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Chapter 1

Introduction

Cycling is healthy, environmentally friendly, sustainable, flexible, space-saving and more.
Therefore, city dwellers are widely encouraged to use the bicycle as their mode of transport.
But at the same time, the infrastructure of many urban areas is struggling to cope with the
growing volume of bicyclists, leading to delays, reduced comfort, and parking problems.
Handling the enhanced bicycle demand requires adjustments to ensure a positive cycling
experience, for example to road infrastructure, traffic signals, and parking facilities. How-
ever, the scientific knowledge on this matter is limited and few generic design guidelines
exist, leading to a different approach in each municipality. Apart from being costly, these
city-specific adaptations result in different looks of the urban infrastructure, which poten-
tially leads to confusing and unsafe situations for travelers.

This dissertation provides insight into the dynamics of bicycle flow by examining cycling
movements in crowded conditions. Patterns in the bicycle behavior are discovered by look-
ing at the motion from a bird’s-eye perspective, and properties of bicycle flow are identified
by aggregating individual characteristics. These patterns and properties are useful pieces of
information that help to pinpoint effective measures to better manage the urban traffic. For
example, knowing the preferred distance to others while cycling or at standstill, can lead to
guidelines on how wide bike paths should be or what the required size is of waiting areas at
intersections. Furthermore, unraveling patterns in cycling movements can identify factors
that improve the efficiency of bicycle streams and with it, enhance the flow of total urban
traffic.

This introduction continues by elaborating on the need for understanding bicycle traffic in
Section 1.1 and identifies the scientific relevance of this thesis, and specifies the research
focus. Then, Section 1.2 addresses the main objective and research questions, Section 1.3
describes the research approach, Section 1.4 presents the context of the study, and Sec-
tion 1.5 briefly explains the principles of traffic flow theory that are used in this dissertation.
An overview of the research contributions are listed in Section 1.6 and finally, the outline
the thesis structure is given in Section 1.7.

1



2 1 Introduction

1.1 Need for understanding bicycle flow dynamics

In some places around the world, cyclists are a rarity, while in others they are everywhere
you look. The latter is the case in the Netherlands, where 28% of all trips are made by
bicycle. For trips within a city, the modal share is even higher, reaching up to 50% in some
places (De Haas and Hamersma, 2020). This high demand leads to congestion and delays,
which is best noticeable at intersections. The highest perceived crowdedness however, is
experienced while cycling on busy bike paths (CROW, 2017b), and is related to the wide
variety of bicycle types. Hindrance occurs, for example, due to the spatial impact of cargo
bikes or the speed difference between conventional and electric bikes. Recent research has
shown that some people become reluctant to cycle because they feel unsafe in crowded situ-
ations (De Winter, 2020). To prevent the pro-cycling culture from being negatively affected
by its own success, it is important to find ways to better manage the bicycle flow. Doing so,
requires a deeper understanding of bicycle flows and the underlying behavior.

The current level of understanding of bicycle flow dynamics is limited, despite the growing
scientific interest it has received in recent decades. The earlier papers already addressed
the cycling movements at intersections (Opiela et al., 1980), and on one-way paths (Botma
and Papendrecht, 1991; Navin, 1994), leading to valuable insights regarding speed, volume,
passing maneuvers, etc. However, the findings were focused on free-flow situations, which
means that cyclists move at their desired speed and congestion is absent. Over time, more
case studies were conducted to also include busy traffic conditions, leading to interesting
findings on for instance, intersection capacity (e.g., Raksuntorn and Khan (2003), Wang
et al. (2011), Hoogendoorn and Daamen (2016)). However, the underlying data is location
specific and thus differs in terms of path segregation, path width, bicycle type, and more.
Also, the focus of each study differs, leading to scattered insights into cycling behavior. To
gain general insights and theories, more data is required that enables the comparison be-
tween sites.

Another way to build up knowledge on an unknown subject like bicycle flow is by com-
paring it to a similar topic that has been well studied. To this end, experiments have been
conducted to find similarities between bicycle, pedestrian and motorized traffic. In these
experiments, the participants moved along circular or oval shaped tracks while maintaining
their order, indicating that overtaking was not allowed. By varying the number of people on
the track, the density, average speed and flow could be studied from free-flow to congested
conditions, as well as the relation between these flow characteristics. Results showed great
resemblance between the different modalities, indicating equivalent behavioral mechanisms
(Zhang et al., 2014; Zhao and Zhang, 2017). As a consequence, existing modeling concepts
for car traffic could be used to simulate bicycle traffic also. Based on this knowledge, other
single-file experiments have been conducted to compare the results with the outcomes of
the first bicycle models (e.g., Andresen et al. (2014), Jiang et al. (2016)). However, these
models concerns following movements only. It is unknown whether this comparison to car
traffic holds when cyclists can cycle more freely and are allowed to overtake each other.

Developing traffic flow models is important because they are helpful tools to predict and
understand traffic patterns. By simulating different scenarios regarding demand or fleet
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composition, infrastructural changes can be developed without spending money on the im-
plementation. However, a model is as accurate as its foundation, meaning that the outcomes
depend heavily on the underlying assumptions. To date, cyclists have been included in
traffic models but their behavior has been simplified, for example cars with different speed
characteristics (e.g., Jia et al. (2007), Jin et al. (2015)) or greater freedom of movement (e.g.,
Andresen et al. (2014)). Although these models contribute to the understanding of bicycle
traffic, they are unable to capture the true nature of bicycle flow. This includes complex
movements in congested conditions such as multi-channel flow and anticipation behavior,
which have not yet been comprehensively described. To simulate bicycle flow in a more
realistic manner, it is important to examine and describe the dynamics of bicycle flow in
crowded situations.

In this quest, choices can be made regarding the level of detail in which the movements are
described. The microscopic perspective describes the movements of every cyclist individ-
ually. This means that the level of detail is high and that describing the combined bicycle
flow results in a large set of complex equations. A less detailed approach is the macroscopic
one, which represents the cycling movements as a collective and on an aggregated scale.
Describing bicycle flow on this level requires less variables and analytical expressions than
the microscopic one. As a result, the macroscopic model is easier to implement in applica-
tions such as traffic control. However, this level is also associated with high traffic volumes
and is therefore not often considered as a suitable option for modeling bicycle flow. The
bicycle volumes in the Netherlands are adequate to also examine this, yet unexplored, mod-
eling approach for describing bicycle traffic flow.

Macroscopic flow models describe traffic flow in aggregated terms and do not specify the
individual travelers. They are build on the principle of mass conservation, which means
that, for example, a change in speed must coincide with an opposite change in density. A
key element of this model type is the fundamental diagram, which describes the equilibrium
relation between density, speed and flow. For car traffic, multiple shapes of this funda-
mental relation have been proposed, like the parabolic (Greenshields, 1935) and triangular
shape (Daganzo, 1994). For following-only bicycle movements, a scaled version of these
shapes can be used because of the aforementioned resemblance in behavioral mechanisms
between cars and cyclists (Zhang et al., 2014). However, due to the lack of empirical data,
no fundamental diagram has been proposed so far that applies to the situation where cyclists
are allowed to overtake. To determine such relation, a deeper understanding of bicycle flow
dynamics in congested conditions is required.

Summarizing, there is a need for information to better manage bicycle traffic and design
(network) infrastructure such that crowdedness on bike paths and congestion at intersections
can be reduced. The development of bicycle traffic flow models can help in this manner,
but this requires better understanding bicycle flow, especially in the situation where cyclists
are allowed to overtake. To arrive at general insights about this matter, there is a need for
empirical data both on bike paths and at intersections. Furthermore, the characteristics of
bicycle flow need to be identified in such a way that bicycle flow can be described on the
macroscopic level.



4 1 Introduction

1.1.1 Scientific focus

The need for better understanding bicycle flow dynamics has been established. However,
there are many choices to be made about what to focus on to deepen this knowledge. Four
aspects are now addressed to specify the research focus.

Congested flow conditions
The traffic flow conditions are classified as either free-flow or congested. In free flow,
cyclists can move at their desired speed, while they are being constrained by others in con-
gested conditions. Previous research has focused on the unconstrained movement, thereby
diving into typical values for speed, overtaking maneuvers, and path positioning in low de-
mand situations. How these variables change under congested conditions is yet unclear,
while this is an important aspect of the dynamics of bicycle traffic flow. As mentioned ear-
lier, the congested flow situation has been studied for single-file movement, but not yet for
the situation where cyclists are allowed to overtake. Therefore, this dissertation focuses on
analyzing bicycle flow in busy traffic situations where cyclists can follow, move alongside,
and overtake each other.

Simple infrastructure setting
Busy traffic situations occur both at urban streets as well as at intersections. Furthermore,
bicycle infrastructure comes in many types and shapes. For example, the facilities differ
in their level of segregation, such as shared streets, on-street bike lanes, and off-street bike
paths. Other differences occur in, for example, path width, slope, directionality (i.e., uni-,
bi-directional), shared use (e.g., with pedestrians or mopeds), intersection type (i.e., con-
trolled vs uncontrolled) and priority regulation favoring cars, cyclists, or another mode. The
cycling behavior is expected to vary per situation, especially in the degree of interaction
with other traffic modes. Given the limited understanding of bicycle flow dynamics in it-
self, the scope of this research is narrowed down to capture primarily bicycle movements
that are least influenced by interactions with infrastructure or other traffic modes. The focus
is therefore on uni-directional flow to exclude influences by oncoming traffic, and on sim-
ple infrastructural setting, such as separated bike lanes and controlled intersections, without
height differences and where the interaction with other traffic is limited.

Macroscopic traffic variables
Understanding the overall dynamics of bicycle flow is done best by taking a macroscopic
approach. Although individual data contains more information and thus potentially leads to
a better understanding, it may also create an information overload. By looking at the aggre-
gated properties only, the fluctuations of individual cycling preferences are filtered, which
enables the identification of cycling patterns and relations. For this reason, the focus in this
dissertation lies on analyzing the macroscopic quantities density, speed and flow of bicycle
traffic.

Interaction with other modes and bicycle types
On many cycle paths, cyclists share the infrastructure with mopeds, cargo bikes, racing
bikes and more. The composition of the bicycle stream influences the flow dynamics due
to differences in, for instance, speed, dimension, and maneuverability. To better understand
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bicycle traffic flow, it is key to also analyze the impact of stream composition by comparing
a homogeneous situation with a heterogeneous one. In practice however, bicycle traffic is
always of a heterogeneous composition. Therefore, it is also important to apply the knowl-
edge on bicycle flow to mixed traffic situations. For this reason, the focus of this dissertation
is not solely on uniform bicycle flow, but also on applying it to mixed traffic situations.

1.2 Aim and research questions
This dissertation’s objective is to better understand the dynamics of bicycle traffic flow in
high demand situations, where cyclists can use the full width of the available path and are
allowed to overtake. The obtained knowledge should shed light on the relation between
flow variables in bicycle traffic, and describe typical cycling behavior on a macroscopic
level such that cyclists can be included in traffic flow models. This aim is reflected by the
following research question:

How do the macroscopic quantities density, speed and flow of bicycle traffic relate to
each other, and how can cycling behavior be integrated in a macroscopic flow model?

This overarching research question is split up into three parts with associated subquestions.
The focus is first on gathering and analyzing empirical data, where a distinction is being
made between straight paths and intersections. After that, a switch is being made to mod-
eling bicycle flows. The associated subquestions are listed below, as well as the chapter
number in which each question will be addressed. Each chapter contains a background sec-
tion in which the scientific need for this question is addressed.

Part I: Empirical research into bicycle flow on single paths

• How to design a cycling experiment that can capture the key flow characteristics of
bicycle traffic? (Chapter 2)

• How do density, speed and flow relate to each other for uni–directional bicycle flow,
and how are these affected by path width and anticipation behavior? (Chapter 3)

• How does path width influence the maximum flow on a uni-directional bike path?
(Chapter 4)

Part II: Empirical research into bicycle flow at controlled intersections

• What is the influence of jam density and merging cyclists on the queue discharge rate
at a controlled intersection? (Chapter 5)

• Can the jam density of bicycle queues be influenced by managing the queue build-up
and if so, does the relation between jam density and discharge rate hold for higher
jam density values? (Chapter 6)

Part III: Modeling bicycle flow

• How can we describe and model bicycle flow in a mixed traffic situation? (Chapter 7)
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1.3 Research approach

Empirical data is key to unravel the dynamics of bicycle flow. Therefore, the primary ap-
proach to answer the research questions in part I and II is to observe and analyze bicycle
movements. The data is collected in a real-life setting and via multiple controlled experi-
ments.

A controlled experiment facilitates that person-specific information is available, for instance
via questionnaires. This environment also allows for investigating the effect of specific in-
fluencing factors, such as jam density or path width, by performing different scenarios with
identical group of participants. This type of experiment is therefore a useful way to gather
data on specific parts of bicycle traffic flow, and is used three times in this dissertation, in
Chapter 2, 4 and 6.

The real-life environment captures the natural cycling behavior since the cyclists are, apart
from an information sign, hardly aware of being observed. An advantage of this intrusive
sensing approach is that influencing factors such as time pressure, cycling experience and
familiarity with the infrastructure are unaffected. The downside is that information regard-
ing these and other factors is missing, which complicates the comparison to other samples.
The unobtrusive observation is used in Chapter 5.

Part III of this thesis focuses solely on modeling bicycle flow. Here, general observations of
typical cycling behavior are used to first, develop a way to include typical bicycle behavior
in a macroscopic model and second, to face-validate the modeling outcome for different
scenarios.

1.4 Research context

This doctoral research was part of the ALLEGRO project, which is short for unrAvelLing
sLow modE travelinG and tRaffic: with innOvative data to a new transportation and traffic
theory for pedestrians and bicycles. Although the project description mentions slow modes,
the combined term for cyclists and pedestrians was adapted to active modes instead. The
project was financed by the European Research Counsel under grant number 667792, and
provided eight PhD and three Postdoc positions, which were all based at Delft University of
Technology. The overall objective of ALLEGRO was:

“To develop and empirically underpin comprehensive behavioral theories, conceptual and
mathematical models to explain and predict the dynamics of pedestrians, cyclists, as well
as mixed flows at all relevant behavioral levels, including acquiring spatial knowledge, ac-
tivity scheduling, route choice and operations, within an urban context, with a special focus
on the role of ICT on learning, and choice behaviour.” – Hoogendoorn (2014).

Within ALLEGRO, three pillars were identified, being: Active Mode Urban Mobility Lab-
oratory, Transportation and Traffic Flow Theory for Active Modes in an Urban Context, and
Theory and Laboratory Applications. This research fits in the second theme and concerns
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the macroscopic theory and modeling of cycle flows. Four other topics fitted in this theme of
which one was the microscopic theory and modeling of cycling behavior, which was studied
by Alexandra Gavriilidou. Since the topics are closely related, the issue of data scarcity was
tackled as a collaboration, resulting in the organization of a large-scale cycling experiment,
which is described in Chapter 2.

1.5 Theory of traffic flow

This section describes in short the principles of traffic flow theory that are used in this dis-
sertation. As mentioned earlier, traffic can be described with different level of detail. On
the microscopic level, the movements are described using individual speed v, spacing s,
headway h, where v = dx

dt , while the macroscopic level describes the motion as a whole in
terms of density k, average speed u and flow q. The two approaches describe the same traffic
situation and are thus intertwined.

The density is the number of cyclists on a road stretch at a certain time. In the one-
dimensional situation, where cyclists are only following each other, equals density the in-
verse of the spacing, k = 1/s and is expressed in cyclists per meter. Since cyclists also move
alongside and overtake each other, the density in usually expressed in two dimensions. In
this case, the density equals the inverse of the individual area Ai, k = 1/Ai, and is expressed
in cyc/m2. This concept of individual area, or voronoi area, is further explained in Chapter 3.

The flow is the number of cyclists that pass a certain location per unit of time (cyc/s of
cyc/h). This definition of flow is used to describe traffic in the uninterrupted flow situation.
In this dissertation, the term flow is used also in combination with the cumulative cyclist
number and queue discharge rate. The cumulative flow is the total number of cyclists that
has passed a certain point at a moment in time. The term is further explained in Chapter 4.
The queue discharge rate is used to describe the maximum flow after a stop moment, so in
the interrupted flow situation. Chapter 5 and 6 analyzes the queue discharge flow at inter-
sections and connects it to the jam density. The latter is the density at a standstill, which
covers a large range due to the varying distances that cyclists maintain to each other when
stopping in a queue.

The macroscopic quantities density, speed, and flow are related to each other in uninter-
rupted flow conditions via the equation q = ku. This means that one of the variables can be
computed if the other two are known. Also, it means that the flow is zero when either the
density or speed is zero. The equilibrium relation between density and speed is determined
empirically and is known as the fundamental diagram, as posed first by Greenshields (1935).
Several different shapes of the relation are proposed for motorized and pedestrian traffic but
none yet for non-lane-based bicycle traffic. This is mainly due to the lack of empirical data
which is addressed in Chapter 2.

The fundamental diagram is an important input for a macroscopic flow model. To this end,
Chapter 7 uses an adjusted form of the diagram that is proposed in Daganzo (1994). This
diagram has a triangular shape where flow increases with increasing density in the free-flow
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branch, and flow decreases with increasing density in the congested branch. The two sides
are separated at the critical density and capacity flow. Travelers move at their desired speed
in the free-flow state, while they reduce speed in congested conditions due to crowdedness
on the road. This simplified relation was established for car traffic, but holds also for single
file bicycle flow (Zhang et al., 2014) as long as a scaling correction is applied based on the
typical speed of cyclists and dimension of their bikes. Chapter 3 addresses the shape of the
density–flow relation for the non-lane-based flow, where cyclists are free to move alongside
and overtake each other.

Apart from the speed–density relation, a key ingredient for a macroscopic model is the con-
tinuity equation. This equation follows from the conservation of mass, i.e. cyclists, and
prescribes that a change in density over time must coincide with an opposite change in flow
over space. In other words, traffic participants should not appear of disappear from the
road. Chapter 7 uses the Lagrangian representation of traffic, which shows the traffic evo-
lution with time, visualized by trajectories of platoon heads. This differs from the Eulerian
representation which visualizes the number of travelers that has passed a certain location
at a moment in time. The advantage of using the Lagrangian method lies in the accuracy
of the numerical solution of the model. More details on the model, numerical scheme and
proposed fundamental diagram can be found in Chapter 7.

1.6 Contributions
The research in this dissertation leads to multiple insights on the dynamics of bicycle flow
and the underlying behavior, thereby contributing to the overall understanding of bicycle
flow on the aggregated level. This section highlights the main contributions of this thesis,
both to science and to society.

1.6.1 Scientific contributions
The most important contributions to science are listed below.

• Collection of novel empirical data sets
Multiple experiments are described in this dissertation, leading to the extension of
empirical data on, primarily non-following, bicycle flow. On request, this data can be
made available for future research projects. The most important contribution is the
data set resulting from the large-scale cycling experiment (Chapter 2), which consists
of trajectory data of cyclists moving in different infrastructural settings. Other data
sets varies from cyclist counts at a bottleneck situation (Chapter 3) and counts at
intersections (Chapter 5, 6).

• Identifying macroscopic characteristics of bicycle flow in relation to path width
This thesis examines the density, speed and flow in bicycle streams and quantifies
their relation to path width (Chapter 3, 4). Furthermore, capacity estimates are pro-
vided for different path widths. To date, a large variation in characteristic values for
density, speed and flow has been reported, which is presumably due to differences
in infrastructural setting or fleet composition. This thesis specifies the variables for
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a series of path widths, based on the same group of cyclists. Controlling for the cy-
clist flow composition leads to a better understanding of the impact of path width and
enables the comparison to findings at other sites.

• Establishing bicycle fundamental relations
The research in this thesis sheds light on the characteristics of bicycle streams along
a wide density range. More specifically, the relation between density and speed, and
density and flow is addressed, covering both the free-flow and congested conditions
(Chapter 3). The shape of the density–flow relation differs for the following and
the, newly-explored, non-following situation, especially in the congested branch. In-
stead of a decrease in flow with density, the relation shows a stagnation in flow with
increasing density, indicating that cyclists can maintain in motion while cycling in
close proximity to others. This process is highly influenced by anticipation, indicat-
ing that it is necessary to include the downstream conditions when modeling bicycle
flows.

• Understanding of behavioral patterns in bicycle streams
This dissertation observes and analysis cycling movements in different settings, lead-
ing to three main insights regarding aggregated behavior and movement patterns. First
one is the capacity drop phenomenon (Chapter 4), which is a well-known event in
motorized traffic but has not been observed before in bicycle traffic. It concerns the
systematic difference in capacity before and after the onset of congestion. Second
one is the tendency of cyclists moving in crowded conditions to cycle in different for-
mations depending on path width (Chapter 3, 4). This configuration is linked to the
number of sublanes, which can partially overlap. The spacial headway increases when
the active sublanes have more overlap. As a result, the sequence in formations going
from a 2.00-meter to a 0.50-meter path shows analogy to a merging process. Third
insight is that cyclists anticipate upon downstream conditions on two different ways
(Chapter 3). Some cyclists stop pedaling when they see congestion ahead, thereby
cycling at lower speed than what is expected based on the direct density conditions.
Other cyclists accelerate to fill gaps that appear by the premature slowing down of cy-
clists who stopped pedaling. Furthermore, cyclists are observed to temporarily accept
moving at high speed in a high density conditions when they have visual confirmation
that the conditions downstream are favorable.

• Insight into the discharge process of bicycle queues
The queue discharge process at a controlled bicycle intersection is studied, looking
specifically at the discharge rate, jam density, queue configuration, and merging cy-
clists (Chapter 5, 6). The efficiency of the discharge process is captured by the dis-
charge rate, which in turn depends on the jam density. Higher jam density leads to
higher discharge rates, which leaves the question how the density at standstill can
be influenced. Multiple configurations are tested, resulting in a jam density double
that of the value observed in real-life, showing the potential of managing the queue
build-up process for optimizing the throughput for all traffic modes. Furthermore, a
novel bicycle equivalent unit is introduced to correct the discharge rate for the impact
of cyclists joining in from different directions during the queue discharge process.
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• Macroscopic modeling of bicycle traffic flow This thesis describes the first macro-
scopic flow model for mixed traffic that includes bicycle traffic (Chapter 7). The
movements of (groups of) cars and cyclists are simulated by specifying a unique speed
function for each mode of transport that takes into account the proximity of all modes.
This class-specific approach enables the modeling of typical cycling behavior such as
maneuvering along a queue of cars in congested conditions. Furthermore, anticipa-
tion behavior is included in the model by only taking into account the downstream
conditions.

1.6.2 Societal contributions

This research into bicycle traffic flow serves a societal purpose. The findings are most rele-
vant to urban areas with already a high share of cyclists in place, while some are interesting
for cities with low cyclist demand. The main societal contributions are now discussed, or-
dered in its applicability to urban environments ranging from high to low cyclist demand.

Cities with high cyclist demand
The research in this paper is highly relevant for urban environments with a large share of
cyclists, where problems such as congestion at intersections and overcrowded bike paths are
occurring at a daily basis. The findings regarding intersection efficiency provide a hands-on
solution to improve the throughflow by managing the queue build-up process. Solely im-
plementing measures to increase the jam density will already reduce the delay for cyclists,
while also adapting the signal timing will improve the throughflow for other traffic modes
as well. On one-ways paths, the obtained insights will not directly lead to a decrease in
(perceived) crowdedness. However, a high flow and thus small delay can be ensured by
adapting the infrastructure such that cyclists have a clear visual range and that the peak de-
mand matches the path capacity. The obtained knowledge on the density–flow and density–
speed relations, as well as the development of a macroscopic flow model for cyclists is most
relevant for this high demand situation. Although they are not directly applicable in prac-
tice, they do provide key information to further develop modeling tools to simulate bicycle
traffic. These tools can, in time, be used to identify (future) bottlenecks in the urban infras-
tructure, and to develop plans to address or mitigate the resulting delay.

Cities with medium cyclist demand
Depending on the maturity and bikeability of the existing infrastructure, a medium cyclist
demand may or may not lead to problems. In either case, the cycling infrastructure can be
designed or adapted using the reported capacity values for different path widths. Similar to
the high demand case, the insights regarding jam density and discharge rate can be applied
in practice to not only decrease the delay for cyclists, but to also improve the throughflow
for other traffic modes.

Cities with low cyclist demand
This research findings can also be applied to enhance the bikeability in areas with only a
small share of cyclists. Here, bike users will be moving in free-flow conditions, meaning that
they have the freedom to cycle at their desired speed. Most relevant findings in this case are
those on capacity and intersection efficiency. Depending on the municipalities’ ambitions
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of promoting the bicycle, the urban infrastructure can be designed such that the capacity of
bike paths fit the current or envisioned demand. Also, measures to increase jam density and
thus optimize the intersection capacity can be implemented. This will most likely lead to
results quickly, because fewer cyclists have to adapt their behavior and queuing grids are
better visible on the path.

1.7 Thesis outline

The visual outline of this dissertation is presented in Figure 1.1. It shows the structure and
the topics of the individual chapters, which are based on five published articles and one
submitted manuscript that is under review. The book consists of three parts, which can be
read consecutively as well as independently.

Part I addresses the uninterrupted and uni-directional flow situation, meaning that the flow
on single paths is being studied where cyclists do not have to stop due to external factors
such as a traffic signal or having to give priority. Cyclists may need to change their speed
and stop because of internal factors, such as changes in density or speed within the stream
of cyclists. This internal connection between density, speed and flow has been studied in
ring-road experiments before with the restriction that cyclists were not allowed to overtake.
However, little data is available on cycling situations that enable overtaking and anticipation
behavior. To overcome this hurdle, a large-scale cycling experiment has been organized in
which cyclists were allowed to use the full width of the path. The set-up and execution of
this experiment is described in Chapter 2.

CH8. Conclusions

Modeling bicycle flow

CH7. Modeling mixed 

bicycle–car traffic  

CH1. Introduction

Empirical research into bicycle 

flow at controlled intersections

CH5. Jam density, 

merging cyclists, and

queue discharge rate

CH6. Queue configuration, 

jam density and the effect on 

queue discharge rate

Empirical research into bicycle 

flow at single paths

CH2. Large-scale cycling 

experiment

CH3. Flow properties of 

bicycle traffic flow

CH4. Capacity drop in 

bicycle traffic

Figure 1.1: Visual outline of the thesis, arrows indicate the reading order.
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Based on the empirical data from the large-scale experiment, the aggregated variables den-
sity, speed and flow are analyzed in Chapter 3, as well as cycling patterns for different
variations in path narrowing situations. The main interest is whether the relaxation of the
single-file movement leads to different insights into bicycle traffic flow compared to earlier
research. And whether anticipation behavior can be identified and quantified. A second,
smaller, experiment is set up to examine the influence of path width to the maximum flow
in Chapter 4. Here, the macroscopic quantity flow is analyzed quantitatively for different
path widths. An qualitative analysis shows patterns in bicyclist configuration on the path.

The interrupted flow situation is studied in Part II of the dissertation, being intersections.
It thereby focuses on the influencing factors of the queue discharge rate, which is a crucial
element for the efficiency of an intersection. The higher the queue discharge rate, the more
cyclists can pass the intersection during the green signal. First, the discharge rate is studied
in a real-life setting in Chapter 5. Here, the focus is on the influence of jam density, which
is higher when cyclists queue up closer together, and the influence of cyclists that merge
into the queue during discharge phase.

It is found that the jam density has a positive influence on the queue discharge rate, thereby
implying that the efficiency of the queue discharge process is higher when cyclists maintain
a small distance to each other in the queue. To test if this relation between jam density
and discharge rates holds for higher density values as well, the queue discharge process is
observed in the setting of a controlled experiment in Chapter 6. Here, the process of queue
formation is influenced with the aim to increase the jam density and to study the effect in
the discharge rate.

In the final part of the dissertation, Part III, the focus shifts to representing bicycle traffic in
a mixed traffic model. Chapter 7 aims is to represent bicycle traffic in a mixed bicycle–car
traffic situation. More specifically, it describes the typical cyclist behavior of overtaking car
traffic in congested situations. The chapter describes how an existing first-order flow model
for motorized traffic is expanded to also include cyclists. This modeling approach is a first
step to include bicycle behavior in macroscopic traffic models.

Finally, Chapter 8 combines all findings and presents the conclusions of the dissertation.
Furthermore, it addresses the implications for practice and lists the scientific contributions
and open questions.
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Empirical research into bicycle
flow on single paths
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Chapter 2

Large-scale bicycle flow
experiment: set-up and
implementation

Empirical data is key in developing new insights and theories about bicycle traffic flow, but
little such data is available. To overcome this data shortage, we designed and executed a
large-scale experiment in which cyclists moved along a continuous track. The experiment
allows us to observe cycling behavior in different infrastructural settings, such as a merg-
ing, crossing, narrowing, curved and straight stretch. This chapter describes the setup and
implementation of the experiment, thereby answering the following research question: How
can we design a cycling experiment that can capture the key flow characteristics of bicycle
traffic?

Along with the preparation, design, and execution of the experiment, this chapter also
presents descriptive statistics for the participants and the bicycles involved. The result-
ing dataset is the input for the analysis in Chapter 3.

The large-scale experiment was prepared, designed and executed in close collaboration with
Alexandra Gavriilidou and her supervisors. Alexandra took the lead the writing process and
is therefore the first author of this chapter.

This chapter is published as a journal article:
Gavriilidou, Wierbos, Daamen, Yuan, Knoop, and Hoogendoorn (2019), Large-Scale Bicy-
cle Flow Experiment: Setup and Implementation. Transportation Research Record: Journal
of the Transportation Research Board 2673, 5, 709-719.
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Abstract

Cycling research at the operational behavioral level is limited, mainly because of the lack
of empirical data. To overcome this data shortage, we performed a controlled, large-scale
cycling experiment in the Netherlands. In this paper we describe the methodology for set-
ting up and implementing such an experiment, from the motivation of its design using a
conceptual model describing cyclist behavior to adjustments that were required during the
experiment. The main contribution of this paper is, therefore, to be used as a guide in future
experimental data collections. Moreover, we present the characteristics of the participants
and their bicycles, and provide a qualitative description of phenomena observed during the
experiment. Finally, we elaborate on the potential that the collected dataset holds for future
research into understanding and modeling operational cycling behavior.

2.1 Introduction

Cycling as a main mode of transportation has in recent years been promoted by many gov-
ernments worldwide due to its health and environmental benefits. The focus is mostly on
finding ways to attract more people to the bicycle, while at the same time it is important
to ensure a safe and comfortable infrastructure that can accommodate high cyclist volumes.
This requires understanding of bicycle traffic characteristics, as well as insights into behav-
ior of cyclists while cycling on the road and making decisions to interact with other traffic
participants and with the infrastructure. Research in this field is, however, limited and that
is to a large extent due to the lack of empirical data.

To overcome this shortage of data, we performed a controlled large-scale cycling exper-
iment. This paper describes the methodology for setting up and implementing such an
experiment. These steps may be used as a guide in future experimental data collections
and as a reference for future analyses using the data. We describe the collected dataset and
elaborate on its potential uses. The contribution of this paper is, therefore, threefold: (i)
delineating the process to set up a large-scale cycling experiment; (ii) describing the perfor-
mance of the experiment, and; (iii) presenting a large database of cyclist trajectories.

This paper is structured as follows. In section 2.2 we provide a background of existing
literature on operational cycling behavior and identify the research gaps. Based on these,
we formulate our research objectives in section 2.3 and discuss the findings of a stated
preference survey that we conducted as a first step to meet the objectives (section 2.4). Sec-
tion 2.5 describes the development of the data collection plan, while section 2.6 discusses
its implementation. In section 2.7 the dataset is presented, followed by an outlook of future
research.

2.2 Background on operational cycling behavior

This section provides an overview of existing research on the operational cycling behavior
on an individual and on an aggregated level and identifies research gaps in each level.
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2.2.1 Individual cycling behavior
Operational cycling behavior on an individual level can be represented by decisions regard-
ing the use of the provided infrastructure while cycling and the interaction with other traffic
participants.

In unconstrained situations, interaction decisions depend on the individual’s choice for
speed and positioning on the cycle path. A number of studies have looked into desired
speed and acceleration profiles in free-flow conditions (Ma and Luo, 2016; Twaddle and
Grigoropoulos, 2016), on different road surface types and gradients (Shepherd, 1994), with
normal bicycles as opposed to electric ones (Schleinitz, 2016) and at wide or narrow cycle
lanes (Vansteenkiste et al., 2013). These personal preferences might be constrained at high
bicycle traffic volumes and when multiple directions intersect, an effect which is yet to be
investigated. The interaction decisions in such situations, their coverage in literature and
the corresponding knowledge gaps are the following:

• steering to avoid colliding with other cyclists: Steering maneuvers of bi-directional
cyclists on collision course have been studied in Yuan et al. (2018), but the interaction
with other directions is yet unknown.

• overtaking cyclists: Research on cyclists moving in the same direction has looked
into following behavior (Andresen et al., 2014), but overtaking decisions have not yet
been investigated.

• yielding to other cyclists: To the best of our knowledge, there has been no research
on yielding decisions at unsignalized crossings where priority rules apply, but are not
enforced.

• accepting a gap in a conflicting stream: The gap acceptance of cyclists against
right-turning vehicular traffic has been studied (Jiang et al., 2013). This, however,
might differ significantly when cyclists interact with other cyclists and may also be
influenced by whether the intention is to cross or merge.

• stopping at a red traffic light: Researchers have analyzed red light running of cy-
clists at specific intersections across the world and identified influencing attributes
that explain this behavior, such as gender, age, amount of conflicting motorized traf-
fic, crossing distance and cycling with company. An overview of these studies can be
found in Richardson and Caulfield (2015).

• positioning when joining a queue: The formation of multiple channels in queues
has been observed at one signalized intersection, stressing the need for a bigger sam-
ple (Kucharski et al., 2019). The queue formation process in other situations, like
upstream of an open bridge or a reduction of the cycle path width, is not yet studied.

2.2.2 Aggregated cycling behavior
The aggregated behavior of traffic participants is typically captured by the so-called fun-
damental diagram, which is the relation between average speed, density and flow. Several
studies have investigated this relationship for cyclist flows and identified characteristics that
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are similar to vehicular traffic and pedestrian flow (Chen et al., 2013; Zhang et al., 2013).
Other studies focused on understanding bicycle traffic flow and collected empirical data
through:

• single-file controlled experiments: They have been conducted outdoors on circular
tracks (Navin, 1994; Andresen et al., 2014; Jiang et al., 2016; Mai et al., 2013; Zhao
and Zhang, 2017). In this setting, bicycle flow in low and high density situations
can be observed, resulting in empirical data covering the full density range of the
fundamental diagram. This provided insights into the dynamics of bicycle flow and
identified flow characteristics such as stop-and-go waves. However, overtaking was
not allowed in these experiments, which is often observed in real-life situations.

• observing cycling behavior in daily traffic: Studies have estimated capacity of bi-
cycle paths and resulted in a wide range of values (Botma and Papendrecht, 1991; Li
et al., 2015; Greibe and Buch, 2016; Jin et al., 2017a). This might be explained by
the differences in infrastructure or bicycle type composition. The influence of electric
bicycles has been studied (Wang et al., 2015; Zhou et al., 2015; Jin et al., 2017a), but
could not be controlled due to the nature of the empirical data. By controlling the
infiltration rate of electrical bicycles, its impact to the overall flow characteristics can
be identified more clearly. Furthermore, most empirical data is collected in condi-
tions with low cyclist volumes and lacks observations in the congested regime of the
fundamental diagram.

