire is
placed on a thin layer of gate dielectric, below which are �nger gates. See Refs. [19, 20]
for details on device fabrication. The middle section of the wire, the hybrid segment, is
contacted by a grounded Al thin �lm and hosts ABSs. We de�ne a QD to the left of the
hybrid segment by setting �LO and �TL to create tunnel junctions in the nanowire. We
control the QD’s electrochemical potential using �CS and operate it as a single lead QD
charge sensor (CS) [21]. The tunnel gate between the CS and hybrid segment is kept at
a negative voltage �TL = �100mV to fully quench transport and ensure their coupling is
only capacitive. The nanowire section to the right of the hybrid segment can be either a
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Figure 1: Device set-up and characterization. a. False color SEM micrograph of our device. An InSb nanowire
(green) is placed on an array of bottom gates (brown) and contacted by normal Cr/Au leads (yellow). We de�ne
a quantum dot (QD) to the left of the hybrid segment, and operate it as a charge sensor (CS). Another QD can
be formed using the gates to the right of the hybrid segment. The names of the gate voltages are indicated in
the respective gates. The scale bar is 200 nm. b. DC equivalent circuit of our device. Both normal leads of the
hybrid segment are connected to o�-chip LC resonators, which are multiplexed. Each LC resonator has a bias
tee that can be used to bias the leads with respect to the grounded Al. c. Amplitude of the re�ected RF signal
of the right lead, � R

RF, for varying voltage on the hybrid plunger gate, �H and the right bias, �R, for an external
magnetic �eld � = 100mT, �TR = 0, �QD = 500mV and �RO = 500mV. Superimposed line: Shift of the gate
voltage corresponding to the Coulomb resonance of the CS, ��CS, for each �H setting, extracted from e. The
Zeeman splitting of the �rst ABS is indicated by �EZ. 0, 2� and 4� indicate additional charge accumulated on the
hybrid. d. Amplitude of the re�ected RF signal of the left lead, � L

RF, for varying voltage on the CS plunger gate,
�CS, at �xed values of �H indicated by the colored bars in panels c and e. e. � L

RF for varying �CS and �H.

tunnel barrier or a QD, depending on the tunnel gate voltages �RO and �TR.

The nanowire is contacted by two normal Cr/Au leads that can be used for DC transport
and radio frequency (RF) re�ectometry measurements. �gure 1b shows the DC equivalent
circuit of the device and its connections. Both normal leads are connected to LC resonators
with bias tees, allowing us to independently voltage bias them with respect to the grounded
Al. The LC resonators are o�-chip and multiplexed, see Ref. [22] for details. Further details
on the re�ectometry circuit can be found in Ref. [23]; for resonator characterization, see
section 4.4.1. Experiments are performed in a dilution refrigerator at a base temperature of
30mK.
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4.2.2 ABS ���� ������ ����� ������
The hybrid segment hosts ABSs that can have an odd, doublet ground state ({|�� , |��}) or an
even ground state. We consider an ABS in the atomic limit, where the even ground state is
a singlet: |�� = � |0�� � |2�, with 0 and 2 denoting the occupation of a single orbital [24, 25].
The singlet state changes between being mostly unoccupied (0-like) or doubly occupied
(2-like) when the electrochemical potential of the ABS changes. Note that this is a gradual
change of ground state, as opposed to changing a QD ground state by occupying additional
electrons. When the semiconductor-superconductor coupling is stronger than the charging
energy, the ABS has an even ground state with a doublet excited state [26].

To characterize the hybrid segment, we set �RO = 500mV and �QD = 500mV to accu-
mulate electrons, and create a tunnel barrier by setting �TR = 0mV to perform tunneling
spectroscopy from the right lead. �gure 1c shows amplitude of the re�ected RF signal of
the right lead, � R

RF, for varying hybrid plunger gate voltage, �H, and right voltage bias, �R.
A dip in � R

RF can be related to a peak in di�erential conductance [23]. The hybrid segment
has a hard-gapped density of states with two well-separated ABSs of which the energy
can be controlled with �H. Each ABS excitation is split into two resonances, because we
apply 100mT along the nanowire axis. From the Zeeman splitting ��Z = 80�eV, we obtain
an e�ective �-factor of � = 13.8 for the ABS. The ABS excitations do not cross zero bias,
signalling an even ground state for the entire �H range. We note that there is a switch in
the signal at �H � 365mV, which we attribute to a charge jump in the hybrid segment.

�gure 1d shows amplitude of the re�ected RF signal of the left lead, � L
RF, for varying

plunger gate voltage of the CS, �CS, taken at three di�erent values of �H. A Coulomb
resonance of the CS is seen as a dip in � L

RF whenever a CS level is aligned with the Fermi
level of the left lead [27]. We see that the �CS value corresponding to the � L

RF minimum
changes due to �H, which has two possible causes. First, �H directly gates the CS due to
cross-capacitance. Second, �H can change the occupation of the hybrid segment and the
resulting charge is sensed by the CS. To extract the charge sensing signal only, we de�ne
virtual gates that are linear combinations of the physical gate voltages, to compensate for
cross-capacitances between gates (for details see section 4.4.2).

In �gure 1e, we show one particular CS Coulomb resonance for varying �CS and �H.
We have subtracted a global slope from the data, which we attribute to imperfect virtual
gate settings. The global slope was chosen such that the CS resonance is roughly constant
in �H up to 300mV, for which there are no sub-gap states (for details and raw data, see
section 4.4.2). We note the presence of switches in the CS signal at �H = 320mV and
�H = 365mV. The latter switch occurs at the same �H value as the one observed in �gure 1c.
We attribute the switches in the CS signal to charge jumps in the hybrid segment (for more
discussion, see section 4.4.3).

The superimposed black line of �gure 1c shows the shift of the CS Coulomb resonance,
��CS, as found from �gure 1e. We see that ��CS depends on �H and changes most strongly
when there is an ABS at sub-gap energies. The absence of sharp jumps in ��CS shows that
there are no abrupt changes of charge, which is consistent with an even ground state for the
entire �H range as found from �gure 1c. We interpret the change in ��CS at �H = 310mV
and �H = 360mV as the CS sensing the charge of the ABSs changing continuously from 0
to 2�, where � is the charge of the electron.

Gradual change of charge without change of parity, as seen here, has been observed
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Figure 2: Charge sensing the even and odd ground states of an ABS. a.-c. Amplitude of the re�ected RF signal
of the right lead, � R

RF, for varying hybrid gate voltage �H and right bias �R, taken at � = 0mT (a.), � = 100mT (b.)
and � = 250mT (c.) for �TR = 0mV, �TL = �100mV, �LO = 170mV and �RO = 500mV. d. Shift of the CS Coulomb
resonance, ��CS, at di�erent � values for �TL = �140mV and �LO = 172mV. The horizontal lines are o�set by
75�V, which corresponds to a charge di�erence of approximately 1�. The arrows indicate the even-odd transition
at � = 0mT and � = 250mT respectively. inset. The occupation expectation value of the ABS ground state, ���,
for varying chemical potential, �, at di�erent � values, calculated in the atomic limit. The arrows indicate the
even-odd transition.

before in normal double quantum dots [28, 29]. In our case, however, the ABS exchanges
charge with a large Al reservoir and becomes a coherent superposition of 0 and 2�.

4.2.3 S����� ABS ������ �������
To use our charge sensor for parity readout, we focus on an ABS with a ground state that
can be changed from even to odd parity using �H. �gure 2a shows spectroscopy of such an
ABS in a di�erent �H range than �gure 1, for � = 0mT. We see a sub-gap state that crosses
zero energy twice for changing �H, give rising to a characteristic ABS eye-shape [30, 31].
The ABS ground state between the zero-energy crossings is a spin doublet |�� = |�� , |�� [26].
Having a doublet ground state at � = 0mT signals that the ABS has a charging energy that
is non-negligible. We note that this is uncommon among most ABSs in the hybrid segment,
as can be seen from measurements in a larger �H range (see section 4.4.4). We choose this
particular ABS as it allows us to measure charge in both the even and odd ground state.
�gure 2b and c show spectroscopy of the ABS at � = 100mT and � = 250mT, respectively.
The magnetic �eld Zeeman splits the doublet states, making the odd state lower in energy
than the even state over a larger �H range.

In �gure 2d we show the processed shift of the CS Coulomb resonance, ��CS, for
varying �H at di�erent � values. To obtain ��CS for each � value, we �rst set the CS
on Coulomb resonance using �CS and measure � L

RF for varying �H. We then convert the
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measured � L
RF to the corresponding shift of the CS Coulomb resonance, resulting in ��CS.

For details, see section 4.4.5.
For each � value, we identify three distinct �H regions where the ��CS response is

roughly �at. The middle region of these around �H � 260mV occupies a larger �H range
for increasing �. This is consistent with |�� being the ground state for a larger �H range, as
inferred from �gure 2a-c (note that the �H values for which the ABS has an odd ground
state di�er slightly between panels a-c. and d. due to di�erent �LO and �TL gate voltages,
which were chosen to optimize the sensitivity of the charge sensor). We interpret the three
distinct ��CS values for increasing �H as corresponding to the 0-like even, singly occupied
odd, and 2-like even states of the ABS.

We observe �nite curvature in ��CS for the even ground state, which we attribute to
mixing of the 0 and 2 occupations, similar to �gure 1e. The curvature is most visible close
to the even-odd transition, and becomes less apparent with increasing �. At � = 0mT, the
even-odd transition (indicated by the blue arrow) occurs when the ABS is near its energy
minimum, where the average ABS charge is 1� for both the even and odd states [32, 33].
The even state charge gradually changes from 0 to almost 1� in the �H range before the
transition. At � = 250mT, the even-odd transition occurs when the ABS is no longer close
to its energy minimum. The di�erence in charge between the even and odd states is then
greater, resulting in a sharper change of ��CS, as indicated by the gray arrow.

If the curvature of ��CS is exclusive to the even ground state, we can use it to infer
the parity of the ABS using charge sensing only. To illustrate this point, we calculate and
show the charge of an ABS in the inset of �gure 2d. Here, the average occupation, ���,
is shown for varying chemical potential, �, at two di�erent values of � (for more details
see section 4.4.6). At low �, curvature in ��� is a characteristic sign of an ABS in a singlet
ground state, provided that the parent gap is much larger than the charging energy. To infer
the ABS parity from the curvature of ��CS experimentally, the ABS cannot be strongly
coupled to another discrete state or orbital. In the coupled system, changing the gate
voltage can transfer charge between the states. This can result in curvature of ��CS for the
odd ground state in addition to the even one.

So far, we have established that charge sensing measurements can resolve the charge
di�erences between the even and odd ground states of a single ABS. In a two-site Kitaev
chain, however, it is the combined parity of two hybridized QDs that has to be detected.
We create a proxy system by hybridizing a QD with an ABS and charge sense it to give a
minimal demonstration of parity readout for Kitaev chains. Parity readout of Majorana zero
modes requires extra steps, which we detail in the discussion. We note that an alternating
ABS-QD array can also constitute a Kitaev chain [34, 35].
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Figure 3: Spectroscopy of a hybridized ABS-QD system. a. Amplitude of the re�ected RF signal of the
right lead, � R

RF for varying QD plunger gate voltage, �QD, and �H taken at �R = 0V, � = 200mT, �TR = 215mV
and �RO = 340mV. b. Parity of the lowest energy eigenstate of a coupled ABS-QD system for varying QD
and ABS chemical potential ��QD and ��ABS, computed in the atomic limit. We designate the ground state parity
as even if �Odd > �Even and odd if �Odd < �Even. The superimposed text indicates the ground states in the
|� ,�� = |� �QD� |��ABS basis of the ABS-QD system. We denote the ABS singlet state by |��, and highlight its
dominant occupation for the |�,�� state. c., d. � R

RF for varying �QD and �R, taken at two di�erent values of �H
indicated by the blue and green horizontal bars in panel a. e., f. � R

RF for varying �H and �R, taken at two di�erent
values of �QD indicated by the red and yellow vertical bars in panel a.

To create the ABS-QD system, we de�ne a QD to the right of the hybrid segment
by creating a tunnel barrier using �RO (see �gure 1a). We then lower the tunnel barrier
between the QD and the hybrid segment by increasing �TR.

�gure 3a shows a charge stability diagram measured in � R
RF for varying �H and QD

plunger gate, �QD. We see avoided crossings that indicate hybridization of the QD and
ABS. The QD resonance can be seen when the ABS is o�-resonance (blue bar), which we
attribute to local Andreev re�ection on the QD and the usage of RF re�ectometry instead of
di�erential conductance (for details see section 4.4.7). Similarly, the ABS can be observed
when the QD is o�-resonance (e.g., red bar). Because of the strong hybridization between
the QD and ABS, the latter can always be seen in spectroscopy upon probing the QD.

�gure 3b shows the ground state parity of a QD coupled to an ABS, computed in the
atomic limit. States are indicated in the ABS-QD number basis, with |�� denoting the ABS
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singlet. We emphasize that the singlet is dominantly 0-like or 2-like at � ��ABS = ±1 �QD.
The avoided crossings have di�erent sizes in �gure 3b, which is caused by the mixing of
0 and 2 occupations of the ABS (for details on the model, see section 4.4.6). We see that
�gure 3b qualitatively reproduces most of the features of �gure 3a.

�gure 3c and d show spectroscopy of the QD for varying �QD and �R at �xed values of
�H indicated by the horizontal lines in �gure 3a. When the ABS in the hybrid segment is
not at zero-energy (blue bar, panel c), we see multiple sub-gap states, where the lowest one
forms a typical eye-shape. This indicates the formation of Yu-Shiba-Rusinov (YSR) states
on the QD, due to its strong coupling to the hybrid segment [36–40]. �gure 3d (green bar)
shows spectroscopy of the QD when the ABS excitation is at zero energy, i.e., on-resonance.
Here we see that the ABS and QD states form sub-gap bonding and anti-bonding states
when they are on resonance, indicated by the blue arrows. Two hybridized sub-gap states
are often referred to as an “Andreev molecule”, which usually designates two coupled YSR
states [41–47] or phase-tunable ABSs in Josephson junctions [48–50]. Because our ABS-QD
system shows hybridization of an ABS in a hybrid with a YSR state in a QD, we categorize
it as an Andreev molecule.

�gure 3e and f show spectroscopy of the QD for varying �H at �xed values of �QD
indicated by the vertical lines in �gure 3a. When the QD is o�-resonance (red bar, panel
e) the lowest sub-gap state crosses zero energy twice, and the excited states are close in
energy to the superconducting gap. �gure 3f (yellow bar) shows spectroscopy when the
QD excitation is at zero-energy. When the ABS is on resonance, it splits the zero-bias peak
of the QD, indicated by the white arrows. This e�ect is known to occur for QDs strongly
coupled to ABSs [51–53].

4.2.5 A������ �������� ������ �������
Next, we sense the charge of the ABS within the ABS-QD system. �gure 4a shows the
phase of the re�ected RF signal of the left lead, �LRF, for varying �QD and �H, at di�erent
gate and �eld settings from �gure 3. We set the CS on Coulomb resonance using �CS, at
the �QD and �H settings that correspond to the bottom left corner of �gure 4a. Globally, we
observe three horizontal regions where �LRF depends almost only on �H, which we interpret
as the 0-like even, singly occupied |�� and 2-like even states of the ABS. In addition, there
are 4 regions where � L

RF depends visibly on �QD, which we attribute to the QD hybridizing
with the ABS. These regions are highlighted using dashed rectangles.

In �gure 4b we show a zoom-in of panel a corresponding to the black rectangle. Here,
the CS was gated to be on the steepest slope of the Coulomb peak using �CS at the start
of the measurement. We see an o�-diagonal avoided crossing, which signals an interdot
transition [54]. Because this is the �rst interdot transition of this QD orbital and ABS, we
label the bottom left corner of �gure 4b with |0,��, where the QD orbital is unoccupied, and
the ABS is in the 0-like singlet state. The other states are labeled by counting the added
electrons. Although the QD is proximitized by coupling to the hybrid, as seen in �gure 3c,
we retain the number basis for clarity.

�gure 4c shows the numerical derivative of panel b, ��LRF/��H, after processing with a
Savgol �lter. The dips in ��LRF/��H form two blue hyperbolas that indicate where the even
and odd ground states are degenerate [29]. Based on the states inferred from panel b, we
label the region between the hyperbolas as odd (“O”) and the two areas outside as even
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Figure 4: Charge sensing measurements of the ABS-QD system. All data was taken for �TR = 255mV,
�RO = 230mV and � = 250mT. a. Phase of the re�ected RF signal of the left lead, �LRF, for varying �QD and �H.
b. Zoom in of a. for the range indicated by the dashed rectangle. The superimposed text indicates the ground
state of the ABS-QD system in the same basis as in �gure 3b. c. The numerical derivative, ��LRF/��H, of b. The
superimposed text indicates the parity of the states in panel b, where "O" and "E" indicate an odd and even ground
state, respectively. The two crosses indicate negative peaks of ��LRF/��H found from peak-�nding for the cut
along the orange diagonal line shown in panel b. d. �LRF for a cut along the orange diagonal line shown in panel b.
Here, �QD and �H are changed in parallel, indicated by �. The vertical black lines correspond to the �QD and �H
values of the black crosses in panel c, from which we infer a parity change. The red and blue shading indicate
even and odd ground states, respectively.

(“E”).
�gure 4d shows a linecut of �LRF taken along the orange line in panel b, where �QD and

�H are changed in parallel, indicated by �. The two vertical, dashed black lines correspond
to the gate values of the superimposed crosses in panel c, which we use to divide the range
of � into even and odd ground states. We note that there are three regions where �LRF is
roughly constant, and that these coincide with even and odd parity sectors. From this we
conclude that we can read out the parity of the ABS-QD system by measuring its charge.

Extending parity readout using charge sensing to a two-site Kitaev chain requires an
additional step however. In the "Poor Man’s Majorana" sweet spot, the degenerate even
and odd parity ground states have the same charge [8]. Detuning one QD creates a charge
di�erence between the even and odd ground states on the other QD, while the states remain
degenerate [55]. A local charge sensing measurement on the non-detuned QD can then
tell the parity based on charge. This protocol of detuning and measuring charge has to
be performed within the quasi-particle poisoning time, otherwise the parity �ips during
the measurement. We note that our RF integration time of � = 9.3ms is on the order of
quasiparticle poisoning times typically found in hybrid systems, although estimates vary
strongly depending on device design [56, 57]. This results in the CS predominantly sensing
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the average occupation of our system. We show SNR values for di�erent integration times
in section 4.4.8.

4.3 C���������
In conclusion, we have operated a QD as a charge sensor and measured the charge of ABSs
in a hybrid semiconductor-superconductor nanowire. We have found that the charge of an
ABS can change by 2� while remaining in the even ground state. The charge di�erence
between the even and odd states can be less than 1� due to the ABS exchanging charge with
the superconductor. We have coupled a QD to an ABS to form a hybridized state, which
we categorize as an Andreev molecule. Using the charge sensor, we can infer the parity of
the ABS-QD system when the even and odd ground states have di�erent charges. For a
two-site Kitaev chain, both parities have the same charge in the sweet spot, and require
an additional step for parity-to-charge conversion. We demonstrate that charge sensing
can be used to read out parity in hybrid systems -without a�ecting it- and is promising for
usage in Kitaev chains.

D��� ������������
All raw data in the publication and the analysis code used to generate �gures are available
at https://doi.org/10.5281/zenodo.10067038.

4.4 S������������ I����������
4.4.1 R�������� ����������������
Both normal contacts of the device presented in this work are bonded to o�-chip LC
resonators. �gure 5a,b show the amplitude of the re�ected RF signal of the left and right
lead � L/R

RF for varying frequency, � , at � = 0mT. We �t the resonator responses using a
model for asymmetric resonances by Khalil et al. [58]. From the �t, we obtain the internal
and external Q-factors listed in the �gure. For all other measurements in this work, we �x
the frequencies at �L = 364MHz and �R = 264MHz. All RF measurements were performed
using a Zurich Instruments UHFLI.

4.4.2 V������ ����� ��� ���. 1 ���� ����������
�gure 6 shows the gates and cross-capacitance matrix �� used for the virtual gates in this
work. The matrix �� allows us to estimate the actual electrochemical potential change due to
cross-capacitance, using: �� � = �� �� . Here, the vector �� contains all the physical gate voltages
and �� � is the resulting voltage on parts of the device. This allows us to change gates in a
way that, for example, a�ects only the QD and not the CS electrochemical potential. For
more details on virtual gates, see Refs. [59, 60].

Our virtual gate implementation was imperfect, leading to a residual cross-capacitance
between �H and �CS. �gure 7a shows that the CS resonance is also gated by �H. We attribute
the residual cross-coupling to the non-linearity of the device and an inaccurate choice
of ��. We correct for this in post-processing by subtracting a global slope, until the CS
resonance does not depend on �H up to �H = 300mV. This result is presented in Fig. 1e

https://doi.org/10.5281/zenodo.10067038
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Figure 5: Resonator characterization. Fits of o�-chip resonators performed according to the model described in
Ref. [58]. a. Amplitude of the re�ected RF signal of the left lead, � L

RF, versus the frequency of the RF output signal,
� . b. Amplitude of the re�ected RF signal of the right lead, � R

RF, versus the frequency of the RF output signal, � .

and in �gure 7b. In �gure 7d we show the minima of the Coulomb dip for each �H value,
extracted from panels a., b. The processed data is seen to be devoid of a global slope. The
line in �gure 6d is superimposed in Fig. 1c.

4.4.3 C����� �����

In �gure 1c, there is a switch in the tunnel spectroscopymeasurement of the hybrid segment
at �H � 365mV, which is also observed in �gure 8a. These abrupt switches are referred
to as "charge jumps", and are attributed to the �lling and emptying of charge traps in the
nanowire in the vicinity of the ABS. This changes the electrochemical potential of the ABS,
which leads to a change in excitation energy as seen in �gure 1c. Charge jumps have been
observed at reproducible gate voltages in semiconductor-superconductor nanowire devices
[61, 62].

We attribute the switches in the charge sensor signal in �gure 1e to the emptying and
�lling of charge traps in the hybrid segment as well. As the electrochemical potential of
the ABS changes due to a charge jump, so does its average charge in the singlet ground
state. The Coulomb resonance of the charge sensor will shift abruptly as a result. We note
that as the change in ABS charge is a fraction of 1�, the shift of the charge sensor will be
comparatively small.
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Figure 6: Virtual gates. a. Device sketch that highlights the physical gates used to de�ne the new virtual gates b.
The cross-capacitance matrix for the gates highlighted in a. O�-diagonal numbers indicate a �nite cross-coupling
between physical gates, which is corrected for using the virtual gates. This setting is used for Fig. 1 and 2. c.
Same as panel b, but corresponding to the data from �gure 4 of the main text.

4.4.4 E������� ����� ������ �������� ��� ������ �������

�gure 8a shows spectroscopy of the hybrid for a larger range of �H than shown in Fig. 1c.
The ABSs shown in Fig. 1 are indicated by the blue marks. The ABS of Fig. 2 is indicated
by the white marks. Panel b shows the corresponding charge sensor measurement.
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Figure 7: Data processing of Fig. 1. a. Amplitude of the re�ected RF signal of the left lead, � L
RF, for varying �CS

and �H. White markers indicate the minimum of the Coulomb resonance for each �H value. b. Same as a., but
after removing a global slope between �CS and �H. c.,d. Shift of the CS Coulomb resonance, ��CS, for each �H
setting, extracted from a. and b. respectively. These correspond to the white markers in panels a and b. The line
of panel d is superimposed on Fig. 1c.

4.4.5 F��. 2 ������ ������ ���� ����������
A change of the ABS charge results in a linear shift of the CS electrochemical potential,
proportional to their mutual capacitance. The resulting change in re�ected signal � L

RF is
not linear due to the shape of the Coulomb dip. To compensate for this, we �rst perform a
characterization measurement of � L

RF for varying �CS for each � value as shown in �gure 9a-
g. We then �x the �CS gate value such that the CS is on Coulomb resonance and measure
� L
RF while varying �H, which is shown in �gure 9h-n. For each measured � L

RF value per
�H, we �nd the closest � L

RF value in the characterization measurement. We then map the
measured � L

RF value to �CS, which is indicated by the orange markers in �gure 9a-g. Finally,
we subtract a global slope from the resulting �CS value that we attribute to remaining cross-
capacitance to �H and show the resulting ��CS in �gure 9o-u. We note that the vertical
di�erence between the three plateaus is now roughly equal, as compared to �gure 9h-n.
Therefore, we interpret the processed data as being proportional to the ABS charge.

Finally, we see from �gure 9a-g. that the noise in � L
RF is larger for some magnetic �eld

values, such as � = 300mT, than for others, such as � = 250mT. This noise a�ects the
processed data (�gure 9o-u) mostly for �H � 275mV, as the charge sensor is already almost
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Figure 8: Extended �H range measurement of Fig. 1. a. Amplitude of the re�ected RF signal of the right lead,
� R
RF for varying hybrid gate voltage �H and right bias �R at � = 100mT, �TR = 0 and �RO = 500mV. Superimposed

line. Shift of the CS Coulomb resonance for each �H setting, extracted from b. A global slope is subtracted for
clarity. b. Amplitude of the re�ected RF signal of the left lead, � L

RF, for varying �CS and �H. White dots indicate
the CS resonance found from peak-�nding. The ABSs shown in Fig. 1 are indicated by the blue marks. The ABS
of Fig. 2 is indicated by the white marks. Panel b shows the corresponding charge sensor measurement.

in Coulomb blockade, where the noise is largest. While we are not completely certain
about the cause, it has been proposed that magnetic �elds can a�ect charge traps, which
changes the charge noise [63].
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Figure 9: Data processing of Fig. 2. a-g. Amplitude of the re�ected RF signal of the left lead, � L
RF, for varying �CS

at �H = 234mV for values of � indicated in the title. These measurements are used to map a measured � L
RF value

to the closest �CS value. Orange markers. The � L
RF values from the data shown in panels h-n, mapped to �CS.

