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a b s t r a c t

In this paper, we describe a general class of C1 smooth rational splines that enables, in particular, exact
descriptions of ellipses and ellipsoids — some of the most important primitives for CAD and CAE. The
univariate rational splines are assembled by transforming multiple sets of NURBS basis functions via
so-called design-through-analysis compatible extraction matrices; different sets of NURBS are allowed
to have different polynomial degrees and weight functions. Tensor products of the univariate splines
yield multivariate splines. In the bivariate setting, we describe how similar design-through-analysis
compatible transformations of the tensor-product splines enable the construction of smooth surfaces
containing one or two polar singularities. The material is self-contained, and is presented such that
all tools can be easily implemented by CAD or CAE practitioners within existing software that support
NURBS. To this end, we explicitly present the matrices (a) that describe our splines in terms of NURBS,
and (b) that help refine the splines by performing (local) degree elevation and knot insertion. Finally,
all C1 spline constructions yield spline basis functions that are locally supported and form a convex
partition of unity.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Multivariate splines are used extensively for computer-aided
esign (CAD) and, more recently, for computer-aided engineer-
ng (CAE). Smoothness of such splines is a particularly valuable
rait. When the aim is to create a (freeform) geometric model
or a smooth object, it helps if the splines used for the task
re smooth themselves. For instance, this circumvents situations
here small displacements to control points may produce ‘non-
mooth’ features such as C0 kinks, loss of curvature continuity,
etc. Similarly, when the aim is to numerically approximate the
solution to high-order partial differential equations (PDEs) using
isogeometric analysis (IGA) — a generalization of classical finite
element analysis [1] — high smoothness of the approximating
spaces can be beneficial. For instance, it can allow us to directly
discretize the PDEs without any auxiliary variables, thus yielding
simpler and more efficient implementations.

In this paper, we discuss a general class of C1 smooth rational
splines that allow for the construction of C1 smooth curves and
surfaces. These are an extension of classical C1 non-uniform ra-
tional B-splines (NURBS) as they enjoy the flexibility of choosing
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https://doi.org/10.1016/j.cad.2020.102982
0010-4485/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access a
locally unrelated weight functions as well as the option of local
degree elevation — they can be roughly regarded as piecewise-
NURBS. At the same time, they maintain intuitive control-point-
based design. Moreover, they enable simple (low-degree) and
smooth descriptions of some of the most important primitives
for CAD and CAE (but also for computer vision, graphics and
robotics): closed, real, non-degenerate quadrics — that is, ellipses
in two dimensions and ellipsoids in three dimensions.

The ideas we present here build upon those from [2], in
multiple directions, and their presentation is motivated by our
primary objectives: self-contained, explicit, NURBS-compatible de-
scriptions that can be easily and efficiently implemented within
existing CAD software. The most important novel contributions are
the following.

• We describe the usage of classical univariate NURBS to
assemble C1 rational multi-degree spline basis functions using
an extraction matrix. The general framework was explained
in [2], but we provide here a simplified exposition of the
construction and a formal proof of the properties; see Re-
mark 2.3. We mainly stick to parametric smoothness, but
a construction centered around the notion of geometric
smoothness can be formulated as well; see Remark 2.5.

• We describe efficient refinement of the C1 splines leveraging
classical NURBS refinement. The novelty here relies in an

explicit and simple construction of the refinement matrices.

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cad.2020.102982
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2020.102982&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:speleers@mat.uniroma2.it
mailto:d.toshniwal@tudelft.nl
https://doi.org/10.1016/j.cad.2020.102982
http://creativecommons.org/licenses/by/4.0/


H. Speleers and D. Toshniwal Computer-Aided Design 132 (2021) 102982

e

Table 1
An overview of the explicit C1 descriptions of quadrics presented in this paper. The table also compares the number of degrees of freedom
(DOFs) needed by our C1 representation compared to those needed by an equivalent C−1 NURBS representation.
Quadric Polynomial degree # rational pieces # DOFs # DOFs for C−1 NURBS Section

Ellipse (special case: circle)
Uniform; 2 4

4
12 2.4.1

Uniform; 3 2 8 2.4.2
Non-uniform; (3, 2, 2) 3 10 2.4.3

Ellipsoid (special case: sphere)
Uniform; (2, 2) 8

6
72 3.4.1

Uniform; (2, 3) 4 48 3.4.2
Uniform; (3, 3) 2 32 3.4.3
q
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• We describe how tensor-product bivariate C1 rational
splines can be used to build C1 smooth geometries that may
contain one or two polar singularities; the C1 smooth splines
describing the geometries are called polar splines. As above,
the idea is based on building an extraction matrix.

• We describe efficient refinement of polar splines. In partic-
ular, we provide an explicit and simple construction of the
refinement matrices.

• We provide explicit descriptions of ellipses and ellipsoids
built using low-degree C1 splines, and we detail their ex-
traction in terms of NURBS so that they can be readily
implemented and used in CAD or CAE software. Table 1
summarizes the descriptions included in this paper.

1.1. Extraction matrices

At the core of our approach is the notion of the so-called
design-through-analysis (DTA) compatible extraction matrix.1

Roughly speaking, such matrix helps us assemble ‘simple splines’
into ‘more general splines.’ Examples are the Bézier extraction
matrix introduced to assemble Bernstein polynomials into
B-/T-splines [3,4]; the multi-degree extraction matrix for as-
sembling elements of extended Tchebycheff spaces into general-
ized Tchebycheffian B-splines [5–7]; and the unstructured spline
extraction matrices for assembling tensor-product splines into
splines on unstructured quadrilateral meshes [2,8,9].

Here, we apply the concept of extraction in the following
context. We start from multiple sets of (univariate or bivariate)
NURBS basis functions defined on adjacent domains, and collect
all of these functions in the set {bj : j = 1, . . . ,m}. Then, we
assemble them into more general C1 rational (polar) splines using
a matrix C (with entries Cij), called the extraction matrix. Denote
this new set of splines by {Ni : i = 1, . . . , n}, where n < m. These
are defined as follows,

Ni =

m∑
j=1

Cijbj, i = 1, . . . , n. (1)

We are particularly interested in matrices C such that the func-
tions Ni

• satisfy certain smoothness constraints that may or may not
be satisfied by the bj, and

• possess the properties of non-negativity, locality, linear in-
dependence and partition of unity that the bj already pos-
sess.

Such extraction matrices are called DTA-compatible.

1 Our notion of DTA-compatible extraction matrix has been called IGA-suitable
xtraction matrix in [2]. The name reflects the fact that both design and analysis
may profit from the extraction operation.
2

Definition 1.1 (DTA-compatible Extraction). An extraction matrix
C is called DTA-compatible if

(a) C is a full-rank matrix,
(b) each column of C sums to 1,
(c) each entry in C is non-negative, and
(d) C imparts locality to the functions Ni through sparsity.

It is easy to see that the action of a DTA-compatible extraction
matrix on a convex partition of unity, local basis gives rise to
another local basis that also forms a convex partition of unity.
Indeed, by summing over i in Eq. (1), we have
n∑

i=1

Ni =

n∑
i=1

m∑
j=1

Cijbj =

m∑
j=1

bj
n∑

i=1

Cij = 1,

as the bj form a partition of unity. Since C has non-negative
entries and is a full-rank matrix, non-negativity and linear inde-
pendence of Ni follow from the non-negativity and linear inde-
pendence of bj.

1.2. Related literature

As mentioned in the previous section, the construction of
smooth univariate splines by joining simpler pieces has been
recently explored in [2,5,6] for polynomial multi-degree splines,
and in [7] for generalized Tchebycheffian splines. These
approaches have conceptual similarities with the notion of beta-
splines [10]. The main differences are that the former approaches
do not rely on symbolic computations while the latter does, and
the former approaches consider parametric continuity while the
latter studies geometric continuity. The use of smooth univariate
rational splines for construction of circles has been previously ex-
plored in [11–13]. It is known that a circle cannot be represented
by a single (symmetric) periodic C1 quadratic NURBS curve [14,
Section 7.5] nor a C2 cubic NURBS curve [15, Section 13.7]. How-
ever, it is possible to find Ck smooth descriptions using NURBS
of degree 2(k + 1), which is shown to be the minimal degree
in [11]. On the other hand, [12,13] presented a C1 piecewise
uadratic NURBS description of the circle and used it for IGA.
ur rational multi-degree splines form a flexible extension of the
atter framework, and allow for a variety of exact descriptions of
ircles using low (multi-)degrees, as indicated in Table 1.
In two dimensions, closed quadrics or, more generally, smooth

losed surfaces of genus zero can be built using tensor-product
plines by introducing polar singularities. For such polar sur-
aces, subdivision schemes producing C1 surfaces [16,17] and C2

surfaces [18,19] have been previously worked out. The corre-
sponding limit surfaces consist of an infinite sequence of surface
rings where the faces shrink to a point in the limit. A more CAD-
friendly finite construction was developed in [20]; this approach
constructs ‘shape’ basis functions for C2 polar splines with bi-
egree (6, 3). These basis functions correspond to unique Fourier
requencies in the polar expansion of a quadratic surface. The
shape’ basis does not enjoy non-negativity and does not form a
artition of unity, and extensions of it to higher smoothness leads
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o degrees of freedom that control non-intuitive shape param-
ters. Similar recent constructions for obtaining C1 polar spline
aps can be found in [21]. Curvature continuous polar NURBS
urfaces were discussed in [22], and [23] presented a construction
f polar caps using periodic B-spline surfaces with Gk continuity
or arbitrary k. On the CAE side, a standard circular serendipity-
ype element for IGA was proposed in [12], and Ck smooth basis
unctions over singular parameterizations of triangular domains
ere constructed in [24]. A design-through-analysis friendly con-
truction of Ck smooth polar surfaces was recently proposed
n [2], and the current work builds further upon this construction.