In short, the literature so far provides limited insight into the bicycle flow dynamics for high
demand situations when overtaking is allowed and the effect of different attributes, such as
the infiltration rate of electric bicycles, on the shape of the fundamental diagram, has not
yet been studied.

2.3 Research objectives

Based on the given literature overview, it can be concluded that the research effort to observe
and understand cycling behavior is limited. The most essential gap seems to be studying
high cyclist volumes, as well as bicycle-to-bicycle interactions at designated cycling infras-
tructure. With respect to individual behavior, overtaking and yielding have been studied the
least. At an aggregated level, overtaking is also important, as it is expected that it can ex-
plain the flow differences in the congested regime. Its effect on the shape of the fundamental
diagram has not yet been studied, nor has the penetration of electric bicycles.

In order to address these gaps, we focus on bicycle traffic in the absence of other transport
modes. Our objective is to collect a novel dataset that captures high cyclist volumes and
where overtaking and yielding interactions take place. The aim of this dataset will, then, be
to retrieve the characteristics of the fundamental diagram when overtaking is allowed and
also to study the effect of bicycle type, an in particular electric bicycles, to the overall flow
dynamics. Moreover, the dataset will be used to investigate the attributes that best explain
the decisions to overtake and yield.
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2.4 Survey on influencing attributes

To investigate the attributes that can explain overtaking and yielding decisions, we con-
ducted an online stated preference survey in the Netherlands in summer 2017. The respon-
dents were asked to name the attributes that influence their decision making in three situa-
tions: (i) overtaking or staying behind a single or a small group of cyclists; (ii) going ahead
or stopping at a crossing to allow cyclists with priority to merge or cross, and (iii) stopping
or continuing at a red traffic signal. The latter was included to check whether the attributes
found from observations match the stated ones and as such justify the predictive value of
the survey. The specificities of each situation were outlined, and always involved cycling
during daytime on road infrastructure designated for cyclists and separated from other traf-
fic. Per situation, a list of attributes was provided to the respondents based on behavioral
hypotheses regarding the most influential attributes. Each list contained ten attributes dis-
played in random order, and three empty fields to enter other attributes. A selection of three
to ten attributes was requested per situation. Apart from that, general information about the
respondents was collected, such as gender and nationality.

By analyzing the 444 responses, using principal component analysis to reduce dimensional-
ity, the most influential attributes per decision could be obtained. In Figure 2.1 the prevalent
attributes for each decision are linked to the corresponding decision (the check marks in-
dicate the attributes that can be studied with our dataset). These decisions are part of the
individual behavior, together with steering and pedaling decisions. The schematic fits into
the conceptual model of Figure 2.2 which describes cycling behavior at the operational
level. According to it, attributes influence the behavior of individuals, who collectively give
rise to aggregated behaviors. These behaviors can be observed via microscopic and macro-
scopic variables, whose relations are visualized in the conceptual model.

Figure 2.1: List of influential attributes per decision according to our survey results. The
check marks indicate the attributes that can be studied with the dataset collected
in our experiment.
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Figure 2.2: Conceptual model of operational cycling behavior. Attributes are linked to in-
dividual behaviors, as already shown in detail in Figure 2.1. Collectively they
lead to aggregated behaviors. These behaviors can be observed via micro- and
macroscopic variables.

The validity of the survey findings is demonstrated by the attributes found significant for the
decision to stop at a traffic light as they match those found in literature. However, more data
are needed to quantify the effect of the attributes on the overtaking and yielding decisions.
A data collection plan is, thus, necessary.

2.5 Development of data collection plan
The research steps to set up the data collection plan are described. First, the data needs
and requirements are identified (subsection 2.5.1), followed by the motivation of the choice
for the data collection approach and equipment (subsection 2.5.2). A controlled experi-
ment is selected and its set-up is presented, covering the design of the scenarios (subsec-
tion 2.5.3) and the cycling track (subsection 2.5.4), the estimation of participants needed
(subsection 2.5.5) and the duration required for each scenario (subsection 2.5.6).

2.5.1 Data needs and requirements

As previously mentioned, one of our aims is to retrieve the characteristics of the funda-
mental diagram when overtaking is allowed and the fleet consists of different bicycle type
compositions, as well as to investigate the overtaking and yielding decisions of individuals
and to identify the attributes that best explain them. The data type necessary to study indi-
vidual cycling behavior is trajectories, i.e., cyclist positions in time and a two-dimensional
space. Trajectories are the most detailed type of traffic data, which can be aggregated in
time or space to study macroscopic variables needed for the construction of the fundamental
diagram. By examining trajectories, the use of the cycle path width and the speed adjust-
ments can be studied relative to the position and speed of other cyclists and the environment
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(width, curve). The accuracy that is required for the trajectories lies within 10cm which sets
requirements for the data collection equipment. Additionally, it is crucial to be able to track
and distinguish each individual, while also linking the observations to personal characteris-
tics.

Another requirement is set by the need to capture the fundamental diagram. Therefore, it
is necessary to observe low as well as high densities, which can be achieved by controlling
the infrastructure setting and bicycle inflow rates. Studying the effect of different bicycle
types means that the composition of the fleet should also be controlled. Moreover, control-
lability is necessary to ensure that the desired cyclist interactions (overtaking and priority
negotiation) take place and that the effect of the influencing attributes of Figure 2.1 can be
investigated.

2.5.2 Data collection approach and equipment
Three data collection approaches can be used to retrieve trajectory data:

• observing real-life situations: Even though this approach can capture the uninflu-
enced and unbiased behavior, the degree of controllability is very low and does not
meet the prescribed requirements.

• doing an experiment in virtual reality: Existing bicycle simulators are of unknown
validity and behavioral realism. They also do not allow for multiple individuals to
cycle simultaneously and interact with each other.

• doing a controlled experiment in a physical environment: A controlled experiment
allows for a high degree of controllability and, thus, satisfies the requirements.

In a controlled experiment, the number of cyclists using the infrastructure, the routes they
take, as well as the design of the infrastructure itself can be controlled. By carefully in-
structing the participants, specific elements of their behavior, like their choice of speed, can
be steered when necessary. Even the external conditions, such as light and wind, may be
controlled.

However, the approach has some disadvantages that should be mitigated as far as possible
through the experimental design. One of the main disadvantages is the occurrence of the
so-called “learning-effect”. This means that participants change their behavior over time
as their familiarity with the experimental setting increases and they get tired. This can be
minimized by varying the layout and tasks that the participants are asked to perform during
the day and by shortening their cycling duration.

Another potential drawback relates to data validity and representativeness. It may be ar-
gued that the behavior is not realistic due to the fact that participants know they are being
observed. We counter this argument based on the fact that the behavior is observed several
times and as they need to interact with other cyclists, their consciousness shifts to the rid-
ing task and any differences observed in behavior are attributed to intra-personal variability.
Moreover, this is intuitive behavior, and the observation equipment will hardly be visible.
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Regarding the data collection equipment, as the trajectories need to have high accuracy,
overhead video cameras are selected. By placing them above the cyclists, the cameras track
their movements with as little occlusion as possible, and continuously in time. To be enable
the automated extraction of trajectories from the video images, a red cap is assigned to
each participant. This color is chosen because it is easiest to recognize under a wide range
of lighting conditions (Daamen and Hoogendoorn, 2003). Finally, to link the observed
trajectory to a specific individual, the caps are assigned a unique identification code.

2.5.3 Scenario design

On a microscopic level, the aim is to investigate the effect of the attributes of Figure 2.1 on
overtaking and yielding decisions. In the scenario design we can control for two of them,
namely the bicycle type and the directionality of the cycle path. Regarding bicycle type,
separate runs are scheduled each with a different fleet composition and the scenarios are
referred to as “Overtaking”. More specifically, there is a run for regular bicycles only, runs
that combine regular bicycles with one special type, and a run with all types. In these sce-
narios there is a one-way flow on the cycle path. For the fleet with all types, the behavior is
compared with a run that allows for bi-directional flow.

With respect to yielding decisions, the direction of approaching cyclists is an attribute. Its
effect can be investigated by separately studying crossing and merging streams. Therefore,
two scenarios are designed, namely “Crossing” and “Merging”. As the bicycle type is an
attribute, runs are performed with a mixed cycling fleet as well as with regular bicycles only.

On a macroscopic level, scenarios are needed to observe low as well as high densities to
construct the fundamental diagram. We implement this by narrowing the cycle path, which
obstructs the cyclist flow and leads to queue formation upstream of the narrow section when
the demand exceeds its capacity. By varying the width of the narrow path (“bottleneck”),
various congested patterns occur, determining both density and speed upstream of the bot-
tleneck. We call it “Active bottleneck” scenario. It consists of different runs, each having
another bottleneck width or a different cycling fleet composition, to observe the effect of
bicycle types on the fundamental diagram. Specifically, the effect of electric bicycles is in-
vestigated by comparing three penetration rates: 0%, 10%, and 20%. These values represent
typical values of electric bicycles in urban traffic situations in the Netherlands.

2.5.4 Track design

The layout of the track needs to be carefully designed because it largely determines the
behavior that can be observed in the experiment. First of all, cyclists should maintain a
speed as close as possible to their normal cycling speed and behave as they would in real-
ity. To this end, a continuous track is selected, where participants make laps instead of short
stretches that would require frequent acceleration from, and deceleration towards, standstill.
A rounded rectangle shape is preferred over a circular one, because: (i) the cyclists will not
be constantly steering in a curve; (ii) there is a straight stretch for overtaking maneuvers,
and (iii) the attribute “going straight or turning” for overtaking decisions can be studied.
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In terms of dimensions, the length of the straight stretch is set at 40m, which is an adequate
length for cyclists to overtake (Yuan et al., 2018). The width of the track is chosen to be
2m. This width ensures that there is enough space for cyclists to overtake and it is also
possible to sketch situations with a bi-directional flow (Zeegers, 2004). The radius of the
curve should allow cyclists to maintain a comfortable speed without the inside pedal hitting
the surface if they lean. For a riding speed of 20km/h, the minimum radius is 7m (Shepherd,
1994).

In order to ensure that the desired interactions take place, different track elements have been
integrated into a single track layout, see Figure 2.3. The blue continuous line is the main
track, used in all scenarios, where cyclists enter at the top left corner and cycle clockwise.
The choice for this cycling direction is based on the norm to cycle on the right-hand side in
the Netherlands and as such the inside curve will be taken by the slower cyclists. The inside
curve radius is set at 10m, with a quarter of a circle placed on each side and connected with
a long straight stretch of 40m and a short one of 16m. The long stretch on the top side gives
room for overtaking, while the bottleneck is placed at the bottom side in the Active bot-
tleneck scenario. The short stretch accommodates crossing conditions at a straight stretch
rather than within a curve.

Another element is activated to observe crossing behavior (green dotted line in Figure 2.3)
where cyclists are riding counter clockwise. With this configuration, there is a bi-directional
flow on the top part where the two routes overlap enabling the investigation of the effect of
“one- or two-way cycle path” on the overtaking behavior, and also creating two crossing
points which increases the amount of observations. An extension of 10m of straight stretch
is added at the crossing points and the curve radius is set at 8m, such that the crossing takes
place in the middle of the blue track.

A third element is added (black dashed line in Figure 2.3) for the Merging scenario, which is
connected to the main track in two locations; one is the off-ramp where cyclists can exit the
main track and the other one is the merging point where cyclists join the main flow again.
It is worth noting that no markings indicating priority are added on the track to prevent that
they influence the behavior.

With respect to controlling the flow, a bottleneck is introduced at the bottom side of the
track. It consists of two inflatable mattresses placed next to each other on the track to cre-
ate a narrow stretch 4m long. The height of the bottleneck is 33cm which blocks pedaling
over it but does not hinder steering, creating the impression of an elevated curb rather than
that of a wall which could be unsafe to drive through. The bottleneck is moved inwards to
decrease the width of the track in that section. This way the cyclists are obstructed, leading
to queue formation when the cyclist demand exceeds the capacity of the bottleneck. It is
placed downstream the straight stretch (seen from the cycling direction) ensuring that the
queue will grow along the straight stretch, and the observations are uninfluenced by the
curve. By varying the bottleneck width, various congested patterns occur upstream of the
bottleneck.
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The bottleneck is set to four different widths, namely 75, 100, 125 and 150cm. These
numbers are based on a preliminary bicycle flow experiment that we performed, where the
main path width was also 2m and the path was narrowed to a width of 150 to 50cm using
steps of 25cm. The 50cm width was found to be too narrow for safety reasons. In order to
observe high densities, the flow through the bottleneck should then be reduced in a different
manner. The shape of the bottleneck is changed from a small straight stretch to one that
cyclists have to meander through, referred to as the "Meander". The two mattresses are
placed behind each other with 2m space in between and in such a way that they leave a path
of 75cm to the side of the track (Figure 2.4).

Figure 2.3: Track layout showing in color the elements activated for different scenarios.

Figure 2.4: Construction of meander bottleneck using two mattresses.
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2.5.5 Number of participants

The next step is determining the number of participants. We base this primarily on the aim
to capture the relation between density, speed and flow. Assuming a diamond queue for-
mation of 2-1-2-1, the jam density is 0.7 cyclists/m2, which leads to 28 cyclists for a queue
length of 20m, which is enough to observe the behavior for the high density and low speed
situation.

To maintain a 20m long queue, there need to be as many cyclists joining the tail of the queue
as leaving the queue through the bottleneck. The number of cyclists that need to circulate
the track depends on the outflow rate of the bottleneck, as well as on the average cycling
speed of the circulating cyclists. To estimate the maximum number of participants, the
scenario with the highest queue outflow rate should be considered. Based on our preliminary
experiment, the outflow rate of the bottleneck of 150cm width is 1.82 cyclists/s. Based on
an average cycling speed of 19km/h (Botma and Papendrecht, 1991), 55 additional cyclists
are needed. Consequently, a total number of 83 participants is required in the experiment.

2.5.6 Scenario duration and scheduling

The estimation of the duration needed for each scenario is based on the requirement to have
enough observations to draw statistically significant findings. In the Overtaking scenario
this is translated into giving each cyclist the chance to make at least ten decisions whether
to overtake or not (i.e., cycle through the top straight stretch). When the bottleneck is inac-
tive, it takes about 30s to complete a lap, which leads to a required duration of 5min.

With respect to the Merging and Crossing scenarios, the indicator to base the observation
calculations on is the attribute “number of approaching cyclists”. In order to investigate
its effect on the decisions being made, different group sizes, i.e., number of cyclists ap-
proaching the negotiation point from each side, need to be observed. As large numbers are
appreciated the bottleneck that would constrain the outflow is removed. The time needed
to collect sufficient observations of different group sizes is calculated using a simple mi-
crosimulation. It assumes a constant cycling speed and simulates dots moving around the
track. Once a dot is detected close to the negotiation point, the number of dots present on
each approaching stream is counted, while taking into account a physical length of about
2m. If both approaches have a positive number, it is counted as an interaction of a group size
coming from the right against a group size coming from the left. After running for a longer
duration, the number of encounters of the occurring group combinations at the merging and
crossing points is calculated. The result is that the Merging scenario requires 40min and
achieves interactions with a maximum group size of 6 against 5 cyclists, and every combi-
nation in between. Since the Crossing scenario has two observation points on the track, it
requires half the time (20min) for these observations.

In the Active bottleneck scenario, a 5min duration is chosen. This duration enables the esti-
mation of flow, density and speed in continuous and homogeneous conditions in the queue,
without lengthening the total duration of the experiment. Also, it accommodates capacity
estimation using different aggregation times, which decreases the influence of individual
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behavior. Since participants are able to pass the bottleneck multiple times, approximately
5-10 times depending on the bottleneck width, the individual behavior averages out which
benefits the capacity estimation.

In terms of scheduling, the day of the experiment is divided into two sessions, one with
special bicycle types and one without, so that we can observe the behavior of regular bi-
cycles only and compare it to the behavior when special bicycle types are present. In the
latter, the runs with these special types are dominant, checking the overtaking behavior and
the fundamental diagram for different penetration rates. Only two bottleneck widths (75
and 125cm) are kept to limit the total running time. In the session without special bicycles,
there is time to test all the widths and to focus on the Merging and Crossing scenarios. Due
to the fact that the latter require long observation times, we split the duration in batches of
smaller runs of 10min each.

It is estimated that it takes 2min for all cyclists to enter the track in a one-by-one pattern,
and therefore the Overtaking and Active bottleneck scenario runs are scheduled to last 7min.
Since three fleet compositions (no special types, electric and regular bicycles, all types) are
in both scenarios, their corresponding runs are scheduled in continuation, i.e., without any
break. First the Overtaking scenario takes place and then the bottleneck is activated, which
is estimated to take 1min. The activation is performed by introducing a moving bottleneck
on the track, i.e., two persons cycling slowly and next to each other such that they cannot be
overtaken and forming a queue behind them. This way, all cyclists are led as one group up
to the bottleneck, activating it.

Summing up all these times leads to a net cycling time of 90min for each session. To prevent
exhausting the participants, breaks of 15min are scheduled every 3 runs and in between runs
there is a small pause of 5min to initialize the next one. Apart from exhaustion, the learning
effect and boredom need to be prevented. We solve this by alternating the scenarios in the
schedule and by keeping the runs at about 10min each. The planned order of scenario runs
and their properties are summarized in Table 2.1.

2.6 Implementation of experimental design

Having set the requirements and the experiment design, the implementation follows and is
divided into the selection of the location, the recruitment of participants and the set-up of
the measuring and tracking equipment.

2.6.1 Location selection

The selection of the place where the experiment can be executed is based on several criteria.
The most important criterion is that it has enough space to fit the track. The floor area re-
quired for the designed track is 100m x 40m. Moreover, the location should strictly prevent
the presence of other modes. These conditions, along with the fact that a specific track with
this shape and curves will be hard to find, point towards the construction of the track at a
location rather than the use of existing infrastructure. Another benefit of creating the track
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Table 2.1: Schedule of scenario runs during the day of the experiment.

Scenario Bicycle fleet composition Bottleneck width Run duration Time to next run Session
Regular Electric Racing Cargo [cm] [min] [min]

Overtaking 60% 20% 10% 10% 125 7 1 Morning
Active bottleneck 60% 20% 10% 10% 125 5 5 Morning
Overtaking 86% - 14% - - 7 5 Morning
Active bottleneck 75% 25% - - 75 7 15 Morning
Overtaking 75% 25% - - 125 7 1 Morning
Active bottleneck 75% 25% - - 125 5 5 Morning
Merging 60% 20% 10% 10% - 10 5 Morning
Active bottleneck 86% 14% - - 75 7 15 Morning
Crossing 60% 20% 10% 10% - 10 5 Morning
Active bottleneck 60% 20% 10% 10% 75 7 5 Morning
Active bottleneck 86% 14% - - 125 7 15 Morning
Merging 60% 20% 10% 10% - 10 5 Morning
Overtaking 86% - - 14% - 7 - Morning
Overtaking 100% - - - 125 7 1 Afternoon
Active bottleneck 100% - - - 125 5 5 Afternoon
Active bottleneck 100% - - - 100 7 5 Afternoon
Merging 100% - - - - 10 15 Afternoon
Active bottleneck 100% - - - 75 7 5 Afternoon
Crossing 100% - - - - 10 5 Afternoon
Active bottleneck 100% - - - 150 7 15 Afternoon
Active bottleneck 100% - - - Meander 7 5 Afternoon
Merging 100% - - - - 10 5 Afternoon
Active bottleneck 100% - - - Meander 7 15 Afternoon
Crossing 100% - - - - 10 5 Afternoon
Merging 100% - - - - 10 - Afternoon

is that it can be made obstacle-free to ensure good visibility. Even though the visibility due
to obstacles has been found to be an attribute in the yielding decision, it is left out of scope
to avoid accidents during the experiment.

Another criterion relates to the controllability of external conditions such as weather and
light. These can only be controlled when the experiment takes place indoors. The weather
conditions influence cycling behavior, but investigating their effect would require repeating
the experiment under different circumstances which is hard to predict and anticipate, as well
as costly and difficult to plan with a sufficient number of participants. Therefore, we need
to keep the circumstances constant during the whole experiment.

The indoor environment raises two needs. Firstly, the ceiling to be at least 10m high to
accommodate tracking equipment and prevent the feeling of cycling in a closed space. Sec-
ondly, the surface type should resemble real-world cycling conditions, be safe, and, there-
fore, be neither slippery nor adhesive.

Last but not least, the location should be easy to find and access, preferably near a crowded
and inhabited area. This increases the chances of recruiting enough participants who will
show up on time.

Given these criteria, we selected a large exhibition hall in the Ahoy Convention Center,
Rotterdam (The Netherlands). The size of the rented hall is 142m x 70m x 12m, which
satisfies all the dimension requirements and the floor surface is cement, so similar to cycling
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on road surface. Furthermore, it is well accessible by bicycle, connected by public transport
and has a car parking.

2.6.2 Participant recruitment

The next step in the implementation is the recruitment of participants. Since it is desired to
study the effect of gender and nationality of cycling behavior, anyone is welcome to join.
The only restriction is set with respect to age due to ethical reasons, and it is being at least
16 years old. A maximum age threshold is not set, but participants are asked to be physi-
cally able to cycle for around 90min including breaks. As reward for the time they spent in
the experiment, participants are given a small monetary compensation.

In order to increase the behavioral realism, participants are asked to bring their own bicycle.
Upon registration, participants are asked for the bicycle type they intend to bring, as well as
for other bicycle types they own. Special focus is placed in the recruitment phase on three
special bicycle types (racing, electric and cargo).

Registration is performed through an online form, where availability in time of day (morn-
ing/afternoon session) and bicycles is declared. For those that meet the requirements, a
confirmation is sent which includes the request to avoid red clothing which obstructs the
tracking of the red caps in the camera images. Several platforms are used for the recruitment,
such as posts in social media, universities and schools in Rotterdam and advertisements in
local newspapers.

2.6.3 Measuring and tracking equipment

As previously mentioned, cameras are placed above the track to record the cyclist move-
ments throughout the day. Due to the lighting conditions of the hall, which were low and
variable, high quality cameras had to be used. Two snapshots of the experiment are shown
in Figure 2.5. Figure 2.5(a) is a side view (from an overview camera, not to be used for
tracking) during a Merging scenario. The cameras are placed at the ceiling next to the lights
to improve the image quality and are 10m above the ground. In order to cover the complete
straight stretches, three cameras are required on each side with an overlapping area to ensure
a continuous trajectory. Two more cameras are placed above the crossing points to observe
the cyclist interactions there.

A top view at the location of the bottleneck can be seen in Figure 2.5(b). From this view
the trajectories can be extracted by tracking the red cap of each cyclist. As shown in the
image, each cap has a pattern of white boxes (like a bar code) on the flap which is unique
and linked to the participant characteristics. An additional dot is marked in the middle, to
identify looking and cycling direction.

Last but not least, we set up a corner to measure three main bicycle dimensions, i.e., full
bicycle length, length from the front wheel to the handlebar and width of the handlebar.
This enables studying the effect of different sizes on the behavior in addition to the bicycle
types.
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(a) Side view of the Merging scenario. Photo by TU Delft/Frank Auperlé.

(b) Top view of the Active bottleneck scenario.

Figure 2.5: Camera snapshots.

2.7 Experiment execution and high-level description of data

The experiment took place on 25 April 2018 with 178 participants evenly spread over the
morning and afternoon sessions. This section presents the collected dataset, starting with
adjustments of the plan that were needed during the day and continuing with the statistics
of the participant characteristics and a qualitative description of the data.

2.7.1 Plan adjustments

During the first run in the morning session, it became clear that there were too many cyclists
on the track. The queue configuration of 2-1-2-1 that was expected upstream the bottleneck
was not observed. Instead, participants anticipated the bottleneck and started braking al-
ready at the curve. This resulted into a lower density than anticipated and an overall low
speed (congested conditions).
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The solution was to create two groups with half of the participants and alternate the group
on the track. This way, the long breaks could be skipped as the participants could rest when
the other group was cycling. Thanks to this change, it was possible to not only follow the
plan, but have time for some additional scenario runs.

Since the narrowing at the bottleneck was anticipated and a dense queue was not naturally
arising, we activated it using the moving bottleneck (i.e., the two persons in orange vests in
Figure 2.6).

Figure 2.6: Queue formation behind a moving bottleneck.

In the Merging scenario, we initialized with a group starting from inside but the participants
self-organized during the runs and dynamically shifted among the two routes. We decided
not to obscure this process since it enhances observation of heterogeneity and could even
lead to a model on route choice.

2.7.2 Participant characteristics

The descriptive statistics of the participants and their bicycles are summarized in Table 2.2
per session. It can be seen that more males participated in the experiment with a higher
share in the afternoon session. The majority of the sample is Dutch and there is a wide
range of ages.

With respect to the bicycles, the morning session contained special bicycle types with a high
share of electric (35%) and a considerable share of 9% of racing bicycles. Unfortunately, no
participants with cargo bicycles could be recruited. In the afternoon, almost all participants
had regular bicycles. On average, the bicycle dimensions seem consistent between the two
sessions.

2.7.3 Qualitative data description

In total, six hours of videos have been collected which capture the cyclist movements
throughout the day. Since there was time left, we tried one more situation. We had one
run where we slowly filled up the track with everyone in to study the occurring wide mov-
ing jams. The planned scenarios were executed and additional to our expectations, the
following phenomena were observed:
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Table 2.2: Descriptive statistics of participants and their bicycles per session.

Characteristic Morning session Afternoon session
Females 34 30
Males 54 60
Dutch 78 84
Other European 8 2
Non European 2 4
Minimum age 19 17
Average age 52 51
Maximum age 80 89
Standard deviation of age 19 19
Average height [cm] 174 177
Standard deviation of height 10 10
Average weight [kg] 79 77
Standard deviation of weight 15 13
Electric bicycles 31 3
Racing bicycles 8 0
Average bicycle length [cm] 180 180
Standard deviation of bicycle length 6 5
Average handlebar width [cm] 59 59
Standard deviation of handlebar width 6 4

• Participants were braking already upstream the curve which led to lower than ex-
pected density.

• Many cyclists were overtaking in curves rather than the top straight stretch.

• Pairs were formed on the track, which blocked overtaking maneuvers (Figure 2.7(a)).

• A variety of yielding decisions was observed regardless of group sizes. Sometimes
steering to create space was preferred to stopping (Figure 2.7(b)).

• During the Merging scenario runs, participants alternated between the two routes,
leading to a dynamic share and different group sizes interacting at the merge.

• Some of the merging-route cyclists used their arms to indicate they would take the
off-ramp and others taking that route would copy (Figure 2.7(c)).

• The right angle at the merging point was not always feasible to follow, so some cy-
clists went slightly off the track to merge (Figure 2.7(d)).

These observations show that anticipation plays a key role while cycling. In this obstacle-
free environment where the curve and bottleneck were in sight, cyclists adjusted their speed
in preparation for them. Moreover, speed differences could be better expressed in curves
where the cautious cyclists would brake and the rest used this opportunity to overtake. Per-
sonal characteristics seem to be dominant with respect to yielding decisions and less so the
number of approaching cyclists. Participants respected the rule to cycle inside the cycle
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(a) Pair of cyclists obstructing the flow.

(b) Cyclist in black makes space for merging cyclists in-
stead of yielding.

(c) Route indication using arms.

(d) Straying off the path to merge.

Figure 2.7: Examples of observed phenomena.
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path, unless it would have led them to unsafe situations. Last but not least, self-organization
has been found for cyclists in the form of distributing over different routes and copying the
behavior of others. These qualitative findings will be the starting point for future research,
additionally to what was already intended with the collected dataset.

2.8 Future research with collected dataset
In this paper, we described the set-up of a large scale controlled cycling experiment and
qualitatively presented the collected dataset. The next research step is to process the video
data and automatically extract trajectories out of the images, stitch trajectories between con-
secutive cameras and link to a participant number. This rich dataset will be used to investi-
gate behavior of different bicycle types and personal characteristics, and derive theoretical
models that represent the decisions individual cyclists make while cycling and interacting
with other cyclists, as well as models that describe the operationalization of these decisions.
The dataset will also be used to calibrate and validate these models. Apart from studying
individual behavior, we will study macroscopic bicycle traffic characteristics and construct
the fundamental diagram for cycling. Such models can be used in future research to assess
the quality of different bicycle infrastructure designs under several demand conditions.





Chapter 3

Macroscopic properties of a
cyclist stream and the effect of
anticipation

The large-scale cycling experiment described in the previous chapter generated a large em-
pirical data set of cycling movements. In turn, this chapter uses a small portion of that data
to extract characteristic values for density, speed and flow for different path widths. More
specifically, we look at the data of the bottleneck scenarios and examine the macroscopic
properties of the bicycle flow for different widths of the narrowing. By extracting individual
density and speed, and by analyzing the aggregated quantities and behavioral patterns, this
chapter addresses the following question: How do density, speed and flow relate to each
other for uni-directional bicycle flow, and how are these affected by path width and antici-
pation behavior?

Results show that the characteristics of bicycle traffic flow are heavily influenced by anti-
cipation. The average cycling speed is not solely linked to how much maneuvering space a
cyclist experiences his or herself, but also to the density that this cyclist observes at a certain
distance ahead. As a result, similar average speeds can coincide with different density val-
ues, which complicates the description of a single fundamental diagram for bicycle traffic
flow. The insight that anticipation behavior is an important aspect in bicycle flow dynamics
is used in the macroscopic flow model for mixed bicycle–car traffic in Chapter 7.

This chapter has been submitted to a journal and is currently under review.
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Abstract

This research provides a deeper understanding of bicycle flow by providing insights into the
properties of a cyclist stream for different path widths and uncovering the role of anticipa-
tion behavior. We analyze trajectory data from a large–scale cycling experiment. We derive
relevant macroscopic properties, i.e., density, speed and flow, and connect these to the path
width and usage. Depending on the path width, cyclists move in different configurations
(overtaking, staggered and strictly-following). Furthermore, the density–speed relation and
density–flow relation are investigated. They are found to be influenced by anticipation be-
havior, resulting in a more gradual decrease in cycling speed with increasing density and a
more gradual increase in flow with increasing density, when compared to the situation with-
out anticipation. Furthermore, we find a minimum speed for cyclist and we find that cyclists
can maintain a high flow rate in congested conditions. The obtained insights contribute
to the understanding of bicycle flow patterns. Results can be used to develop, improve or
validate bicycle flow models, and can be applied in the design cycling infrastructure.

3.1 Introduction

Scientific knowledge of bicycle traffic flow is steadily growing but still limited compared
to for example, motorized traffic flow. At the same time, the bicycle usage is growing to
the level that urban areas, especially in the Netherlands, are struggling to accommodate all
cyclists on their network. This crowdedness causes local congestion and frustration among
bicycle users, which decreases the perceived safety and bicycle enthusiasm (De Winter,
2020). To prevent that cyclists are discouraged to cycle and use other, less sustainable,
transport instead, it is vital to better manage bicycle traffic. To do so, it is key to unravel the
main characteristics of bicycle traffic flow in crowded situations.

These features have been studied in experimental settings, e.g., Zhang et al. (2014) and
Jiang et al. (2016), where cyclists are strictly following, meaning that they are not allowed
to switch positions. This restriction limits observing the true nature of cyclist flow, includ-
ing e.g. riding alongside, overtaking, and cycling in staggered formation. This research
focuses on three fundamental variables in traffic flow theory, i.e. density, average speed and
flow, in the situation where cyclists are allowed to move freely within the path boundaries.
Furthermore, the relation between these variables are addressed and how they are affected
by anticipation on downstream conditions.

This research takes the macroscopic approach and describes bicycle movements at an aggre-
gated scale, based on empirical data that was retrieved at a large-scale cycling experiment.
The bicycle flow will be observed at a narrowing in uni-directional flow. Based on individ-
ual speed and individual density, a better understanding of the aggregated quantities, i.e.,
average density, speed and flow, will be given. Also, insights into the path usage are given
for different scenarios. The influence of anticipation is examined by analyzing aggregated
data and by zooming in to individual speed data. The key contributions are the new insights
into the macroscopic properties of a bicycle stream in the situation where cyclists are free
to choose their position on the path.
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The paper continues by providing relevant background information in Section 3.2, followed
by the research approach in Section 3.3. Section 3.4 presents the results and finally, Sec-
tion 3.5 reflects on the results by comparing them to other findings, and finally, Section 3.6
presents the main conclusions.

3.2 Related work on aggregated cycling properties and an-
ticipation

The interest in bicycle traffic flow has gradually grown over the past decades. Within the
topic, several subcategories can be selected based on the infrastructural setting, e.g., inter-
section or bicycle path, uni- or bi-directional, and on-street or segregated situation. Here,
we focus on uni-directional and segregated paths.

One of the first to report on average bicycle characteristics is Opiela et al. (1980) who con-
nected the speed to available maneuvering space. More than a decade later, Navin (1994)
reported on the density–speed relation, showing a linear decrease of speed with increasing
density, and the density–flow connection, showing a curved relation with a maximum flow
at a density around 3.0 bic/m2. These results are based on an experiment in single-file mo-
tion, which means that participants were instructed to follow and not allowed to overtake
others. This setup restricts cyclists in showing their natural behavior and therefore captures
only a simplified version of bicycle flow.

Because of its simplicity, the single-file setup is ideal as a first step to unravel the cycling
properties that bicycle models need to reproduce. This was done, for instance, in the works
of Andresen et al. (2014) and Jiang et al. (2016) to validate microscopic models. Further-
more, the single-file setup enables comparing the results of other traffic forms, e.g., car
traffic or pedestrian movements. This comparison has surfaced similar patterns in density–
flow relation (Zhang et al., 2014) showing an increase of flow with density in free-flow
conditions, and a decrease in flow in congestion. This pattern suggests an analogy in the
underlying behavioral mechanism (Zhao and Zhang, 2017). However, is it questionable
whether this similarity holds when the instruction to follow for cyclists is relaxed.

So far, two studies have reported on a multi-lane experiment in which cyclists are allowed
to use the full width. In Guo et al. (2019), the flow was observed while cyclists moved along
a 3-meters wide circular track. They found that the flow increased with track density up to a
level of approximately 0.2 bic/m2, remains constant up to a density of 0.5 bic/m2, and drops
for higher density due to the occurrence of stop-and-go waves. The authors state that the
constant plateau in flow is connected to the path usage, since they observed that the number
of occupied lanes increased within this density range. The second experiment described in
Wierbos et al. (2019) reports on the maximum flow while passing a bottleneck of different
sizes. They found that the flow depends on path width, and that the configuration of cyclists
differs for different path width. Due to the limited number of observations, a more detailed
analysis could not be made. However, the connection between path usage and flow is worth
exploring further and will be addressed in this research.
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Besides in experiments, bicycle flow has also been studied in real-life situations. Cyclists
are not influenced in this setting and thus show their natural cycling behavior. Botma and
Papendrecht (1991) report, for instance, on the lateral position of cyclists and the distribu-
tion of speed. They concluded that the mean speed is slightly higher on wider paths, and
that the lateral distance is smaller when cyclists move in pairs than when cyclists are over-
taking. The study of Li et al. (2015) looked at one and two-lane bicycle paths and found
that the average speed decreases with increasing density. Furthermore, they observed that
a relative large flow could be maintained while the density was high and the average speed
was reduced to around 5 km/hr. This indicates that the shape of the density–flow relation is
indeed different for the multi-lane setting than for the single-file situation. As explanation,
the authors of Li et al. (2015) state that the underlying behavior is more complex in the
multi-lane case, which allows them to maintain a small headway even in congested, slow-
moving, conditions. This complex behavior has not been labeled by Li et al. (2015), but
we believe that it could be described as anticipation. Therefore, we investigate the behavior
also in this study.

