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Summary
Waves impacting on maritime structures can cause damage which endangers the environment around
these structures. In 2005, hurricanes Katrina and Rita raged over the Gulf of Mexico, causing structural
damage to over 100 drilling platforms with their extreme wave and weather conditions, resulting in 30.2
million litres of oil spillage. Fluidstructure interaction (FSI) plays an important role in this harmful event
based on structural failure.

In existing research, extensive analysis of hydroelastic interaction between regular or breaking
waves and walls or cylinders is carried out. When the wave loads become too high and hydroplasticity
occurs, the plastic response is strongly coupled with the hydrodynamic pressure. This phenomenon
could leave the structure with little residual strength, resulting in structural failure. No research has
been found on a simple understanding of the influence of plasticity on FSI in waves. Research in this
area has to be conducted to create a safer working environment, to reduce overconsumption of sources
and to lead to fewer environmental accidents. To investigate the influence of plasticity on FSI, the use
of a double pendulum with few degrees of freedom and known properties is proposed, so that the
emphasis of the research can be on FSI. The following question is answered with an experiment and
reducedorder model: What is the influence of plasticity on the behaviour of a pendulum in breaking
waves?

This question is answered by investigating a double pendulum that is exposed to impact loads in the
form of breaking waves. The top hinge of the pendulum is a regular hinge, while the second hinge,
added on a lower point on the pendulum, is fixated with a frictional torque. A frictional torque (0  11
Nm) is used as a mechanical representation of the Yield Point Theory, which is a plasticity theory that
assumes a certain stress needs to be overcome to initiate the motion of material dislocations. After that
point, a lower stress is required for dislocation movement. Three different pendulums are subjected to
three focused waves with different focus locations in front of the pendulum.

The first aspect of the behaviour that is analysed is the motion of the pendulum, which, in our approach,
models the deformation of a structure. Compared to the situation in which sufficient friction is applied
to create a single hinge pendulum, situations with less friction have a smaller response of the angle
of the top part of the pendulum. The lower the value of the applied friction, the larger the relative
angle between the top and bottom pendulum is. These results can be translated into the analysis of
different energy components that make it possible to distinguish between elastic and plastic behaviour.
Compared to the single hinge pendulum, the elastic energy of the pendulum decreases with decreasing
values of the frictional torque. However, at values of the frictional torque below 3 Nm, the inertia of the
pendulum influences its motion and the values for the elastic energy increase again. The dissipated
energy in the friction hinge, modelling plastic energy, decreases with increasing frictional torque when
the torque is larger than 2 Nm. The most surprising influence of FSI on the behaviour of the pendulum
can be seen in the energy transferred from the wave to the structure, called ‘total absorbed’ energy. The
total absorbed energy decreases with increasing frictional torque. This means that when a structure
allows for more plastic deformation, the energy that will absorbed in total is larger.

The reducedorder model can predict the behaviour of the elastic and plastic energy transfer. It can
not predict the behaviour of the total absorbed energy accurately. The model can predict the influence
of the length of the pendulum on the behaviour of the energy components. For the different waves
it can not always correctly predict the differences in transferred energy. This observation induces the
most important recommendation of this research, which is based on the way the waves are modelled.
In the current model only small deformations of the free surface are assumed, which is not sufficient to
represent the waves in the experiment. Using irrotational incompressible inviscid flow, wave breaking
can be simulated, likely resulting in a better prediction of the differences in pendulum behaviour between
the three focus locations. This is expected to result in a better agreement between the model and
experiment.
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1
Introduction

Waves impacting on maritime structures can cause damage which endangers the environment around
these structures. In the past, several catastrophes are documented to be a result of structural failure
due to extreme wave conditions. In 2005, hurricanes Katrina and Rita raged over the Gulf of Mexico,
which was the working area of 4000 drilling platforms. Their extreme waves and weather conditions
caused structural damage to more than 100 of these platforms (Chang et al., 2017). The cleanup
activities of the debris and 30.2 million litres of oil continued for over a year (Davidson, 2019). Unfor
tunately, as reported in 2019 by (Davidson, 2019), no one is held responsible for this large oil spill and
the impact on the ecosystems due to structural failure.

Fluidstructure interaction (FSI) plays an important role in this harmful event based on structural
failure. Improving the understanding of the influence of plasticity on FSI, which is a key concept in this
research, has an impact on different societal problems. First of all, catastrophic events like those during
Katrina and Rita can be prevented by creating a better estimation of the capacity of the structure. This
leads to less debris in the seawater and fewer repair visits needed, which means less disturbance of
the sea life. Next to this, less failure leads to less spill of harmful materials in the seawater. When taking
the improved estimation into account in the design process, the current overdesigning can be reduced,
resulting in less consumption of materials. This reduction leads to less expensive constructions and a
smaller impact on the resources of the earth. Another practical benefit of the improved comprehension
is that a more extensive and timeconsuming analysis could be compared to the results found in this
research.

An even more important potential result of the improved understanding is the prevention of loss of
human lives in disastrous events. It is crucial to guarantee the safety of people (on ships and offshore
structures). A better understanding of extreme loads on these structures and their plastic response
can play an important role in this safety. Other disciplines in which human lives are affected, such as
biomedical engineering, could also benefit from this research (van Loon and van de Vosse, 2010).

In existing research, extensive analysis of hydroelastic interaction between regular or breaking waves
and walls, and vertical or horizontal cylinders is carried out, shown in section 1.1. The goal of this
research will be established using the clear gap in this existing research, which are shown in sections
1.3 and 1.2. In section 1.4 the outline of the rest of the report can be found.

1.1. State of the art
The research of Sarpkaya (1979) examines the impact of a sinusoidally oscillating free surface on
horizontal cylinders. It states that the force exerted on the cylinder can not be seen separately from
the dynamic response. Namely, this dynamic response can amplify the slammingforce coefficient
significantly. Based on this statement, this literature review focuses on FSI in both a hydroelastic
as well as a hydroplastic manner in section 1.1.1 and 1.1.2, respectively. These two sections focus
on impact situations, so FSI in fully submerged cases will not be considered in this research. This
is because the loads of these impact situations are often not well understood due to large and highly
uncertain impact components (Haley et al., 2014; Dalton and Nash, 1976). Breaking waves are more
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2 1. Introduction

complex and variable than regular waves, leading to a principal focus on breaking waves in these
sections.

1.1.1. Hydroelastic analyses
Different forms of breaking waves impacting on a structure have been observed and named, namely
the slosh impact, flipthrough impact, air pocket impact and aerated impact, which are summarised by
Hofland et al. (2010). The air pocket impact wave is often called a plunging wave as well. These four
wave impact types are shown in figure 1.1. Another wave impact form described by Hattori et al. (1994)
is the vertical wavefront impact.

Figure 1.1: Different wave impact types as summarised by Hofland et al. (2010). The air pocket impact is often called a plunging
wave.

Some observations are not specific for one breaking wave type but apply to more wave types. An early
result on flipthrough, vertical wavefront and plunging wave collision shows that the pressure increases
when a small amount of air is included. When the wave is more of a plunging type, more air is trapped,
and the pressure oscillations that occur are damped (Hattori et al., 1994). The more trapped air, the
larger the rise time and duration of the impact force (Bullock et al., 2007).

Some results are only presented for a plunging wave, but again the importance of trapped air is
shown. The impacts on a vertical wall can be decomposed into a part due to the dynamics of the
trapped air and a part due to the hydrodynamics (Chan and Melville, 1988). Not only the size but
also the distribution of the load is significantly influenced by the presence of trapped air (Tsaousis
and Chatjigeorgiou, 2020). A numerical simulation based on potential flow shows good predictions
(after scaling) for this situation (Zhang et al., 1996). Experimental results show that the influence of air
bubbles for the plunging wave impact is also significant on a vertical cylinder. The influence of these
bubbles increases when the breaking wave is more developed before the impact, resulting in a larger
impact pressure (Ha et al., 2020).

The magnitude of the impact does vary with the cylinder elevation and the horizontal position with
respect to the wave. A more severe impact is observed when the radius of the cylinder is similar to the
radius of curvature of the water surface (Prasad et al., 1994). Next to this, the impact force is highest
when the cylinder is located just below the crest level of the wave and the lowest when the wave breaks
behind the cylinder (Kamath et al., 2016). This paper also presents an inverse relation between the rise
timewith respect to the impact duration and the distance between the cylinder and the breaking location.

A semianalytical solution for a steep wave impact on a vertical cylinder is given by Tsaousis et al.
(2020), addressing the waterentry phase of a wave impact. It shows that by using linear potential
theory, a 3D Wagner approximation can be established that shows results in between the 2D von
Karman and 2D Wagner results. These results are both related to the velocity squared, but the force
using von Karman is half the value of Wagner due to the inclusion of the jet region in the latter (den
Besten, 2019). Peregrine (2003) also shows that irrotational inviscid incompressible flow is a good
description of many waterwave impacts. When this steep wave is close to breaking, it becomes unclear
in which direction the impact force acts (Haley et al., 2014).

Waves will break when they become too steep and other formulations apply for the wave load. The
impact force on a pile exerted by a breaking wave consists of two parts: a large “quasiimpact force”
with a short duration and a slowly varying force (Wiegel, 1982). The impact load can be modelled
using a curling factor 𝜆 to indicate the height of the impact area as a function of the wave height. This
indicates that the dynamic part can be related to the mass of an amount of water impacting on the
cylinder. The curling factor is used in other studies as well (Goda et al., 1966; Wienke and Oumeraci,
2005; Wienke et al., 2005). The slowly varying part can be estimated by the socalled Morison equation.
This semiempirical formula gives the force of an unbroken surface wave exerted on the submerged
part of a vertical cylindrical object that reaches from the bottom to above the wave crest. This solution,
addressing the submerged phase of a wave impact, consists of a drag force, which is approximately
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the same as for steady flow, and a virtual mass contribution caused by the mass of the displaced
water (Morison et al., 1950). This result is used in other research that shows that this formulation
is also applicable to other geometries such as a horizontal cylinder (Bos and Wellens, 2020; Haley
et al., 2014). The fact that this expression, originally meant for vertical piles, is also applicable to other
geometries, can be explained by looking at the formulation of the Morison equation. This formulation
is, among others, a function of the diameter and crosssectional area, integrated over the height. This
explanation has lead to the inclusion of principles on walls, and vertical and horizontal cylinders in this
literature review.

An adjustment to the formulation by Morison et al. (1950) is made by Davies and Martin (1990).
This research showsmathematical formulations for the vertical and horizontal forces on a largediameter
horizontal cylinder, which are deduced from experimental results. A large backward horizontal force is
analysed, which is ascribed to high added mass coefficients. Another research shows that the regular
waves, also used in the papers above, do not create a large and impulsive slamming response (Dalton
and Nash, 1976).

The loads discussed above can cause large deflections of structures. The maximum deflection on
a vertical cylinder is induced by a moderate plunging wave. The deflection in this situation is 1.5
times larger than for nonbreaking waves, while the impact force is almost 5 times larger (Manjula
et al., 2012). The amplitude of an oscillating pendulum can be seen as a model for the deflection
of a structure. OpenFOAM software gives good agreement with experiments when applied on a free
oscillating pendulum in still water (Kotsur et al., 2014).

1.1.2. Hydroplastic analyses
If loads become too high, the material enters the plastic regime. This phenomenon could leave the
structure with little residual strength, resulting in structural failure. The behaviour in the plastic regime
is different than in the elastic regime, causing the structure to influence the wave loading differently.
This type of FSI is called hydroplastic analysis and is less investigated than hydroelastic analysis. The
first analytical method of hydroplastic slamming is given for a flat or nearly flat water impact on beams
and stiffened panels. This analytical model is of good accuracy when validated with experiments and
numerical simulations (Yu et al., 2019a,b). An example of extensive CFD calculation is the FE/SPH
modelling of an extreme wave on a structure. This model uses nonlinear fluid and structural behaviour
and simulates structural collapse due to water loading, which is validated by large scale experiments
(Campbell and Vignjevic, 2012).

Experimental 

Analytical 

Numerical 

Hydro-elastic analysis 

Regular waves on walls, horizontal & 
vertical cylinders and pendulums 

GAP 
A simple 
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Figure 1.2: A summary of the analysed previous research is shown. Previous research can be divided into hydroelastic and
hydroplastic analysis. Hydroelastic analysis is frequently described in literature in an analytical, numerical or experimental way.
However, hydroplastic analysis is more scarce. It can be seen clearly that generating a simple approximation for the influence
of plasticity on FSI in waves would partially close the gap observed.
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1.2. Gap analysis: a simple model of the influence of plasticity on
FSI in waves

By summarising the analysis from the previous section, a gap analysis of current research is performed
in this section. As shown, a lot of different research has been executed on FSI. Most of the research
captures the elastic behaviour of the structure that is subjected to waves. Yu et al. (2019a) state that
in wave impact situations the coupling of the elastic responses of the structure and the hydrodynamic
pressure is important. When loads become too high and plastic response occurs, hydroplasticity oc
curs, meaning that this plastic response is strongly coupled with the hydrodynamic pressure. Between
the existing literature and a simple approach for a coupling of the plastic response of a structure and
the wave influence a gap is clearly present, which is shown in figure 1.2. The meaning of ‘simple’ is
a focused or dedicated model of which the properties are known and that can be used to investigate
only the influence of FSI. Research in this area has to be conducted to create a safer environment, re
duce overconsumption of resources and lead to fewer environmental accidents. Generating a simple
approximation for the influence of plasticity on FSI in waves would be a first step towards a better un
derstanding of the interaction between hydrodynamic loading and constructions that deform plastically.

Figure 1.3: This figure shows a horizontal brace of an oil rig that is hit by a large wave. The assumed deformation of this brace is
shown on the top right of the figure. The middle of this deformed brace can be modelled as the cylindrical end of a pendulum as
shown in the bottom right of the figure. The motion of this pendulum is a measure for the deformation of a beamlike structure.
Source images: (Top Fives, 2018)

1.3. Research goal
To close the gap indicated in the previous section, a simple approximation for the influence of plasticity
on FSI in waves should be found. Based on the example given earlier, an oil rig in extreme weather
conditions is used as an example situation to find this simple approximation. An oil rig that is hit by a
large wave is shown in figure 1.3. When a horizontal brace of this oil rig is selected, one can image that
it will deform in the way shown in the top right of the figure. The middle of this brace stays approximately
straight, which can be selected as the part that will be observed. This specific part of the brace can be
modelled as the cylindrical end of a pendulum as shown in the bottom right of the figure. The motion
of this pendulum is a measure for the deformation of a beamlike structure. Therefore, the influence of
plasticity on FSI in waves can be analysed using a simple pendulum that allows plastic deformation as
well. This pendulum will be exposed to impact loads in the form of breaking waves. In this research,
the pendulum is chosen because of its ability to show clear and easy to interpret results due to its few
degrees of freedom.

The desire to close the gap can be translated into a goal with accompanying research questions
which are shown in section 1.3.1. Then, the hypotheses for this research are shown in section 1.3.2.
The scope of the total research is given afterwards in section 1.3.3.
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1.3.1. Research questions
This research aims to find a model for the influence of plasticity on FSI. This goal will be reached by
investigating a simple pendulum that allows plastic deformation that will be exposed to impact loads
in the form of breaking waves. The desired output of these investigations is to capture the energy
transfer and absorbed energy in the plastic deformation in different situations. To obtain this informa
tion in a structured manner, the main research question is formulated and clarified using subquestions.

What is the influence of plasticity on the behaviour of a pendulum in breaking waves?
1. What are the typical conditions when breaking waves are formed? How can these waves be

modelled?
2. How can a simple pendulum be adjusted to allow plastic deformation? How can this be imple

mented in a reducedorder or experimental approach?
3. When measuring the energy transfer from the waves to the pendulum, which energy components

can indicate the influence of plasticity in the result?

1.3.2. Hypotheses of this project
In order to predict the result of the research, two hypotheses are constructed to answer the main
question.
1. The influence of the plastic deformation of the pendulum causes energy absorption. It is expected

that situations with a higher resistance to plastic deformation absorb less plastic energy when
loaded with the same wave. Next to this, pendulums with a higher stiffness are expected to
absorb more energy while plastic deformation occurs.

2. Variability in the transferred energy could indicate the importance and influence of the plasticity on
the behaviour. However, the variability could also be a result of the different amounts of trapped
air in the breaking wave.

1.3.3. Scope of this project
Due to the combination of time limitations and numerous interesting focus points, the project’s scope
is defined in this section to create more guidance for the project. It is assumed that this scope can
give an outcome of this research that can also be applied on fullsize ship and offshore structures. The
assumptions, limitations and focus points presented, will be categorised in two parts: those applicable
on the fluid and those applicable to the structure.

Fluid
• It is assumed that the vertical elements of the pendulum will not receive a contribution from the
hydrodynamic force. The cylindrical part of the pendulum will be almost the full width of the fluid
domain. Therefore, the problem can be evaluated as a 2D problem.

• Only breaking waves will be analysed, no monochromatic waves. This is because the large
impact of breaking waves is more likely to cause plastic deformation. Large impacts are related
to severe and extreme conditions which influence the Ultimate Limit State. Based on previous
experiments with the pendulum, the wave height will be approximately 15 cm. The wave used to
create a breaking wave will be focused at three different locations in front of the pendulum.

• The influence of trapped air is important on the rise time or peak of impact pressure as discussed
in section 1.1. Therefore, it is aspired to implement this influence.

Structure
• It is assumed that the vertical elements of the pendulum will not receive a contribution from the
hydrodynamic force. The cylindrical part of the pendulum will be almost the full width of the fluid
domain. Therefore, the problem can be evaluated as a 2D problem.

• The structure consists of one pendulum that allows both elastic as well as plastic deformation.
The start of the design of the pendulum is based on previous experiments by Bos and Wellens
(2020).

• Only the plastic regime before the ultimate strength is reached is analysed. This restriction means
no necking will occur. The stressstrain curve can depend on for example the temperature, pre
treatments of the material, the material properties and the strain rate. Only the influence of the
material properties will be implemented.
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1.4. Outline of the report
The next chapter, chapter 2, describes a reducedorder model which is used to design the experimental
setup described in chapter 3. Some improvements to the model are also presented in chapter 2 after
comparing the results of the experiment and the model. The evaluation of the experimental results
and the results of the improved model are presented in chapter 4. The final chapter of this research,
chapter 5, consists of the conclusions and recommendations for this report.



2
Reducedorder model of pendulum in

breaking waves
A reducedorder model is a good medium to discover the principles of a certain situation without long
calculation time or complex equations. In chapter 1, the central problem of this research is introduced
and it is indicated that analysing a simple model that allows plastic deformation loaded by waves can
aid in the assessment of maritime structures in waves. The model of a pendulum that will be used is
based on research by Bos and Wellens (2020). In their research, a pendulum is located above the
free surface and subjected to monochromatic waves. The phases that are captured in the experiment
are water entry, submerged behaviour and water exit. The amplitude of the pendulum is presented for
different wavelengths, which show the different influences of fluidstructure interaction (FSI). A reduced
order model combined with a wetness factor and coefficients determined by Sarpkaya (1986) shows
good performance when compared to experiments.

A short description of fluid and structural behaviour is given in section 2.1 which is essential knowl
edge for understanding this project. Then, a justification is given of the fundamental principles applied
in the model in section 2.2. Based on these principles, two different models are constructed and dis
cussed. The first model is used for the design of the experiment and first comparison with the results,
which is described in section 2.3. A second, improved, model is used for final comparison with experi
mental results. The adjustments made to the first model are shown and explained in section 2.4.

2.1. A concise description of the behaviour of structures andwaves
It is necessary to know and understand the physics behind structural and fluid behaviour before a
reducedorder model is composed. In this section, both are described briefly before continuing to
implement this knowledge into themodel. The basic principles of this structural behaviour are described
in section 2.1.1. Then, the basic principles of the waves are shown in section 2.1.2.

2.1.1. Structural behaviour: elastic and plastic regime
Two important terms when introducing structural behaviour are stress and strain. The stress is a mea
sure for the internal forces in a material, and the strain is the deformation of the material with respect
to its original shape. Now the stressstrain diagram of a ductile material can be analysed, shown in the
left diagram of figure 2.1. When a load is applied, the stress and strain increase according to a linear
relationship that is prescribed by the Young’s Modulus of the material. This part of the curve is called
the elastic regime. When a load is applied that causes stress higher than the yield strength, the material
enters the plastic regime. In this regime, the relationship between stress and strain is nonlinear. After
reaching the ultimate strength, necking of the structure occurs, and the stress in the material decreases
until failure of the structure.

