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Abstract

An approach to determine the specific energy dissipated during cyclic loading

of metal alloys with load ratios between 0 and 1 is developed. The dissipated

energy per cycle is determined by using a limiting procedure to obtain the area

enclosed between successive loading and unloading curves and can be used for

low-, medium-, and high-cycle fatigue. Comparisons with published data from

two aluminum, one titanium, and one steel alloy show that the predictions

capture the test results very well. A universal curve relating cycles to failure to

two nondimensional parameters is derived. It is shown, in some limiting cases,

that the method leads to power law equations with the parameters in these

equations determined directly from the complete stress–strain curve of the

material with no need to fit experimental data. Furthermore, if certain condi-

tions are satisfied, the method is consistent with the existence of an endurance

limit and Miner's rule.
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Highlights

• Model describing the shape of loading and unloading curves during fatigue

is developed.

• A closed-form expression for the fatigue cycles to failure initiation is

obtained.

• A single master curve for fatigue is created in terms of two variables.

• Comparisons with test results for four alloys show good to excellent

agreement.
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1 | INTRODUCTION

The concept that fatigue failure occurs when the total
energy dissipated during cycling equals the available
energy per unit volume, that is, the area under the
stress–strain curve, has been around for almost 100 years.
As early as 1927, Inglis1 was among the first to propose
this approach. He was followed by other investigators2,3

who attempted to develop the concept further. Manson4

and Coffin5 related the cycles to failure to the width of
the hysteresis cycle, and Halford and Morrow6 proposed
a closed-form expression for the energy dissipated per
cycle applicable to low cycle fatigue. Their approach was
extended to medium and high cycle fatigue by Chang
et al.7

Examining the relationship between hysteresis and
the rate at which damage accumulates during cyclic load-
ing, Erber et al.8 established phenomenological relations
between energy dissipated during hysteresis and cycles to
failure. These were linked to earlier work mentioned
above but also established a framework for further exper-
imental and simulation work. Within this framework,
Tchankov and Vesselinov9 used an incremental approach
to calculate the total hysteresis energy for random
applied loading and applied it to predict fatigue failure
on a steel alloy.

Constantinescu et al.10 provided an analysis that is
equally applicable to low- and high-cycle fatigue by pro-
viding an interpretation of elastic shakedown in terms of
dissipated energy. Charkaluk et al.11 established a dam-
age indicator based on the energy dissipated per cycle
using a viscoplastic stress–strain law and three-
dimensional finite element simulations.

An attempt to relate energy dissipated per cycle to the
creation and propagation of random microcracks in the
material was made by Troshchenko.12 To further under-
stand energy dissipation, Meneghetti13 developed a
model to relate the heat loss per cycle per unit volume to
cycles to failure and applied it to a steel alloy. Korsunsky
et al.14 derived an expression for the dissipated energy
per cycle under fully reversed loading for a Ramberg–
Osgood-type alloy, which is very similar to the expression
derived by Halford.15 They also compared the accuracy of
the energy dissipation criterion to two other methods and
showed that it is more reliable.

Scott-Emuakpor et al.16 observed that dividing the
monotonic strain energy to failure by the average strain
energy dissipated per cycle may not be sufficient if it is
necessary to account for the experimentally observed
increase of the strain energy dissipated per cycle near the
end of life. They carried out experiments on an alumi-
num alloy and showed an exponential increase of the
strain energy dissipated per cycle near final failure. Park

et al.17 studied the effect of twinning and de-twinning
during low cycle fatigue loading of a magnesium alloy
and found that the plastic energy dissipated per cycle cor-
relates well with the cycles to failure.

A numerical approach to calculate the instantaneous
energy dissipated per cycle under thermomechanical
fatigue loading was introduced by Gosar and Nagode.18

One of the advantages of this approach is that it can cal-
culate energy dissipated at any point during a cycle and
not after each cycle is completed as most other methods
do. Liakat and Khonsari19 used a finite element approach
to calculate the entropy generated and plastic energy dis-
sipated during tension–compression fatigue loading and
compared to test results. They showed that the energy
generated due to heat conduction was negligible com-
pared to the plastic strain energy.

Fan et al.20 examined the effects of creep and stress
relaxation on fatigue life. They found a power law rela-
tion between generalized hysteresis energy and fatigue
life of a 316L(N) alloy. Within the same context of fatigue
creep interaction, Wang et al.21 proposed a creep-fatigue
model using a modified model based on the dissipated
strain energy per unit volume and applied it to a number
of steel alloys with satisfactory results. An evaluation of
the dissipated energy approach for AISI 316L alloy under
multiaxial fatigue was carried out by Feng et al.22 and
showed that, overall, it was superior to models based on
the critical plane approach.

