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The increasing transistor density of Integrated Circuits (ICs) ever
since their introduction, has scaled the computational performance
of microprocessors. As a consequence of the gain in transistor den-
sity, the power dissipation density has also increased to a degree that
has become a limiting factor in further performance scaling. The
prevalent control flow computing paradigm is, especially in the con-
text of High Performance Computing (HPC), faced with this power
crisis. Data flow computing can achieve a better computations per
unit power ratio and might therefore be the solution to achieving
exa-scale computing, enabling progress in science and technology.
This work contributes in investigating methods for increasing the ab-
straction level of data flow programming by using a Polyhedral Pro-
cess Network (PPN) as abstraction to facilitate automated analysis
and transformation of data flow applications. A Polyhedral Process
Network (PPN) is a process network based on Polyhedral Compila-
tion (PC) a mathematical framework for code analysis and optimisa-
tions. A tool has been implemented to translate a PPN to a data flow
implementation. The Maxeler Data Flow Engine (DFE) technology,
a data flow hardware platform supported by a tool-flow, is used as
target technology. For a number of specific challenges involved in the

transformation from PPN to DFE-implementation a method has been implemented. This has shown that
a PPN as well as the capabilities of PC are useful concepts that are applicable to further increase of the
abstraction-level of data flow computing. However the transformation from PPN to DFE-implementation
is complex. Therefore this work concludes that the development of a data flow tailored Polyhedral Compi-
lation (PC) abstraction is the most promising future direction.
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Introduction 1
This chapter will introduce the thesis as well as the research questions that it poses.
First the observations motivating this work are laid out. These observations will also
provide a concise description of concepts, research and technology utilised in this work.
The observations are meant to pave the way for the thesis formulation and the research
questions that logically follow from it. Additionally this chapter sketches the structure
of the entire document.

1.1 Observations

This section elaborates on the observations that inspired this thesis. This section will only
explore the bare minimum necessary to introduce the thesis and its research questions.
Chapter 2 and 3 will describe these ideas and concept in much more detail.

1.1.1 Challenges of Reconfigurable High Performance Computing

Using FPGAs for HPC has been researched for many years. The primary motivation
for using FPGAs is in essence their ability to implement custom hardware architectures.
Where a General Purpose Processor (GPP) or Graphics Processing Unit (GPU) has a
fixed architecture, an FPGA allows the implementation of an architecture specialised for
a specific problem. The latter has obviously many benefits, but despite these, there are
various challenges that obstruct mass employment of reconfigurable computing. One ma-
jor problem is the degree of complexity involved in implementing an FPGA design.

Improving programability of FPGAs, has been pursued by many academic and com-
mercial initiatives. One general approach is HLS, a method for translating a general
purpose programming language, often C, to Hardware Description Language (HDL). It
is, however, challenging achieving good performance using HLS[1].

A concept that increases programmability of FPGAs, without sacrificing heavily
on performance is the Data Flow Engine (DFE) technology developed by Maxeler
Technologies[2]. This technology is comprised of a hardware platform, and programming
tools. The tools provide a Java based programming method for the hardware platform.
This doesn’t mean that the tools translate general Java code to a DFE implementation.
Rather, it provides a library to construct a DFE implementation. This approach lifts the
abstraction and therefore increases the productivity. Additionally it opens FPGA based
HPC to developers not familiar with HDLs.

1



2 CHAPTER 1. INTRODUCTION

From the former observations the following conclusions are drawn: There is a gap between
imperative code and an Register Transfer Level (RTL) implementation that is not easily
bridged by automated mechanisms. Some human intelligence and intuition is typically
required to produce an efficient RTL implementation. The Maxeler DFE technology
allows designers to focus on this human specific input by providing a fully integrated
platform that raises the abstraction level of application developement significantly. This
has proven to be a successful approach in addressing the programability in the context
of FPGA based HPC[1], see also Section 4.1.