Anticipation behavior has been studied in car traffic and pedestrian movements, but not yet
in bicycle traffic. In car traffic, the phenomenon is described as hysteresis (in, e.g., Treiterer
and Myers (1974) and Zhang (1999)). The concept describes that accelerating and deceler-
ating behavior of drivers results in a different pattern in the density–speed relation. Possible
explanations mentioned in literature are aggressive and timid drivers (Laval, 2011), a com-
bination of relaxation and anticipation (Deng and Zhang, 2015), and task difficulty, which is
connected to the capability of drivers to make decisions while driving (Saifuzzaman et al.,
2017). In pedestrian research, anticipation has been addressed in Duives et al. (2014) by
studying the movements up- and downstream of a bottleneck. They concluded that antici-
pation occurs only upstream of a bottleneck. There, pedestrians react upon the upcoming
congested conditions within the bottleneck by adopting a lower speed than what is expected
under the existing density conditions. Also, Lü et al. (2020) described anticipation as the
behavior of pedestrians to slow down in reaction to a potential collision, which results in
the combination of low speed and low density. Gulhare et al. (2020) specifically mentioned
that the visual information is important in the behavior of pedestrians. When congestion is
present downstream, pedestrians maintain at a comfortable distance from one another while
moving at low speed. As a result, the density–speed relation differs for the up- and down-
stream situation. Whether anticipation behavior also influences the density–speed relation
bicycle flow is unknown and will be investigated in this study.

In summary, knowledge gaps exists regarding the density–flow and density–speed relation
in the situation where cyclists are not restricted to following each other but are also allowed
to swerve and overtake. Furthermore, the effect of path usage and anticipation behavior
requires further examination. These gaps will be addressed in the continuation of this paper.
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3.3 Research approach
This research aims to reveal macroscopic characteristics of bicycle flow, based on micro-
scopic trajectory information. More specifically, we extract individual speed and density
before aggregating the data to unveil patterns on a macroscopic level. Section 3.3.1 first de-
scribes the experiment in which the trajectory data is retrieved, then Section 3.3.2 describes
the steps that are taken to extract the data, Section 3.3.3 describes the definitions of density,
speed and flow that are used in this study. And finally, Section 3.3.4 presents the approach
to quantify the patterns in, and relation between, the macroscopic variables density, average
speed and flow.

3.3.1 Controlled experiment
A large-scale cycling experiment with approximately 200 participants was held at an indoor
location in the Netherlands in April 2018. The participants were split up into an afternoon
group with conventional bicycles and a morning group with different bicycle types, i.e.
racing, electric and conventional bicycles. The cyclists were asked to cycle along a 2-meter-
wide track which was narrowed on one side by mattresses, thereby creating a bottleneck.
An impression of the situation is given by Figure 3.1, and a selection of the bottleneck
situations is presented in Figure 3.2.

The bottleneck size was varied multiple times, resulting in five scenarios: (1) 2.0m or no
obstruction, (2) a narrowing of 1.25m, (3) 1.00m, and (4) 0.75m wide, and (5) a meander.
In the latter case, cyclists had to pass a narrowing on both sides of the track, resulting in
a meandering movement. The scenarios were repeated multiple times in mixed order and
are referred to as runs. An overview of the runs that are used in this study is provided in
Table 3.1. The participants were asked to cycle similar to how they would move in daily
traffic and were allowed to overtake others. In most runs, the cyclists entered the track as
a group such that the bottleneck was readily activated. Run 18 is an exception. Here, the
cyclists entered the track one by one, thereby gradually increasing the track density. The
cycling movements are captured by cameras that are indicated by red dots in Figure 3.3.

Figure 3.1: Impression of the experiment. Photo by TU Delft/Frank Auperlé.
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The participants received a financial compensation for their time, and wore red caps while
cycling to protect their privacy. Furthermore, the experiment has been approved by the
Ethics Committee of the Delft University of Technology. The data used for this study is a
selection of the data gathered at a large–scale experiment. The details of the full experiment
setup can be found in Gavriilidou et al. (2019).

3.3.2 Data extraction

The cycling movements are captured by downward facing cameras, which register 20 frames
per second from a height of 12 meter, resulting in images of 1920x1080 pixels. All partici-
pants wear red-colored hats, which are used as reference point for extracting the trajectories.
The data set thus consists of head positions that are updated every 0.04 seconds. Figure 3.4
shows the camera images of the lower track, the path alignment, and an example of extracted
trajectories. The images display the original camera view and show inaccuracies such as a
variable lane width. This is caused by the curvature of the lens and needs correction before
the data can be used.

The full list of steps that are taken before the trajectory data is used for further analyses are:
1) lens correction, which corrects the image for curvature of the camera lens; 2) orthorectifi-
cation, which translates pixel positions to X and Y coordinates in meters; 3) head to ground
translation, which relocates the observed red hat positions to ground level. In this process,
a uniform head height of 1.79m is assumed. 4) alignment, which corrects the rotation of
the camera images caused by slight differences in camera orientation; and ) filtering, which
removes the trajectories that are false or incomplete (∼0.6%). Figure 3.4 shows the view
captured by the cameras (a) and an example of the trajectory data(b), including the camera
overlap and positions.

Table 3.1: Schedule of scenario runs during the day of the experiment.

Run Bottleneck width Participants Session
# [cm] #
1 125 44 Morning
2 200 35 Morning
3 75 51 Morning
4 125 42 Morning
6 75 45 Morning
8 75 46 Morning
9 125 35 Morning
12 125 45 Afternoon
13 100 44 Afternoon
16 75 45 Afternoon
18 200 1-89 Afternoon
19 Meander 44 Afternoon
20 Meander 45 Afternoon
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(a) (b) (c)

Figure 3.2: Bottleneck situations (a) 2.0m, (b) 0.75m, and (c) meander.

Figure 3.3: Sketch of the track showing the camera positions (red dots) and the driving
direction.
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Figure 3.4: View of the three (overlapping) cameras on the lower track (before lens cor-
rection was applied) (a), and an example of trajectory data, showing also the
positions (black dots) and overlap area of the cameras.
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3.3.3 Definitions
This section explains the methods that are used to calculate individual density and speed
based on voronoi tessellations, and the different ways to aggregate the variables density,
speed and flow.

Individual density and speed

The individual densities are retrieved using the method of voronoi tessellations. This method
was proven to be successful in pedestrian research (Duives et al., 2015; Nikolić and Bier-
laire, 2018) and was adjusted for bicycle movements to include speed information by Knoop
et al. (2020). Here, we use the traditional voronoi tessellation, which means a cyclist gets
assigned all space which is closer to this cyclist than to another. Furthermore, the individual
space is limited to the path width. An example is given in Figure 3.5a, where the area Ai,
depicted in gray, is the voronoi area for cyclist Ni. The individual density ki at time instant
t is calculated by taking the inverse of the voronoi area:

ki(t) =
1

Ai(t)
. (3.1)

The method to retrieve the individual speed is based on the Euclidean distance between the
X and Y position on time instant t and those a time step ∆t later:

vi(t) =
distance travelled

time step
=

√
(Xt+∆t −Xt)2 +(Yt+∆t −Yt)2

∆t
. (3.2)

We use ∆t = 0.20 seconds, and in the further analyses a 1-second moving mean of the
individual speed, to filter out small fluctuations due to measurements errors in the position.

Aggregated density, speed and flow

We use two methods to aggregate the variables in this research. One is a time average taken
at a cross section and the second is an area-based average based on a selected area.

(a)

(b)

Figure 3.5: Cyclists and their individual area based on voronoi tesselation (a), and exam-
ples of cyclists whose individual area has a 100% and 80% overlap with the
selected box depicted in gray.
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The time-average method is based on the moment a cyclist passes a longitudinal position X.
The individual density and speed of all cyclists that pass this line within a chosen time period
are registered and aggregated. We use a time period of 30-seconds to smooth out individual
variability while still capturing differences due to changing conditions. This method is used
to identify the influence of path width to the flow characteristics of bicycle traffic. For every
30 seconds, we select the first cyclist that passes the cross section. The interval time (Tint) is
the time between first cyclists of consecutive periods and forms the basis of our aggregation.
Note that depending on the passage moment, the interval time can be shorter or longer than
30 seconds. The average speed (v) is calculated as the harmonic mean of the individual
speeds of all cyclists that pass within the interval time, see Eq. 3.3 The average flow (q) is
based on the number of passing cyclists divided by the interval time, see Eq. 3.4.

v = Npass

(
∑

1
vi

)−1

(3.3)

q =
Npass

Tint
(3.4)

k =
q
v

(3.5)

The area-based average variables, denoted by capital letters, are density K, speed V and
flow Q. They are calculated by taking the mean of the individual data within a selected area.
The benefit of this approach is that it allows for identification of instantaneous character-
istics and is therefore better suited to analyze the density–speed and density–flow relation.
Throughout this research we set the size of this box to 5 x 2 meters (length x width). Since
the edges of the voronoi areas are not straight, we need to account for the edges of our se-
lected box. For this, we calculate the overlap O of the voronoi cells with the selected box,
see Figure 3.5b. Also, we need to take into account that cyclists can be outside the box
themselves, but their voronoi area overlaps with the box of interest. For this, we calculate
the fraction of the box fi. This is based on the overlap Oi between the voronoi area of cyclist
i and the box of interest. Then, fi is calculated as the ratio of Oi to the box area Abox, see
Eq 3.6. All fi together sum up to one (∑ fi = 1).

fi =
Oi

Abox
(3.6)

The calculation of the mean density within the box at time instant t is then:

K(t) = ∑
i∈E

fi(t)ki(t) and E = {i ∈ Z | fi > 0}. (3.7)

The mean speed u within the box of interest at time instant t is, similar to the mean density,
weighted by the overlapping voronoi areas:

V (t) = ∑
i∈E

fi(t)vi(t) and E = {i ∈ Z | fi > 0}. (3.8)

The flow within the box of interest on time instant t is determined by straightforward mul-
tiplying the mean density and mean speed:

Q(t) = K(t) ·V (t). (3.9)
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3.3.4 Approach

Our aim is to identify the characteristics of bicycle traffic in terms of density, speed and
flow, and to relate these characteristics to path width and anticipation. To reach this goal,
we compare the data of different scenarios in which a bottleneck is included to narrow the
path. This narrowing varies between 2.00 meter (no obstruction), 1.25 meter, 1.00 meter,
0.75 meter and a meander. In the latter scenario, cyclists have to pass a narrowing of 0.75
meter on both sides of the track, resulting in a meandering movement in between. The
following analyses are performed:

1. We investigate the influence of path width to the average density (k), speed (v) and
flow (q). This data is based on the 30-second averages of cyclists passing the line X
= 0m, which is at the entrance of the narrowing.

2. We investigate the path usage of individual cyclists to identify movement patterns on
the macroscopic level for different path widths. For this, we analyze the Y position
of cyclists on the path that pass the cross-section X = -1m (inside the narrowing) and
connect the positioning of cyclists to typical flow conditions based on the individual
density and speed data.

3. We investigate the relation between density and speed, and density and flow based
on area-based averages. For every second, we plot the density (K) against speed (V )
and flow (Q), resulting in lots of scatter. To better visualize the relation, we plot the
median value for speed and flow for certain bins in density. The bin size depends
on the number of observations, meaning that more data points will result in a more
detailed curve. The data of scenarios with different path widths will be separated such
that the effect of the narrowing can be identified.

4. We investigate the occurrence of anticipation by comparing the scatter plots of area-
based density–speed data at four sections of the track, i.e. at 0-5m, 10-15m, and
30-35m upstream the bottleneck, and on the opposite side of the track. The effect
of anticipation is expected to be highest at a distance before the narrowing, because
cyclists have time and space to react, while this effect is less expected near the nar-
rowing where the behavior is foreseen to be merely density driven. The data on the
opposite side of the track is expected to be uninfluenced, since cyclists do not yet see
the queue in front of the narrowing.

5. We investigate the macroscopic properties of bicycle flow by looking at the evolution
of individual cycling characteristics along the track. For this, we compare individual
data at ten cross sections along the lower track, which are five meters apart. At each
cross section, we record the individual speed and density of passing cyclists as well
as their speed difference to the two most surrounding cyclists. The latter is a mea-
sure for overtaking movements, since this requires a speed difference. All results are
visualized in box plots, which show the variability of cycling characteristics in space.
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3.4 Results
This section presents the results of the five analyses listed above. The full findings are listed
first, followed by summary in section Section 3.4.6.

3.4.1 Speed, density and flow for different path widths
To investigate the influence of path width, we examine the average speed, density and flow
for different situations, as shown in Figures 3.6 and 3.7. Visualized with box plots are the
distribution of the 30-second averages at the bottleneck entrance (a) per scenario and (b)
specified into run numbers. The runs are not consecutive because they are performed in
mixed order and other scenarios were done as well, which are not used in this research. The
no-obstruction scenario is included as reference; it does not have a narrowing, thus the path
is two meters wide.

The average individual speed (v) is shown in Figure 3.6a and shows an increase with
increasing path width when comparing the median values. As expected, the speed is lowest
in the scenario with the meander, and highest when the path is unobstructed. Furthermore,
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Figure 3.6: Box plots of 30sec-average speed across the line X = 0m for different bottleneck
widths combined (a) and split up in individual runs in (b).
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Figure 3.7: Box plots of (a) individual density and (b) flow across the line X = 0m per
scenario.
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the speed variation increases with path width, hinting that cyclists have more opportunity
to cycle at different speeds on wider paths. This indicator is visualized by the box plot
height, where a compact box plot means that cyclists have similar speed while passing the
narrowing and a large box indicates that more speed variation is observed. A similar pattern
is visible when looking at the individual runs in Figure 3.6b, which shows that the average
speed is around 10 km/h in all runs of the 0.75m scenario, while this varies between vari-
ation 8 and 14 km/h when the path is 1.25m wide. The larger speed variation in the latter
scenario indicates that cyclists have more opportunity to cycle at different speeds, which is
related to the path usage and the opportunity to overtake and is further discussed in Sec-
tion 3.4.2 and 3.4.5. The unobstructed scenario shows a difference of 3 km/h between run
2 and 18. This gap is related to the total number of cyclists on the track, which is much
smaller in run 2 (35 cyclists) than in run 18 (88 cyclists), indicating that the cyclists in run
2 have more opportunity to cycle at their desired speed.

The individual density of cyclists within the narrowing are shown in Figure 3.7a. Remark-
ably, the density is highest for both the meander (k = 0.22 cyc/m2) and unobstructed scenario
( k = 0.24 cyc/m2), and drops to k = 0.18 cyc/m2 in the 1.25m case, while a continuous de-
crease with width was expected. This result is explained by two factors. First, the voronoi
method that is used to calculate the individual density is based on the available physical
area. When the path width decreases, the available space reduces resulting in a higher den-
sity even when the space between consecutive cyclists remains equal. This explains the
increase in average density from the 1.25m scenario to smaller cases. Second, the higher
density values in the 1.25 and 2.00m-scenarios can be explained by the total number of cy-
clists on the track, which is 88 in run 1 and 18. Most other runs hold 45 participants, except
for run 2 with 35 cyclists. The variation in number of participants was done intentionally to
force differences in cycling conditions, i.e. free flow and congestion. As expected, having
more cyclists on the track results in a higher density and lower average speed.

Similar to the speed results, the variation in average individual density is higher in the 1.25m
and 2.00m scenario (0.10–0.32 cyc/m2), than in the cases with a smaller narrowing (0.16–
0.25 cyc/m2). This relates to the fact that cyclists are able to move abreast in the 1.25m case
and wider, while merely staggered and following formations are observed in the smaller
scenarios. Also, a steady queue is observed in the scenarios smaller than 1.25m, resulting in
a constant longitudinal spacing between cyclists and thus a steady density level. Queues are
less frequently observed in the 1.25 and 2.00m scenario, resulting in a fluctuating demand
at the entrance of the narrowing. This results in varying distance between cyclists and thus
a larger variability in density.

The median values of the average flow slightly increase when the bottleneck opening is
wider, see Figure 3.7b, starting with q = 0.66 cyc/s in the meander and increasing to q
= 0.79 cyc/s in the 1.25m case. The flow in the unobstructed scenario steeply increases
to 1.23 cyc/s in the 2.00m scenario, which shows that the relation between flow and path
width is not linear. Figure 3.7b also shows that runs with a narrow bottleneck, i.e. meander
and 0.75m, have a more constant flow, indicated by a compact box plot, than those for the
wider ones, i.e. 1.25m and without obstruction (2.00m). This relates to track density and
path usage; cyclists moving abreast in high demand situation (run 18) result in a higher flow
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value than cyclist that are following in low demand situation (run 2). Since run 18 has many
cyclists on the track and is unobstructed, the median flow of this run can be considered as
the minimum boundary for the capacity, which is 1.5 cyc/s on a 2.00m-wide path.

3.4.2 Path usage
To better understand the patterns in average speed, density and flow, we now look at the path
usage and the positions of cyclists in different scenarios, see Figure 3.8. Visualized on the
left-hand side are the frequency distribution of the Y positions, and the personal density of
cyclists while passing a line which is one meter inside the narrowing. This hence shows at
which lateral position cyclists cross, and to which extent this depends on density. Visualized
in the middle are the Y positions and individual speed at the same cross section. Screenshots
of cyclists passing the narrowing are included on the right-hand side. Based on Figure 3.8,
the following observations are made:

• 2.00m: Cyclists mostly occupy two lanes and move alongside each other, where the
left lane is slightly faster than the right lane. Occasionally, three lanes are formed
where cyclists move alternately alone and in pairs. When density is low (<0.1 cyc/m2),
cyclists move alone and occupy the right or middle lane, which is consistent with the
Dutch rule to keep right. The highest density values of 0.5–0.6 cyc/m2 are observed
near the track edges, which coincides with cycling alternately in threes and in pairs.
Here, the middle cyclist has a larger personal space than the outer cyclists, which are
bounded by the track edges. This space restriction is less prominent to the center
of the track, resulting in less observations of high-density for cyclists occupying the
middle lane.

• 1.25m: Cyclists pick position in the middle of the narrowing for low density, using
one lane, and fan out to the sides for in higher density, using two lanes. In most cases,
these lanes are not used simultaneously but cyclists move in a staggered configuration
where e.g. a cyclist on the right lane is followed by a cyclist in the left lane some
moments later, as shown in Figure 3.8f. Once in a while, a pair of cyclists move next
to each other through the narrowing. The highest cycling speed are obtained when
density is smaller than 0.25 cyc/m2. Most lowest cycling speeds (<6 km/hr) are found
between 0.10–0.35 cyc/m2, which is a lower value than expected based on first order
traffic theory and because it partially overlaps with the range of higher speed. There
are two explanations for this: First, it results from an inefficient merging process just
upstream of the bottleneck where a cyclist had to stop before entering the narrowing.
When passing the entrance, the cyclist is still accelerating and leaves a gap with its
predecessor, which causes both the low speed and relatively low personal density.
Second, the cyclists that pass with higher density are confident that they can pass
the narrowing at this high speed because the conditions downstream are favorable.
Therefore, they temporarily tolerate a higher density, while maintaining a high speed.

• 1.00m: Cyclists pass the narrowing in two different configurations. The two patterns
are (a) keeping the same middle lane in a following mode, and (b) moving alternately
in left and right lane in a staggered formation. Cyclists are no longer observed to
move abreast. Compared to wider path widths, the spread in observed speed is much
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Figure 3.8: Y positions and individual density (left) and cycling speed (middle) of cyclists
passing the cross-section X = -1m. On the right are screenshots of cyclists
passing the narrowing.
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smaller, indicating that the narrowing creates a steady demand and cyclists move
in synchronized manner, adapting to the speed of cyclists near them. Cyclists in
the left lane keep a smaller distance to the track edge. Possibly, this is related to
cycling confidence since, in general, more careful cyclists tend to keep right, and
more confident cyclists are found in the left lane.

• 0.75m: Cyclists pass the narrowing in strictly-following mode, using only one lane.
The variation in Y position is mainly an artifact of the method for trajectory extrac-
tion, which is based on the red hats. When cyclists are pedaling, their heads slightly
move to the side where they apply force. The highest cycling speeds are obtained in
low density conditions, while the speed is lowest between 0.20–0.35 cyc/m2.

• Meander: Cyclists again have a strictly-following configuration, maintaining a slightly
larger spacing than in the 1.00m-scenario. Now, little difference in speed is observed
in low and high density conditions. This is explained by the fact that all cyclist have
to slow down to successfully maneuver through the meander.

3.4.3 Density–flow and density–speed relationship
Average speed, density and flow rate are correlated in 1st order traffic flow theory. Based
on this theory, a relation between density–speed and density–flow is expected for particular
widths of the path. Figure 3.9 shows the area-averaged density–speed and density–flow
plots for different path widths combined along a 5-meter stretch inside the narrowing. On
the left-hand side, all data is visualized with the darker colors indicating smaller path widths.
On the right-hand side, the median line of all data is plotted. Based on these figures, four
observations are made:

• The speed decreases with increasing density for most widths, except the meander
which has a constant low speed. The speed reduction with density is a logical conse-
quence of having less physical space to move. For the meander, the observed density
range is small, indicating that the cyclists pass the bottleneck at a constant distance
from each other and maintain a cautious pace.

• The scatter in speed data reaches a minimum at approximately 5 km/h for all widths,
and can therefore be considered as the minimum cycling speed. The existent of a
lower boundary is explained by the characteristic of bicycles to tumble over when
speed is too low. Speeds below 5 km/h are observed, but only when cyclists use their
feet to maintain balance and push themselves forward.

• The density, speed and flow values are highest in the 2-meter scenario, and decrease
for narrower path widths, except for the 1-meter scenario. The near consecutive order
can be explained by the path usage. The number of lanes that cyclists use reduces
when path width decreases and the distance between cyclists increases, which results
in a lower flow. Furthermore, when the flow through the narrowing is smaller, cyclists
have to adapt by reducing their speed while passing the narrowing.

• The median lines for the 1.25m and 1.00m scenario are similar, indicating similar
underlying behavior. This is consistent with the observed configuration in both cases.
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Figure 3.9: Area-based density–speed plots (upper panels) and density–flow plots (lower
panels) for different path width based on 1-sec averaged data inside the nar-
rowing.

Cyclists alternately occupy the left and right lane and do not overtake. Once in a
while, cyclists move pairwise in the 1.25m scenario, which is not observed in the
1m scenario. The frequency at which this happens is not high enough to affect the
flow rate, but it could explain the wider density range that is observed in the 1.25m
scenario.

• The density–flow plots show a steady increase with density, and do not have a max-
imum within the observed density range. On the one hand, this indicates that ca-
pacity is not reached, and that the flow conditions within the narrowing are not con-
gested, while congestion does occur further upstream. On the other hand, the maxi-
mum observed density could indicate the ideal circumstances in which smooth flow
is achieved. This means that the maximum flow value for each path width can be
considered as the capacity, i.e. 0.27 cyc/s/m (meander), 0.48 cyc/s/m (0.75m), 0.54
cyc/s/m (1.00m), 0.69 cyc/s/m (1.25m) and 1.11 cyc/s/m (2.00m).

We now combine the data of all scenarios and look at locations upstream of the bottleneck
and the path is 2.00-meter wide. Figure 3.10 shows the area-average data at three stretches
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on the track, i.e. X = 5-10m, and X = 25-30m on the side of the narrowing, and half way on
the opposite side of the track. The distance to the bottleneck thus increases from (a) to (c).
Since the bottleneck causes congestion upstream, it is expected that a congested branch is
visible in the density–speed and density–flow plots upstream of the narrowing.

Based on Figure 3.10, three observations are highlighted. First, the data of the 5-10m sec-
tion is comparable to that within the narrowing by not showing a capacity point or congested
branch. Most likely, the cyclists have already prepared themselves for passing the narrow-
ing by merging, or adapted speed to prepare for merging, resulting in a smooth flow pattern.
Second, the observed density range is higher in the 25-30m section than closer to the nar-
rowing. This indicates that cyclists occupy the full width and merging has not yet occurred.
The median line increases with increasing density and does not show a capacity point. This
can possibly be explained by anticipation behavior, which prevents a complete breakdown
of the bicycle flow. Instead of coming to a complete stop, cyclists try to maintain their
forward-momentum by slowing down in advance so they can continue moving (slowly).
Third, the data on the opposite side of the track (Figure 3.10f) show a steady relation up to
K = 0.15 cyc/m2, and changes shape for higher values. Although flow still increases, it can
be said that the bicycle flow changes regime from free-flow to congested conditions at K
= 0.15 cyc/m2. However, the flow continues to increase for higher density, indicating that
congestion in bicycle traffic does not coincides with a drop in flow.
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Figure 3.10: Area-based density–flow data for three stretches on the track, based on 1-sec
averaged data of all runs. The solid black line indicates the median and the
lines with triangles are the quartiles.
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3.4.4 Influence of anticipation

To investigate the effect of anticipation behavior, we zoom in to a single run and look at
the density–speed relation in four different stretches. Anticipation behavior encompasses
that cyclists not only react to density in their direct surrounding but also react to the condi-
tions further downstream. In our experiment, this is the upcoming narrowing, the associated
queue, and the available space downstream of the narrowing. We look at one specific run at
multiple location on the track, as shown in Figure 3.11. It shows the area-average density–
speed data for run 16, which has a bottleneck width of 0.75m, at four different stretches.
The first one (a) covers a stretch on the opposite side of the track, while the other three cover
the track at a distance of 25-30m (b), 10-15m (c), and 0-5m (d) upstream of the narrowing.

The data show a wide variation in density and velocity between different locations. The
spread is smallest in (a) and (d), while a much wider spread is observed in (b) and (c). This
difference can be explained by varying stages of anticipation: Cyclists on the opposite side
of the track (a) show no anticipation; they do not see any obstruction ahead and thus cycle
at their desired speed. The density variation at (a) occurs due to differences in clustering,
varying from a cyclist moving alone, to a pair of cyclists who form a temporary moving
bottleneck. The spread in average density and speed is largest for stretch (b), where similar

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25
run 16

(a) opposite side of the track

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25
run 16

(b) 25-30m upstream

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25
run 16

(c) 10-15m upstream

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25
run 16

(d) 0-5m upstream

Figure 3.11: Area-average density–speed within four stretches on the track based on 1sec
data.
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speed values coincides with a large range of density and vice versa. For example, an aver-
age speed of 5 km/hr is observed when density ranges between 0.1 and 0.4 cyc/m2, while at
the same range also speeds occur of 10 to 15 km/hr. This is a typical result of anticipation
behavior, because cyclists either reduce speed (or simply stop pedaling) because they see
others braking in front of them and already adapt their own speed, resulting in low speed
and large spacing (thus low density), or they continue at high speed because they see an
available spot in the queue further downstream. To reach that spot, they temporarily accept
a higher density while overtaking others, resulting in high speed and high density. Moving
closer to the bottleneck in stretch (c), the speed variation is smaller than in (b), especially for
K larger than 0.2 cyc/m2. In stretch (c), most gaps are filled and cyclists prepare for merg-
ing, resulting in a synchronized flow within the queue, in which participants react to they
direct surrounding. Occasionally, cyclists overtake others that are preparing for merging,
increasing the (spread in) average density and speed in the process. It is, however, unclear
whether this behavior should be considered as anticipation or aggressiveness. In stretch
(d), just upstream of the narrowing, cyclists react mostly to the conditions around them, i.e.
density, and show little to no anticipation. They have to adapt their speed to others in order
to pass the narrowing, resulting in less scattered density–speed data.

Although not illustrated in Figure 3.11, cyclists also show anticipation within the narrowing
by adapting their speed to the conditions downstream. When the area behind the bottleneck
is occupied, speeds are low and vice versa. When the area downstream is empty, cyclists
temporarily accept a higher density and move at a higher speed through the narrowing than
expected based on their individual density.

3.4.5 Bicycle flow properties along the track
To better grasp the macroscopic properties of bicycle flow, we now look at the evolution
of cycling characteristics along the track. For this, we aggregate the individual properties
of cyclists passing ten cross sections along the lower track, which are each 5 meters apart.
Figure 3.12 shows the resulting box plots of individual density k (left), individual speed v
(middle) and the difference in speed with its neighboring cyclists (right). For the latter, the
individual speed is compared with the average speed of its two surrounding cyclists. We
discuss the data of three runs, i.e. 1.25m (run12), 0.75m (run 16) and meander (run 20), and
start with the density and speed data.

As expected, the density and speed data vary along the track in opposite pattern. Since cy-
clists cannot disappear from the track, a change in density must coincide with an opposite
response in speed or vice versa. Less expected is the curved shape in the median density
and speed data, which becomes more pronounced with decreasing bottleneck width. The
extremes, so the lowest speed and highest density, are located well before the narrowing,
which is situated at X = 0m. Furthermore, the extremes occur at slightly different X posi-
tion. The highest density is observed around X = 15 and 20m, while the lowest speed values
are observed further downstream around X = 10 and 15m. This mismatch confirms that
bicycle the density–speed relation is influenced by anticipation behavior.
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Figure 3.12: Box plot of individual speed, density and speed difference at different cross
sections along the track for run 12 (upper), run 16 (middle) and run 20 (lower).

An explanation for the curved pattern is that cyclists already prepare for merging and move
to one lane well before the narrowing. As a result, the density just upstream of this merging
point is highest, while speed is lowest at the point of merging itself. Further downstream,
cyclists accelerate again, resulting in higher speed and lower density for X below 5 meter.
Upstream of the merging area, cyclists are joining the queue and thus reduce speed and in-
crease their individual density when moving from X is 35 to 20m. This process is visualized
with snapshots in Figure 3.13, which shows an area in which cyclists are merging, a slow
moving cyclist which acts as a moving bottleneck for following cyclists, while others on the
left can still overtake, thereby creating an area of high density.

The overtaking movements are captured by the speed differences in the left panels of Fig-
ure 3.13. Although the variation is small, the box plots are most compact between X = 0
and 5m, while the speed variation increases further upstream (best visible by looking at the
quartiles). This coincides with the observation in Section 3.4.4 that cyclists move at similar
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speed just upstream of the narrowing, while overtaking (high speed and density) and slowly
moving cyclists (low density and low speed) are observed at the queue tail. Furthermore,
the speed differences within the bottleneck is are slightly larger in the 1.25m scenario than
in the meander, which coincides with different path usage. In the first scenario, cyclists
move in a staggered formation, while the meander only allows for a strictly-following con-
figuration. Using two lanes instead of one, gives cyclists more opportunity to go at slightly
different speed and e.g. prepare for an overtaking movement after leaving the narrowing.

(a)

Figure 3.13: Snapshots of merging process

3.4.6 Result summary
1. Narrowing the path leads to a decrease in average individual speed (v) and flow (q),

while the average individual density (k) shows the opposite pattern. Furthermore, the
density, speed and flow do not linearly increase with path width, and thus depend on
other factors as well.

2. The overall speed decreases when path width reduces. When the width is greater or
equal to 1.25m and multiple lanes are occupied, cycling speed is higher in the left
lane than the right. On a 2.00m wide path, cyclists form 2 to 3 lanes, and overtake
each other. For path widths smaller than 1.25m, cycling abreast is no longer observed
and cyclists move in following or staggered configuration. To recall, cyclists move in
a staggered formation when a cyclist on e.g. the right lane is followed by a cyclist in
the left lane some moments later. This is primarily the case at a 1.25m path; when
the path is 1.00m or smaller, cyclists are strictly following each other. As a result, the
longitudinal spacing is larger in the following mode than in the staggered formation.

3. Path width influences the overall speed (V ), density (K) and flow (Q) by influencing
the available cycling lanes and possible cycling configurations. The speed decreases
with density, while the flow increases with density. The density–flow relation does not
show a capacity point, since the flow continues to increase with increasing density. On
a 2.00-meter wide path, the density–speed and density–flow relation are influenced by
anticipation, resulting in a gradual transition from free-flow to congested conditions.
When anticipation is absent, a clear transition between regimes occurs at a density of
0.15 cyc/m2.

4. Anticipation behavior in bicycle flow is characterized by a wide variation in the
density–speed diagram. On the one hand, anticipation occurs when the density down-
stream is high and cyclists stop pedaling well before reaching the queue, resulting
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in the combination of low speed and low density. On the other hand, cyclists may
temporarily accept a higher density when the conditions downstream are favorable,
resulting in the combination of high density and high speed.

5. The properties of a cyclist stream vary along the track and depend on the infrastruc-
tural setting. In case of a narrowing, cyclists anticipate upon the upcoming obstruc-
tion by starting to merge around 10 to 15 meters before the narrowing. The lowest
speed occurs at the point of merging, while the highest density values are obtained
just upstream of this merging point.

3.5 Discussion

This section reflects on the obtained results by comparing them to findings in literature. Our
findings are based on a large data set that was collected in a large-scale cycling experiment.
This setting has limitations, since participants cycle indoors and might behave differently
in real-life situations. For instance, the absence of a side curb might affect the path usage.
However, the data is collected over a full day and the data set size is therefore large enough
to capture cycling behavior that is likely to match that of outdoors. The data set size can
explain some difference with comparable research in literature. This study shows that nar-
rowing the path leads to an increase in density, and a decrease in speed and flow, which is
in alignment with those in Wierbos et al. (2019). However, the flow values are smaller with
median values between 0.6 cyc/s for a 0.75m path and 0.8 cyc/s for a 1.25m path in this ex-
periment than the outflow capacities reported in the mentioned research, which reports 0.9
cyc/s and 1.5 cyc/s, respectively. The difference in flow possibly results from the sample
size. In this research, we have observed the flow during 6 to 10 minutes per run, compared
to 20 to 60 seconds in the other experiment.

We find similarities and differences when comparing the density–flow relation in this re-
search to that in Guo et al. (2019). They reported an increase in flow for the density range
0–0.2 bic/m2, a plateau of approximately 0.58 bic/s/m between 0.2–0.5 bic/m2 and a de-
crease in flow for higher density. We roughly found a similar relation up to a density of
0.4 bic/m2, although the boundary is found at 0.15 bic/m2 instead of 0.2 bic/m2. We did
not have sufficient observations for density larger than 0.4 bic/m2 to conclude a relation in
that range. The differences could also results from other factors, such as cultural behavior
(Asian versus Dutch) or bicycle size. Also, the position of riders could play a role which
is more upright on typical Dutch bikes than on MTB type of bikes where the rider is bent
forward and the eyes have a lower position.

