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Abstract: This study presents a theoretical investigation into the photovoltaic efficiency of In-
GaN/GaN quantum well-based intermediate band solar cells (IBSCs) under the simultaneous influ-
ence of electric and magnetic fields. The finite element method is employed to numerically solve the
one-dimensional Schrödinger equation within the framework of the effective-mass approximation.
Our findings reveal that electric and magnetic fields significantly influence the energy levels of
electrons and holes, optical transition energies, open-circuit voltages, short-circuit currents, and
overall photovoltaic conversion performances of IBSCs. Furthermore, this research indicates that ap-
plying a magnetic field positively influences conversion efficiency. Through the optimization of IBSC
parameters, an efficiency of approximately 50% is achievable, surpassing the conventional Shockley–
Queisser limit. This theoretical study demonstrates the potential for next-generation photovoltaic
technology advancements.

Keywords: IBSC; photovoltaic; efficiency; III-N materials; electromagnetic fields; parabolic potential

1. Introduction

Intermediate band solar cells (IBSCs) are at the forefront of solar cell technology,
enhancing efficiency by introducing additional energy levels within the bandgap of single-
bandgap solar cells [1]. By facilitating transitions from the valence band (VB) to the
intermediate band (IB) and from the IB to the conduction band (CB), IBSCs enable the ab-
sorption of sub-bandgap photons, resulting in heightened photocurrents and photovoltages,
thus elevating the overall power conversion efficiency (PCE) beyond that of traditional
single-bandgap solar cells. This innovation creates intermediate quantized levels within the
bandgap, reducing non-radiative doping-related transitions, thereby offering a promising
strategy to surpass conventional limits and potentially reduce the cost of photovoltaic
electricity production. Achieving optimal performance necessitates ensuring that VB to
IB and IB to CB transitions are optically allowed without spectral overlap. Under ideal
conditions, IB solar cells boast a theoretical maximum PCE of 63%, a notable improvement
over the 41% maximum PCE of single-bandgap solar cells [2]. Since the seminal works
of Luque, Marti, Levy, and Nozik, the exploration of the novel generation of solar cells
has witnessed significant growth. Overcoming the Shockley–Queisser limit to enhance
photovoltaic conversion efficiency (η) remains a formidable challenge for researchers and
industry alike [3–5]. Theoretically, the electron’s intermediate band was derived using the
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Kronig–Penney model to solve the Schrödinger equation. These findings support enhanc-
ing the photoelectric conversion efficiency by adjusting the indium concentration, the well
and/or dot size, and inter-spacing [6]. IBSCs exploit their inherent intermediate band by
exploiting nanostructured semiconductor materials, such as quantum wells (QWs) and
quantum dots (QDs). Quantum confinement effects, resulting from the small size of QWs or
QDs, promote the formation of this intermediate band, requiring a high QD concentration
for effective band formation [7]. Manipulating these nanostructures’ properties, such as
size, shape, morphology, and inter-dot separation, offers avenues for further enhancing
IBSC PCE [8].

Recently, an experiment demonstrated that materials utilized in IBSCs include (In,
Ga) self-assembly in the GaAs matrix, InAs QDs in the GaAs matrix, and GaSb QDs in
the GaAs matrix, showcasing promising PCEs of up to 18% [9]. Moreover, nanostructures,
particularly quantum wells, play a pivotal role in enhancing the performances of photo-
voltaic cells. Rooted in III-N semiconductors, these nanostructures offer distinct advantages
over conventional semiconductors, such as heightened energy efficiency and durability. In
addition, the InGaN ternary alloy demonstrates the remarkable ability to absorb the entire
visible spectrum, spanning from infrared (IR) to ultraviolet (UV) wavelengths, contingent
upon variations in indium concentration. Nonetheless, achieving comprehensive spec-
tral absorption poses challenges during growth, primarily attributable to these materials’
localized and polar nature, particularly when indium concentrations exceed 50% [10].