In the right diagram of figure 2.1, the behaviour of the stressstrain curve is shown in the situation
that the material is unloaded and loaded again. When the structure is unloaded in the elastic regime, it
will follow the linear relationship returning to its original shape. However, if unloading occurs while the
material is in the plastic regime, the stressstrain curve will go down from that exact point in a linear

7
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relationship. This response leads to a permanent deformation when the load on the structure is equal
to zero. When the structure is loaded again, it will follow this new linear line until it reaches the point
of unloading. Then, the stress will follow the original stressstrain curve. In the second load cycle,
the stress at which a nonlinear behaviour is initiated is higher than the yield strength. This increased
maximum value for linear behaviour is due to a process called strain hardening and is also indicated in
the left diagram of figure 2.1.

Figure 2.1: The stressstrain diagram of a ductile material is shown in the left of the figure. The behaviour of the stressstrain
curve when the material is unloaded and loaded again is shown on the right. This image shows the process of strain hardening.
Source of images: (Wikipedia, 2020) and (MechaniCalc, 2020)

2.1.2. Behaviour of waves: linear and nonlinear waves
The most simple form of a wave is a regular wave. Assuming this wave satisfies potential theory and
only small amplitudes occur, the wave elevation on any moment or location can be given by equation
2.1. This is visualised in figure 2.2.

𝜂(𝑡) = 𝐴 cos(𝑘𝑥 − 𝜔𝑡 + 𝜖𝑤) (2.1)

Figure 2.2: A schematic drawing of a regular wave in which the important parameters are 𝜂 (wave elevation), 𝐴 (wave amplitude)
and 𝜆 (wavelength). Furthermore, the depth of the water is indicated with 𝑑. Source of original image: (Montanari, 2017)

In this equation and figure, 𝐴 is wave amplitude, 𝑘 is the wavenumber equal to 2𝜋/𝜆 in which 𝜆 is the
wavelength, 𝑥 is the location, 𝜔 is the frequency, 𝑡 the time and 𝜖𝑤 the phase of this wave component.

When assuming a linear behaviour of the wave, the wavenumber (and therefore the wavelength) and
the frequency are related according to the dispersion relation given in equation 2.2.

𝜔2 = 𝑘𝑔 tanh(𝑘𝑑) (2.2)
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In these linear waves, two different velocities can be indicated. The first velocity is the propagation
speed of a top of the wave, which is called the phase velocity, given in equation 2.3. The equation
shows that long waves travel faster than short waves.

𝑐 = 𝜆
𝑇 =

𝜔
𝑘 =

𝑔
𝜔 tanh(𝑘𝑑) (2.3)

The second velocity is the propagation speed of the wavefront or the total wave group, which is called
the group velocity. This formulation for this velocity is shown in equation 2.4. The value of 𝑛 is always
smaller than 1 and, therefore, individual waves travel through the wave group. They appear at the end
of a wave group, travel forward and disappear at the front of the wave group (Holthuijsen, 2007).

𝑐𝑔 = 𝑛𝑐 =
1
2(1 +

2𝑘𝑑
sinh(2𝑘𝑑))

𝑔
𝜔 tanh(𝑘𝑑) (2.4)

An advantage due to the assumed linearity is that different regular wave components can be summed,
resulting in the equation shown in equation 2.5.

𝜂(𝑡) =
𝑛

∑
𝑖=1
𝐴𝑖 cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜖𝑤,𝑖) (2.5)

Figure 2.3: The applicability of different wave theories in different wave conditions. Originally published by Méhauté (1976), but
this version is retrieved from Holthuijsen (2007).

However, not all waves are linear due to, for example, shallow water effects or steepness of the wave
(𝐻/𝜆). The applicability of different wave theories is dependent on wave height, wave period and depth
of the water and is shown in figure 2.3 (Méhauté, 1976). In this figure, 𝐿 is equal to the wavelength,
so it will be indicated here by 𝜆. The Airy wave theory consists of the waves shown in figure 2.2. If the
water is shallow and 𝐻𝜆2/𝑑3 > 26 cnoidal waves are formed. For increasing steepness in deep water
Stokes waves of 2nd, 3rd or 5th order are formed. Both the cnoidal as well as the Stokes waves consist
of waves with sharper crests and flatter troughs.

When steepness even further increases, solitary waves in shallow water will break if 𝐻/𝑑 > 0.78.
In deep water, all waves will break when 𝐻/𝜆 > 0.142. Generating a controlled breaking wave directly
with a wavemaker is difficult or even impossible. Therefore, groups of monochromatic waves, which can
be generated accurately, should be combined to create a steep wave. This steep wave, also called
a focused wave, can be generated using dispersive focusing. This procedure is used in numerous
studies showing, for example, the evolution of free and bound waves or freak waves in numerical and
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experimental ways (Vyzikas et al., 2018; Wu and Yao, 2004). If the steepness of this focused wave
exceeds the maximum a breaking wave is generated. Some different forms of breaking waves are
discussed in section 1.1.

2.2. Explanation of the fundamental ideas of the model
A pendulum that allows elastic as well as plastic deformation will be subjected to a breaking wave.
The breaking wave will be constructed as described in section 2.1.2, by addition of wave components.
These wave components will be focused at one location due to dispersive focusing. The fundamentals
of a simple model of a pendulum that allows for plastic deformation should be explained in more detail.
The method of modelling plastic deformation is shown in section 2.2.1. Then, a justification of the use
of a pendulum is done in section 2.2.2.

2.2.1. Incorporation of plasticity
When loads on a structure become too high, the structure deforms in an inelastic or plastic way. Dif
ferent theoretical models are created using dislocation theory. Two plasticity models presented by
Lubliner (2008) are given here. The first model is the Yield Stress Theory which assumes that the yield
stress is equal to the value of the shear stress required to supply enough energy to the dislocations to
start moving. The second model is the Yield Point Theory which assumes that a higher stress needs
to be overcome to initiate the motion of the dislocations. After that point, a lower stress is required for
dislocation movement.

These twomodels can be approximatedmechanically as well. Different models for friction between
two surfaces exist. These friction models show significant similarity to the plasticity theories described
by Lubliner (2008). When this friction is modelled as Coulomb friction, the friction force is constant.
The formulation for this is equal to 𝐹𝑓 = 𝜇𝐹𝑛. This formulation means that the friction force is equal
to a coefficient of friction times a force normal to the two frictional surfaces. If this frictional force is
representing the Yield stress theory, 𝜇 has only one value, but when the difference between the static
and dynamic friction coefficient is taken into account, the friction represents the Yield point theory. The
fact that friction models can be used to represent elastoplastic behaviour is also shown by for example
Curnier (1984) and Wriggers (2006).

Figure 2.4: Loaddisplacement curve of a structure. The linear elastic and the nonlinear plastic response are shown. (Source
of image (Paik, 2018))

2.2.2. Usage of a pendulum
An essential first step towards understanding structural failure of ships and offshore structures due to
hydrodynamic loading is the analysis of a simple model. An example of a simple mechanical model
used for this increased comprehension is a pendulum. When the end of this pendulum is a cylinder,
wave impacts on a horizontal cylinder and the accompanying FSI can be investigated. Incorporating
friction in a pendulum can be done by using a double pendulum in which one hinge is a friction hinge.
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When looking at a typical loaddisplacement curve of a structure, shown in figure 2.4, it can be seen
that the graph consists of lines of different slopes, which can be called stiffness. For the pendulum, the
same principles take place, but now, the elastic response is not linear. When the elastic response is
taking place, the total pendulum will rotate, but when the plastic regime is reached, the stiffness should
become different. Therefore, a plastic hinge is added below the elastic hinge. When the elastic limit is
exceeded, the friction in the friction hinge is overcome, and it starts to move, which simulates plastic
deformation. The motion leads to a reduction in the stiffness when the bottom part of the pendulum is
moving, resulting in a combination of the simulated elastic and plastic deformation. When the pendulum
is unloaded, the plastic deformation will remain. It should be noted that the stiffness of the pendulum
has been reduced slightly with respect to the original situation.

2.3. The first model used for design of and first comparison with
experiment

A reducedorder model is constructed of the double pendulum subjected to breaking waves. In the
bottom hinge of the pendulum, friction can be applied to simulate plastic deformation. The first model,
which is not perfect, will be used for the design of the experiment and first comparison with the experi
mental results. After this first comparison, improvements will be made and presented. The equations
of motion of the first version of the reducedorder model are given in section 2.3.1. The load due to the
waves is estimated in section 2.3.2.

2.3.1. Equations of Motion
A schematic overview of the double pendulum and its coordinates is given in figure 2.5. The top hinge
(1) is a normal hinge, and the bottom hinge (2) is the hinge with a frictional contact. The black dots at
(𝑥1, 𝑦1) and (𝑥2, 𝑦2) are the locations of the centre of gravity of both parts of the pendulum. The model
is formulated in terms of two coordinates, namely 𝜃1 and 𝜃2. These coordinates are the angles of the
top and bottom part of the pendulum with respect to the vertical, respectively. All locations can be
expressed as a function of these two coordinates, the height of the centre of gravity of both pendulum
parts and the length of the top part of the pendulum. The force due to the waves is assumed to be a
horizontal component only.

The equations of motion are obtained by using Lagrange’s equation, as shown in equation 2.6. All the
separate parts of this formulation are explained below the equation.

𝑑
𝑑𝑡(

𝜕𝐿𝑙
𝜕�̇�𝑖

) − 𝜕𝐿𝑙𝜕𝑞𝑖
+ 𝜕𝐷𝑙𝜕�̇�𝑖

= 𝑄𝑖 −
𝜕𝐶𝑙
𝜕𝑞𝑖

𝜎𝑙 ∀𝑖 = [1, 2] (2.6)

In which:

𝐿𝑙 = Kinetic energy  potential energy = 𝑇 − 𝑉

𝑇𝑙 = Kinetic energy = 1
2𝑚1(�̇�

2
1 + �̇�21 )+

1
2𝐼1�̇�

2
1 +

1
2𝑚2(�̇�

2
2 + �̇�22 ) +

1
2𝐼2�̇�

2
2

𝑉𝑙 = Potential energy = 𝑚1𝑔ℎ1 +𝑚2𝑔ℎ2

𝐷𝑙 = Rayleigh dissipation function = 1
2𝑐1�̇�

2
1 +

1
2𝑐2�̇�

2
2 (Agarana et al., 2017)

𝑄1 = Generalised force 1 = 𝐹𝑤𝑎𝑣𝑒𝐿1 cos(𝜃1)
𝑄2 = Generalised force 2 = 𝐹𝑤𝑎𝑣𝑒𝐿2 cos(𝜃2)
𝐶𝑙 = Frictional constraint = 𝜃2 − 𝜃1 (Vallery and Schwab, 2018)
𝜎𝑙 = Frictional torque = 𝑀𝑓 sign(�̇�2 − �̇�1) (Vallery and Schwab, 2018)

Above equations can be solved using the following definitions of the locations of the centre of gravity
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of each part of the pendulum.

𝑥1 = ℎ1 cos(𝜃1)
𝑦1 =−ℎ1 sin(𝜃1)
𝑥2 = 𝐿1 cos(𝜃1) + ℎ2 cos(𝜃2)
𝑦2 =−𝐿1 sin(𝜃1) − ℎ2 sin(𝜃2)

h2 

𝜃1 (x1, y1) 
 

Fwave 

h1 
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(x2, y2) 
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Figure 2.5: A schematic overview of the double pendulum. The black dots indicate the locations of the centre of gravity of both
elements of the pendulum at (𝑥1, 𝑦1) and (𝑥2, 𝑦2). The model is formulated in terms of two coordinates, namely 𝜃1 and 𝜃2.
These coordinates are the angles with the vertical of the top and bottom part of the pendulum, respectively.

By further analysing the problem, two cases can be identified: slip or stick of the plastic hinge. Slip
means that the bottom pendulum is moving with respect to the top pendulum, and stick means that the
relative angle between both parts stays constant. When slip occurs equations 2.7 and 2.8 are valid,
resulting from equation 2.6. In these formulations 𝜆 = 𝑀𝑓 sign(�̇�2 − �̇�1), in which 𝑀𝑓 is the maximum
torque that can be utilised in the plastic hinge.

(𝑚1ℎ21 + 𝐼1 +𝑚2𝐿21)�̈�1 +𝑚2𝐿1ℎ2 cos(𝜃1 − 𝜃2)�̈�2 + 𝑐1�̇�1 +𝑚2𝐿1ℎ2 sin(𝜃1 − 𝜃2)�̇�22
+(𝑚1ℎ1 +𝑚2𝐿1)𝑔 sin(𝜃1)

= 𝐹𝑤𝑎𝑣𝑒𝐿1 cos(𝜃1) + 𝜆
(2.7)

𝑚2𝐿1ℎ2 cos(𝜃1 − 𝜃2)�̈�1 + (𝑚2ℎ22 + 𝐼2)�̈�2 + 𝑐2�̇�2 −𝑚2𝐿1ℎ2 sin(𝜃1 − 𝜃2)�̇�21 +𝑚2𝑔ℎ2 sin(𝜃2)
= 𝐹𝑤𝑎𝑣𝑒𝐿2 cos(𝜃2) − 𝜆

(2.8)

When stick occurs, �̇�1 = �̇�2 and �̈�1 = �̈�2, equations 2.7 and 2.8 reduce to one equation shown in
equation 2.9. In this equation, no term contains the frictional torque.

(2𝑚2𝐿1ℎ2 cos(𝜃1 − 𝜃2) + 𝑚2(ℎ22 + 𝐿21) + 𝑚1ℎ21 + 𝐼1 + 𝐼2)�̈�1 + (𝑐1 + 𝑐2) ̇𝜃1
+(𝑚2𝐿1 +𝑚1ℎ1)𝑔 sin(𝜃1) + 𝑚2ℎ2𝑔 sin(𝜃2)

= 𝐹𝑤𝑎𝑣𝑒𝐿1 cos(𝜃1) + 𝐹𝑤𝑎𝑣𝑒𝐿2 cos(𝜃2)
(2.9)



2.3. The first model used for design of and first comparison with experiment 13

One of stick or slip can be assumed. First, stick is assumed, and equation 2.9 is integrated over time.
Then all the positions, velocities and accelerations are known and can be used to check if the assump
tion of stick is indeed correct. This can be done by rewriting equation 2.7 or 2.8 and moving 𝜆 to one
side and renaming it to 𝜆𝑐ℎ𝑒𝑐𝑘. When |𝜆𝑐ℎ𝑒𝑐𝑘| < 𝑀𝑓 the assumption of stick is indeed correct. Oth
erwise, if |𝜆𝑐ℎ𝑒𝑐𝑘| ≥ 𝑀𝑓, the plastic hinge is slipping and equations 2.7 and 2.8 are integrated over time.

Time integration scheme: SemiImplicit Euler Method
A relative simple time integration scheme is chosen that has the same amount of steps as a firstorder
scheme, but a higher accuracy. The chosen scheme is called SemiImplicit Euler Method and has an
overall error of 𝒪(Δ𝑡2) (Langtangen and Linge, 2016). The details of the integration scheme are shown,
using the situation of the double pendulum as an example. First, the vectors 𝑦 and �̇� are defined in
equation 2.10.

𝑦 = (𝜃1, 𝜃2, �̇�1, �̇�2) and �̇� = (�̇�1, �̇�2, �̈�1, �̈�2) (2.10)

The integration scheme for the situation in which slip occurs is shown in equation 2.11. For the stick
condition, it is shown in equation 2.12. The subscripts are indices of the vectors, while the superscripts
are the indicators of the old or new values. The functions (𝑓𝑠𝑙𝑖𝑝() and 𝑓𝑠𝑡𝑖𝑐𝑘()) are the function for the
second derivative of �̈�1 and �̈�2 for the slip and stick situation, respectively. These functions are derived
from equations 2.7 and 2.8 or 2.9.

𝑦𝑛1 = 𝑦𝑜1 + 𝑑𝑡 ⋅ 𝑦𝑜3
𝑦𝑛2 = 𝑦𝑜2 + 𝑑𝑡 ⋅ 𝑦𝑜4
𝑦𝑛3 = 𝑦𝑜3 + 𝑑𝑡 ⋅ 𝑓𝑠𝑙𝑖𝑝(𝑦𝑛1 , 𝑦𝑛2 , 𝑦𝑜3 , 𝑦𝑜4 , �̇�𝑜3 , �̇�𝑜4 )
𝑦𝑛4 = 𝑦𝑜4 + 𝑑𝑡 ⋅ 𝑓𝑠𝑙𝑖𝑝(𝑦𝑛1 , 𝑦𝑛2 , 𝑦𝑜3 , 𝑦𝑜4 , �̇�𝑜3 , �̇�𝑜4 )

(2.11)

𝑦𝑛1 = 𝑦𝑜1 + 𝑑𝑡 ⋅ 𝑦𝑜3
𝑦𝑛2 = 𝑦𝑜2 + 𝑑𝑡 ⋅ 𝑦𝑜4
𝑦𝑛3 = 𝑦𝑜3 + 𝑑𝑡 ⋅ 𝑓𝑠𝑡𝑖𝑐𝑘(𝑦𝑛1 , 𝑦𝑛2 , 𝑦𝑜3 , 𝑦𝑜4 , �̇�𝑜3 , �̇�𝑜4 )
𝑦𝑛4 = 𝑦𝑛3

(2.12)

Required time step: 0.0005 seconds
The only unknown part of the integration is the required time step to obtain sufficiently accurate results.
A situation in which the time step is equal to 105 s, 𝐿1 = 0.65 m, 𝐿1 = 0.40 m and 𝑀𝑓 = 1 Nm is taken
as the reference situation. Then, results are obtained using different time steps, and their root mean
squared error with respect to the reference situation is calculated. These results are shown in figure
2.6. The error occurring at 𝑑𝑡 = 0.0005 s is considered to be sufficiently small. Therefore, this time
step is used in the calculations.

2.3.2. Load due to the waves
No analytical result for a breaking wave force on a horizontal cylinder is present in the current literature.
In a similar way as the applicability of the Morison equation, initially meant for vertical cylinders, on other
geometries, the breaking wave force on a pile will be applied on a horizontal cylinder (Morison et al.,
1950; Bos and Wellens, 2020; Haley et al., 2014). According to Wiegel (1982), this breaking force
consists of a slowly varying part and an impact part. The slowly varying part can be approximated
using the Morison equation shown in equation 2.13 (Morison et al., 1950). In this formulation 𝐶𝑑 = 2.0
and 𝐶𝑚 = 1.0. The values for 𝐶𝑚 and 𝐶𝑑 are chosen in agreement with Bos and Wellens (2020) who
modelled the same cylinder.

𝐹𝑚 = 𝜌(𝐶𝑚𝑉𝑐�̇� +
1
2𝐶𝑑𝐴𝑐|𝑣|𝑣) (2.13)

The velocities and accelerations needed in equation 2.13 are a result of the wave created by ten wave
components. The total wave elevation at the focus and, for now, assumed impact location is assumed
to be equal to 𝜂 = ∑10𝑖=1 𝐴𝑖𝑐𝑜𝑠(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜖𝑤,𝑖). As shown in section 2.1.2, this equation is only valid
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Figure 2.6: The root mean squared error (RMSE) of different time steps compared to the reference situation. In this reference
situation 𝑑𝑡 = 105 s, 𝐿1 = 0.65 m, 𝐿1 = 0.40 m and𝑀𝑓 = 1 Nm. The masses are based on the properties of the original pendulum
described by Bos and Wellens (2020). The error occurring at 𝑑𝑡 = 0.0005 s is considered to be sufficiently small. Therefore, this
time step is selected.

for linear waves, and it does not take into account the different group velocities of the components.
However, it is found sufficient as a first estimation for the wave elevation at the focus point. By applying
this same assumption about linearity, the results for the combined velocity and acceleration are shown
in equations 2.14 and 2.15. A constant extrapolation of the velocity and acceleration at still water level
(SWL) is adopted for locations above the SWL. This assumption is based on the accurate performance
presented by Bos and Wellens (2020).