Furthermore, we found that anticipation behavior leads to a gradually increasing density–
speed relation, and the abrupt change in flow regime as observed in Guo et al. (2019) is
only visible in our data when anticipation is absent. The situation-dependent difference in
density–flow relation is also observed in pedestrian research (Duives et al., 2014; Gulhare
et al., 2020) before and after a bottleneck situation. This suggests that the underlying be-
havior might be similar, which is worth investigating in future studies.
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The path usage in this research is similar to that observed in Wierbos et al. (2019), going
from a staggered formation and occasionally moving abreast in the 1.25m scenario, to solely
staggered formation at a 1.00m width and following configuration at a width of 0.75m.
Furthermore, the staggered configuration shows similarity to the ‘zipper effect’ in pedestrian
flow under saturated conditions. This term describes that pedestrians move in lanes which
are partially overlapping. Since they cannot physically overlap one another, pedestrians
move at small longitudinal distance from each other and at similar speed. This configuration
causes that the capacity does not increase linearly with the bottleneck width, but shows a
stepwise increase instead (Hoogendoorn and Daamen, 2005). It is likely that this effect also
plays a role in our research, since we found that the bicycle capacity does not scale linearly
with the bottleneck width.

3.6 Conclusion
This research has revealed the macroscopic properties of a bicycle stream based on a large-
scale cycling experiment. The main characteristic variables density, speed and flow have
been investigated, as well as the influence of path width, positioning of cyclists on the path,
and occurrence of anticipation behavior. The main findings of this research are listed in the
following overview:

• Narrowing the path leads to an increase in density and simultaneous decrease in aver-
age speed and capacity at the bottleneck location. The density, speed and flow do not
scale linearly to the path width.

• Cyclists form other configurations on paths of different widths, e.g., overtaking, stag-
gered, or strictly-following, which influences the ability to cycle at their desired
speed.

• The minimum cycling speed is around 5 km/h.

• Cyclists maintain a high flow while density is high also. As a result, the density—flow
relation does not show a distinct capacity point, but rather displays a plateau of high
flow in congested conditions.

• A change in regime, from free-flow to congested conditions, is observed at a density
of approximately 0.15 cyc/m2. This critical point does not coincide with a maximum
in flow but marks the boundary to a different steepness in flow increase.

• Anticipation upon an upcoming high density area occurs as two opposite reactions
in cycling behavior. On the one hand, cyclists stop pedaling when approaching a
congested area, resulting in the combination of low speed and low density. On the
other hand, cyclists temporarily accept a higher density when the conditions further
downstream are favorable, i.e. available space ahead, resulting in the combination of
high density and high speed.

• The density–speed relation and density–flow relation are found to be influenced by
anticipation behavior. Its occurrence leads to a more gradual decline in speed with
increasing density, while the flow shows a more gradual increase.
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The insights into cycling behavior that are obtained in this study form an important step in
the understanding of bicycle flow and can be used to better manage bicycle traffic in urban
areas. For example, the knowledge gained on the influence of path width can be used to
design road diversions when part of a bike path needs maintenance. Furthermore, the data
on path usage can for instance be used to validate outcomes of microscopic bicycle models,
while new macroscopic models can be developed using the insights into the relation between
density, speed and flow and the role of anticipation.



Chapter 4

Capacity, capacity drop and
relation of capacity to the path
width

This chapter elucidates bicycle traffic flow by studying the aggregated movements of cy-
clists before and after the onset of congestion within the setting of a controlled bottleneck
flow experiment. It quantitatively describes the relation between capacity and path width,
provides a qualitative explanation of this relation by analyzing the cyclist configuration for
different path widths, and considers the occurrence of a capacity drop in bicycle flow. By
doing do, it answers the following research question: How does path width influence the
maximum flow on a uni-directional bike path?

Using slanted cumulative curves and regression analysis, we find that the capacity of a
bicycle path increases linearly with increasing path width. A steady drop in flow is observed
after the onset of congestion, indicating that the capacity drop phenomenon also occurs in
bicycle traffic. This phenomenon has been described for motorized traffic, but never before
for bicycles.

This chapter is published as a journal article: Wierbos, Knoop, Hänseler, and Hoogendoorn
(2019), Capacity, Capacity Drop, and Relation of Capacity to the Path Width in Bicycle
Traffic. Transportation Research Record: Journal of the Transportation Research Board
2673, 5, 693-702.
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Abstract

Bicycle usage is encouraged in many cities because of its health and environmental benefits.
As a result, bicycle traffic increases which leads to questions on the requirements of bicycle
infrastructure. Design guidelines are available but the scientific substantiation is limited.
This research contributes to understanding bicycle traffic flow by studying the aggregated
movements of cyclists before and after the onset of congestion within the setting of a con-
trolled bottleneck flow experiment. The paper quantitatively describes the relation between
capacity and path width, provides a qualitative explanation of this relation by analyzing the
cyclist configuration for different path widths, and studies the existence of a capacity drop
in bicycle flow. Using slanted cumulative curves and regression analysis, the capacity of a
bicycle path is found to increase linearly with increasing path width. A steady drop in flow
is observed after the onset of congestion, indicating that the capacity drop phenomenon is
observed in bicycle traffic. The results presented in this paper can help city planners to cre-
ate bicycle infrastructure that can handle high cyclist demand.

4.1 Introduction

The worldwide trend of urbanization leads to an increasing demand of people traveling
from A to B within the city bounds. To handle this growing stream of travelers and prevent
overloading of the road network, there is a need to transport people in a sustainable man-
ner (United Nations, Department of Economic and Social Affairs, 2018). Using the bicycle
is a good option as long as the infrastructure allows a safe and quick journey. However,
the current understanding of bicycle traffic is rather limited leaving municipalities and prac-
titioners with questions on how to create a cycling network that can handle a high cyclist
demand.

Before looking at the network level, the traffic dynamics on a single bicycle path must be
better understood first. More specifically, the capacity of a bicycle path is of interest as
well as how capacity relates to the path width. If the cyclist demand exceeds the capacity,
congestion will occur which might impact the maximum flow along the bicycle path. This
phenomenon, called the capacity drop, is observed in motorized traffic but has not been
reported yet for bicycles. Insight into this phenomenon for cyclists will contribute to the
overall understanding of bicycle flow and help practitioners to design cycling infrastructure
that is sustainable in a future with increased bicycle demand.

This research contributes to understanding bicycle traffic by analyzing the aggregated move-
ments of cyclists before and after the onset of congestion. The work done within the setting
of a controlled bottleneck experiment to minimize the influence of other traffic modes.

In the ensuing of this paper, Section 4.2 gives an overview of the literature, Section 4.3 ex-
plains the set-up of the experiment, Section 4.4 describes the resulting data set, Section 4.5
presents the methodology to analyze the data, Section 4.6 presents the results, which are
then discussed in Section 4.7.



4.2 Background 61

4.2 Background

Bicycle traffic has been the subject of research for more than three decades but the under-
standing of bicycle flow dynamics has progressed only little. In earlier years, Botma and
Papendrecht (1991) and Navin (1994) have studied bicycle flow and have estimated the ca-
pacity of bicycle paths, which have motivated a range of similar studies (Andresen et al.,
2014; Li et al., 2015; Jin et al., 2017b). The reported capacity values show a large range
between 2,600 and 8,100 cyc/hr. These differences, linked to the underlying cycling be-
havior, are not yet fully understood. Differences may occur due to the large variation in
infrastructure such as the path width but this has not been tested yet. To better compare
the reported capacity values, the relation between capacity and path width should be better
comprehended.

To better grasp the dynamics of bicycle flow, Chen et al. (2013) and Zhang et al. (2013)
have looked into finding similarities to the dynamics of motorized traffic and pedestrian
flow. The comparisons show similar flow characteristics such as the occurrence of stop-
and-go waves. Also, after scaling the speed and density with the mode-specific free-flow
speed and length, a similar shape of the fundamental relation between density, speed and
flow has been retrieved. Jiang et al. (2016) have looked specifically into bicycle flow and
have found no evidence for a capacity drop. The capacity drop is a phenomenon that is
frequently observed in car traffic flow after congestion occurs at a bottleneck. Due to the
increased distance between drivers induced by acceleration, the discharge rate of the traffic
jam can be lower than the free flow capacity before the onset of congestion due to an in-
creased distance between drivers (Cassidy and Bertini, 1999). The magnitude of the drop
is determined by the intra-driver differences in preferred acceleration (Yuan et al., 2017)
and for vehicular traffic capacity drops ranging from 3% to 30% are reported. The earlier
mentioned study by Jiang et al. (2016) is based on single-file movement of cyclists, which
restricts the normal cycling behavior. Whether the capacity drop exists when cyclists are
allowed to overtake is still an open question.

In pedestrian research, the relation between capacity and bottleneck width is described by
Hoogendoorn and Daamen (2005). They have found that pedestrians moving uni-direc-
tionally through a narrowing organize themselves in dynamic layers and move in a stag-
gered fashion. This zipping behavior leads to a step-wise relation between capacity and
bottleneck width; depending on the number of effective lanes that fit on the path, capacity
increases in discrete steps. Similar behavior could be present in bicycle flow but this has not
been studied so far.

In this work, we investigate the relation between capacity and path width. To this end,
we carry out a cycling experiment with a realistic one-directional bicycle flow in which
overtaking is explicitly allowed to occur. This allows for observing the free flow capacity
as well as the queue discharge rate. In this setting, the capacity drop phenomenon might be
observed in the same way as in vehicular traffic. More details of the experiment are given
in the following section.
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4.3 Experiment
The experiment is held on a closed terrain to exclude the disturbance of other traffic par-
ticipants such as cars or pedestrians. The cycling movements are recorded on a straight
stretch so that cyclists can move at their free speed without being restricted by the road cur-
vature. The experiment has been approved by the Ethics Committee of the Delft University
of Technology. Further details of the track lay-out and camera placement are described in
Section 4.3.2 and 4.3.3 but before elaborating on that, the paper continues with explaining
the experimental design in Section 4.3.1.

4.3.1 Design
The experiment consists of a group of cyclists that move along a uni-directional bicycle
path. An obstacle is placed on the path that creates a bottleneck by narrowing the path and
enables the occurrence of congestion, see Figure 4.1. The obstacle limits the flow since
fewer cyclists fit on the path. However, the bottleneck is only activated when the cyclist
demand exceeds the capacity, leading to congestion at the upstream side of the obstacle.
To ensure the activation, participants should arrive at the bottleneck cycling at their desired
speed with a sufficient rate.

The capacity for different path widths can be determined before congestion sets in by vary-
ing the bottleneck width and ensuring a sufficient demand on the 2 m-wide path approaching
the obstacle. If the capacity drop phenomenon occurs in bicycle traffic, the observed flow
through the bottleneck will drop to the queue outflow after the onset of congestion.

Figure 4.1: Sketch of the track design.

4.3.2 Set-up and execution
The experiment has been held in March 2018 on the Green Village terrain of Delft Univer-
sity of Technology in The Netherlands. The surface consists of 2-by-2 m concrete slabs over
a total length of 60 m, creating a clear cycle path of 2 m width which was further indicated
by orange cones, see Figure 4.2a. The participants, gathered in a starting area before the
entrance of the track, start cycling after a start sign is given. The space between the starting
area and the entrance of the cone-marked path is approximately 30 m as illustrated in Fig-
ure 4.1. Multiple test runs confirmed that a length of 25 m is sufficient for individual cyclists
to reach their desired speed from standstill. However, the start-up process of a group of 34
cyclists might take longer. While we have not tested this hypothesis, we deem a total length
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of 70 m sufficient for the group to reach the bottleneck location at the desired speed. To
ensure a high arrival rate at the bottleneck location, which is needed to find capacity, the
cyclists start from a waiting area much wider than the 2 m path and they are focally encour-
aged to start cycling simultaneously. This is to prevent that the process of acceleration to the
desired speed, leads to stretching of the group configuration. Furthermore, the cyclists are
instructed to cycle as they would normally do when leaving from a controlled intersection.
After reaching the end of the 60 m stretch, the participants are asked to gather again at the
starting point to prepare for the next run.

The obstacle, consisting of two inflatable air mattresses wrapped in a blue cover, is placed
at approximately 2/3 of the straight stretch. The height of the obstacle is 33 cm which
will block the pedaling over it but does not hinder steering which could be unsafe. Five
scenarios are tested involving different bottleneck widths, varying between 0.50 and 1.50 m
in steps of 25 cm. The order in which the scenarios are executed is randomized to reduce the
behavioral adaptation. This results in the following order in which the scenarios are tested:
1.50, 0.75, 1.00, 1.25 and 0.50 m. Each scenario is repeated three times in a row to check
for consistency.

4.3.3 Observations

In total two cameras are placed on either side of a 11 m-high pole, which is positioned next
to the track at the upstream side of the bottleneck. Camera 1 is the main camera and captures
all bicycle movements from a near top-down angle on the stretch between 10 m upstream
and 2 m downstream of the bottleneck entrance (Figure 4.2a). Camera 2 is placed as backup
and records the cyclists over a stretch of 18 m with an angle towards the upstream side. The
placement position at the other side of the pole creates a gap in the track recording due to
occlusion by the pole (Figure 4.2b).

The recruitment of participants has been done primarily via a master course at the university,
resulting in a group of 34 people. A short questionnaire has been handed out before starting

(a) Camera 1 (b) Camera 2

Figure 4.2: View of camera 1 (a) taken from a run with a 0.75 m wide bottleneck, and cam-
era 2 (b) showing a situation with a 1.50 m-bottleneck. The crossing lines in
yellow are used for the flow counts.
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the experiment to collect socio-demographic data on age, gender, nationality, bike type and
cycling experience. For privacy reasons, the survey data is anonymized and participants
have been asked to wear a red cap during the experiment to minimize face-recognition.

4.4 Data set description

A total of 34 people participated in the experiment and based on the survey result we know
that the group consists mainly of students who use the bike on a daily basis. One participant
stated that his/her cycling frequency is once per month; all others cycle on a daily basis.
The percentages of male and female participants are 76% and 24% respectively and every
participant joined with a bike that they are familiar with. Most of these bikes are classified as
a regular bike which includes a wide range of bikes with different braking systems (hand-
brake or back-pedal brake) and one or multiple gears. Three exceptions are mentioned
explicitly because they might lead to different behavior: 1) a foldable bike, which has a
different physical shape, 2) a fixed gear bike, which has a different acceleration pattern,
and 3) a racing bike, which has a different pose and desired speed. The details on age and
nationality of the participants are presented in Figure 4.3. These descriptive data might be
useful when comparing our results to future studies.
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Figure 4.3: Socio-demographic data of the 34 participants.

A total of 14 runs are recorded and in most runs 34 participants joined. Some runs have
31 or 33 people because participants dropped out while other runs have 35 cyclists as one
of the organizers has joined in as well. An overview of the runs is presented in Table 4.1.
The third run of the scenario with a bottleneck width of 0.50 m (run 50-3) has been canceled
because of safety reasons. The path is so narrow that some cyclists are touching the obstacle
with their pedal or moving the cones creating a potentially unsafe situation for the following
cyclists.

Next section describes the process and choices that are made to extract the data from the
video recording.
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Table 4.1: Details of the runs that were performed during the experiment.

Run # Scenario name Bottleneck width (m) Participant # Duration (s)
1 150-1 1.50 34 27
2 150-2 1.50 34 22
3 150-3 1.50 34 21
4 75-1 0.75 34 36
5 75-2 0.75 34 35
6 75-3 0.75 34 38
7 100-1 1.00 34 31
8 100-2 1.00 34 30
9 100-3 1.00 34 31
10 125-1 1.25 34 27
11 125-2 1.25 34 28
12 125-3 1.25 31 20
13 50-1 0.50 35 52
14 50-2 0.50 34 47
15 50-3 0.50 canceled -

4.4.1 Data extraction

All cycling movements are captured by the main camera 1 and the backup camera 2, see
Figure 4.2. The recording frequency of camera 1 fluctuates around 15 frames per second
due to frame-skipping, while backup camera 2 operates with a lower frequency of around 10
frames per second. The frame rate fluctuation results in irregular position shifts of cyclists
between frames, making a frame-by-frame analysis of bicycle displacements difficult. To
minimize this error, only the first frame of every second is used for further analysis.

The camera recordings were programmed to save every 15 minutes while maintaining a
continuous data stream. However, this process did not function properly resulting in gaps of
two to three minutes between recordings in which data was lost. As a result, the scenarios
50-1 and 50-2 were not fully captured by main camera 1, and backup camera 2 was used for
the data extraction instead.

The data extraction of the flow is done manually by counting the number of cyclists that have
passed the bottleneck entrance in each second as indicated by the yellow lines in Figure 4.2.
If a cyclist is situated across a boundary, the center of a bicycle, in between the two wheels,
is used to determine its position. As pointed out by Steffen and Seyfried (2010), there are
downsides to using this definition. The continuous nature of the cycling movement is lost
due to the discretization of space and time. The space discretization leads to a volatility in
the data set since the cyclists who are moving across a boundary are either in or out based on
the bike’s center point, while in truth they are spread across the crossing line. Furthermore,
the resulting data depends on the chosen aggregation time. This error can be reduced by
averaging over time but at the cost of the data resolution. In our case, we base the further
analysis on the moving mean of 3 s and leave a more detailed analysis for future research.
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4.5 Data analysis plan
The objectives of the paper are to quantitatively describe the relation between capacity and
path width, and to check the existence of a capacity drop in bicycle flow. To meet the
objectives, both free flow capacity and queue discharge rate for the different bottleneck
widths need to be estimated. First, we will present the method we use to find the individual
capacities; then we describe the process to determine the path width dependency of capacity.

4.5.1 Estimating capacity
A first indication for capacity is obtained by visualizing the time it takes for all cyclists
to pass the bottleneck. This is done by constructing a cumulative flow curve for each run.
This curve indicates how many cyclists have passed a particular location as function to time.
Hence, the cumulative flow number N is constructed by adding up all the flow counts of the
previous time steps. The slope represents the number of cyclists that pass the bottleneck
per time step, which equals the flow q = dN

dt . The steeper the curve the higher the flow, so
capacity coincides with the steepest curve. The cumulative flow curves for the different runs
are presented in Figure 4.4. The moment that the first cyclists enters the narrow section is
chosen as the starting time (t=0). The first 10 s are chaotic and the lines are difficult to dis-
tinguish. This part can be ignored since the main message of the figure relates to the range
between 10 and 50 s. It illustrates that for narrower bottlenecks (gray and purple colors) the
time needed to let all cyclists pass increases compared to the wide bottleneck widths (black
and red colors). In the widest bottleneck (150 cm) it takes at least 21 s, while the passing
time in the narrowest bottleneck (50 cm) is at most 52 s.
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Figure 4.4: Cumulative curves of the runs with bottleneck widths between 0.50 and 1.50 m.
The legend refers to the scenario names as given in table 4.1.
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To obtain the capacity value, a so-called slanted cumulative flow curve is used, indicated by
Ñ. This means that a constant reference flow (q0) is subtracted from the cumulative flow
count (N) resulting in the following expression:

Ñ = N−
∫

q0dt (4.1)

By changing the reference flow, one can slant the curves in such a way that the Ñ is constant.
This is done manually by choosing different values for q0. The advantage of this is that the
capacity value can be determined accurately and there is no influence of aggregation time.
To remove noise we use a three-second moving average.

Capacity values are determined for each run separately. We find a value for both the free
flow capacity as well as the queue discharge rate. Hence, we find two values for which there
is a constant value of the slanted cumulative flow curve. If a capacity drop exists, two steady
plateaus should be identified in the slanted curve. The highest value coincides with the free
capacity and should occur before congestion occurs, while the lower value is the outflow
capacity which would occur after the onset of congestion. The difference between the two
capacity values is the capacity drop.

Figure 4.5 shows graphically the working of the methodology for the run 75-1, resulting in
a capacity value of 1.45 cyc/s and queue outflow of 0.83 cyc/s. Other determined capacity
values are presented in Section 4.6.
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Figure 4.5: Example of slanted cumulative curves to determine capacity (a) and queue out-
flow (b) (run 75-1). The blue line is based on the 1-s data and the red line is
the 3-s moving average; the black lines are added to illustrate the horizontal
plateau.

4.5.2 Quantifying the path width – capacity relation
When the capacity and outflow are determined for all bottleneck widths, the dependency
to path width can be quantified using linear regression analysis. This will result in the
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following capacity equation:

C =C0 +βd. (4.2)

Where C is the capacity in cyc/s of a d-meter wide path. Furthermore, β is the regression co-
efficient which coincides with the slope of the regression line when the equation is plotted.
The physical interpretation of this coefficient is that an additional meter of path width coin-
cides with an increase in capacity by β cyc/s. The regression constant C0 is the y-intercept
of the capacity equation. Hypothetically, this gives the capacity of a path of 0 m width,
which is an unrealistic situation. Therefore, C0 does not have a physical interpretation.

4.5.3 Qualitative description of the width–capacity relation

The dependency of capacity to path width is expected to stem from the underlying cycling
behavior. This can be assessed by providing a qualitative description of the cyclists config-
uration while passing the bottleneck.

To describe the position of cyclists, the path is divided into lanes and sublanes using the
description of Botma and Papendrecht (1991) to determine the cyclist headway. A cyclist
occupies a lane which is approximately as wide as its steer. These individual lanes are
not fixed to the path but have a dynamic position on the path based on the cyclist wheels.
The path itself is divided into fixed sublanes of 15.6 cm width. These sublanes are used
to describe the lateral position of the cyclists. If the wheels of following cyclists have a
displacement of 15.6 cm or more, the cyclists are assigned to a different sublane. Since the
individual lanes at the path edges cannot be shifted, the total number of sublanes on a path
is equal to the path width divided by 15.6 minus two. A lane is assigned ‘effective’ when it
is used by the cyclists.

4.6 Results

In this section we present the results. We first report on the quantitative analyses of the
capacity before discussing qualitatively the relation between path width and the observed
flow configurations.

4.6.1 Capacity and capacity drop

For all runs, both a capacity value as well as a queue outflow are obtained using slanted
cumulative curves. All estimated flow are combined into one graph, see Figure 4.6. The
line is a visualization of the regression fit and the measurements are indicated by points.
It shows a positive trend of flow with increasing bottleneck width. The smallest capacity
value of 0.90 cyc/s is obtained in the 0.50 m scenario, while the largest value of 2.4 cyc/s
coincides with a run in the 1.50 m scenario. A similar trend is found for the outflow with
the smallest value of 0.56 cyc/s and largest value of 1.99 cyc/s in respectively a 0.50 m and
1.50 m run.
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Fitting the relationship as mentioned in Section 4.5.2 results in equation 4.3 for capacity
Ccap and equation 4.4 for the outflow Cout.

Ccap = 0.475+0.0111d (4.3)

Cout = 0.042+0.0118d (4.4)

The models have an R2-value of 0.896 for capacity and 0.949 for the outflow, which is a
strong result. It means that the obtained equations can explain 89.6% and 94.9% respec-
tively of the observed variance in estimated capacity and outflow.

The slope of the equations presented in Figure 4.6 quantifies the dependency of capacity to
path width, which is what we set out to find. For an additional meter of path width in the
range of 0.50 to 1.50 m, the capacity increases by 1.11 cyc/s and the queue outflow increases
by 1.18 cyc/s. These slopes are remarkably similar and the difference is only 0.07 cyc/s,
indicating that a constant drop in flow occurs after activation of the bottleneck. In the
range of 0.50 to 1.50 m path width, the flow drops 0.45 cyc/s when the cycling conditions
change from free flow to congested. These results provide evidence that the capacity drop
phenomenon exists in bicycle traffic.

4.6.2 Cyclist configuration and its connection to capacity
If cyclists would behave like vehicles, the capacity would be dependent on their following
distance and the number of lanes. For our bottleneck widths there are either one or two lanes
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Figure 4.6: Estimated capacity values for each of the 14 runs. The black dots are the bot-
tleneck capacities observed before congestion, while the red dots represent the
queue outflow capacities that are observed after the onset of congestion. The
two lines visualize the regression fits.
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since the standard lane width is between 0.75 and 1.00 m. This lane number is insufficient to
explain the variation in capacity. The positive dependency of capacity to path width can be
explained by qualitatively analyzing the cyclist configuration while passing the bottleneck,
using sublanes and effective sublances as introduced in Section 4.5.3. This leads to the
observations described in writing below, followed by an interpretation. A visualization of
the different configurations is presented in Figure 4.7, illustrating examples of observed
patterns.

• 2.00 m: Four effective sublanes are observed on the main path while approaching
the bottleneck location. A maximum of two sublanes are occupied simultaneously,
leading to a staggered formation in the lateral direction. Cyclists are not completely
positioned side-by-side, but show a slight displacement in the longitudinal direction
as well.

• 1.50 m: While passing the widest bottleneck, sufficient space is available to continue
cycling side-by-side but the number of effective lanes reduces to about three of which
two can be occupied simultaneously. People on the right side occupy the same lane,
while the ones on the left side can still vary their position in the lateral direction,
occupying different sublanes.

• 1.25 m: Enough space remains available to cycle side-by-side but the choice in lateral
position is limited. The cyclists on the left and right path are now using the same
lane as their predecessor. Most people place themselves such that the saddles are not
located side-by-side but the front and rear wheel can be completely overlapping when
looking at a cross section.

• 1.00 m: The width is reduced such that cycling side-by-side is impossible and only
one effective lane is occupied at the same time. In lateral direction, the placement is
such that the rear and front wheel can be side-by-side, meaning that 2 effective lanes
are used simultaneously. This enables cyclists to maintain a small distance to each
other in longitudinal direction.

• 0.75 m: Only single-file movement is observed with only a small variations in lateral
placement. Whether this displacement exceeds 15.6 cm and therefore uses one or two
effective lanes cannot be judge based on the video images at this stage. It can be
observed that the distance between cyclists increases compared to the 1.25 m path.

• 0.50 m: Again, only single-file movement is observed but now cyclists have an identi-
cal placement on the path, using the same effective lane. The longitudinal placement
of cyclists increases even further compared to the previous bottleneck size.

When visualizing the qualitative description of cyclist configuration for different bottleneck
width, the sequence in Figure 4.7 shows resemblance to a merging process. The lateral
distance between effective lanes gradually decreases until the path width does not allow
cyclists to use multiple sublanes simultaneously, and the longitudinal distance between cy-
clists increases. Since merging is a gradual process, it can explain the linear expression of
the relation between path width and capacity.
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Figure 4.7: Sketch of cyclist configuration while moving from left to right along a path of
different widths.

4.7 Discussion

The mentioned capacity values and queue discharge rates for the different bottleneck widths
are obtained by conducting a bottleneck experiment with 34 cyclists. The group composi-
tion and socio-demographic characteristics of its participants, such as age or cycling ex-
perience, as well as the experimental setting, i.e. the artificial bicycle path and bottleneck
situation, may influence the capacity values. The results reported in this paper are there-
fore preliminary and should be validated in future research. This has not been done at this
stage since the existing empirical data for bicycle flow is limited and no similar experiment
has been conducted so far. In the future, it would be interesting to compare the findings to
observations in real world situations and to check the sensitivity to different types of bike
paths and different group characteristics such as age or cycling experience.

The obtained linear expression of the capacity equation is explained in this paper by the
resemblance to a merging process based solely on configuration of the cyclist while pass-
ing the bottleneck. Besides positioning, the average speed is also expected to influence
the capacity. Although the speed is not quantified, the behavior observed in the video im-
ages provide indications that the average speed upstream of the bottleneck decreases with
decreasing path width, i.e., cyclists “anticipate” the approaching bottleneck and therefore
reduce their speeds. This is reflected by an increase in observed swaying movements to
prevent falling over and, as speed reduces further, people placing a foot on the ground for
extra stability resulting in stepping rather than cycling behavior. The bicycle self remains in
motion but the individual speed reduces close to zero when a foot is placed temporarily on
the ground.

The cyclists anticipate their turn to pass the bottleneck entrance and accelerate before ac-
tually passing it. Therefore, the speed through the bottleneck is already higher than in the
queue, and the flow observed at the bottleneck entrance is the queue discharge rate. The
change from capacity to queue discharge rate is best visualized in the curves of the runs
with 0.75 m bottleneck width in Figure 4.4. The flow is highest in the first 10 to 15 s (steep
slope) and reduces to a steady flow (steady slope) afterwards.

A learning effect for the various bottleneck widths can be considered by looking into the
duration of the consecutive runs, see Figure 4.8. Remarkably, the second run is typically
shorter than the first run of each experiment, which might indicate a learning effect as cy-
clists become more familiar with the track. This trend however is less clear when comparing
the third to the second run. Furthermore, it is not resembled in the obtained capacity values.
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Figure 4.8: Total duration of the three consecutive runs within each bottleneck scenario.

The highest values for free flow capacity however are observed in the 3rd, 1st, 2nd, 2nd and
1st run of the different scenarios, while the highest outflow are observed four times in the 2nd

run and once in the third. This indicates that the learning effect is not consistently present.

Another explanation of the different run duration is the arrival pattern of the cyclists at the
bottleneck location. Due to stretching of the group caused by speed differences or delays in
the start-up process, the first cyclists arrived in a few seconds before the rest of the group
and thereby lengthened the total duration time. The effect of this stretched arrival pattern is
illustrated by a flatter slope in the first 5 s of the cumulative curve in Figure 4.4.

The estimated relation between path width and capacity value can be used to find maximum
flow values outside the range of 0.50-1.50 m. However, the bottleneck width of 0.50 m was
difficult for the cyclists to pass and the third iteration of this scenario was canceled for this
reason. A path width smaller than 0.50 m would be even more challenging and unrealistic
in daily practice. Therefore, a 0.50 m path width is considered to be the minimum and as
a consequence, the regression model should not be used to find capacity values for paths
smaller than 0.50 m. This restriction does not apply to extrapolation for larger path widths
when assuming that the usage of the path does not change. However, future research is
advised to confirm that extrapolation is indeed allowed.

The non-zero y-intercept of the capacity equation indicates that observed capacity values on
a certain path width, cannot be standardized to a capacity per meter by simply dividing it by
the total path width. Instead, the result obtained in this study of 1.11 cyc/s per meter width
can be used. By doing so, the wide range of capacity values reported in literature might be
narrowed down, leading to a clearer advice for road planners.
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4.8 Conclusion
A cycling bottleneck experiment has been set up to study bicycle path capacity. The ex-
periment involved a group of cyclists moving along a 2-m wide path which included an
obstacle to create a bottleneck by narrowing the path. The size of the bottleneck was varied
between scenarios ranging between 0.50 and 1.50 m width and each scenario was repeated
three times. The flow before activation of the bottleneck (free flow capacity) and the flow
after the onset of congestion (queue discharge rate) were analyzed.

An important finding of this paper is that the capacity was found to be linearly dependent on
the cycle path width. In fact, the capacity increases by 1.11 cyc/s for every additional meter
path width in the range of 0.50-1.50 m. The queue outflow was also found to be linearly
dependent on path width with an increase of 1.18 cyc/s/m. Both values can be used as ref-
erence value to compare capacities of cycling paths of various width. The queue discharge
rate was found to be consistently lower than the free flow capacity and the drop magnitude
was 0.45 cyc/s for cycle paths widths between 0.50-1.50 m. This confirms the existence of
the capacity drop phenomenon in bicycle traffic.

The linear relationships for both the free flow capacity and the queue discharge rate have
yielded a non-zero constant. Therefore, the capacity values found for a certain path width
cannot be standardized to a capacity per meter by simply dividing it by the total path width.
This complicates the comparison of capacity values reported in literature, which typically
focus on a single bottleneck width each. The result obtained in this study, which provides
both the slope and the axis intercept, can be used to correct and compare capacities across
different path widths. By doing so, the wide range of capacity values reported in literature
might be narrowed down.

A qualitative analysis of the cyclist configuration has shown that the bicycle path capacity
does not work with lanes as in car traffic, but sublanes can be formed. Hence, the capacity
does not increase in large steps for one or two lanes only but smaller increases in cycle path
width already lead to an increase in number of sublanes and the capacity therefore gradually
increases.

Further next steps in the research involve the retrieval of individual trajectories to enable
the analysis of the density-flow relation based on individual localized densities. Further-
more, the obtained insights into bicycle flow dynamics will be used in the development and
calibration of a macroscopic bicycle flow model. The development of such a model will en-
able the estimation of city-wide cyclist demand and, in the long term, help mitigate bicycle
congestion.
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Chapter 5

Jam density, merging cyclists and
queue discharge rate

The focus of this dissertation now shifts to controlled intersections. Since cyclists typically
accumulate at these places, they are an ideal setting to study macroscopic cycling behavior.
This chapter provides insights into the queue dynamics of bicyclists by analyzing the queue
discharge process. More specifically, it quantifies how closely individuals are queued up
together and its impact on the maximum flow at the intersection. Furthermore, the chapter
describes how this process is affected by cyclists who merge into the queue during the dis-
charge phase. It thus addresses the research question: What is the influence of jam density
and merging cyclists on the queue discharge rate at a controlled intersection?

Results show that the queue discharge rate increases as queue density increases. Further-
more, cyclists who merge by overtaking contribute to the queue discharge rate, while cy-
clists who merge from a perpendicular direction hinder the discharge process, thereby de-
creasing the bicycle flow at the intersection. The impact of merging cyclists is quantified
via a newly-introduced bicycle-equivalent (BE) value. This chapter’s insights can be used
to develop measures that minimize delay at intersections. This topic is further explored in
Chapter 6 by influencing the queue configuration.

This chapter is published as a journal article: Wierbos, Knoop, Goñi-Ros, and Hoogendoorn
(2020), The Influence of Jam Density and Merging Cyclists on the Queue Discharge Rate.
Journal of Advanced Transportation, p.1-10.
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Abstract

An increasing number of people use the bicycle for urban trips resulting in local congestion
at intersections, especially during peak hour. Understanding the queue dynamics is key to
find the correct measures that can reduce the delays for cyclists without affecting other traffic
modes. To this end, the discharge process of bicycle queues are studied, focusing on the
impact of jam density to the queue discharge rate and how this process is affected by cyclists
that merge into the queue during the discharge phase. The impact of merging cyclists is
captured by a newly introduced bicycle equivalent (BE) value. This direction-specific BE
value is used to convert a merging cyclist into a cyclist that is waiting in the original queue.
Results show that the queue discharge rate increases with increasing density of the queue.
Furthermore, cyclists that merge by overtaking contribute to the queue discharge rate, while
cyclists who merge from a perpendicular direction hinder the discharge process, thereby
decreasing the bicycle flow at the intersection. The insights can be used to develop measures
which minimize delay at intersections and to design efficient infrastructure for bicyclist.

5.1 Introduction

Bicycles are gaining popularity as a mode of transport, especially in Western European
countries and regions with a positive policy towards cycling (Winters et al., 2017; Heinen
et al., 2010). Around 27% of all daily trips in the Netherlands were made by bicycle between
1995 and 2005 (Pucher and Buehler, 2008), and this increased to 32% in 2016 (Ton et al.,
2019). Besides this development in usage, also the distance traveled per trip expanded, lead-
ing to more cyclists on the roads (KiM, 2019). The increased bicycle traffic has led to local
congestion at intersections during peak hour, even though the Dutch cycling infrastructure
is well developed. Little is known about the dynamics of bicycle flow and more research is
required to identify measures that can help prevent future bicycle congestion.