A completely different approach for dealing with curves and
urfaces is the use of implicit representations [25]. Such repre-
entations enjoy nice geometric properties (especially for sim-
le shapes). For instance, they allow for a straightforward point
embership classification. On the other hand, explicit smooth
-spline representations are more convenient for direct geomet-
ic modeling and (local) modification.

.3. Outline

In Section 2, we present the construction and refinement
f C1 smooth rational multi-degree spline curves via explicitly
efined extraction and refinement matrices. The construction and
efinement of C1 smooth polar surfaces using tensor products
f the univariate splines is detailed in Section 3. The explicit
escriptions of ellipses and ellipsoids using the univariate and
ivariate C1 splines are reported in Sections 2.4 and 3.4, respec-
ively. Finally, we conclude the paper in Section 4. It should
e mentioned that the text is written such that the theoretical
ections — Sections 2.1–2.3 and 3.1–3.3 — can be skipped by
eaders interested only in implementing explicit descriptions of
mooth quadrics.

. Piecewise-rational curves

In this section, we focus on a multi-degree extension of uni-
ariate NURBS splines. The multi-degree spline space is defined
s a collection of classical NURBS spaces (with possibly differ-
nt polynomial degrees and weight functions) glued together C1

moothly. For such space we present a construction of a set of
asis functions, with similar properties to classical NURBS. After
iscussing some preliminary material on NURBS in Section 2.1,
e elaborate how these basis functions can be computed through
DTA-compatible extraction matrix in Section 2.2. A more gen-
ral but also more complex algorithmic construction has been
etailed in [2, Section 2] and further explored in [5,6] for polyno-
ial multi-degree splines. Then, in Section 2.3, we give an explicit
rocedure how to compute a refined representation of a given
urve. Finally, in Section 2.4, we illustrate how this tool can be
sed to describe arbitrary ellipses in a C1 smooth fashion using
ow-degree piecewise-rational curve representations suited for
ntegrated design and analysis.

.1. Preliminaries on NURBS

We start by defining notation for NURBS basis functions, and
ntroduce some classical relations that can be found, e.g., in [14,
6].
Given a basic interval I := [x1, x2] ⊂ R, let us denote with ξ

n open knot vector of degree p ∈ N and length n + p + 1 ∈ N,
.e.,

ξ := [ξ1, ξ2, . . . , ξn+p+1], ξi+1 ≥ ξi,

ξ1 = · · · = ξp+1 = x1 < ξp+2, (2)

ξn+1 = · · · = ξn+p+1 = x2 > ξn.

3

The number of times a knot value ξi is duplicated in the knot
vector is called the knot’s multiplicity. The multiplicity of ξi is
denoted with mi, and we assume that 1 ≤ mi ≤ p − 1. The
orresponding set of B-splines {bj,p : j = 1, . . . , n} are defined
using the recursive relation,

bj,p(x) :=
x − ξj

ξj+p − ξj
bj,p−1(x) +

ξj+p+1 − x
ξj+p+1 − ξj+1

bj+1,p−1(x),

starting from

bj,0(x) :=

{
1, if ξj ≤ x < ξj+1,

0, otherwise,

and under the convention that fractions with zero denominator
have value zero. With the above definition, all the B-splines
take the value zero at the end point x2. Therefore, in order to
avoid asymmetry over the interval I , it is common to assume the
B-splines to be left continuous at x2. We will follow suit.

Let us denote with w a weight vector of length n, i.e.,

w := [w1, w2, . . . , wn], wi > 0. (3)

The corresponding set of NURBS {bw
j,p : j = 1, . . . , n} are defined

by

bw
j,p(x) :=

wjbj,p(x)∑n
i=1 wibi,p(x)

.

Each bw
j,p is non-negative on I and is locally supported on [ξj,

ξj+p+1]. Moreover, the functions bw
j,p are linearly independent and

form a partition of unity. They satisfy the following end-point
conditions:

bw
1,p(x1) = 1, bw

j,p(x1) = 0, j = 2, . . . , n,
bw
n,p(x2) = 1, bw

j,p(x2) = 0, j = 1, . . . , n − 1.

The NURBS space corresponding to ξ and w is denoted with
R[ξ, w] and is defined as the span of {bw

j,p : j = 1, . . . , n}. This is
a space of piecewise-rational functions of degree p with smooth-
ness Cp−mi at knot ξi and its dimension is n. The assumption
on the multiplicity will ensure us global C1 smoothness. Note
that when w1 = · · · = wn, the members of this space are
piecewise-polynomial.

Remark 2.1. The structure of ξ in Eq. (2) is such that p, mi, n and
I are embedded in it. Therefore, we will assume that once a knot
vector ξ is known, so are the degree, smoothness, and dimension
of the corresponding NURBS space R[ξ, w].

We identify a function f ∈ R[ξ, w] with the vector of its
coefficients [f1, . . . , fn],

f (x) =

n∑
j=1

fjbw
j,p(x).

Only the first (last) k + 1 basis functions contribute towards the
kth order derivative at the left (right) end point of I . In particular,
we have

f (x1) = f1,
df
dx

(x1) =
p

ξp+2 − x1

w2

w1
(f2 − f1),

f (x2) = fn,
df
dx

(x2) =
p

x2 − ξn

wn−1

wn
(fn − fn−1).

(4)

A NURBS curve embedded in Rd, d ≥ 2, can be constructed as

f (x) =

n∑
j=1

f jb
w
j,p(x),

where f j ∈ Rd are the control points assigned to each basis
function. All coordinate functions of this curve belong to R[ξ, w]

and therefore all the above relations hold for them.
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Fig. 1. A visual illustration of the notation and the construction of rational
multi-degree B-splines as described in Section 2.2. Here, the quadratic (blue)
and cubic (red) NURBS shown at the bottom are used to build the C1 multi-
degree B-splines shown at the top. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

2.2. Rational multi-degree B-splines

Consider m open knot vectors ξ(i) of degree p(i), i = 1, . . . ,m,
efined as in Eq. (2). We denote the left and right end points of
he interval I (i) associated to ξ(i) with x(i)1 and x(i)2 , respectively. The
collection Ξ := (ξ(1), . . . , ξ(m)) is called an m-segment knot vector
onfiguration. The multi-degree spline spaces will be constructed
y considering spline spaces over the knot vectors ξ(i), which are
lued together with certain smoothness requirements at the end
oints x(i)2 and x(i+1)

1 for i ∈ {1, 2, . . . ,m − 1}. The equivalence
lass at the points x(i)2 and x(i+1)

1 is called the ith segment join. We
efine the mapping φ(i) for each segment i = 1, . . . ,m,

(i)(x) := x − x(i)1 + τ
(1)
1 +

i−1∑
(x(ℓ)2 − x(ℓ)1 ), (5)
ℓ=1

4

for an arbitrarily chosen origin τ
(1)
1 ∈ R. Then, Ω (i)

:= [τ
(i)
1 , τ

(i)
2 ] :=

(i)([x(i)1 , x(i)2 ]) ⊂ R, and we construct the composed interval

:= [t1, t2] := Ω (1)
∪ · · · ∪ Ω (m).

ote that τ
(i)
2 = τ

(i+1)
1 , i ∈ {1, . . . ,m−1} and t1 = τ

(1)
1 . Moreover,

et W := (w(1), . . . ,w(m)) be a sequence of weight vectors defined
as in Eq. (3). We refer the reader to Fig. 1 for a visual illustration
of the notation of the above concepts, in case m = 2 and p(1) = 2,
p(2) = 3.

The space of rational multi-degree splines is defined as

R[Ξ,W ] :=
{

f ∈ C1(Ω) : f ◦ φ(i)
∈ R[ξ(i), w(i)

], 1 ≤ i ≤ m
}
,

and the periodic space of rational multi-degree splines as

Rper
[Ξ,W ] :=

{
f ∈ R[Ξ,W ] : f (t1) = f (t2),

df
dt

(t1) =
df
dt

(t2)
}

.

The elements of R[Ξ,W ] and Rper
[Ξ,W ] are piecewise-NURBS

functions such that the pieces meet with C1 continuity at each
segment join. It is clear that classical NURBS spaces are a special
case of the rational multi-degree spline spaces.