For each �H setpoint, the measured � L
RF is compared to the full � L

RF v.s. �CS curve of panels a-g. Each measured
� L
RF value from panels h-n is then mapped to a �CS value from panels a-g. h-n. � L

RF for varying �H at �xed �CS
for values of � indicated in the title. At each value of �H, the measured � L

RF is compared to the corresponding
measurement of panels a-g. for the same �. The closest matching value of �CS is then chosen, resulting in a
mapping of �H to �CS, which is plotted in orange in panels a-g. o-u. Shift of the gate voltage corresponding to
the Coulomb resonance of the CS, ��CS, for varying �H. These correspond to the orange markers of panels a-g.
after subtracting a global slope.

4.4.6 A������ ����� ������ �� ��� ������ �����
The inset of Fig. 2d shows the occupation of an ABS modeled in the atomic limit. In the
many-body basis of a single orbital {|0� , |2� , |�� , |��} the Hamiltonian is:

�ABS =

�
�
�
�
�

0 �� 0 0
�� 2�+� 0 0
0 0 �+�Z 0
0 0 0 ���Z

�
�
�
�
�

Where � is the electrochemical potential of the uncoupled orbital, � is the coupling to the
superconductor, � is the charging energy and �Z is the Zeeman energy. We diagonalize
the Hamiltonian, obtain the eigenvectors and calculate the ABS ground state occupation
���. For Fig. 2d, we use � = 2.45, � = 5 and �Z = 0,0.25,0.6. For more details on the model,
see Refs. [64, 65].

For Fig. 3, we combine an atomic-limit ABS with a QD (see Ref. [34] for more details):

� = �ABS +�QD +�� (4.1)
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Where for the QD we have:

�QD = (�QD��Z)�
†
� ��+�QD�

†
� ���

†
� ��. (4.2)

�� describes the tunnel coupling between the ABS and the QD and is given by:

�� = �(�†� ��+ �†� ��+�.�.)+ �so(��
†
� ��+ �†� ��+�.�.), (4.3)

Where � is the spin-conserving tunneling amplitude, and �so is the spin-�ipping tunneling
amplitude resulting from spin-orbit interaction.

The basis of equation (4.1) can be split into even and odd parity subspaces, where we
consider the following states in the |� ,�� = |� �QD� |��ABS basis:

{|0,�� , |2,�� , |�,��} even

{|0,�� , |�,�� , |2,��} odd

Here |�� = � |0�� � |2� is the ABS singlet. Using equation (4.3), we can calculate the e�ective
coupling terms between the basis states of the system. We only consider transitions with a
�xed global parity, i.e. only transitions between two odd occupation states or transitions
between two even occupation states. The e�ective coupling between the di�erent even
occupation states of the system is given by:

�2,�|�� |0,�� = 0 (4.4)

��,� |�� |0,�� = ��so (4.5)
�2,�|�� | �,�� = ���so (4.6)

For the odd occupation states we have:

�0,� |�� | �,�� = �� (4.7)

�0,� |�� |2,�� = 0 (4.8)
�2,� |�� | �,�� = �� (4.9)

We can now write down Equation (4.1) in the even and odd parity subspace matrix repre-
sentation:

����� =
�
�
�
�

�S 0 ��so
0 2�QD +�QD +�S ���so
��so ���so �QD��Z +��

�
�
�
�

and

���� =
�
�
�
�

�� �� 0
�� �QD��Z +�S ��
0 �� 2�QD +�QD +��

�
�
�
�

Here �S and �� are the ABS singlet and doublet energies respectively. The full many-body
matrix describing the system is given by the following block-diagonal matrix:

������ = �
����� 0
0 �����

(4.10)

The ground state of the system corresponds to the eigenstate of the lowest eigenenergy of
equation (4.10). Fig. 3b was computed for �ABS = 0.03, �QD = 1, � = 0.3, �Z = 0.7, � = 0.15,
�SO = 0.01.
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4.4.7 F��. 3 �� ��������� ��� �� ������������� ����������
In �gure 10 we compare the charge stability diagram of Fig. 3a as measured in RF re�ectom-
etry and DC transport. Most of the features seen in �gure 10a are also seen in �gure 10b. In
� R
RF, some features are more visible than in DC transport. While there is only a �nite current

when the QD undergoes Andreev re�ection or hybridizes with the ABS, there is always a
dip in � R

RF when the normal lead and QD are on resonance. This can be explained by the
excess dissipation known as "Sisyphus resistance", which originates from the QD level and
Fermi level of the normal lead being detuned with an AC voltage [27]. We attribute the
measured current at zero-bias in �gure 10b to a �nite voltage o�set.

Figure 10: Comparison of DC transport and RF re�ectometry of Fig. 3. at �R = 0. a. Amplitude of the
re�ected RF signal of the right lead, � R

RF for varying QD plunger gate voltage, �QD, and �H. a. Current measured
at the right lead, � , for varying QD plunger gate voltage, �QD, and �H.

4.4.8 C����� ������ SNR
To estimate the SNR of the charge sensor, we measure the in-phase response and quadrature,
I and Q, of the left resonator for the ABS of Fig. 2 at � = 100mT. We measure the I and
Q signals over time at di�erent �H values and plot the result in histograms, as shown in
�gure 11a. For each histogram, we compute the average IQ response �� and the standard
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deviation ��. Then, we de�ne the SNR for two charge states as:

SNRi,j =
|����� |
��+��

See Supplemental Material of Ref. [66] for details. The red and purple lines in �gure 11a
show |����� | for the 0 and 1, and 1 and 2 occupations of the ABS. Dividing by the sum of
the standard deviations results in the SNR. �gure 11b shows SNR calculated for varying
integration time, �int. �gure 11c shows SNR calculated for varying RF output power. It
reaches a maximum of 39.5 for -26 dBm for the SNR of the 0-like singlet and 1 occupations.
�gure 11d shows SNR calculated for varying tunnel gate voltage �LO. We �t the resulting
Coulomb peak and extract the ratio of peak height and full width at half maximum. We
see that a sharper Coulomb peak results in a higher SNR.

100 mT

a b c d

Figure 11: Charge Sensor SNR measurements for a single ABS. a. Example histograms of the in-phase
response and quadrature, I and Q of the left resonator, for the 0-like even, 1 and 2-like even occupations of the
ABS. The colored markers indicate the charge state of the ABS that corresponds to each histogram. The red and
purple lines show the distance between the histograms that we use to calculate the SNR. b. The SNR calculated
from IQ-histograms for the 0-like singlet and doublet states (red), and 2-like singlet and doublet states (purple) for
varying integration time �int. The vertical black line indicates, �int = 9.3ms, which is the integration time used in
the main text. The RF out signal had a power of �30 dBm for every �int. c. Same as panel b., for varying power of
the RF input signal and at �xed �int = 9.3ms. d. Same as panel c., for varying shape of the CS Coulomb resonance
at �xed �int = 9.3ms and power �30 dBm. Each data point is taken for a di�erent gate voltage �LO, resulting in
Coulomb peaks of di�erent width. We present the SNR versus Coulomb peak height, divided by the full width at
half maximum.
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- William Blake





5

121

The recent realization of a two-site Kitaev chain featuring “poor man’s Majorana” states
demonstrates a path forward in the �eld of topological superconductivity. Harnessing the
potential of these states for quantum information processing, however, requires increasing
their robustness to external perturbations. Here, we form a two-site Kitaev chain using
proximitized quantum dots hosting Yu-Shiba-Rusinov states. The strong hybridization
between such states and the superconductor enables the creation of poor man’s Majorana
states with a gap larger than 70�eV. It also greatly reduces the charge dispersion compared
to Kitaev chains made with non-proximitized quantum dots. The large gap and reduced
sensitivity to charge �uctuations will bene�t qubit manipulation and demonstration of
non-abelian physics using poor man’s Majorana states.

I�����������
Kitaev chains based on quantumdots (QDs) coupled via a hybrid semiconductor-superconductor
heterostructure are a promising avenue for the creation of Majorana bound states [1, 2].
Even a minimal chain, consisting of only two QDs, supports �ne-tuned Majorana zero
modes known as “poor man’s Majoranas” (PMMs) [3]. These PMM states do not bene�t
from topological protection, but already exhibit robustness to local perturbations and
quadratic protection from global �uctuations in the chemical potential [3]. Moreover,
PMM states obey non-abelian exchange statistics, thus providing a favourable platform for
braiding and Majorana-based qubit experiments in the near future [4–7]. In Ref. [8], we
have recently realized the two-site Kitaev chain by coupling two QDs formed in an InSb/Al
hybrid nanowire. While providing the necessary proof of concept, the gap separating
PMMs from excited states is not much higher than the electron temperature. Further-
more, appreciable noise in the measured spectra indicate sensitivity to charge �uctuations,
making practical use of such states infeasible.

Insensitivity to charge noise has been successfully achieved in transmon qubits by
increasing the ratio between superconducting coupling (Josephson energy) and charging
energy, thereby suppressing the charge dispersion of the spectrum [9, 10]. We follow
a similar approach by strongly coupling our QDs to the superconductor. This induces
superconducting correlations on the QDs leading to energy eigenstates known as Yu-Shiba-
Rusinov (YSR) states [11–20]. Spin-polarized YSR states can also serve as the sites of a
Kitaev chain, as investigated theoretically [21–26] and experimentally using scanning
tunneling microscopy [27–31]. In this work, we realize a two-site Kitaev chain using YSR
states in a hybrid semiconducting InSb nanowire partly covered with a superconducting Al
�lm. We show that the sensitivity of the resulting PMMs to charge �uctuations a�ecting
the QDs decreases by two orders of magnitude compared to a QD-based Kitaev chain [8]. In
addition, we measure a gap between ground and excited states of �gap = 76�eV, a threefold
increase compared to our previous report [8]. Complementary results are also reported
in a parallel study on a 2D hybrid platform using an InAsSb/Al two-dimensional electron
gas [32], demonstrating the wider applicability of our approach.
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Figure 1: YSR states formed by hybridizing QDs with an ABS. a, False-colored scanning electron micrograph
and measurement circuit of the device. Scale bar is 200nm. b, Illustration of the QD-ABS-QD model. Two QDs are
coupled to the same ABS via spin-conserving and spin-�ipping tunneling. QD and YSR regimes are de�ned by the
relative energy scales shown below the sketch. c, Numerical CSD using zero-bias conductance of a QD coupled to
an ABS. “E”/“O” indicate even/odd occupation of the QD. d, e, Numerical conductance spectrum of a QD coupled
to an ABS as a function of QD chemical potential when ABS is far (d) and close to its energy minimum (e). In e,
green/pink arrows indicate avoided crossings due to spin-conserving/spin-�ipping tunneling. f–h, Same as c–e
for the left QD coupled to an ABS, experimentally measured using local conductance. Gray/blue ticks in f mark
�H values at which g/h are measured. The right QD is o� resonance. In h, we extract a lever arm � � 0.05� by
�tting the spectrum with the black dotted line at the zero-energy crossing. This procedure overestimates the
actual lever arm since it does not account for capacitance to the normal lead. For comparison, we plot the pro�le
of a typical Coulomb diamond in our device with gray dotted lines (see �gure 7a). The �LP range in g is shifted
because of a gate jump a�ecting the left QD. i–k, Same as f–h, but for the right QD. The extracted lever arm is
� � 0.04�.

5.1 F���������� ��� �����
�gure 1a shows a scanning electron microscope image of the reported device. It consists of
an InSb nanowire (green) placed on top of a series of bottom gates [33]. The middle part of
the nanowire is covered by a thin Al shell (blue), forming a superconductor-semiconductor
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hybrid whose electrochemical potential is controlled by a plunger gate (�H). On both
sides of the hybrid segment, QDs are formed in the nanowire using three gates each. The
electrochemical potential of each QD is controlled by a plunger gate (�LP and �RP for
the left and right QDs, respectively), and the couplings between the QDs and the hybrid
are controlled by tunnel gates (�LT and �RT for the left and right QDs, respectively). A
normal lead is attached to each QD, separated by another gate-de�ned tunnel barrier. The
superconducting lead is kept grounded at all times. In addition, the two normal leads are
connected to o�-chip multiplexed resonators for fast RF re�ectometry measurements [34],
using the setup described in Ref. [35]. Each lead is voltage biased independently with
respect to the grounded Al, with voltages �L and �R on the left and right leads, respectively.
The currents (�L and �R on the left and right leads), the local conductances (�LL = ��L/��L,
�RR = ��R/��R), and the non-local conductances (�RL = ��R/��L, �LR = ��L/��R) are mea-
sured simultaneously. When the full conductance matrix is measured, we correct for line
resistance as described in the Methods section. Further fabrication and setup details can
be found in our previous publications [36–38]. The experiment is conducted in a dilution
refrigerator with a base temperature of 30mK. A magnetic �eld of � = 150mT is applied
along the nanowire axis, inducing a Zeeman splitting of approximately 200 �eV in the QDs
(�gure 5).

5.2 YSR ������ �������� ����
We model our system using a three-site model in which the hybrid is considered as a single
Andreev bound state (ABS) in the atomic limit [15, 16] tunnel-coupled to two QDs (see
schematics in �gure 1b) [26]. The QDs have charging energy � , Zeeman splitting �Z, and
chemical potentials �L,�R for the left and right QD, respectively. The ABS has an induced
gap �, which in the atomic limit [15, 16] can be identi�ed with its tunnel coupling to the
bulk superconductor. Its charging energy is negligible due to the screening of the grounded
Al �lm. It also has Zeeman splitting �ZH, which is smaller than that of the QDs due to
metallization of the ABS [39]. We ensure �ZH < � so that the ground state of the ABS is
always a BCS singlet. The electron-hole composition of the ABS depends on its chemical
potential �H.

In our model, the QDs are coupled to the ABS by spin-conserving and spin-�ipping
tunneling due to spin-orbit interaction, with amplitudes � and �SO, respectively [26].
The hybridization between QDs and the ABS becomes signi�cant when �,�SO � �. As
a consequence, the QDs become proximitized and form YSR states [20, 40], which we
distinguish from ABSs because of their large charging energy [15–19, 41]. We refer readers
to the Supplementary Information and the parallel work of Ref. [40] for theory models of
the strong coupling regime investigated in this work.

To understand the nature of the YSR states formed in proximitized QDs, we �rst
examine the coupling between a single QD and an ABS in the hybrid segment, following
Ref. [20]. �gure 1c shows the theoretical zero-bias conductance of a QD-ABS charge
stability diagram (CSD), while the second QD is o�-resonance. The two vertical features
indicate parity transitions of the system, largely corresponding to the consecutive �lling of
a single orbital of the QD by two electrons. The S-shaped conductance features result from
renormalization of the QD energy via hybridization with the ABS. The ABS reaches its
energyminimum at charge neutrality, i.e., �H = 0, where its excitation is equal-parts electron
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and hole. The hybridization with the QD is also maximal here due to their minimal energy
separation, evident in the enhanced zero-bias conductance as local Andreev re�ection
becomes stronger [20, 40]. The QD spectra in panels d and e further reveal its hybridization
with the ABS. When the latter is away from charge neutrality, the QD spectrum as a
function of �L (�gure 1d) exhibits straight features reminiscent of Coulomb diamonds. As
the ABS approaches �H = 0 (�gure 1e), such features evolve into an eye-shaped spectrum
typical of YSR states [19, 42–45]. The arrows indicate avoided crossings in the excited states
of the spectrum produced by spin-conserving (green) and spin-�ipping (pink) tunneling
between the ABS and the QD levels [40].

The hybrid segment of our device features multiple discrete ABSs well-separated from
each other in �H (�gure 6). We operate in a �H range containing a single ABS level. In
�gure 1f, we show the zero-bias conductance measured with the left lead as a function of
�LP and �H. �RP is �xed to keep the right QD o�-resonance. We observe the QD-ABS charge
stability diagram features described in panel c, indicating the presence of an ABS reaching
its energy minimum at �H � 337mV. The QD-ABS hybridization is further con�rmed by
the QD spectrum being in agreement with the model when the ABS is away from (�gure 1g)
and at its energy minimum (�gure 1h).

The YSR zero-energy excitations in �gure 1h are our building blocks of a Kitaev chain.
Compared to a non-proximitized QD zero-energy crossing, these YSR crossings have
noticeably weaker energy dispersion as a function of gate (see dashed lines in panel h). To
quantify this observation, we can estimate the lever arm of the YSR excitation at charge
degeneracy using its gate-dispersion slope: � � ��/��LP. In contrast to the above-gap QD
lever arm of � � 0.4� in our devices (�gure 7a), this subgap lever arm reduces to � � 0.2�
(�gure 7b) when the ABS is detuned from its charge neutrality. Tuning the ABS to its
energy minimum further reduces the lever arm to � � 0.05� (�gure 1h). This signals a
strong reduction in the e�ective charge of the fermionic excitation, attributable to charging
energy renormalization, QD-ABS hybridization, and electron-hole superposition [46, 47],
as detailed in �gure 8.

The right QD shows similar behavior when coupled to the same ABS (�gure 1i–k).
However, when the ABS is away from charge neutrality, the subgap conductance is not
signi�cantly suppressed (�gure 1i) and the QD spectrum still shows typical YSR features
(�gure 1h), albeit with a small superconducting coupling. This could be due to residual
proximity resulting from direct coupling between the QD and the superconducting �lm
since �H does not a�ect it appreciably (�gure 9).

5.3 C������ YSR ������
Recent theoretical [25, 26] and experimental [8, 48, 49] works have shown that an ABS can
mediate elastic co-tunneling (ECT) and crossed Andreev re�ection (CAR) between QDs.
These two processes implement the hopping and pairing terms of the original Kitaev chain
model [1, 2]. To form PMM states in a two-site chain, the amplitudes of both terms must
be equal [3]. Such control can be achieved by tuning the electrochemical potential of the
ABS in the hybrid nanowire [8, 25, 26, 49].

Similar e�ective ECT and CAR couplings, with respective amplitudes � and �, also
emerge between YSR states (�gure 2a) formed by strongly coupling QDs to the same
ABS [40, 50, 51]. To observe them, we turn to the CSD of two such YSR states, akin to
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Figure 2: ECT and CAR coupling between YSR states. a, Illustration of the e�ective two-site system of YSR
states coupled via ECT (�) and CAR (�). b–d, Conductance matrices of CSDs measured at di�erent �H. By tuning
the electrochemical potential of the ABS in the hybrid, it is possible to continuously vary � and �. In b, avoided
crossings along the anti-diagonal are observed, indicating � > �. The opposite regime is shown in d, with all the
avoided crossings along the diagonal, indicating � < �. The crossover between these two regimes is shown in c,
where two crossings indicate � � �.

those explored in Refs. [52, 53]. In �gure 2b, we show the zero-bias conductance matrix
measured as a function �RP and �LP when the ABS is tuned away from its energy minimum.
All elements of the conductance matrix show prominent resonances arising from the two
charge transitions of each QD. The type of avoided crossings observed in the CSD serves
as an indication of the coupled-YSR system’s ground state [8, 26]. Avoided crossings
along a negative diagonal, as seen in all four resonances in �gure 2b, show hybridization
between states with the same total charge. This is the ground state of the system when
� > �. This observation is further con�rmed by the negative non-local conductance that is
characteristic of ECT [8].

Increasing the value of �H leads to a change in the CSD, shown in �gure 2c. Here, the
bottom-left and the top-right resonances show avoided crossings along a positive diagonal
associated with � > �. In the top-left and bottom-right, the resonance lines cross each other,
indicating a PMM sweet spot, with � � �. Finally, bringing the ABS close to its energy
minimum by a further increase of �H tunes all of the quadrants of the CSD to the � > �
regime (Fig. 2d). The theoretical model reproduces the observed evolution of the CSDs
(�gure 10a–c).

5.4 G��� ������� �� CAR ��� ECT
ABS-mediated ECT and CAR couplings between QDs are controlled by the chemical poten-
tial of ABS [25, 49]. At the energy minimum of the ABS, its excitation is equally electron-
and hole-like, both parts interfering constructively to enhance CAR and destructively to
quench ECT. Finite values of �H lead to an imbalance between the electron and hole parts of
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Figure 3: ECT and CAR coupling as a function of the ABS chemical potential. a, CSD measured using
RF re�ectometry. The center of the avoided crossing, marked with a gray cross, is identi�ed as �L = �R = 0. b,
Spectrum measured on both sides of the device at the center of the avoided crossing shown in a. The inner peaks
correspond to excited states at |� ��|, while the outer ones correspond to excited states at � +�. By summing and
subtracting these energies, it is possible to extract � and � for each �H value. c, Spectrum as a function of �H while
�L = �R = 0. Each line of the spectrum was measured as described above. The blue tick indicates the �H value
at which a and b were measured. d, ECT and CAR couplings extracted from c. e, Zoom-in on the zero-energy
crossings highlighted in c. The white dotted lines are �ts to extract the slope of the linear splitting. The data
reported here was collected for the bottom-right charge transition shown in �gure 2. More details about data
processing and data for all charge degeneracies are reported in �gure 11.

the ABS, decreasing the value of the CAR coupling while enhancing ECT. This control over
the ECT and CAR amplitudes guarantees a PMM sweet spot when the two QDs are coupled
via a single ABS [25, 26, 49]. To demonstrate that this description can be extended to YSR
states coupled via an ABS, we study how the couplings � and � vary as the electrochemical
potential of the ABS changes.

The magnitudes of � and � can be extracted by measuring the excitation spectrum of
the system at �L = �R = 0, when spectral splitting is determined by the couplings alone.
We limit the discussion here to the bottom-right crossing of �gure 2, noting that the other
crossings exhibit qualitatively similar behavior (�gure 11). At each �xed value of �H, we
measure a CSD (�gure 3a) and set the QD gates to the center of an avoided crossing. There,
the subgap spectrum exhibits two sets of electron-hole symmetric peaks at energies |� ��|
and � +� (�gure 3b), as detailed in Methods. By �tting the measured spectrum with two
pairs of Gaussians symmetric around �L,R = 0, we extract the energy of the excited states
and calculate � and �. We repeat this procedure for di�erent values of �H and collect the
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spectra in �gure 3c, where each line was measured as described above.
�gure 3d shows the extracted values of ECT and CAR amplitudes. At �H � 322mV and

�H � 355mV, the outer peaks almost merge with the inner ones, indicating |� ��| � � +�.
Inspecting the corresponding CSDs (see �gure 2b for an example, all the CSDs are available
in the online repository), we can see that ECT is dominant and, therefore, � � �. Upon
varying �H, the two peaks split into four well-separated peaks, signaling that CAR is
increasing although ECT still prevails. At �H � 333mV and 345mV, the two inner peaks
merge into a single zero-bias peak. These are two sweet spots where � � �. In between
them, CAR dominates, as the CSDs can con�rm (see �gure 2d). Around �H � 338mV, the
outer peaks merge again, this time indicating �� �. This feature is the peak in � and dip
in � seen in �gure 3d, because of the aforementioned interference e�ects [25, 49]. Finally,
�gure 10d shows that the same spectral features are reproduced by the theoretical model.

The zero-energy crossings in �gure 3e allow us to characterize the robustness of the
PMM sweet spots to charge �uctuations a�ecting the ABS and, consequently, � and �,
causing a splitting of the zero-energy states. Indeed, we observe that each zero energy
state splits with a linear dependence on �H as predicted by theory, indicating the lack of
protection against deviations from the condition � =� known for a two-site Kitaev chain [3].
We extract a slope of ��

��H
� 7�eV/mV and 3�eV/mV for the two crossings, comparable to

what we measured in Ref. [8].

5.5 M������� ����� ����
Finally, wemeasure the spectrum and stability of the PMM states against perturbation of the
QDs. We tune our device to the sweet spot at �H = 333.5mV, where � � �. In �gure 4a, we
show the full conductance matrix of the CSD at the sweet spot. As expected, the resonance
lines cross each other and non-local conductance alternates between positive and negative
values. The spectrum measured at the sweet spot in the center of the CSD (�gure 4b)
shows, on both sides of the device, a zero-bias conductance peak clearly separated from
the excited states. As a result of the much stronger coupling between YSR states, the �rst
excited states reside at energies of �gap � 76�eV, three times larger than in our previous
report [8] and signi�cantly above the electron temperature.

One of the hallmarks of PMM states is their stability against local perturbations. In
�gure 4c, we measure the spectrum of the QDs varying �RP while keeping the left QD
on resonance. The observed zero-bias conductance peak persists within the range of the
investigated charge degeneracy. Tuning �LP while keeping the right QD on resonance
(�gure 12b) shows the same qualitative features. The same behavior can be reproducibly
observed with other QD and ABS orbitals, as shown in �gure 13.