𝑢 =
10

∑
𝑖=1
𝐴𝑖𝜔𝑖

𝑐𝑜𝑠ℎ(𝑘𝑖𝑑)
𝑠𝑖𝑛ℎ(𝑘𝑖𝑑)

𝑐𝑜𝑠(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜖𝑤,𝑖) (2.14)

𝑎 =
10

∑
𝑖=1
𝐴𝑖𝜔2𝑖

𝑐𝑜𝑠ℎ(𝑘𝑖𝑑)
𝑠𝑖𝑛ℎ(𝑘𝑖𝑑)

𝑠𝑖𝑛(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜖𝑤,𝑖) (2.15)

The Morison formulation is only valid for full submergence. Therefore, the wetness parameter pre
sented by Bos and Wellens (2020) is used to smoothly transition between dry and wet phases of the
cylinder. The factor is shown in equation 2.16.

𝛽 =max(min(𝜂 − (𝑦 − 𝐷/2)𝐷 , 1), 0) (2.16)

A more elaborate expression of the impact load is taken from Wienke et al. (2005). This research
presents the impact load as a function of the curling factor 𝜆 and the elevation of the wave. The height
of the area of the impact is defined by 𝜆𝜂𝑏. Since in this situation the area of impact is horizontal, 𝜆𝜂𝑏
will be replaced by 𝛽𝑊 in all formulations. The modified impact load formulation is shown in equations
2.17 and 2.18.
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𝐹𝑖𝑚𝑝𝑎𝑐𝑡 = 𝛽𝑊𝜌𝑅𝑣2(2𝜋 − 2√
𝑣
𝑅𝑡 arctanh√1 −

𝑣
4𝑅𝑡)

for 0 ≤ 𝑡 ≤ 1
8
𝑅
𝑣

(2.17)

𝐹𝑖𝑚𝑝𝑎𝑐𝑡 = 𝛽𝑊𝜌𝑅𝑣2(𝜋√
1
6
1
𝑣
𝑅 𝑡
′ −

4√8
3
𝑣
𝑅𝑡

′ arctanh√1 − 𝑣
𝑅𝑡

′√6𝑣𝑅𝑡
′)

for
3
32
𝑅
𝑣 ≤ 𝑡

′ ≤ 12
32
𝑅
𝑣 with 𝑡′ = 𝑡 − 1

32
𝑅
𝑣

(2.18)

The total load on the horizontal cylinder is then equal to 𝐹𝑤𝑎𝑣𝑒 = 𝛽𝐹𝑚 + 𝐹𝑖𝑚𝑝𝑎𝑐𝑡.

2.4. An improvedmodel used for final comparison with experiment
The model used for the design of the experiment was not performing sufficient when compared to the
experimental data. Therefore, some adjustments to the model are presented in this section. First, the
adjustments made to the equations of motion or structural aspects of the pendulum are given in section
2.4.1. The adjustments made to the load due to the waves are given in section 2.4.2.
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Figure 2.7: Angle of the top part of the longest pendulum subjected to waves focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m. The time signal
is given for six different aim values for the frictional torque varying from 0 Nm to 11 Nm. The top angle shown here simulates
the elastic response of a structure. The first reducedorder model overestimates the experimental values severely. The second
model estimates a lower top angle, but still overestimates the experimental values.
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2.4.1. Equations of Motion
One change is made to the equations of motion, namely the incorporation of the difference between
static and dynamic friction. Based on results from the previous model, the average ratio between the
dynamic and static friction is found to be 0.81. The difference can be found in the change of the value
of 𝜆 in equations 2.7 and 2.8, and the accompanying condition for the occurrence of slip or stick. The
value of 𝜆 becomes equal to 𝑀𝑓,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 sign(�̇�2 − �̇�1) in equations 2.7 and 2.8 when slip occurs. Slip
will occur when |𝜆𝑐ℎ𝑒𝑐𝑘| ≥ 𝑀𝑓,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 or when |𝜆𝑐ℎ𝑒𝑐𝑘| ≥ 𝑀𝑓,𝑠𝑡𝑎𝑡𝑖𝑐 if the stick equations were applied
in the previous time step.

Another adjustment related to the equations of motion is done. In early results of the model, fast
backandforth changes between slip and stick were observed. Therefore, an extra condition is added
that guarantees no occurrence of stick for just a singular time step.

2.4.2. Load due to the waves
The results of the first model showed overestimated pendulum behaviour probably caused by a wave
force that was too high and long. The angle of the top pendulum of this model is shown in figure 2.7
and the relative angle between the top and bottom pendulum and the torque are shown in figure 2.8.
The values for 𝑀𝑎𝑖𝑚 will be explained in section 3.3.3. In both figures, this first model is indicated with
‘Reducedorder model 1’ and the measured results are indicated in blue. Both the top angle as well
as the relative angle are overestimated severely by the model. The signal of the calculated torque is
approximately twice as wide as the measured torque. Due to these large deviations, it is decided to
adjust the wave conditions.

In a first adjustment, ten wave groups with different amplitude, period and therefore group velocity
are modelled using linear equations. Each regular wave group is 3.5 waves long and is either increased
to the amplitude or decreased to zero over one period. At the focus point, all the wave components
are exactly at the 1.75th wave and are, therefore, in phase. Every wave group travels with their own
group velocity, and in each group, the wave propagates according to 𝐴𝑖 cos(𝑘𝑖𝑥−𝜔𝑖𝑡) with 𝑥 relative to
the focus point. No phase shift is present in this formulation due to the assumption that the waves are
focused and in phase at 𝑡 = 0 s. Unfortunately, this relatively simple model seemed to be too coarse
and was still overestimating the behaviour of the pendulum. The results of this model are also shown
in figures 2.7 and 2.8, indicated with ‘Reducedorder model 2’. It can be seen that the top angle is still
overestimated significantly, while the relative angle is approximated much better than in the first model.
However, in this model, the relative angle increases slower than can be seen in the measured signals.
The signal of the calculated torque is still approximately twice as wide as the measured torque. It is
assumed that the waves are still not realistic enough. In reality, the energy of each wave group will be
spread out more than in this wave model. This is due to the unintentional inclusion of different wave
components in the rampup and down of the regular waves.

Therefore, a more extensive calculation is performed. An inhouse code called Wavbas is used,
solving the potential equation on a staggered grid. Small deflections of the free surface and incom
pressibility are assumed, and the convective acceleration, viscous and body force terms are removed
from the momentum equations. This results in a Poisson equation to be solved. The fact that small de
formations of the free surface are assumed, makes it impossible to directly simulate a breaking wave.
This approach is chosen, to reduce calculation time and complexity of the model. The used boundary
conditions are listed below:

• The horizontal velocity at the top of the waveboard is derived from the input file sent to the flap
type wavemaker in the experiments. This velocity reduces linearly from maximum at the top of
the waveboard to zero at the bottom of the tank. The pressure at the waveboard is the same as
at the first grid point in the tank.

• The horizontal velocity at the end of the tank is equal to zero. Again, the pressure at the end of
the tank is the same as at the first grid point in the tank.

• The vertical velocity at the bottom of the tank is equal to zero. And again, the pressure at the
bottom of the tank is the same as at the first grid point in the tank.

• The pressure at the free surface is determined using the dynamic free surface boundary condition,
describing that 𝑝 = 𝑝𝑎𝑡𝑚 at the instantaneous vertical position of the free surface.
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Figure 2.8: The relative angle between the top and bottom part and the measured and modelled frictional torque of the longest
pendulum subjected to waves focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m are shown. The time signals are given for six different aim values
for the maximum frictional torque varying from 0 Nm to 11 Nm. The relative angle between the top and bottom pendulum shown
here simulates the plastic response of a structure. The first reducedorder model overestimates the experimental values of the
relative angle severely. The second model approximates the relative angle much better than in the first model. However, in this
model, the relative angle increases slower than can be seen in the measured signals. The signal of the calculated torque is still
approximately twice as wide as the measured torque.

Wavbas gives the input for the wave force in the form of the free surface, velocity and, via the derivative
of the velocity, the acceleration as well. The results of the code are synchronised with the experimental
values measured at wave gauge (WHM) 1 since the waves are not broken at that location. In order to
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obtain optimal synchronisation all WHMs in the model are moved 0.85 m towards the wavemaker. At
present, it is not understood why the shift is required.

After implementing these wave conditions into the reducedorder model, it is decided to change the
formulation for the impact force slightly. The formulations for the Morison equation and the wetness
parameter stay the same, which are given in equations 2.13 and 2.16. The formulation of the impact
part of the force is changed. When implementing the formulation of Wienke et al. (2005), the wave
force and acceleration of the pendulum start to oscillate at the moment of impact. This phenomenon
is shown in figure 2.9 and the origin could not be explained. Another formulation for an impact force is
taken from Goda et al. (1966):

𝐹𝑖𝑚𝑝𝑎𝑐𝑡 ={
𝛽𝑊𝜌𝑅𝑣2𝜋(1 − 𝑣𝑡′

𝑅 ) when positive
0 when negative

for 0 ≤ 𝑡′ ≤ 𝑅
𝑣

(2.19)

This impact formulation is applied at the moment that the wetness parameter is equal to 1 and the
cylinder of the pendulum is fully submerged. 𝑡′ starts counting from the moment that 𝛽 = 1,𝑊 is equal
to the width of the cylinder and 𝑅 to the radius of the cylinder. The total horizontal load on the horizontal
cylinder stays equal to 𝐹𝑤𝑎𝑣𝑒 = 𝛽𝐹𝑚 + 𝐹𝑖𝑚𝑝𝑎𝑐𝑡.
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Figure 2.9: The force from the Morison equation, the impact force from Wienke et al. (2005) and their summation, which is the
total wave force, are shown. The time shown on the x axis is only for scale. At the moment of impact the force increases instantly
and afterwards an oscillating behaviour is observed. This phenomenon is found in the acceleration of the pendulum as well.



3
Experimental setup

Now that the existing and required research is established in chapter 1, and a reducedorder model of
the double pendulum in breaking waves is presented in chapter 2, the experimental setup is explained
in this chapter. The overall layout of the complete experiment is described first in section 3.1. As will be
described in this section, the overall experiment consists roughly of two parts, namely the waves and the
pendulum. These two parts are described separately in sections 3.2 and 3.3. Then, the inaccuracies
known before the start of the experiments are shown in section 3.4.

3.1. The total layout of the experiment
The experiment consists roughly of two parts, namely the pendulum and its surrounding conditions.
These two elements are combined in the total layout of the experiment shown in figure 3.1. In this
figure, the beach is shown on the left and the waveboard of the wavemaker on the right. The middle
position of the waveboard is defined as the origin of the axis system of the experiments. In this way, the
waves will travel in the positive xdirection. In between the wavemaker and the beach, the pendulum is
positioned at 𝑥 = 29.88 m from the wavemaker. The three wave gauges (WHMs) are positioned at 𝑥1
= 25.27 m, 𝑥2 = 29.88 m and 𝑥3 = 34.69 m from the wavemaker. The wave gauges in front and behind
the pendulum are mainly used for checking the wave conditions with the expected values. Please note
that this schematic overview is not to scale.

x 

y 

x1 

x2 

x3 

𝜃1 

𝜃2 

Figure 3.1: A schematic overview of the layout of the towing tank, which is not to scale. On the right side, the waveboard of the
wavemaker is shown. The black line is the middle position from which the axis system is defined. This is not the same axis as
earlier defined for the pendulum (shown in figure 2.5), but points in the same direction. Three wave gauges are positioned at 𝑥1
= 25.27 m, 𝑥2 = 29.88 m and 𝑥3 = 34.69 m from the wavemaker. The second wave gauge is exactly positioned at the pendulum.
On the left of the figure, the beach of the tank is shown.
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3.2. Detailed information on the waves
The still water level (SWL) is at 994 mm from the bottom of the tank. The bottom of the tank and the
walls are assumed to be perfectly flat. This assumption includes the assumption of no reflections due
to the sides of the tank and no unexpected disturbances from the bottom. As stated in section 2.3.2,
the wave signal consists of ten regular wave components. The amplitude, period and group velocity of
these ten components are given in table 3.1.

Table 3.1: The amplitude, period and group velocity of the ten regular wave components that are used to create a focused wave.

Amplitude
(m)

Period
(s)

Group velocity
(m/s)

0.0100 0.8003 0.6248
0.0110 0.8394 0.6554
0.0125 0.8948 0.6991
0.0145 0.9639 0.7545
0.0170 1.0441 0.8218
0.0200 1.1340 0.9032
0.0240 1.2467 1.0176
0.0290 1.3814 1.1716
0.0360 1.5667 1.3976
0.0500 1.9437 1.8187

Each regular wave group is 3.5 waves long and is either increased to the amplitude or decreased to
zero over one period. At the focus point, all the wave components are exactly at the 1.75th wave and
are, therefore, in phase. To know how the wave travels towards this focus point, the following two
characteristics of the waves need to be incorporated: Every wave group travels with their own group
velocity, and in each group, the wave propagates according to 𝐴𝑖 cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡) with 𝑥 relative to the
focus point.

In this experiment, three different focus points will be used, located at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.380 m, 𝑥𝑓𝑜𝑐𝑢𝑠 =
28.880 m and 𝑥𝑓𝑜𝑐𝑢𝑠 = 29.380 m from the wavemaker. Relative to the pendulum, the focus locations
are at 1.5 m, 1.0 m and 0.5 m, respectively. The steepness of the focused wave is higher than the
limit and, therefore, it will break.

The performance of the flaptype wavemaker of the TU Delft can be tuned with different parameters.
The first parameter is the angle of the cylinders connected to the waveboard. The angle of these cylin
ders in this experiment is 20.01 deg, which causes a motion that is partially rotational and partially
translational. In order to minimise losses in the cables from the carriage to the wavemaker, the output
generated at the carriage should be maximal. Therefore, the attenuation factor at the wavemaker is
set to 2.6, which results in an output of the wavemaker that is 26 % of the input.

After using this theory and the details of the wavemaker to create an input file for the wavemaker, the
waves can be measured. In figure 3.2, the measured waves at WHM 1 and at the begin location of the
pendulum are shown (which is equal to WHM 2). As can be seen, not all waves are entirely the same.
More variations in the signal occur when the wave breaks further away from the pendulum (shown in the
top right diagram). When this phenomenon would have been observed when no pendulum is present,
it could have lead to the conclusion that the longer after breaking, the more spread can be observed.
However, the variability can also be ascribed to fluidstructure interaction (FSI). A detailed analysis of
this will be done in chapter 4. To see the pure repeatability of the waves, every morning the same wave
is generated, without the pendulum interacting with it. The results of this wave are shown in the bottom
two diagrams of figure 3.2. Some variability can be seen, but it is much less than observed in all the
situation together. Variation also occurs due to inaccuracies of the wave gauges. This inaccuracy and
other inaccuracies that are known before the actual experiment is started are discussed in section 3.4.
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Figure 3.2: Wave measurements at WHM 1 at 𝑥 = 25.27 m and WHM 2 at 𝑥 = 29.88 m for the three different focus locations:
𝑥𝑓𝑜𝑐𝑢𝑠 = 28.380 m, 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m and 𝑥𝑓𝑜𝑐𝑢𝑠 = 29.380 m from the wavemaker. The minimum, maximum, median, lower
limit of the first quartile and upper limit of the third quartile are shown, based on 109, 109 and 120 repetitions for the three focus
locations. More variations in the signal at the pendulum occur when the wave breaks further away from the pendulum (shown
in the top right diagram). Another reason for the spread can be FSI. In the bottom two graphs, the results of 13 repetitions for
a wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m without impacting on the cylinder are shown. Compared to the large variability shown
in the top six diagrams, these two bottom diagrams show less spread due to fewer repetitions, but also lack of influence of the
pendulum.

3.3. Detailed information on the pendulum
Now that the overall position of the pendulum is shown to be at 𝑥 = 29.88 m from the wavemaker, the
details of the pendulum are given. The design of the pendulum is realised using the reducedorder
model described in section 2.3. It is assumed that this model is sufficiently accurate to obtain useful
parameters of the pendulum. After the ideal design is explained in section 3.3.1, the real geometry of
the pendulum is shown in section 3.3.2. This section contains the overall layout of the pendulum and
important dimensions. Then, a more detailed overview of the friction mechanism is given in section
3.3.3.
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3.3.1. Design of pendulum
The first reducedorder model of the double pendulum can be used to design the experiment. In this
pendulum the top hinge is a regular hinge and in the bottom hinge friction can be applied. Note that
the results presented in this section are obtained by using a simplified model. A considerable limitation
of the current model is the wave model used to determine the wave force. Next to this, only one value
of the frictional moment is incorporated, while in reality, this moment is dependent on different factors.
For example, the static and dynamic friction coefficients are not equal.

First, the required output and possible variations of the reducedorder model will be determined.
Then, the results of the variations chosen in this section will be evaluated. Furthermore, the final di
mensions of the design are given.

The output of the reducedorder model that influences the design choices
In order to determine a good design for the experiment, a definition of a ‘good design’ should be stated.
This definition will be based on the required output of the model and the experiment to be able to
answer the main research question. The desired output of this research shows the absorbed energy
in the plastic deformation, which is already stated in section 1.3. This absorbed energy should be
maximised in order to see the largest influence of the plasticity on the behaviour of the pendulum. The
absorbed energy in the plastic deformation can be given as the dissipated energy due to frictional work
and can be calculated using equation 3.1.

𝑊𝑓 = ∫𝑀𝑓𝑑𝜃 (3.1)

For a constant moment and an angle that only increases, this equation is equal to multiplying the
frictional torque and the final angle between the top and bottom pendulum.

To maximise the dissipated energy, different parameters of the pendulum can be adjusted. These
adjustments should be made in such a way that after the impact, the dissipated energy is maximal,
and the influence of the motion of the pendulum is minimal. The initial values of the design are based
on the pendulum used in previous experiments by Bos and Wellens (2020). For every new design,
one parameter of this initial design is adjusted. The parameters that are subjected to change are the
length, mass and location of the centre of gravity of both the top and bottom pendulum. Changing these
parameters results in a range of values of the frictional torque for which energy will be dissipated. A
broad range of these values is judged as a positive element of that specific design.
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Figure 3.3: The length of the bottom pendulum is varied between 0.3 (left), 0.4 (middle) and 0.5 m (right). The dissipated energy
and the range of frictional moment increase with a longer bottom part of the pendulum. For a longer bottom pendulum, more
influence of the motion of the pendulum can be seen when a low frictional torque is applied.
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Changes to the length, centre of gravity, and mass: 𝐿2 = 0.4 m, ℎ1 > ℎ2 and 𝑚1 ≫ 𝑚2
As shown in section 1.3, it is desired that the absorbed energy in the plastic deformation with respect
to the stiffness of the pendulum is found. Therefore, three values for the total length of the pendulum
are chosen: 1.05, 1.35 and 1.65 m. For every adjustment, the results are given for these three total
lengths of the pendulum.

The first adjustment is the change of lengths of both parts of the pendulum, shown in figure 3.3. Since
the total length is fixed, as stated in the previous paragraph, only the length of the bottom pendulum
is adjusted. When the length of the bottom pendulum is changed between 0.3, 0.4 and 0.5 m, it can
be seen that the dissipated energy and the range of frictional moment increase with a longer bottom
part of the pendulum. However, for a longer bottom pendulum, more influence of the motion of the
pendulum can be seen when a low frictional torque is applied. Therefore, a bottom length of 0.4 m is
chosen to use as a fixed value for the other variations.
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Figure 3.4: The centre of gravity of the top pendulum is varied between 0.25 𝐿1 (left), 0.5 𝐿1 (middle) and 0.75 𝐿1 (right). The
dissipated energy and the range of frictional moment increase with a lower centre of gravity of the top part of the pendulum.
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Figure 3.5: The centre of gravity of the bottom pendulum is varied between 0.25 𝐿2 (left), 0.5 𝐿2 (middle) and 0.75 𝐿2 (right). The
dissipated energy and the range of frictional moment decrease with a lower centre of gravity of the bottom part of the pendulum.
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The second adjustment is the change of centre of gravity of both parts of the pendulum, shown in
figures 3.4 and 3.5. A big difference in behaviour can be seen between changing the centre of gravity
of the top part and the bottom part in figure 3.4 and 3.5, respectively. From only adjusting the centre
of gravity, it can be concluded that the lower the centre of gravity of the top part of the pendulum
is, the higher the dissipated energy is. On the other hand, a lower centre of gravity of the bottom
pendulum decreases the dissipated energy significantly. By lowering the centre of gravity of the bottom
pendulum, the arm that creates a moment due to wave force reduces and the arm towards the friction
hinge increases, explaining this phenomenon. Therefore, a combination of a high centre of gravity of
the bottom pendulum and a low centre of gravity of the top pendulum results in the highest dissipated
energy.
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Figure 3.6: The mass of the top pendulum is varied between 10.55 (left), 21.10 (middle) and 31.64 kg (right). The dissipated
energy and the range of frictional moment increase with a heavier top part of the pendulum.
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Figure 3.7: The mass of the bottom pendulum is varied between 3.38 (left), 6.75 (middle) and 10.13 kg (right). The dissipated
energy and the range of frictional moment increase with a heavier bottom part of the pendulum.