In the following, we build a suitable basis for the spaces
R[Ξ,W ] and Rper

[Ξ,W ]. On the ith knot vector ξ(i), we have n(i)

NURBS bw,(i)
j,p(i)

of degree p(i) that span the spline space R[ξ(i), w(i)
].

In the first step, we map these basis functions from I (i) to Ω (i)

using φ(i) in Eq. (5), and extend them on the entire interval Ω by
defining them to be zero outside Ω (i). More precisely, specifying
the cumulative local dimensions µi for i = 0, . . . ,m,

µ0 := 0, µi :=

i∑
ℓ=1

n(ℓ)
= µi−1 + n(i), i > 0,

we define for i = 1, . . . ,m and j = 1, . . . , n(i),

bµi−1+j(t) :=

⎧⎪⎪⎨⎪⎪⎩
bw,(i)
j,p(i)

(x), if [τ
(i)
1 , τ

(i)
2 ) ∋ t = φ(i)(x),

bw,(i)
j,p(i)

(x(i)2 ), if i = m and t = t2,

0, otherwise.

For the sake of simplicity, we dropped the reference to the (local)
degree and weight in the notation. From the properties of NURBS,
it is clear that the functions b1, . . . , bµm are linearly independent
and form a non-negative partition of unity on Ω . We arrange
these basis functions in a column vector b of length µm. We refer
the reader again to Fig. 1 for a visual illustration of the notation
of the above concepts.

Now, we construct extraction matrices H and Hper such that
the functions in {Bi : i = 1, . . . , n} and {Bper

i : i = 1, . . . , nper
},

defined by

B := Hb, Bper
:= Hperb, (6)

span R[Ξ,W ] and Rper
[Ξ,W ], respectively. The key here, and

the reason our approach can be efficiently implemented by de-
sign, is that these extraction matrices can be explicitly specified.
To this end, we define counters ηi for i = 0, . . . ,m,

η0 := 0, ηi :=

i∑
ℓ=1

(n(ℓ)
− 2) = µi − 2i, i > 0,

and parameters α(i) and β (i) for i = 1, . . . ,m − 1,

α(i)
:=

p(i)

x(i)2 − ξ
(i)
n(i)

w
(i)
n(i)−1

w
(i)
n(i)

> 0,

β (i)
:=

p(i+1)

ξ
(i+1)

− x(i+1)

w
(i+1)
2

w
(i+1) > 0.
p(i+1)+2 1 1
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n the periodic setting, α(m) and β (m) are computed using the
bove equations by identifying the index i + 1 with 1. Recall
q. (4) to see the motivation behind the definition of the above
arameters. Then, we define a common sparse matrix H c of size
m×(µm−2), whose non-zero entries Hc

ij are identified as follows:
or i = 1, . . . ,m and j = 1, . . . , n(i)

− 2,
c
ηi−1+j,µi−1+j := 1, (7)

nd for i = 1, . . . ,m − 1,

Hc
ηi,µi−1 := Hc

ηi,µi
:=

α(i)

α(i) + β (i) ,

Hc
ηi+1,µi−1 := Hc

ηi+1,µi
:=

β (i)

α(i) + β (i) .

(8)

The desired extraction matrices in Eq. (6) are then specified as
follows:

H :=

[1 0 0
0 H c 0
0 0 1

]
,

Hper
:=

⎡⎢⎢⎣
β(m)

α(m)+β(m)

H c

β(m)

α(m)+β(m)

0 0
α(m)

α(m)+β(m)
α(m)

α(m)+β(m)

⎤⎥⎥⎦ .

(9)

The number of rows in the two matrices are denoted with n :=

ηm + 2 and nper
:= ηm, respectively. The sparse and simple

structure of both matrices means that it is easy to verify that both
have full rank. Indeed, this conclusion can be directly deduced
from the full rank of H c , which in turn is implied by Eq. (7).
Moreover, their entries are non-negative, and the column sum
is equal to one. Hence, we conclude that these matrices are
DTA-compatible.

How these matrices help us build C1 splines can be understood
by taking into account Eq. (4) at any end point τ

(i)
2 . Let us discuss

the non-periodic setting and fix i ∈ {1, . . . ,m−1}; the argument
can be directly applied to the periodic setting as well. Only
four functions (bµi−1, bµi , bµi+1, bµi+2) are not C1 at τ

(i)
2 . More

precisely, only these four functions have non-vanishing values
and first derivatives here. In view of (4), a spline f given by

f (t) =

4∑
j=1

fjbµi−2+j(t)

will be C1 at τ
(i)
2 if

f2 = f3, α(i)(f2 − f1) = β (i)(f4 − f3). (10)

We can verify that the entries of H satisfy exactly such relations.
Indeed, for some j, the matrix H defines two new functions Bj and
Bj+1 such that

[
Bj

Bj+1

]
=

⎡⎣1 α(i)

α(i)+β(i)
α(i)

α(i)+β(i) 0

0 β(i)

α(i)+β(i)
β(i)

α(i)+β(i) 1

⎤⎦
  

=: H̄ (i)

⎡⎢⎣bµi−1
bµi

bµi+1
bµi+2

⎤⎥⎦ +

[
B̄(i)
j

B̄(i)
j+1

]
,

here B̄(i)
j and B̄(i)

j+1 are at least C1 at τ
(i)
2 . When setting [f1, f2, f3, f4]

qual to the first or the second row of H̄ (i)
, we see that Eq. (10) is

atisfied. The following result follows from the above discussion.

heorem 2.2. The C1 smooth piecewise-rational functions in the
ets {Bi : i = 1, . . . , n} and {Bper

i : i = 1, . . . , nper
} are linearly

ndependent, locally supported, and form a convex partition of unity
n Ω .
5

Remark 2.3. In [2, Section 2.3.5] it was observed that the C1

smooth piecewise-rational basis functions enjoy the properties
described in Theorem 2.2. However, a formal proof was missing.
It was also pointed out that the property of non-negativity is
in general not present in case of C2 or higher smoothness. On
the other hand, this is possible when restricting to polynomial
pieces [6].

Remark 2.4. With the aim of designing quadric curves, also
called conics, it is natural to choose local NURBS spaces of the
same degree p and defined on the same uniform knot vector ξ.
oreover, it is common to set w

(i)
1 = w

(i)
n(i)

= 1. Under these
circumstances, the ratios in Eq. (8) read as

α(i)

α(i) + β (i) =
w

(i)
n(i)−1

w
(i)
n(i)−1

+ w
(i+1)
2

,

β (i)

α(i) + β (i) =
w

(i+1)
2

w
(i)
n(i)−1

+ w
(i+1)
2

.

inally, if there is additional symmetry in the choice of weights,
o w

(i)
n(i)−1

= w
(i+1)
2 , we simply get

α(i)

α(i) + β (i) =
1
2
,

β (i)

α(i) + β (i) =
1
2
.

Once we have computed a DTA-compatible extraction matrix
H (or Hper ), given n control points f i ∈ Rd, d ≥ 2, we can
construct a piecewise-rational curve f embedded in Rd,

f (t) =

n∑
i=1

f iBi(t).

For a fixed curve, the transpose of H (or Hper ) defines the re-
lationship between control points of the bj (discontinuous at
the segment joins) and control points of the smooth Bi. More
precisely, if
µm∑
j=1

g jbj(t) = f (t) =

n∑
i=1

f iBi(t),

then

g j =

n∑
i=1

Hijf i. (11)

Remark 2.5. When dealing with curves, the proposed piecewise-
NURBS framework can also be formulated in the context of geo-
metric continuity [27]. In such case, the C1 smoothness condition
at the segment join in (10) is replaced by the G1 smoothness
condition

f2 = f3, α(i)(f2 − f1) = γ (i)β (i)(f4 − f3),

for a given geometric shape parameter γ (i) > 0, resulting in the
matrix

H̄ (i)
=

⎡⎣1 α(i)

α(i)+γ (i)β(i)
α(i)

α(i)+γ (i)β(i) 0

0 γ (i)β(i)

α(i)+γ (i)β(i)
γ (i)β(i)

α(i)+γ (i)β(i) 1

⎤⎦ .

It is clear that this matrix is still DTA-compatible.

2.3. Refinement of piecewise-rational curves

The rational spline spaces defined in the previous section
can be refined in a multitude of ways. We could reduce the
smoothness at segment joins, raise the polynomial degrees of
local NURBS spaces, and/or insert new knots in local NURBS
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paces [2, Section 2.4.3]. A combination of these possibilities
ould be judiciously employed to achieve spline spaces that pro-
ide higher resolution or approximation power exactly where
eeded. In this section, we present an explicit construction of
efined representations of a given piecewise-rational curve.

Before delving into the details of the refinement procedure,
e first define two matrices G and Gper that can be regarded as
ight inverses of the extraction matrices H and Hper , respectively.
ooking at the structure of the matrix H c specified in Eqs. (7)–(8),
e can define a sparse matrix Gc of size (µm − 2) × ηm, whose

non-zero entries Gc
ij are identified as follows: for i = 1, . . . ,m and

j = 1, . . . , n(i)
− 2,

Gc
µi−1+j,ηi−1+j := 1.