If the electrochemical potentials of both QDs are detuned from the sweet spot, PMM
states are expected to split quadratically. This is veri�ed in �gure 4d, where we measure
the spectrum while detuning both QDs along the antidiagonal path shown in �gure 4a.
The spectrum taken along the diagonal path is shown in �gure 12c. Numerical simulations
reproducing these measurements are reported in �gure 10e–i. For comparison, we plot the
quadratic dispersion measurements of the QD-based vs YSR-based PMMs side by side in
panels e and f. The curvature of the energy-gate dispersion close to the sweet spot is directly
proportional to the dephasing rate resulting from charge noise a�ecting both QDs [54–57]
and is therefore a measure of the Majorana states’ robustness against it. Comparing the
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Figure 4: Poor man’s Majorana sweet spot for coupled YSR states. a, Conductance matrix of a crossing in
the CSD, when � � �. b, Spectrum of both sides measured at the sweet spot in the center of the crossing of panel
a. c, Conductance matrix of the spectrum as a function of �RP (along the gray dotted line in a). The right QD is
detuned across the sweet spot, while the left one is kept on resonance. d, Conductance matrix of the spectrum
measured detuning both QDs simultaneously along the antidiagonal along the pink dashed line in a. e, f, �RR as
a function of the simultaneous detunings of both sites, ��LP and ��RP, away from the sweet spot, using QDs (e,
replotted from Ref. [8]) and YSR states (f, from the same dataset presented in d). For comparison, we have plotted
the two gate dispersions with the same scale in both plots. The green dotted lines correspond to the expected
energy splitting of a PMM realized with QDs, the blue dashed lines to that of a PMM realized with YSR states, as
detailed in the Methods section.

overlaid curves in �gure 4e and f, we �nd the gate dispersion curvature reported in this
work to be a factor of � 150 lower than the non-proximitized case (details in Materials and
Methods). This striking reduction can be fully explained by the decreased lever arm of the
YSR states, � and the increased �gap, since the curvature expected from the theory model
is �2/�gap (see Materials and Methods).

To illustrate the e�ect of reduced charge dispersion on the coherence of a potential
poor man’s Majorana qubit, we calculate the dephasing rates using realistic charge noise
estimations and data presented above (see Supplementary Information). While perturbation
of QDs’ potentials is expected to be the dominant mechanism of energy splitting and thus
dephasing for non-proximitized PMMs, the drastic reduction in gate dispersion of YSR-
based PMMs makes it negligible compared to dephasing caused by deviations from the
� = � condition. The estimated � �2 � 10ns is now limited by noise a�ecting the couplings
� and �, nearly an order of magnitude higher than the charge-noise-limited � �2 extracted
from data in our previous report [8]. Importantly, the expected dephasing time is now also
much longer than the adiabatic limit –�/�gap � 10ps, which sets an upper bound on how
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fast Majorana states can be manipulated without populating the excited states [5, 54].

5.6 C���������
In conclusion, we have demonstrated the formation of YSR states by hybridizing QDs
with a common ABS. The coupling between these YSR states can be controlled by varying
the electrochemical potential of the ABS, thus realizing a fully tunable two-site Kitaev
chain. The resulting PMM states have two signi�cant improvements over those in a non-
proximitized QD chain. First, the stronger coupling between the YSR states triples the
gap between the PMM and excited states, protecting the former from �nite temperature
excitations [55] and enabling faster adiabatic operations [5, 54]. Second, the reduced
charge dispersion of the YSR states enhances the robustness of the PMMs against charge
noise a�ecting both QDs by more than 100. Thanks to these, even a two-site Kitaev chain
realized using YSR states should su�ce for a prototypical Majorana qubit and veri�cation
of non-abelian properties with fusion and braiding experiments. Despite the present lack
of protection against tunnel-coupling noise, the expected coherence of Majorana qubits
made from PMM states is increased by close to an order of magnitude compared to the �rst
report [8]. In the future, increasing the number of sites can mitigate noise a�ecting the
tunnel-coupling rates. Estimations using parameters of the YSR-based PMMs suggest that
a Majorana qubit realized with Kitaev chains as short as 3 to 5 sites could already achieve
dephasing times comparable to those predicted for continuous nanowires [2, 55].

5.7 M�������� ���M������
5.7.1 D����� �����������
The InSb/Al hybrid nanowire device presented in this work was fabricated using the
shadow-wall lithography technique [36, 37].

A substrate is patterned with Ti/Pd gates. 10nm of AlO� and 10nm of HfO� are
deposited by ALD as gate dielectric. HSQ shadow-walls are then patterned. Nanowires are
deposited and pushed next to the shadow-walls using an optical micro-manipulator. An
8nm Al shell is deposited at alternating angles of 15� and 45� with respect to the substrate,
followed by a capping layer of 20nm of AlO� . Normal leads in ohmic contact with the
nanowire are fabricated by Ar milling and evaporation of Cr/Au.

Additional details about the substrate fabrication and the Al deposition are described
in Ref. [38].

5.7.2 T�������� ������������ ��� ���� ����������
The measurements are done in a dilution refrigerator with a base temperature of 30mK. A
magnetic �eld of 150mT is applied along the nanowire axis except in �gure 5c,d.

The three-terminal setup used to measure the device is illustrated in �gure 1a. The SC
lead is always kept grounded. The two normal leads can be voltage-biased independently.
When a bias is applied to one side, the other one is kept grounded. The currents �� and ��
are measured separately. Digital multimeters and lock-in ampli�ers are used to read the
voltage outputs of the current meters. AC excitations of 5�V RMS are applied on each side
with di�erent frequencies (39Hz on the left and 29Hz on the right), except for �gure 6 and
�gure 9d–f, where excitations of 10�V RMS were used.
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O�-chip multiplexed resonators [34] connected to the two normal leads are used for
fast RF re�ectometry measurements. This measurement scheme was employed to speed up
the tune-up of the device, for �gure 3, and for �gure 11, as explained in �gure 3a. Additional
details about the re�ectometry setup are described in Ref. [35].

5.7.3 S������� PMM ��������
The low-energy spectrum of the coupled YSR system arising from the model described in
Supplementary Information can be reduced to that of a spinless PMMmodel [3, 6, 25, 26, 40].

In this simpli�ed model, the non negative energy eigenvalues are [3]

�± =
�
�2+ +�2�+ �2 +�2 ±2

�
(�2+ +�2)(�2�+ �2),

where �± = �L±�R
2 , �L and �R are the chemical potentials of the two sites, and �, � are

the couplings. The spectrum is symmetric around zero energy because of particle-hole
symmetry. If �L = �R = 0, the eigenvalues reduce to �+ = � +� and �� = |� ��|. These are
the excitation energies that we use to extract � and � from the measured spectra in �gure 3.

The gate dispersion lines plotted in �gure 4e,f are calculated using the lowest excitation
energy. When � = � we obtain

�� =
�
�2�� 2 +2�2�2

�
�2(�2 +�2�� 2),

where � is the lever arm converting voltage to chemical potential and �� is the simultaneous
detuning of each gate away from the sweet spot. For the PMM realized with QDs, we have
used � = 0.33� and � = 12�eV [8]. For the PMM realized with YSR states we have used
� = 0.05� (�gure 5) and � = 38�eV (�gure 4b). Finally, the quadratic splitting of PMM states
can be derived by expanding the expression above for small �� , which gives

�� �
�2

2�
�� 2.

5.7.4 S����� ���������� ����������
The e�ect of series resistance in the fridge line and other parts of the circuit on transport
measurements of a three-terminal device of our type is described in Ref. [58], as well as
how to correct for it. In our setup, the resistance of the voltage source is 100� and that
of the current meter is 200�. Additional series resistance comes from the fridge lines
and the ohmic contacts. Correcting for the voltage fall over these resistors in series to
the device requires knowledge of the exact resistance values, which we presently cannot
obtain before the next sample exchange. Therefore, we make use of the fact that the bulk
Al superconducting gap in local conductance measurements should stay constant across
all gate values to arrive at an estimation of the total series resistance in each fridge line.

In �gure 14a,c it is possible to observe that the superconducting gap appears enlarged
when there is �nite subgap conductance, indicating unaccounted-for series resistance. To
estimate it, we correct the �LL measurement shown in �gure 14a for di�erent trial values
of the series resistance. We extract the energies of the coherence peaks and calculate their
variance. Finally, we choose the value that minimizes the variance as the optimal series
resistance. We �nd an optimal value of 3.65k�, in addition to the resistance of the voltage
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source and current meter. The corrected measurement is shown in �gure 14b. All the data
processing steps are available in the online repository. In �gure 14c,d we show that the
same series resistance value also corrects an analogous measurement on the right side. In
the regimes relevant to this work, the voltage divider e�ect caused by the series resistance
does not strongly a�ect local conductance. On the other hand, it can be more pronounced
for non-local conductance, as discussed in �gure 14e,f. Using the extracted resistance value,
we apply the correction method described in Ref. [58] to the data presented in �gure 2,
�gure 3, �gure 4, �gure 6, �gure 9d, �gure 11, �gure 12, �gure 13d–k, and �gure 14b,d,f,
where the full conductance matrix is measured.

5.7.5 D����� �������

The device is controlledwith seven bottom gates (�gure 1a). To perform tunnel spectroscopy
of the hybrid segment in �gure 6 and �gure 9, we use �LT and �RT to form a tunnel barrier
and apply a large positive voltage to �LP, �RP, and the outer gates. �H is used to control
the electrochemical potential in the hybrid segment, where discrete states are con�ned
because of the tunnel barriers. QDs are formed by reducing the voltage on the outer gates.
This creates additional tunnel barriers next to the normal leads, thus shaping a con�ning
potential. �LP and �RP control the electrochemical potential of the QDs. Finally, the coupling
between the QDs and the ABS can be controlled using �LT and �RT. By increasing their
voltage, we can achieve the strong coupling regime between the QDs and the ABS in the
hybrid as explained in �gure 1. For all the measurements presented in the main text, the
gates de�ning the tunnel barriers were maintained at the same value.
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5.8 S������������ I����������
5.8.1 T���������� �����
The physical system of double QDs connected by a hybrid segment in the middle can be
well described by a three-site model as below

� = �
�=�,� ,�

��+�� ,

�� = (��+���)���+(������)���+��������+��(�
†
���

†
��+ ������),

�� = ��(�
†
�����+ �†�����)+����(�

†
������ �†�����)

+��(�
†
�����+ �†�����)+����(�

†
������ �†�����)+�.�.. (5.1)

Here�� is the Hamiltonian for the QDs (�= �,�) or the ABS (�=� ) in the hybrid, ��� = �†�����
is the occupancy number of the QD orbital or normal state in the hybrid with spin �, �� is
the chemical potential energy, ��� is the induced Zeeman energy, �� is the charging energy,
and �� is the induced superconducting gap. �� is the tunnel Hamiltonian between the QDs
and the ABS, where ��/� and ����/��� are the amplitudes for the spin-conserving and
spin-�ipping single electron tunneling processes. The parameters used for the numerical
simulations performed in this work, in unit of �� � �, the induced gap on the ABS, are:
��� = ��� = 1.5�, ��� = 0.5� for Zeeman energy, �� = �� = 5�, �� = 0 for charging
energy, �� = �, ���� = ��/2, �� = 0.75�, ���� = ��/2 for tunneling amplitudes, and
�� = 0,�� = � for induced gaps on the QDs. Here the magnitude of the Zeeman energy
on the ABS is weaker than that in the QDs owing to the � factor renormalization in the
hybrid. Furthermore, an extra pairing gap is added on the right QD to explain the residual
Andreev conductance when the ABS is far from its energy minimum, as shown in the
measurement in �gure 1. The sweet spot investigated in �gure 10e–i corresponds to
�� = 0.617�, �� = 2.290�, and �� = �5.879�. Finally, in �gure 8, we calculate the electron
and hole character of an excitation between two states of di�erent parity as

�2� = �
�=�,�

|��| �†�� |��|
2, �2� = �

�=�,�

|��| ��� |��|2, (5.2)

where |�� is the even state and |�� the odd one.
In the experimental device, conductance spectroscopy of the hybrid system is measured

in a three-terminal junction with two normal leads and one grounded superconducting
lead. To numerically simulate the transport measurement, we attach two additional normal
leads to the two QDs, respectively. The lead Hamiltonians are

�lead = �
�=�,�

�
�=�,�

�
�

(�����lead,�)�
†
������� , (5.3)

where ���� is the annihilation operator of a free electron with momentum � and spin �
in lead-�, ��� is the kinetic energy, and �lead,� is the lead chemical potential. The tunnel
Hamiltonian between leads and the QDs is

�� ,lead = �
�=�,�

�
�=�,�

�
�

��
��

†
������ +�.�., (5.4)
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where ��
� is the tunneling amplitude between QD-� and lead-�, and is assumed to be spin-

diagonal and independent of �. A more useful physical quantity to characterize the lead
coupling strength is �� = 2����2

� with � being the density of states at the Fermi energy of the
normal lead. Based on the model Hamiltonians introduced above, current and conductance
matrices can be numerically calculated by solving a rate equation for the reduced density
matrix of the hybrid system. We set the temperature ��� = 0.04� and tunneling strength
�� = 0.03� to be the same for both normal leads. Finally, when simulating the local Andreev
conductance of a QD-ABS system, we are actually considering a two-terminal junction by
removing the quantum dot and the normal lead on the other side.

5.8.2 E��������� �� ��������� �����
A minimal Majorana qubit consists of two subsystems, each hosting one pair of Majoranas:
��1,��2, and ��1,��2. It is possible to encode a qubit in the subspace of either even or
odd global fermion parity. Without loss of generality, we focus on the even subspace.
We de�ne qubit states |0� � |��,���, with the fermion parity of each subsystem being
odd, and |1� � |��,���, each being even. The qubit Pauli operator �� is then identi�ed as
���1��2 = ���1��2 and the e�ective Hamiltonian is [6, 54, 57]

� =
�
2
(����1��2 +����1��2) = ��� , (5.5)

where ��,� = ���,� ����,� is the excitation energy of each subsystem and � � (��+��)/2.
An ideal Majorana qubit has � = �� = �� = 0. Uncontrolled �uctuations of � lead to

qubit dephasing [54–57]. If the typical amplitude of � �uctuation is ��, the dephasing rate
is 1/� �2 � ��/–� [9, 54]. In the following estimations, we assume the two subsystems are
similar and omit details of the statistical distribution of the noise, so that ��� � ��� � ��.
Thus, we use the typical energy �uctuations of one pair of PMM to estimate the dephasing
rates of a qubit.

Energy splitting of a pair of PMM can occur due to two reasons: the degeneracy splits
quadratically when the QDs are detuned simultaneously (�L = ±�R � 0) and linearly when
the ECT and CAR couplings are perturbed from the sweet spot (� � �) [3]. Other types
of noise, e.g., magnetic �uctuations, enter the Hamiltonian parametrically via these two
mechanisms. In the main text, we have characterized the sensitivity of the degeneracy to
each of them by intentionally tuning gate voltages away from the sweet spots. These gate
dispersion results allow us to estimate the dephasing rate given typical noise amplitudes
found in QD qubit devices. Concretely, we consider random �uctuations of the gate voltages
controlling the electrochemical potential of the QDs (�LP, �RP) and ABS (�H), the former
causing on-site potential �uctuation and the latter that of the tunneling amplitudes.

We �rst focus on charge noise a�ecting the QDs. In �gure 4f, we have measured the
quadratic splitting of the PMM when the electrochemical potential of both QDs is detuned
from the sweet spot. Given the vanishing �rst derivative of the gate dispersion, we extracted
a second derivative of �2�/�� 2

LP � 30e/V, two orders of magnitude smaller than the one
measured in our previous report, �2�/�� 2

LP � 4500e/V [8]. In previous measurements of
charge �uctuations of a QD [59–63], equivalent voltage noise on the gates is typically
found to be �� � 10�V (after accounting for the gate lever arm). A worst-case estimation of
maximally (anti)correlated gate noise on both QDs predicts a resulting energy �uctuation of
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�� � �2�
�� 2

LP
�� 2, yielding� 3neV for the YSR-based PMM states in this work and� 450neV for

our previous work. These correspond to dephasing rates of ��/–� � 5MHz and � 700MHz
for the two cases, a direct consequence of the two orders of magnitude of gate dispersion
suppression.

We now turn to charge noise a�ecting the ABS and thereby the couplings between QDs,
� and �. Given the charge sensitivity of the hybrid ABS and its key e�ect on modulating
the tunneling amplitudes, we assume the primary source of � �� variation to be charge
�uctuations of the ABS. In �gure 3e, we have estimated the noise sensitivity of two PMM
sweet spots against perturbation on �H. We found ��/��H � 3 to 7 �eV/mV, comparable
to our previous work [8]. Although the exact sensitivity depends on microscopic details,
we note that the superconducting lead, in general, strongly screens charge �uctuations.
This explains the small lever arm for an ABS in the hybrid segment, which is � 1/20 that
of a normal QD (see �gure 6 and �gure 7a). By considering the worst sensitivity and the
same �uctuations as before, we estimate typical splittings of �� � ��

��H
�� = 70neV and a

dephasing rate of � 100MHz.

Comparing the dephasing rates, we �nd that on-site QD charge �uctuations likely
dominated dephasing of PMM qubits made from non-proximitized QD states. With the
introduction of YSR-based Kitaev chain and its strongly suppressed gate dispersion, the
QD charge �uctuation will likely no longer be the main source of dephasing. Instead,
tunneling amplitude variations, not suppressed by the formation of YSR states, becomes
the more probable primary dephasing mechanism. While reducing sensitivity to tunneling
amplitude �uctuations is beyond the scope of this paper, we remark here that a possible
solution is to increase the number of sites of the Kitaev chain to at least 3 [2].

Finally, we comment on a few additional details not addressed by the discussions above.
We estimated energy �uctuations only using equivalent gate �uctuations converted from
previous charge noise measurements. This does not describe other sources of decoherence
including that due to quasiparticles [55, 64] and electron-phonon coupling [55]. We do not
expect our estimations to be drastically altered if these e�ects are included, given the low
electron temperature and that electron-phonon dephasing rates measured in charge qubits
realized in III/V semiconductors are on the order of 100MHz [65, 66], comparable to our
estimated dephasing rates due to tunneling-rate variations. Ultimately, a realistic quanti-
tative noise model would require the measurement of the noise spectrum and dephasing
times. Despite all these simpli�cations, the dephasing rate estimations indicate that there
should be a reasonable time window where it is possible to adiabatically manipulate PMM
states before they decohere signi�cantly. This is a necessary condition to demonstrate
qubit, fusion, and braiding protocols based on PMM states [4–6]. In the future, longer
Kitaev chains are expected to increase the dephasing time, since the energy splitting is
predicted to decrease exponentially with the number of sites [2].

D��� ������������ ��� ���� ������������
Raw data presented in this work, the data processing/plotting code, and code used for the
theory calculations are available athttps://zenodo.org/records/10013728.

https://zenodo.org/records/10013728
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Figure 5: Characterization of the YSR states at � � �. a, Local conductance measurement of the spectrum of
the left YSR state when the right one is o�-resonance. �H = 333.5mV is tuned such that � � � for the crossing
showed in �gure 4a. The lever arm at charge degeneracy is � 0.05�, extracted using the black dotted line. b, Same
as panel a, but for the right YSR state. We extract a lever arm of � 0.04�. c, Local conductance measurement
of the Zeeman splitting of the left YSR state, at the same value of �H as above. The �eld is applied along the
nanowire axis. The gray dotted line indicates the �eld at which all the other measurements were conducted.
The left dot was positioned at the charge degeneracy point at � = 150mT and the right one o�-resonance. We
extract a g-factor of � 24, consistent with previously measured values for strongly proximitized states in similar
devices [38]. The corresponding Zeeman splitting at 150mT is � 200�eV. d, Same as panel c, but for the right
YSR state. We extract the same g-factor as for the left YSR state.
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Figure 6: Spectroscopy of the hybrid segment. Conductance matrix of the hybrid spectrum as a function of
�H. The hybrid segment hosts separated ABS that can mediate the coupling between the QDs. The gray dashed
lines indicate the range of �H used for the measurements presented in the main text. The lever arm is � � 0.02�
as extracted from the black dotted lines superimposed on the ABS in panel d, indicating a strong screening e�ect
of the superconducting lead. For this measurement, the two sides are tuned as tunnel barriers as described in the
Methods section. When QDs are formed, �LT and �RT are increased to reach the strong coupling regime between
them and the ABS. This a�ects the ABS spectrum because of cross-coupling and modi�cation to the con�ning
potential. Therefore, the �H values and the energy of the ABS in this measurement are slightly di�erent from
those presented in the main text.

a b c

Figure 7: High-bias spectroscopy of the QDs. a, Coulomb diamonds for the left QD when it is not coupled to
any ABS by closing �LT and keeping ABSs o�-resonance. From the overlaid black dotted lines, we extract typical
charging energies of � 3.5meV and lever arms of � � 0.4�. b, Local conductance spectroscopy of the left QD as
a function of �LP after �LT is increased to strongly couple to an ABS. The measurement was taken in the same
con�guration as �gure 1g, with the ABS o�-resonance. We extract a charging energy of � 2meV and a lever arm
of � � 0.2�, which are renormalized because of the lowered tunnel barriers. c, Same as panel b, but for the right
QD. Typical QD features are not as clearly visible since the state is signi�cantly proximitized by the SC, as shown
in �gure 1j and in �gure 9a–c. By overlaying the visible features, we extract a charging energy of � 2meV and a
lever arm of � � 0.2�. These measurements were taken applying a �eld of 150mT along the nanowire axis.
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a b c

Figure 8: Properties of the YSR zero-energy excitation. a, Charge of the YSR excitation residing on the left
QD (blue line) and on the ABS (orange line). The charge is calculated as �2� ��2� , with � = � for the QD and � =� for
the ABS, as de�ned in Supplementary Information. The gray dotted line corresponds to the �H value used for the
sweet spot studied in �gure 10e–i. The decrease of the charge residing on the QD explains part of the lever arm
reduction observed for YSR states (�gure 1h). A further reduction comes from charging energy renormalization.
b, Weight of the YSR excitation wavefunction on the left QD (blue line) and on the ABS (orange line). The
weight of the wavefunction on each site is de�ned as �2� + �2� . When the ABS is close to its energy minimum at
�H = 0, the hybridization between the QD and the ABS becomes stronger and the excitation is delocalized on
the two sites, thus reducing the charge residing on the QD. c, Charge of the YSR excitation normalized for the
wavefunction weight residing on the left QD (blue line) and on the ABS (orange line). The normalized charge is
de�ned as (�2� � �2� )/(�

2
� + �2� ) and it quanti�es the mixed electron and hole character. It ranges from 1 to �1 when

the excitation is purely electron- and hole-like, respectively. Although the charge of a YSR state is not a good
quantum number while ECT/CAR is de�ned using charge states, the predominance of a charge character justi�es
our use of ECT and CAR in the main text, as investigated in more detail in Ref. [40].
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Figure 9: QDs directly proximitized by the superconducting �lm. a–c, Same as �gure 1c–e, but with an
additional gate-independent source of proximity for the QD, as discussed in Supplementary Information. d,
Conductance matrix for tunnel spectroscopy of the hybrid section as a function of �H. The green tick marks the
value of �H at which the measurements in e and f were taken. In this regime, there are no subgap states. e, f, Local
tunnel spectroscopy of the left (b) and right (c) QDs at low �H. Although there are no subgap states in the hybrid,
it is possible to tune the QDs in a regime where a gap and subgap states appear. We interpret this as arising from
the QDs being proximitized by the Al, indicating that the proximity of the QDs can be not exclusively due to
subgap states in the hybrid. These measurements were taken applying a �eld of 150mT along the nanowire axis.
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Figure 10: Numerical simulations of coupled YSR states a-c Numerical conductance matrix of the CSDs of
coupled YSR states varying �H, reproducing �gure 2. d, Numerical conductance spectrum of coupled YSR states
as a function of the ABS chemical potential. The spectrum is calculated following the same approach discussed
in �gure 3 to maintain the chemical potentials of the QDs at the center of the crossing. The theoretical model
reproduces the experimental �ndings presented in �gure 3. e, Numerical conductance matrix of a crossing in
the CSD, when � � �, at �H = 0.617�. f, g, Numerical conductance matrix of the spectrum as a function of the
right (f)/left (g) QD detuning along the green/blue dotted line in panel a. The other QD is kept on resonance. The
numerical results reproduce the measurement shown in �gure 4c/�gure 12b. h, i, Numerical conductance matrix
of the spectrum calculated detuning both QDs simultaneously, along the pink/gray dashed line in panel e. The
numerical results reproduce the measurements shown in �gure 4d/�gure 12c.
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Figure 11: ECT and CAR coupling for all the resonances. a–d, (i) Conductance matrix of the spectrum of two
coupled YSR states as a function of �H, measured as described in �gure 3. The extracted peaks are marked with
gray dots. (ii) Energy of the excited states, calculated by averaging the peaks at positive and negative bias of
both the left and the right spectrum. From the outer peaks we extract � +�, from the inner ones |� ��|. The gray
dashed lines indicate a change of sign of � ��. In particular, � < � within the lines and � > � outside. In c a gate
jump a�ected the measurement of the spectrum for two values of �H. These are highlighted with red dotted lines
in c(ii) and c(iii). Parts of d were presented in �gure 3.

a b c

Figure 12: Additional PMM spectra. a, CSD for a PMM sweet spot. Same as �gure 4a, but with di�erent paths
highlighted. b, PMM spectrum measured along the vertical path of panel a. The left QD is detuned, while the
right one is kept on resonance. The asymmetry with respect to �L = 0 can be attributed to the asymmetric energy
dispersion of the left YSR state (see �gure 5a). c, PMM spectrum measured detuning both QDs along the diagonal
path of panel a. The asymmetry with respect to �L = �R = 0 can be explained as discussed in panel b.
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Figure 13: PMM with di�erent YSR and ABSs. a–c Similarly to �gure 1, QD-ABS CSDs (a), spectra of the
YSR states when the ABS is at its minimum energy (b), and for a �H corresponding to a � = � sweet spot (c), as
described in the next panels. The colors of the frames correspond to the �H values indicated in panel a. d–e,
Conductance matrix for YSR states CSDs when the ABS is at its minimum energy (d) and slightly detuned (e), as
discussed in �gure 3. The color of the frames correspond to the �H values indicated in panel a. f, Zoom-in on
the bottom right crossing of panel e, corresponding to a PMM sweet spot. g, Left and right conductance spectra
measured at the PMM sweet spot, corresponding to the black dot at the middle of the crossing in f. The gap
between the ground and the �rst excited states is �gap � 71�eV. h–k, Conductance matrix of the PMM spectra
along the paths in panel f, analogously to �gure 4 and �gure 12.
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Figure 14: Estimation of series resistance. a, Tunnel spectroscopy of the hybrid spectrum from both sides
varying �LT. Whenever there is �nite subgap conductance, the parent gap expands because of the voltage divider
e�ect. b, Same measurement as in panel a, after correcting the voltage divider e�ect. We �nd that a series
resistance of �series = 3.65k� corrects the gap increase discussed above. In addition, we also considered a total
resistance for the voltage source and current meter of 300�. c, d, Same as panels a and b, but for the right side. e,
f, CSD presented in �gure 4a, before (e) and after (f) correcting the voltage divider e�ect. The local signal is not
signi�cantly a�ected. On the other hand, the alternating positive and negative non-local signal becomes clearer
after the correction. In particular, it approaches zero in the middle of the crossing, indicated by the black arrow.
Without series resistance correction, the �nite non-local signal at the center of the crossing in panel e could be
misinterpreted as a signature of low Majorana polarization [26].
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There are no secrets about the world of nature. There are secrets about the thoughts and
intentions of men.