All previous works have demonstrated that the dissi-
pated strain energy per unit volume, or energy density,
accumulates during cycling as long as there are plastic
strains present. And when the total energy accumulated
equals the static total energy, the area under the stress–
strain curve, fatigue failure occurs. Several issues remain
such as the fact that the total plastic energy may change
over time and with loading type. In general, most
methods rely on a combination of experimental results
and simulation to determine the energy dissipated during
each cycle and are mostly applicable to low cycle fatigue
where the plastic strains are most pronounced. The fact
that the dissipated energy changes as a function of cycles
and the difficulty to determine its stabilized or limiting
value adds to the difficulty of correlating the dissipated
energy density with fatigue life.

In this work, an approach to estimate the energy
dissipated per cycle is proposed using some basic phe-
nomenological properties of the loading and unloading
cycles. The resulting closed-form expression for the dis-
sipated energy is shown to have a finite limit as the
number of cycles increase. This limit is divided into the
total static strain energy density to obtain accurate
fatigue life predictions for low, medium and high cycle
fatigue.
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2 | APPROACH

2.1 | Tension–tension fatigue with
0 ≤ R < 1

We start with the case σmin/σmax = R = 0 because it is
easier to introduce the assumptions and the basic equa-
tions. After that introduction, we will generalize to any
positive R value. The case of R = 0 will then follow from
the derivation as a special case.

Consider a material with stress–strain curve as shown
in Figure 1, loaded to a stress level σ with corresponding
strain ε. The failure point is defined by (εf, σf) and the
total area under the curve, the dissipated energy density
at failure, is denoted by Udf. The material is assumed to
follow a Ramberg–Osgood-type of constitutive relation:

ε¼ σ
Eo

þK
σ
Eo

� �n

ð1Þ

with Eo the initial slope (Young's modulus) and K and
n material constants.

In addition to the static stress–strain curve to failure,
the first two unloading–reloading cycles for R = σmin/
σmax = 0 are also shown in Figure 1 with residual plastic
strains εm1 and εm2, respectively. The area enclosed in
each unloading–reloading cycle is the specific energy dis-
sipated in that cycle and will be determined first. To pro-
ceed, the following assumptions are made (see right
portion of Figure 1):

1. Each loading cycle is described by a corresponding
Ramberg–Osgood stress–strain law as in Equation (1)
with, in general, different values for the starting slope
Ei, coefficient Ki and exponent ni. In what follows, it
will be assumed that the starting slope of the loading
cycle Ei is the same as Eo.

2. The loading curve AHB has the same slope as the
original stress–strain curve at point B with coordinates
(ε, σ).

3. The area between the straight line AB connecting
(εmi, 0) with (ε, σ) and the unloading curve BIA is the
same as the area between line AB and the loading
curve AHB. That is, the straight line AB divides the
unloading–reloading cycle in two approximately equal
regions.

One more assumption is needed, and for this, we
resort to Figure 2.

4. It is assumed that the areas of the delineated regions
obey the relation:

FIGURE 1 First two loading–unloading
cycles in stress–strain space for R = 0 (left of

figure) with first cycle isolated on the right for

clarity. [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 2 Linear versus nonlinear material behaviors.

[Colour figure can be viewed at wileyonlinelibrary.com]

KASSAPOGLOU 3

 14602695, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ffe.14096 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [21/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


CEBGC
CEF

≈
CGBHA
CGBFC

ð2Þ

where the equality sign used is meant to imply an
approximate relation. This equation is somewhat arbi-
trary but its implication can be understood by consider-
ing loading up to strain ε and then unloading. It relates
the following quantities: CEBGC is the “unavailable”
energy between a purely linear material with stress–
strain curve CE and the actual inelastic system with
stress–strain curve CGB. CEF is the total available energy
if the material were linear. CGBHA is the “unavailable”
energy between the actual nonlinear material and the
loading curve CHB. Finally, CGBFC is the total energy
for the nonlinear system. Then, Equation (2) simply
states that the ratio of “unavailable” to available energy
for a linear material equals the corresponding ratio for
the actual nonlinear material. The validity of this
assumption has been checked for epoxy resins23 where
the residual shear strain in a composite laminate after
unloading was calculated and was found to be in good
agreement with test results. The validity of this assump-
tion for an alloy will be put to test below when fatigue
life predictions are compared to test results.