This study focuses on the queue dynamics at a controlled intersection to gain insight into
the factors that influence the queue discharge rate, e.g. jam density. Cyclists have freedom
in choosing their position on the road, especially when joining a queue. Depending on how
compact the people position themselves, a bicycle queue can have different densities. When
moving, the density relates to flow according to the fundamental diagram in traffic flow the-
ory. If and how such a relation holds for jam density and queue outflow is open to question.

Furthermore, it is unclear how so-called “merging cyclists” affect the outflow (Figure 5.1).
These merging cyclists are additional cyclists that merge into the flow during the queue
discharge process for example, by overtaking the queue from behind, or joining the queue
from the side. The influence of merging cyclists is linked to the layout of the intersection and
number of approach directions. If there are open spaces in the queue to absorb the additional
cyclists, the merging behavior might have a positive effect on the overall flow. However,
if the merging behavior obstructs the queue discharge process, the overall capacity might
reduce. This leads to the following question: What is the impact of jam density and merging
cyclists on the queue discharge rate at an intersection?
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Figure 5.1: Sketch of a queue discharge process: the original queue is indicated by the
cyclists in the hatched area, the arrows indicate merging cyclists who skip part
of the queue and join the discharge before the queue is cleared.

This study aims to quantify the influence of jam density and merging cyclists to the queue
discharge process. We do so by analyzing the queuing events of a real-life intersection with
multiple approach directions. The results of this case study are then qualitatively validated
in a small-scale controlled experiment. This setting allows us to keep the group composi-
tion constant, which reduces the intrinsic variability of the observed discharge times. The
results are expected to differ quantitatively from the real-life case study due to the different
infrastructural setting and group composition. However, they will suffice to validate the
sign of the influence of jam density to the queue discharge time and discharge rate. The
acquired knowledge can be used to evaluate existing infrastructure with respect to cyclist
delay, or to design new intersections where the delay for cyclists is reduced. The results will
be of interest especially for countries with high bicycle volumes, such as the Netherlands or
Denmark.

The paper is build up as follows: Section 5.2 provides background information on bicycle
traffic flow and equivalent units, Section 5.3 describes the research methodology, Section 5.4
describes the case study which is used to analyze the queue discharge process. Section 5.5
shows the results of the analysis, and Section 5.6 gives details of the experiment that was
used to validate the case study results. The paper ends with a discussion of the results in
Section 5.7 and conclusions in Section 5.8.

5.2 Related Work

Cyclists have the freedom to choose their lateral position on the road because a bicycle lane
is generally wider than the bicycle itself. This enables cyclists to overtake other people or
to cycle in pairs within one lane (Botma and Papendrecht, 1991; Hoogendoorn and Daa-
men, 2016). At intersections, this freedom results in queues that are less organized than the
queues in motorized traffic. A queue of motorized vehicles is structured in lanes, whereas
cyclists in a queue are grouped closely together and form a cluster pattern (Wang and Wei,
1993). How this cluster pattern effects the queue discharge process is yet unclear.
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The flow characteristics of bicycle and motorized traffic are comparable under certain con-
ditions (Navin, 1994). Similar concepts such as speed, flow and density relations can be
used to describe the flow on a macroscopic level (Zhang et al., 2013). Typical character-
istics are among others capacity, critical density, and jam density. Only a few values have
been reported on jam density, all varying around 0.6 bic/m2 (Navin, 1994; Deng and Xu,
2014; Goñi-Ros et al., 2018). The reported maximum flow, or capacity, shows more varia-
tion. The highest number has been reported by Navin (1994) who performed experiments
in 1974 in Vancouver (Canada) and compared the findings to data from real-life situations,
resulting in an estimated capacity of about 4,000 bic/h/m for a 2.5m wide cycle path. Botma
and Papendrecht (1991) studied bicycle data in The Netherlands, estimating a capacity be-
tween 2,600 and 3,600 bic/h/m for a 2.5m wide cycle path. Hoogendoorn and Daamen
(2016) reported the lowest capacity value of 1,531 bic/h/m based on a new bicycle headway
model with the remark that this value might be an underestimation of the actual capacity
because the cyclists did not use the full width of 3m-wide path. Li et al. (2015) looked into
mixed bicycle traffic consisting of around 80% electric bicycles and reported a capacity of
around 3,300 bic/h/m. An explanation for the wide variation could be a different definition
for maximum flow, namely saturation flow and capacity.

The saturation flow is the maximum number of cyclists that pass the stop line of an inter-
section within one unit of time, whereas the capacity takes into account the signal time,
resulting in a lower value than saturation flow (Chen et al., 2014). Seriani et al. (2015)
analyzed the saturation flow at Travistock Square (London, UK) and Pocuro (Santiago de
Chile) and found that the saturation flow at Travistock Square depended on the time of day;
a maximum of around 4,300 bic/h/m was observed in morning peak hour, while the results
were 25% lower for the afternoon peak hour. The saturation flow showed a linear depen-
dency on lane width at Pocuro, ranging between 2,000 bic/h/m on a 1m lane and 2,350
bic/h/m on a 2m lane. Jin et al. (2015) also found that the width of a cycle path did not sig-
nificantly influence the capacity per meter, implying that the total capacity of a cycle path
scales linearly to the width of the cycle path. The time interval used to calculate capacity
was found to influence the results significantly and with a linear downward trend; the esti-
mated capacity decreased when a larger time interval was used for the estimation. Besides
path width and measuring interval, also the configuration of the cyclists in the queue might
be of influence to the capacity.

Bicycle queue formation has been studied by Cao et al. (2011) which resulted in two models
to describe the relation between queue length, jam density and density distribution. It was
observed that initially only a portion of the lane width was used for the queue, but when
a critical queue length was reached, the additional cyclists would overtake the queue and
start to fill the gaps. This process indicates that queues of similar lengths can have different
average queue densities. How these merging manoeuvres such as overtaking influences the
queue discharge process however, have not yet been studied.

The discharge process of a bicycle queue has been studied by Goñi-Ros et al. (2018), specif-
ically looking at macroscopic characteristics in queuing events without merging cyclists.
They found that a higher jam density results in higher discharge flow and shockwave speed.
Furthermore, they observed a wide variation between queuing events, which highlights the
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stochastic nature of bicycle traffic flow. This finding is also stressed in Yuan et al. (2019),
who estimated the bicycle flow capacity of an intersection based on the saturation headway
and number of virtual sublanes. The observed number of sublanes was less than the the-
oretical number, leading to a decrease in saturation rate of 27–43%. The high variety in
reported values for capacity and saturation flow might also be explained by several factors
such as infrastructure design, weather conditions and heterogeneity in bicycle or bicyclist
type. Although it might be interesting to look into these factors, it is out of scope here.
We focus on the influence of jam density to the flow, and aim to capture the influence of
merging cyclists in equivalent units.

In motorized traffic, equivalent units are used to account for heterogeneity. The traffic flow
at an intersection with multiple approach directions can be considered as heterogeneous,
since the overall flow consists of multiple sub flows with different characteristics. This het-
erogeneity makes it difficult to compare flow characteristics such as queue discharge rate.
The comparison is made easier when the impact of different factors are described in the
same reference unit. The most common reference is the passenger car equivalent (PCE),
which was first introduced by the 1965 Highway Capacity Manual (Roess and Prassas,
2014). Each vehicle type has a specific correction factor (PCE value) to convert a mixed
traffic stream into a uniform flow of PCEs.

Alternative reference modes have been proposed as well to retrieve a homogeneous descrip-
tion of heterogeneous flow. Cao and Sano (2012) proposed a motorcycle equivalent (ME)
to translate mixed traffic conditions in Hanoi, Vietnam, into a unified motorcycle flow. A
mixed flow of bicycles and mopeds was normalized in bicycle equivalents (BE) units by
Chen et al. (2011). It was found that mopeds have a BE value larger than one under high-
density conditions, and a BE value smaller than one under low-density conditions. Other
research focused on retrieving BE values for different infrastructure and varying mixing
ratios for motorized and non-motorized cyclists. The BE value for mopeds was found to
depend on lane width, slope of the road, density and moped percentage (Chen et al., 2012).
The impact of electric bicycles has been captured in a fixed bicycle equivalent value of
0.666 (Jin et al., 2015), based on observations in free flow, stable and restricted flow condi-
tions. Equivalent units have not been used before to describe bicycle flow at an intersection
with multiple approach directions. We apply this concept to capture the influence of merg-
ing cyclists to the queue discharge rate.

5.3 Methodology

This Section 5.3.1 describes method used to find the influence of jam density to the dis-
charge time and queue discharge rate. Section 5.3.2 describes the method to include the
effect of merging cyclists and introduces the bicycle equivalent unit.
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5.3.1 Analysis of the influence of jam density on the queue discharge
process

The influence of the jam density to the queue discharge process is captured via the queue
discharge time and discharge rate. The method to determine these variables are discussed
first, followed by the method to determine their relation.

The density of a queue depends on its dimensions and the number of cyclists in it. For a
queue of fixed length, a waiting area can be defined as the length multiplied by the width of
the cycle path. The jam density is then calculated by the number of cyclists in the waiting
area (Nq) divided by the fixed dimensions of the waiting area (A):

kj =
Nq

A
. (5.1)

The duration of the queue discharge process is the discharge time, which is the time interval
between the first and the last cyclist in the queue to exit the waiting area: Tdis = Tlast−Tfirst.
The queue discharge rate (qdis) is the number of cyclists (N) that pass the exit line of the
waiting area during the discharge time:

qdis =
N

Tdis
. (5.2)

Here, N consists of the cyclists in the queue and the additional cyclists that merge into the
queue during the discharge process. If the merging cyclists influence the queue discharge
process, both the discharge time and queue discharge rate will be affected.

Since the cumulative flow N is less volatile than the flow, we choose to show the effects of
jam density in this cumulative flow plane. If the queue discharge rate was independent of
queue density, the total discharge time (Tdis) would scale proportionally with the number of
cyclists:

Tdis =
Nq

qdis
=

Ak j

qdis
. (5.3)

Figure 5.2 shows how Tdis would relate to the jam density if this was the case. We will
analyze the various observed queuing events and show them in this plane. If the queue
discharge rate is independent on the jam density, the various points will follow one of the
colored lines. If not, the points will cross several lines. We will perform a linear regression
of these points, of the form

Tdis = T0 +βk j. (5.4)

Where T0 indicates the offset. We expect a value for β larger than 0. A value for T0 equal to
zero would indicate that the discharge time is proportional to the jam density kq (and N), see
Equation 5.3. However, when the T0 value is larger than 0, it would indicate that the term
1/qd decreases with density, and hence the queue discharge rate increases with the queue
density.
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5.3.2 Analysis of the influence of merging cyclists
We will extend the analysis above to include also the affect of merging cyclists on the queue
dissipation process. This impact of merging cyclists is quantified using multiple linear
regression analysis. Since the queue discharge rate depends on the discharge time in our
definition, see Equation 5.2, we focus the analysis on the queue discharge time, and later
use the bicycle equivalent unit to quantify the effect of the different merging directions. The
expression of the multiple linear regression analysis is:

Tdis = T0 +µNq +∑αiNi. (5.5)

Here Nq is the number of waiting cyclists in the queue, Ni is the number of cyclists merging
into the queue from direction i, T0 is the regression constants, and µ, αi are the regression
coefficients, corresponding to direction i. The regression coefficients of the different merg-
ing directions are tested on a 95% significance level and only the directions that lead to the
model with the highest adjusted R-squared value should be included. The standardized re-
gression coefficients of the final model are used to evaluate and rank the influencing factors
for discharge time. A standardized coefficient is expressed in standard deviations (σ) and
indicates how many standard deviations the discharge time will change due to the increase
of one standard deviation of the independent variable.

Scaling the regression coefficients (αi) to the main influencing factor (µ) gives an indication
of the impact of the different influencing factors. This process of scaling is similar to the
concept of passenger car equivalent, which is a measure for the impact factor of different
classes in heterogeneous (motorized) traffic (Transportation Research Board, 2000). For bi-
cycle traffic, a bicycle equivalent (BE) is introduced as a measure for the impact of merging
cyclists from direction i relative to the impact of the cyclists in the original queue:

BEi =
αi

µ
. (5.6)
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Figure 5.2: Template to visualize the relation between jam density and queue discharge rate.
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The bicycle equivalent value BEi represents the impact that a merging cyclist from direction
i has on the discharge time. A BE value larger than 1 indicates that the merging cyclist has
an increased impact on the discharge time, hindering the waiting people more than if the
cyclist were standing in the original queue. A BE value smaller than 1 indicates that the
merging cyclist has less influence than if they were standing in the waiting area.

Using the BE values, the total number of cyclists in Equation 5.2 can be recalculated to
the reference unit or bicycle equivalent unit (beu). This results in a uniform expression for
queue discharge rate in beu/s,

qbeu =
Nbeu

Tdis
=

Nq +∑(BEiNi)

Tdis
. (5.7)

Merging cyclists with BE value larger than 1 indicates that the overall influence on the
outflow in bic/s is negative. The negative impact on discharge time is larger than the positive
gain of an additional cyclist in the total cyclist count N. After correcting for this impact, their
contribution changes to positive in the queue discharge rate expressed in beu/s. Merging
cyclists with a BE value smaller than 1 results in a positive influence to the outflow when
expressed in bic/s but this influence is reduced when the outflow is expressed in beu/s.

5.4 Case study
The methods described in Section 5.3 were tested in a case study for which the data was
collected in October 2014, see Hoogendoorn and Daamen (2016). The location is the
Mekelweg−Jaffalaan - intersection, which is part of a busy cycling route between the city
center and the university campus in Delft, the Netherlands. Video data were collected over
a period of 2 weeks, covering an intersection where bicyclists have priority over cars. The
stream of cyclists in morning peak hour was controlled by human traffic controllers who
stopped the stream of cyclists periodically to help car traffic cross the cycle path. An
overview of the situation is provided in Figure 5.3. Due to the proximity to the univer-
sity, the flow consisted predominantly of students who cycled on a regular basis and might
have been rushed to get to their classes in time.

The video was analyzed, looking specifically at the moments at which the bicyclists were
stopped and released again by the traffic controller. During the blocked periods, a queue
of cyclists formed in front of the intersection using occasionally the full width of the cycle
path (3 meter), including the lane for the opposite direction. In the images, a waiting area
was defined and drawn by the white lines in Figure 5.3b. The size of the waiting area (A,
6.7m x 3m) was chosen such that a clear count of the number of cyclists could be made
based on the video images, so its size was limited by the presence of the tree. The events
were recorded only when the queue length reached the end of the waiting area or exceeded
this length, resulting in a total of 106 queuing events. The number of cyclists within the
waiting area was determined manually, resulting in different queue densities depending on
how compact the cyclists had positioned themselves. After the traffic controller released the
flow, the queue discharge time was determined as the time interval between the first wheel
passing the exit line and the second wheel of the last cyclist (of the original queue) passing
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the exit line. With this method, the initial start-up time of the cyclists was not included
in the discharge time. The bicyclists did not have any interaction with vehicles during the
discharge time, and interaction with pedestrians was very limited. Based on this knowledge,
we assumed in the analysis that the discharge process was only influenced by cyclist-cyclist
interaction.

The observed jam density ranged between 0.2 and 0.6 bic/m2 with a mean of 0.4 bic/m2

and standard deviation of 0.086 bic/m2, see Figure 5.4. The time to empty the waiting area
ranged from 2 to 7 seconds with a mean of 4.6 s and standard deviation of 0.92 s. Before
the last cyclist of the original queue left the waiting area, additional cyclists could merge
into the queue from different directions. The merging cyclists were counted from different
directions (see Figure 5.3b) being the cycle path from the Jaffalaan which has a 90 degree
angle with the waiting area (1), overtaking from behind (2) and a shortcut direction across
the side walk (3). Furthermore, the presence of cyclists going in the opposite direction
was recorded (4) as well as the cyclists coming from direction 5. Only the queues in the
morning peak hour were captured and analyzed. At that time of the day, the majority of
the flow was directed towards the university building (to the right in Figure 5.3) and almost
no oncoming cyclists were present coming from direction 4. The number of additional
cyclists per discharge period varied between 0 − 6 cyclists for direction 1, 0 − 4 cyclists
for direction 2, and 0 − 2 for direction 3. During the selected queuing events, no bicyclists
were observed coming from direction 5.

(a) Example of queuing event, the cyclists within the
two white lines are counted to determine jam density.

(b) Influencing directions

Figure 5.3: Example of the video data (a) with the waiting area defined by the white lines.
The black arrows indicate the different directions in which additional cyclists
can influence the queue discharge process (b).

5.5 Results of case study

The results of the analysis of the case study data are discussed, starting with the influence of
jam density on the discharge time and queue discharge rate, followed by a quantification of
the influence of merging cyclists, which leads to queue discharge rate expressed in bicycle
equivalent units.
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Figure 5.4: Frequency distributions.

5.5.1 Influence of jam density

The observed queue discharge times are plotted against jam density in Figure 5.5. The scat-
tered dots show a positive trend, which is captured by the linear fit (black line). The results
show that discharge time increased gradually with jam density, which can be interpreted as
a time penalty for density. On the other hand, the queue discharge rate also increases when
cyclists stand closer together in the queue, which indicates that the queue dissipation process
is more efficient. Linear regression analysis results in the following regression model:

Tdis = 2.70+5.05k j. (5.8)

The regression equation is statistically significant (F(1,104) = 30.4, p < .001) with an R-
squared value of .226. This means that the discharge time increases with 5.05 seconds
for every bic/m2 increase in jam density, and that the equation explains about 23% of the
variance in observed discharge time. The model is improved when also including the effect
of merging cyclists.

5.5.2 Influence of merging cyclists

Other explanatory factors for the observed variation in queue discharge time are cyclists
that merged into the queue during the discharge process. The multiple regression analy-
sis showed that only the number of waiting cyclists in the queue (Nq), number of merging
cyclists from direction 1 (N1) and merging cyclists from direction 2 (N2) had a significant
influence on the discharge time. The influence of merging cyclists from direction 3 (N3)
and oncoming cyclists (N4) was not statistically significant and has therefore been excluded
from the final regression analysis. Table 5.1 provides the results of the Pearson correlation.
It shows that the correlation between discharge time and both Nq and N1 are around 0.50, in-
dicating that these variables had a moderate and positive impact on the discharge time. The
correlation between discharge time and merging cyclists from direction 2 is lower, around
0.25, indicating that N2 had a possible positive impact on discharge time, but the connec-
tion was weak. The correlation between Nq and N1, Nq and N2 and N1 and N2 is smaller
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Figure 5.5: Observed discharge time and jam density (dots) and the linear regression fit
(black line). The lines starting from the origin indicate different flow in bic/s
over the full width of the cycle path (3 meter).

than 0.20, indicating that the relation was very weak and that the variance of one variable
was unlikely to explain the variation of the other variable. The p-values of the correlation
results are shown in Table 5.2. The values below 0.05 are statistically significant, meaning
it is 95% certain that the variations in both variables are not unrelated. In other words, the
variables Nq, N1 and N2 were likely to explain a part of the variance within the observed
queue discharge time.

The regression model that fits the data best is captured by the following equation:

Tdis = 2.06+4.84k j +0.32N1 +0.20N2. (5.9)

The standardized regression coefficients, which are used to determine the ranking, for Nq,
N1 and N2 are respectively 0.46, 0.44 and 0.21. This indicates that the number of waiting
cyclists in the queue is the variable that explained most of the variation in discharge time,
closely followed by the number of merging cyclists from direction 1. The R-squared value
of the regression equation (9) is .499, indicating that about 50% of the variance in discharge
time was explained by the model.

Table 5.1: Pearson correlation matrix.

Tdis Nq N1 N2

Tdis 1 - - -
Nq 0.476 1 - -
N1 0.515 0.065 1 -
N2 0.261 -0.045 0.184 1

Table 5.2: P-values of the correlations.

Tdis Nq N1 N2

Tdis 1 - - -
Nq <0.001 1 - -
N1 <0.001 0.508 1 -
N2 0.007 0.648 0.059 1
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The regression model for discharge time shows that the influence of merging cyclists de-
pended on the direction of the merge. The impact of the direction with respect to the in-
fluence of the jam density was captured by the bicycle equivalent (BE) value. A BE value
of 1.31 was found for bicyclists that merged by taking a sharp turn (∼90 degree angle, di-
rection 1) and a BE of 0.83 was found for cyclists that overtook from behind (direction 2).
This means that merging behavior from the side disrupted the discharge process and caused
a delay to the last cyclist in the original queue, whereas merging behavior from behind af-
fected the discharge time less. Using the BE values, the effect of merging cyclists from
different directions was recalculated to a uniform expression for merging flow, expressed
in bicycle equivalent units. The results are visualized in Figure 5.6, showing an increase
in queue discharge rate with both increasing jam density and corrected merging flow. The
observed queue discharge rate ranged between 1.3 and 3.3 bic/s over a 3 meter wide cycle
path, which translates into 1,500 to 4,200 beu/h/m. These estimates were valid only during
the discharge process itself, which lasted up to 7 seconds in this study. It is unlikely that
this high flow can be maintained for a full hour in real traffic conditions, but for comparison
reasons the rates are expressed in an hourly rate. The large variation in queue discharge rate
was explained by different combinations of jam density and merging cyclists. The lower
values were related to low jam density values and low merging flow, whereas the highest
queue discharge values were achieved by a high presence of merging cyclists. The maxi-
mum value of 4,200 beu/h/m was found at a jam density of 0.4 bic/m2 and merging flow of
1.75 beu/s.

Figure 5.6: Queue discharge rate at different jam density and merging flow, expressed in
bicycle equivalent units.
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5.6 Validation experiment

The results of the case study show a positive relation between jam density and queue dis-
charge time, as well as a positive influence of jam density and merging cyclists to the queue
discharge rate. These findings are validated in an experimental setting which allows to con-
trol the group composition by using the same set of cyclists for each queuing event. By
doing so, the variability in observed queue discharge time, caused by differences between
cyclists, e.g. bicycle type, experience, etc., is reduced.

The setup of the experiment was as follows. We asked a group of 20 cyclists to cycle as they
would normally do in daily life and to stop when they reached a mimic traffic signal. While
approaching the intersection and the signal was red, the cyclists were free to pick their po-
sition while forming a queue. An example of such a queuing event is shown in Figure 5.7a.
Once the sign turned green, the cyclists started cycling again and the queue cleared. The
group of cyclists approached the mimic intersection multiple times, while mixing the or-
dering every time such that differences in cycling style would not be dominant. The track
did not include a side path, meaning that merging cyclists could only influence the queue
discharge process by overtaking. The track width was varied between two and three meters
to get different jam density values. Recall that the path in the case study was a two-way
cycle path of 3-meter width and that this full width was only used in the dense queues.

The group of participants consisted primarily of students from an American university who
were in their twenties. A questionnaire learned that about half of the participants use a bike
several times per week in their daily life, while a small portion indicated that they never
cycle. Nevertheless, they indicated that their cycling confidence during the experiment was
good. All cyclists participated on a rental bike which they had time to become familiar with
in the days prior to the experiment.

The procedure to retrieve jam density, queue discharge time and discharge rate was similar
to that for the case study. The only difference is the dimension of the waiting area. A fixed
queue length of 7 meters was chosen instead of 6.7m such that the boundary was clearly
distinguishable by an existing cross-line on the path, see Figure 5.7b. The total length of
the queue was 8 to 15 meter and thus exceeded the length of the waiting area in each run.
A total of 7 runs were recorded, which is deemed sufficient to qualitatively validate the
positive effect of jam density to the queue discharge rate.

5.6.1 Experiment results

The combined jam density and discharge time of the experiment are shown in Figure 5.8.
Two initial observations can be made based on it: First, we find the points further to the
right so the jam density is higher in the experiment than what was observed in the case
study. And second, the points are higher up in the graph so more time is needed to clear the
queue, resulting in larger queue discharge times.

The observed discharge times at kjam = 0.64 bic/m2 is widespread, which can be explained
when looking at the discharge process. The queue that took approximately 10 seconds to
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clear was influenced by a cyclist that had difficulty to start cycling and was overtaken in the
process, while the cyclists in the queue that only needed 6 seconds to clear were restarting
to cycle so fast that a gap appeared to the cyclists behind them in the queue, indicating that
the process was faster than anticipated.

For validation of the relationship, we also show the regression line, which is given by
Tdis = 4.63+ 5.29kjam and R-squared = 0.212. It shows that also in the controlled exper-
iment, the queue discharge rate increases with jam density. However, the overall flow is
lower than in the case study. In the experiment, the flow increases from 1.2 to 1.4 bic/s,
while in the case study a discharge rate of 1.5 bic/s was reached. Although the number of
observations are limited, the discharge rate shows a positive response to an increase in jam
density. As expected based on the different group composition, the regression model from
section 5.5.1 is unable to predict the discharge times for the higher jam density values in
the experiment. On the other hand, the experiment results do show that the queue discharge
time and rate are indeed positively influenced by the density of the queue.

Merging by overtaking was observed only on two occasions in the experiment. In both
runs, there was exactly one cyclist that merged into the original queue, and several par-
tial overtaking manoeuvres, which were not completed before passing the stopping line.
These two merging events are too limited to validate the method proposed in section 5.3.2.
Nevertheless, it is interesting to mention that merging by overtaking is also observed in an
experimental setting.

(a) (b)

Figure 5.7: Example of a queueing event in the experiment (a) and cleared path showing
the waiting area indicated with red lines (b).

5.7 Discussion and future research
Both the case study results and the experiment findings show that a positive relation exists
between the jam density and both the queue discharge time and discharge rate for a queue
of fixed length.

The trend lines in Figure 5.8 show that the discharge rates in the case study increases from
0.8 to 1.5 bic/s, and in the experiment increases from approximately 1.2 to 1.4 bic/s for the
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Figure 5.8: Combined results of case study and experiment.

total width of the path. When extrapolating the flow to an hourly saturation rate, the results
for the case study roughly increase from 1,000 to 1,800 bic/h/m, while the experiment give
rates between 1,400 and 1,700 bic/h/m. These results are below the lowest saturation rate of
2,000 bic/h/m that was reported in literature by Seriani et al. (2015). A possible explanation
for this could be the absence of hastiness in the experiment.

The analysis of the case study results identified three factors that influenced the time for
clearing a queue of fixed length, being the number of cyclists in the queue, merging cy-
clists from the side, and merging cyclists from behind. Merging behavior from the side
disrupted the discharge process and caused a delay to the last cyclist in the original queue,
whereas merging behavior from behind affected the discharge time less. Unfortunately, the
number of observed overtaking manoeuvres in the experiment was too small to validate the
impact of merging cyclists and more research is needed before it can be used in practice.
Furthermore, it would be interesting to study more locations to fine the effect of geometry,
population, weather and other factors in the future research. Possibly, other means of data
collection could contribute in this, e.g. GPS-trajectories (Christian et al., 2019), mobile
phone data (Ghahramani et al., 2020) or drone counts (Kim, 2020).

The queue discharge rate increased with increasing jam density. This indicates that a higher
discharge flow can be obtained if cyclists create a denser queue. Further exploring this
dependency to jam density would be interesting e.g. to optimise the throughput at an inter-
section. Does the positive influence of jam density to the flow maintain when cyclists queue
up closer together, or is there a maximum? Furthermore, more behavioral research is needed
to find the best way to nudge cyclists into queuing up closer together in a real-life situation.
Other possible research directions are: Allowing for a dynamic queue length instead of a
fixed length, as well as analyzing the exact spatial configuration of the queue to identify the
relation to the merging flow. Open spaces in the queue (local density minima) could initiate
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merging behavior from different directions. Personal characteristics, i.e. age, gender, level
of fitness, can be included to retrieve a more specific impact factor for merging cyclists, as
well as specifying the type of bicycle, i.e. electric, regular or cargo.

5.8 Conclusion
This study analyzed the queue discharge process of cyclists at a controlled intersection,
focusing on how jam density and merging cyclists influence the discharge rate. The jam
density was found to positively influence the queue discharge rate. Furthermore, it was
found that cyclists who merged by overtaking contributed more to the observed discharge
rate compared to cyclists that were standing in the original queue. Cyclists that merged
from a direction perpendicular to the queuing direction were found to hinder the discharge
process, decreasing the observed discharge rate. The positive relation between jam density
and queue discharge time and discharge rate was validated in a controlled experiment.

The results of this study contributes to the development of bicycle models which help in
assessing new plans for bicycle infrastructure layout or measures to minimize delay at in-
tersections.



Chapter 6

Queue configuration, jam density
and the effect on discharge rate

The previous chapter showed that a higher jam density creates a higher queue discharge rate.
In theory, higher jam densities are feasible than those currently observed in practice. This
leads to our hypothesis that the delay at intersections can be further reduced when cyclists
are encouraged to queue up closer together. To explore this, we carried out an experiment in
which the queue configuration was influenced to increase jam density. This chapter presents
ways to increase the queueing density, analyzing the effect on the queue discharge process
both quantitatively and qualitatively. The research question connected to this chapter is as
follows: Can the jam density of bicycle queues be influenced by managing the queue build-
up and if so, does the relation between jam density and discharge rate hold for higher jam
density values?

Results show that increasing the jam density indeed increases the queue discharge rate. This
also holds for jam density values that exceed those observed in normal queuing conditions.
The efficiency of the queue discharge process, captured by the discharge rate, was found
to increase by 40% when cyclists queue up closely together. Qualitative comparison of
the queuing positions and discharge patterns showed that the discharge sequence is largely
determined by the queuing position, and that cyclists keep a distance from each other in both
time and space during the queue discharge phase. When applied in practice, these findings
can be used to update the signal length and green phases for all traffic, thereby reducing
congestion in urban areas.

This chapter is published as a journal article: Wierbos, Knoop, Bertini, and Hoogendoorn
(2021), Influencing the Queue Configuration to Increase Bicycle Jam Density and Discharge
Rate: An Experimental Study on a Single Path. Transportation Research Part C: Emerging
Technologies. 122 (2021), p.1-15, 102884
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Abstract
Congestion in bicycle traffic is a daily occurrence at many urban intersections. It is known
that a higher density in the queue leads to a higher discharge rate. In theory, higher jam
densities than those currently observed in practice are feasible. This leads to our hypothesis
that the delay at intersections can be further reduced when cyclists are encouraged to queue
up closer together. To explore this option, we carried out an experiment in which the queue
configuration was influenced to increase the jam density. This paper presents ways to in-
crease the queuing density, up to twice the density found without instructions. Results show
that increasing the jam density does indeed increase the queue discharge rate; this also holds
for jam density values that exceed those observed in normal queuing conditions. The effi-
ciency of the queue discharge process, captured by the discharge rate, was found to increase
by 40% when cyclists queue up closely together. Qualitative comparison of the queuing
positions and discharge patterns showed that the discharge sequence is largely determined
by the queuing position, and that cyclists keep a distance from each other in both time and
space during the queue discharge phase. When applied in practice, these findings can be
used to update the signal length and green phases for all traffic, thereby reducing congestion
in urban areas.

6.1 Introduction
Using the bicycle to travel from A to B is popular in countries with a well-established cy-
cling culture, such as the Netherlands and Denmark. Bicycle usage in the Netherlands is
increasing (Harms and Kansen, 2018), which is a positive trend from a health and sustain-
ability point of view (Forsyth and Oakes, 2015), but it also raises challenges. For some, the
challenge is to understand cyclists to further promote cycling (Harms et al., 2016), while
others are investigating ways to reduce delays for cyclists (Paulsen and Nagel, 2019). The
urban infrastructure is struggling to handle the increased bicycle traffic flow, especially dur-
ing the peak hours, resulting in congestion. Congestion predominantly occurs at controlled
intersections which act as bottlenecks for cyclists, resulting in queues and delays. Cyclists
have to wait more than one cycle length before they can traverse the intersection, which
occurs on a daily basis in Amsterdam, Utrecht and other cities in the Netherlands with high
cyclist volumes.

A possible solution to reduce congestion is to ensure that more cyclists are able to pass the
traffic signal during the green phase. Simply lengthening the green time would negatively
affect the other traffic which is undesirable. Another option could be to optimize the queue
discharge process, e.g. the queue discharge rate and average speed of cyclists during the
queue dissipation. Previous research (Goñi-Ros et al., 2018; Kucharski et al., 2019; Wier-
bos et al., 2020) has shown that the queue discharge rate is positively influenced by the jam
density, which is the average number of stopped cyclists per squared unit of space. Although
more factors could play a role here as well, this effect of jam density implies that the queue
discharge process can be optimized by increasing the density of the queue.
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The maximum observed jam density in practice is below what should be possible in theory,
based on the physical dimension of bicycles. To reach higher jam densities, the queue for-
mation process must be influenced e.g. by encouraging people to queue up closer together
or providing predetermined waiting positions. It is, however, unknown whether creating
denser queues can be achieved in practice and if so, whether the positive relation between
jam density and queue discharge rate then holds. These questions are addressed in this study
by means of a controlled experiment in which the participants are asked to perform multiple
repetitions of cycling, forming a queue, and continuing to cycle after a signal turns green. In
the meantime, different instructions were provided on how to form the queue. The discharge
process was recorded on video and analyzed for each configuration to identify the impact of
the configuration and resulting jam density on the queue discharge rate and discharge speed.

The paper continues with providing additional background information on macroscopic
quantities and other findings in bicycle queue formation in Section 6.2. Then, Section 6.3
describes the experiment setup, the data analysis plan, and the experimental execution. Sec-
tion 6.4 gives the results and its interpretations. Section 6.5 shows the practical implication
of the main finding, and Section 6.6 discusses the results and gives direction for future
research. Section 6.7 closes the paper by presenting the main conclusion.

6.2 Background on macroscopic quantities and queue for-
mation

The literature on bicycle traffic flow has gradually expanded over the past several years.
Earlier work primarily focused on single file movements and uninterrupted bicycle traffic
flow, reporting on e.g. mean speed and gap acceptance, speed, volume and passing move-
ments (Botma and Papendrecht, 1991) and capacity and level of service (LOS) (Navin,
1994; Allen et al., 1998). More recently, the traffic dynamics of bicycle traffic flow are
further studied by means of large-scale bicycle experiments, either focusing on single lane
movements to enable comparison with car traffic (Mai et al., 2013; Zhang et al., 2013; Jiang
et al., 2016; Zhao and Zhang, 2017), or multi-lane bicycle flow to investigate the character-
istics of bicycle traffic flow when overtaking is allowed (Gavriilidou et al., 2019; Guo et al.,
2019).