- J. Robert Oppenheimer
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The Kitaev model can be implemented by a chain of quantum dots (QDs) coupled
together through interleaved semiconductor-superconductor hybrid segments hosting
Andreev bound states (ABSs). Tuning the energy of the ABSs changes the tunneling rate
between the QDs as well as the rate of Cooper pair splitting into the QDs. The system
reaches a sweet spot when these two rates become equal, at which point Majorana zero
modes appear at the system edges. However, for these emerging Majorana zero modes to
be of use for braiding, anyon fusion and qubit experiments, it is required to tune up large
chains to the sweet spot, which is an increasingly challenging as the system size increases.
In this work, we report on an automated tuning algorithm that drives a minimal, two-site
Kitaev chain into a sweet spot. The algorithm is based on a convolutional neural network
that predicts the rates of tunneling and Cooper pair splitting from charge stability diagrams
measured using di�erential conductance. These predictions are used in a gradient descent
algorithm that changes the electrochemical potential of ABSs until a sweet spot is reached.
We �nd that the algorithm converges within ±1.5mV of a sweet spot in 67.6% of the cases,
and within ±4.5mV in 80.9% of the cases. On average, a sweet spot can be found in 45
minutes. Our work opens the door for automatically tuning up the longer Kitaev chains
that are required for quantum information experiments using Majorana zero modes.

6.1 I�����������
Majorana zero modes (MZM) are predicted to manifest as emergent modes in a one-
dimensional Kitaev chain [1]. MZMs not only represent a key milestone in de�ning the
intersection of topology and condensed matter physics [2], but they also hold particular
interest in the �eld of topological quantum computing [3]. This interest is largely due to
their predicted resilience against certain types of experimental noise [4–7]. The Kitaev
model can be implemented in a chain of quantum dots (QDs) with spin-orbit interaction,
coupled to superconductors [8, 9]. In this implementation, the co-existence of electron
hopping and superconducting pairing results in MZMs appearing at the chain ends. Even
a two-site Kitaev chain is predicted to host MZMs in a parameter sweet spot, in which
the elastic co-tunneling rate (ECT) is exactly equal to the crossed Andreev re�ection rate
(CAR) [10]. These transport processes are mediated by an Andreev bound state (ABS)
that couples the two QDs. This minimal Kitaev chain was recently realized in quasi-one-
dimensional nanowires [11] and two-dimensional electron gases [12].

MZMs in Kitaev chains are expected to host non-Abelian statistics, paving the way for
quantum information processing, including fusion, braiding, and qubits [13–15]. These
proposed experiments require tuning multiple pairs of QDs into the sweet spot where the
ECT and CAR rates are equal, which amounts to changing the ABS energy using a gate
voltage [16, 17]. Changing this gate voltage can a�ect other QDs through cross-coupling.
As a result, tuning sweet spots in Kitaev chain devices is a complex iterative process that
becomes lengthier and more complicated with each added QD. Furthermore, the qubit
dephasing rate of Kitaev chains is predicted to be dominated by deviations of the ratio
of ECT and CAR away from the sweet spot [18], which in turn demands strict temporal
monitoring of the sweet spot condition.

Both tuning-up and monitoring sweet spots are essential algorithms that are currently
performed manually and might bene�t from automation to improve the speed and per-
formance of complex measurements. Generally, a combination of quantum noise and
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complex electronics makes algorithmic tuning of contemporary quantum devices a chal-
lenge. For this reason, many experiments rely on human operators for tuning and operation
as automation is challenging. The generalization and fast application of machine learning
methods, such as neural networks, introduced a new paradigm in the space of experimental
control, tuning, and devices [19–23]. These e�orts include various stages of tune-up of
electrostatically de�ned quantum dots [24–31], optimizing electrostatic gate settings in
semiconductor-superconductor nanowires [32], and Hamiltonian learning [33–38]. In our
previous work, we have deployed a conditional generative adversarial neural network to
learn the Hamiltonian of a two-site Kitaev chain and estimate the distance to the sweet-spot
regime [39].

In the present work, we put forward a completely autonomous tune-up procedure
for driving a Kitaev chain device into a sweet spot. First, we use a convolutional neural
network (CNN) to determine whether a given measurement was taken in an ECT-, or
CAR-dominated regime. The output of this classi�cation is then used as an input for a
gradient descent algorithm that minimizes the distance to sweet spots by adjusting device
voltages. On average, we �nd that 67.6% of tuning runs converges within ±1.5mV, and
80.9% converges within ±4.5mV of a known sweet spot. We utilize two di�erent device
types in this work. Device A is an InSb-Al nanowire-based two-site Kitaev chain device.
We apply the neural network algorithm to device A without utilizing any training examples
speci�c to this device. Instead, we pre-train the model exclusively on transport data derived
from a theoretical model, in addition to experimental data obtained from device B: an
InAsSb-Al two-dimensional electron gas (2DEG) device.

6.2 D����� ����������������
In this work, we employ two devices: device A, which we use for the automated tuning
algorithm, and device B, which we use for testing and retraining the neural network.
Device A consists of QDs de�ned in an InSb nanowire as shown in �gure 1a. The nanowire
(green) is deposited on bottom �nger gates (red), and contacted by normal Cr/Au (yellow)
contacts at its ends. The middle section of the nanowire, the hybrid, is contacted by a
grounded Al shell (blue). Further details pertaining to the device fabrication can be found
in Refs. [40, 41]. The left and right normal leads can be biased with respect to the grounded
Al with voltages �L and �R respectively. The current running through the left lead (�L)
and through the right lead (�R) can be measured independently. Using standard lock-in
detection, we obtain the local and non-local di�erential conductances [42]:

�LL = ��L/��L, �RR = ��R/��R
�RL = ��R/��L, �LR = ��L/��R

Measurements of the local conductances, �LL and �RR, for varying �LP and �RP are used
as an input for a CNN that predicts the rates of elastic co-tunneling (ECT) and crossed
Andreev re�ection (CAR) (see section 6.7.1 for details on the CNN architecture). This
prediction is then fed into a gradient descent algorithm that adjusts �ABS until the rates
are equal, marking a sweet spot. While we could have equally used �RL and �LR as input
for the CNN, measurements of non-local conductance require a multi-terminal set-up that
does not scale well for longer Kitaev chains.
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Figure 1: Device A set-up and characterization. a. False color SEM micrograph of our device, and the circuit.
An InSb nanowire (green) is contacted by a grounded Al shell (blue) and two normal leads (yellow). The nanowire
is placed on bottom gates (red). The relevant gate voltages are indicated by text. Both normal leads can be voltage
biased independently with respect to the grounded Al. b. Local di�erential conductance measured from the right
lead, �RR, for varying hybrid plunger gate voltage, �ABS, and �R at � = 0T. c. The current measured at the left
lead, �L, for varying plunger gate voltage of the left quantum dot (QD), �LP, and bias voltage applied to the left
lead, �L. d. The current measured at the right lead, �R, for varying plunger gate voltage of the right QD, �RP,
and bias voltage applied to the right lead, �R. e.-g. The product of the left and right di�erential conductance,
�LL ��RR, for varying �LP and �RP at �L = �R = 0V. The measurements were performed at �ABS values of 85mV,
104mV and 115mV respectively. h.-j. Non-local conductance, �RL = ��R/��L for varying �LP and �RP. The data
was measured simultaneously with panels e-g.

First, we characterize the spectrum of the hybrid segment by accumulating electrons in
the InSb nanowire, and de�ning tunnel barriers using the two gates directly next to the
hybrid segment. In �gure 1b, we show �RR for varying �R and hybrid plunger gate voltage,
�ABS. A hard superconducting gap is observed over the entire gate voltage range. Multiple
discrete states are observed in this range, whose gate dependence is typical for Andreev
bound states (ABSs). Then, we change the tunnel gate voltages to de�ne quantum dots
(QDs) to the left and right of the hybrid. We control their electrochemical potentials by
varying the plunger gate voltages �LP and �RP. We characterize the left QD by varying
�LP and �L while measuring �L as shown in �gure 1c. For small bias voltage the current
is fully suppressed due to the Coulomb blockade and as the bias increases we see current
appearing in the form of Coulomb diamonds. Additionally, we notice that a gap has opened
around the Fermi level due to the superconducting Al. We also perform an analogous
measurement of the right QD as shown in �gure 1d. Here, the Coulomb diamonds are
more di�cult to resolve than in �gure 1c, which we attribute to a stronger tunnel-coupling
to the superconductor [43].

After de�ning the QDs, we set �ABS = 85mV and measure charge stability diagrams
(CSDs). �gure 1e, shows the correlated local conductance, �LL ��RR, for varying �LP and
�RP. This correlated conductance is only �nite when transport processes involve both
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QDs. Therefore, it �lters out features that are local to only one QD, such as Andreev
re�ection. We see an avoided crossing in �gure 1a that indicates hybridization between
the left and right QD levels. �gure 3h shows the non-local conductance, �RL, that was
measured simultaneously. The negative sign of �RL indicates that the ECT rate is greater
than the CAR rate, � > �, which is con�rmed by the anti-diagonal avoided crossing [11].
�gure 3f, i show �LL ��RR and �RL respectively, for varying �LP and �RP at �ABS = 104mV.
Here, the avoided crossing is now diagonal and the sign of �RL is positive, indicating that
CAR dominates over ECT. �gure 3g, j show �LL ��RR and �RL at �ABS = 115mV. There is
no avoided crossing in the CSD anymore, and �RL has both negative and positive values,
which is characteristic of the sweet spot where the ECT and CAR rates are equal.

6.3 T����� A��������

a
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Figure 2: Device B charge stability diagrams and simulations. a. Schematic overview of the model system.
Two quantum dots (QDs) are coupled by an Andreev bound state (ABS) in a semiconductor (gray) coupled to a
grounded superconductor (blue). b. False color SEM image of device B. A 1D channel is de�ned in the InAsSb
(green) using a top and bottom depletion gate (light red). The InAsSb is contacted in the middle by a grounded Al
strip (blue). QDs are de�ned the left and right of this hybrid segment using �nger gates (darker red). The InAsSb
channel is contacted from the sides by two Ti/Au leads (yellow). Scale bar is 200 nm. c-e. Simulated conductance,
�LL ��RR at zero energy, for varying chemical potential of the left and right quantum dots, �L and �R. These were
generated for (� ��)/(� +�) = {�1/3, 1/3, 0} respectively. f-h. Measured �LL ��RR, for varying �LP and �RP at
�L = �R = 0V for device B. The CNN predicts (� ��)/(� +�) = {�0.31, 0.31, 0.01} for these respectively.

6.3.1 T�����M����
To train a convolutional network to predict the CAR and ECT rates from CSDs, we construct
an e�ective model of the system to simulate transport data. Wemodel the device in �gure 1a
as a 3-site system, where the semiconductor-superconductor hybrid segment gets treated
as individual site, as shown in �gure 2a. The couplings between the two QDs are mediated
by ABSs in the hybrid segment. A more detailed description of the theory model and
Hamiltonian can be found in section 6.7.2. We can write the e�ective Hamiltonian for the
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QDs in the number basis as:

�eff = �
�,�=�,�

�����
†
�������+����

†
����

†
����+�.�. ., (6.1)

The operators � †
�/� (��/�) create (annihilate) a quasiparticle in each QD, that is a superposi-

tion of electron and hole components. ��� and ��� are the ECT and CAR couplings between
electrons (holes) in the two QDs with corresponding spins � and �. Coupling to the ABS
results in an induced gap on each QD, leading us to model them as Yu-Shiba-Rusinov (YSR)
states [44–46]. We perform a Bogoliubov transformation to account for the particle-hole
symmetry on the QDs, and write an e�ective Hamiltonian for two coupled YSR states as:

�eff = ����
†
� ��+����

†
� ��

+ ���
†
� �� + � †

� ���+���
†
� �

†
� + �����

(6.2)

Here, ���/� are the energies of the YSR states and � and � are the generalized e�ective
couplings for the odd-, and even-parity states respectively. While � and � correspond
to ECT and CAR for normal QDs, this is no longer the case for YSR states. Due to local
Andreev re�ection, ECT can now also couple the global even-parity states, and CAR the
odd states (see section 6.7.2 for details).

We note that equation (6.2) is a spinless Hamiltonian that is justi�ed for in�nite Zeeman
energy, for which Majorana zero modes emerge at � = �. We train the CNN on this model,
and apply it to measurements taken both in the presence and absence of a magnetic
�eld. At zero �eld, the odd states are spin-degenerate, and the system has a sweet spot at
� = ��(�) =

�
2�. Here, Majorana Kramer’s pairs emerge that are protected against local

perturbations but have an additional degeneracy (see [47] for details). The CSD in the sweet
spot is identical for zero and in�nite Zeeman energy. As a result, we can train the CNN on
the spinless Hamiltonian, and recognize sweet spots in both the absence and presence of a
magnetic �eld. We shall refer to the renormalized and �eld-dependent parameter ��(�) as
�, to ensure that � = � corresponds to a sweet spot for all magnetic �eld values.

equation (6.2) allows us to compute CSDs using the Mahaux-Weidenmuller formula
and the scattering matrix formalism [48] (see. App. 6.7.2 for more details). We generate
CSDs for varying values of � and �, and show three examples in �gure 2c-e. We label each
generated CSD with (� ��)/(� +�) and train the CNN on 6000 examples (see section 6.7.2
for details on the training set). We use this ratio for labeling, as it is a dimensionless
quantity and scales with the interaction strength � +� of the QDs. In principle, we could
have used (� ��), which is directly proportional to the distance between the hyperbola’s
of the avoided crossing in the CSDs. However, there is a scaling factor that depends on
the measurement resolution, the lever arm of the gates and the range of �LP and �RP. To
eliminate the necessity to manually scale an absolute quantity, we choose the dimensionless
ratio, (� ��)/(� +�).

6.3.2 M���� V���������
As we want the CNN predictions to be transferable between di�erent types of Kitaev chain
devices, we �rst perform measurements on device B, which was fabricated on an InAsSb-Al
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two-dimensional electron gas (2DEG), shown in �gure 2b. Here, a quasi 1-D channel
is de�ned by two large depletion gates. Gate-de�ned QDs are created on the left and
right of a region proximitized by a thin Al strip (blue), using fabrication methods detailed
in [49]. The same measurement set-up is used as for device A. In �gure 2f-h, we show three
example CSDsmeasured at di�erent �ABS values using device B. These CSDs are fed into our
trained CNN, yielding predictions for (� ��)/(� +�) of �0.31, 0.31, 0.01, respectively. The
experimental CSDs closely resemble the generated ones in �gure 2c-e, which we manually
matched with the experimental ones by setting: (���)/(�+�) = {�1/3, 1/3, 0} respectively.
As � and � represent the ECT and CAR rates, validating the CNN predictions requires
determining these rates quantitatively. We extract them by performing bias spectroscopy
at the �LP,�RP values corresponding to the center of the (avoided) crossing of the CSDs
(see section 6.7.6 for details on the labeling procedure).

�gure 3a compares the (� ��)/(� +�) values obtained experimentally with those pre-
dicted by the CNN for a range of �ABS values. The CNN predictions (red markers) generally
match the experimentally extracted values (black markers), with small deviations around
(� ��)/(� +�) = 0. We stress that the CNN has not been trained on any experimental data
for these predictions. To improve the accuracy of the CNN, we retrain it on a part of the
experimental data that we manually labeled (see section 6.7.2 for details). For retraining,
we use 51 labeled CSDs that were randomly sampled from �gure 3a.

The orange markers in �gure 3b show the predictions of the retrained CNN applied
to a test set of 24 previously unseen experimental CSDs. We observe that the predicted
values of (� ��)/(� +�) are closer to the values extracted from spectroscopy compared
to the predictions of the CNN that was trained on the simulated data only. In �gure 3c-e
we show the CSDs measured for device B for �ABS values indicated by the colored marks
in panel b. We see that the avoided crossings in panels c. and e. have reversed direction,
which agrees with the predicted sign change of (� ��)/(� +�) shown in �gure 3b. The
Coulomb resonances form a cross in �gure 3d, which is consistent with the predicted
(� ��)/(� +�) � 0 and indicates a sweet spot.

6.3.3 T������� L�������
Before discussing the CNN’s performance on Device A, it is crucial to note that we only
retrained it on experimental data from Device B. The ability of machine learning algorithms
to generalize is vital, making them highly e�ective for analyzing noisy experimental
datasets. In �gure 3a, we assessed the performance of a CNN that was trained on a
theoretical model only, which may not fully capture the nuances of experimental data. By
retraining the CNN with 51 experimental examples, we observed notable improvements,
as illustrated in in �gure 3b. We now consider a di�erent type of generalization, namely
the machine learning model’s ability to adapt from one device to another. Eliminating the
need for device-speci�c retraining o�ers a signi�cant advantage in time.

We now apply the CNN that was trained on theory simulations and re-trained on
all 75 experimental datasets from device B (2DEG) to device A (nanowire) that is shown
in �gure 1a. The blue markers in �gure 3f show the (� ��)/(� +�) values that we have
extracted experimentally from device A using the same method as for device B. The red
markers show the corresponding predictions of the CNN. We see excellent agreement with
the experimental data for small (� ��)/(� +�). Most importantly, there is good agreement
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for the values of �ABS at which the (� ��)/(� +�) ratio changes sign, indicating a sweet
spot. Around �ABS � 50mV, the CNN predicts values close to 0, which is not in agreement
with the labeled data. We attribute this to the left QD interacting strongly with the ABS,
which exceeds the simpli�ed model used for generating training data (see section 6.7.7 for
details).

The CNN predictions diverge from the labeled data around �ABS � 130mV as well. We
attribute this to a low interaction strength, (� +�), which causes the ratio (� ��)/(� +�) to
become large. As the CNNwas trained and retrained predominantly on strongly interacting
QDs, it generalizes less well to the device with low (�+�). To mitigate the fact that the CNN
identi�es sweet spots in the weakly interacting regime, we regularize the predictions of
(���)/(�+�) based on the total conductance of each CSD (see section 6.7.8 for details). As
seen from the gray markers in �gure 3f, the regularization increases the predicted value of
(� ��)/(� +�) around �ABS = 130mV. We use the regularized predictions in the automated
tuning algorithm to avoid regions of low interaction strength. We conclude that the CNN
can correctly identify � � � at intermediate QD-ABS couplings and non-negligible QD-QD
couplings.

Device A

Device B
a

b

edc

f

Figure 3: Convolutional neural network (CNN) retraining and predictions. a. The weighted ratio of elastic
co-tunneling (�) and crossed Andreev re�ection (�) rates, (� ��)/(� +�), for varying �ABS for device B. The black
markers indicate experimentally-labeled data and the red markers are the CNN predictions. b. (� ��)/(� +�)
of a subset of test data of panel a after retraining the CNN on experimental data. The black markers indicate
experimentally labeled data and the orange markers are the predictions of the retrained CNN. c.-e. The product
of the left and right di�erential conductance, �LL ��RR, for varying �LP and �RP at �L = �R = 0V for device B.
The measurements were performed at the �ABS values indicated by colored marks in panel b. f. (� ��)/(� +�)
for varying �ABS for device A. The blue markers indicate experimentally labeled data, and the red markers are
the retrained CNN predictions. The orange markers are the retrained CNN predictions after performing a data
regularization step.

6.3.4 G������� D������ V������ O�����������
Each CNN prediction of (� ��)/(� +�) is incorporated into a gradient descent algorithm
that sets a new value of the voltage �ABS. The algorithm minimizes the cost function
� (�ABS) = |(� ��)/(� +�)| until it reaches a value below a set tolerance. In each step, �, the
algorithm computes the following quantities [50]:
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a

c

b

Figure 4: Example of an automated tuning run of device A. a. The hybrid plunger gate voltage, �ABS, for
each measurement. b. Prediction of the weighted ratio of elastic co-tunneling and crossed Andreev re�ection,
(� ��)/(� +�), for each measurement. The horizontal, blue lines indicate the tolerance set before the run. c.
�LL ��RR, for varying �LP and �RP for subsequent measurements. The measurement ids are indicated by the bold
text in the top left corner. The predicted value of (� ��)/(� +�) is indicated in the bottom right corner.

���� =
1
�

�

�
�=���

� (�ABS)�� � (�ABS)��1
� �
ABS�� ��1

ABS

�n+1 = ��n + (1� �) ����
� �+1
ABS = � �

ABS� ��n+1

(6.3)

Here, ���� is the gradient of the objective function which is computed after the �th mea-
surement, averaged over the past � measurements. The velocity �n+1 is a mixture of the
previous velocity �n, and gradient ����, weighted by the momentum, �. The change in
�ABS is then determined by �n+1, scaled by the learning rate �. These steps are repeated
until � (�ABS) < �, where � is the tolerance set for each run. We note that in the �rst step
of the algorithm, �ABS is changed by a pseudo-random number drawn from a Gaussian
distribution with a standard deviation of 1, and an amplitude of 1.2mV. This �rst step is on
the order of typical �ABS changes made by the algorithm. The minimal change of �ABS is
set by the 60�V resolution of our digital-analog converters. We limit the maximal change
to 5mV, to prevent large shifts of the QD levels due to cross-capacitance. See section 6.7.9
for details on the algorithm, the choices of � and �, and the algorithm pseudocode.

We now apply the automated tuning algorithm to device A. �gure 4a shows the gate
voltages, �ABS, set by the algorithm for a run that converged below tolerance in 8 steps.
�gure 4b shows the values of (���)/(�+�) predicted by the CNN. Here, the blue horizontal
lines indicate the ideal tolerance, � = 0.01, set before the run. We show the charge stability
diagrams for each step in �gure 4c, and see that the direction of the avoided crossing
reverses between steps 4 and 5. This indicates that (� ��)/(� +�) changes sign, which is
con�rmed by the CNN predictions in panel b. Due to the momentum term � in the gradient
descent algorithm (equation (6.3)), the algorithm �rst proceeds to lower �ABS values before
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the velocity term changes sign. The CNN converges below the tolerance at measurement 8,
which we can con�rm as a sweet spot by identifying a cross in panel �gure 4j. In this run,
the automated tuning was able to correctly identify the sweet spot, as well as vary �ABS to
�nd it. We show an example of a run that did not converge successfully in section 6.7.13.

6.4 T����� A�������� P����������
6.4.1 Z��� F���� A�������� P����������

a b c d

I

II

III

IV

V

VI

VII

Figure 5: Run times and �ABS values at which the algorithm converges for zero applied magnetic �eld
We set a learning rate � = 2ñ 10�4, a momentum � = 0.5 and a tolerance � = 1ñ 10�2. a. Histograms of the run
time of the gradient descent algorithm, for di�erent starting �ABS values. The dark blue bars indicate which runs
converged with an objective function � (�ABS) = |(� ��)/(� +�)| < 0.01. The sea green bars indicate convergence
with 0.01 < � (�ABS) < 0.021. Light blue bars indicate runs that did not converge with � (�ABS) < 0.021 within
25 iterations. b. Histograms of the �ABS values for which the algorithm found the lowest � (�ABS), for di�erent
starting �ABS values. The black marks at the top of the �gures indicate the starting �ABS value. The dashed, vertical
line indicates the �ABS value closest to the greatest histogram peak with the lowest � (�ABS). c. �LL ��RR, for
varying �LP and �RP, measured at the �ABS value indicated by the dashed, vertical line in panel b. d. �RL = ��R/��L
for varying �LP and �RP, for di�erent starting �ABS values. The data was measured simultaneously with �LL ��RR
in panel c.

The example run shown in �gure 4 converged in 8 steps and was chosen as a representa-
tive example. To assess the performance of the algorithmmore quantitatively, we repeat the
tuning procedure 15 times and initialize it at di�erent starting values of voltage �ABS. We
limit each run to a maximum of 25 measurements (not including the initial measurement)
in order to restrict the total run time of the experiment. We chose the number of iterations
based on the operation time of the presented experiment. In general, this variable can be
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set by the user and will be speci�c to the data collection time and other experimental time
scales.

We calculate the time elapsed between the start and end of each run and plot histograms
for di�erent starting �ABS values in �gure 5a. The dark blue bars indicate runs where the
algorithm identi�ed a sweet spot, by �nding � (�ABS) < 0.01 within 25 measurements. The
sea green bars indicate runs where the algorithm identi�ed a sweet spot, with higher
tolerance, 0.01 < � (�ABS) < 0.021, within 25 measurements. For the light blue bars, the
algorithm did not converge with � (�ABS) < 0.021 within 25 measurements. We note that
this does not exclude a sweet spot, as will be discussed below. Most of the runs that start
from �ABS = 70mV do not converge within 25 measurements. In contrast, nearly all runs
starting from �ABS = 130mV do converge, most of them within 20 minutes. This can be
explained by the distance of each starting �ABS to the nearest sweet spot.