From its construction it is clear that the product H cGc is equal
to the identity matrix. Similarly, keeping in mind Eq. (9), the
matrices

G :=

⎡⎢⎣1 0 0

0 Gc 0
0 0 1

⎤⎥⎦ , Gper
:=

⎡⎢⎣ 0
Gc

0

⎤⎥⎦ (12)

ive rise to products HG and HperGper that are equal to identity
atrices.
Now, let R be a given spline space and let us denote the target

refined space with R̃. For simplicity of notation, we drop the
superscript per in case of periodicity. Then, we consider the two
unique representations of a curve f with coordinate functions in

⊂ R̃,
ñ∑

i=1

f̃ iB̃i(t) = f (t) =

n∑
i=1

f iBi(t). (13)

et us collect the control points in the row vectors F̃ := [f̃ 1, . . . ,
˜
ñ] and F := [f 1, . . . , f n]. We now seek the refinement matrix R

of size n × ñ that helps us compute F̃ from F , i.e.,

F̃ = FR.

Assume that H and H̃ are the extraction matrices corresponding
to the spaces R and R̃, respectively. Incorporating these matrices
in the representations in Eq. (13) results in

F̃ H̃ b̃ = FHb,

where the column vectors b and b̃ collect the local NURBS basis
functions. Let the matrix S be such that b = Sb̃; this matrix can
be computed with standard NURBS refinement techniques. Then,
we have

F̃ H̃ b̃ = FHSb̃.

This implies that we can compute R by solving the following
(overdetermined) linear system with a unique solution,

RH̃ = HS.

After multiplication of both sides of this system with the matrix
G̃ (corresponding to H̃) as defined in Eq. (12), we arrive at

R = HSG̃. (14)

Note that the application of G̃ in Eq. (14) means that a subset of
ñ columns of HS are selected to form R.

Remark 2.6. The definition of G̃ is done for the sake of simplicity
of computation of R in Eq. (14), but is not unique. Any matrix that
is a right inverse of H̃ would be a valid choice as well, such as the
standard Moore–Penrose right inverse H̃

T
(H̃H̃

T
)−1.
6

2.4. Circles and ellipses

We now present the general construction of ellipses (and as a
special case also circles) using the C1 rational splines introduced
thus far. We present three approaches for doing so using splines
of low(est) degree, i.e., C1 splines of quadratic degree, cubic de-
gree and mixed quadratic/cubic multi-degree. All approaches will
construct four C1 piecewise-NURBS functions Bi and associated
control points f i, i = 1, . . . , 4, such that the curve f ,

f (t) := (fx(t), fy(t)) :=

4∑
i=1

f iBi(t),

describes the exact ellipse centered at (0, 0) and with axis lengths
(ax, ay),(

fx
ax

)2

+

(
fy
ay

)2

= 1. (15)

Since the splines Bi form a partition of unity, these ellipses can
be affinely transformed by directly applying the transformation to
the control points f i. Subdivided or higher-degree representations
can be easily obtained by refining the representations provided
here (see Section 2.3).

To visually illustrate the smoothness of f , we will also show
the curve f̃ obtained by perturbing one of the control points.
Since all Bi are smooth, the perturbed curve will also be smooth.
For uniformity throughout the examples, we will choose the
control points of the perturbed curve as

f̃ i :=

{
f i + (0, ay), i = 1,
f i, i = 2, 3, 4. (16)

2.4.1. C1 description of degree 2
Here we present a C1 quadratic description of the ellipse

in Eq. (15) using 4 rational pieces. Consider the domain Ω =

[0, 4] in the periodic setting. Choose m = 4 and

ξ(i) = [0, 0, 0, 1, 1, 1], w(i)
=

[
1,

√
2
2 , 1

]
, i = 1, . . . , 4.

We can define four C1 quadratic piecewise-NURBS functions Bi on
Ω using the extraction matrix

Hper
=

⎡⎢⎢⎣
1
2 1 1

2
1
2 0 0 0 0 0 0 0 1

2
0 0 1

2
1
2 1 1

2
1
2 0 0 0 0 0

0 0 0 0 0 1
2

1
2 1 1

2
1
2 0 0

1
2 0 0 0 0 0 0 0 1

2
1
2 1 1

2

⎤⎥⎥⎦ ; (17)

ee Eq. (9) taking into account Remark 2.4. These spline basis
unctions are shown in Fig. 2(a, top row). Finally, we can build
n ellipse centered at (0, 0) and with axis lengths (ax, ay) by

combining the splines Bi with the control points f i defined as

f 1 = (ax, ay) = −f 3, f 2 = (ax, −ay) = −f 4.

Remark 2.7. To verify that the curve f satisfies Eq. (15), we can
proceed as follows. The simplest approach is to numerically eval-
uate f (t) at all t and plug the result in that equation. Alternatively,
this verification can also be performed analytically by looking
at the explicit expressions of the rational pieces that form f .
For instance, consider the first quadratic rational piece, g (1), that
is a part of f . As discussed in Eq. (11), we can get the control
points of this piece, denoted with g (1)

j , j ∈ {1, 2, 3}, by applying
the transpose of (a submatrix of) Hper from Eq. (17) to a vector
containing the points f i, i.e.,

g (1)
j =

4∑
Hper

ij f i.

i=1
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Fig. 2. Different C1 smooth descriptions of unit circles and ellipses with axis lengths (1, 1
2 ). The conics in figure boxes (a)–(c) are made up of C1 splines of degree 2,

egree 3 and multi-degree (3, 2, 2), respectively. In each box, the middle and bottom rows of figures show the C1 circles and ellipses built using the C1 B-spline
functions shown at the top; the t-axis markers correspond to the breakpoint locations. Furthermore, in each of the bottom two rows of figures, the curve on the
left shows the exact conic, and the curve on the right is obtained by raising one of the control points of the exact conic; see Examples 2.8, 2.9 and 2.11 for details.
(Even though all circles and ellipses have the same respective dimensions, they are scaled differently only to accommodate their control nets into the figure.)
w
This yields the control points

g (1)
1 = (0, ay), g (1)

2 = (ax, ay), g (1)
3 = (ax, 0).

Combining the above control points with the NURBS basis defined
on the first segment,

bw
1,2(t) =

(1 − t)2

w(t)
, bw

2,2(t) =

√
2t(1 − t)
w(t)

, bw
3,2(t) =

t2

w(t)
,

here w(t) := (1 − t)2 +
√
2t(1 − t) + t2, some simple algebra

hows that g (1) indeed satisfies Eq. (15). Verifications for the other
ieces of f can be similarly done.

xample 2.8. Choosing ax = ay = 1, we obtain a circle of radius
1, as shown in Fig. 2(a, middle row). This C1 quadratic description
s equivalent to the one used in [12]. The choice ax = 2ay = 1
ields an ellipse with axis lengths (1, 1

2 ), as shown in Fig. 2(a,
ottom row). The perturbed versions of these conics, with the
ontrol points chosen as in Eq. (16), are shown as well and they
emain clearly smooth. ♦

2.4.2. C1 description of degree 3
Here we present a C1 cubic representation of the ellipse

in Eq. (15) that uses only 2 rational pieces. Consider the domain
Ω = [0, 2] in the periodic setting. Choose m = 2 and

ξ(i) = [0, 0, 0, 0, 1, 1, 1, 1], w(i)
=

[
1, 1

3 ,
1
3 , 1

]
, i = 1, 2.

e can define four C1 cubic piecewise-NURBS functions Bi on Ω

sing the extraction matrix

per
=

⎡⎢⎢⎣
1
2 1 0 0 0 0 0 1

2
0 0 1 1

2
1
2 0 0 0

0 0 0 1
2

1
2 1 0 0

1
2 0 0 0 0 0 1 1

2

⎤⎥⎥⎦ . (18)

hese basis functions are shown in Fig. 2(b, top row). Choosing
he associated control points f i as

= (2a , a ) = −f , f = (2a , −a ) = −f ,
1 x y 3 2 x y 4

7

e get a C1 cubic description of an ellipse centered at (0, 0) with
axis lengths (ax, ay). This can be verified in the vein of Remark 2.7.

Example 2.9. Choosing ax = ay = 1, we obtain a circle of radius
1, as shown in Fig. 2(b, middle row). This C1 cubic description
is equivalent to the one used in [2]. The choice ax = 2ay = 1
yields an ellipse with axis lengths (1, 1

2 ), as shown in Fig. 2(b,
bottom row). The perturbed versions of these conics, with the
control points chosen as in Eq. (16), are shown as well and they
remain clearly smooth. It can be observed that, compared to the
description from Section 2.4.1, the control points here are at a
greater distance from the curve. This is completely analogous to
the behavior of classical NURBS. ♦

2.4.3. C1 description of multi-degree (3, 2, 2)
Many, many different C1 low-degree representations of the

circle can be cooked up. Instead of attempting the impossible task
of presenting them all, we present a single example that uses our
splines in a more general setting than the above two descriptions.
Consider the domain Ω = [0,

√
2 + 2] in the periodic setting.