The third adjustment is the change of mass of both parts of the pendulum, shown in figures 3.6 and
3.7. Increasing the mass of each of the parts of the pendulum causes an increase in the dissipated
energy. The increase in dissipated energy when adjusting the mass of the top part, see figure 3.6, is
higher than the increase in dissipated energy when adjusting the mass of the bottom part, see figure
3.7. This observation leads to the choice to increase only the mass of the top pendulum, to keep the
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large difference in mass between the top and bottom that shows promising results in the right diagram
of figure 3.6. The total mass of the pendulum should be limited. Otherwise, the risk of little total energy
transfer from the wave to the pendulum occurs.

Final dimensions of the pendulum aimed for in the experiment
A choice is made for the final design dimensions that will be aimed for during the fabrication of the
pendulum for the experiment, based on the analysis in the previous section. These dimensions are
summarised in table 3.2 in which three different arrangements are shown. These three arrangements
correspond to the three different values for the total length of the pendulum. The resulting dissipated
energy is shown in figure 3.8. In this figure, it can be seen that the range of frictional torques that shows
a significant amount of dissipated energy and no influence of the motion of the pendulum is between
4 and 12 Nm. It can be seen that for lower frictional torques (4  6 Nm), the smallest pendulum results
in more dissipated energy, while for higher frictional torques, the longest pendulum results in more
dissipated energy.

Table 3.2: For all three situations the desired dimensions and other numeric characteristics of the pendulum are shown. Centre
of gravity is with respect to the fulcrum of each part of the pendulum. All elements indicated with a subscript 1 correspond to the
top part of the pendulum and the elements with a 2 correspond to the bottom part of the pendulum.

Long Medium Short
𝐿1 = 1.25 m 𝐿1 = 0.95 m 𝐿1 = 0.65 m

Length 1 1.25 0.95 0.65 m
Mass 1 31.5 31.5 31.5 kg
Centre of gravity 1 0.75 𝐿1 = 0.9375 0.75 𝐿1 = 0.7125 0.75 𝐿1 = 0.4875 m

Length 2 0.4 0.4 0.4 m
Mass 2 3.5 3.5 3.5 kg
Centre of gravity 2 0.25 𝐿2 = 0.1 0.25 𝐿2 = 0.1 0.25 𝐿2 = 0.1 m
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Figure 3.8: Dissipated energy for the final values that will be aimed for in the experiment. The range of frictional torques that
shows a significant amount of absorbed energy and no influence of the motion of the pendulum is between 4 and 12 Nm.
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Figure 3.9: Schematic overview of the longest pendulum. In this arrangement, the length of the top part of the pendulum is 1.25
m, and the length of the bottom part is 0.4 m. The potentiometers are indicated with P1, P2 and P3, the accelerometers with A1
and A2 and the torque sensor with a red T. The distance between the blue beam and the pendulum is chosen in such a way that
the cylinder of the pendulum is positioned in the middle of the towing tank. Drawing by Jasper den Ouden.

3.3.2. The geometry of pendulum: three different arrangements
The pendulum is constructed using the desired parameters of the pendulum given in section 3.3.1. It
consists of a PVC cylinder with a diameter of 50 mm and a width of 1.5 m. This cylinder is connected
to the bottom hinge with thin strips made of stainless steel. These strips are assumed to receive no
contribution from the hydrodynamic force since they are thin compared to the width of the cylinder. The
mechanism to apply and measure friction is connected to the bottom hinge and can measure frictional
moments between 0 and 22 Nm. The amount of friction can be adjusted by compressing or releasing
a compression spring in combination with brakeblocks on a brake disc. The rest of the pendulum
is made of aluminium profiles. The top of the pendulum is connected to an adjustable frame. The
adjustable frame facilitates keeping the cylinder at the same height while adjusting the length of the
pendulum.

In this section, only the longest of the three different arrangements of the pendulum is shown in
figure 3.9. This figure shows this arrangement seen in the travel direction of the waves. The poten
tiometers are indicated in the figure with P1, P2 and P3, the accelerometers with A1 and A2 and the
torque sensor is indicated with a red T. Important dimensions are also shown in this figure. The dimen
sions and elements of all three arrangements can be found in appendix A. The specific values for the
properties of each arrangement are given in table 3.3.

All distances are measured with a measuring tape, and the weights are determined using a scale. The
centre of gravity is determined by balancing the parts of the pendulum on a thin vertical plate until
stable. The restoring force coefficient is equal to the product of the mass, the centre of gravity and the
gravitational acceleration, shown in equation 3.2.

𝑘 = 𝑚𝑔ℎ (3.2)

The inertia coefficient is determined in a free vibration test. The period of oscillation is measured with
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Table 3.3: For all three situations the dimensions and other numeric characteristics of the pendulum and the pendulum with
respect to the water are given. The centre of gravity is with respect to the fulcrum of each part of the pendulum. The inertia
coefficient is given with respect to the centre of gravity. All elements indicated with a subscript 1 correspond to the top part of
the pendulum and the elements with a 2 correspond to the bottom part of the pendulum.

Long Medium Short
𝐿1 = 1.25 m 𝐿1 = 0.95 m 𝐿1 = 0.65 m

Length 1 1.25 0.95 0.65 m
Mass 1 24.92 24.92 22.40 kg
Centre of gravity 1 0.755 0.592 0.348 m
Inertia coefficient 1 3.07 1.84 0.84 kgm2rad1
Damping coefficient 1 0.376 0.339 2.590 1 Nmsrad1
Restoring force
coefficient 1

184.57 144.72 76.47 Nmrad1

Length 2 0.4 0.4 0.4 m
Mass 2 5.26 5.26 5.26 kg
Centre of gravity 2 0.107 0.107 0.107 m
Inertia coefficient 2 0.14 0.14 0.14 kgm2rad1
Damping coefficient 2 0.036 0.036 0.036 Nmsrad1
Restoring force
coefficient 2

5.52 5.52 5.52 Nmrad1

Diameter cylinder 50 50 50 mm
Distance SWL and
bottom cylinder

60 60 60 mm

1 The original value for the damping coefficient of the shortest pendulum determined in the workshop is 0.169
Nmsrad1. However, when analysing the results, the damping behaviour of the model is much slower than
the behaviour observed in the experiment. Transporting and reconnecting the pendulum to the hinges in the
tank could have changed the damping, which would clarify the large difference in behaviour. Therefore, a new
damping coefficient is determined from the results measured in the tank. This phenomenon underlines the
importance of a correct assembly of the experimental setup.

a stopwatch, and the moment of inertia can be determined according to equation 3.3. In this equation
𝐼𝑓𝑢𝑙𝑐𝑟𝑢𝑚 is the moment of inertia around the fulcrum of the pendulum, while 𝐼𝐶𝑜𝐺 is the moment of inertia
around the centre of gravity of the pendulum. In the reducedorder model 𝐼𝐶𝑜𝐺 is used.

𝐼𝑓𝑢𝑙𝑐𝑟𝑢𝑚 = (
𝑇
2𝜋)

2
𝑚𝑔ℎ

𝐼𝐶𝑜𝐺 = 𝐼𝑓𝑢𝑙𝑐𝑟𝑢𝑚 −𝑚ℎ2
(3.3)

After determining the inertia and restoring force coefficient, the measured angle in the free vibration
test and its first and second derivative, a least squares fit can be applied on equation 3.4 to determine
the damping coefficient of both parts of the pendulum.

𝐼𝑓𝑢𝑙𝑐𝑟𝑢𝑚�̈� + 𝑐�̇� + 𝑘𝑠𝑖𝑛(𝜃) = 0 (3.4)
The angles of a free oscillation of the long pendulum are shown in figure 3.10. In this free oscillation
the reducedorder model is compared to the experiment, and both the model itself as well as the prop
erties of the model can be evaluated. The behaviour of the oscillation of both parts of the pendulum is
simulated accurately, which likely means that the model itself is quite accurate. The magnitude of the
signal of the relative angle, however, is overestimated at some moments. This could be an indication
that the separate damping coefficients of the pendulum parts are not a good representation of the total
damping of the double pendulum. The differences at the start of the signal could also originate from
the fact that the pendulum does not start at zero velocity in the experiment. The conclusions of this
research will not be influenced by the differences between the model and the experiment shown in
figure 3.10.
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Figure 3.10: This figure shows the angles of a free oscillation of the long pendulum. In this free oscillation, the reducedorder
model is compared to the experiment, and both the model itself as well as the properties of the model can be evaluated. The
behaviour of the oscillation of both parts of the pendulum is simulated accurately, but the magnitude of the signal of the relative
angle is overestimated at some moments.

3.3.3. Friction mechanism: repeatability and adjustability
Two aspects of the friction mechanism are critical to investigate beforehand: the resulting frictional
torque of adjustments of the spring and the repeatability of these frictional torques.

First, two different positions of the spring are examined several times. In this examination, the
top part of the pendulum is fixated, and a horizontal pressure on the cylinder is slowly increased by
hand. This check is used to examine the repeatability of the frictional torque due to a certain position
of the spring. Next to this, a reasonable first impression is obtained of the behaviour of the frictional
torque. For each position of the spring, a single test is performed with a faster increase of the pressure
to analyse the behaviour of the torque in that situation. The results of these tests are shown in figure
3.11. The measured results are filtered using a moving average filter. In this figure, it can be seen
that for the tests in which the pressure is increased slowly, the torque increases until it suddenly drops
and stays at a constant value. This phenomenon is the difference between the static and the dynamic
frictional moment since the drop is at the moment the bottom pendulum starts to move. All the runs
give approximately the same values and behaviour. The only run that is significantly different is the
one in which the pressure is increased fast. The static friction is higher than, and the dynamic friction
is not as constant as is observed in the other runs.

Now that the repeatability of the frictional torque is checked, a complete overview of the torque cor
responding to a position of the spring should be established. This relation can be indicated as the
adjustability of the spring. Based on figure 3.11, the average of the value for the dynamic frictional
torque is used for this. The distance 𝑥𝑛𝑢𝑡, indicated in figure 3.12, is adjusted, and the average torque
is measured. These measurements are shown in figure 3.13. As expected, this figure shows a linear
relation. The spring is linearly compressed, resulting in a linear increase of the normal force on the
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Figure 3.11: Measured torque as a result of a fixated top part of the pendulum and increasing horizontal pressure on the cylinder.
Five times the pressure is slowly increased and one time faster. The measured results are filtered using a moving average filter.
It can be seen that for the tests in which the pressure is increased slowly, the torque increases until it suddenly drops and stays
at a constant value. This phenomenon is the difference between the static and the dynamic frictional moment since the drop is
at the moment the bottom pendulum starts to move. All the runs give approximately the same values and behaviour. When the
pressure is increased fast, the static friction is higher, and the dynamic friction is not as constant as is observed in the other runs.

disc. This creates a linear relation between the compression of the spring and the frictional torque.
The equation for this linear relation is given in equation 3.5. For this formulation, the first and last mea
surements are not taken into account. They deviate from the relation probably due to deformations
of the connection for the spring to the brakeblocks (for high torque) or a measurement of the normal
clamping force that is not precise enough (for low torque).

𝑥𝑛𝑢𝑡 = 2.1252𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 + 26.7652 (3.5)

xnut 

Figure 3.12: A schematic overview of the brake disc, brakeblocks, spring, nut and distance 𝑥𝑛𝑢𝑡. This distance 𝑥𝑛𝑢𝑡 is used to
tune the amount of compression of the spring.

The values used to determine the relation shown in equation 3.5 are only measured once. The mea
surements shown in figure 3.11, which are measured on a later time, are also shown in figure 3.13.
As can be seen, the values for position 1 are not on the linear line. This can indicate that the linear
relation is not the same over time, or that the linear relation is not completely correct. In either of these
cases, the same value for 𝑥𝑛𝑢𝑡 is used over the experiment. Therefore, the deviation for the linear line
is accepted.

The values for each desired torque are summarised in table 3.4. In order to decrease the measure
ment errors possible in adjusting the spring, the orientation of the nut is restricted to a horizontal one.
This restriction is the reason why the third column of table 3.4 is added. This constraint creates the
disadvantage of not meeting the desired torque exactly. However, it is found to be acceptable and the
values in the third column of table 3.4 are used during the experiment.
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Figure 3.13: The relation between the desired torque and the required position of the spring shows a linear relation. The spring
is linearly compressed, resulting in a linear increase of the normal force on the disc. This creates a linear relation between the
compression of the spring and the frictional torque. The equation for this linear relation is equal to 𝑥𝑛𝑢𝑡 = 2.1252 𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 +
26.7652. The first and last measurements are not taken into account. Next to the measurements used to calculate the linear
relation, the measurements from figure 3.11 are shown as well including the standard deviation. The measurements at position
1 are not on the linear line. This can indicate that the linear relation is not the same over time, or that the linear relation is not
completely correct.

Table 3.4: A summary of the required position of the nut for the desired torque. The third column shows the required position
of the nut incorporating the restriction of only using a horizontal position of the nut. This restriction is included to minimise
measurement errors, and, therefore, this column shows the values used in the experiment.

Torque
(Nm)

𝑥𝑛𝑢𝑡,𝑎𝑖𝑚
(mm)

𝑥𝑛𝑢𝑡,ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
(mm)

1 28.89 29.1
2 31.02 31.2
3 33.14 33.3
4 35.27 35.4
5 37.39 37.5
6 39.52 39.6
7 41.64 41.7
8 43.77 43.8
9 45.89 45.9
10 48.02 48.0
11 50.14 50.1

3.4. Sensor calibration
Before the actual measurements start, all the sensors are checked and calibrated in order to know
the inaccuracies that result from each of them. The first sensors that are already mentioned are the
wave gauges or wave height measurement devices. The position of each of them is shown in figure
3.1. On the pendulum, three potentiometers are installed to measure the angle of the top hinge on
both sides and the bottom hinge on one side of the pendulum. The accelerometers are installed on the
vertical parts of both the top and bottom pendulum, one for each part. The last sensor is the torque
meter, which is located on the axis of the bottom hinge and measures the applied frictional torque on
this hinge. All these sensors on the pendulum are shown in figure 3.9. All signals are acquired using
a sampling frequency of 1000 Hz. After that, all signals are filtered with an analogue filter of 100 Hz.
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In the next step, filtering occurs using a digital moving average filter using a window width of 25 data
samples. A moving average filter is appropriate for reducing noise but keeping peaks (Smith, 1999).

All sensors are calibrated and checked differently. The WHMs are calibrated by measuring the
output at every 20 mm of the range. A straight line is fitted through this data; and the measurement
error causes deviations. The potentiometers and torque sensor are calibrated similarly, but then using
steps of respectively 5 deg and 2 kg at a distance of 0.09m. The accelerometers are calibrated by letting
only gravity act on both sides of the sensor. The absolute maximum measurement errors of all these
calibrations are given in table 3.5. The maximum occurring measurement errors of the accelerometers
are not given, since the calibration factor is not based on small steps as for the other sensors.

Two other factors that are known beforehand influence the variations and errors in the results. The
first factor is the error due to measuring lengths. The exact error can not be quantified easily, but due to
small dimensions of the pendulum, it is assumed to be less than 1 mm. The spirit level that is also used
to adjust the geometry has an accuracy of 1 mm/m. The second factor is the variability in the waves
and the wavemaker. This factor is difficult to measure separate from the measurement error due to the
wave gauges. Therefore, the variability in the waves will be presented in all the following figures. The
variability will also be shown for the results that are influenced by this.

Table 3.5: A summary of the absolute maximum measurement errors of all sensors used in the experiment. The measurement
errors of accelerations, length measurements and the waves are not included in this table due to the difficulty in quantifying these
errors.

Name Position Measurement error

WHM 1 In front of pendulum (𝑥1 = 25.27 m) 0.85 mm
WHM 2 At pendulum (𝑥2 = 29.88 m) 1.3 mm
WHM 3 Behind pendulum (𝑥3 = 34.69 m) 0.99 mm
Potmeter 1 Axis of top hinge 0.24 deg
Potmeter 2 Axis of top hinge 0.15 deg
Potmeter 3 Axis of bottom hinge 0.21 deg
Torque meter Axis of bottom hinge 0.176 / 0.035 1 Nm
1 The first value is the maximum error observed when an almost ideal moment is applied to
the torque sensor. However, in the test setup, only one side of the torque sensor is loaded,
which also causes a shear force. Fortunately, the error is smaller in that situation. The
larger error in the first case is probably caused by hysteresis that is observed in the signal





4
Results and discussion

After presenting the research questions in chapter 1, designing the experimental setup in chapter 3
based on the reducedorder model introduced in chapter 2, the results of the experiments and the
model are presented and discussed in this chapter. The model used for the results presented here
is the model shown in section 2.4. Not all results are presented here; the visualisation of selected
situations are shown. These situations contain notable behaviour of the pendulum or are the example
situation, which is chosen to be the longest pendulum and the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m (the
middle focus location). The values of the frictional torque applied to the bottom hinge vary between
0 and 11 Nm, in which the last value creates a pendulum that stays fixed, creating a single hinge
pendulum.

First, the results in the time domain of the pendulumwith 𝐿1 = 1.25m subjected to the wave focused
at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m are presented and discussed in section 4.1. The time signals are shown to create
an understanding of how the pendulum behaves and how well the reducedorder model can predict
this behaviour. The differences in magnitude are discussed in the section that follows, section 4.2.
In that section, different energy components of the pendulum are analysed. Energy components that
are related to elastic as well as plastic behaviour are shown. This section can give the final insight to
answer the main question. A detailed overview of all the results is shown in appendix B.

4.1. Measured time signals to analyse pendulum behaviour
The first part of the results consists of the results over time for the longest pendulum in waves with
𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m of five different sensors. These sensors are potentiometers 1 and 2 which measure
the angle of the top part of the pendulum, potentiometer 3 which measures the relative angle of the
top and bottom part, the torque meter which measures the torque that acts on the bottom hinge and
WHM 2 which measures the wave height at the original position of the pendulum. The signals of these
sensors are filtered once with a moving average filter with a width of 25 data points. The results of
the last three sensors are directly shown in this section. The results of potentiometers 1 and 2 are
averaged to show the behaviour of the top pendulum in a more compact way. A more detailed analysis
of this simplification is shown in appendix C.

When looking closely at the signals for the angle of the top and bottom part of the pendulum,
horizontal parts can be observed in the signal. These horizontal parts of the signal are created by the
minimum resolution steps of the potentiometers. The potentiometers stay at a particular value before
‘jumping’ to the next. This behaviour is inevitable for these potentiometers with the specific range used
here. The steps vary between 0.1 and 0.38 deg. This value should be added to the inaccuracy of
all potentiometers. This behaviour leads to problems when calculating the derivatives of the angles,
which results in difficulties when calculating some energy components of the pendulum. This problem
is solved by selecting the horizontal or nearly horizontal parts of the signal. Then, the middle points of
these intervals and the middle points of the other intervals are selected. A cubic spline is fitted through
these points. A more detailed analysis of this fit function is shown in appendix C.

Each experimental condition, which is a combination of a pendulum arrangement and a wave
focus location, is tested five or six times. From these five or six repetitions, the median, 25% and 75%
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quartiles, and the minimum and maximum measured values can be determined. These are shown in
every figure in this section. The reducedorder model is shown with a black line.

55 55.2 55.4 55.6 55.8 56 56.2
-100

0

100

200

W
av

e 
he

ig
ht

 (
m

m
)

Maim =  0 Nm

Wave at WHM 2, x
focus

 = 28.880 m, L
1
 = 1.25 m

55 55.2 55.4 55.6 55.8 56 56.2
-100

0

100

200
Maim = 2 Nm

55 55.2 55.4 55.6 55.8 56 56.2
-100

0

100

200

W
av

e 
he

ig
ht

 (
m

m
)

Maim = 3 Nm

55 55.2 55.4 55.6 55.8 56 56.2
-100

0

100

200
Maim = 4 Nm

55 55.2 55.4 55.6 55.8 56 56.2
Time(s)

-100

0

100

200

W
av

e 
he

ig
ht

 (
m

m
)

Maim = 5 Nm

55 55.2 55.4 55.6 55.8 56 56.2
Time(s)

-100

0

100

200
Maim = 11 Nm

Minimum First quartile Median Third quartile
Maximum Wavbas Cylinder middle (t=0) Cylinder top/bottom (t=0)

Figure 4.1: Waves with focus location 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m measured at WHM 2 which are imposed on the longest pendulum.
Less spread can be observed than when all the waves are grouped in figure 3.2. More variability in the wave measurements can
be observed for situations in which more spread in the relative angle is present. The results from Wavbas deviate significantly
from the experimental values, which is caused by the assumption of linearity. The level of the cylinder at the start position (t = 0)
is shown as well.