In �gure 5b, we show histograms of the �ABS values for which the algorithm found
the lowest � (�ABS). For starting �ABS values of 70mV, 80mV and 90mV (rows I-III), most
runs end at �ABS � 90.5mV. We can inspect the charge stability diagrams measured at
these gate values to determine whether they correspond to sweet spots. �gure 5c shows
�LL ��RR, for varying �LP and �RP at ending �ABS values indicated by the vertical dashed
lines in panel b. We see that for �gure 5c.I-III, the QD levels hybridize to form a cross,
which is consistent with a sweet spot. The corresponding �RL measurements in �gure 5d
show both signs of non-local conductance, which con�rms that � = � [11]. Most of the runs
starting from �ABS = 100mV (row IV) converge in 20 minutes, with the majority ending at
�ABS = 96.5mV. From panels c and d, we see that the QD levels do not form a cross, and
the non-local conductance is mostly positive. We conclude that the algorithm incorrectly
identi�es this charge stability diagram as a sweet spot.

Runs that start from �ABS = 110mV (row V) converge with 0.01 < � (�ABS) < 0.021 at
�ABS = 99.5mV and with � (�ABS) < 0.01 at �ABS = 123.5mV. We can see that the latter
is close to a sweet spot, with � ' �, as seen from the predominantly negative values of
�RL. The peak at �ABS = 99.5mV is close to the �ABS ending values of the runs that started
at �ABS = 100mV runs, and does not correspond to a sweet spot. We de�ne 90.5mV and
123.5mV as sweet spots, based on the charge stability measurements. We note that the
runs that did not converge with � (�ABS) below tolerance (light blue) are clearly peaked
around the sweet spot at 90.5mV. We attribute the higher value of � (�ABS) here to a weaker
interaction strength than at the other sweet spot at 123.5mV. Averaging all runs over the
varying starting �ABS values, 67.6% of runs converges within ±1.5mV, and 80.9% of runs
converges within ±4.5mV of an independently veri�ed sweet spot. Averaging over all
starting �ABS values, the algorithm converges within ±4.5mV of a sweet spot in 45 minutes.
This is considerably faster than an experimentalist would �nd a sweet spot in an unknown
�ABS range.

6.4.2 F����� F���� A�������� P����������
In the previous section, we found sweet spots in the absence of an external magnetic
�eld. In this case, the emerging Majorana zero modes are Kramers’ pairs, which retain
the protection against local perturbations, but have an additional degeneracy due to time-
reversal symmetry [47]. This degeneracy has no impact on the demonstration of the
automated tuning algorithm in the previous section, as the CSDs look identical to the
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Figure 6: Run times and �ABS values at which the algorithm converged for � = 150mT. We set a learning rate
� = 2ñ10�4, a momentum � = 0.5 and a tolerance � = 1ñ10�2 a. Histograms of the run time of the gradient descent
algorithm, for di�erent starting �ABS values. The sea green bars indicate which runs converged with an objective
function 0.01 < � (�ABS) < 0.021. The light blue bars indicate runs that did not converge with � (�ABS) < 0.021
within 25 iterations. b. Histograms of the �ABS values for which the algorithm found the lowest � (�ABS), for
di�erent starting �ABS values. The black marks at the top of the �gures indicate the starting �ABS value. The
dashed, vertical line indicates the �ABS value closest to the greatest histogram peak with the lowest � (�ABS). c.
�LL ��RR, for varying �LP and �RP, measured at the �ABS value indicated by the dashed, vertical line in panel b. d.
�RL = ��R/��L for varying �LP and �RP, for di�erent starting �ABS values. The data was measured simultaneously
with �LL ��RR in panel c.

spin-polarized result. We now break time-reversal symmetry by applying an external �eld
� = 150T along the nanowire axis, to test whether our algorithm works both in the absence
and presence of magnetic �eld. The magnetic �eld Zeeman-splits the ABSs in addition to
the QDs and lowers their energy. To compensate for the resulting increased hybridization
between the QDs and ABS, we raise the tunnel barriers between them using electrostatic
gates.

We repeat the automated tuning algorithm for 15 times at di�erent starting values of
voltage �ABS each. We limit each run to a maximum of 25 measurements (not including
the initial measurement) in order to restrict the total run time of the experiment, and
show histograms of the run times in �gure 6a. In �gure 6a.I-III, we see that none of the
runs converge with � (�ABS) < 0.045 within 80 minutes. The corresponding histograms
in �gure 6b show a broader distribution than for � = 0T, as seen in �gure 5b. The runs
that start from �ABS values of 110mV, 120mV and 130mV (rows V-VII) converge with
0.01 < � (�ABS) < 0.045 more frequently, and the resulting histograms in �gure 6b are more
clustered.
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From the charge stability diagrams in �gure 6c,d, we see that the interaction between
the QDs is signi�cantly weaker than for � = 0T. We attribute this to the stronger tunnel
barriers we had to set to compensate for the lower ABS energy. This leads to generally larger
values of (���)/(�+�), as the denominator becomes smaller. In addition, our regularization
procedure of the CNN predictions leads to a larger � (�ABS) when the conductance is low.
We attribute the poor convergence of the algorithm to the weaker QD-QD interaction.
Nonetheless, we see from �gure 6d that a number of peaks of the histograms in panel b
correspond to sweet spots. We further note that �LL ��RR is the input for the CNN, which
does not have the added information of �RL. Based on the CSDs measured using �LL ��RR
in �gure 6c alone, it is not possible for an experimentalist to identify a sweet spot. De�ning
114.26mV and 130.44mV as sweet spots based on the measurements of �RL, we �nd that
45.7% of the runs converge within ±1.62mV, and 60% converge within ±4.85mV of these
sweet spots. While this is worse than the algorithm’s performance at � = 0T, we note that
the CNN was trained only on strongly interacting data (see section 6.7.2). We also note
that we chose the same tolerance for � (�ABS) as for �gure 5, while the QD-QD interaction
was weaker. This means that the algorithm will �nd less � (�ABS) values below tolerance
than before. We conclude that the algorithm can partially generalize to previously unseen
experimental data in the weakly interacting regime.

6.5 D���������
Currently, the algorithm converges within ±4.5mV of a sweet spot in 45 minutes at zero
�eld, which is generally faster than the time duration for manually tuning to a sweet
spot. Because the CNN predictions and gradient descent algorithm calculations are nearly
instantaneous, the run time is dominated by the DC conductance measurements. Per-
forming RF re�ectometry measurements is signi�cantly faster and was used to explore a
multidimensional parameter space in semiconductor-superconductor devices before [51].
We believe that the algorithm can converge signi�cantly faster, provided that it is possible
to train the CNN on RF re�ectometry data generated from theoretical models instead of
DC conductance presented here. Also, we note that we start the algorithm from tuned-up
QDs in a region of �ABS with ABSs. Ideally, the algorithm should also include tuning the
QDs and ABSs to have interaction, which also takes a signi�cant amount of time. We note
that there are several automated tuning algorithms for forming double quantum dots in
literature [26, 27, 30, 52]. Adapting these algorithms and integrating them into the tuning
routine presented here would additionally increase speed of Kitaev chain devices tune-up.

6.6 C���������
We have shown that a supervised machine learning algorithm can predict (� ��)/(� +�)
from the charge stability diagrams of aminimal Kitaev chain. The algorithmwas �rst trained
on data generated from a theoretical model, and was shown to generalize reasonably well
to conductance measurements of a two-dimensional electron gas device. After retraining
on a part of this experimental data, the predictions of (� ��)/(� +�) became signi�cantly
closer to the experimentally extracted values. The retrained algorithm demonstrated strong
generalization to conductance measurements obtained from a nanowire device, achieving
good accuracy across di�erent architectures.
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A gradient descent algorithm was then used to drive the nanowire device into a sweet
spot by changing �ABS, based on the predictions of (� ��)/(� +�). When the QD-QD
interaction is strong, the algorithm converges at two sweet spots with di�erent �+� values,
which is re�ected in the value of � (�ABS) at convergence. At �nite external magnetic �eld,
we had to decrease the QD-QD interaction because of the lower ABS energy. As a result
fewer runs converged, which we attribute to the bias towards strong QD-QD interaction in
the training and retraining data. However, a number of peaks in the ending �ABS histogram
coincide with sweet spots, which shows that the CNN does, to a degree, generalize to weak
interaction.

Our automated tuning algorithm can successfully drive a minimal Kitaev chain into a
sweet spot. Tuning and monitoring multiple sweet spots is required for quantum informa-
tion experiments involving Majorana zero modes. Our work paves the way for tuning up
more complicated Kitaev chain devices that are required for braiding, anyon fusion and
other quantum information experiments.

D��� ������������
All raw data in the publication and the analysis code used to generate �gures are available
at https://doi.org/10.5281/zenodo.10900882.

6.7 S������������ �����������
6.7.1 CNN ������������
Convolutional Neural Networks (CNNs) are designed for e�cient data analysis, especially
for visual tasks such as image r4ecognition. Unlike traditional fully-connected neural
networks (NNs), CNNs utilize convolutions to process information in image-like datasets.
These enhance their capacity to handle spatially-correlated information present among
pixels in image-like datasets [53, 54]. The architectural framework of CNNs leverages spatial
relations within the data through locally-connected layers that improve the computational
e�ciency by neglecting correlations between distant data points.

At the foundation of CNNs are trainable convolutional �lters that are crucial for
capturing spatial correlations in the data set. The �lter size is a hyperparameter of the
network architecture and, therefore, adaptable to speci�c problem sets. Furthermore, to
reduce the complexity and number of parameters, CNNs integrate dimensionality reduction
techniques such as pooling operations [55]. These operations allow us to preserve essential
features and increase computational e�ciency at the same time.

The architecture of the CNN to make prediction in this work is shown in table 6.1
The network architecture employed in this study comprises a total of 9 layers. The initial
6 layers constitute the convolutional segment of the network, followed by a �attening
operation and the subsequent utilization of a fully-connected NN. The initial 6 layers
operate within a dual-input framework, where two independent and unconnected CNNs
can process di�erent images, such as ��� and ��� (or non-local conductance ���/��),
and integrate them in the subsequent NN segment. Notably, in the current research, the
dual-input framework is not exploited, as we pre-process the data by multiplying ��� with
���. However, the dual-input framework is kept for the sake of generalization that allows
us to adapt the CNNs and tuning algorithm to di�erent inputs in future research.

https://doi.org/10.5281/zenodo.10900882
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Table 6.1: Architecture of the CNN.
*we are using a dual-input framework for the �rst 6 layers

CNN Classi�er
Layer Output shape
Input (28,28,1)
Conv2D (28, 28, 32)
MaxPooling2D (14, 14, 32)
Conv2D (14, 14, 64)
MaxPooling2D (7, 7, 64)
Flatten (3136)
Concatenate � (6272)
Dense (128)
Dense (1)
total parameters 840,705

6.7.2 CNN ��������
In this work, we are utilizing a two-step training process for the CNN. The �rst step involves
training with a dataset generated through numerical calculations, while the second step
involves re-training using a smaller set of experimental conductance data.

6.7.3 K����� C���� E��������M����
Wearemodeling the double quantumdot system coupled by a semiconductor-superconductor
hybrid segment as a two-site Kitaev chain. The couplings between the quantum dots are me-
diated by ABSs in the hybrid segment. From a theory point, the system can be seen as 3-site
model where the hybrid segment gets treated as site. We are following the work of Ref [56]
and refer there for a more detailed description of the theory model. The corresponding
Hamiltonian of the 3-site model takes the form [57–59]

� = �� +�� +��

�� = �
�=�,�

(���+����)����+(��������)����

+�����������

�� = ��(���+���)+�0(������+ �†���
†
��)

�� = �
�=�,�

(���
†
������ +������

†
�� � ����

+ ���
†
������ +������

†
��� � ���)+�.�. .

(6.4)

The Hamiltonian can be split into three parts, the quantum dot Hamiltonian, ��, the hybrid
segment with the ABSs, �� , and the tunnel coupling between ABS and quantum dots, �� .
�� contains the orbital energy, ���, the electron occupation, ���� , the Zeeman energy,
����, and Coulomb repulsion, ���. The index � de�nes the left/right quantum dot. The
hybrid Hamiltonian �� contains the normal state energy �� and an induced pairing gap �0.
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The tunnel Hamiltonian �� includes two couplings between the quantum dot and ABS: a
spin-conserving, �, and a spin-�ipping process, ���. The spin-orbit interaction determines
the ratio of ���/�.

Proximity e�ects of the semiconductor-superconductor hybrid transform the quantum
dot orbitals into Yu-Shiba-Rusinov states (YSR) [44–46] and create a new basis of spinless
fermions for a Kitaev chain model. The YSR states are a superposition of electron and
hole components and in this basis, the Kitaev chain has more generalized e�ective cou-
plings, describing the interaction between the two YSR states. We can write the e�ective
Hamiltonian describing the interaction between these two states as

� coupling
e� = �

�,�=�,�
�����

†
�������+����

†
����

†
����+�.�. , (6.5)

where we consider di�erent ECT and CAR amplitudes, ��� and ��� between electron and
hole components of the quantum dots. Considering that the YSR states have electron and
hole components, the couplings ��� and ��� have to be generalized. The ground states of a
single proximitized quantum dot are a spin singlet and a spin-down state in the even- and
odd-parity subspace:

|�� = �|00�� �|11�, | �� = |01�

�2 = 1� �2 =
1
2
+

�
2�0

� = �+
�
2
, �0 =

�
�2 +�2

ind .

(6.6)

This allows us to de�ne the YSR state as | �� = � †
� �� |�� and the e�ective coupling of Eq.(B2)

written in terms of YSR states becomes

�e� = �
�=�,�

���� †
� ��+���

†
� �� +���

†
� �

†
� +�.�. , (6.7)

where ��� = ����� is the excitation energy of the YRS state and ��/� are odd/even gener-
alized e�ective couplings between the YSR states. The odd coupling is de�ned as

�� = ���|�
coupling
e� | � ��

= �������� + ������� +������� �������� ,
(6.8)

where | � �� and |� �� are odd parity tensor states and �� is a linear combination of spin-
conserving couplings, namely equal spin ECT and opposite spin CAR processes. The
even-parity coupling

�� = ���|� coupling
e� | ���

= �������� +������� + ������� � �������
(6.9)

couples states with total spin zero and one, i.e. breaks spin conservation. These odd- and
even-parity couplings can be seen as more generalized e�ective � and � parameter from
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the poor man’s Majorana Kitaev chain model [10]. To obtain the di�erential conductance,
we employ the Mahaux–Weidenmuller formula to compute the scattering matrix [48].
For this, we rewrite the derived e�ective Hamiltonian of Eq.(B4) in the Bogoliubov-de
Gennes formalism, solve the corresponding eigenequation, and obtain the � -, scattering
matrix and conductance matrix. In this work, we focus on the diagonal elements of the
conductance matrix ��� and ���.

6.7.4 N�������� T������� D���
After introducing the theory model, we create the theoretical training data by generating a
diverse set of Hamiltonians of Eq. (B1) leading to an e�ective Hamiltonian in the YSR basis
of Eq.(B4), incorporating random variations within of parameters in the model in speci�ed
intervals:

• induced Zeeman energy in each quantum dot ���� � � = [�0.2,0.2]

• induced pairing gap �0 � � = [0.2,0.6]

• tunneling couplings ��/� � � = [0.05,0.4]

• ��� and ��� � � = [0.01,0.48]

� ����/���� � � = [0.01,0.48]

• temperature � � � = [0.02,0.03]

• left/right lead coupling ��/� � � = [0.04,0.06]

While we include a Zeeman energy on the QDs, we do not consider the up state of the
QDs. As a result, the Zeeman energy only lowers the energy of the down states. The
theoretical data, depicted in Fig. 7(c), closely resembles the experimental conductance data
including, e.g., variations in lead couplings, background noise, and interaction strengths
across a broad parameter range spanning from the ECT- to the CAR-dominated region. We
illustrate in Fig. 7(a) the training/test loss for the initial training step. The loss function
shows the expected behavior, with the test-loss consistently higher than the training-loss,
reaching saturation at around 75 epochs. We have chosen a training set of 6000 samples
and trained the CNN with a batch size of 16 for the 100 epochs. The �uctuations during
the training can be related to the stochastic nature of the gradient descent algorithm [60],
the small batch size, and randomly-chosen training/test data.

6.7.5 E����������� T������� D���
We show the training/test loss for the re-training with an experimental training set in
Fig. 7(b). The test-loss is again consistently higher than the training-loss and saturates at
around 20 epochs. For the re-training, we only train the CNN for 25 epochs, starting from
the already-trained CNN parameters and �ne-tuning the parameters to experimental data.

In Figs. 3(a,b), we compare the CNN predictions for the experimental dataset. In (a),
we show the predictions of the initial theory-only CNN. The predictions show a constant
gradient for increasing �ABS capturing the experimental values overall with good accuracy.
However, the theory CNN does not predict the sweet spot region around �ABS = �622mV
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Figure 7: Training evaluation and numerical training data of the convolutional neural network (CNN)
a. The train- and test-loss during the initial training of the CNN with the numerical data set (shown in c). b. The
train- and test-loss during the re-training of the CNN with labeled experimental data, as shown in Fig. 3(a-e)
c. Numerical calculations of the product of the left and right di�erential conductance, �LL ��RR, for varying
(� ��)/(� +�), including the ECT-dominates, sweet spot, and CAR-dominated regime.

well which possibly can lead to convergence problems when approaching the sweet spot
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Figure 8: Extraction of labels using tunnel spectroscopy. a.-c. The product of the left and right di�erential
conductance, �LL ��RR, for varying �LP and �RP. The measurements were performed at �ABS values of 85mV,
104mV and 115mV respectively. e.-g. Non-local conductance, �RL = ��R/��L for varying �LP and �RP. The data
was measured simultaneously with panels b-d. g.-i. �LL ��RR for varying left/right lead bias, �L/R, measured at
the �LP and �RP values indicated by the blue marker in panels a-c. The purple, dashed lines indicate the outer
peaks. The yellow, dashed lines indicate the inner peaks.

with the gradient descent algorithm. Figure 3(b) shows the prediction of the re-trained
CNN for the experimental test-data. In this case, the CNN captures the sweet spot region
well. The gradient towards the sweet spot coincides well with the labeled data which is
one of the most important factors for CNN-tuning algorithm. In Fig. 3(c-e) we show three
conductance measurements for the ECT, CAR, and sweet spot regime taken at speci�c �ABS
from above.
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6.7.6 D��� �������� ���������
�gure 8a,c show the charge stability diagrams as presented in �gure 3a-c. We use python
code to interpolate the center of the avoided crossings, which is indicated by the blue
markers. At the �LP and �RP values corresponding to these markers, we measure �LL for
varying �L, and �RR for varying �R, and show the resulting �LL ��RR in �gure 8g-i. Each
spectrum consists of two inner peaks separated by |� ��| and two outer peaks separated
by � +� (see methods section of [18] for details on the model). These are indicated by the
yellow and purple arrows in panels g-i. We label the �L/R values corresponding to the peaks
manually, since �LL ��RR can be too low for a peak-�nding algorithm to work. Because
the inner peaks do not provide information on the sign of � ��, we extract it from the
non-local conductance. When � > �, elastic co-tunneling dominates over crossed Andreev
re�ection, and the sign of non-local conductance will be negative [11]. Likewise, �RL will
be predominantly positive for � < �, so we extract the sign from:

���(� ��) =

�
1 �min(�RL) >max(�RL)

�1 max(�RL) > �min(�RL)

We combine the sign found from the non-local conductance measurements with the inner
and outer peak spacing to calculate (� ��)/(� +�) for each �ABS value in �gure 3g.

We note that directly relating the peak spacings to the CAR and ECT rates is only
justi�ed in the in�nite Zeeman limit. At zero magnetic �eld, in limit of large charging
energy on the QDs, the sweet spot condition becomes � =

�
2� as a result of the larger

Hamiltonian basis that now includes both spin species [47]. At this sweet spot, there is
still a peak at the Fermi level and two peaks that indicate the gap. While the distance
between the outer peaks is then no longer � +�, we continue to use this form of labeling
for the CNN. The direct relation with the CAR and ECT rates is then severed. This means
that we are not training the CNN on transport rates, but rather on peak spacings. For
our purposes this is not problematic, as minimizing (� ��)/(� +�) will still correspond to
�nding the sweet spot. We note that there can be additional excited states in spectroscopy
at zero �eld [12]. These are only visible at one bias polarity. As we look for particle-hole
symmetric peaks in �LL ��RR, we �lter out these low-Zeeman excited states.

6.7.7 CNN ���������� �����������
As discussed in section 6.7.2, the CNN was mainly trained on an e�ective model for the two
QDs, that integrates out the ABS coupling them. When the QD-ABS coupling becomes on
the order of the ABS energy, this model does not accurately describe the system anymore.
In �gure 9a we see that the CNN predicts a sweet spot around �ABS = 45mV, while the
labeled data indicates that (���)/(�+�) � 1. The weighted ratio approaches 1 when �� 0,
as the numerator and denominator will be equal. From the corresponding CSD in �gure 9b
we see that the correlated conductance vanishes, which points to weak interaction between
the QDs. However, the corresponding non-local conductance in �gure 9e has both signs,
which is usually a sign of a sweet spot. The features in panels b and e depend less on �RP
than on �LP, which suggests that the transport is dominated by the left QD. We interpret
the presence of positive and negative non-local conductance as a sign of direct transport
between the left QD and the ABS. From the tunnel spectroscopy in �gure 1b, we see that
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the ABS at the lowest �ABS values comes close to zero-energy at its minimum. This is
consistent with our interpretation of an increased QD-ABS interaction at low �ABS values.

In �gure 9c and f, we see both signs of non-local again, together with a cross in the
correlated conductance. The non-local features depend mostly on �LP, which suggests
strong QD-ABS interaction as in panels b and e. It is hard to tell whether this is an actual
sweet spot, and might be related to low Majorana polarization as detailed in Ref. [61]. We
note that the CNN predictions and experimentally extracted values of (� ��)/(� +�) agree
at this �ABS value.

Finally, we see that the labeled data becomes noisier around �ABS = 135mV in �gure 9a.
From panels d and g, we see that the QD-QD interaction is very weak. Accurately labeling
the data becomes challenging for low interaction, as the peaks are hard to �nd due to
low conductance. The CNN predictions are greater than the experimental labels here
due to the regularization procedure. We conclude that the CNN performs well when the
QD-ABS interaction is smaller than the ABS energy. Also, it does not perform well when
the conductance becomes low due to weak QD-QD interaction.

b c d

e f g

Figure 9: Selected charge stability diagrams. a. (� ��)/(� +�) for varying �ABS for device A. The black
markers indicate experimentally-labeled data and the orange markers are the retrained and regularized CNN
predictions. b.-d. The product of the left and right di�erential conductance, �LL ��RR, for varying �LP and �RP.
The measurements were performed at �ABS values of 44mV, 62mV and 135mV respectively. e.-g. Non-local
conductance, �RL = ��R/��L for varying �LP and �RP. The data was measured simultaneously with panels b-d.

6.7.8 R�������������
There are three cases that can lead to a vanishing (� ��)/(� +�) ratio. In the �rst case,
(� +�) becomes very large. The interaction strength is ultimately limited by the ABS
energy and the superconducting parent gap. Second, (� +�) is �nite, but � � �, which is
the desired sweet spot condition. In the third case, both � and � become vanishingly small,
but are not equal in size. While this should be mitigated by scaling � �� with 1/(� +�),
the CNN can incorrectly identify weak QD interaction as a sweet spot. To penalize low
interaction, we add a correction to the objective function based on the mean conductance
of a measurement. When the QDs have low interaction, the di�erential conductance will
be negligible. First, we compute the average conductance of a charge stability diagram:

��� =
1
�

�

�
�=1 �

1
�

�

�
�=1

�LL ��RR(� �
LP,�

�
RP)�
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Then we count the number of pixels of a measurement that have a conductance value
greater than ���:

�> =
� ,�

�
�,�

�[�LL ��RR(� �
LP,�

�
RP)� ���]

Where � is the Heaviside function. Finally, we o�set the objective function based on the
ratio of above-average conductance pixels:

� (�ABS) =
|� ��|
� +�

+
�

�
2�>�

3

(6.10)

Where �> is limited by 0 � �> � � 2, assuming � = � . As �> � �, this correction
disappears. As �> � 0, the correction becomes very large and a minimum of the objective
function cannot be found. We use this regularization procedure for all the automated
tuning runs.

6.7.9 G������� ������� ���������
As detailed in equation (6.3), we use a gradient descent algorithm to �nd sweet spots where
� = �. While most gradient descent algorithms use the slope as a condition for convergence,
we use the objective function. The reason is that we cannot compute the gradient at each
given point, but need discrete points between which we can approximate the gradient
using �nite di�erences:

�� =
� (�ABS)�� � (�ABS)��1

� �
ABS�� ��1

ABS

We use a momentum term, �, to update the velocity with the average of the past 5 gradients
in each step:

�n+1 = ��n + (1� �) ����

Considering QD-based devices are mesoscopic in nature, predictions of the CNN at the same
�ABS can di�er. This can result from gate jumps, gate hysteresis, o�-centered measurements,
etc. The momentum term helps to overcome local maxima of � (�ABS) and �nd the global
minimum. We update �ABS using the velocity scaled by a learning rate, �:

� �+1
ABS = � �

ABS� ��n+1

This procedure is repeated until the objective function is below the prede�ned tolerance, �:

� (�ABS) =
|� ��|
� +�

+
�

�
2�>�

3

< �

where the �nal term penalizes low QD-QD interaction, see section 6.7.8 for details.
Considering the algorithm directly controls gate voltages on the device, we include

some extra constraints. First, the minimal change in �ABS is limited to 60�V by our digital-
analog converter resolution. Second, we limit the maximal change in �ABS to 10mV. A
larger change will shift the Coulomb resonance out of the measurement window. In each
iteration, we center the measurements by taking linecuts of �LP and �RP at the extrema of
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a charge stability diagram, and interpolate their intersection. Furthermore, we limit the
algorithm with ±50mV from each starting �ABS to con�ne it to the known region. If the
algorithm proposes a �ABS value across this boundary, we reverse the sign of the velocity.
In the �rst iteration, we change �ABS by a value drawn from a Gaussian distribution:

� (��ABS) =
1.2mV
�
2�

����
2
ABS/2

While �� values are generally linear close to the sweet spot, they change sign at the sweet
spot. If the CNN identi�es a sign change of ���, we change the sign of the velocity -before
updating it with the gradients- and reduce the learning rate by a factor of 2. We also
increase the learning rate by 50% every 5 steps.