In the realm of photovoltaic conversion efficiency concerning intermediate band solar
cells based on quantum dots and quantum wells, numerous studies have been docu-
mented in the literature. El Aouami et al. [11] conducted a theoretical investigation into
the photovoltaic conversion efficiency of InGaN/GaN solar cells, focusing on integrating a
supra-crystal array of QDs within the i-region of a photodiode. Imran et al. [12] reported
increased efficiency achieved via a planar intermediate band in QD-based InAs/GaAs
solar cells. Recently, El Ghazi et al. [13] used the finite element method to study key
characteristics of InGaN/GaN intermediate band solar cells (IBSCs), focusing on X-sun
concentration effects. The same research group examined the operational mechanisms
of n-In0.42Ga0.58N/i-(In, Ga)N/p-In0.42Ga0.58N solar cells at room temperature using ex-
perimental data from the AM1.5D, AM1.5G, and AM0 American Society for Testing and
Materials datasets [14]. Furthermore, over the past two years, our research has delved
into the temperature-dependent photovoltaic properties of (In, Ga)N single-intermediate
band quantum well solar cells, exploring various geometries [15]. Additionally, we exam-
ined the impurity-induced photovoltaic efficiency of (In, Ga)N/GaN quantum well single
single-intermediate band solar cells, focusing on heavy-hole impact [16]. Most recently, our
investigations have centered on the efficiency of InN/InGaN/GaN intermediate band solar
cells, considering the influences of hydrostatic pressure, In-compositions, built-in electric
fields, confinement, and thickness [17].

This study represents the culmination of our recent endeavors. It presents a ground-
breaking approach: integrating electric and magnetic fields to enhance the characteristics of
InGaN/GaN-based intermediate band solar cells (IBSCs). Remarkably, these factors have
been overlooked in prior research despite their potential to yield substantial improvements
in efficiency and stability. This innovative strategy offers promising opportunities for opti-
mizing IBSCs, emphasizing the critical importance of incorporating these considerations
into the design of next-generation, high-performance solar cells.

2. Theory and Models

The depicted system comprised a p-GaN/(In,Ga)N/GaN-n solar cell, as illustrated
in Figure 1. It featured a GaN layer of thickness L serving as a barrier and an intrinsic
(In,Ga)N layer of thickness l acting as the well width. The investigation excluded con-
siderations of n(p)-type doping effects through the Poisson equation. This configuration
represented a quantum well intermediate band solar cell (QW-IBSC) model, as delineated
in Figure 1, depicting the schematic of the designed intermediate band solar cell (IBSC).
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The Schrödinger equation governing the energy levels of ground and excited states within
a parabolic quantum well (PQW), subject to a parabolic confinement potential, was solved
using the finite element method (FEM). The use of the FEM in our study for solving the
Schrödinger equation within the effective-mass approximation had inherent limitations.
Specifically, this approach did not account for complex interactions such as self-polarization
or multi-particle effects, which are crucial for accurately modeling quantum well interme-
diate band solar cells (QW-IBSCs). Recognizing these limitations, we acknowledge that our
findings represent a foundational analysis, and we encourage future research to incorporate
more sophisticated models to enhance the realism and applicability of the results.
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Figure 1. A schematic diagram of a GaN/(In,Ga)N/GaN QW single-intermediate band implanted in
the conventional solar cell under study.

This numerical technique was employed due to the system’s intricate nature, particu-
larly when incorporating a hydrogen-like impurity at the system’s center, specifically at
L + l/2.

In Figure 1, EC, EV , EFC, EFV , and EFI , respectively, denote the energies of the con-
duction and valence bands and their quasi-Fermi levels. Additionally, EFI Represent the
quasi-Fermi level energy of the IB. CB and VB represent the conduction and valence bands,
respectively. µCI and µIV denote the chemical potentials between the CB, VB, and the IB,
while µCV represents the chemical potential between the CB and VB. E23 and E12 symbolize
the bottom and top sub-band gap energies, respectively.

Figure 2 illustrates the enhanced absorption capability of the proposed structure com-
pared to conventional p-n structures. The figure comprises three parts: (a) a visualization
of radiative potential optical transitions within an intermediate band (IB), (b) a diagram
illustrating the band structure of the intermediate band formed by quantum wells (QWs),
and (c) an explanation of the three-step absorption process’ formation. The visualization
in part (a) depicts the radiative potential optical transitions within the intermediate band
(IB). This highlights the ability of the IB to facilitate multiple photon absorptions through
radiative transitions, indicating its potential for efficient light harvesting. Part (b) presents
a diagram illustrating the band structure of the intermediate band formed by quantum
wells (QWs). This depiction showcases the energy levels within the IB and its relationship
with the surrounding band structure, providing insights into how the IB enables enhanced
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absorption capabilities. Part (c) explains the formation of the three-step absorption process.
This likely describes how the IB structure allows for the absorption of three photons in two
steps, leading to significantly higher absorption than conventional structures. This explana-
tion elucidates the mechanism behind the enhanced absorption observed in the proposed
structure, further supporting its potential for improved solar energy conversion efficiency.
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2.1. Electronic Characteristics