1.1.2 Polyhedral Compilation and Polyhedral Process Networks

Polyhedral Compilation (PC) and Polyhedral Process Networks (PPNs)[3] might at first
seem completely unrelated to what we have discussed so far. However, in oder to motivate
its relevance to this thesis it is helpful to first explore these two related concepts on
their own.

PC is a mathematical framework for performing both code analysis and code transfor-
mations. Imperative code is often used as input source in many PC approaches, however
PC is not necessarily restricted to the imperative paradigm. In PC the notion of state-
ment instances is central. A statement instance is the dynamic execution of a statement.
The significance of this is most prevalent when considering a statement within a loop
construct. This statement is, typically, executed multiple times. Polyhedral Compi-
lation (PC) abstracts this concept of iterative execution of a statement and gives it a
geometric interpretation. Additionally it allows for code analysis and code transforma-
tion on a statement instance granularity.

The concept of PPNs uses PC concepts to model the input code as a data dependence
graph. The observation made is that a data dependence graph seems to be a suitable
abstraction from which a DFE implementation can be conveniently generated.

1.2 Thesis Formulation

Based on the observations in the previous section the research proposal of this thesis
is to investigate the applicability of PC and in particular PPNs in the context of data
flow computing. This is done by implementing a tool that translates a PPN to a DFE
implementation. In the first place this will reveal whether a PPN is a suitable abstraction
of a DFE implementation and secondly, whether this abstraction allows for automatic
optimisations, of the generated DFE implementation, by PC techniques.
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1.2.1 Research Questions

Based on the thesis, formulated above the following research questions are pro-
posed:

• Is it possible to generate a Data Flow Engine (DFE) implementation from a Poly-
hedral Process Network (PPN)?

• Can such a mapping be efficient, in terms of the theoretical achievable performance?

• Can the concepts from Polyhedral Compilation (PC) be applied to perform trans-
formations on the Polyhedral Process Network (PPN) abstraction that will improve
the efficiency of the generated Data Flow Engine (DFE) implementation?

• What are performance improving transformations when a Data Flow Engine (DFE)
implementation is considered as our target?

These research questions will be addressed in the conclusions in Chapter 7.

1.3 Thesis Organisation

The remainder of this thesis report is organised as follows:

Chapter 2 Polyhedral Compilation and Polyhedral Process Networks explores
and explains Polyhedral Compilation (PC). The chapter will also cover the general idea
and a specific implementation of the Polyhedral Process Network (PPN) concept.

Chapter 3 Data flow Computing covers the concept of data flow computing and
compares it to control flow computing. The second part of the chapter will discuss and
explain the Maxeler DFE approach to data flow computing.

Chapter 4 State of the Art discusses related research and projects.

Chapter 5 Design and Architecture documents the design process and design choices
that have led to the architecture of the developed tool.

Chapter 6 Implementation describes the implementation of the tool in detail. In this
chapter specific implementation details are elaborated upon.

Chapter 7 Conclusions discusses the conclusions using the research questions as struc-
ture for this discussion.
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Polyhedral Compilation and
Polyhedral Process Networks 2
This chapter describes and explores the concepts and approaches to Polyhedral Compi-
lation (PC). This chapter functions as general introduction to the subject and covers
some of the mathematics involved. Additionally this chapter discusses the concept of a
Polyhedral Process Network (PPN) and the specific PPN implementation used in this
work, the Polyhedral Dependence Graph (PDG).

2.1 Polyhedral Compilation

We have briefly introduced the term PC in Chapter 1, presently we will discuss PC in
detail. Polyhedral Compilation (PC) is a term that refers to a field of research that
uses mathematical concepts to model programming code. This model allows for depen-
dence analysis and code transformations. Historically polyhedra were used to abstract
various aspects of the input code. Recently, another similar abstraction using sets and
relations has been introduced[4, 5]. The later is also regarded as an approach to PC,
while technically it does not use polyhedra.

Although the implementation of the abstraction differ among approaches within the Poly-
hedral Compilation (PC) field there are some fundamental ideas and concepts that they
all share. This chapter intends to reveal these ideas and concepts while also discussing
their implementation in the specific approaches.