6.7.10 C����� �� �������� ����
For a single ABS in the in�nite parent gap limit, we can write the elastic co-tunneling (�)
and crossed Andreev re�ection (�) rates as [16]:

� =
�2�0�2

(�2 +�2)2
� =

�4�0
�4 +2�2�2 +�4

Where � is the induced gap of the ABS, � is its electrochemical potential and �0 is a
proportionality constant. We can then write the sum and di�erences of � and �, as well as
their ratio as:

� +� =
�2�0

�2 +�2

� �� =
�2�0 ���2 +�2�
�4 +2�2�2 +�4

� =
� ��
� +�

=
�2��2

�2 +�2

(6.11)

At � = ±�, we obtain � = � and calculate the derivative:

��
��

=
4��2

(�2 +�2)2

��
��

�
�
�
��=±�

=
1
�

(6.12)

In a device, we are tuning � indirectly using a gate voltage �ABS. We can write the slope in
terms of �ABS using:

��
��ABS

�
�
�
�sweet spot

=
��
��

�
�
�
��=±�

��
��ABS

(6.13)

=
1
�

��
��ABS

=
�
�

(6.14)

Where � is the lever arm. Bottou et al. recommend a learning rate which matches the slope
at the objective function minimum [50]. Using a lever arm � = 0.05� and an induced gap
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� = 100�eV, we obtain �opt = �/� = 2ñ10�3 V, which is 10 times larger than the learning
rate used in the experiments. We lower the learning rate to prevent large changes of �ABS,
as cross-capacitance can shift the Coulomb resonances of the QDs.

We also note that we chose a relatively low learning rate, �, compared to the optimal
value (see section 6.7.9 for details). This � was chosen to prevent large changes in �ABS,
which also a�ects the electrochemical potential of the QDs. The centering of the QD
measurements is important for having accurate CNN predictions. This can be improved by
using “virtual gates”, which are linear combinations of �LP, �RP and �ABS that compensate
for cross-capacitance. Additionally, the CNN could be trained on more o�-centered theory
data.

6.7.11 C����� �� ���������
At � = �, the QD levels intersect perfectly. As � and � move away from the sweet spot, an
avoided crossing of magnitude� =

�
8|�2��2| opens between the two hyperbolas (see page

4 of the supplementary materials of [12]). If this magnitude is smaller than the broadening
of conductance, an avoided crossing cannot be observed. We can de�ne a tolerance based
on broadening and the expected interaction strength � +�. First, we rewrite the distance
between parabola’s as:

� = 2(� +�)

�

2
|� ��|
� +�

If we demand that the distance is below thermal broadening, � < 3.5�B� , we can write:

|� ��|
� +�

<
1
8 �

3.5�B�
� +� �

2

= �

Using a temperature of � = 30mK and an interaction strength � +� = 80�eV we obtain a
tolerance � = 1.6ñ10�3. While this quantity is smaller than the valuewe used in experiments,
we note that our conductance broadening is signi�cantly larger than the 9�eV we can
expect from thermal processes. Substituting the thermal term by a broadening of 20 �eV
yields a tolerance � = 1ñ10�2, which is the value we used in the experiments. Therefore,
we recommend using a tolerance:

� =
1
32 �

�
���

2

Where �� is the desired gap at the sweet spot and � is the linewidth of the Coulomb
resonances observed from bias spectroscopy. We note that in principle this allows us to
select sweet spots based on their gap by choosing �. This is seen in �gure 5b, where the
algorithm converges on the weaker sweet spot at �ABS = 99.5mV with a higher tolerance
than on the stronger one at �ABS = 123.5mV. Although this implies that we can reject
weakly-interacting sweet spots, they are still minima of the objective function. A possible
improvement of the algorithm could be lowering the tunnel barriers when the objective
function does not converge below tolerance, or penalizing the objective function for weak
sweet spots, as in �gure 6.
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6.7.12 P���������
In algorithm 1 we show the pseudocode for the automated tuning algorithm.

Algorithm 1 Sweet Spot Optimization Algorithm
Require: � _���_��������� , ��������_����, ������, ���_����_����, ���������, � ,

��������, �������_����, ���_����_����, � _���_���, � _���_���
1: Assert ���_����_���� > 1��6
2: for ����� = 1 to ������ do
3: if ����� == 1 then
4: � _��� � handle_�rst_epoch(� _���, ���_����_����)
5: else
6: if ����� mod 5 == 0 then
7: ��������_���� � ��������_���� ñ1.5
8: end if
9: Compute gradients
10: Update � _��� and � using gradients
11: end if
12: Set gate value using � _���_���������(� _���)
13: Precenter measurement
14: ��� � �������_� ���(�������_� ���_������)
15: Update �����_���_�_������, ���_� ��_������, � _����, ����
16: if Overshoot detected then
17: Reverse �, reduce ��������_����, log overshoot
18: end if
19: if |�������_���_���| < ��������� then
20: Log convergence, break
21: end if
22: end for
23: if Non-convergence after all epochs then
24: Log non-convergence details
25: end if
26: Close log return � _����, ���_� ��_������, �������_���_���, �����

6.7.13 N������������ ��� �������
In �gure 10a, we show the �ABS values visited by a run that did not converge. Just as in
�gure 4, the run started from �ABS = 130mV. For the �rst 14 measurements, the algorithm
visits increasing values of �ABS. We see from �gure 10b that (���)/(�+�) does not change
signi�cantly in this gate range. From the charge stability diagrams in �gure 10c, we see
that the interaction between the QDs becomes weaker for increasing �ABS. Eventually, the
algorithm reverses direction and returns to the starting �ABS = 130mV. As we limit the
number of measurements per run to 26, the algorithm stops here. This non-converged
run highlights that the CNN does not predict (� ��)/(� +�) accurately if � +� is small, as
can be seen from the superimposed CNN predictions in the charge stability diagrams. We
attribute this to the bias toward strong interaction in our theoretical and experimental
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training set. We note that this run ended with a velocity in the right direction and might
have converged given more steps.

a b

c

Figure 10: Example of a non-converged automated tuning run. a. The hybrid plunger gate voltage, �ABS, for
each measurement. b. Prediction of the weighted ratio of elastic co-tunneling and crossed Andreev re�ection,
(� ��)/(� +�), for each measurement. The horizontal, blue lines indicate the tolerance set before the run. c.
The product of the left and right di�erential conductance, �LL ��RR, for varying �LP and �RP for subsequent
measurements. The measurement ids are indicated by the bold text in the top left corner. The predicted value of
(� ��)/(� +�) is indicated in the bottom right corner.
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Once in a while, you get shown the light in the strangest of places if you look at it right.

- The Grateful Dead
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Most of the work in this thesis is dedicated to quantum dots (QDs) coupled to Andreev
bound states (ABSs) in semiconductor-superconductor hybrids. These can be capacitively
coupled, to allow for charge sensing of ABSs. The QDs can be weakly tunnel-coupled
to allow for spin-�ltered spectroscopy of ABSs. When the coupling is intermediate for
multiple QDs coupled to the same ABS, a Kitaev chain can be realized based on elastic
co-tunneling and crossed Andreev re�ection processes. When one QD is strongly coupled
to an ABS, a minimal Kitaev chain can be implemented through direct spin-conserving, and
�ipping transport processes. The tunability of semiconductors allows for the engineering
of Kitaev chains in many geometries. Here, we propose a single, �exible platform for
researching Kitaev chains.

7.1 E�������� K����� C����� W��� � S����� S�����
���������

A minimal Kitaev chains consists of two quantum dots (QDs) that are coupled by crossed
Andreev re�ection (CAR), indicated by � and elastic co-tunneling (ECT), indicated by �.
These two transport processes are mediated by Andreev bound states (ABSs) that couple
the QDs. At � = �, the chain is in a sweet spot, and separated Majorana zero modes (MZMs)
emerge on each of the two QDs. Adding more QDs and ABSs to the chain improves the
robustness of the MZMs to electrostatic perturbations, if the condition � = � is satis�ed
between each pair of QDs. The chain can be expanded by adding QDs and interleaving
each pair of QDs by a semiconductor-superconductor segment which hosts an ABS that
mediates ECT and CAR. However, a phase di�erence between each pair of superconductors
results in a phase di�erences between the tunneling phases of � and � of di�erent pairs of
QDs [1]. If this tunneling phase di�erence is � between two pairs of QDs, the tunneling
rates in the sweet spot between QDs 1 and 2, and 2 and 3 become:

�12 = �12

�23 = ��23

Which results in a gapless bulk that decreases the isolation of the MZMs at the system ends.
When the phase is not �xed, it can change over time, resulting in a time-average of 0-, and
�-junctions [2]. While the stability of a zero-energy state is maintained, a changing phase
is a potential source of dephasing for a Kitaev chain. One can �x the phase by threading a
�ux through a loop connecting the superconductors. However, the need to �x the phase
externally can be obviated by having a single, bulk superconductor that couples to all QDs.
The superconductor can be phase-coherent over its entire length, which prevents phase
factors from appearing in the ECT and CAR rates. In s-wave superconductors such as Al,
the penetration depth is lower than the coherence length. This means that the gap is small
compared to the super�uid sti�ness, which sets the energy cost of spatial variations of the
phase [3]. As this cost is very high in Al, we expect to be able to extend the superconductor
to accommodate as many QDs as desired.

An example geometry of a multi-site Kitaev chain with a single superconductor is
sketched in �gure 1a. Here, four tunnel gates are used to con�ne three QDs in the semi-
conductor. Three gates are used to tune their coupling to the superconductor, denoted by
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Figure 1: Extending Kitaev chains with a single superconductor. a. Top view schematic of a semiconductor
(gray) coupled to a grounded superconductor (blue). Top gates (black) are used to con�ne quantum dots (QDs)
and tune their coupling. Normal leads (yellow) can be used to measure di�erential conductance. b. Simulated
conductance of the left lead, �LL, for varying chemical potential of the left and middle QDs, �1,2. Here, the middle
QD is strongly coupled to the superconductor and does not have an odd parity ground state. c. �LL for varying
�1 and �2. Here, the middle QD is less strongly coupled to the superconductor, meaning its levels cross zero.

��. Finally, the electrochemical potential of each QD (��) can be tuned using three plunger
gates. The middle, extended QD can then be operated as either a coupler or a direct part of
the Kitaev chain. If its coupling is stronger than the charging energy, �2 > 2�C, the middle
QD levels do not cross zero-energy in the absence of magnetic �eld. Its virtual occupation
can then be used to mediate ECT and CAR between QD 1 and 2. A charge stability diagram
of QD1 and QD2 in the limit of �2 ' 2�C is shown in �gure 1b, that was computed using
the model provided in Ref. [4]. Here, we see the “S-shapes” that are characteristic of QD
levels coupling to an ABS. When similar S-shapes are observed between the middle and
right QDs, the system can be tuned to a sweet spot between the left and right QDs under
the correct conditions.

For �2 < 2�C, the middle QD levels cross zero-energy in the absence of �eld, and it
becomes a site in the chain. We show a charge stability diagram of the left and middle
QDs in �gure 1c. Here, we see an anti-diagonal avoided crossing of the levels, which is
associated with a dominant coupling of the odd states. The ratio of the even and odd
couplings can be tuned by varying �1,2, the external magnetic �eld, or �2 [4]. The curvature
in the levels of the middle QD originates from its strong coupling to the superconductor.

The device of �gure 1a can be extended by adding more gates that de�ne � , � and �
between neighboring QDs. More tunnel probes can also be added to probe each QD, which
assists the tuning up of the system. The condition � = � can then be satis�ed between each
pair of QDs using electrostatic gates. We note that this can also be performed automatically
using machine learning, as detailed in chapter 6. An extended version of this system is
comparable to the ABS chain of Fulga et al. and Samuelson et al. [1, 5] without phase
di�erences, the QD-ABS-QD chain of Miles et al. [4] with on-site pairing of the QDs, or a
discrete implementation of the Lutchyn-Oreg model [6, 7]. A comparison to the latter is
especially interesting, as the Lutchyn-Oreg implementation prescribes the need for only
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a single gate controlling the global electrochemical potential of the hybrid segment. The
spatial di�erences of the gate voltages required to tune the device of �gure 1a into a global
sweet spot reveal the amount of disorder in the system.

7.2 B����� III�V S�������������
The system of �gure 1a can be implemented in two-dimensional III-V semiconductors,
such as InAs/InSb, coupled to an s-wave superconductor. However, another option is to
implement it in a two-dimensional hole gas (2DHG) such as germanium. This material can
be isotopically puri�ed, has strong spin-orbit interaction, low e�ective mass and is being
used successfully in quantum information experiments. Germanium-superconductor hy-
brids have been studied experimentally and theoretically before. Laubscher et al. proposed
germanium hole nanowires as a platform for realizing the Lutchyn-Oreg model [8]. Tossato
et al. found that superconductivity could be induced in germanium using di�used supercon-
ductors [9]. Lakič et al. demonstrated that germanium hole QDs can host sub-gap states by
coupling to superconductors [10]. Finally, Schwarze and Flensberg explored the possibility
of coupling two QDs through a superconductor to form a two-site Kitaev chain [11]. We
suggest adapting the device geometry of �gure 1a to Ge/SiGe planar heterostructures.

ABSQD1 QD2

S1 S2

Figure 2: Aminimal Kitaev chain with parity readout in Germanium. Top view schematic of a two-site
Kitaev chain device fabricated on a Ge/SiGe planar heterostructure. Screening gates are purple, plunger gates
are pink, and tunnel gates are green. The yellow lines indicate ohmic contacts, the grounded superconductor is
indicated in light blue. The quantum well is buried beneath a top layer of SiGe and gate dielectric.

Germanium can be con�ned into a 2DHG by encapsulating it in two SiGe barrier
layers. The resulting strain from the lattice mismatch lowers the e�ective mass of the
germanium quantum well and splits the heavy hole and light hole bands in energy [12].
The top SiGe layer separates the 2DHG from the surface of the heterostructure, which
can greatly improve its charge noise [13]. As charge noise is expected to be the biggest
source of decoherence in Kitaev chain-based qubits, removing this top layer is detrimental
to the coherence time [14]. This provides a challenge for interfacing the 2DHG with a
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superconductor, as directly contacting it using ionmilling or hydrogen cleaning removes the
top barrier. Depositing a superconductor on top of the 2DHG might a�ect the compressive
strain which results from a carefully engineered SiGe layer. Furthermore, it removes the
possibility of tuning the coupling to the superconductor using an electrostatic gate. We
therefore propose to proximitize the 2DHG from the side, as shown in the device sketched
in �gure 2. This sketch is based on the design of a 2 ñ 4 Ge/SiGe QD array, see Ref. [15].
The pink plunger gates are used to de�ne QDs in the quantum well below the top SiGe
layer. The green tunnel gates can tune the coupling between the QDs and other parts of
the system. The purple screening gates prevent the accumulation of holes beneath the gate
electrodes close to the QDs. The elongated plunger gate in the middle of �gure 2 is used to
con�ne an ABS that couples the two neighboring QDs. This ABS can be strongly coupled
to the grounded superconductor by accumulating holes using the tunnel gate between the
two.

We note that the electronic g-factor is highly anisotropic for Ge/SiGe heterostructures,
with in-plane values of �� < 1 and out-of-plane values of �� > 10 [12]. As the Kitaev chain
is based on spin-polarized QDs, the large out-of-plane g-factor motivates applying an
external magnetic �eld along it. However, due to the large surface area of evaporated
thin-�lm superconductors, the parent gap will close at low �elds due to orbital depairing.
If the �eld is applied in-plane instead, large �elds are required obtain a substantial Zeeman
splitting. However, common metallic superconductors such as Al have a g-factor of 2 [16].
This implies that the superconducting parent gap will close at lower �elds than the ABS
and QD states can Zeeman split at. This can potentially be circumvented by covering
the superconductor in heavy atoms that cause spin-mixing, such as Pt [17]. However, we
propose to use a thin strip of a di�used germanosilicide superconductor that also allows
the 2DHG to remain buried as discussed above. As the lateral extent of the strip is small,
the superconductor has a low cross-section with an out-of-plane �eld. This suppresses
orbital depairing and can increase the critical magnetic �eld [17]. Finally, we note that
the g factor anisotropy of Ge/SiGe QDs can be tuned by changing their shape [18]. This
was suggested in the original two-site Kitaev chain proposal, as having non-collinear spin
quantization axes helps in engineering the two coupling magnitudes [19].

We have proposed an implementation of a two-site Kitaev chain in Ge/SiGe planar
heterostructures. This implementation bene�ts from the existing expertise in fabricating
QD arrays in this material platform. Charge noise has been minimized in these systems
to reduce the decoherence in spin qubit experiments [20]. As charge noise is expected to
be the main source of decoherence in Kitaev chains, Ge/SiGe could be a good platform
for these systems as well. While the large g-factor of III-V semiconductors is superior,
engineering of the superconductor in Ge/SiGe heterostructures might compensate for the
material’s lower g-factor.

7.3 T����� �M������K����� C����W������N�����
L����

As the device in �gure 2 does not have normal leads coupled to the QDs forming the Kitaev
chain, it cannot be tuned up using transport measurements. The charge sensors S1 and S2
can however be used to tune the device based on the charge of QD1 and QD2. We propose
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to weakly tunnel couple S1 to QD1, such that it acts as a connection to an electron reservoir.
Then, S2 can be used to charge sense QD2 for tuning up. In �gure 3a, we show a charge
stability that was computed using the model introduced in Ref. [21]. Here, we plot the
global fermion parity of the ground state. We see three avoided crossings that arise from
elastic co-tunneling and crossed Andreev re�ection involving the ABS. Finally, there is a
crossing in the bottom left corner of �gure 3a, indicated by a dashed, orange circle. While
crossing QD levels usually indicate a lack of tunnel coupling in a double QD, here they are
a result of equal elastic co-tunneling and crossed Andreev re�ection rates.

a b c d e

Figure 3: Di�erential charge sensing aQD-ABS-QD system. a. Ground state parity for varying electrochemical
potential of the left QD �1 and the right QD �2. The superimposed orange, dashed circle highlights a sweet spot.
b. Charge expectation value of the right QD, ��2�, for varying �1 and �2. The superimposed orange, dashed
circle highlights a sweet spot. c. Di�erential charge expectation value of the right QD � ��2�/��2 for varying
�1 and �2. d. Parity-averaged charge expectation value of the right QD, (�E2 + �O2 )/2, for varying �1 and �2.
Here, �E2 = ��|�2 |�� and �O2 = ��|�2 |��, where � and � are the lowest-energy even and odd states respectively. e.
Di�erential charge expectation value of the right QD, averaged over parity, �(�E2 +�O2 )/��2, for varying �1 and �2.

In �gure 3b, we show the ground state charge expectation value of QD2, ��2�. When
QD1 is o�-resonance, the charge changes abruptly around the charge degeneracy points of
QD2. When QD1 is on-resonance, the two QDs hybridize and the charge changes gradually.
We see that there is a small region where ��2� = 1/2, as highlighted by the dashed, orange
circle. This is the signature of the two-site Kitaev chain sweet spot, where the crossed
Andreev re�ection and elastic co-tunneling rates are equal and both QDs are at the Fermi
level.

In �gure 3c, we show the di�erential charge of QD2. Here, we obtain a �nite signal at
points of �2 where ��2� changes abruptly due to a change of �RQD. As charge sensor S2 in
Figure 2 has two normal leads, a di�erential conductance measurement can be performed,
which probes the di�erential charge. Alternatively, � ��2�/��2 can be probed directly using
gate sensing measurements [22]. This can be done by attaching a resonator to the plunger
gate of QD2, which can measure capacitive shifts due to the quantum capacitance of the
double QD. A switch in the orientation of the avoided crossing signals a change from even,
to odd-dominated coupling of the QDs. Furthermore, the di�erential charge vanishes at
the sweet spot considering � ��2�/��2 = 0 [19].

Once a sweet spot is reached, S1 has to be decoupled from QD1, as it serves as an
electron reservoir that e�ectively poisons the parity of the Kitaev chain. In this case, the
system is not coupled to any normal leads anymore and its parity can only be changed
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by quasiparticle poisoning from the superconductor. When the system is connected to
a normal lead, the Fermi-Dirac distribution of the metal forces the system to remain in
the ground state for the majority of the time. When quasiparticle poisoning is the only
mechanism that �ips parity, this is not necessarily true. The charge sensor signal will then
depend on the fraction of time spent in each charge state [23]. A measurement that is
longer than the quasiparticle poisoning time will measure the charge averaged over the
even-, and odd-parity states. While the exact dynamics of quasiparticle poisoning are hard
to model, we approximate the time spent in the even and odd states as being equal, and
write the average measured charge, �avg as:

�
�avg

�
=
�E2 +�O2

2
=
��|�2|��+ ��|�2|��

2

We show this parity-averaged charge expectation value, (�E2 +�O2 )/2, in �gure 3d. We note
that the charge stability diagram looks signi�cantly di�erent from the one shown in panel
b. Notably, the gradual change of charge, together with an avoided crossing is no longer
observable in �gure 3d. As a result, it is hard to distinguish which of the avoided crossings
corresponds to a sweet spot.

In �gure 3e, we show the di�erential parity-averaged charge of QD2. Here, �nite signal
is no longer associated with a degenerate even-odd state. Instead, we see four lines that
intersect pairwise each time QD1 and QD2 are both on resonance. We note that the relative
amplitude of each pair of lines seems to be related to the dominant type of interaction.
However, it is not easy to recognize which of the four resonances corresponds to a sweet
spot. Ideally, one would measure a single quantity that can be used to identify both � = �,
and distinguish the ground state parity.

7.4 R������ O�� P����� U���� N���L���� ������
C����������

In a two-site Kitaev chain, we can detune one QD without splitting the zero-energy state.
The wave function will redistribute across the system due to detuning. When varying the
electrochemical potential of the right QD, �2 for �1 = 0, the even and odd ground states have
the same local charge expectation value: ��|�2|�� = ��|�2|��. Detuning the right QD does
result in a parity-dependent charge expectation value for the left QD: ��|�1|�� � ��|�1|��
(see section 2.4.4 for details). We can capture this e�ect by de�ning the non-local quantum
capacitance, �NL

q = � ��1�/��2. For convenience, we will consider a two-site Kitaev chain
based on normal QDs (see section 2.4.1 for details). We �x the electrochemical potential of
the left QD at the Fermi level (�1 = 0) and limit ourselves to weak detuning of the right QD
(�2 � 2�). Then, we can approximate the non-local quantum capacitance as:

�NL
q =

� ��1�
��2

�
�
�
��1=�2=0

=
�
4
=
1
4

�
� 1

� even GS
1
� odd GS

Where � is the crossed Andreev re�ection (CAR) rate and � is the elastic co-tunneling
(ECT) rate. � is a parity-dependent factor stemming from the (anti)-symmetric response
of the left QD charge due to a change in charge of the right QD. �NL

q can be estimated by
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measuring a charge stability diagram using a charge sensor, and performing a numerical
derivative along the non-sensed QD: ��1/��2. However, �NL

q can be measured directly
using di�erential charge sensing. In �gure 4a, we show a sketch of a measurement setup
that can be used to measure �NL

q , based on the device described in section 7.2.

ABSQD1

S1

QD2

V
RF

g

a

b c d

e f g

I

Figure 4: Reading out parity using the non-local quantum capacitance. a. Top view schematic of a two-site
Kitaev chain device fabricated on a Ge/SiGe planar heterostructure. The yellow lines indicate ohmic contacts, the
grounded superconductor is indicated in light blue. An RF gate voltage is applied to QD2 while the current, � ,
through charge sensor S1 is measured. b-d. Ground state parity for varying electrochemical of the left QD �1 and
the right QD �2. These were computed for di�erent energies of the Andreev bound state that mediates elastic
co-tunneling and crossed Andreev re�ection. The superimposed orange, dashed circles highlight the center of the
(avoided) crossings. e-g. Non-local quantum capacitance averaged over parity, �(�E1 +�O1 )/��2, for varying �1
and �2. The superimposed orange, dashed circles highlight the center of the (avoided) crossings.

Here, we apply an RF voltage to the plunger gate of QD2: �g = � 0
g +� RF

g sin(��), where
� 0
g is the constant gate voltage, � RF

g is the RF voltage amplitude and � is the angular
frequency. The e�ect of the gate voltage on ��1� can be written as:

� ��1�
��g

=
� ��1�
��2

��2
��g

= ����NL
q

Where � is the lever arm of the plunger gate of QD2. We can apply a voltage bias to the
normal leads of S1, which results in a current � running through the sensor. We assume that
the plunger gate voltage of S1 is chosen such that the electrochemical potential corresponds
to the linear slope of a Coulomb resonance. As QD1 e�ectively gates S1, we can roughly
approximate the e�ect on the current as: � � ��m ��1�, where �m is the mutual capacitance.
We can then demodulate the measured current, � , with the � RF

g signal using a lock-in
ampli�er to obtain the di�erential conductance:

� �
��
��g

= ��m
� ��1�
��g

= ���m�NL
q

� is then directly proportional to �NL
q , resulting in a parity-dependent conductance of S1.