The area under the static curve up to a point (ε, σ) is
given by

Ud ¼ σε�
Z σ

0
εdσ ð3Þ

with the subscript “d” referring to energy density. Using
Equation (1),

Ud ¼ σε�
Z σ

0

σ

Eo
þK

σ

Eo

� �n� �
dσ

¼ σε� σ2

2Eo
� K
nþ1

σ
σ

Eo

� �n

ð4Þ

and using Equation (1) again,

Ud¼ σ2

2Eo
þ nK
nþ1

σ
σ

Eo

� �n

ð5Þ

Then, it can be shown that

CEBGC¼ 1
nþ1

Kσ
σ

Eo

� �n

þK2Eo

2
σ

Eo

� �2n

ð6Þ

CEF ¼ σ2

2Eo
þKσ

σ

Eo

� �n

þK2Eo

2
σ

Eo

� �2n

ð7Þ

CGBHA¼ n
nþ1

Kσ
σ

Eo

� �n

� n1
n1þ1

K1σ
σ

Eo

� �n1

ð8Þ

CGBFC¼ σ2

2Eo
þ n
nþ1

Kσ
σ

Eo

� �n

ð9Þ

Equation (1) applied to the loading curve AHB gives

ε� εm1 ¼ σ

Eo
þK1

σ

Eo

� �n1

ð10Þ

where K1 and n1 are material constants in the Ramberg–
Osgood constitutive relation for the first loading cycle.
The quantities K σ

Eo

� �n
and K1

σ
Eo

� �n1
can be calculated

from Equations (1) and (10), respectively, giving

K
σ

Eo

� �n

¼ ε� σ

Eo
ð11Þ

and

K1
σ

Eo

� �n1

¼ ε� εm1� σ

Eo
ð12Þ

These can be substituted in Equations (6)–(9), which,
in turn, are substituted in Equation (2), which is rear-
ranged to give

Eoε�σð Þ
Eo nþ1ð Þ

n1þ1ð Þ 2Eonε�σ n�1ð Þð Þ Eo nþ1ð Þε�σ n�1ð Þð Þ
2Eo

2 nþ1ð Þε2

2
4

þ n n�n1ð Þ
3
5

ð13Þ

This equation relates the new exponent n1 to the pre-
vious exponent n. Rearranging and solving for n1,

n1 ¼�1�
n nþ1ð Þ2
n�1

2Eoε
σ

n�1ð Þ σ
Eoε

� 3nþ1ð Þ ð14Þ

The slope of the stress–strain curve at (ε, σ) is
obtained as follows:

dσ
dε

¼ σ

σ
Eo
þnK σ

Eo

� �n ð15Þ

4 KASSAPOGLOU
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with an analogous expression for the slope of AHB
at (ε, σ) where n and K are replaced by n1 and K1.
Then the equality of slopes at (ε, σ), from Assumption
2, gives

σ

σ
Eo
þnK σ

Eo

� �n ¼
σ

σ
Eo
þn1K1

σ
Eo

� �n1 ð16Þ

Using (11) and (12) to eliminate K and K1 and
simplifying

εm1 ¼ ε� σ

Eo

� �
1� n

n1

� �
ð17Þ

with n1 given by Equation (14). For the second
unloading–reloading cycle, the equation analogous to
Equation (12) reads:

K2
σ

Eo

� �n1

¼ ε� εm2� σ

Eo
ð18Þ

Following the same procedure as for εm1, it can be
shown that

εm2 ¼ ε� σ

Eo

� �
1� n

n2

� �
ð19Þ

We now generalize to any positive R value less than
1. This is shown in Figure 3.

The first two cycles with 0 < R < 1 are highlighted in
black dashed lines. As cycling continues, the cycles will
converge to a constant cycle. Two such cycles very near
convergence are isolated for clarity and shown on the
right of Figure 3 with εmi�1 converging to εmi. The goal is
to determine the area enclosed in the “converged” cycle
delineated by curve AiHiB for the loading part and BIiAi

for the unloading part. Consider now the straight seg-
ment Ai�1B. It divides the i � 1 cycle in two portions,
which, from Assumption 3, have equal areas. Similarly,
segment AiB divides cycle i in two equal areas. The trian-
gle Ai�1BAi is made up from the lower half of cycle i � 1,
the upper half of cycle i plus a small portion Ai�1MAi at
the bottom. But as the unloading–reloading cycles con-
verge to AiHiBIiAi, Ai�1 converges to Ai, and thus, in the
limit, the area of Ai�1MAi is zero. Therefore, in the limit,
the area of triangle Ai�1BAi equals the energy dissipated
during the stabilized unloading–reloading cycle. That
area for the first two cycles is

TΔA¼Total dissipated energy in first two cycles

¼ σ�Rσð Þ
2

εR2� εR1ð Þ ð20Þ

Calculating the strains εR1 and εR2 and computing the
limit of the right hand side of Equation (20) will give the
sought for dissipated energy per cycle. We make one
additional assumption for the complete unloading–
reloading curves corresponding to R = 0:

5. The shape of the unloading curve for R = 0 is the anti-
symmetric of the shape of the loading curve for the
same cycle with center of (anti-)symmetry the mid-
point of AiB.