Choose m = 3 and

ξ(1) = [0, 0, 0, 0,
√
2,

√
2,

√
2,

√
2], w(1)

=

[
1, 1

3 ,
1
3 , 1

]
,

ξ(2) = ξ(3) = [0, 0, 0, 1, 1, 1], w(2)
= w(3)

=

[
1,

√
2
2 , 1

]
.

Remark 2.10. Opting for geometric continuity (see Remark 2.5)
would have allowed the choice of Ω with integral length, but the
present setting is sufficient for illustrative purposes.

Then, we can define four C1 multi-degree piecewise-NURBS
functions Bi on Ω using the extraction matrix

Hper
=

⎡⎢⎢⎢⎣
1
3 1 0 0 0 0 0 0 0 1

3

0 0 1 1
3

1
3 0 0 0 0 0

0 0 0 2
3

2
3 1 1

2
1
2 0 0

2 1 1 2

⎤⎥⎥⎥⎦ .
3 0 0 0 0 0 2 2 1 3
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Fig. 3. A single edge or a pair of opposite edges of a tensor-product spline patch
an be collapsed for creating geometries with polar singularities. The collapsed
dges here are shown in red, and the black edges are identified with each other
o enforce periodicity. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

hese basis functions are shown in Fig. 2(c, top row). Choosing
he associated control points f i as

f 1 = (2ax, ay), f 2 = (2ax, −ay),
f 3 = (−ax, −ay), f 4 = (−ax, ay),

e get a C1 multi-degree description of an ellipse centered at
(0, 0) with axis lengths (ax, ay). This can be verified in the vein
f Remark 2.7.

xample 2.11. Choosing ax = ay = 1, we obtain a circle of radius
, as shown in Fig. 2(c, middle row). The choice ax = 2ay = 1
ields an ellipse with axis lengths (1, 1

2 ), as shown in Fig. 2(c,
ottom row). The perturbed versions of these conics, with the
ontrol points chosen as in Eq. (16), are shown as well and they
emain clearly smooth. Once again, compared to the description
rom Section 2.4.1, the control points here lie at a greater distance
rom the cubic portion of the curve. ♦

. Piecewise-rational polar surfaces

In this section, we describe how to construct C1 smooth rep-
esentations for polar surfaces containing single or double polar
ingularities (e.g., hemispheres and spheres, respectively). Such
urfaces can be obtained by starting from a bivariate tensor-
roduct (piecewise-NURBS) spline patch and collapsing one or
wo of its edges, respectively, as illustrated in Fig. 3. Each of
uch edge collapses creates a polar point and can be achieved
y coalescing the control points related to basis functions with
on-zero values on the edge. In general, however, this control-
oint coalescing will introduce kinks at the poles and the surface
epresentation will not be smooth. To achieve overall smooth-
ess, additional conditions need to be satisfied by the control
oints [2, Section 3]. In Section 3.1, we derive C1 smoothness
onditions at a polar point, and they enable us to build smooth
olar splines as linear combinations of bivariate tensor-product
plines in Section 3.2. Then, in Section 3.3, we give an explicit pro-
edure how to compute a refined representation of a given polar
urface. Finally, in Section 3.4, we present explicit descriptions
f arbitrary ellipsoids using C1 smooth low-degree polar spline
epresentations suited for integrated design and analysis.
8

3.1. Smoothness conditions at the polar points

A polar surface will be smooth at a polar point if it can be
locally (re)parameterized in a smooth way. Such parameteriza-
tions can be specified in a constructive manner and we elaborate
upon it in this section. The resulting conditions will help us build
smooth polar B-splines in the next section.

As shown in Fig. 3, we first describe the initial setup — a
tensor-product spline space on a rectangular domain. We start
from two univariate C1 rational spline spaces Rs, Rt defined
n the univariate domains Ω s

:= [s1, s2] and Ω t
:= [t1, t2],

espectively; the superscripts of s and t are meant to indicate the
symbols used for the respective coordinates. Using a Cartesian
product, we build the rectangular domain Ω := Ω s

× Ω t , and
n Ω we define the tensor-product spline space R := Rs

⊗

Rt . Without loss of generality, we assume that s1 = t1 = 0.
This tensor-product spline space is spanned by tensor-product B-
spline basis functions Bij, i = 1, . . . , ns; j = 1, . . . , nt . Here, ns

and nt denote the respective dimensions of the chosen univariate
spline spaces; the basis functions spanning these spaces are de-
noted with Bs

i and Bt
j . Then, the tensor-product basis function Bij

is simply the product Bs
i ⊗ Bt

j . The functions Bij are assumed to be
periodic in s and non-periodic in t .

Now, let us use the functions Bij to map the domain Ω to a po-
ar surface using edge-collapse. Then, the smoothness conditions
t a collapsed edge will only involve those Bij that have non-zero
irst derivatives there. Observe that, if nt

≥ 4, then any Bij with
non-zero first derivatives at the bottom edge of Ω will have zero
first derivatives at its top edge, and vice versa. The upshot is that,
when we are collapsing both the bottom and top edges of Ω into
two polar points, as in Fig. 3(b), the smoothness conditions at
those points are independent of each other and can be resolved
separately for nt

≥ 4.

3.1.1. Single polar point
In light of the above discussion, in the following we first focus

on the case of a single collapsed edge, i.e., the one shown in
Fig. 3(a). We derive smoothness conditions that will help us build
smooth polar spline functions (and, using them, smooth polar
surfaces). This is done by explicitly specifying the parameteri-
zation with respect to which the spline functions are deemed
smooth. First, we construct a planar disk-like domain Ωpol, called
the polar parametric domain, via a suitable polar map F ; see
Fig. 3(a). Next, for an arbitrary C1 spline f ∈ R, we define f pol :

Ωpol
→ R to be f ◦ F−1. In general, f pol will be multivalued at

the pole. Finally, we derive the required smoothness conditions
by asking for f pol to be C1 smooth at the polar point.

We start by building the map F . Assign the control point F ij :=

(ρj cos(θi), ρj sin(θi)) ∈ R2 to the basis function Bij, where

ρj :=
j − 1
nt − 1

∈ [0, 1], (19)

nd

i := 2π +
(1 − 2i)π

ns ∈ [0, 2π ]. (20)

he above choice of control-point values has been made in the
nterest of standardization and is not unique. Using these control
oints, we can construct the disk-like domain Ωpol with the aid
f the map F from Ω to Ωpol,

∋ (s, t) ↦→ F (s, t) = (u, v) ∈ Ωpol,

defined as

F (s, t) := (Fu(s, t), Fv(s, t)) :=

ns∑ nt∑
F ijBij(s, t). (21)
i=1 j=1
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ote that the above construction will not necessarily yield an
xactly circular domain Ωpol; its shape will depend on the choice

of R. This domain will serve as the reference element for the
smoothness of polar configurations, i.e., we will define polar
splines such that they are C1 smooth functions over Ωpol. It is
clear that for all s ∈ Ω s,

F (s, 0) = (0, 0), (22)

here (0, 0) ∈ Ωpol is the polar point. Note that this implies

∂Fu
∂s

⏐⏐⏐⏐
t=0

≡ 0 ≡
∂Fv

∂s

⏐⏐⏐⏐
t=0

. (23)

Let Bpol
ij be the image of Bij under the polar map F : Ω ↦→ Ωpol

in Eq. (21) so that

Bpol
ij (u, v) = Bpol

ij (F (s, t)) = Bij(s, t).

Then, for given coefficients fij, a polar spline function f pol over
Ωpol can be constructed as

f pol(u, v) =

ns∑
i=1

nt∑
j=1

fijB
pol
ij (u, v).

We can pull f pol back to Ω as follows,

f (s, t) := f pol(F (s, t)) =

ns∑
i=1

nt∑
j=1

fijB
pol
ij (F (s, t))

=

ns∑
i=1

nt∑
j=1

fijBij(s, t).

(24)

Moreover, by using the chain rule we can also relate the partial
derivatives of f and f pol:

∂ f
∂s

(s, t) =
∂ f pol

∂u
(u, v)

∂Fu
∂s

(s, t) +
∂ f pol

∂v
(u, v)

∂Fv

∂s
(s, t),

∂ f
∂t

(s, t) =
∂ f pol

∂u
(u, v)

∂Fu
∂t

(s, t) +
∂ f pol

∂v
(u, v)

∂Fv

∂t
(s, t).

For f pol to be C1 smooth at the polar point, there must exist real
values α, β, γ such that

lim
(u,v)→(0,0)

[
f pol,

∂ f pol

∂u
,

∂ f pol

∂v

]
(u, v) = [α, β, γ ]. (25)

n view of (22) and (23) this means for all s ∈ Ω s,

f (s, 0) = α,
∂ f
∂t

(s, 0) = β
∂Fu
∂t

(s, 0) + γ
∂Fv

∂t
(s, 0).