In this work, we considered an electron (hole) confined in a parabolic potential, with
the donor impurity placed at the center of the well under the simultaneous influence of
electric and magnetic fields. The electric field was applied parallel to the growth direction
(z-direction), and the magnetic field was applied perpendicular to the growth direction
or electric field. Considering the effective-mass approximation, the energy levels and
associated eigenwave functions within this system were determined by solving the time-
independent Schrödinger equation:

HΨ(z) = EΨ(z) (1)

We defined the z-axis to be along the growth axis and applied the electric field in the

growth direction and the magnetic field to be used in the x-axis, i.e.,
→
B = (B, 0, 0). We chose

a vector potential
→
A in the form

→
A = (0, −Bz, 0) to describe the applied magnetic field.

The gauge chosen to describe the magnetic field effect implied that the magnetic vector
potential had to satisfy the following two conditions:

(i)
→
∇·

→
A = 0

(ii)
→
A =

1
2

→
(r ×

→
B)

The condition (i), the extensive Hamiltonian in Equation (1), which includes particle
kinetic energy, confinement potential energy, the impact of impurities, and electromagnetic
excitation, is expressed as

H =
1

2m∗
i

[
p +

e
c

A(r)
]2

+ Vi
0j(x, y, z)± αe2

ε∗r

∣∣∣→r i −
→
r 0

∣∣∣ ± q
→
F ·→r (i = e, h) (2)

We noticed that the signs (−) and (+) correspond to the electron and hole, where
m∗

i is the electron (hole) effective mass, and e is the electron charge. p is the momen-
tum, while |

→
ri − →

r0| is the particle impurity distance. Here, α = 0 when there is no
impurity center and α = 1 when the impurity has been considered. In A(r) = 1

2m∗
i
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(B × r), showing the vector potential of magnetic field B, ε∗r is the relative dielectric con-
stant of different materials in this study, and Vi

0j(x, y, z) is the confinement potential profile
for the electron (hole) in the z-direction. Within the framework of one-band parabolic
effective-mass theory, the (In,Ga)N/GaN sub-bands structure was obtained by solving the
impurity-related time-independent Schrödinger equation in the presence of magnetic and
electric field; the equation is expressed as [18]:

− h̄2

2m∗
i

∂2ψi(z)
∂z2 +

Vi
0j(z)± eµ·z − αe2

ε0ε∗(x)
√
(z − z0)

2 + 2
+

e2γ2z2

2m∗
i c2

ψi(z) = Eiψi(z) (3)

Notice that we restricted ourselves to the case corresponding to the neglect of the
self-polarization potential of particles (electrons and holes) due to the interaction of the
particle and its image charge, as described in reference [19]. From this perspective, taking
into account the conduction and valence discontinuities, the finite particle confinement
potential was assumed to be parabolic in shape and expressed as follows:

Vi
0j(z) =

{
4Qi∆Eg(x)

l2

(
zi − L − l

2

)2
for L ≤ zi ≤ L + l

Qi∆Eg(x) elsewhere
(4)

where Qi = 0.7(0.3) is the conduction (valence) band offset, and ∆Eg(x) is the band-gap
energy difference between GaN and InxGa1−xN governed by the In-fraction given as [13]

∆Eg(x) = EGaN
g − EInxGa1−xN

g (x) (5)

The InxGa1−xN band gap energy is expressed using the following quadratic function
of the In-concentration:

EInxGa1−xN
g (x) = x·EInN

g + (1 − x)·EGaN
g − Cx(1 − x) (6)

where C(= 1.43 eV) is the band gap bowing parameter. EInN
g and EGaN

g are the band gap
energies of InN and GaN, respectively.