In �gure 4b-d, we show the ground state parity of the system sketched in panel a, that
was computed using the model introduced in Ref. [21]. The energy of the ABS is varied
between the plots, which tunes the relative rates of ECT and CAR. These rates are equal in
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�gure 4c, which corresponds to a sweet spot. In �gure 4e-g we show �NL
q averaged over

the parity:

��NL
q =

�(�E1 +�O1 )
2��2

=
�(��|�1|��+ ��|�1|��)

2��2

At �1 = �2 = 0, this reduces to ��NL
q = (�� �)/(8��). We see that ��NL

q is negative at the
center of the avoided crossing in �gure 4e. This correctly indicates that � > �, as seen from
the direction of the avoided crossing in �gure 4b. In �gure 4g, ��NL

q is positive, which is
consistent with the diagonal avoided crossing seen in �gure 4d. In �gure 4f, we see that
��NL
q = 0 in a cross-shaped region close to �1 = �2 = 0. The non-local quantum capacitance

of the even and odd states is equal and opposite here, which causes the average to cancel.
If � ��1�/��g is measured faster than the quasiparticle poisoning time, the parity can be
inferred from measurements of �NL

q . This implies that parity readout can be performed
at �1 = �2 = 0, at which point the zero-energy state is most robust to charge noise. In
contrast, reading out the parity using a charge sensor requires detuning at least one QD
(see section 2.4.4). The advantages of the present method are threefold. First, it can be used
for tuning a Kitaev chain into the sweet spot without normal leads by measuring slower
than quasiparticle poisoning. Second, it can read out the parity of the two-site Kitaev chain
by measuring faster than quasiparticle poisoning. Third, it does not require any voltage
pulses, as the SNR is highest for �1 = �2 = 0, where � ��1�/��2 is maximal.

To recognize a sweet spot based on ��NL
q , it is crucial for the charge sensor response

to be linear. If S1 is tuned close to Coulomb blockade, a chemical potential shift in one
direction will not result in a signi�cant change in response. A shift in the other direction
brings S1 closer to Coulomb resonance, which results in a larger change of � . Averaging
over parity does not result in ��NL

q = 0 then. We demonstrated how to read out the non-local
capacitance using a single-electron transistor for convenience, as it does not require readout
resonators. In one-dimensional nanowires, experimentalists are often limited to using a
single-lead charge sensor or “single-electron box” (SEB). In this case, the measured quantity
is the re�ected amplitude or phase of the SEB. Predicting the response of ��NL

q is more
challenging in this case, as there is now a readout signal on the SEB as well as a drive
signal on QD2. E�ectively, this becomes a two-tone measurement, as the RF gate voltage
changes the re�ected amplitude and phase of the SEB over time [24]. Modeling the full
time dependence is challenging, as it also depends on the exact relaxation processes of
the SEB. We hypothesize that driving the SEB with an angular frequency �0 may result
in signal resonances at �0 ±�, where, � is the angular frequency of the RF gate voltage
of QD2. If � is lower than the bandwidth of the readout resonator of the SEB, the mixed
signal can be detected using re�ectometry measurements. This relies on wave-mixing in
the system, which we have not investigated presently.

7.5 Y��S�����R������ S�������T�����������
In section 2.2.3, we discussed the formation of zero-bandwidth Yu-Shiba-Rusinov (ZBW-
YSR) states on a QD coupled to a single superconducting orbital. We concluded that the
system’s two-electron states resemble those of double QDs [25]. In both systems, singlet and
triplet states can be formed by the hybridization of spatially-separated spins. Qubit states
have been encoded into these singlet and triplet states in double QDs [26]. In this section,
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we explore the possibility of extending singlet-triplet qubits to YSR states. In these states,
a single spin in a QD is screened by a screening cloud in a bulk superconductor [27]. This
implies that the QD spin can form a singlet or triplet with quasiparticles in a superconductor.
A nuclear �eld in either the QD or the superconductor could then cause coherent singlet-
triplet oscillations, as it does for double QDs [28]. Observing the YSR singlet state evolve
into a triplet is then a direct con�rmation of a screening cloud in the superconductor. If
there is no singlet-triplet mixing, there is no screening cloud, which indicates a BCS singlet
ground state.

To model the system, we use the perturbative zero-bandwidth Hamiltonian de�ned in
equation (2.25). We then consider all even-parity states that do not include the high-energy
|�+� state of the superconductor and write the states in the |�QD,�SC� basis:

{|0,�� , |2,�� , |�,�� , |�,��}, |�,�� , |�,��}

Here, |�� = � |0�� � |2� is the BCS singlet state of the superconducting orbital. We now
include a Zeeman energy, �Z, on both the QD and the superconducting orbital and transform
the basis to account for exchange coupling:

{|0,�� , �(1,1), |2,�� , �� = |�,�� , �0, �+ = |�,��}

We obtain exchange-coupled singlet and triplet states, with a single electron in the QD,
and a single quasiparticle in the superconductor:

�(1,1) =
1
�
2
(|�,��� |�,��) �S = ��2�

�0 =
1
�
2
(|�,��+ |�,��) �T0 = �

(7.1)

As these are the single-orbital equivalent of YSR states, we shall refer to them as zero-
bandwidth YSR (ZBW-YSR) states. We then write the Hamiltonian as:

�ST =

�
�
�
�
�
�
�
�

�� �� 0 0 0 0
�� ��2� � 0 0 0
0 � �C��+2� 0 0 0
0 0 0 �2�� +� 0 0
0 0 0 0 � 0
0 0 0 0 0 2�� +�

�
�
�
�
�
�
�
�

(7.2)

Where � is the superconducting parent gap, � is the hopping between the QD and the
superconductor, �C is the charging energy of the QD and � its electrochemical potential. �
is the exchange coupling that emerges from virtual processes, which we can approximate as
� = �2/(�+�C) for � � ��C/2. We do not include spin-orbit interaction. The Hamiltonian
consists of three triplet states, ��, �0, �+, that do not interact with any other states, and
three singlet states, |0,�� , �(1,1), |2,��, that are mutually coupled. For more discussion on
the model, see section 2.2.4. We diagonalize the Hamiltonian and show the eigenstates in
�gure 5b.

The triplet states are split by the Zeeman energy and intersect the singlet states. The
three singlet states hybridize due to the spin-conserving tunnel coupling. The resulting
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Figure 5: Singlet-triplet mixing in a QD coupled to a single superconducting orbital. a. Singlet (black) and
triplet (blue) eigenstates of the Yu-Shiba-Rusinov zero-bandwidth model for varying electrochemical potential
�. These were computed for �C = 15�, � = 5�, �Z = 0.4�. The inset shows a zoom-in of the low-energy manifold
around � = ��C/2. The colored ticks at the bottom indicate values of � for the preparation (green), separation
(orange), evolution (gray) and measurement (blue) of the system. b. Wave function components of the singlet
ground state for varying �. c. Schematic illustration of a protocol to measure singlet-triplet oscillations. The
colors of the frames correspond to the colors of the ticks in panel a.

ground state is a mixture of the |0,�� , �(1,1), |2,�� states, and is shown in �gure 5c. At
large detuning, the BCS singlet states |0,�� and |2,�� dominate the ground state. At half-
occupancy (� = ��C/2) of the QD, the ground state is predominantly �(1,1), which is the
single-orbital equivalent of the YSR “screening cloud”. If there is a hyper�ne interaction
in either the QD or the superconductor, nuclear �elds can mix the �(1,1) and triplet
states [26] when they are close to degeneracy. This implies that the spin in the QD or the
superconducting orbital can precess over time. If the system remains in the �(1,1) state,
it can be unloaded to the |0,�� or |2,�� BCS singlet states, which represents the creation
or annihilation of a Cooper pair respectively. If the �(1,1) state has evolved into a triplet
state, it cannot be projected onto the BCS singlet states due to spin blockade. This blockade
can be lifted by the formation of a triplet Cooper pair, which is not possible in s-wave
superconductors. We can utilize this “Cooper spin blockade” as a readout mechanism of
the two-electron spin state, similarly to Pauli spin blockade in double QDs.

In �gure 5c, we schematically show a protocol for measuring singlet-triplet oscillations,
which can be performed by varying the electrochemical potential of the QD using gate
voltage pulses. The system is prepared in the |2,�� state, where the QD orbital is doubly-
occupied and the superconductor is in the BCS singlet state. Then, the QD is pulsed to
half-occupancy at � = ��C/2 using rapid adiabatic passage, to form the �(1,1) state. The
voltage pulse has to be slow compared to the |2,��� �(1,1) energy splitting to prevent
Landau-Zener transitions. The pulse has to be fast compared to the singlet-triplet mixing
time due to nuclear �elds, as the �(1,1)� �� degeneracy is crossed (see inset of �gure 5a).
Afterwards, the system is kept at the �(1,1)� �� degeneracy for a time � to evolve the
�(1,1) state into the �� state. Then, the state is projected onto |0,�� using rapid adiabatic
passage again. Depending on the spin state, the electron in the QD will form a Cooper pair
with the quasiparticle in the superconductor or not. The QD occupancy can be monitored
using a charge sensor to detect a possible tunneling event. A jump in the charge sensor
signal points to the �(1,1) state, while a constant response indicates the �� state.
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Repeating this experiment for varying � while measuring the singlet probability, �S,
can then be used to estimate � �2 of the spin states [26]. If �S = 1 regardless of �, there is no
singlet-triplet evolution. A likely interpretation then is that the wave function weight in the
�(1,1) state is small, as the nuclear �elds do not couple the |2,��, |0,�� states to the triplet
states. Both the QD and superconductor have even occupancy in the BCS singlet states,
which precludes spin precession. Observing �S = 1 regardless of � would then disprove
the formation of a YSR state, as there is no spatially separated singlet or triplet state. The
system is then an ABS, as the ground state is a BCS singlet. If �S does depend on �, the
ground state has to (partially) be an exchange singlet, as nuclear �elds can only mix the
exchange singlet and triplet states. For � � � �2 in double QD singlet-triplet qubits, �S will
saturate at a non-unity value that depends on the magnetic �eld strength [28]. Observing
�S < 1 regardless of � then still con�rms the formation of a YSR singlet, which decoheres
faster than one can measure. We note that this protocol has to be performed faster than
the quasiparticle poisoning time, as it would �ip the parity of the system.

The singlet-triplet evolution relies on a di�erence in the nuclear �elds in the QD and
superconductor. Singlet-triplet evolutions were �rst observed in GaAs double QDs, where
the nuclear �elds resulted in a � �2 on the order of 10 ns [26]. In the present system, one of the
spins is located in a bulk superconductor, and is presumably spatially-extended as it forms
a screening cloud. It is unknown how nuclear �elds will a�ect this spatially extended spin
state. Quay et al. measured a spin coherence time of � 100ps for the spin of quasiparticles
that were injected into Al, which they compared to the previously measured spin relaxation
time of � 10ns [29]. We note that these measurements were carried out in non-equilibrium
conditions of an irradiated superconductor, which are signi�cantly di�erent from coherent
single-spin YSR states. Nonetheless, they found that the Elliott–Yafet spin-orbit interaction
was responsible for the decoherence of quasiparticle spin states in Al [30]. We note that
if the spin in the superconductor is rotated or �ipped, it cannot fully screen the QD spin
anymore. The exchange coupling between the two makes this energetically expensive,
as it favors antiparallel spins. The singlet-triplet energy di�erence might prevent spin
relaxation due to spin-orbit interaction in the superconductor. To probe whether there is
also spin precession in the superconductor of our system, we can repeat the protocol in
�gure 5c without tuning to the �(1,1)� �� degeneracy. The singlet-triplet mixing due to
precession of the QD spin is then suppressed. If �S is still time-dependent, it could indicate
spin-precession in the superconductor.

To conclude, we propose an experiment that directly probes the formation of YSR states
on a QD coupled to a superconductor. We exploit the exchange coupling of the screened
state to induce singlet-triplet mixing using nuclear �elds. We have assumed equal Zeeman
splitting in the QD and the superconductor for convenience. A di�erence in g-factor is not
problematic, as the external magnetic �eld only serves to split the triplet states. We can
estimate the necessary energy scales based on the parameters used for �gure 5. Starting
from the superconducting gap of Al (� = 270�eV), we �nd: � = 54�eV, �C = 0.8meV
and �Z = 22�eV. We conclude that these are experimentally accessible parameters for
state-of-the-art devices.
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A man alone in the desert is sovereign and free. He is also powerless.

Michael Heseltine

The only thing that interests me more than quantum mechanics is the nature, personal-
ity, and socializing of people. I am lucky to know and have known an amazing variety of
them.

First of all, Leo, I’d like to recall the exact moment when and where you asked me
whether I’d be interested in doing a PhD in your group; the toilets in the Microsoft wing,
after a meeting. I’m most grateful for you teaching me to “bet my house”, as Richard
Feynman puts it. I have wide interests and was planning to do about 6 parallel projects
throughout my PhD, which would have left me with 3 un�nished preprints. You taught me
how to focus, give everything you have and learn everything you can about a single topic.
You are a gifted physicist and know very well which concepts are understood and which
aren’t; in physics and in people. Tom, I came into your orbit at some point in my second or
third year. This was a chaotic time with people, teams and topics being reshu�ed into the
new �eld of Kitaev chain physics that you and Guan founded. You approach experiments
with the mindset and joy of a child, complete with questions like “what does it mean?” or
“why?”. You are a naturally creative person, and it was an honor and pleasure to work with
you. You taught me that physics is play. Greg, you are a natural-born leader. I was very
grateful for you to welcome me into the UTS team (where I did my masters, of course).
Us being the early birds, I really enjoyed our serious, funny or just lighthearted co�ee
chats around 08:15. I congratulate you for carrying the Olympic torch of hybrids to Oxford,
and feel science would be much less interesting without you being part of it. Michael
W., I have you to thank ultimately for drawing me into QuRe and Leo’s group. I met you
while following computational physics, which I TA’d for you with pleasure for 2 years. I
really wish more PI’s were like you, as you’re very gentle and funny. The academic world
could learn a lot from you. Andrey, thanks for taking a chance in me, and trusting me
with path integrals, even though I had never heard of a Green’s function. My stay in Santa
Barbara was magical and I will never forget it. You’re a very cool guy. Also if you ever get
bored of your Martin guitar I’d be happy to take it from you. Anasua, �rst of all, thanks a
lot for inviting me to your lab back in Copenhagen. I had a really good time (see what I
wrote about Will and Lazar). Before my exchange, I considered physics mainly from a DC,
condensed matter point of view. When I was in Copenhagen, I learned to think in terms of
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single-shot readout, impedances and electron loading. These hadn’t really been applied
much to hybrids before, and it heavily in�uenced my thinking of them. I owe a lot to you,
especially for my charge sensing paper. Eliška you convinced me that quantum matter and
AI are in fact a match made in heaven. You have a particular way of attacking problems
and approaching physics, from which I’ve learned a lot. From lurking deep within the
Mattermost, I could see that you created a research group that is not only brilliant but
also a lot of fun. Ferdinand, thank you for hosting me in your lab! Bas t.H., this might
be the �rst time the phrase “boxershort-cocktail VAP” has appeared in print, but that is
where I �rst met you in 2015. We went to Kenya together, made an almanac and had some
alcoholic beverages well before you started a PhD at QuTech. It was so much fun to have a
friend around at all times during the days in the lab. Francesco, you are the student who
teaches the teacher. You were my master student during the toughest part of my PhD, with
the perfect storm of Covid lockdowns, retractions, SAG, ESD and worst of all: nanocrosses.
I really like you as a person, and was delighted to continue working with you when you
stayed around for a PhD. If you do decide to stay in academia, I think you’ll make a brilliant
professor someday. Alberto, if only 3% of the world was like you, there would be no
more war. You are genuinely a very sweet person and it was so much fun to be basically
starting our PhD’s at the same time. Whenever someone around me announces that they
are having a baby or getting married I just hear you saying “WOW, that’s amazing!!!”
including the dramatic gesticulation. Bart, you are the eye of the hurricane. Even in the
face of disaster, stressful periods or after major disappointments you can remain calm and
cheerful with your signature Bart smile ©. Bas and I used to joke that I could make you
say at least one negative thing during your masters, but I lost the bet. Whether you’ll stay
in academia or not, I’m pretty sure you’ll be both happy and successful. Guan, you are a
gifted physicist, but you know that already, so I’m just going to write other stu�. I’d call
you a connoisseur of science, who talks about preprints like �ne glasses of Barolo. I think
you once referred to a certain qubit coupling as “unnatural”, and said that my colormap
looked like food. Your laugh and high-pitch “Oh my gosh!” are unforgettable. Nick, you
always reminded me that science is after all a human a�air. You led me through the snake
pit that is semiconductor-superconductor physics like a �sh swims through water. You
knew all the scoops, including academic hate triangles (and love triangles!!). It was a lot
of fun to work with you. You are very reliable and “just get stu� done”, even if that may
be very hard. Unlike some other people (Bart), people like you and me get stu� done and
complain about it constantly. Di, it was a lot of fun to have worked with you at the very
start (SAG) and very end (robust paper) of my PhD. You live a very cultured life of which
I’m honestly a bit jealous. Alex, good lord did we spent a lot of time in the STM dungeon.
This was a very challenging project, as we faced a completely new sample prep technique,
limited machine time, Covid restrictions and GAFAM bullshit. Despite these, we had a lot
of fun thanks to your colorful and elated personality. I am very happy that your talents
were recognized, as you strongly deserve your role as assistant professor. I am also happy
that you are teaching ethics in the �eld of quantum technology, cause dang gurl it’s needed.
Rouven, you were a solution looking for a problem, where I was a problem looking for a
solution. Somehow, we found each other in Delft at exactly the right time, looking to attack
Kitaev chains using neural nets. It was an absolute pleasure to work with you. You are
the only person who I’ve collaborated successfully with using zoom, and it was very nice
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to have you visit Delft so often. Gunjan, I’d �rst of all like to thank you for welcoming
a nearly absolute stranger into your home. There are not so many people in this world
who have the heart to do something like this. I really enjoyed going out and about in
Copenhagen with you in the weekends and evenings. I feel like I’ve learned a lot from
hanging out with you. I wish you a lot of happiness! Will and Lazar, doing physics with
you feels like hanging out in a half pipe, recording a new mixtape, and shooting dice in an
abandoned stairway. I think it’s a miracle we did anything at all in our month together, let
alone gather enough data for a paper. I think both of you are amazing human beings who
happen to be very good physicists too. Life cannot be boring in a 5 km radius of either
of you. Please continue your existence! Alisa, meeting you coincided with the turning
point in my PhD where I actually felt good about my research and started having fun. I
always felt connected to you simply because we did exactly the same research, and were
basically neighbors in the crazy world of topology in condensed matter. Our resolution to
not scoop each other and keep in touch was formative for the rest of my PhD, and a�ected
the way I think about sharing success, inviting discussion and keeping science an open
playing �eld. Andreas, you beautiful young man. While Sankar may not have liked your
work particularly much, I really did! Charrold, Charri or Harry, we’d actually already
collaborated on InSb + Pb nanowires at the very start of my PhD. It was a nice surprise to
see that you were still in Copenhagen when I was also there! You are unforgettable and
a super fun guy! Jie, by the time I was your master student, I was convinced of a future
in consultancy or some tech �rm. I just had to survive 8 months working in Leo’s group
under your supervision, and the rest of my future would be easy street. This turned out a
little di�erent, and I have you to thank for getting me hooked on doing physics research.
I feel a weird sort of nostalgia about super-semi islands now, as they remind me of my
master research. Sebastian H. and Gijs, though our collaboration had to end prematurely,
I did enjoy working with you very much and appreciate the e�ort you put in making it
work. Jiyin after working with you during my masters, it was especially fun to succeed
you on B2, and of course we also did some highly experimental measurements of noise.
Cristina, it was nice to have you in the group, as you provided a nice refreshing take on
everything we did from a di�erent area of physics. Jan Cornelis it was a lot of fun getting
to know each other better while training in the clean room. I’ll never forget our aggressive
run-in with an unnamed Italian in the clean room, after which you loudly declared: “I’m
never eating pizza again!!’. Anton, I enjoy your high-level understanding of physics and
the way you communicate it. At some point I was asking myself why I didn’t like Floquet
physics and you said: “it’s too ..... ephemeral. The physics stops when you turn o� the
lights”. Now that’s some real physics poetry. Chunxiao, we were very lucky to have you
around to guide us and explain what we could not in Kitaev physics. I feel like at every
given moment you probably have 10 interesting projects to look into, but have to prioritize
some from sheer lack of time. Mert, you are a very knowledgeable and fun person. I
am very impressed by your zero-�eld Majorana work, and feel certain there will be some
interesting outcome from it in the end. For a basketball player, I would have expected you
to land a napkin in a trash bin at least once during my PhD, but it never happened. I also
really liked your story of the liquor smugglers during your interrail travels. Juan, I knew
you and Francesco from computational physics and both of you impressed me a lot. Brie�y,
I thought you were Francesco, and that you might be my future master student. While it
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didn’t turn out that way, I’m happy that both of us worked on Kitaev physics. Sebastian
M., you are an experimentalist in the body of a theorist. You join Friday drinks, take the
physical world seriously, and literally wore a resistor on your wrist at some point. It’s nice
to have a casual train enthusiast close by. It was a lot of fun hanging around over the years
and even being authors on a paper together. Rik, we are like two circles in a Venn diagram
that overlap in the Otte lab. I really enjoyed our discussions about Shiba, and including a
semi-open 2D substrate into a single atom as a self-energy. This to me is the ability “To
see a World in a Grain of Sand”. Hélène, it was really cool to TA computational physics
with you, and �nd someone who could out-internet me. Many congratulations on your
marriage! Florian and Xiang, I’m happy Alberto convinced you to do projects in our
group. Thomas and Tijl, it was nice to see a Belgian takeover of our labs! Vincent, I
formally count you as Belgian too, seeing as France+Belgian

2 = Dutch. Without you, I would
have never �nished my �nal paper. You’re also an extremely fun person to be around.
I’ll never forget the time you microwaved a frozen pizza, rolled it up, and ate it in front
of the �abbergasted Italians. Arjen and Mark, you were great additions to the group.
Nowadays, it seems you’re quite happy in Sydney, of which I am slightly jealous. Praveen,
you are also a really fun guy who would make a great scientist. Srijit you are ultimately a
grand debater who got tenured in physics. It is amazing to see your involvement in the
day-to-day work of your students. It’s also a lot of fun to have beer with you, cheers!
Yining, Wietze and Eoin, it was really cool to discuss charge sensing of hybrids with
you when you got it to work. You had a good start, I wish you a nice and fruitful PhD
research! Ivan you are a beast. I don’t know anyone who could juggle 6 chips from 3
wafers and manage to write on the correct one. I wish you a lot of fun at ASML! Qing, you
deserve a lot of respect for getting Kitaev to work so quickly in 2DEGs. Best of luck in your
further career! Sebas, you are a blast from the past, having been Jaap’s bachelor student.
Good luck to you! DJ and Rebecca, you really are working on the next-gen experiments
on 2DEGs. While this requires signi�cant initial investment, it will bene�t you in the
long term. Especially once, having done everything yourself, you learn that more senior
researchers will not be more experienced than you are. Christian P., everything I knew
was DC and you taught me a lot about RF. Your knowledge of physics is very broad, exact
and precise. You’re super fun to hang out with, big congrats on your marriage and enjoy
Norway! Damaz, we really should have started that fountain pen club back in the B wing.
Filip, you are nearly peerless in knowledge in what you worked on. I hope you can share
this knowledge with the people around you. Lin, I was very impressed by the connection
you made from �oating islands to Kitaev chains. Good luck after the PhD!Michael C. I
secretly wish we could have worked together on Kitaev chains in germanium. I’m happy
you found other interesting projects in Menno’s group. Jaap, I will never ever forget your
tequila-empanada party. You’re a real fun guy and a SAG man at heart. Lukas S., you are a
very sweet person who has his own clear ideas about physics and research, never change!
Marta, you are a brilliant researcher and a really fun person. I enjoyed the few weeks we
actually both worked on germanium. Arno, it seems that we are the same person. We live
in Leiden, have girlfriends that studied clinical neuropsychology, and started as quantum
measurement engineers after our PhD. Whenever we run into each other I have a lot of
fun! Lukas G., you are a very cool physicist who gets a lot done. I wish you great success
back in Germany. Christian A. you are a very balanced and knowledgeable PI. I’m very
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happy you joined at QuTech, you set up a fantastic group. Daniël it was cool to be o�ce
buddies with you in 2020, and now again in 2024! I hope you’ll build a tea castle once
more! Michael B., Joris C. and Brecht S. Thanks for all the fun times, especially at TPKV.
Anne-Marije and Nico, thanks for taking a chance in me! Let’s get these germanium
spin qubits Grooving! Achilleas and Davide, it’s been a lot of fun to work with the
Greco-Italian alliance so far! Jason, �rst of all, your child is very lucky to have you as a
father. You are super kind and helpful, and it’s always fun to chat with you. Enjoy the
family life! Olaf, every once in a while, I learn new stu� about you, like the fact that you
are a golf enthusiast. Though I did stupid stu�, I never vented any mixture, so I don’t think
you’ll consider me stupid. I got the impossible task of succeeding the dream team on B2,
which you’ll agree with me was no easy game. Without you QuTech would literally be a
hot mess. Raymond, I made one working device in my PhD, which I almost discarded
because it looked terrible. Then you came with your ghostbusters electromagnetic detector.
You showed that the line broadening I observed was actually due to 13.7 kHz noise from
the cheap power supply of a Leiden Cryogenics motor. Lately, I’m wondering how much of
the problems we ascribe to chips are actually from wiring, connectors, power supplies, etc.
Delft is very lucky to have you in any case, as your knowledge of electronics is astounding.
Also, your hobby projects are very fun, you are a cool person! Roy B., also you helped me
a lot in debugging stu� in the lab, thanks a lot! Yannick, when I �rst talked to you, I had
no idea how bias tee’s worked or what an SMP connector was. I think it’s impressive how
you guys help everyone at QuTech with such varying demands. I can proudly say that the
PCB you made for Leo’s group is now actively in use. Csilla thanks a lot for arranging
all the contract stu� and negotiations on our behalf. You are a very e�ective programme
manager. Delphine, thank you for providing us with TNO support, clarity in focus when
our fabrication broke down completely. You are a very nice person and a true connector.
Jenny you are a really cool and spontaneous person. Also, I would have probably failed
my PhD without you for various reasons. I always enjoyed chatting with you very much.
Bas van A., you are a very sweet and fun person. You helped us a lot when we had huge
issues in the clean room. You are naturally curious and helpful, and I’m very grateful to
have worked with you. Roald, it was really insightful to learn about ellipsometry and
thin �lms from you. You are naturally excited and listen to 50 languages of metal, which I
�nd impressive if anything. Martin and Karsten thank you for writing the paper that
started a �eld. 10 years later you are still an active part of Majorana bound states in Kitaev
chains. I very much liked discussing with you in person in both Copenhagen and Lund.
Gorm, whereas I am an average Andreev enthusiast, you are a chad Shiba appreciator.
Your passion is quite infectious, I am now also looking for a problem that Shiba states can
solve. Rubén Seoane Souto, Thanos Tsintzis, András Pályi, Ramon Aguado, Alfredo
Levy Yeyati and Jeroen Danon, I am very grateful that there are people outside of Delft
who also research Kitaev chains, from a di�erent perspective. Also, I had very interesting
discussions with you about Majorana physics. Charlie Marcus, we had a number of lively
exchanges in di�erent parts of the world. In a dive bar in Santa Barbara (“I’ll have your
famous old fashioned please’), to Copenhagen (“this natural phenomenon only occurs
in Denmark or Holland”), and San Sebastian (“are you really gonna give me shit for my
beautiful data?”). I think science would be a lot more amusing if everyone had a touch of
drama like you (and probably me too). Dirk Bouwmeester, thank you for sparking my
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interest in quantum mechanics during my bachelors in Leiden. It was also really cool to
talk to you in Santa Barbara when I was there. Sasa, Ghada, Jason, Roy, and Erik, thank
you for the suite of high-quality semiconductors you have provided for us over the years!