In particular, since only Bij, j ≤ 2, have non-zero values and
derivatives when t = 0, the above condition translates to the
following requirement for all s ∈ Ω s,

ns∑
i=1

fi1Bi1(s, 0) = α,

ns∑
i=1

2∑
j=1

[
fij − F ij · (β, γ )

] ∂Bij

∂t
(s, 0) = 0.

(26)

.1.2. Double polar point
Eq. (26) shows the required smoothness conditions when the

ottom edge of Ω is being collapsed. Next, if we also want to
ollapse the top edge of Ω , we can repeat the previous argument
ith minor changes. We would, of course, need to choose a
ap F̂ that collapses the edge Ω s

× {t } instead. One way of
2

9

achieving this could be by choosing the control points F̂ ij :=

(ρ̂j cos(θ̂i), ρ̂j sin(θ̂i)) ∈ R2, where

ρ̂j := 1 − ρj, θ̂i := 2π − θi.

Then, we can follow the same argument as in Section 3.1.1. Asking
for C1 smoothness of f̂ pol is equivalent to asking that there exist
real values α̂, β̂, γ̂ such that for all s ∈ Ω s,

ns∑
i=1

fi,ntBi,nt (s, t2) = α̂,

ns∑
i=1

nt∑
j=nt−1

[
fij − F̂ ij · (β̂, γ̂ )

] ∂Bij

∂t
(s, t2) = 0.

(27)

ote once again that the smoothness at the polar point corre-
ponding to t = 0 is imposed with respect to the parame-
erization F (Ω), while that at the polar point corresponding to
= t2 is imposed with respect to the parameterization F̂ (Ω).

The corresponding smoothness conditions in Eqs. (26) and (27)
involve different coefficients fij for nt

≥ 4, and so can be resolved
eparately.

emark 3.1. The choices of θi, ρj, θ̂i, ρ̂j are such that the maps
and F̂ preserve the orientation of the parametric domain Ω .

.2. Rational polar B-splines at the polar points

We now elaborate how the derived C1 smoothness constraints
t a polar point will enable the computation of a DTA-compatible
xtraction matrix. This matrix represents a linear map to a set
f polar spline basis functions that are C1 smooth on the polar
arametric domain.

.2.1. Single polar point
As before, we start by considering the case of a single collapsed

dge, i.e., the one shown in Fig. 3(a). Let us arrange the set of basis
unctions {Bpol

ij : i = 1, . . . , ns
; j = 1, . . . , nt

} in a vector B, where
pol
ij occupies the (i + (j − 1)ns)th entry. Our goal is to construct
1 smooth polar basis functions on the polar parametric domain
pol as suitable linear combinations of the functions Bpol

ij . In other
ords, we are looking for an extraction matrix E such that the
olar spline basis functions in {Npol

l : l = 1, . . . , n} defined by the
ollowing relation,

:= EB, (28)

re C1 at the polar point. For fixed j, the set {Bpol
ij : i = 1, . . . , ns

} is
alled the (j−1)th polar ring of basis functions. When j > 2, all ba-
is functions in the (j−1)th ring already satisfy the C1 continuity
onditions at the polar point (their derivatives are identically zero
here), so they can be included without modifications in the set of
olar basis functions being created. The others will be substituted
y three smooth polar basis functions. This dictates that E will be
matrix, with n := ns(nt

− 2) + 3 rows and nsnt columns, taking
he following sparse block-diagonal form:

:=

[
Ē

I

]
, (29)

here I is the identity matrix of size ns(nt
−2)×ns(nt

−2) and Ē is
matrix of size 3×2ns. The entry of Ē corresponding to its lth row
nd (i + (j − 1)ns)th column is denoted with Ēl,(ij). We can then
ewrite Eq. (28) as follows for l = 1, 2, 3,

pol
l (u, v) =

ns∑ 2∑
Ēl,(ij)B

pol
ij (u, v).
i=1 j=1



H. Speleers and D. Toshniwal Computer-Aided Design 132 (2021) 102982

W

N

u
t
u
s

λ

T

T

T
n
g
o
g
a
i

α

f

r
w

E

b
ρ
c
h
s

E

T
c
f

T
{

a

R

w
i

e can pull these back to Ω using Eq. (24) to obtain the equiva-
lent representation for l = 1, 2, 3,

l(s, t) =

ns∑
i=1

2∑
j=1

Ēl,(ij)Bij(s, t). (30)

We will enforce C1 continuity at the polar point by requiring
the basis functions Npol

l to satisfy a linearly independent Hermite
data set at the polar point, in the spirit of Eq. (25). To this end, we
will use three source basis functions {Tl : l = 1, 2, 3}, that provide
s with the appropriate Hermite data. Given a non-degenerate
riangle △ with vertices v1, v2 and v3, let (λ1, λ2, λ3) be the
nique barycentric coordinates of point (u, v) with respect to △

uch that

1v1 + λ2v2 + λ3v3 = (u, v), λ1 + λ2 + λ3 = 1.

hen, we define

l(u, v) := λl, l = 1, 2, 3.

hese functions can be interpreted as triangular Bernstein poly-
omials of degree 1. They are non-negative on the domain trian-
le △. Moreover, they are linearly independent, form a partition
f unity, and span the space of bivariate polynomials of total de-
ree less than or equal to 1. Then, we require that Nl in Eq. (30) is
spline function f such that it satisfies the continuity constraints

n Eq. (26), with

= Tl(0, 0), β =
∂Tl
∂u

(0, 0), γ =
∂Tl
∂v

(0, 0),

or l = 1, 2, 3. In the interest of standardization, we choose the
triangle △ as equilateral with vertices

v1 = (2ρ2, 0), v2 = (−ρ2,
√
3ρ2), v3 = (−ρ2, −

√
3ρ2);

ecall the definition of ρ2 from Eq. (19). After some calculations,
e deduce that

¯1,(i1) = Ē2,(i1) = Ē3,(i1) =
1
3
,

and⎡⎣Ē1,(i2)
Ē2,(i2)
Ē3,(i2)

⎤⎦ =

⎡⎣ 1
3 0 1

3
−

1
6

√
3
6

1
3

−
1
6 −

√
3
6

1
3

⎤⎦[cos(θi)
sin(θi)

1

]
.

This relation says that
(
Ē1,(i2), Ē2,(i2), Ē3,(i2)

)
are simply the

arycentric coordinates of the control point F i2 := (ρ2 cos(θi),
2 sin(θi)) with respect to △. It is easily checked that △ en-
loses the circle centered at (0, 0) with a radius of ρ2, and
ence

(
Ē1,(i2), Ē2,(i2), Ē3,(i2)

)
are guaranteed to be non-negative. In

ummary, Ē is specified as

¯ :=

⎡⎢⎣
1
3 · · ·

1
3 Ē1,(12) · · · Ē1,(i2) · · · Ē1,(ns2)

1
3 · · ·

1
3 Ē2,(12) · · · Ē2,(i2) · · · Ē2,(ns2)

1
3 · · ·

1
3 Ē3,(12) · · · Ē3,(i2) · · · Ē3,(ns2)

⎤⎥⎦ . (31)

his matrix has full rank and the column sum is equal to one, thus
onfirming that E is DTA-compatible. The following result follows
rom the above discussion.

heorem 3.2. The C1 smooth polar spline functions in the set
Npol
l : l = 1, . . . , n} are linearly independent, locally supported,

nd form a convex partition of unity on Ωpol.

emark 3.3. As long as △ is chosen to be a triangle enclosing
the first polar ring of control points F ij for a given configuration,
e are guaranteed non-negative extraction coefficients. It is only

n the interest of standardization that we have chosen to fix △ as
an equilateral triangle with a fixed pattern of vertices.
10
Given n control points f l ∈ Rd, d ≥ 3, we can construct a C1

polar surface f embedded in Rd,

f (u, v) =

n∑
l=1

f lN
pol
l (u, v),

or, equivalently, after pulling back to Ω ,

f (s, t) =

n∑
l=1

f lNl(s, t). (32)

The behavior of f at the polar point is going to be fully specified
by the first three control points f 1, f 2 and f 3. These control points
can be thought of as forming a control triangle. For a fixed surface,
the transpose of the extraction matrix E defines the relationship
between control points of the Bij and control points of the smooth
Nl. More precisely, if

ns∑
i=1

nt∑
j=1

g ijBij(s, t) = f (s, t) =

n∑
l=1

f lNl(s, t),

then

g ij =

n∑
l=1

El,(ij)f l. (33)

In particular, the transpose of the extraction matrix Ē in Eq. (31)
essentially computes the control points of the zeroth and the first
polar rings of basis functions Bij as convex combinations of f 1, f 2
and f 3. In other words, it forces the zeroth and the first polar
rings of the control points g ij to be coplanar. The plane in which
they lie is the one passing through f 1, f 2 and f 3, and hence the
control triangle must be tangent to the surface f at the pole.

In light of Theorem 3.2 we can immediately conclude the fol-
lowing properties for the pulled-back functions Nl, l = 1, . . . , n.