This is an approximation that eliminates the need to
calculate the Ramberg–Osgood constants K and n for
each cycle when 0 ≤ R < 1. It also is consistent with and
does not violate Assumption 3 made earlier. Considering
the first unloading–reloading cycle of Figure 3, we can,
therefore, write

ε� εR1 ¼ εQ1� εm1 ð21Þ

FIGURE 3 Fatigue cycles for 0 ≤ R < 1. [Colour figure can be viewed at wileyonlinelibrary.com]
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From the stress–strain equation, and since εR is on
the loading part of the first unloading/reloading cycle, we
can write analogous to Equation (10):

εQ1� εm1 ¼ 1�Rð Þσ
Eo

þK1
1�Rð Þσ
Eo

� �n1

ð22Þ

and using Equation (21),

ε� εR1 ¼ 1�Rð Þσ
Eo

þK1
1�Rð Þσ
Eo

� �n1

ð23Þ

In an analogous fashion, looking at Figure 3, and
focusing on the second cycle,

ε� εR2 ¼ εQ2� εm2 ð24Þ

Also, in analogy to Equation (22),

εQ2� εm2 ¼ 1�Rð Þσ
Eo

þK2
1�Rð Þσ
Eo

� �n2

ð25Þ

Combining (24) and (25),

ε� εR2 ¼ 1�Rð Þσ
Eo

þK2
1�Rð Þσ
Eo

� �n2

ð26Þ

Subtracting Equation (26) from (23) leads to

εR2� εR1 ¼K1
1�Rð Þσ
Eo

� �n1

�K2
1�Rð Þσ
Eo

� �n2

ð27Þ

The first term on the right hand side of Equation (27)
can be determined using Equation (12). For the second
term, the equivalent of Equation (12) applied to the sec-
ond cycle reads:

K2
σ
Eo

� �n2

¼ ε� εm2� σ
Eo

ð28Þ

Substituting in Equation (27),

εR2� εR1 ¼ 1�Rð Þn1 ε� εm1� σ

Eo

� �

� 1�Rð Þn2 ε� εm2� σ

Eo

� �
ð29Þ

Equations (17) and (19) are used to substitute for εm1

and εm2 in Equation (29). Rearranging gives

εR2� εR1 ¼ 1�Rð Þn1 ε� σ

Eo

� �
n
n1

� 1�Rð Þn2 ε� σ

Eo

� �
n
n2
ð30Þ

Using this result to substitute in Equation (20) gives

TΔA¼ σ

2
ε� σ

Eo

� �
1�Rð Þn1þ1 n

n1
1� 1�Rð Þn2�n1 n1

n2

� �

ð31Þ

Equation (31) is valid for two successive cycles.
Equation (14) can now be used to determine the ratio
ni�1/ni after appropriate substitution of indices. It can be
shown thatwhere

a¼Eoε

σ
ð33Þ

Equation (32) is a recursion relation, which would
allow calculation of TΔA for any cycle i starting with
the static cycle value of n. However, as will be
discussed below, there is great sensitivity in the value
of the hardening exponent n and very small variations
in that value accumulate during recursion to huge
changes in the prediction for cycles to failure. It is,
therefore, preferred to work with the limiting case
where the quantity ni�1/ni has converged, and the
energy dissipation cycle has stabilized. It can be
shown from Equation (14) that n1 is greater than
n and, as more cycles are applied, ni keeps increa-
sing. Thus, for a large number of cycles, Equation (32)
gives

ni�1

ni
¼ �3ani�1

3þni�1
3þ2ani�1

2þani�1�2ni�1
2þni�1

�2a2ni�1
3�4a2ni�1

2�2a2ni�1þ3ani�1
2�2ani�1�a�ni�1

2þ2ni�1�1
ð32Þ
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lim
ni!∞

ni�1

ni

� �
¼ 1
2

σ

Eoε
3� σ

Eoε

� �
ð34Þ

This allows replacing n/n1 and n1/n2 in Equation (31)
with the right hand side of Equation (34). In addition, for
sufficiently large number of cycles, n1 and n2 become
large and close to each other in magnitude (but not nec-
essarily equal). It is assumed that

n2�n1 ≈ 0¼ > 1�Rð Þn2�n1 ¼ 1 ð35Þ

Then, Equation (31) is rewritten:

TΔA¼ σ

2
ε� σ

Eo

� �
1�Rð Þn1þ1 n

n1
1�n1

n2

� �
ð36Þ

which, using Equation (34) and after some manipulation,
leads to the dissipated energy per cycle when it has
stabilized:

TΔA¼ σε

8
σ

Eoε
1� σ

Eoε

� �2

2� σ

Eoε

� �
3� σ

Eoε

� �
1�Rð Þn1þ1

ð37Þ

The cycles to failure or more precisely to crack initia-
tion, Nf, can then be approximated by dividing the static
specific energy to failure Udf by the energy dissipated per
cycle:

Nf ¼ Udf

TΔA
¼ 8Udf

σε σ
Eoε

1� σ
Eoε

� �2
2� σ

Eoε

� �
3� σ

Eoε

� �
1�Rð Þn1þ1

, R≠ 0

ð38Þ

valid for 0 ≤ R < 1. If R = 0, Equation (38) simplifies to

Nf ¼ 8Udf

σε σ
Eoε

1� σ
Eoε

� �2
2� σ

Eoε

� �
3� σ

Eoε

� � , R¼ 0 ð39Þ

It is interesting to note that the cycles to failure for
R ≠ 0 can be obtained from the cycles to failure for
R = 0 simply by multiplying by 1/(1 � R)n1+1.
Equation (39), or (38), can be rearranged to give a master
curve for fatigue life predictions as a function of two non-
dimensional parameters, Udf/(σε) and σ/Eoε. For R = 0,
Equation (39) yields

Nf
8Udf

σε

¼ 1

σ
Eoε

1� σ
Eoε

� �2
2� σ

Eoε

� �
3� σ

Eoε

� � ð40Þ

Since σ/Eoε can only vary between 0 (no applied load)
to 1 (material response is perfectly elastic), Equation (40)
can be plotted in Figure 4. It can be seen from
Equation (40) and Figure 4 that if there is a portion of
the stress–strain curve, which is perfectly linear, then, for
that portion, σ = Eoε, and the fatigue life is infinite. The
highest value of σ for which σ = Eoε would then be the
endurance limit for this material. This transition from
perfectly linear to nonlinear behavior emphasizes the
importance of very accurate strain measurements during
a stress–strain test as deviations from linearity that are a
small fraction of a percentage point could make the dif-
ference between infinite and finite fatigue lives. This will
be addressed below when physical interpretations of
σ/(Eoε) are discussed.

Another interesting implication of Equation (40) is
the existence of a minimum of the right hand side. It
occurs when σ/(Eoε) = 0.2711 and leads to a minimum
value of the normalized cycles to failure (left hand side of
Equation (30)), which is 1.4716. Such values of σ/(Eoε)
are, typically, deep into the plastic range and result in
low cycle fatigue.

According to Equation (40), for a given material
which fixes the value of Udf (and Eo), the cycles to failure
depend on two variables: σε and σ/(Eoε). The first is twice
the energy density stored in a linear elastic material sys-
tem when loaded to the point (ε, σ) or the area of triangle
CBF in Figure 2. The second can be rewritten in terms of
energy densities:

FIGURE 4 Master curve for predicting fatigue life (R = 0).

[Colour figure can be viewed at wileyonlinelibrary.com]
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σ

Eoε
¼

1
2σε

1
2Eoε2

ð41Þ

This is the ratio of the energy density of a linear mate-
rial loaded to (ε, σ) to the energy density (area of triangle
CEF in Figure 2) that would be stored in the actual mate-
rial if it behaved linearly with Young's modulus Eo when
strain ε were applied. This is related to Assumption 4 made
earlier and emphasizes that the dissipated energy and,
through it, fatigue life depend on ratios of available and
“unavailable” energies with the word “unavailable” refer-
ring to fictitious behavior that the material might exhibit
if it were linear or had no plastic residual strains. It also
shows that, according to Equation (40), the life would be
infinite if there were no plastic strains, that is, if σ = Eoε.
This has been postulated and observed in the past with
Coffin,5 among the first to suggest that plastic strains are
necessary for finite fatigue lives and that such plastic
strains imply that an endurance limit does not exist.