First, the waves in which the pendulum is placed are shown in figure 4.1. These measurements are
taken at the original position of the pendulum, which is indicated with ‘cylinder (t = 0)’ as well in this
figure. When comparing these signals to all the waves measured, which are presented earlier in the
top six diagrams of figure 3.2, the variability is less. This phenomenon can be an indication that fluid
structure interaction (FSI) is an essential factor, and the spread is less due to the same behaviour of the
pendulum. This statement is supported by the fact that the variability in the waves is larger when the
spread in the relative angle is larger (see figure 4.4). All the median lines of the wave measurements
in the different situations of the long pendulum are shown together in figure 4.2. In this figure it is
visible that some results differ significantly from the rest, indicating FSI again. The experimental and
calculated values are synchronised using the signal of the waveboard. When comparing the results of
Wavbas to the experimental results, it can be seen that the model is not perfect. The modelled wave
is less steep and wider than the measured wave. These differences are caused by the assumption
of linearity. Small deformations of the free surface are assumed, which is apparently not sufficient to
represent the waves in the experiment.

The top angle of the pendulum, shown in figure 4.3, increases with increasing frictional torque, while
the relative angle between the top and bottom part decreases, which is shown in figure 4.4. The top
angle is a measure for the elastic deformation of a structure, while the relative angle is a measure for
plastic deformation. From this analysis, it can be concluded that more plastic deformation causes less
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Figure 4.2: The median lines of the wave measurements when the long pendulum is subjected to waves focused at 28.380 m
(left), 28.880 m (middle) and 29.380 m (right). The results for some values of the frictional torque (for example 0 Nm) differ
significantly from the rest, indicating FSI.

elastic deformation. This conclusion can be translated to a real system as follows: A material more
resistant to movement of material dislocations will be less damaged, but will have a larger deflection.
Which material will have a higher or lower total energy transfer will be analysed in section 4.2. The os
cillation period, which can be seen as a measure for the elastic behaviour, does not change significantly
with varying frictional torque. The oscillation period varies between 2.035 and 2.050 s based on the
experiment and is 2.050 s based on the results of the model. Before the experiments in the tank were
executed, the oscillation period was observed to be 2.050 s using a stopwatch. This unchanged os
cillation period after deformation is a logical consequence of the significant weight difference between
the top and bottom pendulum. This weight difference causes the influence of the top pendulum on the
oscillation period to be dominant over the influence of the bottom pendulum. For the medium and short
pendulum, the same behaviour can be observed. For the medium pendulum, the experimental results
show values between 1.780 and 1.790 s, the model between 1.810 and 1.815 s and the test with the
stopwatch 1.813 s. For the short pendulum, the experimental results show values between 1.497 and
1.517 s, the model between 1.507 and 1.517 s and the test with the stopwatch 1.514 s. The small
difference between the stopwatch test and the experimental values can be assigned to reading errors
of the graph.

The results of the angles of the reducedorder model and the experiment are synchronised using
the synchronisation of the waves. It can be seen that for the situation in which the frictional torque is
zero, the modelled value for the top angle rises slower than the experiments. In the other situations,
the result of the model increases at the same rate as the experimental result but keeps increasing for
a longer time. Therefore, the model overestimates the behaviour of the top angle for all cases in which
frictional torque is applied. Next to this, it introduces a phase shift between the results of the model
and the experiment. Possible reasons for these phenomena will be discussed in the next paragraphs,
together with analysing the results for the relative angle and torque.

The relative angle between the top and bottom pendulum and the measured torque are closely related
and are, therefore, shown together in figure 4.4. The results of the reducedorder model and the
experiment are synchronised using the synchronisation of the waves. The relative angle decreases
with increasing frictional torque. It can be seen that the rate at which the relative angle increases is
smaller for the model than for the experiment. This can be due to the shape of the wave. The modelled
wave is less steep, and causes, therefore, a more gradually increasing force on the pendulum. The
wave force is less ‘impact’like in the model due to the shape of the wave and creates a lower response
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Figure 4.3: Angle of the top part of the longest pendulum subjected to waves focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m. The time signal is
given for six different aim values of frictional torque varying from 0Nm to 11 Nm. Themotion of the top angle shown here simulates
the elastic deformation of a structure. This elastic deformation becomes bigger when less plastic deformation occurs, which is
the case for increasing frictional torque that the friction mechanism can withstand. The reducedorder model overestimates the
experimental values in the situations in which frictional torque is present. The oscillation period of the pendulum is constant with
increasing frictional torque.

of the relative angle and a larger response of the top angle of the pendulum, which is shown in figure
4.3. This phenomenon causes a phase shift between the values of the model and the experiment
for the situation without frictional torque. Due to this more spreadout wave force, the modelled torque
increases more gradually before a relative motion occurs and, therefore, can be seen to develop before
the measured torque does.

Furthermore, the modelled torque does not show the large negative dip which can be observed
in the experimental results. This dip can even exceed the maximum frictional torque of the friction
mechanism creating an asymmetric signal of the frictional torque. This means no motion occurs during
this time interval. What does occur could be explained by looking at the relative angle when 𝑀𝑎𝑖𝑚 =
11 Nm. The measured change in relative angle is likely caused by elastic deformation of the rubber of
the brakeblocks. This phenomenon can also be observed in other situations, in which a decrease of
the relative angle can be seen after reaching its maximum. This decrease is never seen in the model.
Therefore, this decrease in the angle could be due to the elastic deformation of the brakeblocks and
this could be a cause for the dip in the measured torque, which can not be seen in the modelled torque.
However, the wave conditions can also cause this effect in a similar way as described by Davies and
Martin (1990). In this research, high added mass coefficients cause a backward horizontal force in
diagonal impacts.

Moreover, by looking at the signals of the measured andmodelled torque, it should be questioned if
the friction is modelled adequately. In the current model, Coulomb friction is used following the equation
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Figure 4.4: The relative angle between the top and bottom part and the measured and modelled frictional torque of the longest
pendulum subjected to waves focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m are shown. The time signals are given for six different aim values
for the maximum frictional torque varying from 0 Nm to 11 Nm. The relative angle shown here simulates the plastic response
of a structure. This plastic response becomes smaller with increasing frictional torque. The model has a slower increase of
the relative angle and the torque than the measured values. Two large differences are observed between the modelled and
measured torque. When 0 Nm is applied, the model shows a value of 0 Nm, while the experimental data shows a measured
torque due to the motion of the pendulum. In all the other situations a dip in the measured torque is shown, which is not shown
in the modelled torque. The time intervals that show more variability in the measured torque also show similar behaviour of the
relative angle.

𝐹𝑓 = 𝜇𝐹𝑛. The model assumes that only two different values of the friction coefficient 𝜇 occur, namely
the static and dynamic friction coefficient. This assumption leads to a constant frictional torque while a
relative motion between the top and bottom pendulum occurs. However, the measured torque slowly
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decreases in this same time interval. Therefore, the friction coefficient could depend on for example
speed or even temperature. These changes in the friction coefficient are currently not implemented in
the model, and they could be an impediment to model the experimental behaviour completely correct.

One other difference occurs between the measured and modelled torque. When 0 Nm is applied,
themodel shows a value of 0 Nmwhile the experimental data shows ameasured torque. Thismeasured
torque is created by the inertia of the disc of the friction mechanism, which exerts a torque on the torque
sensor due to its angular acceleration.

The fact that the relative angle and the torque are closely related can be seen in the variability of
both signals. The variability in the relative angle could be a result of inaccuracies of the potentiometers.
However, the variability in both signals can be related to each other as well. The time intervals that show
more variability in the measured torque also show similar behaviour of the relative angle. However, the
cause of the variability in the measured torque can at present not be explained. It can partly be a result
of variability in the waves or in the friction mechanism itself.

4.2. Energy components to distinguish between elastic and plastic
contributions

The second part of the results consists of different energy components that are present in the setup.
By presenting these components, the information about the behaviour of the pendulum is lost, but the
different lengths and wave conditions can be compared more easily. First, the elastic energy that is
absorbed by the double pendulum, which is related to elastic deformation and consists of potential and
kinetic energy, is shown in section 4.2.1. In the next section, the most important energy components
of this research are shown. The energy components related to plastic deformation, which are the
stored and dissipated energy, are shown in comparison with the elastic and total absorbed energy of
the pendulum in section 4.2.2.

4.2.1. Elastic energy of the double pendulum
Two different energy components are linked to the elastic energy of the double pendulum, namely the
kinetic and potential energy. The formulations used for the calculation of the kinetic energy for the top,
bottom and entire pendulum are given in equation 4.1. In these formulations, all values indicated with
subscript 1 correspond to the top part of the pendulum and values with a 2 to the bottom part. The
angle of the bottom part is relative to the vertical plane, as shown in figure 2.5. This definition means
that the measured values in the experiment of potentiometers 1 or 2 and 3 should be added to obtain
these values.

𝐸𝑘𝑖𝑛,𝑡𝑜𝑝 = 0.5𝑚1�̇�21ℎ21 + 0.5𝐼1�̇�21
𝐸𝑘𝑖𝑛,𝑏𝑜𝑡𝑡𝑜𝑚 = 0.5𝑚2(�̇�21𝐿21 + 2�̇�1�̇�2𝐿1ℎ2 cos(𝜃2 − 𝜃1) + �̇�22 + ℎ22) + 0.5𝐼2�̇�2
𝐸𝑘𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑘𝑖𝑛,𝑡𝑜𝑝 + 𝐸𝑘𝑖𝑛,𝑏𝑜𝑡𝑡𝑜𝑚

(4.1)

The formulations used for the calculation of the potential energy for the top, bottom and entire pendulum
are given in equation 4.2.

𝐸𝑝𝑜𝑡,𝑡𝑜𝑝 = 𝑚1𝑔ℎ1(1 − cos(𝜃1))
𝐸𝑝𝑜𝑡,𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑚2𝑔(𝐿1(1 − cos(𝜃1)) + ℎ2(1 − cos(𝜃2)))
𝐸𝑝𝑜𝑡,𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑝𝑜𝑡,𝑡𝑜𝑝 + 𝐸𝑝𝑜𝑡,𝑏𝑜𝑡𝑡𝑜𝑚

(4.2)

By combining the kinetic and potential energy, a formulation is established for the elastic energy of the
double pendulum, indicated with 𝐸𝑒𝑙 and shown in equation 4.3.

𝐸𝑒𝑙,𝑡𝑜𝑝 = 𝐸𝑘𝑖𝑛,𝑡𝑜𝑝 + 𝐸𝑝𝑜𝑡,𝑡𝑜𝑝
𝐸𝑒𝑙,𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐸𝑘𝑖𝑛,𝑏𝑜𝑡𝑡𝑜𝑚 + 𝐸𝑝𝑜𝑡,𝑏𝑜𝑡𝑡𝑜𝑚
𝐸𝑒𝑙,𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑘𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 + 𝐸𝑝𝑜𝑡,𝑡𝑜𝑡𝑎𝑙

(4.3)

The elastic energy of the top, bottom and entire pendulum is shown in figure 4.5 for four different fric
tional moments for the long pendulum in the wave focused at 28.880 m. With increasing frictional
moment, the influence of the top pendulum on the total elastic energy increases until the energy of
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Figure 4.5: The elastic energy of the top, bottom and entire pendulum for four different frictional moments for the long pendulum
in the wave focused at 28.880 m. With increasing frictional moment, the influence of the top pendulum on the total elastic
energy increases until the energy of the top and bottom pendulum is approximately equal. The model estimates an amount of
elastic energy influenced mostly by the top pendulum. For low values of the frictional torque the signal is asymmetric, caused
by the relative angle between the two parts of the pendulum. This asymmetry decreases with increasing frictional torque until
it complete vanishes for the situation of 11 Nm. This behaviour is correctly modelled, but the values are overestimated for all
cases in which frictional torque is present. In all situations, the top and bottom pendulum exchange energy, which results in the
oscillating behaviour of the elastic energy of both pendulums separately, but no oscillation in their summed signal.

the top and bottom pendulum is approximately equal. The model does not capture this behaviour and
estimates an amount of elastic energy influenced mostly by the top part of the pendulum. The energy
is overestimated by the model for all cases in which frictional torque is present. For low values of the
frictional torque, it can be seen that for both parts of the pendulum the signal is asymmetric, caused
by the relative angle between them. This asymmetry decreases with increasing frictional torque un
til it complete vanishes for the situation in which 11 Nm is applied and only a single hinge pendulum
remains. The behaviour of the signal is modelled correctly. In all situations, the top and bottom pen
dulum exchange energy, which results in the oscillating behaviour of both pendulums separately, but
no oscillation in their summed signal. In the outer position of the pendulum, the potential energy of
both pendulums is maximal. During the downward motion, the top pendulum influences the bottom
pendulum, resulting in an energy transfer from top to bottom. Therefore, the kinetic energy of the top
pendulum is lower than its potential energy, while the kinetic energy of the bottom pendulum is higher
than its potential energy. This phenomenon explains the oscillating behaviour in the separate signals.
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4.2.2. Energy related to plastic deformation
After the double pendulum is hit by the wave, there will be an angle between the top and bottom part
due to the friction mechanism, called the relative angle. The potential energy, which can be calculated
by inserting the final top and relative angle in equation 4.2, will be called the stored energy (𝐸𝑠𝑡𝑜𝑟). This
value is the amount of energy stored in the plastic deformation. A short description of this component
together with the other components is given in table 4.1.

The second energy component related to the plastic deformation is the dissipated energy in the friction
mechanism. The formulation used for the calculation of the dissipated energy is:

𝐸𝑑𝑖𝑠𝑠 = ∫ |𝑀𝑓|𝑑𝜃 (4.4)

For most cases, these two energy components support the same conclusion. When this is not the case,
the largest component will have more influence. Both components are shown in the top two diagrams
of figure 4.6 for the long pendulum in all wave conditions and figure 4.8 for all pendulums in the wave
focused at 28.880 m. As can be seen in these figures, the dissipated energy is significantly larger than
the stored energy. Therefore, it is decided that only the dissipated energy is analysed when talking
about plastic deformation in the rest of this report.

It is important to see the magnitude of the dissipated and elastic energy relative to the total absorbed
energy, which is, therefore, introduced here:

𝐸𝑎𝑏𝑠 = 𝐸𝑘𝑖𝑛 + 𝐸𝑝𝑜𝑡 + 𝐸𝑑𝑖𝑠𝑠 (4.5)

This component is the summation of the total kinetic energy, the total potential energy and the dissipated
energy. The maximum of the total absorbed energy of the system is not necessarily the moment of
either the maximum kinetic, potential or dissipated energy.

Table 4.1: A summary of the four most important energy components in the system: elastic, dissipated, stored and total absorbed
energy.

Symbol Full name Description of component

𝐸𝑒𝑙 Elastic
energy

The sum of the kinetic and potential energy is defined to be the elastic
energy, which is a measure for the elastic deformation of a structure. The
strain energy due to deformation of the pendulum is neglected, and,
therefore, this energy could also be called the energy of the rigid body.
This energy component is the energy that would stay conserved in the
system when no losses would occur during oscillation.

𝐸𝑑𝑖𝑠𝑠 Dissipated
energy

Energy is dissipated in the friction hinge in the form of heat when a
relative motion between the top and bottom pendulum occurs. The
energy that is lost due to this mechanism is a measure for the amount of
plasticity in the system.

𝐸𝑠𝑡𝑜𝑟 Stored
energy

After the double pendulum is hit by the wave, there will be an angle
between the top and bottom part of the pendulum. The potential energy
at this final angle is called the stored energy and is a measure for the final
plastic deformation. This energy component is 2  4 times smaller than
the dissipated energy and is, therefore, not used for the conclusions.

𝐸𝑎𝑏𝑠 Total
absorbed
energy

This component is the total energy transferred from the wave to the
pendulum. This is a summation of the kinetic and potential energy and
the energy dissipated in the friction hinge. This is equal to the sum of the
elastic and dissipated energy discussed above.

Figures 4.6 to 4.9 present the stored, dissipated, elastic and absorbed energy of 𝐿1 = 1.25 m (figures
4.6 and 4.7) and 𝑥focus = 28.880 m (figures 4.8 and 4.9). The stored energy will not be discussed in
detail due to the fact that is 2  4 times smaller than the energy dissipated in the friction hinge. In all
figures, the results of the experiments are shown as individual data points. On the y axis the energy is
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shown and on the x axis the maximum measured torque in the experiment or the static torque of the
model is shown. To show the behaviour of the energy as function of the frictional moment more clearly,
a coloured area around these data points is added. The outer bounds of this colour area are cubic
splines which are fitted through outer data points selected by hand. Some outlying data points, which
are selected visually, are not taken into account for this cubic spline. The average of these outer lines
is shown as well. The variability of the energy is loosely defined as the bandwidth between these outer
lines.

In general, more elastic energy is transferred to the pendulum when the frictional torque is below
3 Nm or above 4 or 5 Nm. The elastic energy reaches a minimum around frictional values of 3  4
Nm. The reducedorder model underestimates the values for the situation with 0 Nm torque, which is
due to the fact that the energy of the bottom pendulum is underestimated and out of phase with the
experimental values, leading to a lower maximum amount of energy of the top and bottom pendulum
combined. The model overestimates the situations with a frictional torque above 2 or 3 Nm. This can be
explained by the fact that for values of the frictional torque above 3 Nm, the model follows the behaviour
of the top pendulum, while the experimental values follow an average behaviour between both parts of
the pendulum. This phenomenon is caused by an overestimation of the model of the top angle and an
underestimation of the relative angle between the top and bottom pendulum.

The dissipated energy decreases with increasing frictional torque. Values of the frictional torque
above 2 Nm allow for decreasing angles between top and bottom pendulum with increasing frictional
torque, which results in a decreasing amount of dissipated energy, which is modelling plastic energy.
The dissipated energy should be equal to zero for 0 and 11 Nm, but as discussed before in section
4.1, the measured torque is influenced by the motion of the pendulum, which influences the dissipated
energy as shown in equation 4.4.

The total absorbed energy decreases with increasing frictional torque. This means that when a
structure allows for more plastic deformation, the total absorbed energy will be larger. Themodel shows
a different behaviour than the experiment. According to the model, the absorbed energy increases
with increasing torque until a frictional torque of 3 Nm. After that point the maximum absorbed energy
decreases again. This large difference is mainly caused by an underestimation of the elastic energy
for values of the frictional torque below 1.5 Nm, which is a consequence of the wave modelling.

Figures 4.7 and 4.9 show which part of the total absorbed energy goes to the motion of the double
pendulum (representing the elastic deformation) and which part is dissipated in the friction hinge (rep
resenting plastic deformation) of the pendulum. Ratio 𝐸𝑒𝑙,𝑚𝑎𝑥/𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 is approximately equal to 1 for
0 and 11 Nm and ratio 𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥/𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 is equal to 0 in these cases. This is due to the fact that no
plasticity occurs in these situations. At 0 Nm, no frictional torque is present, while at 11 Nm no relative
angle between the top and bottom pendulum occurs. Ratio 𝐸𝑒𝑙,𝑚𝑎𝑥/𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 shows a minimum around
values for the frictional torque of 3  4 Nm, while ratio 𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥/𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 is maximal in that situation.

The stored, dissipated, elastic and total absorbed energy of the long pendulum are shown in figure
4.6. When only elastic behaviour occurs, so for 0 Nm or values of the frictional torque above 8 Nm, the
experiment shows that the wave focused at 28.380m transfers themost elastic energy to the pendulum.
In the situations with values of the frictional torque below 4 Nm, the wave focused at 29.380 m causes
the most elastic energy transfer. Above this value, the wave focused at 28.380 m causes the most
elastic energy transfer.