Corollary 3.4. The spline functions in the set {Nl : l = 1, . . . , n} are
linearly independent, locally supported, and form a convex partition
of unity on Ω . Moreover, any polar surface f as in Eq. (32) with
non-collinear control points f 1, f 2 and f 3 will have a well-defined
tangent plane at the pole.

Remark 3.5. According to Section 2.2, the univariate sets of basis
functions {Bs

i : i = 1, . . . , ns
} and {Bt

j : j = 1, . . . , nt
} are built

from local NURBS basis functions through extraction matrices H s

and H t , respectively. Hence, by combining the matrices E , H s and
H t , the spline basis functions in the set {Nl : l = 1, . . . , n} can be
directly expressed in terms of local tensor-product NURBS basis
functions.

3.2.2. Double polar point
When dealing with double polar surfaces, the spline con-

struction can be obtained by collapsing a pair of two opposite
edges as illustrated in Fig. 3(b). As explained in Section 3.1, the
smoothness treatment of the two poles can be done separately
for nt

≥ 4. In this case, each pole leads to a local extraction
matrix by applying the same procedure as in Section 3.2.1 and
the combined global extraction matrix takes the following sparse
block-diagonal form:

E :=

⎡⎣Ē(1)

I
Ē(2)

⎤⎦ , (34)

where I is the identity matrix of size ns(nt
− 4) × ns(nt

− 4) and
¯
(i) s
E , i = 1, 2, are matrices of size 3 × 2n . By choosing the two
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olar parameterizations F (Ω) and F̂ (Ω) specified in Section 3.1,
t is easily verified that one can set

¯
(1)

:= Ē, Ē(2)
:= J3ĒJ2ns , (35)

here Ē is the matrix defined in Eq. (31) and J k is the exchange
atrix of size k × k, i.e., an anti-diagonal matrix of the form

k :=

⎡⎢⎢⎣
1

. .
.

1
1

⎤⎥⎥⎦ .

he extraction matrix E can then be used to compute the set
of spline functions {Nl : l = 1, . . . , n} in terms of the tensor-
roduct functions {Bij : i = 1, . . . , ns

; j = 1, . . . , nt
}. Similar to

he single-pole result in Corollary 3.4, these spline functions have
he following properties.

orollary 3.6. The spline functions in the set {Nl : l = 1, . . . , n} are
linearly independent, locally supported, and form a convex partition
of unity on Ω . Moreover, any polar surface f as in Eq. (32) with non-
collinear control points f 1, f 2 and f 3 and with non-collinear control
points f n−2, f n−1 and f n will have a well-defined tangent plane at
both poles.

3.3. Refinement of piecewise-rational polar surfaces

A polar spline surface can be refined in a manner similar to
the one discussed in Section 2.3. We begin with the following
observation. Consider the 3 × 3 matrix

M̄ :=

⎡⎢⎣
1
3 0 1

3

−
1
6

√
3
6

1
3

−
1
6 −

√
3
6

1
3

⎤⎥⎦
⎡⎣0 cos(θι) cos(θκ )
0 sin(θι) sin(θκ )
1 1 1

⎤⎦ ,

or some angles θι and θκ ̸∈ {θι, θι + π} selected from the set
n Eq. (20). This is a submatrix of Ē , defined in Eq. (31), consisting
f three linearly independent columns. Its inverse is given by

¯
−1

=

⎡⎣0 cos(θι) cos(θκ )
0 sin(θι) sin(θκ )
1 1 1

⎤⎦−1 ⎡⎢⎣
1
3 0 1

3

−
1
6

√
3
6

1
3

−
1
6 −

√
3
6

1
3

⎤⎥⎦
−1

=
1

sin(θκ − θι)
L̄

⎡⎣2 −1 −1
0

√
3 −

√
3

1 1 1

⎤⎦ ,

where

L̄ :=

[sin(θι) − sin(θκ ) cos(θκ ) − cos(θι) sin(θκ − θι)
sin(θκ ) − cos(θκ ) 0

− sin(θι) cos(θι) 0

]
.

Then, we define a sparse matrix D̄ of size 2ns
×3, whose non-zero

entries D̄ij are identified as follows: for j = 1, 2, 3,

D̄1j := M̄−1
1j , D̄ns+ι,j := M̄−1

2j , D̄ns+κ,j := M̄−1
2j .

From its construction it is clear that the product ĒD̄ is equal to
the identity matrix. Note that the product (J3ĒJ2ns )(J2ns D̄J3) is
also equal to the identity matrix. Hence, keeping in mind the
definition of E in Eqs. (34)–(35), the matrix

D :=

⎡⎣D̄
I

J2ns D̄J3

⎤⎦ (36)

gives rise to a product ED that is equal to the identity matrix. A
similar matrix D can be found (with only two diagonal blocks) for
the matrix E defined in Eq. (29).
11
Any refinement matrix of polar splines can then be built using
the following procedure. First, we compute the control points of
the tensor-product basis functions Bij as in Eq. (33). Then, we
refine the tensor-product control points using a tensor product
of univariate refinement matrices (see Section 2.3). Denote this
matrix with S , and denote the polar spline extraction matrices
before and after refinement with E and Ẽ , respectively. Then,
control points of the refined polar spline basis functions can
be obtained by applying a matrix R to the original set of polar
control points, where R is computed by solving the following
(overdetermined) linear system with a unique solution,

RẼ = ES.

After multiplication of both sides of this system with the matrix
D̃ (corresponding to Ẽ) as defined in Eq. (36), we arrive at

= ESD̃. (37)

emark 3.7. Similar to Remark 2.6, there is some flexibility in
he definition of D̃ for the computation of R in Eq. (37), as long as
t is a right inverse of Ẽ . The current choice is again done for the
ake of simplicity. For the computation of M̄−1

, from a numerical
oint of view, it is advised to select the angles θι and θκ from the
et in Eq. (20) such that their difference is as close as possible to
π/2. For instance, taking ι = κ + ⌊ns/4 + 1/2⌋ gives

κ − θι =
2π
ns

⌊
ns

4
+

1
2

⌋
,

and then det(M̄) = sin(θκ − θι) ≥ 0.86 for ns
≥ 3.

.4. Ellipsoids and spheres

Let us now present explicit descriptions of ellipsoids (and
s a special case also spheres) built using the C1 polar spline
ramework discussed thus far. Once again, in the interest of pro-
iding the simplest possible representations, we focus on smooth
escriptions of low(est) degree only. More precisely, we present
hree explicit descriptions of arbitrary ellipsoids using smooth po-
ar splines. The first one uses 8 rational pieces of bi-degree (2, 2);
he second one uses 4 rational pieces of bi-degree (2, 3); and the
ast one uses 2 rational pieces of bi-degree (3, 3). All approaches
ill define six C1 polar spline functions Nl and associated control
oints f l, l = 1, . . . , 6, such that the bivariate surface f ,

(s, t) := (fx(s, t), fy(s, t), fz(s, t)) :=

6∑
l=1

f lNl(s, t),

escribes the exact ellipsoid centered at (0, 0, 0) and with axis
engths (ax, ay, az),(
fx
ax

)2

+

(
fy
ay

)2

+

(
fz
az

)2

= 1. (38)

o this end, we will make repeated use of the identity matrix Ik
of size k × k and the exchange matrix J k of size k × k.

To visually illustrate the smoothness of f , we will also show
the surface f̃ obtained by perturbing one of the control points.
This surface will also be smooth at the poles. For uniformity
throughout the examples, we will choose the control points of
the perturbed surface as

f̃ l :=

{
f l + (0, 0, 4ax), l = 3,
f l, l ̸= 3.

(39)
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.4.1. C1 description of degree (2, 2)
For the first approach, we choose Ω s

= [0, 4] and Ω t
= [0, 2],

nd build the univariate rational spline spaces Rs (periodic) and
t on them using the following sets of parameters:

Rs
:

ξ(i) = [0, 0, 0, 1, 1, 1]

w(i)
=

[
1,

√
2
2 , 1

] ⎫⎬⎭ i = 1, . . . , 4;

t
:

ξ(i) = [0, 0, 0, 1, 1, 1]

w(i)
=

[
1,

√
2
2 , 1

] ⎫⎬⎭ i = 1, 2.

he corresponding piecewise-NURBS extraction operators are
s
= Hper defined in Eq. (17) and H t given by

H t
=

⎡⎢⎢⎢⎣
1 0 0 0 0 0

0 1 1
2

1
2 0 0

0 0 1
2

1
2 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎦ ,

respectively. The full tensor-product extraction matrix is obtained
as

H = H s
⊗ H t . (40)

he next ingredient in the C1 smooth polar construction is the
olar extraction operator, and it can be computed, using above
ormulas, to be

=

[
Ē 0
0 J3ĒJ8

]
, (41)

here the matrix Ē is given by

Ē =
1
3

+
1

√
2

⎡⎣0 0 0 0 1
3 −

1
3 −

1
3

1
3

0 0 0 0 −e+ −e− e+ e−

⎤⎦ ,
0 0 0 0 e− e+ −e− −e+ [

12
and

e+ =

√
3 + 1
6

, e− =

√
3 − 1
6

;

ee Eqs. (31) and (34)–(35). Here the compact notation of adding
scalar to a matrix means the entrywise operation of adding the
calar to each entry of the matrix. The matrix E maps a total of
6 tensor-product C−1 piecewise-NURBS Bj of degree (2, 2) to a
otal of 6 C1 polar splines Nl. Equivalently, EH maps a total of
2 NURBS bj of degree (2, 2) to a total of 6 C1 polar splines Nl.
hese relations are encapsulated in the following equation,

l(s, t) =

16∑
j=1

EljBj(s, t) =

16∑
j=1

Elj
72∑
k=1

Hjkbk(s, t).

inally, the required ellipsoid in Eq. (38) is obtained by defining
he associated 6 control points as

f 1 =

(
0, 2

√
2ay, az

)
, f 2 =

(
−

√
6ax, −

√
2ay, az

)
,

f 3 =

(√
6ax, −

√
2ay, az

)
, f 4 =

(
−

√
6ax, −

√
2ay, −az

)
,

f 5 =

(√
6ax, −

√
2ay, −az

)
, f 6 =

(
0, 2

√
2ay, −az

)
.