Besides the uninterrupted behavior, traffic flow at intersections has gained increasing atten-
tion since they are the main bottlenecks for bicycle traffic flow. One of the first analyses on
cycling behavior while approaching an intersection was done by Opiela et al. (1980), report-
ing on arrival patterns, approach speeds, and crossing gap acceptance characteristics. In the
dissipation phase of a queue, important aspects are the capacity, queue discharge rate and the
jam density. The capacity is the maximum number of cyclists that can pass the intersection
per unit of time, usually converted to one hour, while taking into account the cycle length.
The capacity therefore depends on the green interval and total cycle length (Wang et al.,
2011). The queue discharge rate, or saturation flow, is the average number of cyclists that
pass the traffic signal per unit of time. This flow is only measured during the green interval
and does not take the waiting time into account, resulting in a higher value than the capacity.
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Reported values of saturation flow show a wide variation which can be related to e.g. time
of day, width of the path, topography or bicycle type. The influence of bicycle type on the
capacity was studied by Zhou et al. (2015); Jin et al. (2015). They found that the presence
of electric bikes besides conventional bikes increases the capacity, while cyclists transport-
ing cargo decrease the capacity. Jin et al. (2015) introduced a bicycle equivalent unit to
convert the capacity of a mixed stream of bicycles into a standardized flow of conventional
bikes. Seriani et al. (2015) observed that the saturation flow during the morning peak hour
exceeds that of the afternoon peak for sites in London and Santiago de Chile. Furthermore,
a near linear relation was obtained between path width and saturation flow, meaning that the
saturation flow nearly doubles when the path width changes from one to two meters. Rak-
suntorn and Khan (2003) studied the queue discharge rate at four intersections in different
American cities and found that cyclists form multiple adjacent queues when the path width
increases. Furthermore, the saturation flow shows a step-wise increase with the formation
of a new lane. The differentiation into lanes is also described by Botma and Papendrecht
(1991) who used theoretical sublanes to identify whether a cyclist is constrained by a cyclist
in front or not. This qualification is used to determine the headway of a cyclist, which in
turn is useful to estimate capacity as was done by Hoogendoorn and Daamen (2016) by
proposing a bicycle headway model. Recently, Yuan et al. (2019) introduced a new method
based on empirical data to determine the number of sublanes for bicycle traffic. They found
that the observed number of sublanes is less than the theoretical number, which results in
a reduction of the capacity estimate. Furthermore, the observed number of sublanes, as
well as other variables e.g., start-up time and saturation headway, were found to be highly
stochastic.

The jam density is the result of the queue formation process, which in turn results from the
cyclists’ decisions on where to stop (Gavriilidou et al., 2019). During this process, cyclists
spontaneously form multiple channels which results in different dimensions and density of
the queue. A higher jam density leads to an increase in queue discharge rate as was found
by Kucharski et al. (2019) based on queues of 2 to 7 cyclists in Krakow and Goñi-Ros et al.
(2018) who observed queueing events with 7 to 19 cyclists at an intersection in Amsterdam.
These findings imply that the efficiency of the queue discharge process increases when the
jam density is higher. However, it is unknown whether higher discharge rates are indeed
obtained for higher jam density and under which circumstances denser queues could be
formed.

For pedestrian movements it is known that a bottleneck results in a loosely formed queue,
whereas a train boarding leads to a densely formed queue (Kneidl, 2016). These situa-
tions have not been categorized for bicycle movements yet but one can observe in Ams-
terdam that a queue at an intersection is less dense than the queue of cyclists in front of
a ferry. At intersections, the reported jam densities in literature vary between 0.56–0.65
bicycles/m2 (Deng and Xu, 2014), 0.20–0.60 bicycles/m2 (Wierbos et al., 2020) and 0.31–
0.65 bicycles/m2 (Goñi-Ros et al., 2018). In theory, higher jam density values should be
possible and leading to less congestion. However, it is unknown if the jam density can reach
a higher value in practice and if so, whether the positive relation between jam density and
discharge rates holds for jam densities exceeding 0.65 cyc/m2. This specific knowledge
gap is the topic of our study. We aim to understand the link between the density of the
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queue and the discharge process, especially in situations with a high jam density. A key as-
pect in reaching these higher density values is to find effective ways to influence the queue
formation process.

6.3 Research approach
The primary aim of this study is to investigate whether the jam density can be positively
influenced by giving different queuing instructions to the cyclists. And if so, we aim to
quantitatively describe the influence of jam density on queue discharge rate for the observed
jam density range. The secondary aim is to better understand the underlying processes
of the queue discharge. Section 6.3.1 describes the setup of the controlled experiment,
section 6.3.2 presents the data extraction and analysis plan, split up into the primary and
secondary aims, and section 6.3.3 describes the experimental execution.

6.3.1 Experimental setup

The behavior is studied in the setting of a controlled experiment because we are interested in
density values that have not yet been recorded in real-life situations. In the experiment, we
ask a group of cyclists to cycle on a two-meter-wide path until they reach a stop line where
a person is holding a red ‘STOP’ sign or a green ‘GO’ sign, mimicking a traffic signal.
When the sign indicates STOP, the cyclists stop and form a queue; when the sign states
GO, the cyclists restart cycling and the queue dissipates. A sketch of the setup is shown
in Figure 6.1. The movements between the stop line and 17m upstream are captured by a
camera that captures the movements at a rate of 25 frames per second. Figure 6.2 shows the
view of the camera. The experiment is held in a closed terrain which has no gradient and
is free of other traffic to minimize external influences. The design of the experiment was
tested and approved by the ethics committee of Delft University of Technology.

Figure 6.1: Draft of the experiment setup. The dotted line indicates the stop line, the black
dot is the camera position, and the dash dotted lines visualize the camera view.

We repeat the sequence of arriving, queuing and clearing multiple times while providing
different guidance on how to form the queue. First, no queuing instructions are given to
capture the uninfluenced behavior. Then, we start to intervene and ask the participants to
queue up more closely, without giving further information on how to do this. Then, we
ask them to queue up on pre-assigned spots in pairs, in threes or a mixture. These spots
are indicated with colored markings on which the cyclists place their front wheel. Each
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Figure 6.2: Snapshot of the camera view.

formation has its own symbol and color, as shown in Figure 6.2. Figure 6.3 shows the
different queuing formations that were tested:

(a) In pairs, staggered

(b) In threes and side by side

(c) In threes and v-shape where the middle cyclist is placed slightly backwards

(d) Alternating in pairs and in threes

(e) In threes with a shift

These configurations are chosen such that the density is higher than the highest jam density
of 0.65 bic/m2 (Goñi-Ros et al., 2018) that has been reported so far. In theory, the config-
urations (b) and (c) result in comparable jam density but the queue discharge rate might be
different since the configuration can influence the process to start moving. More configura-
tions are possible, especially when relaxing the constrained of a 2m-wide path. However,
the capacity does not scale linearly to the width of the path (Wierbos et al., 2019). Changing
the path width would thus affect the discharge rates and is expected to diffuse the effect of
jam density. For this reason we look only at different configurations within a fixed path
width. Following the findings of Gavriilidou et al. (2019), a bicycle length of 1.80cm and
handle bar width of 60cm is used to place the markings on the path. An additional 10cm is
added on each side for every cyclist, resulting in a lateral spacing of 80cm when the cyclists
are placed in threes and side-by-side. Each configuration is repeated thrice to capture the
fluctuations that will occur due to the stochastic nature of cyclists’ behavior. Furthermore,

(a) k j = 0.67 bic/m2 (b) k j = 0.75 bic/m2 (c) k j = 0.75 bic/m2

(d) k j = 0.90 bic/m2 (e) k j = 1.00 bic/m2

Figure 6.3: Tested queue configuration with theoretical jam densities.
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we encourage cyclists to change order every time to minimize the influence of personal
preferences in speed and reaction time.

6.3.2 Data extraction and analysis methods

The sequence of arriving, queuing and continuing cycling is called a run hereafter. We split
the analysis of all runs into two parts, in line with our primary and secondary objectives.

Jam density and queue discharge rate

The primary objective is to quantify the relation between the jam density (k j) and the queue
discharge rate (qd) for high jam density situations. To this end, the jam density and queue
discharge rate need to be determined. The former is determined using the length of the
queue, which is recorded for each run and measured after the experiment has finished. Since
the number of participants is kept the same, a dense queue results in a shorter queue than
a queue with low density. The jam density for each run is therefore determined by the
number of cyclists within the queue (N) and the dimension of the queue (A), which is the
queue length (l) times the path width of two meters:

k j =
N
A

=
N
2l

(6.1)

The data extraction for the queue discharge phase is done using the lateral cross-section
technique described in Knoop et al. (2009). This technique extracts the pixels along a cross-
section of each video still and merges the slices from consecutive frames into a new figure.
We take the stop line for our cross section, see the yellow line in Figure 6.4a. The resulting
image shows the passing times and lateral positions of the cyclists, see Figure 6.4b. When
a cyclist passes with a low speed, the wheel will occupy the cross-section for a longer time
period and therefore has a larger size in the image then a wheel of a fast-moving cyclist. The
position and time of the wheel centers are identified and indicated with red dots. Figure 6.5a
is an example, showing the passing moments of all cyclists of a run.

The queue discharge rate is determined using the individual passing moments of the cyclists
and combining them in a cumulative curve. To minimize the influence of individual fluctu-
ations in e.g. reaction time and speed, we perform a linear regression analysis, resulting in
the following model:

N = qd(ti−L). (6.2)

Here, N is the cyclist number, qd is the queue discharge rate in cyclists per second, t is the
time in seconds at which the Nth-cyclist passes the stop line and L = t0

qd
is a constant which

depends on the queue discharge rate and the start-up time t0 of the first cyclist. The slope
of the regression line is the measure for the average queue discharge rate which we use for
our further analysis ∆N

∆t = qd , see Figure 6.5b. The jam density and queue discharge rate for
each run are then coupled and a regression analysis is performed to quantify the influence
of the jam density on the queue discharge rate.
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(a) (b)

Figure 6.4: Example of a queue showing the cross-section (yellow) and queue length (white)
that is used for the analyses (a) and the constructed image in space and time (b)
showing the lateral position and passing time of all front wheels indicated with
red dots.

(a) (b)

Figure 6.5: The digitized version of 6.4b showing the lateral position and passing time of
all bikes (a). The front wheel is indicated with the filled dot, the rear wheels
with the open dot. (b) shows an example of the regression analysis to obtain the
queue discharge rate.

Speed and queue configuration

The secondary objective is to better understand the underlying processes of the queue dis-
charge. To this end, we perform two analyses. First, we investigate the individual and
average speeds of cyclists during the queue discharge process and second, we compare the
queue configuration to the discharge pattern.

The individual speeds (vi
d) are extracted using the passing times (t) of the front and rear

wheels and the distance between the two wheels (r), which equals the average length of
a bike, i.e. 1.80m (Gavriilidou et al., 2019), minus twice the radius of a wheel, which is
approximately 0.35m for an 28-inch wheel, r = 1.80−2∗0.35 = 1.10m:

vi
d =

r
t i
rear− t i

front
. (6.3)
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The average speed Vd during the queue discharge phase is the harmonic mean of the indi-
vidual speeds:

Vd =

(
1
n

n

∑
i=1

1
vi

d

)−1

, (6.4)

in which n is the total number of cyclists that are participating in that run. A regression
analysis is performed to grasp the influence of the jam density on the average speed during
the discharge.

To grasp the underlying mechanisms of the obtained relations, we qualitatively describe the
different queue configurations and their effects on the observed patterns during the discharge
phase. This is done by following each cyclist during the discharge process and comparing
it to the queue position with the speed, ranking and lateral placement on the path while
passing the stop line. Different colors are used to visualize the position of cyclists in the
queue matched to their ranking in the discharge phase.

6.3.3 Experiment execution

The experiment was held at the Green Village terrain which is a living lab and test facility of
Delft University of Technology. The terrain was closed for visitors to eliminate possible dis-
turbance by other traffic. The experiment was held on the 7th of August in 2019 which was
a dry and partly clouded day with a moderate breeze (4 Beaufort). These wind conditions
are common in the Netherlands and are not expected to have influenced the outcomes. A
total of 20 people participated in the experiment of which the majority was student, between
20 – 25 years old and held the American nationality. Twelve of the twenty participants were
male, implying that the group consisted predominantly of young male adults. All cyclists
participated on a classic ‘oma fiets’-type of bike with single speed and back-pedal brakes,
which is commonly used in the Netherlands. These rental bikes had been used in the days
before the experiment so everyone had time to become familiar with this type of bike. The
participants were asked to fill in a short questionnaire about their cycling experience and
confidence while cycling. The results are presented in Figure 6.6. 40% of the participants
indicated that they use the bike multiple times per week which is below the European aver-
age of 85% that is reported in Prati et al. (2019). On the other hand, the participants rated
their confidence while cycling on average an 8.3, on a scale of 1 to 10. Furthermore, the
age at which they learned how to cycle was on average at age 6. So although their cycling
frequency is below average, their confidence and familiarity with riding a bicycle is high.

The sequence of arriving, queuing and clearing was repeated 23 times. Most runs were con-
secutive so the cyclists continued cycling in between runs. The cyclists were only stopped
when new queuing instructions had to be given. By mistake, configuration (b) ’side-by-side
in threes’ was not repeated 3 times as initially planned but only twice. On the other hand,
the runs without instructions and 3-2-3 on indicated positions (d) was repeated four times
because the first cyclists of the group had already passed the point were new instructions
could be given. An overview of all runs is presented in Table 6.1.
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Table 6.1: Details of the runs that were performed during the experiment.

Run # Configuration Instructions Jam density Discharge rate
bic/m2 bic/s/m

1 None 0.62 0.59
2 None 0.67 0.54
3 None 0.67 0.57
4 None 0.69 0.54
5 Queue up closely 1.18 0.68
6 Queue up closely 1.09 0.71
7 (a) In pairs 0.71 0.64
8 (a) In pairs 0.71 0.61
9 (a) In pairs 0.72 0.67

10 (b) Side by side in threes 0.85 0.66
11 (b) Side by side in threes 0.81 0.70
12 (c) In threes and v-shape 0.77 0.58
13 (c) In threes and v-shape 0.79 0.66
14 (c) In threes and v-shape 0.71 0.50

Break
15 (d) 3-2-3 0.99 0.70
16 (d) 3-2-3 1.11 0.78
17 (d) 3-2-3 1.11 0.71
18 (d) 3-2-3 1.07 0.80
19 (e) 3-3-3 with shift 0.99 0.67
20 (e) 3-3-3 with shift 0.99 0.68
21 (e) 3-3-3 with shift 0.99 0.72
22 Queue up normal and feel comfortable doing 0.95 0.65
23 Queue up closely 1.31 0.81

6.4 Results
This section describes the findings of the analyses by first zooming in on the relation be-
tween jam density and the queue discharge rate in Section 6.4.1, and then describing the
speed and comparison of the queue configuration and discharge patterns in Section 6.4.2.

6.4.1 Relation jam density and queue discharge rate
The observed jam density values range between 0.6 and 1.3 bic/m2, as can be seen in Fig-
ure 6.7. The normal runs without queuing instructions resulted in the lowest jam densities
between 0.6 and 0.7 bic/m2, which are in agreement with the value of 0.65 bic/m2 reported
in literature (Goñi-Ros et al., 2018). The jam density increased when we began to provide

Figure 6.6: Results from the questionnaires filled in by 20 participants.
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Figure 6.7: Jam density and the queue discharge rate.

instructions on how to form the queue. Meanwhile, the variation in jam density is small for
runs with similar instructions, which can be expected since we asked cyclists to queue up
on pre-assigned spots. The exception are the runs without instructions and where cyclists
were asked to queue up closely. Here, the cyclists where free to pick their own position,
which resulted in a higher variation in jam density. When ordering the jam densities from
low to high, we roughly find the following order: No instructions, in pairs (a), in threes with
v-shape (c), in threes side by side (b), in threes with a shift (e), alternating 3-2-3 (d) and
queue up closely. The latter instruction resulted in jam densities between and 1.3 bic/m2,
which is close to twice the uninfluenced jam density. These results show that the density of
a queue can indeed be positively influenced by giving instructions.

Three other results regarding jam density are highlighted: First, the configurations (b) and
(c) were expected to result in similar jam densities. However, the results of the experiment
show a slight difference; configuration in threes with v-shape (c) resulted in slightly lower
densities than when the cyclists were queued up side-by-side (b). Second, the configuration
where cyclists queued up in threes with a shift (e) was expected to result in higher density
than when the cyclists alternately queue up in pairs and threes (d). However, the results
from the experiment show the opposite although the differences are small. Apparently, the
available space can be used more efficiently in the 3-2-3 setup. Last, one of the normal
runs resulted in a higher jam density than expected. This run was done near the end of the
experiment, so after the cyclists had been asked to queue up closer together. It is unclear
whether this result is caused by an increasing familiarity with the experiment setting or if the
participants got used to queuing up close together which changed their perception of normal.
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The obtained queue discharge rates vary between 0.5 and 0.8 bic/s/m and increases with in-
creasing density. In uninfluenced queuing conditions, the discharge rate varied between 0.54
and 0.60 bic/m/s, which is below the expected value of 0.65 bic/s/m from literature (Goñi-
Ros et al., 2018; Wierbos et al., 2020). This might be explained by the level of experience
in cycling. Some participants indicated that they rarely cycle in daily life, which could in-
crease the reaction time and acceleration process. Another factor of influence could be the
absence of haste in the setting of a controlled experiment and that no other cyclists were
coming from behind. The highest queue discharge rates were obtained in two runs with a 3-
2-3 configuration of the queue and a run in which the cyclists queued up closely. Most other
runs show a queue discharge rate between 0.6 and 0.7 bic/s/m, except for a run with config-
uration (run e), in threes and in v-shape. The video recordings showed that two consecutive
cyclists were talking to each other in the queue. Due to inattention of the front cyclist, the
reaction time to restart moving was increased and the cyclists behind were delayed resulting
in a lower discharge rate.

The jam densities and discharge rates combined show a positive relation, which confirms
that the discharge flow can be positively influenced by increasing the density of the queue.
Linear regression analyses to the data results in the model: qd = Q0 + βk j with regres-
sion constant Q0 = 0.36 bic/s and the coefficient β = 0.34 m2/s. The R-squared value of
the model is 0.70. The regression analyses was also performed for a quadratic fit, but this
model resulted in a lower R-squared value. The obtained model means that when 20 cy-
clists are waiting at a controlled intersection on a 2m wide path, the minimum green time
needed to clear the queue is approximately 18 seconds for a queue of jam density of 0.6
bic/m2, while this decreases to 13 seconds when the jam density is increased to 1.2 bic/m2.
Doubling the jam density will therefore lead to an efficiency gain in the discharge process
by approximately 40%.

The obtained positive relation between jam density and queue discharge rate is in agreement
with literature. However, the magnitude of the relation is different. The positive response
of the queue discharge rate to increasing jam density is stronger in Goñi-Ros et al. (2018)
for jam densities between 0.3 and 0.65 bic/m2 than the impact on queue discharge rate in
the density range of 0.6 – 1.3 bic/m2 of our study. The difference could result from the dif-
ferent setting, namely a real-life situation versus a controlled experiment. Alternatively, the
relation between jam density and queue discharge rate is not linear but follows a quadratic
or different relation instead where the positive relation flattens for higher jam density.

6.4.2 Speed and queue configuration

The average cycling speed during the queue discharge phase varied between 5 and 8 km/hr,
and decreases with increasing density, see Figure 6.8a. This data is highly influenced by
the start-up process of the first cyclists, as can be seen in Figure 6.8b. Here, the individual
speeds of all cyclists are plotted, together with the moving average of a run with a pairwise
configuration and 3-2-3 configuration (high density). This shows that the first 8-12 cyclists
are still accelerating while passing the stop line, while the later cyclists have more or less
reached a constant speed. The moving averages of two runs are highlighted to illustrate the
differences between runs, showing that the speed is higher in runs with a pair-wise queuing
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Figure 6.8: Results of the experiment, with (a) the queue discharge rate and (b) the average
speed that cyclists had while passing the stop line.

configuration and lower in a setting with alternately pairs and threes which has a high den-
sity.

When combining the average discharge speed and the jam density, Figure 6.8a shows that
the average discharge speed decreases with increasing jam density. Linear regression anal-
yses on the average speed data results in the model: vd =V0 +αk j, with regression constant
V0 = 8.82 km/hr and the coefficient α = −2.60 (km/h)/(bic/m2). The R-squared value of
the model is 0.57. This negative relation can be explained by the observation that cyclists
have less space to manoeuvrer in a dense queue, resulting in reaction behavior instead of
anticipation behavior. In low density queues, cyclists can anticipate upon the movement of
someone in front and already decide to start moving as well, while in a dense queue, the
cyclists must wait until the person in front has moved away until they have space to start
pedaling.

The qualitative analysis of the queue configurations and the discharge patterns of all runs
have led to insights into the cyclists’ behavior. Based on the queue configurations only,
two observations are made: First, in the runs without instructions, the cyclists used the total
width of the path but there was a slight tendency to stop more to the right-hand side of the
path. Second, some cyclists chose a spot close to others, while other cyclists preferred to
leave a gap of 1 to 2 meters. This last preference was overruled when cyclists were asked
to queue up closely. The cyclists then used the full width of the path and placed their front
wheel next to the rear wheel of a predecessor, resulting in a compact queue.

The difference in wheel positioning could also explain the higher density than expected in
the 3-2-3 configuration. Figure 6.9 shows two examples of observed queue configurations
in configuration (d) and (e). When looking more closely at the wheel placement of queued-
up cyclists, you see that the front wheels of consecutive cyclists are placed more forward in
the 3-2-3 configuration, and further backwards in the 3-3-3 configuration (e). This indicates
that when the lateral distance between adjacent cyclists is larger, the longitudinal distance
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(a) queue in 3-2-3 configuration (d) (b) queue in 3-3-3 configuration (e)

Figure 6.9: Observed queue configurations of run 18 (a) and 20 (b). Within the red mark-
ings is the difference in wheel placement, black is front wheel and gray dot is
rear wheel.

between consecutive cyclists can be smaller, which in the situation of the 3-2-3 configuration
leads to a higher density than the 3-3-3 configuration.

(a) queue - queue up closely (b) discharge - queue up closely

(c) queue - no instructions (d) discharge - no instructions

Figure 6.10: Observed queue and discharge configurations.

Based on the colored analyses of the discharge patterns the following observations are made:

• The cyclists more or less maintain their ranking, meaning that little overtaking actions
take place and the queue position mostly determines the discharge sequence. An
example of this is visualized in Figure 6.10a and b. Here, the blue cyclist indicated
by the dashed circle, is queued up closely behind the red one, but it has a lower speed
and uses 2.5 more seconds in the discharge process. The subsequent cyclists do not
overtake but wait instead, thereby maintaining the same ranking.

• Some cyclists that are queued up in the middle merge towards the right-hand side of
the path during the discharge process. This observation is highlighted by the dotted
circles in Figure 6.10c and d.

• More cyclists cycled out of bounds when the jam density was high. This was partly
caused by the fact that the starting position was already closer to the path edges, and
partly because the average discharge speed was lower which led to more swaying
behavior.

• Cyclists did not cycle side-by-side during discharge, but rather kept a distance to
others in time and space. This behavior is illustrated by the dashed vertical lines in
Figure 6.10d showing that the rear and front wheels pass the stop line simultaneously.
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The full list of queue configurations and discharge patterns are presented in Appendix A at
the end of this Chapter.

6.5 Practical Application
An example is given to illustrate how the findings regarding jam density and discharge rate
can be applied in practice by updating the signal length. From the results of the experiment,
we know that the efficiency of the queue discharge process can be improved by influencing
the queue formation process to reach higher jam density. This means that the capacity of the
intersection can be increased such that more cyclists can enter the intersection compared to
the uninfluenced situation. The benefit of the increased capacity can be used to adjust the
cycle length based on the new discharge rate for cyclists. As a result, the red times and
associated delay reduce for all traffic participants. The remaining of this section discusses
an example.

We will calculate the optimal cycle length for an intersection between cars and cyclists,
based on two different discharge rates for cyclists; first the uninfluenced situation, then with
queuing instructions. We use a simplified calculation for optimal cycle time (C). As input,
we have the ratios between demand (D) and discharge rate (Qdis) for each of the streams,
and the clearance time (Tclear), i.e. the time the intersection cannot be used due to yellow
time or safety bounds between directions. The fraction of green time required for each of
the streams is D/Q. For a two-phase intersection, with cars and bicycles having one phase
each, the time remaining for the clearance time is hence:

Tclear =C ∗
(

1− Dcar

Qdis,car
− Dbic

Qdis,bic

)
. (6.5)

If the clearance time, the demands and the capacities are known, this equation can be re-
verted to find the cycle time:

C = Tclear

/(
1− Dbic

Qdis,bic
− Dcar

Qdis,car

)
(6.6)

We will construct cumulative flow curves for cyclists and cars. These increase linearly with
time if the flow is constant (inflow), and are constant for no outflow. The area between
the curves is the delay. For more information on cumulative curves, we refer to Daganzo
(2008). We construct the inflow and outflow curves for both directions separately.

Figure 6.11: Sketch of bicycle–car intersection.
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In the example, we consider an intersection with a two-phase traffic signal, in particular
one where a stream of cyclists crosses a stream of car traffic, see Figure 6.11. The design
is roughly based on the intersection between Catharijnesingel and Vredenburgviaduct in
Utrecht, the Netherlands. It represents two-directional traffic for both cyclists and cars in
a busy city center. The total width of the cycle path is 4 meter, so 2 meter per direction;
the cars have one lane in each direction. During peak hours, the cyclist demand per di-
rection is around 1300 cyclists per hour and for cars this is around 900 cars per hour per
direction (Municipality Utrecht, 2020). We assume a queue discharge rate of 1800 veh/h.
For this intersection, we consider a combined clearance time (Tclear) of 10 seconds, which
includes all red and yellow times for both signal changes combined.

For the uninfluenced situation, we take a discharge rate of 0.56 bic/s/m (see Figure 6.7)
which translates into an hourly rate of 4000 bic/h. Based on these numbers, a cycle length
of 57 seconds is found optimal, with a green interval of 19 seconds for cyclists and 29 sec-
onds for cars.

For the case with increased queuing density, these numbers change. The optimal cycle
length decreases when the bicyclist discharge rate increases due to the influenced jam den-
sity. Now, we assume a queue discharge rate of 0.75 bic/s/m, based on the an average value
obtained in a 3-2-3 configuration. The hourly discharge rate for cyclists is thus 5400 cyclists
per hour. Entering the new numbers in Eq. 6.5–6.6, leads to an optimal signal length of 39
seconds, with a green interval of 9 seconds for cyclists and 19 seconds for cars. The higher
discharge rate for cyclists thus results in a shorter cycle length.

The resulting cumulative flow curves are shown in Figure 6.12. Here, the inflow and out-
flow are depicted in time, showing a constant inflow based on the demand and zigzagging
pattern for the outflow where the curve is horizontal during red interval and increases with
the queue discharge rate during the green interval. The area between the inflow and outflow
curves represents the waiting time for cyclists and cars. Comparing the total waiting time
for the two situations shows that the changed signal reduces the waiting time for cyclists
with 24% and 32% for cars.

The impact of reducing the cycle length is also illustrated in Figure 6.13, which shows the
waiting time for individual cyclists. The maximum delay per cycle is 39 seconds in the
uninfluenced situation, and this reduces to 29 seconds in the situation with a 3-2-3 queue
configuration. The average waiting time per cyclist reduces with 4.6 seconds, and that per
car with 4.7 seconds. When combining this for all traffic in a two hour peak period, the
delay reduction adds up to 140 minutes for cars and 200 minutes for bicyclists.

6.6 Discussion and future research

A positive relation was found between jam density and queue discharge rate within the den-
sity range of 0.6 to 1.3 bic/m2. The magnitude of the impact of increasing jam density is
less in our study than reported in the literature for densities between 0.3 and 0.65 bic/m2.
Possibly, the specific characteristics of our sample play a role here, e.g. only single-speed
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Figure 6.12: Cumulative flow curves for cars and cyclists for the situation of uninfluenced
jam density (a) and increased jam density (b).
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Figure 6.13: Waiting times per cyclist in the situation of uninfluenced jam density (a) and
increased jam density (b).

bicycles, below-average cycling frequency in daily life, or absence of haste. Future research
in a real-life setting covering the full range of jam densities could help to identify the nature
of the positive relation between jam density and queue discharge flow.

The average speed during the queue discharge process decreased when the jam density in-
creased, indicating that cyclists are hindered in their movements due to the proximity of
other cyclists. It would be interesting to see if this effect leads to a stagnation or decrease
in queue discharge rate for jam density values that exceed the highest value observed in this
study.

The comparison of the queuing positions and discharge patterns resulted in the following
observations: the discharge sequence is mostly determined by the queuing position, cyclists
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keep a distance to each other in both time and space during the queue discharge phase,
and more cyclists use the path edge or beyond when the jam density increases. The work
of Goñi-Ros et al. (2018) reports on cyclists moving onto the road or the sidewalk during
the discharge process but it does not specify under which density conditions this behavior
occurs. It would be interesting to see of this enhanced ‘out of bounds’-movement is also
observed in real-life situations where side curbs and the presence of other traffic might pre-
vent cyclists from moving out of bounds.

The quantitative analysis confirmed that increasing the jam density has a positive effect on
the queue discharge rate, also for values of jam density that have not been observed before.
The efficiency of the queue discharge process, measured in discharge rate, increased by
40% when comparing the situation with the highest jam density to an uninfluenced situa-
tion. Introducing control measures to increase the jam density is therefore a promising way
to reduce congestion at intersections.

The delay at intersections can be reduced the most when cyclists are asked to queue up
closely and when they use pre-assigned spots in a configuration of alternately in pairs and
threes on a 2m-wide bicycle path. An interesting next step is to test this finding in daily
traffic, and to study which measure is most effective in encouraging cyclists to queue up
more closely. This could be done e.g. by placing visual signs asking cyclists to queue up
closely, or adding a Formula-1-like starting grid on the path, indicating the cyclists to queue
up alternately in pairs and threes.

Our findings are based on a homogeneous composition of the queue regarding bicycle type
and social setting. The results may differ in practice when other means of transportation
are also present on the bicycle path or when social groups stick together and do not queue
up according to the optimal configuration. Examples are cargo bikes which have different
dimensions, electrically driven bicycles which have atypical acceleration patterns or small
children who stay next to their parents. Nevertheless, increasing the jam density is a promis-
ing way to reduce congestion at intersections.

6.7 Conclusion
A controlled experiment showed that giving queuing instructions to cyclists can increase
the jam density. Jam densities between 1.1 – 1.3 bic/m2 can be achieved, which is approx-
imately twice the density found in normal conditions. All queuing instructions have led to
jam densities that exceed the values obtained in normal queuing conditions. The highest
jam densities were observed when participants were asked to queue up closely and when
they positioned themselves in a configuration that alternated in pairs and threes. The higher
queue densities led to higher queue discharge rates for cyclists, up to 40% higher than in un-
controlled conditions. This paper explored the effect of intervening in the queue formation
process in an experimental condition. Next step would be to verify the results in a field test.
Once implemented, the signal control can be adapted to the higher queue discharge rate for
cyclists, which will reduce the delay for all traffic participants.
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APPENDIX A

(a) queue – run 1 – no instruction (b) discharge – run 1

(c) queue – run 2 – no instruction (d) discharge – run 2

(e) queue – run 3 – no instruction (f) discharge – run 3

(g) queue – run 4 – no instruction (h) discharge – run 4

(i) queue – run 5 – queue up closely (j) discharge – run 5

(k) queue – run 6 – queue up closely (l) discharge – run 6

(m) queue – run 7 – in pairs (n) discharge – run 7

(o) queue – run 8 – in pairs (p) discharge – run 8

Figure 6.14: Observed queue configurations and discharge patterns of run 1-8.
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(a) queue – run 9 – in pairs (b) discharge – run 9

(c) queue – run 10 – in threes (d) discharge – run 10

(e) queue – run 11 – in threes (f) discharge – run 11

(g) queue – run 12 – in threes and v-shape (h) discharge – run 12

(i) queue – run 13 – in threes and v-shape (j) discharge – run 13

(k) queue – run 14 – in threes and v-shape (l) discharge – run 14

(m) queue – run 15 – 3-2-3 (n) discharge – run 15

(o) queue – run 16 – 3-2-3 (p) discharge – run 16

(q) queue – run17 – 3-2-3 (r) discharge – run 17

Figure 6.15: Observed queue configurations and discharge patterns of run 9-17.
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(a) queue – run 18 – 3-2-3 (b) discharge – run 18

(c) queue – run 19 – in threes shift (d) discharge – run 19

(e) queue – run 20 – in threes shift (f) discharge – run 20

(g) queue – run 21 – in threes shift (h) discharge – run 21

(i) queue – run 22 – normal (j) discharge – run 22

(k) queue – run 23 – queue up closely (l) discharge – run 23

Figure 6.16: Observed queue configurations and discharge patterns of run 18-23.
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Chapter 7

A macroscopic flow model for
mixed bicycle–car traffic

The focus of this dissertation now changes to simulating bicycle flow. Cyclists are rarely
included in macroscopic traffic flow models, which makes it more difficult to design safe
and congestion-free traffic situations. One reason for this absence is the scarcity of theory
about bicycle traffic flow—a limitation that the previous chapters have addressed by collect-
ing and analyzing empirical data. Another reason is that bicycle congestion is a relatively
new problem, and the need to include cyclists has not been pressing enough in the past. Fur-
thermore, it is unclear how to capture bicycle movements in a macroscopic model. Chapter
7 addresses this topic and thus tackles the final research question: How can we describe and
model bicycle flow in a mixed traffic situation?

This chapter introduces class-specific speed functions based on two variables: space head-
way for cars and for cyclists. This enables the macroscopic modeling of mixed bicycle–car
traffic. The multi-class macroscopic flow model is successfully tested for different traffic
situations that arise on urban roads where cyclists and cars share the same infrastructure,
for instance, cyclists overtaking a queue of cars and cars overtaking cyclists with reduced
speed. The mixed bicycle–car flow model allows travel time estimation of both classes,
which in turn can be used to evaluate the overall performance of a mixed-traffic road.

This chapter is published as a journal article: Wierbos, Knoop, Hänseler, and Hoogendoorn
(2020), A Macroscopic Flow Model for Mixed Bicycle–Car Traffic. Transportmetrica A:
Transport Science 9935.
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Abstract

Bicycles are gaining popularity as a mode of transport resulting in a mixed bicycle–car traf-
fic situation on urban roads. Cyclists however, are hardly included in traffic flow models
which complicates the design of safe and congestion-free traffic situations. This work intro-
duces class-specific speed functions based on two variables, being space headway for both
cars and cyclists. This enables the macroscopic modeling of mixed bicycle–car traffic. The
multi-class macroscopic flow model is successfully tested for different traffic situations that
occur on urban roads where cyclists and cars share the same infrastructure, e.g. cyclists
overtaking a queue of cars and cars overtaking cyclists with reduced speed. The mixed
bicycle–car flow model allows travel time estimation of both classes, which in turn can be
used to evaluate the overall performance of a mixed traffic road.

7.1 Introduction

Traffic participants in urban environments often share the available infrastructure. In places
with high cyclist volumes the roads are used simultaneously by cars and cyclists. This cre-
ates a mixed traffic situation in which both classes can be the fastest moving one depending
on the traffic state. In low demand situations, cars have the opportunity to overtake cyclists,
while in congested situations the cyclists can maneuver alongside a queue of cars and thus
be the fastest moving class. An essential property of mixed traffic flow is this ability of
cyclists to continue moving in congested traffic. Describing this feature is important for
estimating the expected travel time loss, which is a common metric for road network per-
formance. The travel time loss may differ for the multiple user types since the experienced
delay depends on the traffic state and the specific class characteristics.