Another way to view this quantity, σ/(Eoε), is as the
ratio of elastic strain σ/Eo to the total strain ε. This
becomes particularly interesting when the term (1 � σ/
(Eoε))

2 at the denominator of Equation (40) is considered.
If the elastic strain σ/Eo is close to the total strain ε, the
quantity 1 � σ/(Eoε) is close to zero, and its square
becomes very small. In such situations, this term in the
denominator of Equation (40) dominates, and very long
lives are predicted. Because of this strong nonlinearity of
the cycles to failure, very small changes in the value of ε
lead to very large changes in the fatigue life. For example,
if σ/(Eoε) equals 0.95, and the value of ε changes by about
4% to 0.99, the resulting fatigue life increases by a factor
of 25. This makes very accurate knowledge of the applied
total strain ε extremely important as, for high cycle
fatigue, especially close to the endurance limit, differ-
ences in that value of even 1%, when σ/(Eoε) is close to
1, have a large effect on the fatigue life. This sensitivity is
also responsible for the large fatigue scatter. On the one
hand, nominally identical specimens will easily have var-
iations in the stress–strain curve, which, near the linear
region, will easily exceed 1% since the coefficient of varia-
tion for Young's modulus of most alloys is in the range
4%–6%. On the other, applying the exact strain (or stress)
in an experiment can be a challenge if this kind of accu-
racy is to be maintained. Small variations will lead to
large changes in fatigue life. Based on this discussion,
one would expect the fatigue scatter to be higher at lower
applied loads and this is borne out by test results.

This sensitivity to the term (1 � σ/(Eoε))
2 brings up

an interesting trade-off. For materials with high plastic
strain capabilities loaded with high plastic strain, this
term is close to 1, but the area under the stress–strain

curve Udf can be quite high. On the other hand, for mate-
rials which are nearly linear, this term is very close to
0, which would increase the cycles to failure, but Udf is
very low. It is the “right” combination of area under the
curve Udf and material nonlinearity, which will lead to
the longest lives.

Some limiting cases deduced from Equation (40) are
of interest. If the Ramberg–Osgood-type relation can
describe the complete static stress–strain curve to failure,
Equation (5) implies:

Udf ¼ σf 2

2Eo
þ nK
nþ1

σf
σf
Eo

� �n

ð42Þ

Using Equations (42) and (11) to substitute in
Equation (40),

Nf ¼
8 σf 2

2Eo
þ nK

nþ1σf
σf
Eo

� �n� �
σ2
Eoε2

K2 σ
Eo

� �2n
2� σ

Eoε

� �
3� σ

Eoε

� � ð43Þ

Now assume that the material in question has a large
plastic component, that is,

K
σf
Eo

� �n

� σf
Eo

ð44Þ

Then, the first term in parentheses in the numerator
of the right hand side of Equation (43) can be neglected.
The denominator can be approximated according to
whether the applied stress and strain are low and thus
close to the linear region of the stress–strain curve (high
cycle fatigue) or relatively high with strain into the plas-
tic region so the elastic strain can be neglected (low cycle
fatigue). In the first case,

ε≈
σ

Eo
, 2� σ

Eoε

� �
≈ 1, 3� σ

Eoε

� �
≈ 2 ð45Þ

Then, Equation (43) reads:

Nf ¼
8 nK

nþ1σf
σf
Eo

� �n� �

2EoK2 σ
Eo

� �2n ¼ 4
n

nþ1
1

K σf
Eo

� �n�1

σf
σ

� �2n
ð46Þ

In the second case,

ε≈K
σ

Eo

� �n

,
σ

Eoε
� 2 and� 3 ð47Þ

Then, Equation (43) reads:

8 KASSAPOGLOU
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Nf ¼
8 nK

nþ1σf
σf
Eo

� �n� �
6 σ2
Eo

¼ 4
3

n
nþ1

σf
Eo

� �n�1 σf
σ

� �2
ð48Þ

If the material stress–strain curve to failure is nearly
linear, instead of Equation (44), we have

K
σf
Eo

� �n

� σf
Eo

ð49Þ

Also, because the material is close to linear elastic,

ε≈
σ

Eo
, 2� σ

Eoε

� �
≈ 1, 3� σ

Eoε

� �
≈ 2 ð50Þ

Substituting then into Equation (43) gives

Nf ¼
8 σf 2

2Eo

� �

2 σ2
Eoε2

K2 σ
Eo

� �2n ¼
2

K2 σf
Eo

� �2n�2

σf
σ

� �2n
ð51Þ

Equations (46), (48), and (51) all have the form:

Nf ¼ B
σβ

ð52Þ

with B and β constants. This is the classic form for S–N
curves first proposed by Basquin24 where the cycles to
failure are assumed to have a power law relationship
with the applied maximum stress. The difference here is
that, at least for the three limiting cases discussed, the
constants B and β are derived from the general formula-
tion and can be determined from material constants
without the need of fitting experimental fatigue data.
What is also interesting is that these constants are not
necessarily the same for low and high cycle fatigue sug-
gesting that a single curve of the form of Equation (52)
might not be sufficient.