The appeal of PC is that it abstracts the dynamic executions of statement instances.
PC allows to reason about different dynamic executions of the same statement, which
occur for example in loop constructs. This in contrast to an Abstract Syntax Tree (AST)
which is an abstraction of the programs syntax and does not explicitly model the idea of
statement instances. The benefit of PC is that it abstracts the actual executed statements
and therefore enables both code analysis and code transformation.

2.1.1 The Fundamental Concepts of Polyhedral Compilation

There are some fundamental mathematical concepts that underpin PC. These concepts
are key to PC in why this idea works and why there are restrictions to for example the
type of allowed transformations.

One of these concepts is that of polyhedra. This concept which has been mentioned
multiple times we will now properly address. Polyhedra is the plural of polyhedron.
A polyhedron is a space bounded by a finite number of hyperplanes. The hyperplanes

5
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(a) A Convex Polyhedron (b) A Non Convex Polyhedron

Figure 2.1: Convexity of Polyhedra

actually separate the original space in a number of half spaces, the intersection of these
half spaces form the polyhedron. In a two-dimensional space hyperplanes are lines and
a finite number of lines can be used to bound a the 2d area. The formed area can be
infinite if the lines form a cone or bounded if it is restricted in all directions. Such a
bounded polyhedron is called a polytope. Later we show how such polytope can be used
to abstract for example an instance set.

The polyhedra used in PC approaches are in fact convex polyhedra. This brings us to
the mathematical concept of convexity in the context of polyhedra, for which there is
an informal but rather intuitive definition. This definition states that for any two points
that are both members of a convex polyhedron, each point on the straight line between
these two points is also a member of that polyhedron. This definition is a also applicable
to sets. Polyhedra described using a system of linear inequalities (i.e. an intersection
of half spaces) will always be convex. A convex polyhedron is shown in Figure 2.1a,
while Figure 2.1b shows a non-convex polyhedron. It is graphically illustrated that one
can choose two points in the polyhedron for which there are points on the straight line
between them that are not in the polyhedron.

Another mathematical term that one often encounters in PC literature is the term affine.
It is for example found in affine transformations. These affine transformations are vec-
tor valued functions of the format shown in Equation 2.1. An affine transformation is
basically a linear transformation plus a translation[6]. Affine transformations are the
most general type of transformations that preserve convexity. This property ensures that
convex polyhedra transformed by affine transformations will remain convex polyhedra.
Therefore the abstraction remains within the conditions enforced by the PC and can be
used for further analysis and code generation. For a more detailed explanation regarding
these mathematical concepts see[7, Section 2.4.1].

f(x1, . . . , xn) = A1x1 + . . .+Anxn + b

f(x̄) = Ax̄+ b
(2.1)
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2.2 The Polyhedral Model

Although there exist multiple approaches to polyhedral compilation, the focus here will
be on the approach described in [4, Chapter 5]. This is the approach implemented by
the libraries used in this work. This approach is the one using sets and relations instead
of polyhedra, and will be referred to as the Integer Set Library (ISL) approach. The
classical approach to PC, the one actually using polyhedra, is also discussed and used
in examples.

A polyhedral model is an abstraction of a piece of code, and is particularly useful when
the code involves iterations of one or more statements. In case the input code is written
in an imperative language (e.g., C) statements embedded in loop constructs are an
example of iterative statements. Most models put some restrictions on the input format
of the code especially on the loop statements. The format that all models, of interest,
support is that of the so called Static Control Part (SCoP). A SCoP is an optionally
nested loop with static control (i.e. bound and strides of the loops are known at compile
time either exactly or as parameters). The code shown in Listing 2.1 is an example of
a SCoP.

R: some statement
f o r ( i =0; i<N; i++){

S : some statement
f o r ( j =0; j<M; j++){
T: some statement

}
}

Listing 2.1: A SCoP

A polyhedral model is typically composed out of the following components:

Instance Set Is the set of dynamically executed instances. For example, if a statement
is encapsulated in a for loop, the instance set abstracts each individual execution
of that statement. The instance set can be abstracted as a bounded polyhedron in
n-dimensional space. Each integer point in this space represents a specific iteration
of the statement. Alternatively the Instance Set could be abstracted as an integer
set. Each separate statement has an Instance Set associated with it, instance sets
of two statements can overlap or even be equal.