Next to this, it can be seen that the dissipated energy is the highest for the wave focused at 29.380
m, then 28.880 m and the lowest for 28.380 m. The model does not capture this, which is explained by
the waves not being modelled correctly. It also shows the importance of the wave elevation, velocity
and acceleration in themodel. The variability in dissipated energy is the largest due to the wave focused
at 28.380 m.

Approximately the same behaviour as for the dissipated energy can be seen in the experimental
values of the maximum absorbed energy. The wave focused at 29.380 m causes the most absorbed
energy of the pendulum. The wave focused at 28.380 m causes again the most variability. For the
situations with 0 or 11 Nm torque, the absorbed energy in the wave focused at 28.380 m is the largest
since it is almost only influenced by the elastic energy of the double pendulum.

The elastic and dissipated energy shown in figure 4.6 are shown again in figure 4.7, but now they are
divided by the maximum absorbed energy for the pendulum with 𝐿1 = 1.25 m. It seems that the wave
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Figure 4.6: The stored (top left), dissipated (top right), elastic (bottom left) and total absorbed energy (bottom right) of the long
pendulum are shown. In the situations with values of the frictional torque between 1 and 4 Nm, the wave focused at 29.380 m
causes the most elastic energy transfer. In the other situations, the wave focused at 28.380 m causes the most elastic energy
transfer. The dissipated energy is the highest for the wave focused at 29.380 m, then 28.880 m and the lowest for 28.380 m. The
wave focused at 29.380 m causes the most absorbed energy by the pendulum. The absorbed energy decreases with increasing
frictional torque. The model shows a different behaviour than the experiment for the absorbed energy. According to the model,
the absorbed energy increases with increasing torque until a frictional torque of 3 Nm. After that point the maximum absorbed
energy decreases again. The wave focused at 28.380 m causes the most variability for all energy components.
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Figure 4.7: The relative transferred elastic energy to the long pendulum is shown in the left figure. The relative dissipated
energy is shown in the right figure. These figures show which part of the total absorbed energy goes to the motion of the double
pendulum and which part is dissipated in the plastic deformation of the pendulum. Ratio 𝐸𝑒𝑙,𝑚𝑎𝑥/𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 is equal to 1 for 0
and 11 Nm and 𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥/𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 is equal to 0. The wave focused at 28.380 m transfers more elastic energy to the pendulum
than the other two conditions. The model predicts this correctly. For values of the frictional torque below 5 Nm, the value of the
dissipated energy over the absorbed energy is higher for the wave focused at 28.880 m, while at higher values the wave focused
at 29.380 m creates the most energy dissipation. The model does predict the latter correctly.

focused at 28.380 m transfers more relative elastic energy to the pendulum than the other two wave
focus locations for values of the frictional torque below 4 Nm and above 7 Nm. However, the variabil
ity of the data of the wave focused at 28.880 m makes a clear interpretation difficult for values of the
frictional torque above 4 Nm. The model predicts that the wave focused at 28.380 m causes the most
relative elastic energy transfer to the pendulum. For values of the frictional torque below 5 Nm, which
means more plastic deformation and energy, the value of the dissipated energy over the absorbed
energy is higher for the wave focused at 28.880 m. At values of the frictional torque above 5 Nm, the
wave focused at 29.380 m creates the most energy dissipation. The model predicts the latter correctly.

The different lengths of the pendulum are compared in figure 4.8. The stored, dissipated, elastic and
total absorbed energy of the double pendulum are shown, but now for focus location 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880
m. The pendulum with 𝐿1 = 0.65 m has the most elastic energy transfer in situations with an applied
frictional torque, which is correctly predicted by the model. This is due to the fact that this pendulum is
lighter overall and will move more easily. The elastic energy is approximately the same for the other two
lengths of the pendulum. For the situation in which 0 Nm is applied, the values for the elastic energy
are approximately the same for all pendulum lengths, but slightly smaller for the pendulum with 𝐿1 =
0.65 m.

It can be seen that the dissipated energy of the two longest pendulums is higher than the one of
the short pendulum. However, due to the variability in the signals of the two longest pendulums, it is
difficult to see which one dissipates more energy. The model correctly predicts that the values of these
two pendulums are close together and that the dissipated energy of the short pendulum is the lowest.

The absorbed energy is the largest for 𝐿1 = 0.95 m and smallest for 𝐿1 = 0.65 m. At values of
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Figure 4.8: The stored (top left), dissipated (top right), elastic (bottom left) and total absorbed energy (bottom right) of the
pendulums subjected to the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m are shown. The pendulum with 𝐿1 = 0.65 m has the most elastic
energy transfer. It can be seen that the dissipated energy of the two longest pendulums is higher than the one of the short
pendulum. The absorbed energy is the largest for 𝐿1 = 0.95 m and smallest for 𝐿1 = 0.65 m. The absorbed energy decreases
with increasing frictional torque. The model shows a different behaviour than the experiment for the absorbed energy. According
to the model, the absorbed energy increases with increasing torque until a frictional torque of 3 Nm. After that point the maximum
absorbed energy decreases again.
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the frictional torque above 3 Nm, more spread can be observed, which makes is difficult to determine
which pendulum absorbs the most energy.
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Figure 4.9: The relative transferred elastic energy to the pendulums subjected to the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m is shown
in the left figure. The relative dissipated energy is shown in the right figure. These figures show which part of the total absorbed
energy goes to the motion of the double pendulum and which part is dissipated in the plastic deformation of the pendulum. Ratio
𝐸𝑒𝑙,𝑚𝑎𝑥/𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 is equal to 1 for 0 and 11 Nm and 𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥/𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 is equal to 0. The pendulum with 𝐿1 = 0.65 m has
the most energy transfer to the pendulum, but the least dissipated energy. The relative elastic energy transfer to the other two
pendulums is approximately equal for values of the frictional torque below 4 Nm. At values of the frictional torque below 5 Nm,
the pendulum with 𝐿1 = 1.25 m dissipates more energy relatively than the pendulum with 𝐿1 = 0.95 m, but at values of the torque
above 5 Nm, the pendulum with 𝐿1 = 0.95 m dissipates the most energy relatively. The model predicts the behaviour at values
of the frictional torque below 5 Nm correctly.

The elastic and dissipated energy shown in figure 4.8 are shown again in figure 4.9, but now they are
divided by the maximum absorbed energy for the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m. The most relative
elastic energy is transferred to the pendulum with 𝐿1 = 0.65 m, and this pendulum dissipates the least
amount of energy. This is correctly predicted by the model. At values of the frictional torque below 4
Nm, the other two pendulums have an approximately equal amount of relative elastic energy, which is
also due to the variability in both results. At higher values of the frictional torque, the pendulum with
𝐿1 = 0.95 m has the least amount of relative elastic energy. For values of the frictional torque below
5 Nm, which means more plastic deformation and energy, the value of the dissipated energy over the
absorbed energy is higher for the pendulum with 𝐿1 = 1.25 m. The model predicts this correctly. At
higher values of the frictional torque, the pendulum with 𝐿1 = 0.95 m dissipates the most energy rela
tively.

The overall behaviour of the elastic energy shows a minimum at 3 or 4 Nm, which means that the elastic
energy of the pendulum is larger for either lower or higher values of the frictional torque. The dissipated
energy decreases with increasing frictional torque when the torque is larger than 2 Nm. Values of
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the frictional torque above 2 Nm allow for decreasing angles between top and bottom pendulum with
increasing frictional torque, which results in a decreasing amount of dissipated or plastic energy. The
experimental values of the total absorbed energy decrease with increasing frictional torque. This means
that when a structure allows for more plastic deformation, the energy that will be absorbed in total is
larger.

The wave focused at 29.380 m causes the most total energy absorption. When comparing the
different pendulums, the pendulum with 𝐿1 = 0.95 m absorbs the most energy. A part of this total
absorbed energy per situation originates from the elastic energy and a part from the plastic energy.
The shortest pendulum contains the most elastic energy and the least plastic energy, while the longest
pendulum, in which the stiffness (𝑘 = 𝑚𝑔ℎ) of the bottom and top pendulum differ most, contains the
most plastic energy for values of the frictional torque below 5 Nm. For higher values of the frictional
torque, the pendulum with medium length has the most relative energy dissipation. When looking at
the different focus locations, it seems that the wave focused at 28.380 m transfers more relative elastic
energy to the pendulum than the other two wave focus locations for values of the frictional torque
below 4 Nm and above 7 Nm. However, the variability of the data of the wave focused at 28.880
m makes a clear interpretation difficult for values of the frictional torque above 4 Nm. For values
of the frictional torque below 5 Nm, the value of the relative dissipated energy is higher for the wave
focused at 28.880 m. At higher values of the frictional torque, the wave focused at 29.380 m creates the
most energy dissipation. All energy components show more variability for the wave focused furthest
away from the pendulum. This observation could mean that more air that is trapped in the water
leads to more variability. The amount of variability in the energy differs as well over the situations with
different amounts of frictional torque, which models the amount of plasticity. However, these variations
in variability do not show a pattern, which makes it not possible to draw a conclusion for the relation
between variability and plasticity.

The reducedorder model can predict the behaviour of the elastic and plastic energy transfer. It can,
however, not predict the behaviour of the total absorbed energy accurately. According to the model, the
absorbed energy increases with increasing torque until a frictional torque of 3 Nm. After that point the
maximum absorbed energy decreases again. This large difference between the experiment and the
model is mainly due to the fact that the elastic energy is underestimated at values of the frictional torque
lower than 1.5 Nm. The model can predict the differences that occur between the different lengths of
the pendulum. For the different waves it can not always correctly predict the differences in transferred
energy. Only small deformations of the free surface are assumed in the current model, which is not
sufficient to represent the waves in the experiment.



5
Conclusions & Recommendations

After introducing the problem in chapter 1, giving the steps taken towards the solution in chapters 2 and
3, and presenting the results in chapter 4, this chapter gives the conclusions and recommendations.
First, the conclusions on the research question and the subquestions presented in chapter 1 are shown
in section 5.1. After that, the recommendations for further research are given in section 5.2.

5.1. Conclusions
Ship and offshore structures can deform plastically due to a hydrodynamic impact, which can lead to
structural failure if the load is too high. In existing literature a clear gap is identified, which shows that
a focused approach to investigate the influence of plasticity on fluidstructure interaction (FSI) does
not exist. To investigate this influence, we proposed to use a pendulum with few degrees of freedom
and known properties, so that the emphasis of the experiment can be on FSI. We answer the following
question with an experiment and reducedorder model:

What is the influence of plasticity on the behaviour of a pendulum in breaking waves?

Two hypotheses to this main question were formed in chapter 1.

1. The influence of the plastic deformation of the pendulum causes energy absorption. It is expected
that situations with a higher resistance to plastic deformation absorb less plastic energy when
loaded with the same wave. Next to this, pendulums with a higher stiffness are expected to
absorb more energy while plastic deformation occurs.

2. Variability in the transferred energy could indicate the importance and influence of the plasticity on
the behaviour. However, the variability could also be a result of the different amounts of trapped
air in the breaking wave.

In order to answer the main question and to test the two hypotheses, an experimental setup is designed.
Three different arrangements of a double pendulum with different properties are subjected to three
focused waves with their focus location at three different locations. These focus locations are 0.5,
1.0 and 1.5 m in front of the pendulum. The pendulum has two hinges of which the bottom hinge
incorporates frictional torque, which simulates the plasticity in the structure. A reducedorder model
is constructed to be able to predict the pendulum behaviour. The steps described here are used to
answer the subquestions which form a support to the research goal. The conclusion to each sub
question formulated in chapter 1 is presented.

1. What are the typical conditions when breaking waves are formed? How can these waves
be modelled?
Breaking waves are formed when the ratio of height over length, also known as the steepness of
the wave, becomes too large. The criterium for this is dependent on the water depth. Different
forms of breaking waves can be observed, namely the slosh impact, flipthrough impact, air pocket
impact and aerated impact.
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In an experiment, a focused wave can lead to a breaking wave. A focused wave is built up of
different regular wave components that are in phase at the focus location. Using the information
that the envelope travels with the group velocity and the wave inside the envelope follow the stan
dard wave equation 𝜂 = 𝐴𝑐𝑜𝑠(𝑘𝑥 −𝜔𝑡), the signal required at the wavemaker can be calculated.
When this focused wave is sufficiently steep, it will generate a breaking wave.

In a reducedorder model, an analytical formulation for the wave exerted by a breaking wave
should be found. No research on an analytical formulation for a breaking wave on a horizontal
cylinder is found in literature. Therefore, a formulation for a plunging wave on a vertical pile, which
is based on the frontal area of the wave, is used. The frontal area of this wave can be based on a
simulation that solves the potential equation. The fact that small deformations of the free surface
are assumed, makes it impossible to directly simulate a breaking wave. When using these wave
characteristics, the elastic response of the pendulum is overestimated and the plastic response
underestimated.

2. How can a simple pendulum be adjusted to allow plastic deformation? How can this be
implemented in a reducedorder or experimental approach?
To understand how a simple pendulum can be adjusted to allow plastic deformation, a method of
mimicking or simulating plastic deformation should be found. In this way, no structure is damaged,
which makes the experiment more repeatable. The Yield Point Theory is a plasticity theory that
assumes a certain shear stress is needed to initiate the motion of the dislocations in the material.
After that point, a lower stress is required for dislocation movement. The mechanical approach of
approximating this plasticity model is by using a friction model. When this friction is modelled as
the Coulomb friction, the friction force is constant. The formulation for this is equal to 𝐹𝑓 = 𝜇𝐹𝑛.
This formulation means that the friction force is equal to a coefficient of friction times a force
normal to the two frictional surfaces. When a static and dynamic friction coefficient are taken into
account, the friction represents the Yield Point Theory.

A simple pendulum with only one hinge can simulate either elastic or plastic behaviour, but
not both. Therefore, a second hinge is required in the pendulum setup. The top hinge is a
normal hinge without additional friction, while the bottom hinge is a hinge in which friction can
be applied to model plasticity. The amount of frictional torque can be modified by adjusting the
normal force that is applied to the friction mechanism. The most extensive range of values for the
frictional torque that leads to plastic deformation can be found when the top part of the pendulum
is heavier and longer than the bottom part. Next to this, the centre of gravity of the top part should
be low, while the centre of gravity of the bottom part should be high.

The double pendulum with one regular and one friction hinge can be modelled using La
grange’s equation. In the reducedorder model, the frictional torque is assumed to be smaller
than the static friction when no motion is induced, but equal to the dynamic friction when relative
motion between the top and bottom pendulum occurs.

3. When measuring the energy transfer from the waves to the pendulum, which energy com
ponents can indicate the influence of plasticity in the result?
The different energy components that are used for analysing the energy transfer from the wave to
the pendulum are the kinetic, potential, stored, dissipated and total absorbed energy. The stored
energy is the potential energy of the pendulum calculated with the final top and bottom angle.
The dissipated energy during the plastic deformation is equal to the integration of the torque over
the relative angle between the top and bottom pendulum. A summation of the potential, kinetic
and dissipated energy is assumed to be a suitable measure for the total energy transferred from
the wave to the pendulum and is called the total absorbed energy. The kinetic and potential en
ergy are related to the elastic deformation of the pendulum. The stored and dissipated energy
are related to plastic deformation. Since the dissipated energy is larger than the stored energy,
analysing the dissipated energy and comparing it to the total absorbed energy in the pendulum
can give a measure of how much the influence of plasticity is in every examined situation.
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The conclusion to the report will be mainly based on the experimental results. The capacity of the
model to estimate these conclusions will be evaluated as well. In order to answer the main question,
the hypotheses stated above are addressed again, taking the answers to the subquestions into ac
count.

The first hypothesis focuses on plastic deformation with respect to resistance to plasticity and stiffness
of the pendulum. The results show that situations with a higher value of the frictional torque show less
plastic deformation. The stiffness of the pendulum increases with increasing length. Therefore, the
results will be analysed concerning the values of the frictional torque and length of the pendulums.

The first aspect of the behaviour that is analysed is the motion of the pendulum, which, in our
approach, models the deformation of a structure. Compared to the situation in which sufficient friction
is applied to create a single hinge pendulum, situations with less friction have a smaller response of the
angle of the top part of the pendulum. The lower the value of the applied friction, the larger the relative
angle between the top and bottom pendulum is. These results can be translated into the analysis of
different energy components that make it possible to distinguish between elastic and plastic behaviour.
Compared to the single hinge pendulum, the elastic energy of the pendulum decreases with decreasing
values of the frictional torque. However, at values of the frictional torque below 3 Nm, the inertia of the
pendulum influences the motion of the pendulum and the values for the elastic energy increase again.
The dissipated energy in the friction hinge, modelling plastic energy, decreases with increasing frictional
torque when the torque is larger than 2 Nm. Themost surprising influence of FSI on the behaviour of the
pendulum can be seen in the energy transferred from the wave to the structure, called ‘total absorbed’
energy. The total absorbed energy decreases with increasing frictional torque. This means that when
a structure allows for more plastic deformation, the energy that will absorbed in total is larger.

The wave focused at 29.380 m causes the most total energy absorption. When comparing the
different pendulums, the pendulum with 𝐿1 = 0.95 m absorbs the most energy. A part of this total
absorbed energy per situation originates from the elastic energy and a part from the plastic energy.
The shortest pendulum contains the most elastic energy and the least plastic energy, while the longest
pendulum, in which the stiffness (𝑘 = 𝑚𝑔ℎ) of the bottom and top pendulum differ most, contains the
most plastic energy for values of the frictional torque below 5 Nm. For higher values of the frictional
torque, the pendulum with medium length has the most relative energy dissipation. When looking at
the different focus locations, it seems that the wave focused at 28.380 m transfers more relative elastic
energy to the pendulum than the other two wave focus locations for values of the frictional torque below
4 Nm and above 7 Nm. However, the variability of the data of the wave focused at 28.880 m makes
a clear interpretation difficult for values of the frictional torque above 4 Nm. For values of the frictional
torque below 5 Nm, the value of the relative dissipated energy is higher for the wave focused at 28.880
m. At higher values of the frictional torque, the wave focused at 29.380 m creates the most energy
dissipation.

A reducedorder model is constructed to help explain the results. It can predict the behaviour of
the elastic and plastic energy transfer. It can, however, not predict the behaviour of the total absorbed
energy accurately. According to the model, the absorbed energy increases with increasing torque until
a frictional torque of 3 Nm. After that point the maximum absorbed energy decreases again. This large
difference between the experiment and the model is mainly due to the fact that the elastic energy is
underestimated at values of the frictional torque lower than 1.5 Nm. The model can predict the dif
ferences that occur between the different lengths of the pendulum. For the different waves it can not
always correctly predict the differences in transferred energy. Only small deformations of the free sur
face are assumed in the current model, which is not sufficient to represent the waves in the experiment.

The second hypothesis focuses on variability in the results. All energy components of the double pen
dulum show more variability for the wave focused furthest away from the pendulum. This observation
could mean that more air that is trapped in the water leads to more variability. The amount of variability
in the energy differs as well over the situations with different amounts of frictional torque, which models
the amount of plasticity. However, these variations in variability do not show a pattern, which makes it
not possible to draw a conclusion for the relation between variability and plasticity. The model can not
show variability and does, therefore, not contribute when addressing the second hypothesis.
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5.2. Recommendations
This section presents the recommendations for further research.

1. The most important recommendation is based on the way the wave impact is incorporated into
the reducedorder model. In the current wave model Wavbas, only linear effects are taken into
account. This restrains the model to model breaking waves, which results in different impact
conditions. The current impact conditions overestimate the elastic behaviour and underestimate
the plastic behaviour and can not distinguish the different waves correctly. An example of a
numerical code that can describe breaking waves accurately and could be used as a starting
point for further calculations is given by Peregrine et al. (2005). In this research, they use a
method that uses irrotational incompressible inviscid flow to compute a breaking wave. This would
include convective acceleration terms in the equations used for the current calculations. Themost
severe case that can be modelled according to Peregrine et al. (2005) is between a sloshing and
air pocket impact. When the pressures become large, compressibility and the interaction with
air should be incorporated as well. Using irrotational incompressible inviscid flow, wave breaking
can be simulated, likely resulting in a better prediction of the differences in pendulum behaviour
between the three focus locations. This is expected to result in a better agreement between the
model and experiment.