Finally, it is easy to show that Miner's rule follows
naturally from the formulation. If different stress levels
are applied for different numbers of cycles, each would
dissipate a certain amount of energy miUdf/(TΔA)i, fol-
lowing Equation (38), with mi the number of cycles with
per cycle dissipated energy (TΔA)i. If these amounts add
up to Udf, there is failure. Implicit in this is that the
stress–strain curve and, more importantly, the amount of
energy dissipated per cycle do not change or any changes
have negligible effect on the dissipated energy in the sta-
bilized cycle given by Equation (37). It is recognized here
that the equations derived so far, are for stabilized fatigue
cycles and neglect the cycles and energy dissipated up to
stabilization. Tests have shown that Miner's rule does not

always hold and improving the energy dissipation calcu-
lation to account for changes during fatigue loading
would be a needed refinement.

It should also be noted that the approach can be
extended relatively easily to apply to cases with R < 0
provided compressive stress–strain curves of sufficient
accuracy are available.

3 | COMPARISON WITH TEST
RESULTS

As was already discussed, the proposed method requires
non-zero plastic strains. As such, it would not work in the
linear elastic region of a material unless it is assumed that
no material has a perfectly elastic region and there are
tiny deviations from the linear behavior, which may not
be easily measurable but may be sufficient to create plas-
tic strains. This means that very accurate measurements
of the complete stress–strain curves of a given material
would be needed. It was already mentioned that small
errors in strain measurements lead to large changes in
predicted fatigue lives. Thus, the accuracy of extensome-
ters and strain gages, even the thickness of lines used to
plot stress–strain curves will have a significant effect on
the predictions. As a result, an attempt was made to cre-
ate a consistent approach to translate published stress–
strain curves to data usable in the present approach.

First, the 0.2% strain offset method is used to deter-
mine a yield stress σy and a yield strain εy by drawing a
line with slope equal to the initial modulus Eo of a given
stress–strain curve and going through strain 0.02% when
the stress is zero. Then, a stress–strain curve with initial
slope Eo that goes through the (εy, σy) point is constructed
with the form:

σ¼EoεþAεα ð53Þ

The advantage of this equation is that it acts as com-
plementary to the Ramberg–Osgood relation, which has
the strain on the left hand side. It is recognized here that
there are published values for the Ramberg–Osgood con-
stants K and n; however, these are meant to go deep into
the plastic regime and may not be as accurate in the
nearly linear region where the present method is most
sensitive.

Denoting the local slope of a given stress–strain curve
at (εy, σy) by Sy, it can be shown that Equation (53) goes
through the point (εy, σy) and has local slope Sy if

α¼ Sy�Eo
� �

εy
σy�Eoεy

ð54Þ
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A¼ σy�Eoεy
εyα

ð55Þ

It should be noted that A from Equation (55) is
always negative. Then, for a number of strain values εi
(at least four) between 0 and εy, the corresponding stress
values, σi, can be obtained from Equation (53), and
Equation (1) is best fitted through the pairs (εi, σi) to
obtain K and n for strains in this range. An example of
this is shown in Figure 5 for 6061-T6 aluminum with the
stress–strain curve taken from fig. 3.6.2.2.6(m) in litera-
ture.25 The portion with low applied strains up to εy is
also shown (zoomed in) on the right of Figure 5 showing
that the difference between Equation (53) and experi-
ment is very small and only in the vicinity of εy. If the
applied strain is greater than εy, it can be read directly off
the stress–strain plot for the material and used in

Equations (38) and (39) to predict fatigue life. As this
strain is significantly greater than the elastic strain, any
errors in its exact value, which would be an issue for
lower applied strains, lead to small changes in the pre-
dicted fatigue lives.

Predictions of Equations (38) and (39) were gener-
ated for four alloys, 7075-T6 aluminum, 6061-T6
aluminum, Ti 6-4 titanium, and 4340 steel, and were
compared to test results from literature.25 Stress–strain
curves given in literature25 were used to obtain Eo, σy,
and εy. Udf was obtained by numerical integration of
these stress–strain curves. K and n were obtained using
the procedure described above via Equations (53) to
(55). The values of these variables are summarized
in Table 1. Note that, for R ≠ 0, n1 in Equation (38)
was obtained from Equation (32) using n from
Table 1.

FIGURE 5 Complete stress–strain curve for 6061-T62 aluminum (left) and elastic portion (right). [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 1 Material data used in fatigue life predictions.