Dependence Relation The dependence relation is a relation that gives information
about the dependences between statement instances. Dependences can exist be-
tween instances of two distinct statements or instances of one and the same state-
ment. Usually multiple types of dependencies are considered (e.g., read-after-write,
write-after-read) et cetera. Typically the relations reflect that one statement in-
stance should be executed before the other. These relations can be expressed as a
polyhedron of pairs of dependant iterations of two instance sets. Alternatively it
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can be expressed as an integer relation.

Schedule A schedule is a relation on the instance set that expresses the order in which
the statement instances should be executed. A schedule defines a strict partial order
and is an irreflexive and transitive relation. Transforming a nested for loop comes
down to changing the schedule. However, an alternative schedule needs to respect
the dependence relations. Schedules that respect the dependences are called legal
schedules. A schedule is generally expressed as a function that assigns a timestamp
to each element of the instance set. This timestamp can simply be one-dimensional,
but often a multi-dimensional timestamp is used. In a multi-dimensional schedule
a lexicographical1 execution order is assumed. A recent alternative for specifying
schedules are schedule-trees discussed later in more detail.

Access Relation The access relation maps elements from the instance set to members
of a data set. So it tells which element of the dataset is accessed by a specific
access in a statement instance. The datasets are considered to be arrays. Scalars
are supported by regarding them as 0-dimensional arrays.

One of the major challenges of PC is finding an alternative schedule. The motivation
for such alternative schedule is to perform performance improving code transformations,
resulting in an alternative execution order of the statement instances. For example an
alternative schedule could optimise the reuse distance (i.e. minimise the number of
iterations between two uses of the same data element). Optimisations like this could
yield a performance gain because they may improve the utilisation of a cache or scratch
path memory. Alternatively, a new schedule can maximise the number of statement
instances that can be executed in parallel. Scheduling algorithms typically try to generate
a schedule that improves the code for multiple objectives. Besides data reuse distance and
parallelism other objectives can be of interest depending for example on the envisioned
target hardware.

2.2.1 Instance Set

Consider a simple nested for loop structure as shown in Listing 2.1. It is a rather obvious
observation that iterative executions of statements S and T can each be considered a
two-dimensional set or polytope in N2. See Figure 2.2 for a graphical representation of
the instance sets (i.e. polytopes) of both statement S and T in Listing 2.1. The loop
bounds of the for loop, containing statement T , constrain the values both i and j can
take. The loop bounds, an thus the instance set of T , can be be expressed as a system
of linear inequalities see Equation 2.2.

i ≥ 0, i < N, j ≥ 0, j < M, (2.2)

1The lexicographical order is a trivial order on multi-dimensional numerical objects, for a formal
definition see Section A.3.4
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Figure 2.2: A graphical representation of the instance set of statement T in Listing 2.1
for N = 6, M = 8

If we reorganise the inequalities we can form an elegant and uniformly applicable notation
using concepts from linear algebra. The latter is actually the accepted form to describe
polyhedra, which in this case is actually a polytope because it is bounded.

The system shown in Equation 2.3 has two variables i and j these two variables in some
sense form a vector in N2. Every possible vector that satisfies 2.3 forms an instance of
statement T . The area, or more precisely the number of points, formed by the vector is
called the instance set or iteration space. The vector is often referred to as the iteration
vector. The instance set of statement S is represented by Equation 2.4.


1 0 0 0 0
1 0 0 0 0
−1 0 1 0 1
0 −1 0 1 1



i
j
N
M
1

 ≥


0
0
0
0
0

 (2.3)

(
1 0 0
1 −1 1

) i
N
1

 ≥
0

0
0

 (2.4)

An alternative to this matrix based description is expressing the instance set as shown
in Equation 2.5. It does not require a leap of the imagination to see that the two
representations actual convey the same information. The set notation has to conform to
some constraints, which we will currently ignore, the details are addressed in Section 2.4.5.