The effective mass and the relative dielectric constant in the different regions are
expressed as follows [20–22]:

m∗
i (x) =

{
x·m∗

i,InN + (1 − x)m∗
i,GaN L < Z ≤ L + l

m∗
i,GaN elsewhere

(7)

ε∗r (x) =
{

x·ε∗ InN + (1 − x)·ε∗GaN L ≤ Z ≤ L + l
ε∗GaN elsewhere

(8)

Given that an analytical solution to such a nonlinear Schrödinger equation is im-
possible, the finite element method (FEM) was used to solve it using a mono-directional
mesh (calculation grid) consisting of 3N + 1 points. We used this numerical method to
numerically solve the Schrödinger equation for our quantum system because of its accuracy,
which is affected by various factors such as mesh size, basic function order, and element
type. It accurately calculates the ground and low-lying excited states of simple quantum
systems like the harmonic oscillator or the particle in a box. For more complex systems
or higher excited states, the accuracy of the FEM solution may decrease due to the need.
Notice that to obtain the energy levels and their corresponding wave functions, the z-axis
1D-Schrödinger equation (y − y0 = x − x0 = 1) was numerically solved considering the
following boundary conditions:[

→
n
· →
∇

(
ψ

m∗
e,b

)]
b

=

[
→
n
· →
∇

(
ψ

m∗
e,w

)]
w

(9)



Materials 2024, 17, 5219 6 of 13

The studied system makes use of a mesh grid with 3N + 1 points. Each layer is
discretized using various discretization steps. The barrier step is hb = L/N, whereas the
well region step is hw = l/N. For 0 < k < N, the mesh nodes of a single QW are given
as follows: the left barrier is zk = k ∗ hb, the well region is zk = L + k ∗ hw, and the right
barrier is zk = L + l + k ∗ hb. The first and second derivative wave functions are as follows:

∂2ψ(z)
∂z2

)
zk

=
ψk+1 − 2ψk + ψk−1

(zk+1 − zk)
2 (10)

∂ψ(z)
∂z

)
zk

=
ψk+1 − ψk
zk+1 − zk

(11)

2.2. Photonic Characteristics Related to Optical Transitions in IBSCs

Achieving broad absorption across the entire light spectrum is crucial to improve
the efficiency of photoelectric conversion. Within this framework, three distinct optical
transitions emerged: from the valence band (VB) to the intermediate band (IB), from the IB
to the conduction band (CB), and directly from the VB to the CB. In conventional solar cells,
electron-hole pairs are typically generated only by photons possessing energies surpassing
the band gap energy. Nevertheless, within intermediate band solar cell (IBSC) systems,
photons possessing energies below the band gap energy can also be absorbed through both
the initial and secondary optical transitions [23]. Certain assumptions become imperative
considering the prerequisites delineated above for the effective operation of intermediate
band solar cells (IBSCs). These encompass ensuring the electrical isolation of the IB layer
from external contacts, refraining from extracting current from the IB layer, and mandating
that all transitions between the valence band (VB), the intermediate band (IB), and the
conduction band (CB) be radiative, maintaining constant quasi-Fermi levels corresponding
to each band, and ensuring adequate device thickness for thorough absorption. In addition,
the parameters of utmost interest for solar cells are photocurrent density, open circuit
voltage, and efficiency. Additionally, under full-concentration sunlight conditions, the
photo-generated density of the solar cell is determined by the number of absorbed and
emitted photons. Referring to the energy band diagram of the IBSC depicted in Figure 1,
the photocurrent density (jsc) can be expressed according to the methodology outlined in
ref. [24]:

jsc

e
= [F(E13, ∞, Ts, 0)− F(E13, ∞, Tc, µCV)] + [F(E23, E12, Ts, 0)− F(E23, E12, Tc, µCI)] (12)

where Ts and Tc denote the surface temperatures of the sun and the solar cell, respectively.
µCV represents the chemical potential between the conduction band (CB) and the valence
band (VB), while µCI represents the chemical potential between the intermediate band
(IB) and the CB. It is notable that all transition energies (E13, E12, and E23) are explicitly
delineated in Figure 1. Furthermore, following the Roosbroeck–Shockley formula, the
flux F of photons emanating from an object at temperature T can be expressed as per the
formula in references [25,26]:

F(Eu, Ev, T, µ) =
2π

h3c2

∫ Ev

Eu

E2dE

e

(E − µ)

kBT − 1

(13)

where Eu and Ev are the lower and upper energy limits of the photon flux for the corre-
sponding transitions, T is the temperature, h is Plank’s constant, c is the light speed in a
vacuum, KB

(
≈ 1.38 × 10−23 J/K

)
is Boltzmann’s constant, and µ is the chemical potential

of the transition.
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On the other hand, the IBSC output voltage Voc for a p-i-n solar cell can be expressed
as follows:

Voc = µCV = µCI + µIV (14)

where µCI and µIV are given in [26] as follows:{
µCI = E23 + 0.5∆e − Ec + EFC

µIV = E12 + 0.5∆e − EFV + EV + V0h + E1
h

(15)

The electron IB width is ∆e.
The quasi-Fermi levels, denoted as EFC for the conduction band (CB) and EFV for the

valence band (VB), can be mathematically represented as shown in [15]:
Ec − EFc = kT ln

(
Nc
n

)
EFV − EV = kT ln

(
NV
p

) (16)

NC and NV represent the effective densities of the conduction band (CB) and valence band
(VB), respectively, while n and p denote the concentrations of electrons and holes, as shown
in [27]: 

n = Nc exp
[
−Q∆Eg(x,T)

KBT

]
p = NV exp

[
− (1−Q)∆Eg(x,T)

KBT

] (17)

For greater realism, we employed a fill factor (FF) expression dependent on the open-
circuit voltage, as shown below [27]: Vth = KT

q

FF =

Voc
Vth

− ln
(

Voc
Vth

+ 0.72
)

1 + Voc
Vth

(18)

Hence, the photovoltaic conversion efficiency could be derived from the output voltage
and photocurrent density, as described in [14,28]:

η =
Voc·Jsc·FF

Pin
(19)

Pin represents the incident solar power per unit area per the Stefan–Boltzmann law.

Pin = σT4
s (20)

where σ = 5.67 × 10−8 Wm−2K−4.

3. Results and Discussion

In the present study, the key objective is to investigate the performances of GaN/
InxGa1−x N/GaN QW-IBSCs under the combined influence of electric and magnetic fields
and impurities, considering the involvement of heavy holes. All physical parameters
employed in the numerical calculations are listed in Table 1. Throughout this study,
we conducted experiments at room temperature (T = 300 K) and adopted a structure
dimension of L = 2 × l = 4a∗. To simplify our calculations, we used effective units.

R∗
b= m∗

i e4

2(4πε∗ε0)
2 h̄2 = (29.12 meV) was used as the unit of the energy, and the effective Bohr

radius a∗ = 4πε0ε∗ h̄2

m∗
i e2 = (2.53 nm) was used as the unit of length. F = ea∗µ

R∗
b

was used as a

dimensionless parameter taking into account the electric field effect, while B = e2γ2a∗

2m∗
i c2R∗

was used as a dimensionless parameter depending on the applied magnetic field. For
F = B = 1, µ = 6.13 kV/cm, and γ = 0.19 T, to determine the precise values of F and B used
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in the interpretation section, we multiplied the values of F and B by the constants µ and γ,
respectively.

Table 1. The physical parameters used to perform the present numerical calculations [15,29].

Parameters GaN InN

m∗
e /m∗

0 0.19 0.10
m∗

h/m∗
0 0.81 0.83

Eg(0) (eV) 3.4 0.7
ε∗ 8.68 11.6

NV
(
cm−3) 8 × 1015 T3/2 1016 T3/2

NC
(
cm−3) 2.3 × 1014 T3/2 1.76 × 1014 T3/2

Figure 3 illustrates the changes in electron (Panel (left) and hole energies (Panel (right))
concerning variations in the electric field, considering three different magnetic field intensi-
ties. A notable observation emerges: electron and hole energies exhibit a linear decrease
with increasing electric field intensity, regardless of the magnetic field strength. Specifically,
for B = 0.4 T, the electron energy reduces from 0.177 eV to 0.098 eV, respectively, and the
hole energy reduces from 0.983 eV to 0.648 eV, respectively, as the electric field intensity (F)
rises from 0 to 0.8. This signifies decreases of 180.61% and 151.70% for the electron and hole
energies, respectively, resulting in an energy shift towards the red spectrum. In addition,
this red shift occurs due to the weakening Coulomb interaction between the electron and a
donor impurity at the well’s center as the electric field strengthens. Moreover, electron and
heavy hole energies increase with rising magnetic field intensity at a constant electric field
intensity. For instance, at F = 0.4, the electron energy (Ee) shifts from 0.0145 eV to 0.1365 eV
as B increases from 0 to 0.4, marking a 941.38% increase.
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This leads to an energy shift towards the blue spectrum. Consequently, these shifts in
energy result from significant modifications to the quantum well’s electrical states under the
combined influence of crossed electric and magnetic fields. The confinement potential and
the potential arising from the applied fields contribute to these modifications. Additionally,
as the magnetic field strength grows, the electrical state levels approach each other, causing
an increase in binding energy. This increase stems from enhanced electron confinement
due to energy level quantization under the influence of the magnetic field.