2. For this research, the choice is made to use a wave with a single impact on the pendulum. Large
or extreme wave impacts are directly related to the Ultimate Limit State, which is the basis for this
choice. However, now that the feasibility of this pendulum with a friction hinge is tested on this
single wave impact, different waves could be applied. Monochromatic waves causing repeated
impacts on the current pendulum could be a perfect addition to this research. The current setup
and model would then be a model for strain hardening as well. The vertical distance between the
cylinder and the friction hinge is reduced after plastic deformation due to the first wave impact.
Assuming that a wave only exerts a horizontal force, the moment on the plastic hinge of a second
wave impact becomes smaller after this initial plastic deformation. When strain hardening occurs,
it is more difficult to deform the material plastically when loaded a second time. The reduction in
the applied moment simulates the behaviour of strain hardening appropriately.

3. This recommendation is a summary of adjustments to the experimental setup. The first one is
based on the results of the angles of the pendulum. When the behaviour is analysed, horizontal
parts in the graph were observed. The potentiometers introduce these horizontal parts due to their
minimal resolution. This phenomenon requires the use of a fit function to obtain the derivatives of
the signals, which introduces more inaccuracies. Since the angles of the top part of the pendulum
are approximately 100 times smaller than the range of the sensor, the problem strikes most at
these angles. Therefore, it is recommended to choose potentiometers that have a range of ten
degrees if these experiments would be repeated.

Another recommendation is based on the details of the friction mechanism. In this research
standard rubber brakes of a bike are used as brakeblocks on the disc of the friction mechanism.
These rubber blocks are slightly deformable, and after a while, a trace is left on the disc. In order
to prevent or change this, other materials for the disc or the brakeblocks could be chosen. This
change would cause the friction mechanism to be repeatable in the long term as well. The rubber
brakeblocks fall into the organic category. In order to obtain different behaviour, another material
from that category could be chosen, such as glass or Kevlar. When a more thorough change is
desired, metal or ceramic materials could be used (Bridgestone, 2020).

4. An addition to the energy analysis done in this research would be a complete energy balance of
the environment around the pendulum. This is not done in this research due to difficult to model
phenomena related to breaking waves. However, this energy balance could give insight in other
energy components that are not shown in this research. A starting point could be the research of
Perlin et al. (2013) in which the implementation of an eddy viscosity model shows good results
regarding energy dissipation in waves.
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A
Drawings and pictures of experimental

setup
In this appendix, the drawings and pictures of the three pendulum arrangements are shown in section
A.1. Then, in section A.2, pictures of details of the pendulum and process are shown.

A.1. Overview of three arrangements
The overview of the three arrangements is given from long to short, so, therefore, the pendulum with 𝐿1
= 1.25 m is shown in section A.1.1, the pendulum with 𝐿1 = 0.95 m in section A.1.2 and the pendulum
with 𝐿1 = 0.65 m in section A.1.3.

A.1.1. Drawing and picture of the long pendulum
The schematic overview of the long pendulum is shown in figure A.1. Then, a picture of the pendulum
connected to the towing carriage is shown in figure A.2.
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Figure A.1: Schematic overview of the long pendulum. In this arrangement, the length of the top part of the pendulum is 1.25 m,
and the length of the bottom part is 0.4 m. Drawing by Jasper den Ouden.
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Figure A.2: Picture of the long pendulum. In this arrange
ment, the length of the top part of the pendulum is 1.25 m,
and the length of the bottom part is 0.4 m.

Figure A.3: Picture of the medium pendulum. In this ar
rangement, the length of the top part of the pendulum is
0.95 m, and the length of the bottom part is 0.4 m.

Figure A.4: Picture of the short pendulum. In this arrangement, the length of the top part of the pendulum is 0.65 m, and the
length of the bottom part is 0.4 m.
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A.1.2. Drawing and picture of the medium pendulum
The schematic overview of the medium pendulum is shown in figure A.5. A picture of the pendulum
connected to the towing carriage is shown in figure A.3.
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Figure A.5: Schematic overview of the medium pendulum. In this arrangement, the length of the top part of the pendulum is 0.95
m, and the length of the bottom part is 0.4 m. Drawing by Jasper den Ouden.
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Figure A.6: Schematic overview of the short pendulum. In this arrangement, the length of the top part of the pendulum is 0.65
m, and the length of the bottom part is 0.4 m. Drawing by Jasper den Ouden.
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A.1.3. Drawing and picture of the short pendulum
The schematic overview of the short pendulum is shown in figure A.6. A picture of the pendulum
connected to the towing carriage is shown in figure A.4.

A.2. Details of pendulum and process
The connection of the three potentiometers is shown in figures A.7 (potentiometers 1 and 2) and A.8
(potentiometer 3). Next to this, a close up of the friction mechanism is shown in figure A.9. The red
sensor is the torque sensor which is connected between the disc and the axis of the bottom hinge. In
the friction mechanism, a hinge is incorporated to adjust for possible small horizontal deviations of the
disc.

Figure A.7: Potentiometers 1 and 2 are connected to the top hinges in order to measure the angle of the top part of the pendulum.

Figure A.8: Potentiometer 3 is connected to the axis be
tween the top and bottom pendulum to measure the rela
tive angle between the top and bottom pendulum.

Figure A.9: Close up of the friction mechanism. In the
friction mechanism, a hinge is incorporated to adjust for
possible small horizontal deviations of the disc.
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Before starting the experiments, it is made sure that the pendulum is orientated vertical when it is
unloaded. This orientation is checked using a laser with a spirit level included. This check is shown
on the left of figure A.10. Next to this, the pendulum should be perpendicular to the towing tank. This
orientation is examined using a large Lsquare, made of aluminium profiles, which is aligned with the
rails of the towing tank. This Lsquare is shown on the right of figure A.10.

Figure A.10: The pendulum is orientated vertical when it is unloaded (left). This check is done using a laser with an included
spirit level. The pendulum is perpendicular to the towing tank (right). This orientation is examined using a large Lsquare, made
of aluminium profiles, which is aligned with the rails of the towing tank.





B
Detailed overview of results

In this appendix, all the results are summarised for each pendulum in each wave. The maximum values
of the wave height, top angle of the pendulum and elastic, dissipated and total absorbed energy are
given. For the relative angle between the top and bottom pendulum, the value after the pendulum has
stopped oscillating is given. For each variable, the median, 25% and 75% quartiles and the minimum
and maximum measured values are given, and in the last column, the value calculated by the model is
given. First, the results of the long pendulum are shown in section B.1, then of the medium pendulum
in section B.2 and of the short pendulum in section B.3.
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B.1. Long pendulum 𝐿1 = 1.25 m
The detailed results of the long pendulum in all three waves are shown in this section. In table B.1
the results of the wave focused at 28.380 m are shown, in table B.2 the results of the wave focused at
28.880 m and in table B.3 the results of the wave focused at 29.380 m.

Table B.1: The detailed results for the long pendulum in the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.380 m. The median, 25% (Q1) and 75%
(Q3) quartiles, and the minimum and maximum measured values are shown. The last column shows value calculated by the
model. All these values are given for the maximum values of the wave height, top angle of the pendulum and elastic, dissipated
and total absorbed energy and the final value of the relative angle.

𝑀𝑎𝑖𝑚 (Nm) Minimum Q1 Median Q3 Maximum Model

𝜂𝑚𝑎𝑥 0 127.679 129.651 135.733 137.550 137.620 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 0 3.001 3.017 3.033 3.074 3.082 1.910 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 0 40.054 40.444 40.849 41.368 41.394 20.214 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 0 1.416 1.446 1.484 1.515 1.519 0.417 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 0 0.126 0.126 0.128 0.132 0.132 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 0 1.443 1.473 1.512 1.544 1.548 0.417 J

𝜂𝑚𝑎𝑥 2 134.449 134.730 139.257 130.554 142.462 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 2 1.379 1.490 1.602 1.640 1.675 2.585 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 2 8.483 9.676 14.371 15.185 15.276 8.233 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 2 0.315 0.322 0.373 0.380 0.381 0.353 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 2 0.362 0.371 0.389 0.405 0.414 0.233 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 2 0.624 0.632 0.732 0.747 0.754 0.586 J

𝜂𝑚𝑎𝑥 3 131.805 132.951 139.478 128.519 140.537 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 3 1.949 1.951 2.062 2.177 2.229 3.138 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 3 6.445 7.181 8.900 9.309 9.588 4.207 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 3 0.298 0.303 0.318 0.348 0.353 0.422 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 3 0.329 0.370 0.461 0.467 0.467 0.178 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 3 0.574 0.637 0.744 0.786 0.798 0.600 J

𝜂𝑚𝑎𝑥 4 132.739 132.910 147.158 135.111 154.528 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 4 2.204 2.224 2.320 2.336 2.352 3.494 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 4 4.422 4.801 5.892 6.080 6.259 1.721 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 4 0.292 0.306 0.322 0.322 0.323 0.489 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 4 0.279 0.315 0.354 0.366 0.368 0.097 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 4 0.565 0.608 0.658 0.676 0.677 0.586 J

𝜂𝑚𝑎𝑥 5 130.379 135.028 140.696 135.638 147.193 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 5 2.208 2.260 2.328 2.387 2.430 3.630 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 5 3.293 3.398 4.234 4.604 4.784 0.752 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 5 0.299 0.299 0.314 0.322 0.322 0.519 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 5 0.235 0.249 0.273 0.307 0.341 0.053 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 5 0.550 0.552 0.557 0.595 0.629 0.572 J

𝜂𝑚𝑎𝑥 11 129.261 132.198 139.773 129.765 139.930 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 11 3.071 3.100 3.214 3.416 3.596 3.747 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 11 0.002 0.000 0.004 0.089 0.174 0.000 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 11 0.438 0.440 0.460 0.515 0.564 0.547 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 11 0.000 0.001 0.006 0.017 0.018 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 11 0.456 0.457 0.466 0.516 0.565 0.547 J
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Table B.2: The detailed results for the long pendulum in the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m. The median, 25% (Q1) and 75%
(Q3) quartiles, and the minimum and maximum measured values are shown. The last column shows value calculated by the
model. All these values are given for the maximum values of the wave height, top angle of the pendulum and elastic, dissipated
and total absorbed energy and the final value of the relative angle.

𝑀𝑎𝑖𝑚 (Nm) Minimum Q1 Median Q3 Maximum Model

𝜂𝑚𝑎𝑥 0 166.382 166.688 171.155 173.032 173.354 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 0 2.076 2.083 2.119 2.214 2.309 1.971 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 0 31.772 31.775 32.027 33.167 33.657 20.909 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 0 0.877 0.878 0.894 0.956 0.986 0.446 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 0 0.090 0.092 0.097 0.104 0.105 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 0 0.893 0.895 0.911 0.975 1.004 0.446 J

𝜂𝑚𝑎𝑥 2 121.628 143.308 168.100 172.163 173.985 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 2 1.051 1.146 1.244 1.273 1.296 2.572 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 2 8.291 9.674 11.788 12.067 12.342 9.083 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 2 0.325 0.337 0.357 0.365 0.367 0.368 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 2 0.520 0.524 0.548 0.564 0.566 0.257 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 2 0.736 0.739 0.751 0.763 0.766 0.625 J

𝜂𝑚𝑎𝑥 3 119.444 144.060 173.080 169.124 175.076 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 3 1.332 1.370 1.594 1.603 1.610 3.114 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 3 5.717 6.642 7.736 8.233 8.542 5.044 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 3 0.271 0.274 0.286 0.297 0.304 0.429 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 3 0.449 0.468 0.503 0.512 0.516 0.214 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 3 0.631 0.650 0.682 0.692 0.697 0.643 J

𝜂𝑚𝑎𝑥 4 105.269 135.472 170.978 171.078 171.600 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 4 1.604 1.615 1.688 1.848 1.932 3.494 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 4 3.681 4.512 5.894 6.360 6.819 2.343 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 4 0.261 0.263 0.266 0.291 0.315 0.498 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 4 0.295 0.351 0.444 0.466 0.484 0.132 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 4 0.553 0.579 0.645 0.662 0.674 0.630 J

𝜂𝑚𝑎𝑥 5 140.034 149.482 166.068 155.115 168.305 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 5 1.868 1.909 2.002 2.161 2.204 3.676 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 5 2.578 2.655 2.952 4.041 4.787 1.067 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 5 0.299 0.301 0.304 0.310 0.312 0.537 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 5 0.202 0.207 0.218 0.327 0.387 0.075 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 5 0.487 0.491 0.500 0.556 0.607 0.613 J

𝜂𝑚𝑎𝑥 11 156.646 158.671 163.387 142.873 164.509 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 11 2.687 2.762 2.918 2.921 2.922 3.839 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 11 0.002 0.001 0.000 0.001 0.002 0.000 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 11 0.401 0.403 0.417 0.424 0.424 0.576 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 11 0.007 0.011 0.018 0.024 0.028 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 11 0.409 0.418 0.431 0.438 0.442 0.576 J
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Table B.3: The detailed results for the long pendulum in the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 29.380 m. The median, 25% (Q1) and 75%
(Q3) quartiles, and the minimum and maximum measured values are shown. The last column shows value calculated by the
model. All these values are given for the maximum values of the wave height, top angle of the pendulum and elastic, dissipated
and total absorbed energy and the final value of the relative angle.

𝑀𝑎𝑖𝑚 (Nm) Minimum Q1 Median Q3 Maximum Model

𝜂𝑚𝑎𝑥 0 158.602 162.119 165.952 168.093 169.918 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 0 2.300 2.303 2.308 2.312 2.314 1.802 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 0 34.359 34.438 34.668 34.846 34.871 19.297 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 0 1.020 1.026 1.041 1.051 1.053 0.377 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 0 0.110 0.111 0.115 0.117 0.118 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 0 1.039 1.045 1.060 1.071 1.071 0.377 J

𝜂𝑚𝑎𝑥 2 158.396 158.559 159.514 160.953 161.599 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 2 1.248 1.249 1.251 1.279 1.308 2.376 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 2 14.355 14.545 14.825 15.370 15.825 8.084 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 2 0.415 0.417 0.423 0.440 0.455 0.310 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 2 0.653 0.655 0.659 0.670 0.679 0.229 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 2 0.944 0.965 0.987 0.990 0.993 0.539 J

𝜂𝑚𝑎𝑥 3 158.270 160.137 163.242 164.506 164.534 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 3 1.409 1.409 1.439 1.468 1.468 2.866 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 3 11.794 11.885 12.148 12.515 12.708 4.423 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 3 0.351 0.354 0.358 0.363 0.366 0.362 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 3 0.582 0.583 0.591 0.607 0.616 0.188 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 3 0.853 0.853 0.859 0.870 0.876 0.550 J

𝜂𝑚𝑎𝑥 4 158.414 159.035 160.895 162.214 162.294 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 4 1.768 1.787 1.827 1.865 1.883 3.200 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 4 9.026 9.119 9.214 9.305 9.394 2.051 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 4 0.309 0.313 0.325 0.345 0.358 0.418 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 4 0.542 0.544 0.550 0.562 0.572 0.116 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 4 0.830 0.833 0.836 0.847 0.856 0.534 J

𝜂𝑚𝑎𝑥 5 157.349 159.308 161.871 162.901 163.326 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 5 1.783 1.840 1.923 1.950 1.950 3.356 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 5 6.079 6.169 6.449 6.803 6.968 0.966 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 5 0.297 0.298 0.304 0.308 0.308 0.450 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 5 0.437 0.439 0.448 0.460 0.465 0.068 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 5 0.696 0.698 0.704 0.723 0.737 0.518 J

𝜂𝑚𝑎𝑥 6 162.931 163.954 165.519 166.162 166.263 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 6 1.961 1.975 2.022 2.121 2.186 3.421 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 6 3.507 3.870 4.699 5.252 5.339 0.506 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 6 0.298 0.304 0.310 0.313 0.316 0.464 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 6 0.309 0.334 0.384 0.413 0.417 0.043 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 6 0.608 0.626 0.668 0.701 0.711 0.506 J

𝜂𝑚𝑎𝑥 11 154.025 154.566 155.765 157.455 158.487 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 11 2.562 2.562 2.563 2.573 2.584 3.510 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 11 0.002 0.000 0.004 0.096 0.186 0.000 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 11 0.392 0.398 0.407 0.412 0.412 0.484 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 11 0.016 0.021 0.028 0.035 0.040 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 11 0.423 0.425 0.427 0.430 0.431 0.484 J
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B.2. Medium pendulum 𝐿1 = 0.95 m
The detailed results of the medium pendulum in all three waves are shown in this section. In table B.4
the results of the wave focused at 28.380 m are shown, in table B.5 the results of the wave focused at
28.880 m and in table B.6 the results of the wave focused at 29.380 m.

Table B.4: The detailed results for the medium pendulum in the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.380 m. The median, 25% (Q1)
and 75% (Q3) quartiles, and the minimum and maximum measured values are shown. The last column shows value calculated
by the model. All these values are given for the maximum values of the wave height, top angle of the pendulum and elastic,
dissipated and total absorbed energy and the final value of the relative angle.

𝑀𝑎𝑖𝑚 (Nm) Minimum Q1 Median Q3 Maximum Model

𝜂𝑚𝑎𝑥 0 131.816 144.960 150.241 150.505 162.215 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 0 3.728 3.732 3.867 4.000 4.001 2.445 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 0 40.107 40.109 41.209 41.691 42.637 20.197 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 0 1.413 1.428 1.499 1.550 1.607 0.417 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 0 0.089 0.091 0.094 0.101 0.118 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 0 1.434 1.449 1.521 1.576 1.630 0.417 J

𝜂𝑚𝑎𝑥 2 129.543 140.733 144.110 152.100 148.718 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 2 1.774 1.865 1.868 1.869 1.977 2.761 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 2 11.781 11.787 14.179 15.276 15.460 7.971 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 2 0.320 0.327 0.378 0.403 0.433 0.365 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 2 0.385 0.428 0.483 0.488 0.490 0.225 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 2 0.683 0.741 0.863 0.880 0.910 0.590 J

𝜂𝑚𝑎𝑥 3 109.463 116.637 143.222 140.388 145.318 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 3 2.213 2.216 2.224 2.301 2.317 3.365 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 3 7.788 8.103 8.108 8.285 8.287 3.818 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 3 0.313 0.317 0.326 0.329 0.333 0.446 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 3 0.381 0.395 0.396 0.396 0.406 0.162 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 3 0.678 0.685 0.702 0.711 0.721 0.608 J

𝜂𝑚𝑎𝑥 4 124.168 136.837 141.656 148.264 153.212 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 4 2.260 2.378 2.439 2.463 2.577 3.763 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 4 3.707 4.767 5.529 6.633 7.006 1.452 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 4 0.302 0.305 0.312 0.338 0.341 0.517 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 4 0.240 0.274 0.306 0.375 0.400 0.082 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 4 0.553 0.566 0.601 0.697 0.718 0.599 J

𝜂𝑚𝑎𝑥 5 122.812 131.285 140.104 157.371 151.728 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 5 2.478 2.486 2.578 2.585 2.737 3.915 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 5 2.953 3.690 4.049 4.056 4.416 0.599 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 5 0.327 0.336 0.341 0.345 0.352 0.545 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 5 0.209 0.243 0.257 0.267 0.282 0.042 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 5 0.554 0.578 0.591 0.602 0.614 0.588 J

𝜂𝑚𝑎𝑥 11 108.965 116.737 135.908 133.120 140.572 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 11 3.103 3.204 3.249 3.292 3.397 4.069 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 11 0.003 0.003 0.000 0.001 0.003 0.000 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 11 0.406 0.431 0.437 0.442 0.448 0.570 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 11 0.009 0.010 0.021 0.030 0.030 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 11 0.439 0.447 0.455 0.460 0.471 0.570 J
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Table B.5: The detailed results for the medium pendulum in the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m. The median, 25% (Q1)
and 75% (Q3) quartiles, and the minimum and maximum measured values are shown. The last column shows value calculated
by the model. All these values are given for the maximum values of the wave height, top angle of the pendulum and elastic,
dissipated and total absorbed energy and the final value of the relative angle.