Natuurkunde is prachtig, maar er is ook een leven erbuiten. Het is voor mij altijd
belangrijk geweest om mij een “ingebed mens” te voelen. Dat er touwtjes aan je hangen
waar anderen aan trekken als je valt. Zoals Levinas schreef: “Ik ben pas vrij in het gelaat
van de Ander”. Ik wil graag deze anderen bedanken.

Te beginnen met Daan, Stef, Derk en Boray. Waar veel mensen tijdens de studie hun
vrienden van herkomst uit het oog verliezen, hebben wij dat nooit laten gebeuren. We
zijn een onwaarschijnlijke groep die uit het niets bij elkaar was. We deden echt heel veel
samen; stappen, sporten, LAN parties, etc. Ik ben heel dankbaar dat ik goede vrienden heb
kunnen maken op de middelbare school die ik nog steeds zie. In het bijzonder Boray, mijn
oudste vriend. Er zijn golven dat we elkaar meer of minder zien, maar onze relatie blijft
altijd steady. Jij leert mij nog steeds dat ik niet moet vergeten om te “chillen”.

Dan mijn niet-musketiers Sietze, Gerwin, Joris en Sjoerd. Tegenwoordig schijnt ons
ding te zijn om (on)ironisch naar ADODen haag te gaan, terwijl niemand van voetbal houdt.
Behalve Joris. En schijnbaar Sjoerd, maar dat gelooft niemand. Maar zeker niet Gerwin, ook
al kijkt hij alle wedstrijden en SMS’te hij vragen naar VI. Ik denk dat er weinig mannelijke
vriendengroepen zijn die het concept van “achter de schermen” zo goed begrijpen als wij.
Ook wij zijn ooit willekeurig bij elkaar gezet, maar ik ben heel dankbaar dat ik jullie mijn
vrienden mag noemen. Het unieke aan jullie is dat 10 jaar geleden hetzelfde voelt als gister.
“weet je nog toen Luka te laat was”, ’ja man, augustus 2014’. Sietze, ik waardoor jouw
ondernemende geest enorm. Dit zal ongetwijfeld ooit leiden tot je eigen bedrijf, maar
in onze studententijd leidde het tot veel ludieke ongein. DS Sinchon, Gerwin’s skyrim
treasure hunt, en een literaire canon aan ingezonden stukken. Hoogtepunt voor mij: “1947,
naoorlogs Praag. Freek v.H. wordt wakker in zijn vernielde appartement”. Daarnaast ben
ik blij dat je verloofd bent met Heather en vind ik jullie een heel leuk stel. Gerwin, ik
kan met jou de meest simpele gesprekken (“heerlijk, HEERlijck, HEERLIJKCCC”) en de
meest complexe gesprekken (“je zou maar in Transsiberië geboren worden man, daar is echt
helemaal niets hè”) hebben. Vooruit, nog een paar mooie voorbeelden: “Napoleon was 24
toen hij generaal werd hè. VIER en TWINTIG, wat deden wij toen?”. Of over twee emails
van een markant persoon: “deze email is de declaration of independence, en deze is dan de
bill of rights.” Joris, jij hebt echt een waanzinnig gevoel voor stijl. Alles van architectuur,
tot schilderijen, muziek en boeken. Je bent ook creatief, met bijvoorbeeld het bedenken
van een gitaar ri�je, een clip over Mark Rutte op youtube zetten en je instagram pagina
over oude & nieuw foto’s in Den Haag. Het is ook heel leuk om met jou in het buitenland
te zijn, waar je gevoel voor avontuur echt opbloeit. Met name de signature “links rechts”
weg van de hoofdstraat. Sjoerd, mijn beste vriend. Wij spraken elkaar voor het eerst echt
op een zomerdag in 2014 bij Van Der Wer�. Sindsdien ben jij eigenlijk familie geworden.
Ook in letterlijke zin, omdat het vaak over je gaat aan tafel in Acht en je wel eens kerst
hebt meegevierd. Je bent heel bijzonder voor me en ik ben dankbaar dat je een grote rol in
mijn leven speelt.

Jona, Ysbrand, Max, Sjoerd, ook van jullie weet ik niet heel goed hoe we een groep
zijn geworden. Ik denk dat Ysbrand hoopte op een soort Herenclub zoals Harry Mulisch
had. Wat het is geworden is 5 luidsprekers zonder microfoons. Na iedere avond zeggen
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we trots en ironisch: “wat hebben we weer goed naar elkaar geluisterd”. Je kan het ook
zo zien: wat hebben we een hoop tegen elkaar te zeggen! Ik ben altijd dankbaar geweest
dat ik mensen van de publieke sector, politiek of Europa (en pensioen risicobereidheid)
om me heen heb. Dit is een goede tegenhanger voor de ietwat robotische wereld van de
techniek. Eric, je bent een fantastisch persoon en een ware verbinder der mensen. Ik heb
veel van je geleerd en waardeer je oprechte interesse heel erg. Daarnaast geniet ik altijd
van je gespreksavonden en ben ik vereerd dat ik ooit inleider mocht zijn. Cathalijne, jij
noemde mij ooit jouw “broertje” tot het genoegen van veel mensen 10 jaar later. Je bent
een hilarisch persoon, ook al vraag je jezelf misschien af waarom. Ik vind het heel leuk om
met je te eten en “CIDER” te drinken. Niet te verwarren met “Ceder” gym, of “Don Ceder”
van de Christenunie. Hugo, wij waren geen vrienden op de middelbare school, laten we
dat voorop stellen. Later gelukkig wel! Je bent een intelligent mens met heel goede humor.
Ik hoop van harte dat we ooit nog de beach party gaan organiseren. Lisa d.P. toen we nog
huisgenoten waren hadden we wel eens andere ideeën over hoe dingen zouden moeten
zijn in een studentenhuis. Nu ik wat ouder ben zie ik hoe onnozel dat was en zie ik je als
een goede vriendin. Je bent heel creatief en een �jn persoon om mee om te gaan. Sebas,
Sjali, Bob, Casper, Célestine, Daniëlle, Jochem, Lisa v.d.V., Maxim, Sabine, Suus en
Tim, het was episch om met jullie te wonen. Ik weet niet eens waar ik moet beginnen met
deze nevelige en chaotische tijd beschrijven. Hoogtepunten: domme jongens weekend,
drrrrie oktoberrrrt, tour du chambre, huisthuisweekend. Het cooldowncafé, Sneekweek
(zonder naar Sneekweek te gaan), MexicanOS, cursus mindfulness (en de mensen die liever
gingen darten), date diners. Mijn gesprek met Sebas over Satésaus, waarna wij hem saté
noemden: “ik hou echt van satésaus” ’je weet dat satésaus niks is, alles wat je over saté
doet is satésaus’ “dus ook Remoulade, beurre blanc, curry kruidenketchup, hollandaise..”
’ja, allemaal in potentie satésaus’.
Dieptepunten: “ik ga je laten verdwijnselen”, die keer dat Max een ongesneden rode ui
in de pastasalade deed, sociaal beheerder Rie-Sjaar, die keer dat ik van de fusie weer een
�etsenstalling wilde maken, de -7 winter toen de boiler kapot ging.

Lieve familie, bedankt voor een fantastische jeugd met verjaardagen, bezoekjes aan de
Belgische kust, dekenforten en belletje lellen. Harry en Margriet, al heel lang, maar nog
meer na ons huwelijk zijn jullie echt als ouders voor me. Het is ook heel makkelijk om te
zien welke eigenschappen Nienke van ieder van jullie heeft overgenomen. De verschillen
met Han en Janny zijn soms ook grappig, denk aan uitslapen in Acht en vroeg op (“tijdig”
volgens Nienke) bij jullie. Ik vond het heel bijzonder om met jullie mee te gaan naar Italië
en Champéry en hoop dat nog vaker te mogen doen! Wouter, mijn mededuft. Jij bent een
hilarische bonamigo die duidelijk zijn wereldje gevonden heeft. Ik vind het cool hoeveel
je de wereld over reist om boten in elkaar te zetten (ofziets). Je bent een stoere bink met
uiteindelijk een erg klein hartje. Jasper, ik vind het dapper dat je hebt besloten dat het
9-tot-5 leven in Nederland niet voor jou is weggelegd. Ik heb geen idee waar je over een
paar jaar bent, jij zelf waarschijnlijk ook niet. Je bent uiteindelijk een erg zorgzaam persoon
die het goede in mensen wil zien. Doortje, wat houd ik toch van jouw bulderlach. En wat
heb je een prachtig haar, maar dat hoef ik je niet te vertellen. Ik vind het altijd heel gezellig
met je en hoop nog op vele avondjes chillen!

Marianne, ik wil je bedanken voor het zijn van de meest geweldige moeder die ik me
kan voorstellen. Als kind moest ik altijd mee met shoppen, waar ik vervolgens met het
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grootste ongeduld chagrijnig ging wachten op een stoel tot je klaar was met passen. We
bespraken alles wat ik meemaakte en te vertellen had. Mijn liefde voor mensen heb ik
dankzij jou. Mijn passie voor kunst en vormgeving ook. De weekendjes naar De Haan
waren ook heel belangrijk voor me. Was het ons maar gegund dat je langer in ons leven
was geweest. Han, ik weet niet waar ik moet beginnen met jou bedanken. Je hebt me
in feite in je eentje opgevoed. Dit begon met horten en stoten, toen we als avondeten
overgingen op kant-en-klare (en zeer goed verteerbare!) seniorenmaaltijden. Later ging je
zelf koken, en ik deed het ook af en toe om je te ontlasten. Ik ken weinig mensen die zonder
schromen hun goede baan opzeggen als hun vrouw zieker wordt, dat spreekt voor je. Ik
heb heel veel van je geleerd, maar ben desalniettemin ook mijn eigen persoon geworden.
Je hebt mijn interesse in natuurkunde gevoed met je eigen verhalen. Ik hou van je! Janny,
jij en Han waren heel voorzichtig naar mij toen jij in mijn leven kwam. Er komt veel op
een kind af bij het vormen van een samengesteld gezin. Voor mij hoefde het echter nooit
langzaam te gaan. Je bent een geweldig en zorgzaam persoon en ik zou heel ongelukkig
zijn geweest als je niet in ons leven was. Je bent en blijft als een moeder voor me! Philippe,
op papier zouden we niet meer kunnen verschillen. Soldaat en wetenschapper, lang en kort,
Arnhem en Leiden. Toch vind ik dat we heel erg op elkaar lijken op veel gebiden, vooral
qua humor. Ik ga niet oprakelen hoe je Aimée aan het teisteren was op de trampoline toen
ik je ontmoette. Ik denk dat we binnen zo’n 5 minuten al maatjes waren. Je bent mijn broer
en ik ben heel trots op je. Aimée, ik wilde als kind altijd een jonger zusje. Met jou ging die
wens in vervulling. We keken in de lange weekenden in Vught naar dingen zoals Phineas
en Ferb, taarten van Abel, of gewoon MTV. Naarmate je ouder werd ontstond er een nieuwe
Aimée. Deze Aimée staat sterk in haar schoenen, �xt shit gewoon en is heel trouw. Ik vond
die keren dat we tijdens Covid afspraken heel bepalend voor onze relatie. Je mag heel trots
zijn op de persoon die je geworden bent en hoe je je eigen pad hebt bewandeld. Ik ben
heel dankbaar hoe mij toch een zusje gegund is. Lieve, onze relatie heeft de grootste groei
doorgemaakt over de jaren. Geheel per toeval gingen we allebei in Leiden studeren en bij
dezelfde studentenvereniging. Ik denk dat we het toen wel �jn vonden dat we elkaar ook
enige privacy gunden, omdat we allebei een eigen wereld nodig hadden. Gelukkig hebben
we elkaar snel daarna echt gevonden. Ik vind de spelletjesavonden met jou en Rob altijd
heel gezellig. Maar ook simpele dingen als carpoolen naar Acht en gewoon kletsen. Ik gun
je een heel gelukkig gezinsleven met Rob en jullie zoontje. Ik ben heel blij dat ik jou ook
mijn oudere zus kan noemen. Anne-Roos, Rob en Damin, Jullie zijn de dakopbouw op
ons Vila Volta gezin. Het is heel mooi om te zien hoe jullie Philippe, Lieve en Aimée ieder
op jullie eigen manier aanvullen. Ik ben heel blij dat ook jullie mijn familie zijn en dat we
samen echt een groot gezin vormen.

Lieve Nienke, waar kan ik zelfs beginnen met jou bedanken? Zelfs terwijl ik dit schrijf
heb je door mijn gehele dankwoord geploegd om te kijken of er ongepaste dingen in staan.
Ik heb ongeloo�ijk veel van je geleerd over de jaren, want er valt heel veel van je te leren.
Je houdt altijd rekening met anderen, soms teveel. Je bent geduldig, zeker naar mij toe. Ik
heb met name van jou geleerd dat het openbaren van jezelf en je emoties naar anderen toe
een teken van kracht is, dat kon ik niet zo goed toen ik je net kende. Je grapt altijd dat ik je
in feite in 2015 al ten huwelijk heb gevraagd. Ik grap dan altijd dat ik het toen al wist. Je
bent mijn eerste en laatste relatie en ik houd zielsveel van je. Ik ben ook heel trots op je.



7

205

C��������� V���

David ��� D����

01/02/1996 Born in Eindhoven, The Netherlands.

2008-2013 Bilingual Atheneum
Stedelijk College Henegouwenlaan, Eindhoven

2013-2016 Bachelor of Science in physics
Leiden University

Bachelor research project in the group of
Prof. dr. D. Bouwmeester:
“Magnetic-�eld enhanced coherence in Ytterbium-doped ring res-
onators at millikelvin temperatures”

Honours College Béta and Life Sciences

2016-2020 Master of Science in Applied Physics
Delft University of Technology

Master research project in the group of Prof. dr. ir. L.P. Kouwen-
hoven:
“Parity-Dependent Majorana Signatures for Advanced Supercon-
ductor -Semiconductor Nanodevices”

Internship at Microsoft Station Q, Santa Barbara:
“Constructing Elements of Tunneling Hamiltonians Using the
Mahaux-Weidenmüller Formula”

Leiden Leadership Programme

2020-2024 Ph. D. in Experimental Physics
Delft University of Technology

Doctoral research in the group of Prof. dr. ir. L.P. Kouwenhoven:
“Quantum Dots Coupled to Andreev Bound States”





7

207

L��� �� P�����������

18. � David van Driel, R. Koch, V. P. M. Sietses, S. L. D. ten Haaf, C.-X. Liu, F. Zatelli, B. Roovers,
A. Bordin, N. van Loo, G. Wang, J. C. Wol�, G. P. Mazur, T. Dvir, I. Kulesh, Q. Wang, A. M.
Bozkurt, S. Gazibegovic, G. Badawy, E. P. A. M. Bakkers, M. Wimmer, S. Goswami, J. L. Lado, L.
P. Kouwenhoven, E. Greplova (2024). Cross-Platform Autonomous Control of Minimal Kitaev
Chains. arXiv preprint arXiv:2405.04596.

17. L. Lakic†, W. I. L. Lawrie†, David van Driel, L. E. A. Stehouwer, M. Veldhorst, G. Scappucci,
F. Kuemmeth, & A. Chatterjee. (2024). A proximitized quantum dot in germanium. arXiv
preprint arXiv:2405.02013.

16. A. Bordin, C.-X. Liu, T. Dvir, F. Zatelli, S. L. D. ten Haaf, David van Driel, G. Wang, N. van
Loo, T. van Caekenberghe, J. C. Wol�, Y. Zhang, G. Badawy, S. Gazibegovic, E. P. A. M. Bakkers,
M. Wimmer, L. P. Kouwenhoven, G. P. Mazur (2024). Signatures of Majorana protection in a
three-site Kitaev chain. arXiv preprint arXiv:2402.19382.

15. A. Bordin, X. Li, David van Driel, J. C. Wol�, Q. Wang, S. L. D. Ten Haaf, G. Wang, N. van
Loo, L. P. Kouwenhoven, & T. Dvir. (2024). Crossed Andreev re�ection and elastic cotunneling
in three quantum dots coupled by superconductors. Physical Review Letters, 132(5), 056602.

14. A. Bordin†, F. J. B. Evertsz†, G. O. Ste�ensen†, T. Dvir, G. P. Mazur, David van Driel, N. van
Loo, J. C. Wol�, E. P. A. M. Bakkers, A. L. Yeyati, L. P. Kouwenhoven (2024). Supercurrent
through an Andreev trimer. arXiv preprint arXiv:2402.19284.

13. � David van Driel, B. Roovers, F. Zatelli, A. Bordin, G. Wang, N. van Loo, J. C. Wol�, G.
P. Mazur, S. Gazibegovic, G. Badawy, E. P. A. M. Bakkers, L. P. Kouwenhoven, T. Dvir (2024).
Charge sensing the parity of an Andreev molecule. PRX Quantum, 5(2), 020301.

12. S. Miles, David van Driel, M. Wimmer, & C.-X. Liu. (2024). Kitaev chain in an alternating
quantum dot-Andreev bound state array. Physical Review B, 110(2), 024520.

11. � F. Zatelli†, David van Driel†, D. Xu†, G. Wang†, C.-X. Liu, A. Bordin, B. Roovers, G. P.
Mazur, N. van Loo, J. C. Wol�, A. M. Bozkurt, G. Badawy, S. Gazibegovic, E. P. A. M. Bakkers,
M. Wimmer, L. P. Kouwenhoven, T. Dvir (2023). Robust poor man’s Majorana zero modes
using Yu-Shiba-Rusinov states. arXiv preprint arXiv:2311.03193.

10. A. Bordin†, G. Wang†, C.-X. Liu, S. L. D. ten Haaf, N. van Loo, G. P. Mazur, D. Xu, David
van Driel, F. Zatelli, S. Gazibegovic, G. Badawy, E. P. A. M. Bakkers, M. Wimmer, L. P.
Kouwenhoven, T. Dvir (2023). Tunable crossed Andreev re�ection and elastic cotunneling in
hybrid nanowires. Physical Review X, 13(3), 031031.

9. Y. Chen†, David van Driel†, C. Lampadaris, S. A. Khan, K. Alattallah, L. Zeng, E. Olsson,
T. Dvir, P. Krogstrup, & Y. Liu. (2023). Gate-tunable superconductivity in hybrid InSb–Pb
nanowires. Applied Physics Letters, 123(8).

8. R. Koch,David vanDriel, A. Bordin, J. L. Lado, & E. Greplova. (2023). Adversarial Hamiltonian
learning of quantum dots in a minimal Kitaev chain. Physical Review Applied, 20(4), 044081.



7

208 L��� �� P�����������

7. � David van Driel†, G. Wang†, A. Bordin, N. van Loo, F. Zatelli, G. P. Mazur, D. Xu, S.
Gazibegovic, G. Badawy, E. P. A. M. Bakkers, L. P. Kouwenhoven, T. Dvir† (2023). Spin-�ltered
measurements of Andreev bound states in semiconductor-superconductor nanowire devices.
Nature Communications, 14(1), 6880.

6. N. van Loo, G. P. Mazur, T. Dvir, G. Wang, R. C. Dekker, J.-Y. Wang, M. Lemang, C. S�ligoj,
A. Bordin, David van Driel, G. Badawy, S. Gazibegovic, E. P. A. M. Bakkers, L. P. Kouwen-
hoven (2023). Electrostatic control of the proximity e�ect in the bulk of semiconductor-
superconductor hybrids. Nature Communications, 14(1), 3325.

5. T. Dvir†, G. Wang†, N. van Loo†, C.-X. Liu, G. P. Mazur, A. Bordin, S. L. D. ten Haaf, J.-Y.
Wang, David van Driel, F. Zatelli, X. Li, F. K. Malinowski, S. Gazibegovic, G. Badawy, E. P. A.
M. Bakkers, M. Wimmer, L. P. Kouwenhoven (2023). Realization of a minimal Kitaev chain in
coupled quantum dots. Nature, 614(7948), 445-450.

4. G. P. Mazur†, N. van Loo†, D. van Driel, J.-Y. Wang, G. Badawy, S. Gazibegovic, E. P. A. M.
Bakkers, & L. P. Kouwenhoven. (2022). The gate-tunable Josephson diode. arXiv preprint
arXiv:2211.14283.

3. J.-Y. Wang, C. Schrade, V. Levajac, David van Driel, K. Li, S. Gazibegovic, G. Badawy, R. L. M.
Op het Veld, J. S. Lee, M. Pendharkar, C. P. Dempsey, C. J. Palmstrøm, E. P. A. M. Bakkers, L.
Fu, L. P. Kouwenhoven, J. Shen (2022). Supercurrent parity meter in a nanowire Cooper pair
transistor. Science Advances, 8(16), eabm9896.

2. J. Shen, G. W. Winkler, F. Borsoi, S. Heedt, V. Levajac, J.-Y. Wang, D. van Driel, D. Bouman,
S. Gazibegovic, R. L. M. Op Het Veld, D. Car, J. A. Logan, M. Pendharkar, C. J. Palmstrøm,
E. P. A. M. Bakkers, L. P. Kouwenhoven, B. van Heck (2021). Full parity phase diagram of a
proximitized nanowire island. Physical Review B, 104(4), 045422.

1. D. Ding, David van Driel, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, M. J. A.
de Dood, A. Vantomme, J. E. Bowers, W. Lö�er, D. Bouwmeester (2020). Probing interacting
two-level systems with rare-earth ions. Physical Review B, 101(1), 014209.

† Equal Contribution
� Included in this thesis.



L��� �� P�����������

7

209



The magenta areas are the front and back cover
The orange stripe simulates the spine.

You can calculate the spine thickness on our website: 
https://www.gildeprint.nl/en/faq/how-to-calculate-the-spine-thickness/

Make sure you select the correct paper.
The green part is the bleed. The bleed must be at least 2 mm. The images and color areas must 

therefore be extended to at least 2 mm outside the format.
You can use the right hand side for the bookmark. 

The distance between cover and bookmark is 5 mm.

170 mm

Back 

Text must remain at least 10 mm all around within the format 170x240 mm   

The magenta areas are the front and back cover
The orange stripe simulates the spine.

You can calculate the spine thickness on our website: 
https://www.gildeprint.nl/en/faq/how-to-calculate-the-spine-thickness/

Make sure you select the correct paper.
The green part is the bleed. The bleed must be at least 2 mm. The images and color areas must 

therefore be extended to at least 2 mm outside the format.
You can use the right hand side for the bookmark. 

The distance between cover and bookmark is 5 mm.

170 mm

Back 

Text must remain at least 10 mm all around within the format 170x240 mm   

The magenta areas are the front and back cover
The orange stripe simulates the spine.

You can calculate the spine thickness on our website: 
https://www.gildeprint.nl/en/faq/how-to-calculate-the-spine-thickness/

Make sure you select the correct paper.
The green part is the bleed. The bleed must be at least 2 mm. The images and color areas must 

therefore be extended to at least 2 mm outside the format.
You can use the right hand side for the bookmark. 

The distance between cover and bookmark is 5 mm.

170 mm

Back 

Text must remain at least 10 mm all around within the format 170x240 mm   

ISBN: 978-94-6384-618-9

1 µm