Figure 4 displays the optical transition energies plotted against the electric field (F) for
three magnetic field values. Expectedly, E13, representing the bandgap of GaN, remains
unaffected by these variations. Since Ee and Eh are strongly influenced by electric and
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magnetic fields, it is logical to anticipate a similar dependence in optical transition energies.
The electric field impacts Ee and Eh, causing decreases in their values. According to our
calculations, E23 decreases with an increasing electric field regardless of the magnetic
field strength, while E12 exhibits a consistent increase. Specifically, the primary optical
transition energy, E12, rises from 2.6635 eV to 2.6650 eV, indicating a 1.5 meV increase, i.e.,
nearly a 0.6% rise, resulting in a slight blue shift, indicative of the enhanced absorption of
low-energy photons.
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Conversely, E23 decreases from 0.5298 eV to 0.5294 eV, reflecting a 0.4 meV decrease,
i.e., a drop of 0.08%, indicating a very slight red shift. The impact of the magnetic field on
the changes in the optical transition energies E12 and E23 is minimal across the specified
magnetic field range (0–0.4). Moreover, for a fixed electric field value, the optical transition
energy E12 is slightly higher in the absence of a magnetic field than when one is present.
Conversely, the optical transition energy E23 experiences a slight increase as the magnetic
field varies from 0 to 0.4, contributing slightly to enhanced absorption and photo-generated
current density.

To explore electron and heavy-hole ground-state energies and optical transitions within
our structure, we now turn our attention to two key parameters influencing photovoltaic
conversion: the open-circuit voltage (Voc) and the density of the photo-generated current
(Jsc). We focused on crossed electric and magnetic fields, specifically examining an electric
field parallel to the growth axis (z-axis) and a magnetic field perpendicular to it.

Figure 5a depicts the variations in the open-circuit voltage in the QW-IBSC concerning
the electric field for three different magnetic field values. Notably, conducting calculations
at room temperature with an impurity positioned at the center of the well, discernible
trends in the behavior of (Voc) emerge. We observe a gradual and marginal decline in
(Voc) as the electric field strength increases, regardless of the magnetic field’s influence.
Specifically, as the electric field intensity ranges from 0 to 0.8, (Voc) shifts from 2.66663 V to
2.66662 V with a constant magnetic field of 0.4. This stability indicates a nearly constant
voltage despite electric field variations.
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Moreover, with an escalation in the magnetic field strength, (Voc) demonstrates a
modest linear increase. For example, at an electric field strength of 0.4, (Voc) changes
slightly from 2.66659 V to 2.66663 V, representing a minor rise of 1.5 × 103% within the
analyzed magnetic field range. This phenomenon arises from the accumulation of charge
carriers near the junction induced by the heightened magnetic field, leading to a slight
augmentation in (Voc). Overall, within the studied ranges of electric and magnetic fields, the
variations in (Voc) are exceedingly slight, underscoring the importance of the obtained data
and highlighting the beneficial impacts of electric and magnetic fields on the open-circuit
voltage. Figure 5b demonstrates the variations in the density of the photo-generated current,
jsc, influenced by the electric field for three distinct magnetic field strengths. Notably, the
highest densities of photo-generated current consistently occur under zero electric field
conditions, regardless of the magnetic field intensity. As the electric field strength increases,
there is a gradual and linear decline in the photo-generated current density, irrespective of
the magnetic field’s magnitude. Two primary factors can explain this phenomenon: firstly,
the asymmetrical restructuring of the quantum well under a non-zero electric field (F ̸= 0),
and secondly, the shifting of electron and hole energy levels away from their optimal
positions with increasing electric field, thereby impacting optical transitions. E12 and E23
consequently reduce photon absorption and the number of charge carriers participating in
the photo-generated current density. The marginal 0.01% decline in the photo-generated
current density is also attributed to applying a relatively weak electric field. The direct
correlation between increased magnetic field strength and augmented photo-generated
current density is an intriguing observation. For instance, under a fixed electric field
condition, such as F = 0.4, the photo-generated current density (jsc) increases from 76.216 to
76.229 mA/cm2 as the magnetic field varies from 0 to 0.4, respectively, indicating a 0.2%
augmentation. Therefore, this trend can be rationalized by the magnetic field’s substantial
influence on the mobility and quantity of charge carriers traversing the junction, thereby
enhancing the photocurrent. These results agree well with previous studies [30,31].