[N,M ]→ {S[i] : 0 ≤ i < N ;T [i, j] : 0 ≤ i < N ; 0 ≤ j < M} (2.5)



10 CHAPTER 2. POLYHEDRAL COMPILATION AND POLYHEDRAL PROCESS
NETWORKS

2.2.2 Access Relation

The access relations are used to model scalar and array references, in the input code.
A statement usually contains multiple array and/or scalar references and is therefore
associated with multiple access relations. There is an access relation for each scalar or
array reference.

The access relation, also referred to as access function maps a statement instance to
a element of an array. Usually this relation maps iteration coordinates (specifying a
specific statement instance) to array indices. Scalars are modelled as zero-dimensional
arrays. In order to allow for dependence analysis a distinction is made between read and
write accesses.

i n t A[N ] ;
i n t B[N ] [M] ;
i n t c ;

S1 : c = 2 ;

f o r ( i n t i =0; i<N; i++){
S2 : A[ i ] = 0 ;

f o r ( i n t j =1; j<M; j++){
S3 : A[ i ] = A[ i ] + B[ i ] [ j ] ∗ c ;

}
}

Listing 2.2: Simple Kernel

In order to demonstrate how access relations model the data access in the input code we
take into consideration the code shown in Listing 2.2. We aim to show as many facets of
the access relations as possible while keeping the example code simple. The assumption in
this example is that both arraysA andB have been initialised with data outside the shown
code. The variable declarations are added to this code listing for clarification.

The depicted code scales the elements of B with the value of c and accumulates these
results for each "column" of B and stores these results in array A. The code could be
regarded as a scaled histogram, but purely serves an instructional purpose.
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In the ISL approach the relations are bundled per type (i.e. read or write) combined
in what is formally a union of relations. Each individual relation in this union is sep-
arated with a semicolon. Equation 2.6 shows the write access relations of the code in
Listing 2.2. For readability each individual relation in this union of relations is printed
on a separate line.

[N,M ]→ {
S1[]→ c[];

S3[i, j]→ A[i] : 0 ≤ i < N ∧ 0 < j < M ;

S2[i]→ A[i] : 0 ≤ i < N

}

(2.6)

The first relation models the write access of scalar c in statement S1. Statement S1
is executed only ones (i.e. has only one statement instance). Therefore there are no
iterators associated with this statement. This relation also illustrate how scalars are
treated as zero-dimensional arrays.

The read access relations can be modelled as a union of relations as follows:

[N,M ]→ {
S3[i, j]→ B[i, j] : 0 ≤ i < N ∧ 0 < j < M ;

S3[i, j]→ A[i] : 0 ≤ i < N ∧ 0 < j < M ;

S3[i, j]→ c[] : 0 ≤ i < N ∧ 0 < j < M}

(2.7)

Although the notation is rather self-explanatory, it is subject to some technicalities we
will later discuss in detail in Section 2.4.5.

2.2.3 Dependence Relation

A dependence relation models the dependence between pairs of statement instance, more
particular between accesses in those statement instances. They enforce an order of exe-
cution of these two statement instances where the statement instance in the range of the
relation can only be executed after the statement instance in the domain of the relation.
Such dependence is typically the result of both statement instances accessing the same
data element.
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The dependences are generally classified based on the type of the two involved accesses
(i.e. read or write) causing the dependence. The following three dependence types are
usually considered:

Read-after-write The data is written by one statement instantiation and later read by
another instantiation.

Write-after-read Data read by one statement instantiation and later written by an-
other.

Write-after-write Data is written by one statement instantiation and thereafter over-
written by another.

One could argue that there is also a read-after-read dependence. However, reordering
the accesses does not have effect on the final state of the program. A read-after-read
dependence does therefore not enforce a specific execution order of the involved statement
instances. For this reason it is often not considered a dependence.