𝑀𝑎𝑖𝑚 (Nm) Minimum Q1 Median Q3 Maximum Model

𝜂𝑚𝑎𝑥 0 157.774 170.373 174.516 175.263 178.038 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 0 2.578 2.580 2.707 2.800 3.330 2.675 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 0 32.361 32.387 33.037 33.353 37.559 20.891 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 0 0.897 0.901 0.945 0.966 1.281 0.446 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 0 0.055 0.056 0.058 0.070 0.082 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 0 0.911 0.915 0.963 0.987 1.303 0.446 J

𝜂𝑚𝑎𝑥 2 155.168 159.229 163.094 171.365 167.813 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 2 1.510 1.513 1.520 1.522 1.667 2.977 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 2 10.490 11.215 11.783 12.534 14.161 8.807 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 2 0.296 0.300 0.349 0.353 0.365 0.379 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 2 0.498 0.515 0.528 0.549 0.566 0.249 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 2 0.740 0.756 0.804 0.842 0.877 0.628 J

𝜂𝑚𝑎𝑥 3 157.801 158.082 167.583 171.975 172.273 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 3 1.667 1.690 1.722 1.782 2.016 3.650 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 3 7.736 8.476 8.844 9.222 10.123 4.648 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 3 0.239 0.245 0.285 0.301 0.311 0.452 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 3 0.400 0.426 0.445 0.471 0.483 0.197 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 3 0.643 0.670 0.706 0.714 0.721 0.649 J

𝜂𝑚𝑎𝑥 4 161.584 171.221 173.073 174.192 175.464 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 4 1.988 2.017 2.035 2.050 2.379 4.108 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 4 5.177 6.633 7.182 7.373 8.101 1.961 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 4 0.268 0.270 0.290 0.303 0.337 0.530 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 4 0.334 0.374 0.388 0.408 0.428 0.111 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 4 0.636 0.636 0.648 0.665 0.665 0.641 J

𝜂𝑚𝑎𝑥 5 145.094 154.816 169.944 173.816 175.489 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 5 2.298 2.454 2.524 2.651 2.664 4.289 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 5 2.393 2.584 3.315 4.057 4.623 0.866 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 5 0.321 0.321 0.342 0.355 0.360 0.566 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 5 0.179 0.187 0.238 0.314 0.316 0.061 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 5 0.519 0.532 0.569 0.626 0.643 0.627 J

𝜂𝑚𝑎𝑥 11 140.999 158.405 169.526 173.816 173.233 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 11 2.857 3.044 3.091 3.162 3.176 4.449 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 11 0.001 0.001 0.002 0.004 0.009 0.000 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 11 0.433 0.437 0.437 0.441 0.452 0.601 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 11 0.013 0.017 0.017 0.017 0.018 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 11 0.446 0.453 0.454 0.457 0.469 0.601 J
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Table B.6: The detailed results for the medium pendulum in the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 29.380 m. The median, 25% (Q1)
and 75% (Q3) quartiles, and the minimum and maximum measured values are shown. The last column shows value calculated
by the model. All these values are given for the maximum values of the wave height, top angle of the pendulum and elastic,
dissipated and total absorbed energy and the final value of the relative angle.

𝑀𝑎𝑖𝑚 (Nm) Minimum Q1 Median Q3 Maximum Model

𝜂𝑚𝑎𝑥 0 159.599 165.085 166.663 167.644 171.926 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 0 2.930 2.932 2.943 3.090 3.109 2.445 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 0 34.908 35.695 35.702 36.246 36.438 19.278 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 0 1.040 1.082 1.093 1.153 1.158 0.377 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 0 0.068 0.070 0.073 0.075 0.079 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 0 1.059 1.102 1.114 1.172 1.182 0.377 J

𝜂𝑚𝑎𝑥 2 157.693 158.565 161.773 163.064 166.212 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 2 1.514 1.523 1.601 1.608 1.651 2.761 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 2 16.922 16.937 18.215 18.770 19.432 7.798 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 2 0.485 0.488 0.507 0.524 0.570 0.320 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 2 0.693 0.704 0.707 0.721 0.725 0.220 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 2 1.128 1.130 1.166 1.190 1.194 0.541 J

𝜂𝑚𝑎𝑥 3 159.413 161.093 164.998 166.096 166.132 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 3 1.666 1.749 1.866 1.869 2.024 3.365 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 3 13.630 13.990 14.164 14.543 14.724 4.047 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 3 0.410 0.413 0.432 0.440 0.444 0.382 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 3 0.628 0.633 0.649 0.675 0.694 0.172 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 3 0.981 0.981 1.015 1.066 1.104 0.554 J

𝜂𝑚𝑎𝑥 4 156.765 159.185 165.037 166.750 167.853 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 4 1.866 1.872 2.021 2.026 2.066 3.763 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 4 11.044 11.233 12.336 12.526 12.546 1.694 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 4 0.364 0.367 0.398 0.410 0.433 0.444 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 4 0.568 0.576 0.611 0.629 0.637 0.096 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 4 0.887 0.903 0.955 0.995 1.039 0.540 J

𝜂𝑚𝑎𝑥 5 160.655 161.841 165.084 165.805 167.039 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 5 2.072 2.130 2.172 2.217 2.231 3.915 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 5 7.033 7.369 7.740 8.038 8.091 0.801 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 5 0.344 0.345 0.353 0.357 0.362 0.472 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 5 0.452 0.478 0.508 0.513 0.519 0.057 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 5 0.777 0.802 0.844 0.846 0.859 0.529 J

𝜂𝑚𝑎𝑥 6 160.638 162.866 166.792 168.845 171.474 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 6 2.448 2.478 2.536 2.578 3.002 3.981 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 6 4.426 5.530 6.077 6.261 6.374 0.401 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 6 0.364 0.366 0.381 0.398 0.463 0.485 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 6 0.427 0.436 0.454 0.459 0.494 0.034 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 6 0.793 0.811 0.837 0.861 0.881 0.519 J

𝜂𝑚𝑎𝑥 11 156.327 164.238 165.287 165.565 165.727 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 11 3.108 3.136 3.157 3.202 3.205 4.069 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 11 0.002 0.001 0.000 0.002 0.003 0.000 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 11 0.531 0.531 0.538 0.542 0.553 0.503 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 11 0.008 0.008 0.009 0.009 0.009 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 11 0.540 0.540 0.546 0.552 0.562 0.503 J
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B.3. Short pendulum 𝐿1 = 0.65 m
The detailed results of the short pendulum in all three waves are shown in this section. In table B.7
the results of the wave focused at 28.380 m are shown, in table B.8 the results of the wave focused at
28.880 m and in table B.9 the results of the wave focused at 29.380 m.

Table B.7: The detailed results for the short pendulum in the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.380 m. The median, 25% (Q1) and
75% (Q3) quartiles, and the minimum and maximummeasured values are shown. The last column shows value calculated by the
model. All these values are given for the maximum values of the wave height, top angle of the pendulum and elastic, dissipated
and total absorbed energy and the final value of the relative angle.

𝑀𝑎𝑖𝑚 (Nm) Minimum Q1 Median Q3 Maximum Model

𝜂𝑚𝑎𝑥 0 143.895 150.238 158.401 162.425 166.943 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 0 5.606 5.625 5.892 6.693 6.798 4.396 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 0 36.289 36.327 36.832 40.356 41.387 19.446 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 0 1.157 1.163 1.209 1.493 1.523 0.417 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 0 0.044 0.045 0.046 0.057 0.058 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 0 1.166 1.176 1.221 1.503 1.534 0.417 J

𝜂𝑚𝑎𝑥 1 134.370 142.320 147.229 149.214 150.963 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 1 2.064 2.259 2.304 2.314 2.845 3.142 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 1 13.071 14.181 16.110 18.403 19.141 6.320 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 1 0.357 0.389 0.417 0.472 0.511 0.353 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 1 0.293 0.335 0.344 0.351 0.351 0.089 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 1 0.614 0.729 0.758 0.822 0.862 0.521 J

𝜂𝑚𝑎𝑥 2 130.255 137.755 147.094 151.746 155.397 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 2 2.744 2.945 3.141 3.498 3.820 4.564 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 2 6.625 7.373 9.947 11.497 14.009 5.443 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 2 0.308 0.326 0.394 0.454 0.477 0.433 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 2 0.259 0.263 0.328 0.404 0.477 0.154 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 2 0.559 0.575 0.714 0.863 0.924 0.587 J

𝜂𝑚𝑎𝑥 3 117.900 137.564 148.160 151.430 154.414 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 3 3.722 3.751 3.798 3.972 4.197 5.499 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 3 4.420 4.426 4.881 6.540 8.838 1.399 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 3 0.356 0.364 0.396 0.438 0.456 0.547 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 3 0.201 0.210 0.220 0.305 0.400 0.059 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 3 0.563 0.563 0.613 0.754 0.828 0.606 J

𝜂𝑚𝑎𝑥 4 131.405 134.799 146.654 150.832 150.976 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 4 4.126 4.208 4.212 4.351 4.363 5.722 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 4 1.828 2.398 2.862 3.321 4.810 0.396 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 4 0.390 0.413 0.438 0.455 0.459 0.580 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 4 0.103 0.140 0.175 0.194 0.266 0.022 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 4 0.529 0.552 0.593 0.646 0.722 0.602 J

𝜂𝑚𝑎𝑥 5 125.685 130.451 142.279 142.730 144.749 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 5 4.462 4.565 4.608 4.671 4.697 5.794 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 5 0.737 0.738 1.651 3.099 4.241 0.099 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 5 0.449 0.453 0.473 0.480 0.500 0.591 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 5 0.055 0.063 0.125 0.201 0.270 0.007 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 5 0.508 0.512 0.597 0.679 0.768 0.598 J

𝜂𝑚𝑎𝑥 11 124.142 130.024 139.972 140.407 144.243 136.382 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 11 4.361 4.741 4.873 5.039 5.358 5.827 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 11 0.003 0.002 0.006 0.171 0.174 0.000 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 11 0.475 0.481 0.493 0.513 0.570 0.597 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 11 0.000 0.000 0.006 0.014 0.017 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 11 0.481 0.489 0.504 0.519 0.570 0.597 J
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Table B.8: The detailed results for the short pendulum in the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 28.880 m. The median, 25% (Q1) and
75% (Q3) quartiles, and the minimum and maximummeasured values are shown. The last column shows value calculated by the
model. All these values are given for the maximum values of the wave height, top angle of the pendulum and elastic, dissipated
and total absorbed energy and the final value of the relative angle.

𝑀𝑎𝑖𝑚 (Nm) Minimum Q1 Median Q3 Maximum Model

𝜂𝑚𝑎𝑥 0 148.245 164.709 168.116 170.958 170.981 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 0 4.662 4.709 4.728 4.734 6.494 4.540 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 0 30.876 31.254 31.671 31.675 36.728 20.114 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 0 0.852 0.854 0.863 0.881 1.343 0.445 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 0 0.034 0.035 0.035 0.035 0.052 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 0 0.864 0.867 0.875 0.892 1.354 0.445 J

𝜂𝑚𝑎𝑥 1 171.150 171.177 172.664 173.856 174.782 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 1 1.523 1.776 1.818 1.854 1.977 3.171 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 1 11.603 12.528 13.083 15.473 16.181 6.526 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 1 0.378 0.396 0.408 0.411 0.437 0.376 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 1 0.344 0.357 0.389 0.395 0.399 0.092 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 1 0.663 0.666 0.668 0.683 0.717 0.554 J

𝜂𝑚𝑎𝑥 2 144.860 160.032 169.618 175.614 176.232 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 2 2.486 2.492 2.541 2.592 2.835 4.554 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 2 5.924 7.746 8.154 8.475 13.075 6.260 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 2 0.315 0.318 0.351 0.357 0.386 0.446 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 2 0.343 0.369 0.392 0.411 0.485 0.177 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 2 0.603 0.614 0.629 0.651 0.827 0.623 J

𝜂𝑚𝑎𝑥 3 126.390 158.431 169.107 169.689 177.188 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 3 2.900 3.056 3.147 3.189 3.221 5.548 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 3 3.495 4.432 5.145 5.166 6.264 1.925 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 3 0.318 0.348 0.361 0.362 0.392 0.563 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 3 0.214 0.245 0.267 0.286 0.290 0.082 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 3 0.568 0.592 0.593 0.594 0.606 0.644 J

𝜂𝑚𝑎𝑥 4 150.996 162.017 168.240 171.102 177.000 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 4 3.350 3.501 3.579 3.680 3.815 5.843 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 4 1.844 1.850 2.489 2.938 5.160 0.600 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 4 0.366 0.411 0.419 0.430 0.437 0.607 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 4 0.117 0.131 0.159 0.169 0.304 0.034 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 4 0.551 0.554 0.566 0.580 0.660 0.641 J

𝜂𝑚𝑎𝑥 5 147.674 153.645 171.121 173.396 177.099 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 5 3.642 3.649 3.762 3.843 3.864 5.935 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 5 0.741 1.110 1.660 2.036 3.138 0.193 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 5 0.398 0.432 0.433 0.447 0.452 0.621 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 5 0.082 0.094 0.123 0.149 0.217 0.014 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 5 0.527 0.538 0.549 0.571 0.606 0.635 J

𝜂𝑚𝑎𝑥 11 140.732 143.605 167.759 168.971 172.716 138.415 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 11 3.848 3.943 3.993 4.120 4.122 5.996 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 11 0.006 0.002 0.000 0.002 0.005 0.000 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 11 0.461 0.462 0.469 0.475 0.492 0.632 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 11 0.000 0.008 0.013 0.024 0.028 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 11 0.462 0.472 0.482 0.486 0.514 0.632 J
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Table B.9: The detailed results for the short pendulum in the wave focused at 𝑥𝑓𝑜𝑐𝑢𝑠 = 29.380 m. The median, 25% (Q1) and
75% (Q3) quartiles, and the minimum and maximummeasured values are shown. The last column shows value calculated by the
model. All these values are given for the maximum values of the wave height, top angle of the pendulum and elastic, dissipated
and total absorbed energy and the final value of the relative angle.

𝑀𝑎𝑖𝑚 (Nm) Minimum Q1 Median Q3 Maximum Model

𝜂𝑚𝑎𝑥 0 165.413 167.327 168.232 170.362 170.438 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 0 5.334 5.389 5.413 5.451 5.618 4.159 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 0 33.749 33.819 34.062 34.607 34.613 18.584 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 0 0.978 0.980 1.003 1.036 1.041 0.377 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 0 0.042 0.042 0.042 0.043 0.043 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 0 0.991 0.993 1.017 1.050 1.051 0.377 J

𝜂𝑚𝑎𝑥 1 159.381 160.970 162.404 163.929 169.196 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 1 1.507 1.632 1.822 1.947 2.081 2.956 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 1 13.249 14.251 14.436 15.468 15.651 6.351 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 1 0.416 0.422 0.442 0.452 0.457 0.317 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 1 0.425 0.430 0.444 0.474 0.485 0.090 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 1 0.742 0.764 0.770 0.778 0.802 0.476 J

𝜂𝑚𝑎𝑥 2 148.413 151.598 165.060 167.317 167.688 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 2 2.292 2.311 2.453 2.480 2.556 4.239 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 2 11.783 11.786 11.790 14.004 14.004 5.418 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 2 0.386 0.392 0.404 0.434 0.455 0.379 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 2 0.415 0.452 0.472 0.523 0.526 0.153 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 2 0.746 0.762 0.778 0.880 0.883 0.533 J

𝜂𝑚𝑎𝑥 3 142.891 151.492 162.094 163.624 169.320 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 3 2.706 2.744 2.936 3.020 3.376 5.101 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 3 8.109 8.478 9.213 10.314 11.421 1.652 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 3 0.365 0.378 0.393 0.402 0.462 0.474 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 3 0.389 0.400 0.416 0.469 0.512 0.070 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 3 0.707 0.755 0.773 0.832 0.962 0.544 J

𝜂𝑚𝑎𝑥 4 140.767 149.964 161.266 162.216 163.741 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 4 3.115 3.160 3.406 3.485 3.572 5.344 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 4 4.599 5.137 6.443 7.553 7.749 0.561 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 4 0.371 0.388 0.424 0.433 0.433 0.508 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 4 0.298 0.323 0.348 0.393 0.438 0.032 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 4 0.681 0.722 0.748 0.807 0.849 0.539 J

𝜂𝑚𝑎𝑥 5 151.285 159.000 164.376 166.046 171.124 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 5 3.404 3.610 3.724 3.760 3.763 5.430 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 5 3.314 4.055 4.420 5.888 5.890 0.197 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 5 0.407 0.426 0.441 0.448 0.461 0.520 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 5 0.243 0.265 0.289 0.369 0.375 0.014 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 5 0.662 0.684 0.713 0.818 0.826 0.534 J

𝜂𝑚𝑎𝑥 6 143.514 156.069 163.676 164.232 167.239 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 6 3.852 3.853 3.939 4.208 4.351 5.472 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 6 0.355 1.680 2.672 2.766 3.497 0.056 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 6 0.426 0.450 0.471 0.489 0.506 0.527 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 6 0.033 0.151 0.207 0.226 0.290 0.005 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 6 0.537 0.569 0.657 0.713 0.771 0.532 J

𝜂𝑚𝑎𝑥 11 153.593 158.445 160.946 163.025 164.137 132.039 mm
𝜃𝑡𝑜𝑝,𝑚𝑎𝑥 11 3.948 4.054 4.277 4.481 4.563 5.495 deg
𝜃𝑟𝑒𝑙,𝑒𝑛𝑑 11 0.006 0.004 0.003 0.001 0.000 0.000 deg
𝐸𝑒𝑙,𝑚𝑎𝑥 11 0.460 0.478 0.503 0.552 0.553 0.531 J
𝐸𝑑𝑖𝑠𝑠,𝑚𝑎𝑥 11 0.002 0.003 0.007 0.016 0.020 0.000 J
𝐸𝑎𝑏𝑠,𝑚𝑎𝑥 11 0.473 0.478 0.515 0.553 0.554 0.531 J



C
Extra information on data processing

In this appendix, two elements of the data processing are explained in more detail. In section C.1, the
difference between the two potentiometers at the top of the pendulum is analysed. Then, in section
C.2, the data processing used to reduce the influence of the bad resolution of the potentiometers is
shown.

C.1. Comparison potentiometers 1 and 2
Potentiometers 1 and 2 are both measuring the angle of the top part of the pendulum. In section 4.1,
these two signals are averaged into one signal, and this signal is also used for calculation of the energy
components in section 4.2. However, it should be analysed if this is a correct approach. For an example
run, the signals of both potentiometers and the average between them are shown in figure C.1. Due
to the resolution of each potentiometer, the signals of both sensors differ. This difference is not larger
than one step in the resolution of the sensors. Therefore, it is accepted to use the average of both
sensors in further calculations. It can even be beneficial for a first smoothing of the signal of the angle
of the top part of the pendulum.
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Figure C.1: Measurements of potentiometers 1 and 2 and their average. Due to the resolution difficulties of each potentiometer,
the signals of both sensors differ from each other. This difference is not larger than one step in the resolution of the sensors.
Therefore, it is accepted to use the average of both sensors in further calculations.
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C.2. Fit function to overcome the bad resolution of potentiometers
As shown in section 4.1, some signals of the measured angles show horizontal parts. These horizontal
parts become problematic when taking the derivative of the signal. Since these horizontal parts are not
really part of the behaviour but only exist due to bad resolution of the potentiometers, a solution should
be found to eliminate these horizontal parts. In order to show how this is performed, the same example
run as in the previous section is used.

The first step in this process is selecting the parts of the graph that are horizontal or nearly hori
zontal. This selection is made by taking the data points that are in a range of 0.05 deg from each other.
The intervals that satisfy this condition are selected as ‘horizontal’, and the other parts are selected as
‘other’. Of each interval, the middle data point is selected. These are shown in figure C.2 as ‘selected
data points’. Through these selected data points, a cubic smoothing spline with a smoothness param
eter 𝑃 equal to 1104 for the top angle and 1105 for the bottom angle is fitted. These two fit functions
are shown in figure C.2 with the top angle on the left and the bottom angle on the right. The values for
𝑃 are based on tuning of the parameters.
The influence of the horizontal parts is examined by introducing horizontal parts in the signal obtained

by the reducedorder model. The cubic smoothing spline is fitted through the middle points of these
introduced horizontal parts. The results of the original signal and the fit function are approximately the
same, which leads to the conclusion that the bad resolution of the potentiometers does not influence
the conclusions of this research.

61 62 63 64 65
Time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
ot

en
tio

m
et

er
 2

 (
de

g)

Top angle

Reducing horizontal parts in signal

61 61.5 62 62.5 63
Time (s)

-2

0

2

4

6

8

10

12

14
P

ot
en

tio
m

et
er

 3
 (

de
g)

Bottom angle

Measured signal Selected data points Fit

Figure C.2: The measured signal of the top (left) and bottom (right) angle of the pendulum. The selected data points are the
middle points of the (approximately) horizontal intervals and the intervals in between. A cubic smoothing spline is fitted on these
selected data points with smoothing parameters of 1104 for the top angle and 1105 for the bottom angle.
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