Property/material 7075-T6 Al 6061-T6 Al Ti 6-4 4340 steel

Eo (GPa) 71.60 67.80 116.5 201.1

Udf (MPa) 65.01 45.48 100.05 193.7

εy 0.0097 0.0052 0.01025 0.0065

σy (MPa) 579.1 294.4 947.9 1206

Sy (GPa) 4.387 4.136 6.204 147.7

A (Pa) �2.716 � 1019 �5.719 � 1020 �3.338 � 1017 �3.512 � 1015

α 5.648 5.688 4.59 3.449

K 1.564 � 109 5.470 � 1012 3.414 � 107 9.705 � 104

n 5.90 5.76 5.03 3.74

10 KASSAPOGLOU
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The predictions by Equations (38) and (39) are com-
pared to test results from literature25 for 7075-T6 alumi-
num for R = 0 and R = 0.5 in Figure 6. For the R = 0
case, the test data include enough points to give an indi-
cation of the scatter. For this case, the predictions of the

present method for the 1 and 99 percentile curves are also
shown. These are obtained by treating εy as a normally
distributed variable and using statistical data from
literature,25 namely, the A-Basis and B-Basis values, to
backcalculate a coefficient of variation. The mean curve
slightly overpredicts and the predicted scatter band con-
tains most of the data. For R = 0.5, the predictions are
higher than test results by at most a decade on the cycles
axis. The predictions for 6061-T6 aluminum for R = 0
and R = 0.5 are shown in Figure 7. Very good agreement
with test results is observed for R = 0. For R = 0.5, the
trend is captured very well but the predictions are higher
than the tests again by at most a decade on the cycles
axis. The predictions for titanium 6-4 for R = 0.01 are
shown in Figure 8. There is very good agreement with
the test results. Finally, The predictions for 4340 steel for
R = 0.2 and R = 0.54 are shown in Figure 9. In both
cases, the predictions are in good agreement with test
results.

Overall, the predictions follow the trends from the
experiments very well for all four alloys and for R = 0 are
in very good agreement with test results. For the case

FIGURE 6 Predictions compared to test results (tests denoted by circles) for 7075-T6, R = 0 and R = 0.5. [Colour figure can be viewed

at wileyonlinelibrary.com]

FIGURE 7 Predictions compared to test results (tests denoted by circles) for 6061-T6, R = 0 and R = 0.5. [Colour figure can be viewed

at wileyonlinelibrary.com]

FIGURE 8 Predictions compared to test results (tests denoted

by circles) for titanium 6-4, for R = 0.01. [Colour figure can be

viewed at wileyonlinelibrary.com]
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where there were sufficient test data, the scatter band
predicted by the present method also is in reasonable
agreement with the scatter observed in the test results.

4 | SUMMARY AND
CONCLUSIONS

A method was developed to determine the energy density
dissipated during each fatigue cycle in a metal alloy and
was used to predict fatigue life up to damage initiation
for cases with 0 ≤ R ≤ 1. The resulting expressions for
cycles to failure are in closed form and make no use of
parameters fitted to experimental results. Only accurate
static stress–strain data are needed. The method was
shown to degenerate to standard power law equations
with the coefficient and exponents in those equations
determined directly from the complete static stress–strain
curve. It was shown that nonlinear strains must be pre-
sent for finite fatigue lives, and if a portion of the stress–
strain curve is perfectly linear, the fatigue life is infinite
for that portion suggesting ways to determine an endur-
ance limit (if the material has one). Comparison of pre-
dicted fatigue lives with test results for two aluminum,
one titanium, and one steel alloy showed good to very
good agreement with tests.

The proposed method is very promising, but it relies
on a number of assumptions the validity of which needs
to be further examined. (1) Almost the entire stress–
strain curve must be nonlinear. For low applied strains,
there is great sensitivity to the value of the quantity
σ/(Eoε) and very small errors in that value lead to great
changes in the predictions. This on the one hand empha-
sizes the need to measuring strains to an accuracy better
than ±50 μs and on the other points to an inherent
source of fatigue scatter: Nominally identical specimens
will have very different fatigue lives if they have small
differences in this value. (2) The formulation is based on

a Ramberg–Osgood-type material. As such, the stress–
strain curve must be monotonically increasing. This
means that materials with significant necking would not
be captured by the model if fatigue lives for applied
strains past the maximum of the stress–strain curve are
needed. All four alloys examined here exhibit some
amount of necking. For this reason, the predictions were
kept to strains below the point where necking starts and
the results are still accurate. (3) It is assumed that the
static stress–strain curve does not change with fatigue
cycling. This is an approximation as localized extended
plasticity may cause load redistribution not captured by a
single stress–strain curve meant to represent an entire
specimen throughout its fatigue life.

When applied to load ratios R ≠ 0, the method has
the tendency to overpredict test results. This requires fur-
ther investigation. A single “master” curve for predicting
cycles to failure can be constructed and shows that,
within the framework of the assumption made, two
parameters, σ/(Eoε) and Udf/(σε), are sufficient to
describe the behavior.
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