Figure 6 presents the photovoltaic conversion efficiency as a function of the electric
field for three magnetic field values, considering the influences of impurities and heavy
holes, which are typically neglected in similar studies. Our research underscores the signifi-
cant promise of quantum well intermediate band solar cells (QW-IBSCs) under concentrated
light, with efficiencies nearing 50%, marking a notable advancement in photovoltaic con-
version. Furthermore, it has been demonstrated that maximum efficiency is attained at
zero electric fields, irrespective of the magnetic field value, which aligns with the observed
behavior for the open-circuit voltage and generated photocurrent density. Specifically, the
maximum efficiencies achieved at F = 0 are 49.803%, 49.798%, and 49.793% for magnetic
fields of 0.4, 0.2, and 0 T, respectively. This trend suggests that the optimal charge carrier
dynamics occur when the electric field is minimized, likely reducing recombination losses
and enhancing overall performance. Additionally, a slight decrease in efficiency is observed
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with increasing electric fields, regardless of the magnetic field value, with a minimal drop
of around 0.01% as the electric field increases from 0 to 0.8. This behavior can be attributed
to the Stark effect, where the presence of the electric field causes charge carriers to spread
further apart. This increased spatial separation can negatively impact the E12 and E23
optical transitions, resulting in reduced photon absorption and decreased generated pho-
tocurrent density, ultimately diminishing efficiency. Conversely, efficiency improves with
an increasing magnetic field at a fixed electric field. For instance, at F = 0, as the magnetic
field varies from 0 to 0.4 T, the efficiency increases from 49.790% to 49.800%, indicating a
0.02% improvement. This enhancement may be due to the influence of the magnetic field
on the charge carrier mobility and distribution, which can enhance the collection of charge
carriers and reduce recombination rates, leading to improved photovoltaic performance.
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Our results are consistent with previously reported works on the impact of electric
and magnetic fields on photovoltaic conversion efficiency. In contrast to our study, an ex-
perimental study by Serafettin Erel [32] demonstrates that both electric and magnetic fields
can influence the performances of photovoltaic cells under specific conditions (particularly
with laser irradiation); Hassan Fathabadi’s work shows that external AC electric fields
have no effect, while AC magnetic fields significantly reduce the PV power output of a
silicon-based solar cell [33]. This comparison highlights a key difference in how alternating
and direct current fields impact PV systems. This behavior contrasts with related studies,
which typically report more pronounced effects from spontaneous emission sources, partic-
ularly at the nanoscale, where specific quantum phenomena can emerge and significantly
influence performance.

This result underscores the beneficial impact of the magnetic field on photovoltaic
conversion, attributed to increased confinement, leading to enhanced absorption, higher
generated photocurrent density, and improved efficiency. This efficiency has demonstrated
good consistency with previously published works [34,35]. It is crucial to note that our
calculations assume ideal conditions with a fill factor equal to 1 (FF = 1) and full light
concentration, leading to relatively high efficiencies compared to actual yields. They also
assume an ideal fill factor of 1 and no recombination losses when exploring the theoretical
upper limits of quantum well intermediate band solar cells (QW-IBSCs). While these
assumptions help to illustrate the maximum potential efficiency, we acknowledge that
non-radiative recombination is inevitable in practical devices, which would lower the
real-world performance. Additionally, results for electric and magnetic fields in inclined
directions are lower. Further studies will explore the effects of recombination, the light
concentration factor, and the form factor on photovoltaic conversion efficiency.
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4. Conclusions

This study investigated a novel intermediate band solar cell integrated within a
standard p-i-n structure, operating at ambient temperature. Utilizing the finite difference
method, we explored the potential of this cell to harness low-energy photons for electron
transfer, salvaging otherwise wasted energy. Our computational analysis considered
total light concentration, impurities, and heavy holes under perpendicular electric and
magnetic fields. Our findings indicate that adjustments to both electric and magnetic fields
can enhance energy conversion efficiency. However, the highest photovoltaic conversion
efficiency of roughly 49.80% was achieved under a zero electric field and a magnetic field
of B = 0.4, highlighting the role of magnetic fields in increasing current density through
improved photon absorption. We believe that our work will contribute to advancing
solar cell performance and may inspire further theoretical and experimental exploration in
semiconductor materials.
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