Example 3.8. The box at the top in Fig. 4(a) shows a bi-degree
(2, 2) unit sphere built by choosing ax = ay = az = 1, while the
box at the bottom shows a bi-degree (2, 2) ellipsoid with axis
lengths (1, 1

2 ,
1
3 ) built by choosing ax = 2ay = 3az = 1. These

escriptions use only 8 rational pieces. In each box, the figure at
he top shows the exact quadric, while the figure at the bottom
hows the deformed quadric obtained by perturbing the control
oints as per Eq. (39). The exact and deformed surfaces are all C1

mooth at the poles. ♦

.4.2. C1 description of degree (2, 3)
For the second approach, we choose Ω s

= [0, 4] and Ω t
=

0, 1], and build the univariate rational spline spaces Rs (peri-
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s

dic) and Rt on them using the following sets of parameters:

Rs
:

ξ(i) = [0, 0, 0, 1, 1, 1]

w(i)
=

[
1,

√
2
2 , 1

] ⎫⎬⎭ i = 1, . . . , 4;

t
:

ξ(1) = [0, 0, 0, 0, 1, 1, 1, 1]

w(1)
=

[
1, 1

3 ,
1
3 , 1

] .

he corresponding piecewise-NURBS extraction operators are
s

= Hper defined in Eq. (17) and H t
= I4, respectively. The

ull tensor-product extraction matrix H is obtained as in Eq. (40).
oreover, the polar extraction operator E is equal to the matrix

n Eq. (41). The latter matrix maps a total of 16 tensor-product
−1 piecewise-NURBS Bj of degree (2, 3) to a total of 6 C1 polar
plines Nl. Equivalently, EH maps a total of 48 tensor-product
URBS bj of degree (2, 3) to a total of 6 C1 polar splines Nl. These
elations are encapsulated in the following equation,

l(s, t) =

16∑
j=1

EljBj(s, t) =

16∑
j=1

Elj
48∑
k=1

Hjkbk(s, t).

inally, the required ellipsoid in Eq. (38) is obtained by defining
he associated 6 control points as

f 1 =

(
0, 4

√
2ay, az

)
, f 2 =

(
−2

√
6ax, −2

√
2ay, az

)
,

f 3 =

(
2
√
6ax, −2

√
2ay, az

)
, f 4 =

(
−2

√
6ax, −2

√
2ay, −az

)
,

f 5 =

(
2
√
6ax, −2

√
2ay, −az

)
, f 6 =

(
0, 4

√
2ay, −az

)
.

ote that, since we are using a higher-degree representation
ompared to Section 3.4.1, the control points move farther away
rom the spline surface, mimicking the behavior of classical
URBS.

xample 3.9. The box at the top in Fig. 4(b) shows a bi-degree
2, 3) unit sphere built by choosing ax = ay = az = 1, while the
ox at the bottom shows a bi-degree (2, 3) ellipsoid with axis
engths (1, 1

2 ,
1
3 ) built by choosing ax = 2ay = 3az = 1. These

escriptions use 4 rational pieces. In each box, the figure at the
op shows the exact quadric, while the figure at the bottom shows
he deformed quadric obtained by perturbing the control points
s per Eq. (39). The exact and deformed surfaces are all C1 smooth
t the poles. ♦

.4.3. C1 description of degree (3, 3)
Finally, for the third approach, we choose Ω s

= [0, 2] and
t

= [0, 1], and build the univariate rational spline spaces Rs

(periodic) and Rt on them using the following sets of parameters:

Rs
:

ξ(i) = [0, 0, 0, 0, 1, 1, 1, 1]

w(i)
=

[
1, 1

3 ,
1
3 , 1

] ⎫⎬⎭ i = 1, 2;

t
:

ξ(1) = [0, 0, 0, 0, 1, 1, 1, 1]

w(1)
=

[
1, 1

3 ,
1
3 , 1

] .

he corresponding piecewise-NURBS extraction operators are
s

= Hper defined in Eq. (18) and H t
= I4, respectively. The

ull tensor-product extraction matrix H is obtained as in Eq. (40).
oreover, the polar extraction operator E is equal to the matrix

n Eq. (41). The latter matrix maps a total of 16 tensor-product
−1 piecewise-NURBS Bj of degree (3, 3) to a total of 6 C1 polar
plines Nl. Equivalently, EH maps a total of 32 tensor-product
URBS b of degree (3, 3) to a total of 6 C1 polar splines N . These
j l

13
Fig. 5. A smoothly deformed sphere built from Fig. 4(a) by refining the surface
and then modifying the control points.

relations are encapsulated in the following equation,

Nl(s, t) =

16∑
j=1

EljBj(s, t) =

16∑
j=1

Elj
32∑
k=1

Hjkbk(s, t).

inally, the required ellipsoid in Eq. (38) is obtained by defining
he associated 6 control points as

f 1 =

(
0, 4

√
2ay, az

)
, f 2 =

(
−4

√
6ax, −2

√
2ay, az

)
,

f 3 =

(
4
√
6ax, −2

√
2ay, az

)
, f 4 =

(
−4

√
6ax, −2

√
2ay, −az

)
,

f 5 =

(
4
√
6ax, −2

√
2ay, −az

)
, f 6 =

(
0, 4

√
2ay, −az

)
.

bserve again that, since we are using a higher-degree represen-
ation compared to Sections 3.4.1 and 3.4.2 , the control points
ove even farther away from the spline surface, mimicking the
ehavior of classical NURBS.

xample 3.10. The box at the top in Fig. 4(c) shows a bi-degree
3, 3) unit sphere built by choosing ax = ay = az = 1, while the
box at the bottom shows a bi-degree (3, 3) ellipsoid with axis
lengths (1, 1

2 ,
1
3 ) built by choosing ax = 2ay = 3az = 1. These

escriptions use only 2 rational pieces. In each box, the figure at
he top shows the exact quadric, while the figure at the bottom
hows the deformed quadric obtained by perturbing the control
oints as per Eq. (39). The exact and deformed surfaces are all C1

mooth at the poles. ♦

emark 3.11. The examples presented here have focused on the
implest possible C1 descriptions of quadrics, namely descriptions
hat either use lowest-degree splines — bi-degree (2, 2) — or
he smallest number of polynomial pieces — two. Unsurprisingly,
hese simplest descriptions can lead to large control triangles
ince each control point influences a large portion of the spline
urface. Nevertheless, localized control is easily attained upon
efinement (see Section 3.3) and, in particular, refinement also
eads to much smaller control triangles that offer much finer
eometric control. The surface shown in Fig. 5 illustrates this
oint. This surface has been obtained by refining and modifying
he control points of the bi-degree (2, 2) sphere from Fig. 4(a).
he smaller control triangle is visible near the top of the figure.

. Conclusions

We have presented a general class of C1 smooth rational
plines that allow for the construction and refinement of C1
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mooth curves and (polar) surfaces. They are built by gluing
ogether multiple sets of NURBS basis functions with C1 smooth-
ess using a DTA-compatible extraction matrix. The main features
f the splines we have built are the following:

• all standard properties of NURBS, including support for in-
tuitive control-point-based design,

• (local) degree elevation and knot insertion based on classical
NURBS refinement,

• low-degree C1 descriptions of exact ellipses and ellipsoids,
and

• compatibility with CAD or CAE software through the explicit
representation in terms of NURBS.

n particular, with regard to the last two bullets above, we believe
hat the explicit, NURBS-compatible C1 descriptions of ellipses
and ellipsoids provided herein will be of use to geometric mod-
elers [21] and computational scientists [9] alike. For instance,
the exact C1 (re)parameterizations at polar points may make the
design of algorithms more stable and efficient; it may also avoid
the need for special treatment of polar points.
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