Macroscopic flow models are commonly used for travel time estimation. However, these
models generally handle mixed traffic situations by selecting cars as the reference class and
expressing the other classes in passenger car equivalents (pce) based on their impact to the
traffic flow. The pce-concept was first introduced in the U.S. Highway Capacity Manual
by (National Research Council, 1965) and has been used in many studies since then result-
ing in various methods to convert a mixed traffic stream into a uniform one, as summarized
by Shalini and Kumar (2014). A consequence of using the pce-concept is that the speeds for
both classes depend on one (pce-based) density, and cannot depend on the vehicle-bicycle
composition leading to that density. Therefore, it does not fully represent the movements
observed in mixed bicycle–car traffic. Our purpose here is to overcome this limiting model
property by introducing an alternative approach that enables switching of the fastest moving
class in congestion.

This work presents a multi-class macroscopic traffic flow model which uses class-specific
speed functions that depend on the density of all classes as independent variables. The
distinction into classes is based on mode of transportation only, so heterogeneity in e.g.
driver type is not considered. A Lagrangian approach is used, following groups of traffic
participants over time. Both group size and simulation time are discretized in the numeri-
cal implementation, while position is a continuum. The class-specific speed functions are
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two-dimensional and take into account the space headway of both cars and cyclists. The
successful working of the model is illustrated for different traffic situations that typically
occur on urban roads. The proposed model allows for travel time estimation for multiple
traffic modes by describing their joint traffic dynamics, which in turn can be used to evaluate
the overall performance of a mixed traffic road.

The paper continues with a background on macroscopic traffic flow modeling in section 7.2,
followed by an explanation of the modeling principles in section 7.3, the numerical imple-
mentation of the model in section 7.4 and the presentation of the class-specific speed func-
tions in section 7.5. Afterwards, section 7.6 illustrates the successful working of the model
and section 7.7 presents the discussion and conclusion.

7.2 Background on macroscopic modeling
This paper aims to describe mixed traffic flow in an urban setting where cars and cyclists
share the infrastructure, using a macroscopic flow model. Macroscopic models describe
the evolution of traffic movements over time and space at an aggregated scale using the
quantities: density, average speed and flow. This differs to microscopic flow models, which
describe the movements of individual traffic participants. The distinction between micro-
scopic and macroscopic is therefore based on the level of detail. Macroscopic models often
use an equilibrium relationship between speed and flow. This equilibrium relationship is
commonly known as the fundamental diagram (Greenshields, 1935).

The earliest macroscopic model is the LWR model, which is a first-order kinematic wave
model that was simultaneously introduced by Lighthill and Whitham (1955) and Richards
(1956). It describes the flow based on the assumption that traffic is a continuum and obeys
the physical law for mass conservation. Using the density k, flow q and average speed u at
position x and time t, the continuity equation is given by:

∂k(x, t)
∂t

+
∂q(x, t)

∂x
= 0, (7.1)

with
q(x, t) = u(x, t)k(x, t) (7.2)

and
u(x, t) =U(k(x, t)) (7.3)

stating that velocity u is given by the fundamental diagram U .

The solution to the mentioned system of equations has two important properties: hyper-
bolicity and anisotropy. Hyperbolicity indicates that perturbations in the flow travel as
waves through time and space, so they are not instantaneously felt in the whole domain.
Anisotropy means that traffic flow is influenced by the traffic state in front and not from the
back. For this, the wave speed of perturbations should never exceed the maximum velocity.
Anisotropy requires the model to be weakly hyperbolic, which is the case if when the ve-
locity function is nonincreasing (Zhang et al., 2006; van Wageningen-Kessels et al., 2013).
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In simulation, the solution of the kinematic wave model is approximated using a numerical
scheme. The LWR model is commonly solved using Godunov’s method, which is a finite
difference scheme (Godunov, 1959), but also other methods have been applied.

The LWR model is both loved and criticized for its simplicity. The main imperfection is
that the model describes equilibrium states only, which implies that changes in traffic state
result in instantaneous speed adjustments. In reality, traffic is often in non-equilibrium and
a reaction time is observed for acceleration and deceleration. This deficiency has been
partially addressed in higher-order models by replacing the fundamental diagram with a
velocity function that includes acceleration behavior based on driver anticipation, relax-
ation and traffic inertia, e.g. Payne (1971). After critique that the higher-order model is
not anisotropic and therefore unrealistic at traffic discontinuities (Daganzo, 1995), several
adjustments are proposed to incorporate changes in e.g. density (Aw and Rascle, 2000),
headway (Berg et al., 2000), velocity distribution (Zhang, 2002), speed gradient (Gupta and
Katiyar, 2006) and driver physiological response (Khan et al., 2019). Despite these devel-
opments in second-order models, the first-order kinematic wave model remains an effective
and popular method to describe traffic flow as long as traffic flow phenomena, e.g. capacity
drop and stop-and-go waves, are not required.

The aforementioned models describe homogeneous traffic flow. The description of het-
erogeneous traffic has been addressed in the development of multi-class models by distin-
guishing traffic type using e.g. different velocities (Wong and Wong, 2002; Zhang et al.,
2006), vehicle size (Chanut and Buisson, 2003; Logghe and Immers, 2008), and impact
based on velocity using static (Ngoduy and Liu, 2007) and dynamic passenger car equiv-
alent (pce) values (van Lint et al., 2008). Furthermore, developments have been made in
describing traffic situations with multiple lanes, e.g. the “2-pipe regime” with slugs and rab-
bits (Daganzo, 2002), modified speed–density relation based on lane-changing (Jin, 2010)
and utility-driven lane changes (Shiomi et al., 2015). The disordered traffic situation, in
which lane discipline is lacking, has been captured in continuum models using e.g. avail-
able space (Benzoni-Gavage and Colombo, 2003; Nair et al., 2011; Fan and Work, 2015)
and lateral distances (Gupta and Dhiman, 2014).

Heterogeneous models capture the characteristics of different traffic types and the effect of
their interaction on the overall flow. Slow vehicles, such as buses (Lebacque et al., 1998)
and lorries (Muñoz and Daganzo, 2002), are considered as moving bottlenecks for cars,
whereas the impact of pedestrians on car traffic is addressed in Daganzo and Knoop (2016).
The model of Fan and Work (2015) includes the characteristic trait of small vehicles, i.e.
motor cyclists, to maneuver through congestion, maintaining a higher speed than cars. This
interaction between cars and powered two-wheelers is further developed by Gashaw et al.
(2018), whose model also takes into account that a higher share of two-wheelers results in a
lower speed at similar road occupancy. To our knowledge, bicyclists have not been included
yet in macroscopic models. However, there are examples of microscopic models that in-
clude bicycles, e.g. the individual-following model by Tang et al. (2010) and the cellular
automata model by Luo et al. (2015).
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All macroscopic flow models describe traffic using the relation between position, time and
vehicle number. Three different representations of traffic arise by fixing one of the three
variables (Laval and Leclercq, 2013). The most common one is the Eulerian coordinate sys-
tem, which fixes the vehicle number and visualizes the number of vehicles that have passed
a location at a certain time. Another well-known representation is the Lagrangian coordi-
nate system in which time is fixed. Here, the time at which vehicles pass a certain location
is simulated, resulting in trajectories. The third and least common representation fixes the
position and describes the time at which vehicles cross a certain location.

Although the Eulerian method is most commonly used, the Lagrangian method has been
successfully applied to numerically solve the kinematic wave model as well. This has
been done for homogeneous traffic (Leclercq, 2007; Wu et al., 2014) as well as mixed
traffic including trucks (van Wageningen-Kessels et al., 2011) and motor cyclists (Gashaw
et al., 2018). Examples of the Lagrangian method applied to second-order flow models are
Greenberg (2001, 2004); Zhang et al. (2012). In the macroscopic approach, the Lagrangian
method calculates the traffic evolution for platoons consisting of multiple vehicles, whereas
the microscopic approach gives the trajectories of individual traffic participants. The macro-
scopic model reduces to a microscopic car-following model when the platoon size is reduced
to one vehicle only, as shown e.g. by (Aw et al., 2002) and Leclercq (2007). Information
travels downstream only in the Lagrangian Godunov scheme, making it less prone for errors
due to numerical diffusion. Using the Lagrangian methods therefore results in a more robust
model compared to the Eulerian scheme where information travels both up and downstream.

Based on the above we have identified the gap in literature that bicycles are not yet repre-
sented in macroscopic traffic flow models, while they are an important part of daily traffic in
countries such as The Netherlands and China. The common feature in the above-mentioned
models is that a fastest class is assumed; one class, i.e. the passenger car, is assigned to have
the highest speed irrespective of prevalent traffic conditions. This assumption is limiting
when representing bicyclists, since they are able to switch into being the faster class when
maneuvering forward in congestion. This occurs for instance in the situation where the road
is wide enough for a car and cyclist to move alongside each other, and the cyclists can pass
a queue of stopped cars. We include this phenomenon by introducing class-specific speed
functions in the first-order macroscopic model, which depends on the density of all modes.
We use the Lagrangian method because of its modeling accuracy.

7.3 Lagrangian model
The starting point of our model is the continuity equation in Eulerian coordinates, Eq. 7.1,
which states that changes in density over time should match the change in flow over space,
indicating that vehicles should not suddenly appear or disappear from the road. To rewrite
into Lagrangian coordinates, we use the spacing s instead of the density k as the main vari-
able. Spacing is equivalent to space headway and is defined as the average distance between
travelers belonging to the same entity. Furthermore, the spacing is inversely proportional to
the density,

s =
1
k
. (7.4)



122 7 A macroscopic flow model for mixed bicycle–car traffic

The spacing can also be expressed as the partial derivative of the position x to vehicle num-
ber n:

s =−∂x
∂n

. (7.5)

Here, the negative sign results from the choice in numbering of traffic units. These numbers
are assigned when traffic units pass a certain position. When selecting a position further
along the road (larger x), less vehicles will have passed it (lower n), resulting in a negative
sign for the change in n.

When substituting Eq. 7.4 into the Eulerian continuity equation we get:

∂

∂t
(1/s)+

∂

∂x
(v/s) = 0 (7.6)

Now, using the quotient rule, Eq. 7.5 and the Lagrangian time derivative

D
Dt

=
∂

∂t
+ v

∂

∂x
, (7.7)

we retrieve the continuity equation expressed in Lagrangian coordinates:

∂s
∂t
− s

∂v
∂x

+ v
∂s
∂x

= 0 ⇒ Ds
Dt

+
∂v
∂n

= 0. (7.8)

The Lagrangian continuity equation states that speed differences between traffic units coin-
cide with changes in their spacing over time. In other words, when two following vehicles
initially go at equal speed and the first one slows down, the distance between the two vehicle
should decrease.

We now extend the model to describe multiple classes, similar to the multi-class LWR model
expressed in Eulerian coordinates Wong and Wong (2002). The conservation equation holds
separately for each class u and all variables are class-specific except for time:

Dsu

Dt
+

∂vu

∂nu
= 0. (7.9)

The density of different classes are not combined into one effective density, but treats them
independently instead. In practice, this implies that traffic participants of each class can
move alongside each other as if they are using separate sections of the road. The interaction
between classes is included in the model via the speed function, which will be elaborated
on in section 7.5.

In the numerical implementation, both time and traffic units are discretized in finite steps,
while space remains a continuum. Although more classes are possible, we continue with
two only, being cars (u = c) and bicyclists (u = b). The traffic units within these classes are
grouped into platoons of a certain size. More details are provided in the following section.

7.4 Numerical implementation
The Lagrangian continuity equation (7.9) is a hyperbolic equation which can be solved
numerically using the Godunov scheme. We use an explicit time-stepping scheme to solve
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the continuity equation, following the works of Leclercq (2007); van Wageningen-Kessels
et al. (2011). This results in the following discretized equation:

st+1
ui

= st
ui
+

∆t
∆n

(vt
ui−1− vt

ui
). (7.10)

This equation states that the spacing s in platoon i of class u in the following time step (t+1)
can be retrieved by taking the spacing at time t and add it to the difference in speed (v) of
subsequent platoons (i and i− 1), corrected with the time step ∆t divided by the number
of traffic units in a platoon ∆n. To ensure stability and convergence of (7.10), the CFL
condition should be met, which limits the distance a platoon can travel downstream within
one timestep (van Wageningen-Kessels, 2013). This condition is given by:

∆t
∆n

max|dv
ds
| ≤ 1. (7.11)

The length of platoon i stretches between positions xui and xui+1 and the corresponding
spacing within that platoon equals its length divided by its size:

sui =
xui − xui+1

∆nu
. (7.12)

Using this discretization for spacing, we can express the discretized continuity equation
(7.10) in position xu which simplifies the simulation, resulting in Eq.7.13. The new position
x of platoon i and class u is retrieved by adding up the previous position and the distance
traveled within the time step ∆t.

xt+1
ui

= xt
ui
+ vt

ui
∆t, (7.13)

The change in position is based on the speed v, which in turn depends on the spacing of all
classes in the previous time step. In our case, we use two classes, bicycles b and cars c:

vt+1
u =Vu(st

b,s
t
c), (7.14)

where Vu is the speed function specified by Eq. (7.18) and (7.19) in section 7.5.

The position and speed are given for the first car or cyclist of a platoon, which is defined
here as a platoon of dn traffic participants. When the platoon size equals 1, the scheme is
basically a microscopic car-following model. This equivalence has been demonstrated by
Leclercq (2007) and Zhang et al. (2012). In the macroscopic approach, the platoon size
exceeds 1 but it is not restricted to positive integers. Numerically, the platoon size consist
of 1.43 or 15.43 traffic participants. However, using decimals would come at the cost of
an intuitive physical interpretation of the modeling results. An example of the numbering
of platoons, positions and spacings are visualized in Figure 7.1a. An additional position is
added (xun ) to mark the end of the last platoon and to ensure that a spacing can be calculated
for the area following the last platoon.

A choice is made on how the positions of the N platoons influence the spacing, which
influences the speed. Since the speed of a car or cyclist in a platoon is influenced mostly
by what happens in front of the platoon, we argue that the downstream spacing is mostly of
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influence to the speed and to a lesser extent the spacing within the platoon. This way we
ensure anisotropy in the numerical scheme. We use the downstream spacing for calculating
the speed and the speed equation (7.14) is further specified to:

vt+1
ui

=Vui(s
t
bi−1

,st
ci−1

). (7.15)

This equation requires as input the spacing of both classes at the position of a platoon. For
one of the classes, the spacing retrieved by Eq. (7.12) can directly be used. However, the
spacing of the other class is unspecified yet because the values are known for different x-
positions. Therefore, the spacings of the other class need to be determined which is done
via linear interpolation. Giving the example of finding the car spacing at the position of a
bicycle platoon, the linear interpolation is performed using the car spacing as base for the
positions of the car platoons. Figure 7.1b presents a visualization of this process.

Using the spacing of the downstream area of the platoon comes with a challenge; the spacing
in front of the first platoon cannot be determined using Eq. (7.12) without implementing
additional boundary conditions. For this purpose, two additional x-positions are predefined
which are similar for both classes: x0 at a position very far away and xn+1 at x = 0, see
Figure 7.1a. The first boundary condition ensures that the first platoon always experiences
an empty road, while the second condition ensures an empty road after passing of the last
platoon.

(a) (b)

Figure 7.1: Sketch showing the numbering of the position x and spacing s for two platoons
of cars and cyclists (a) and the linear interpolation to retrieve the car spacing
at the positions of the bicycle platoons (b).

7.5 Class-specific speed functions
A main contribution of this work is that the model can handle class-specific speed functions
which depend on densities of both classes. In a first-order macroscopic model, the speed
function is typically provided by a fundamental diagram, describing the equilibrium rela-
tion between the aggregated variables spacing, speed and flow. The speed is typically given
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by the function V that depends on density and in our case on spacing. In our multi-class
situation, the class-dependent fundamental diagram is based on the spacing distribution of
both cars and cyclists. Previous work in literature have tackled this multi-dependency by
introducing a pce value for each class and calculating the speed based on the number of pce
present, v =V (spce).

This study takes an alternative approach using two-dimensional speed functions. The main
thought underlying this idea is that at a given generalized density, the speed of cars is fixed,
while the speed of cyclists can vary depending on the traffic state, e.g. due to their ability
to maneuver along a queue of cars. This feature of mixed traffic cannot be captured accu-
rately by a model based on pce value, since this assumes the reference class to always be
the fastest moving class. To model the characteristics of both classes correctly, this study
introduces class-specific two-dimensional speed functions, which describes the speed of a
class, based on the spacing of both cars and cyclists separately, so v =V (sc,sb).

The framework presented here can handle various shapes of the fundamental diagram V (sc,sb).
The starting point for our two-dimensional speed functions is the triangular fundamental di-
agram in flow-density for single class traffic flow (Daganzo, 1994). In the speed-spacing
format, this function is given by:

Vu(su) =


0 if su = su,j [1]

(sc− sc,j)wu if su,j < su ≤ su,cr [2]
vu,f if su > su,cr [3]

(7.16)

with w the wave speed of traffic state characteristics, given by:

wu =
vu,f

su,cr− su,j
. (7.17)

Eq. (7.16) states that the traffic entities of class u are at stand still (v = 0) when the jam
spacing (su,jam) is reached, their speed gradually increases with spacing until the desired
speed (vu,f) is reached at the critical spacing (su,cr), and continue to travel at the desired
speed for larger spacings. The characteristic values for jam spacing, critical spacing and
free flow speed used in this study are presented in Table 7.1. Figure 7.2 presents the result-
ing single-class speed-spacing diagram of cars and bicycles when no other class is present.
To connect the two classes, additional cased are added to (7.16) while trying to maintain a
linear expression where possible. This has resulted in the class-specific speed functions for
bicycles (7.18) and cars (7.19).

For the speed of bicycles, a condition is introduced to reduce the speed to vb,red when cy-
clists are passing a queue of cars (7.18.4). Condition (7.18.5) is included to ensure that
the cycling speed does not exceed the reduced speed when cars are slowed down in con-
gestion but not standing still. Equation (7.18.6) is added to ensure a smooth transition at
the boundaries between the reduced speed and the speed reduction caused by decreasing
bicycle spacing (7.18.2). For cars, two additional rules are introduced. First, cars cannot
overtake when there are too many cyclists on the road, and they have to adapt their speed to
match the cyclist’ speed (7.19.2). Second, when cyclists are sparsely present, i.e. sb > a,
sufficient space for cars is available to move in between and overtake at a reduced speed
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Figure 7.2: Single class speed functions for cars and bicyclists.
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Figure 7.3: Two-dimensional speed functions for cars (a) and bicyclists (b).

(7.19.4). We assume this sufficient spacing to be 10m (a = 10m). The parameter wbc is the
tangent of the connecting line between the reduced and free flow speed of bicycles, given by
Eq. (7.20). A contour plot of the two-dimensional speed functions are shown in Figure 7.3.

The class-specific speed functions presented here are non-decreasing with spacing ( ∂v
∂s ≥ 0),

which according to van Wageningen-Kessels (2013) should ensure the model to be weakly
hyperbolic and therefore able to show anisotropic behavior. Further investigation of the
hyperbolicity of the model is not performed.
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Vb(sb,sc) =



0 if sb = sb,j, sc > sc,j [1]
(sb− sb,j)wb if sb,j < sb ≤ sb,cr, sc > sc,j [2]

vb,f if sb > sb,cr, sc > sc,j [3]
vb,red if sb > sb,cr, sc = sc,j [4]

min(vb,red,(sb− sb,j)wb) if sb,j < sb ≤ sb,cr, sc ≤ sc,j [5]

min
(
(sb− sb,j)wb,

vb,red +wbc(sc− sc,cr)
)

if sb,j < sb ≤ sb,cr, sc,j < sc ≤ sc,cr [6]
(7.18)

Vc(sb,sc) =


0 if sc = sc,j sb > sb,j [1]

min(Vb,(sc− sc,j)wc) if sc,j < sc ≤ sc,cr sb > sb,j [2]
vc,f if sc > sc,cr sb > a [3]

min(vc,f,Vb) if sc > sc,cr sb ≤ a [4]
(7.19)

wbc =
vb,f− vb,red

sc,cr− sc,j
(7.20)

7.6 Case study

To illustrate the working of the model, we consider several situations which occur on uni-
directional urban streets with mixed bicycle–car traffic. A specific example is a so called
‘cycling street’ which is gaining popularity in The Netherlands. The traffic behavior has
specific characteristics resulting from the property that bicyclists are prioritized over car
drivers. No uniform design of a cycling street exists but it is typically wide enough for cars
to overtake cyclists. However, cars are considered as guests on the road and have to slow
down when cyclists are present. Furthermore, cars cannot overtake when the cyclist density
exceeds a certain threshold and as a result, the cars have to match the cyclists’ speed. When
cars are moving slowly in a queue there is enough space for cyclists to carefully pass the
queue and create their own queue closer to an intersection. The speed limit on this cycling
street is 30 km/hr.

In the following three cases we follow several platoons of five traffic units in space and
time (∆n = 5) and the simulations are performed with time steps of two seconds (∆t = 2s).
The speed is given by equations 7.18 and 7.19 and the characteristic values in the speed
functions are presented in table 7.1.

Table 7.1: Characteristic values used in the speed functions: jam spacing sj, critical spac-
ing (scr), free flow speed (vf) and reduced speed (vred).

sj[m] scr[m] vf[m/s] vred[m/s]
cyclists 1.5 4.5 5.0 2.0

cars 5.0 10 9.0 -
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7.6.1 Little to no interaction

We consider a situation with low demand for the purpose of face-validation. All traffic par-
ticipants can move at their maximum allowed speed and the spacing is large. As a result,
the two classes have sufficient space to maneuver freely and are unhindered by each others
presence. This is the case when we set the initial spacing of both classes to 20 m, which
results in a total platoon length of 100 m.

Two cases can occur depending on the starting positions, displayed in Figure 7.4; either the
cars have a head start over the bicycles (a) or the other way around (b). In both cases there
are two platoons of cars and three platoons of cyclists. In the primary case, the cars are given
a head start of 350 m. As a result, no interaction between the two classes takes place since
the desired speed of cars is higher than that of cyclists causing a rapid divergence of the two
classes. Interaction does occur in the second case where the starting positions are switched
and the cyclists have a 350 m head start over the cars. Since cars have a higher desired speed,
the first platoon of cars catches up with the final platoon of cyclists. Figure 7.4b shows that
this happens after approximately 40 s in the simulation. The spacing of the cyclists however
is sufficiently large and cars can overtake without having to reduce their speed. Note that
the speed limit on the bicycle road is 30 km/hr, which is considered a safe speed to overtake
and no further speed reduction is required. In our simulation it takes about 170 s before all
cars have passed the cyclists and the two classes start to diverge.

7.6.2 Interaction and adjustment by cars

Interaction takes place when more cyclists are occupying the road and their space head-
way is decreased. For visualization purposes, we only consider two car and three bicycle
platoons but the model will work for any number of platoons. The initial spacing for cars
remains 20m, while the bicycle spacing is decreased, resulting in a more compact platoon
length.

Different interactions take place depending on the exact initial spacing. This is best visu-
alized when the initial bicycle spacing is set close to the threshold for interaction, which is
a = 10 m according to Eq. 7.19. The initial spacing is set to 10.2 m in Figure 7.5a and 10 m
in Figure 7.5b. As a result, the cars overtake the bicycles with reduced speed in the first case
and have to match the cycling speed in the latter case. The speed reduction is visualized by
the magenta colored cells which intensifies when the reduction increases. In both cases, the
cyclists start with a 350 m head start over the cars, and they can move unhindered and at
their desired speed throughout the simulation.

The magenta coloring in Figure 7.5a and b illustrates that the speed adaptation sets in be-
fore the complete platoon has reached the cyclists. Also, in Figure 7.5a can be seen that the
speed increases already before all cyclists are overtaken. This results from our choice in the
numerical implementation to determine the speed based on the spacing in front (Eq. 7.15),
which can be interpreted as anticipation behavior. As a result, the car spacing after overtak-
ing the cyclists is larger than before the cars reached the cyclists.
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7.6.3 Queuing situations

Both cyclists and cars have to adjust their speed in congested situations where the spacing
reduces to values below the critical density. This is included in the simulation by introduc-
ing a temporary obstruction; the first platoon is enforced to stop in the first time step causing
queue formation behind it. Again, two cases can occur based on the starting positions of the
two classes. When the cyclists have a head start over the cars, the first platoon of cyclists is
stopped creating a growing queue of first cyclists and then cars, see Figure 7.6a. The speed
reduction of the cars and cyclists is visualized by the colors magenta en cyan respectively;
no color is shown when speed coincides with the desired speed. In total, three car and four
platoons are followed in time and space. The first cyclists have a 450 m head start over the
first cars. After some time in the simulation, the first cars catch up with the last cyclists and
the cars have to reduce speed until they come to a complete stop. The bottleneck is removed
after 200 s after which the cyclists restart moving and the queue is gradually cleared. The
cyclists quickly move at their desired speed again, but the spacing is too small for the cars
to overtake.

A different situation occurs when the starting positions are switched around and the first car
platoon is stopped instead. The cyclists can pass the queue of cars but have to do so at a
reduced speed. The cars have a head start of 300 m over the cyclists and it takes some time
for the first cyclists to catch up with the last cars. When looking closely at the coloring, the
cyclists are reducing speed well before they reach the actual position of the queue, and they
are increasing in speed before the queue is actually passed. This results from the assumption
that the speed is influenced most by the spacing in front of the traffic participants instead of
the spacing at their current position. When the cars start moving again after the obstruction
is removed, the cars can first move at their maximum allowed speed until they catch up with
the cyclists and reduce their speed to gradually overtake them.
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Figure 7.4: Simulation results for low demand situation (sb(t0) = sc(t0) = 20m), showing
no speed adjustments when cars have a head start over cyclists (a) and cyclists
have a head start over cars (b).
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Figure 7.5: Simulation results for different demand situations. When initial spacings are
sb(t0)= 10.2m and sc(t0)= 20m, cars can still overtake cyclists but at a reduced
speed (a) and when initial spacings are sb(t0) = 10m and sc(t0) = 20m cars
have to match the speed of cyclists (b). The magenta coloring appears when the
speed is reduced and is more intense for lower speeds.

(a) (b)

Figure 7.6: Simulation results for queuing situations. In (a) sb(t0) = 10.2m and sc(t0) =
20m and the cyclist have a head start of 450m. In (b) sb(t0) = 10.4m and
sc(t0) = 20m and the cars have a head start of 300m. The cyan and magenta
coloring appear when the speed is reduced for respectively cyclists and cars.

7.6.4 Discussion

The face-validation of the three cases show that the model can accurately handle various
conditions that occur in mixed traffic situations where bicycles and cars share the same in-
frastructure. The main feature is that both classes can be the fastest moving one, depending
on the traffic state. Furthermore, the model includes anisotropy by considering only the
spacing of all classes in front of the current position to adjust the speed. This modeling
approach leads to plausible results including anticipation; traffic participants slow down be-
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fore reaching a queue and accelerate when a queue is about to dissolve.

When comparing our modeling outcome to available research on mixed bicycle-car traffic,
we have two observations. Our model includes a two-way interaction between cars and cy-
clists; the speed of cars is influenced by the presence of bicycles and vice versa. This prop-
erty is an improvement compared to the individual-following model by Tang et al. (2010),
which includes one-way interaction only. However, the bicycle-car interaction in our model
is based on space headway only and does not take the lateral spacing into account, which is
the case in the cellular automata model by Luo et al. (2015). To include the interaction due
to lateral distance, future development of our model could include a fundamental diagram
based on an area density.

The presented model is tested solely to qualitative criteria and has not yet been validated
with observational data. The model is tested for the Dutch ‘cycling street’ scene but could
also be applied in other mixed traffic situation, e.g. where lane discipline is lacking. How-
ever, this would require an adjustment to the speed functions. The development of a more
general description of the speed function will be beneficial for the applicability of the pre-
sented macroscopic flow model.

7.7 Conclusion
A first-order multi-class macroscopic flow model is presented to describe mixed bicycle-car
traffic. The model uses class-specific speed functions, enabling each class to be the fastest
moving one depending on density. This trait facilitates the modeling of e.g. congested situa-
tions where cyclists can maneuver along a queue of cars. The presented model is specifically
relevant for shared street situations, which typically occur in urban environments. Three test
cases show the ability of the model to handle various traffic flow conditions that occur in
mixed traffic situations where bicycles and cars share the infrastructure. The model shows
anisotropic behavior by considering the spacing of all classes in front to adjust the speed.
This modeling approach leads to plausible results including anticipation; traffic participants
slow down before reaching a queue and start accelerating when a queue is about to dissolve.

The working of the model has been successfully tested based on qualitative criteria, showing
the expected behavior of mixed bicycle-car traffic. The next step would be to perform a val-
idation of the model to quantitatively test it against observational data. This data however,
is not yet available. Furthermore, the mathematical properties of the model could be further
investigated, e.g. hyperbolicity. In this study, mixed traffic consisting of bicycles and cars
are considered but the model is equally applicable to other configurations of mixed traffic.
However, this would require adjustments to the speed functions. Possible applications of the
model are estimation of e.g. class-specific travel time and road capacity in a mixed traffic
situations, which is all relevant input data to network-wide traffic models and route choice
models.





Chapter 8

Conclusions and future research

This final chapter concludes the dissertation by presenting the answers to the research ques-
tions (section 8.1) and reflecting on the main objective (section 8.2). Then, several im-
plications of the findings for practice are addressed (section 8.3) and new ideas for future
research are proposed by stating matters that are still open to question (section 8.4).

8.1 Answers to research questions

The main objective of this study was to unravel the macroscopic quantities of uni-direc-
tional bicycle traffic such that bicycle flow could be integrated in a macroscopic flow model.
To this end, six research questions were drawn up which treated three different aspects of
bicycle traffic: i.e., motion properties on single paths, flow characteristics at controlled
intersections, and modeling bicycle traffic. The answers to the associated questions are
given below.

Research question 1: How to design a cycling experiment that can capture the key flow
characteristics of bicycle traffic? (Chapter 2)

The motivation for this question was the need for empirical data on bicycle flow dynamics.
A large-scale cycling experiment could fulfill this need if thoroughly organized and imple-
mented. It was established that the experiment needed to be designed in such a way that a
wide range of cycling behavior could be observed, both on the individual and aggregated
level. Further considerations were made regarding location, track design, number of par-
ticipants, bicycle type and more. In the final design, a track was created that could mimic
different infrastructural settings, i.e. crossing, merging, narrowing, bi-directional situation.
An indoor location was selected to minimize weather influences and to enable a top-down
observation with cameras. This angle was optimal for two reasons: first, it resulted in a
high quality of trajectory data, and second, the privacy of participants was easily guaranteed
since faces were not recorded. During the execution of the large-scale experiment, some
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imperfections were encountered in the design. Two conclusions on how not to design an
experiment were: one, the lighting conditions of an indoor location can compromise the
quality of the images. In our case, the resolution decreased in such a way that individual
markings could not be recognized. Two, aiming for participants with a specific bike type
can result in shortage. In our case, we were unable to recruit cyclists with cargo bikes. De-
spite these setbacks, the experiment resulted in an abundant data set of cycling movements,
which was used in further study.

Research question 2: How do density, speed and flow relate to each other for uni-
direc-tional bicycle flow, and how are these affected by path width and anticipation
behavior? (Chapter 3)

The cycling characteristics were studied based on the trajectory data that was gathered with
the large-scale experiment. It was found that an increase in density coincided with a lower
average speed and a higher flow. In other words, cyclists went slower when they cycled
closer together, but at the same time more cyclists moved along the path per unit of time.
Moreover, the flow continued to increase in congested conditions, which indicated that cy-
clists can maintain moving even when cycling close to others. The movements ceased when
speed dropped below 5 km/h, indicating that this is the minimum cycling speed. A change
from free-flow to congested conditions was observed around 0.15 cyclists/m2.

When looking at the quantities separately, it was found that narrowing the path decreased
the speed and flow, while it increased the density. This result is in line with the intuitive
reasoning that fewer cyclists fit on a smaller path and that a narrow opening restricts the
personal space and requires more caution to pass. Less intuitive is that the connection be-
tween the path width and the macroscopic quantities was not linear and thus depends on
other factors as well. In this research, path usage was identified as an influencing factor.

The path width was found to affect the possible configurations that cyclists could move in,
which consequently influenced the density and cycling speed. Depending on the width, cy-
clists displayed overtaking, staggered, and strictly-following movements. Overtaking was
observed on 2-meter and 1.25-meter paths, and facilitated most that cyclists moved at their
desired speed. In staggered formation, cyclists kept distance both in lateral and longitudinal
direction. Here, cyclists already had to adapt their speed to maintain the formation. Paths
of one meter and smaller only facilitated following behavior, meaning that cyclists moved
along the same lane.

Anticipation to downstream traffic conditions was observed in two ways: Either cyclists re-
duced speed when they saw congestion ahead, or they sped up to fill gaps that appeared by
the slowing down of other cyclists. Furthermore, some cyclists temporarily accepted cycling
close together when more space was available downstream. As a result, more connections of
low density and low speed, and high density and high speed were observed. Consequently,
the density–speed relation showed a more gradual speed decline with increasing density and
the clear boundary between free-flow and congested conditions disappeared.
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Research question 3: How does path width influence the maximum flow on a uni–direc-
tional bike path? (Chapter 4)

The maximum sustained flow, also called capacity, is the highest number of cyclists per unit
of time that can be maintained on a certain bicycle facility. Knowing this figure is important
in designing urban infrastructure that can cope with growing bicycle demand. We deter-
mined the capacity of different path widths by changing the size of a narrowing during a
bottleneck experiment. The path width was varied in steps of 25 centimeter between 0.5
and 1.5 meter.

It was found in chapter 4 that the maximum flow showed a positive and linear increase with
path width. This means that widening the path resulted in a higher capacity and that this
growth occurred at a constant rate. In other words, a 50-centimeter path accommodated
around 3700 cyclists per hour, and every additional 25 centimeter increased the capacity
with 1000 cyclists per hour. Furthermore, the maximum flow was found to be influenced by
the traffic state. The highest values were obtained just before the onset of congestion, and
showed a drop afterwards. This phenomenon, known as the capacity drop in motorized traf-
fic, had not been observed in bicycle flow before, and indicated that the underlying behavior
was similar for drivers and cyclists, regardless of relaxing the restriction to keep lanes. The
magnitude of the drop was about 1300 cyclists per hour, meaning that the maximum flow
on a one-meter path dropped from 5700 to 4400 cyclists per hour after the onset of conges-
tion. Also in the congested situation, the path width showed a positive and linear relation
to the flow. The drop in observed maximum flow is most likely connected to the reaction
time during the process of accelerating. After the onset of congestion, cyclists brake and
re-accelerate. Due to reaction time, the moment of speeding up is delayed, resulting in a
larger headway and thus lower capacity.

Research question 4: What is the influence of jam density and merging cyclists on the
queue discharge rate at a controlled intersection? (Chapter 5)

With this question, the focus shifted from bicycle flow operations at bike paths to those
at intersections. The dynamics of bicycle congestion was studied by analyzing the queue
discharge process at a controlled intersection. More specifically, the proximity of cyclists
in the queuing phase (jam density) was connected to the cycling movements while leav-
ing the queue. This involved the rate at which cyclists entered the intersection (discharge
rate) and how many cyclists crawled forward by merging into the cyclists’ stream before the
queue was cleared (merging cyclists). Results showed that higher discharge rates were ob-
tained when cyclists stood closer to each other while waiting in the queue. In other words, a
positive relation was obtained between jam density and queue discharge rate. Furthermore,
cyclists who crawled forward during the discharge phase where found to affect the discharge
rate differently depending on the merging angle. On the one hand, cyclists that overtook the
queue from behind had a positive influence since they filled up available spots without hin-
dering others. On the other hand, people that merged from the side held up cyclists in the
original queue and thereby negatively influenced the overall discharge process.
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Research question 5: Can the jam density of bicycle queues be influenced by managing
the queue build-up and if so, does the relation between jam density and discharge rate
hold for higher jam density values? (Chapter 6)

A controlled experiment was conducted to test whether guiding cyclists in positioning them-
selves in a queue would result in higher jam density and a more rapid discharge process.
Cyclists were asked to queue up according to multiple predetermined grids and by merely
instructing them to queue up closely together. It was found that the jam density indeed in-
creased when cyclists were provided with queuing instructions. The vocal-only instruction
to queue up closely and the vocal-plus-visual command to create a three-two-three pattern,
led to the highest jam density. Furthermore, it was found that the higher jam density co-
incided with a higher queue discharge rate. Moreover, the positive relation between jam
density and discharge rate was confirmed to exist also for the higher density range. This im-
plies that the efficiency of the queue discharge process at an intersection can be improved,
and the intersection throughput increased, by instructing cyclists to queue up in close prox-
imity to others. By close, one must think of roughly 0.80 meters in lateral direction and a
bit over one meter in longitudinal direction, resulting in a personal waiting area of approxi-
mately 0.90 m2.

Research question 6: How can we describe and model bicycle flow in a mixed traffic
situation? (Chapter 7)

With this question, the research focus changed from understanding bicycle flow dynamics
to incorporating cycling behavior in a traffic flow model. More specifically, we aimed to
describe the mixed bicycle-car traffic on a uni-directional bicycle street. Such streets usually
have a high volume of bicyclists and are therefore suitable for a macroscopic approach. The
starting point for the modeling exercise was a first order macroscopic flow model for car
traffic, which was extended to also include bicycle flow. This model assumed an equilibrium
relation between density, speed and flow, and therefore did not include reaction time or
anticipation behavior. However, a form of anticipation behavior was included in the model
by allocating speed based on the density of cyclists and cars further downstream. As a
result, traffic participants slowed down when approaching a queue and sped up when exiting
a congested area. The modeling approach was found effective in describing mixed bicycle–
car traffic and showed the ability of cyclist to move faster than cars in congestion. This
result was obtained by prescribing separate density–speed functions for cars and cyclists in
the model.

8.2 Conclusions

In this section, the insights of the individual chapters are connected, thereby focusing on the
macroscopic cycling characteristics and the underlying behavior of cyclists.

Highest bicycle flow is reached in congested conditions
The flow variables were found to vary widely, both in motion and at standstill. While mov-
ing along a one-way path, cyclists were observed to move at their desired speed as long as
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there was enough available space to overtake others. When overtaking was no longer pos-
sible, the bicycle stream became congested, resulting in a lower average speed and higher
density. Initially, the speed decrease resulted from a more synchronized flow, meaning that
faster cyclists had to adapt their speed to the slower ones, while the slower cyclists still
moved at their desired speed. The combination of high density and low speed, led to a
higher flow than at the transition between free and congested flow, indicating that capacity
was reached in congested conditions. At the same time, a capacity drop was observed after
the onset of congestion. Combining these findings shows that, most likely, the highest flow
is obtained as long as the synchronized flow is stable, and drops as soon as the first cyclist
brakes in response to a local density change.

Cycling speed depends on local and downstream space availability
The average cycling speed was found to decrease in response to a reduction in maneuver-
ing space. This available space was influenced by the proximity of other cyclists (higher
density) and by the infrastructural setting, meaning that a more narrow path led to a slower
cycling pace. Remarkably, the minimum average speed was observed within a narrow bot-
tleneck and not in the highest density conditions. On the contrary, cyclists were still capable
of moving while cycling close to others. Most likely, this was connected to the visual con-
firmation that cyclists further downstream were moving as well. Vice versa, cyclists were
observed to slow down in low density conditions when congestion was present downstream.
In doing so, the flow at medium density was reduced but at the same time, the flow was in-
creased at higher density because cyclists were able to keep moving, thereby preventing a
complete standstill. This anticipation behavior affects the flow in such a way that incorpo-
rating it in a model is vital to reproduce realistic bicycle flow. A possible way to do so is by
assigning the cycling speed based on both local and downstream conditions of density.

Cyclists organize themselves in patterns
Cyclists were found to move in different configurations, meaning that they formed a certain
pattern while optimizing the available space. The patterns were connected to the overlap in
effective sublanes. More specifically, cyclists were observed to hold a larger longitudinal
distance when the lateral distance was smaller and vice versa. When visualizing the change
in cycling configuration from a two-meter-wide path to smaller, the consecutive formations
showed close resemblance to that in a merging process. Configuration was also found im-
portant at a standstill, although cyclists did not appear to intrinsically optimize the available
space. Rather, they created a queue with a chaotic build-up while waiting at an intersection.
Some people kept a large person-to-person distance, were others chose to keep a minimum
space, resulting in a wide variation in average jam density. This queue compactness was
found to affect the discharge process, with a higher jam density resulting in a higher dis-
charge rate. As a result, the capacity of an intersection was found to increase if cyclists
were to stand close to each other. During the queue discharge, cyclists show similar pat-
terns again such as maintaining an equal distance to each other in time and space. This is
best illustrated by front and rear wheels moving at similar height.

Anticipation behavior of cyclists affects the relation between density, speed and flow
The relation between the macroscopic quantities was found to be affected by anticipation to
downstream conditions. In the absence of upcoming obstacles, such as congestion, cyclists
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reacted predominantly to their direct surrounding. In the density–flow relation, this means
that flow increased with density and that a clear transition occurred between free-flow and
congested conditions. In the density–speed relation, a constant average speed was observed
in free flow and a speed decrease in congested conditions. Unlike the density–flow relation
in following bicycle traffic, the transition point was not linked to a capacity point, but rather
marked a change in relation strength. For higher density, the flow in bicycle traffic did not
drop as it does for cyclists in following motion, but it remained high when density further
increased. This research did not identify at which density level the flow breaks down, result-
ing in a standstill. The wide variation in observed jam density suggests that this breakdown
point can vary depending on the preferred personal space of cyclists.

Using class-specific speed functions to model mixed bicycle–car traffic
Typical cycling behavior was captured in a macroscopic model for mixed bicycle–car traffic
by implementing a density–speed relation for cars and bicyclists separately. Furthermore,
the downstream spacing of both traffic modes was taken into account, leading to a repre-
sentation of mixed traffic flow that also included anticipation. However, the proposed speed
functions were based on single-file bicycle movement and should be updated based on the
insights regarding multi-channel bicycle flow presented in this dissertation.

8.3 Implications for practice

The new insights into bicycle traffic flow can be applied in a practical manner. The impli-
cations are categorized into the design of infrastructure and the modeling of bicycle traffic.

8.3.1 Infrastructure design

Findings regarding capacity values and knowledge on anticipation behavior, can be applied
in practice, in particular for the design of new, or adaptation of existing, bicycle facilities.
The findings and their applications are addressed below.

Capacity of bike paths
Knowing the maximum flow possible on bike paths is crucial for the design of infrastructure
that is suitable to accommodate many cyclists. This dissertation has determined capacity
values for separated bike lanes of 0.75, 1.00, 1.25, 1.50 and 2.00 meters wide. However,
these values are not directly applicable in design manuals because they represent the peak
flow that a path can handle, and is not comfortable to cycle in. It therefore differs greatly
from the numbers mentioned in the Dutch design manual for bicycle traffic (CROW, 2017a),
which are based on average demand during peak hour and take into account cycling com-
fort. This guide advises a path width of 2.00m for a peak flow below 150 cyclists per hour,
and a 4.00m-wide path in case of a peak demand exceeding 750 cyclists per hour. Our
obtained maximum values vary between 3500 (0.75m) and 8000 (2.00m) cyclists per hour.
Despite the large differences, the obtained capacity values can be used, for instance, to es-
tablish whether a bicycle path is able to cope with a peak demand downstream of a busy
intersection. Also, implementing the capacity values in traffic demand models may help to
identify crowded locations or bottlenecks on the network level.
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Capacity of intersections
During peak hours, the bicycle demand often exceeds capacity, resulting in congestion and
delays. This dissertation has shown that managing the queue build-up can lead to a more
efficient throughput at intersections by increasing the jam density. Two ways of managing
the queue build-up were found most effective. The first is by vocally asking cyclists to
queue up closely together, and the second is by asking cyclists to line up according to 3-2-3
pattern which was visualized on the two-meter wide pavement. However, these findings do
not include cyclists moving in groups or pairs who want to stay together, which may influ-
ence the jam density in practice. On the one hand, acquaintances might be more willing
to queue up closely, while on the other hand, it can lead to open spots in the predefined
grid. This latter situation does not have to harm the discharge efficiency when the gaps are
filled by cyclists merging from behind. It was found that cyclists merging from the side had
a disturbing effect on the queue discharge process, while cyclists joining in from the back
were found to increase the discharge flow. This means that facilitating a merging angle that
is more aligned with the main stream can enhance the queue outflow. Although the methods
need to be further tested in practice, managing the queuing process offers great potential to
optimize bicycle flow at intersections in the future.

Anticipation behavior
Cyclists were found to adapt their speed based on both local and downstream conditions.
By anticipating upon downstream conditions, cyclists affect the flow both positively and
negatively. In this process, visual information during cycling is key. Although a clear field
of vision was already important for safety, it now appears that it can contribute to a smooth
traffic flow. Therefore, a bike path needs to be designed in such a way that for instance,
obstacles, curves and other cyclists are clearly visible.

COVID-19
At the time of writing this conclusion, the world is heavily impacted by a worldwide pan-
demic. Although vaccines against the disease are starting to get available, the time-line
of returning back to normal is yet unclear. Until that time, some of the findings in this
dissertation should be addressed with care since they involve decreasing the inter-personal
distance and with it, increase the risk of virus spreading. Findings regarding increasing the
jam density, optimizing the cycling configuration, and the relation between density, speed
and flow density for higher density values should therefore only be applied in practice when
the situation allows for it. At the same time, the findings in this thesis can be used to adjust
the cycling infrastructure in such a way that it matches the prevailing insights regarding a
safe personal distance. For instance, by increasing path width to facilitate safe cycling con-
ditions, or by marking configurations on the pavement that visualizes this safe distance both
at standstill and in motion, assuming a certain cycling speed. For similar demand and infras-
tructure situation as before COVID-19, the increased inter-personal distance will negatively
affect the maximum flow at bike paths and intersections. Therefore, cyclists are expected
to experience more delay during their trip. To prevent long queues, the green-signal time
could be lengthened according to the lower capacity, in such a way that the same throughput
can be reached as in normal conditions. However, this will negatively affect the capacity for
other traffic modes.
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8.3.2 Model development
A number of findings can be applied as a starting point for model development. Three of
them are listed below.

Density–speed and density–flow relations
This dissertation has addressed the relation between density, speed and flow on uni-directional
bike paths. It showed that the density–speed and density–flow relations have different
shapes when cyclists are free to overtake than when only following movement is allowed.
Especially when the bicycle stream becomes congested, the differences in cycling speed
reduce while a high flow can be maintained. An exact function has not been presented, but
the insights gained on this topic are vital to implemented in future bicycle models in order
to represent bicycle flow in a realistic manner.

Cyclists configuration
In crowded situations, cyclists were found to move in different configurations, thereby mak-
ing effective use of the available space. Logically, the highest flow is reached with the most
effective pattern. However, this is not necessarily connected to a unique path width. For
example, it was found that a path width of 1.00m and 1.25m accommodated the same for-
mation, leading to an equal flow. This implies that simply widening the path does not always
help the overall bicycle flow. Rather, it would be wise to choose a path width based on the
optimal configuration that fits with the demand on that location. It could even indicate that
creating two smaller paths might be more effective than having one wider path. By includ-
ing the configuration in a bicycle model, the optimal path width can be determined.

Modeling mixed traffic
The speed functions for mixed car and bicycle traffic were found effective to describe mixed
bicycle–car traffic. Similar concepts can be used to describe other forms of mixed traffic as
well, such as bicycle–pedestrian, pedestrian–car, or even extending to traffic situations with
three or more modes.

8.4 Future research directions
This research has made an important step in the comprehension of bicycle traffic flow and
the modeling thereof. However, the understanding is far from complete and many ques-
tions remain. This section selects a number of issues that are yet unaddressed and are worth
investigating in future research. Furthermore, the work underlying this dissertation offers
opportunities for other research directions.

Further exploring the obtained bicycle trajectory data set
First of all, the data set that was gathered during the large-scale cycling experiment was only
partially used in this research, and permits to study other aspects of bicycle flow as well.
The recordings captured cycling movements at two crossings, a merging, a diversion and
a stretch with bi-directional movement, all of which would be interesting to analyze both
on the microscopic and macroscopic level. On the one hand, the trajectories can be used
as starting point for developing new theory, and on the other hand, the data can be used to



8.4 Future research directions 141

verify the accuracy of newly developed modeling results. The trajectory data set is expected
to become available in the future. Until that time, please contact the Active Mode Lab at
Delft University of Technology.

Transformation from movement to standstill
Regarding the macroscopic characteristics of bicycle flow, the transition from movement to
a standstill is not addressed in this thesis. It is yet unclear at which density a multi-channel
bicycle stream becomes unstable, resulting in stop-and-go waves. Furthermore, it would be
interesting to investigate whether the density at standstill varies as much as it does for jam
density at intersections, and what role anticipation has in this process.

Impact of anticipation to the density–speed relation
This thesis showed that cyclists reacting to downstream conditions leads to an early slowing
down while cyclists approach a high density area. This behavior leads to the dispersion of
cyclists, resulting in lower density. As a result, traffic breakdown in the form of stop-and-go
waves might occur less frequently in the situation where cyclists have sight on downstream
conditions than when they do not have this visual information. However, it is an open ques-
tion whether this is indeed the case and if so, how far ahead cyclists look and adapt their
cycling speed accordingly. Also the role of (anticipation to) height differences is worth
exploring further to increase the research relevance to places with a more distinct vertical
topography than the Netherlands. Understanding the relation between density and speed,
and the impact of anticipation, is key to further develop bicycle flow models that can repre-
sent all facets of aggregated bicycle movements.

Flow characteristics at (uncontrolled) intersections
Other open questions remain regarding the bicycle flow at intersections. This research has
focused on analyzing the flow at controlled situations, while also uncontrolled crossings
exist. The capacity at such intersections and its relation to the interaction between crossing
streams, such as the gap acceptance, typical headway and differences in speed, are interest-
ing topics to explore. This could, for instance, be investigated using the data obtained from
the large-scale experiment. Regarding controlled intersections, it was found that increasing
the jam density leads to a more efficient discharge process and thus a higher intersection
capacity. However, it is yet unclear how cyclists are best motivated to queue up closer to-
gether in practice. Further research in collaboration with a behavioral scientist could be an
interesting next step.

Effect queuing area and bicycle type to discharge process
Furthermore, it would be worthwhile to investigate the jam density and discharge rates for
situations where the queuing areas have an irregular shape in such a way that the available
space can be used most optimal. Also, it is unclear what effect increasing the jam density
has on the occurrence of cyclists merging during the discharge phase. If this reduces, the
efficiency of the main stream may be optimized, but the delay in the secondary stream might
be increased. Furthermore, it is likely that a heterogeneous composition regarding bicycle
types has impact on the jam density and capacity. Electrically driven bicycles are known to
accelerate faster than a traditional bike, while a (non-electric) cargo bike or young child can
act as a moving bottleneck. For the optimal calculation of green signal time at a specific
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location, it would be useful to develop a modeling tool that can provide the optimal signal
time based on e.g., demand, jam density, and typical composition of the bicycle flow. This
adaptation could be based on static data, but potentially also on dynamic data collected via
a mobile sensing system, such as AMSense (Vial et al., 2020), which uses visual sensors
in connected vehicles to locate cyclists. When the share of connected vehicles increases
in the future, this system might be used to, for instance, estimate the bicycle demand and
composition and send this information to intelligent intersection control systems.

Modeling bicycle traffic flow
Finally, this dissertation has proposed a macroscopic model that showed typical cycling
behavior on a bicycle street. However, the results were only face-validated and should be
tested more thoroughly. Furthermore, other numerical schemes can be examined to test the
working of the model. Our choice to take into account the downstream density for determin-
ing the speed, resulted in the early slowing down of cyclists in case of upcoming congestion
and accelerating in response to seeing the queue resolve. However, this anticipation to
downstream conditions could possibly be introduced more directly via the density–speed
relation. Exploring ways to describe anticipation behavior in bicycle traffic would be an
interesting research direction to pursue. A possible option to explore could be the higher-
order macroscopic flow model developed by Payne (1971), which incorporates a reaction
time to determine the speed of cars. Possibly, this reaction time is able capture also the
anticipation behavior of cyclists.

Alternatively, the mode-specific speed functions that were proposed could be used in other
types of modeling as well, such as network wide models. A research spin-off has already
resulted in the development of a multi-modal macroscopic fundamental diagram (MFD) for
urban traffic (i.e., Loder et al. (2019)). Continuing this research direction could lead to a
more complete representation of urban traffic and with it, an optimal distribution of urban
travelers over different traffic modes.
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Samenvatting

Het gebruik van de fiets als vervoersmiddel wordt toegejuicht omdat het een duurzame en
gezonde manier van reizen is. Maar het groeiende aantal fietsers in Nederlandse steden
zorgt steeds vaker voor overvolle fietspaden en lange wachtrijen bij verkeerslichten. Deze
drukte is problematisch, omdat het fietscomfort hierdoor afneemt en de fietsveiligheid in
het gedrang komt. Om een goede doorstroming van het fietsverkeer te faciliteren, zoeken
gemeentes naar manieren om de infrastructuur aan te passen aan het grotere aantal fiet-
sers. Dit vereist een beter begrip van fietsverkeer dan er tot nu toe is. Het onderzoek in
dit proefschrift geeft inzicht in kenmerkende eigenschappen van fietsbewegingen waardoor
fietsverkeer beter kan worden beschreven in verkeersmodellen.

Dit proefschrift beschrijft fietsverkeer op het macroscopische niveau. Hierbij zijn drie groot-
heden belangrijk, te weten dichtheid, snelheid en intensiteit. De dichtheid wordt beschreven
als het aantal fietsers per vierkante meter, de snelheid is de gemiddelde snelheid van fietsers
in km/u en de intensiteit is het aantal fietsers wat per tijdseenheid (bijvoorbeeld seconde of
uur) langs een bepaald punt op de weg beweegt. De fietsbewegingen worden dus op een
hoger niveau beschreven dan wanneer alleen gekeken wordt naar individuele bewegingen.
Deze geaggregeerde manier van beschrijven maakt dat patronen en verbanden in fietsver-
keer inzichtelijk worden.

Een belangrijke vraag in dit proefschrift is hoe de drie grootheden dichtheid, snelheid en
intensiteit met elkaar samenhangen. Het verband tussen deze drie grootheden staat in de
verkeerskunde bekend als het fundamentele diagram en is nog nauwelijks onderzocht voor
fietsverkeer. Om dit te kunnen bestuderen is data cruciaal, maar bruikbare datasets zijn
schaars. Daarom zijn er in dit proefschrift meerdere experimenten uitgevoerd waarvan de
data vervolgens is geanalyseerd. Hierbij is gekeken naar bewegingen op rechte paden en
naar fietsverkeer bij kruisingen. De omstandigheden worden tijdens het onderzoek zo sim-
pel mogelijk gehouden om het fietsgedrag zo min mogelijk te verstoren door interacties met
tegenliggers of andere weggebruikers. Dit wordt bewerkstelligd door te kijken naar eenrich-
tingsbewegingen op fietspaden zonder ander verkeer, dus vrijliggende fietspaden en kruis-
punten die worden geregeld met verkeerslichten. Verder worden voornamelijk de drukke
momenten onderzocht om inzicht te krijgen in hoe fietsers de ruimte op het fietspad be-
nutten. Dit is interessant omdat er tot nu toe vooral onderzoek is gedaan naar “volgend”
fietsverkeer, waarbij men elkaar niet mag inhalen. In de praktijk bewegen fietsers ook naast
elkaar en halen ze in, dus het loslaten van deze volginstructie geeft een betere representatie
van het dagelijkse fietsverkeer.
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Om meer data te verkrijgen, is er een grootschalig experiment gehouden waarbij de bewe-
gingen van ongeveer 200 fietsers zijn vastgelegd terwijl ze rondjes over een indoor-parcours
reden. Hierbij zijn er verschillende verkeerssituaties nagebootst, zoals een kruising, T-
splitsing en een versmalling. Het resultaat is een rijke dataset aan trajectoriën, oftewel
plaats- en tijdsbepalingen van fietsers, die gebruikt kan worden voor onderzoek naar zowel
individuele fietsbewegingen als collectieve patronen.

Een selectie van de verzamelde dataset is gebruikt om de relatie tussen dichtheid, snelheid
en intensiteit op rechte fietspaden te onderzoeken. Het gevonden resultaat is dat net als
bij autoverkeer, ook bij fietsverkeer de snelheid afneemt als het drukker wordt, terwijl de
intensiteit toeneemt met de drukte. Er is echter geen capaciteitspunt gevonden waarbij de
intensiteit piekt en afneemt bij hogere dichtheden, zoals bij autoverkeer het geval is. In
fietsverkeer bereikt de intensiteit een plateau waarbij de doorstroming hoog blijft bij toene-
mende drukte. Hierbij speelt anticipatiegedrag op veranderende omstandigheden een grote
rol. De snelheid blijkt niet alleen beïnvloed te worden door de individuele dichtheid, dus
de hoeveelheid ruimte die een fietser daadwerkelijk om zich heen heeft, maar ook door de
stroomafwaartse verkeerssituatie. De gemiddelde snelheid neemt af als de weg verderop
smaller wordt of als er filevorming zichtbaar is. Bij een smallere weg fietsen mensen voor-
zichtiger, en dus langzamer, en bij een dreigende opstopping stopt een deel van de mensen
al met trappen, terwijl anderen hun snelheid behouden en al inhalend de gaten opvullen
die de langzaamrijdenden hebben laten vallen. Hierdoor neemt de gemiddelde snelheid af,
maar blijft de intensiteit hoog.

In een ander experiment is de relatie tussen capaciteit en wegbreedte onderzocht. Hierbij is
gekeken naar de maximale hoeveelheid fietsers die per seconde door een vernauwing fietsen
op het moment voor en na het optreden van file. Het blijkt dat, ongeacht de padbreedte, de
maximale wegcapaciteit lager is na optreden van congestie dan wanneer er nog geen rem-
bewegingen zijn geweest. Deze capaciteitsval bij filevorming is een bekend fenomeen in
gemotoriseerd wegverkeer, maar was nog niet eerder gezien in fietsverkeer. Verder is er
gekeken naar de positionering van fietsers op het pad terwijl ze door de vernauwing fietsen.
Er blijkt een patroon te zitten in de onderlinge afstand die fietsers tot elkaar houden. Dit
patroon is te vergelijken met een momentopname van een invoegbeweging. Hiermee wordt
bedoeld dat men daar waar mogelijk naast elkaar fietst, en dat dit geleidelijk verandert naar
een volgbeweging bij smallere paden. Tijdens dit proces wordt de tussenafstand in de rij-
richting groter naarmate de padbreedte, en daarmee de zijdelingse afstand tussen fietsers,
kleiner wordt.

Soortgelijke patronen in fietsposities zijn ook van belang in stilstaand fietsverkeer, zoals
bij verkeerslichten. Dit proefschrift laat zien dat de stoppositie van fietsers de uiteindelijke
dichtheid van de wachtrij beïnvloedt, wat op zijn beurt weer invloed heeft op de afrijcapa-
citeit. Dus hoe dichter mensen bij elkaar stilstaan tijdens het rode licht, hoe meer fietsers er
per seconde de stopstreep passeren tijdens het groene licht. Het wegrijproces bij groen licht
wordt ook beïnvloed door invoegende bewegingen. Wachtrijen met lage dichtheid hebben
gaten die door invoegende fietsers opgevuld kunnen worden. Dit invoeggedrag verhoogt
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de afrijcapaciteit als het gebeurt door een achteropkomende fietser die met een inhalende
beweging het gat opvult. Het wegrijproces wordt echter verstoord als er wordt ingevoegd
vanuit een zijweg, met als gevolg dat de afrijcapaciteit afneemt.

De connectie tussen wachtrijdichtheid en afrijcapaciteit doet vermoeden dat de capaciteit
van een kruising kan worden verhoogd door de onderlinge afstand van fietsers in de wacht-
rij verder te verkleinen. Dit verband is verder onderzocht in een experiment waarin fietsers
verschillende instructies kregen over hoe ze de wachtrij moesten opbouwen. Het doel hier-
mee was om hogere wachtrijdichtheden te creëren dan normaal gesproken in het dagelijkse
verkeer te zien zijn. Het blijkt inderdaad dat er flink meer fietsers door groen licht kunnen
fietsen als de dichtheid van de wachtrij verder wordt verhoogd. Dit effect is het grootst bij
twee manieren van wachtrijmanipulatie, namelijk door fietsers vocaal aan te moedigen om
dichtbij elkaar te stoppen, en door mensen te vragen om hun voorwielen te plaatsten op een
op de straat uitgetekend patroon. Deze beïnvloeding van de wachtrijdichtheid kan worden
gebruikt om de capaciteit van kruispunten te verhogen. Hiermee verbetert niet alleen de ver-
keerssituatie voor fietsers, maar kan de algehele verkeersdoorstroming in de stad verbeteren.

In dit proefschrift wordt een manier geïntroduceerd om fietsverkeer te beschrijven in een
macroscopisch verkeersstroommodel. Hiervoor is een bestaand model voor autoverkeer
uitgebreid zodat een gemengde verkeerssituatie zoals voorkomt op een fietsstraat, gemodel-
leerd kan worden. De vernieuwing zit hierbij in een uitgebreidere beschrijving van de snel-
heidsfuncties. Voor auto’s en fietsers wordt namelijk een aparte snelheidsfunctie beschreven
die zowel afhangt van de onderlinge afstand tussen auto’s als die tussen fietsers. Dit maakt
het mogelijk om twee specifieke verkeerssituaties te simuleren, namelijk een lagere auto-
snelheid tijdens het inhalen van fietsers, en het voorbijfietsen van langzamere auto’s tijdens
file. Het model kan onder andere gebruikt worden om de doorstroming te simuleren voor
verschillende (toekomstige) scenario’s met betrekking tot de verkeersdrukte.

De bevindingen in dit proefschrift hebben een aantal praktische implicaties. Zo zijn er ca-
paciteitswaardes gevonden van fietspaden tussen 0.75 en 2.00 meter breed. Hoewel het
oncomfortabel is om langere tijd in deze drukte te fietsen, geven de capaciteitswaardes wel
aan hoe breed een fietspad moet zijn om een bepaalde piekintensiteit op te kunnen vangen.
Dit is bijvoorbeeld van belang op het fietspad na een druk verkeerslicht. Verder kan het
gevonden verband tussen de wachtrijdichtheid en afrijcapaciteit gebruikt worden om de ca-
paciteit van een kruispunt te verhogen. Hierbij moet gedacht worden aan het faciliteren van
invoegbewegingen die vanuit achteren komen in plaats van opzij, en aan het verhogen van
de wachtrijdichtheid. Dit laatste kan gedaan worden door bijvoorbeeld de ideale opstelcon-
figuratie aan te geven op het fietspad.

Dit proefschrift geeft ook handvatten voor de verdere ontwikkeling van verkeersmodellen
voor fietsers. Zo kunnen de verkregen inzichten in de relatie tussen dichtheid, snelheid en
intensiteit gebruikt worden als input voor verkeersstroommodellen. Vooral het inzicht dat
fietsverkeer een capaciteitsplateau kent in plaats van een capaciteitspunt, is van belang om
fietsverkeer op een realistische manier te modelleren. Verder kan de methode om gemengd
auto- en fietsverkeer te beschrijven via de snelheidsfunctie ook uitgewerkt worden om an-
dere vormen van gemengd verkeer te beschrijven.





Summary

Using the bicycle as a means of transport is encouraged because it is a sustainable and
healthy way of traveling. But the growing number of cyclists in Dutch cities is increas-
ingly causing overcrowded situations at bike paths and long queues at traffic lights. This
crowding is problematic because it reduces the comfort and safety of cyclists. To facilitate
the flow of bicycle traffic, municipalities are looking for ways to adapt their infrastructure
to the larger number of cyclists. This requires a better knowledge of bicycle traffic than
is currently available. The research in this dissertation provides insight into characteristic
properties of bicycle movements, which allows for a better representation of bicyclists in
traffic flow models.

This dissertation describes bicycle traffic at the macroscopic level. Three parameters are
important in this, being density, speed and flow. The density is described as the number of
cyclists per square meter, the speed is the average speed of cyclists in km/h and the flow
is the number of cyclists that move along a certain point on the road per unit of time (e.g.,
second or hour). The bicycle movements are therefore described at a higher level than when
considering only individual movements. This aggregated description is better suited to re-
veal patterns and connections in bicycle traffic.

The main question in this dissertation is how the quantities density, speed and flow are re-
lated. The relationship between these three variables is known as the fundamental diagram
and is widely studied for motorized traffic, but has hardly been researched for bicyclists.
Data is crucial to study this but useful data sets are scarce. To this end, several experi-
ments are performed in this dissertation, which focus on capturing cycling movements on
straight paths and at intersections. Along the way, the cycling conditions are kept as simple
as possible to minimize the influence of interactions with oncoming traffic or other road
users. This is done by looking at one-way movements on cycle paths without other traffic,
i.e. cycle paths that are segregated from car traffic and intersections that are controlled by
traffic lights. Furthermore, mainly the busy moments are investigated to gain insight into the
space usage by cyclists on the path. This is of interest because so far research has primarily
focused on one-dimensional bicycle traffic, where people are not allowed to overtake each
other. In practice, cyclists also move alongside and overtake each other, so letting go of the
instruction to follow gives a better representation of daily bicycle traffic.

To obtain more data, a large-scale experiment was conducted in which the movements of
about 200 cyclists were recorded as they circled an indoor track. Various traffic situations
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have been mimicked, such as a crossing, T-junction and a narrowing. The result is a rich
data set of trajectories, i.e. position and time information of cyclists, that can be used for
research into individual cycling movements as well as collective patterns.

A selection of the collected data set was used to investigate the relationship between density,
speed and flow on straight cycle paths. The obtained result is that, similar to car traffic, the
cycling speed decreases when density increases, and that the flow increases with growing
crowdedness. However, a clear capacity point was not obtained, as is the case for car traffic.
Instead, the bicycle flow was found to reach a plateau where it remained high with increas-
ing density. Anticipating behavior on changing circumstances was found to play a major
role in this. Speed was found to be influenced not only by individual density, i.e. the amount
of space a cyclist has available around him/her, but also by the downstream traffic situation.
The average speed decreased when the road ahead narrowed or when an upcoming traffic
jam was visible. This is explained by the observation that people cycle more carefully on a
narrower path, and therefore move more slowly. In case of an impending traffic jam, some
people already stop pedaling and thus slow down, while others maintain at speed and, while
overtaking, fill the gaps that the slow-moving people have created. This combination causes
the average speed to decrease, while the flow remains high.

Another experiment revealed the relationship between capacity and road width. Here, the
maximum number of cyclists per second who cycle through a narrowing at the time before
and after the onset of congestion was examined. It turns out that, irrespective of the path
width, the road capacity is lower after congestion occurs than when braking has not yet
taken place. This capacity drop in congestion is a well-known phenomenon in motorized
road traffic, but had not been seen before in bicycle traffic. Furthermore, the positioning of
cyclists on the path while cycling through the narrowing was examined. There appears to
be a pattern in the inter-personal distance that cyclists keep from each other. This pattern
can be compared to a snapshot of a merging move. This means that people cycle side by
side where possible, and that this gradually changes to a following movement on narrower
paths. During this process, the inter-personal distance in the direction of travel increases as
the path width, and thus the lateral distance between cyclists, decreases.

Similar patterns in cycling positions are also important at standstill, such as at traffic lights.
This dissertation shows that the stopping position of cyclists influences the final density of
the queue, which in turn influences the queue discharge rate. So the closer people queue up
during the red signal, the more cyclists per second can pass the stop line during the green
signal. The discharge process is also affected by merging movements. Low-density queues
have gaps that can be filled by merging cyclists. It turns out that the discharge rate increases
when a cyclist fills the gap by coming in from behind. However, the discharge process is
disrupted by a cyclist merging from a side road, resulting in a lower discharge rate.

The connection between queue density and discharge rate suggests that the capacity of an
intersection can be increased by further reducing the inter-personal distance of cyclists in
the queue. This relationship was further explored by an experiment in which cyclists were
given different instructions on how to build up the queue. The aim was to create higher
queue densities than would normally be seen in daily traffic. Indeed, it appears that con-
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siderably more cyclists can catch the green signal if the queue density is further increased.
This effect is greatest with two types of queue manipulation, namely by vocally encourag-
ing cyclists to stop close to each other, and by asking people to place their front wheels on a
pattern that is indicated on the street. This queue-formation manipulation can be used to in-
crease the capacity of intersections. This not only improves the traffic situation for cyclists,
but can improve the overall traffic flow in a city.

This dissertation describes a method to include bicycle traffic in a macroscopic traffic flow
model. For this, an existing model for car traffic has been extended so that a mixed traffic
situation, such as occurs on a bicycle street, can be modeled. The contribution lies in a more
extensive description of the speed functions, which depend both on the inter-personal dis-
tance of cars and that of cyclists. This enables the modeling of two specific traffic situations,
namely a lower car speed when overtaking cyclists, and cyclists passing slower cars during
traffic jams. The model can be used, e.g., to simulate the traffic flow for different (future)
scenarios with regard to traffic density.

The findings in this dissertation have a number of practical implications. Capacity values
were found for cycle paths between 0.75 and 2.00 meters wide. Although it is uncomfort-
able to cycle for a long duration in this crowded situation, the capacity values do indicate
how wide a bicycle path should be to be able to handle a certain peak flow. This is impor-
tant, for example, on the cycle path downstream of a busy traffic light. Furthermore, the
relationship between queue density and discharge rate can be used to increase the capacity
of an intersection. This includes facilitating merging movements that are aligned with the
discharge direction, and increasing queue density. The latter can be done, for example, by
indicating the ideal setup configuration on the bicycle path.

Finally, this dissertation suggests ideas for the further development of traffic models for
cyclists. For example, the obtained insights into the relationship between density, speed
and flow can be used as input for traffic flow models. The insight that bicycle traffic has
a capacity plateau instead of a capacity point is especially important for modeling bicycle
traffic in a realistic manner. Furthermore, the method to describe mixed traffic on a bicycle
street via the speed function can also be elaborated to describe other forms of mixed traffic,
such as cyclists and pedestrians in a city center.
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