When code is transformed (i.e. a change of the execution order of statement instances)
the dependence relations should be respected in order to preserve the meaning of the
original code. If the dependences are not respected the transformed code would not be
equal to the original code and most likely produce different results.

In the classical approach to PC a polyhedron is used to model the dependences between
a pair of statements. For each pair of statements that have a dependency such a poly-
hedron is constructed. The general structure of such dependence relation is depicted
in Equation 2.8.

FS −FT
AS 0
0 AT

(iS
iT

)
= 0

≥ 0
(2.8)

In Equation 2.8 FS and FT are coefficients of the access functions of statement S and T
respectively. FS and FT are matrices, while iS and iT are vectors. By isolating the part
of the system that involves the access functions we gain:

FS · iS − FT · iT = 0

FS · iS = FT · iT
(2.9)

The statement instance iS and iT satisfying the equality are the ones that access the
same data element. The sub matrices AS and AT specify the statement instances, of the
two statements, the dependence applies to.

Considering the code shown in Figure 2.3. There is an read-after-write dependence
between statement S2 and statement S3. Statement S2 writes to A[i] and after that
A[i] is read by S3. Equation 2.11 shows the dependence polyhedron modelling this
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dependence. Alternatively the dependence can also be expressed as a relation depicted
in Equation 2.10.

{S2[i]→ S3[i′ = i, j] : 0 < i < N ∧ 0 < j < M} (2.10)

Each array or scalar reference in a statement is considered an access. In order to identify
the distinct accesses we label them per statement using a number. The statements S2
and S3 in Figure 2.3 have the following accesses:

Accesses of S2: S20 = A[i]

Accesses of S3: S30 = A[i], S31 = A[i], and S32 = B[i][j], S33 = c

The two access in the read-after-write dependence are S20 and S31. Each of these
accesses has an access function associated with it. In the example the two access
functions are:

fS2,0(iS2) = iS2

fS3,1(iS3, jS3) = iS3
(2.12)

For all statement instance pairs < S2(iS2), S3(iS3, jS3) > that satisfy the following equa-
tion the two statement instance access the same array element.

fS2,0(iS2) = fS3,1(iS3, jS3)

iS2 = iS3

iS2 − iS3 = 0

(2.13)

i n t A[N ] ;
i n t B[N ] [M] ;
i n t c ;

S1 : c = 2 ;

f o r ( i n t i =0; i<N; i++){
S2 : A[i] = 0 ;

f o r ( i n t j =1; j<M; j++){
S3 : A[ i ] = A[i] + B[ i ] [ j ] ∗ c ;

}
}



1 −1 0 0

1 0 0 −1
−1 0 0 N
0 1 0 −1
0 −1 0 N
0 0 1 −1
0 0 −1 M




iS2
iS3
jS3
1

 = 0

≥ 0
(2.11)

Figure 2.3: The code (left) and the dependence polyhedron (right) modelling the Read-
after-write dependence between the statements S2 and S3 the two involved accesses are
high-lighted in the code. The code is repeated from Listing 2.2
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Recalling the dependence polyhedron in Equation 2.11 we see that the last statement in
Equation 2.13 corresponds to the equality in Equation 2.11.

2.2.4 Schedule

The purpose of a schedule is to prescribe an execution order to an instance set. The
schedule is implemented by a function or relation that maps members of the instance set
to a timestamp. This timestamp can simple be a scalar, where the implied execution or-
der is in ascending order of the assigned value. However, in practice a multi-dimensional
timestamp is often used. This timestamp is a vector or vector-like object. The distinct
dimensions of this multi-dimensional timestamp can be thought of as the seconds, minute
and hours we, humans, typically use to notate time. The resolution of consecutive times-
tamps is a unit-step in the first-dimension of the timestamp. This unit-step models an
atomic discrete time-step, but has no specific time in seconds related to it. In a hardware
implementation this unit-step often relates to the clock-cycle.

A schedule is by its very nature a function. In the classic approach it is represented as a
function while in the ISL approach it is represented as a relation. For efficiency reasons,
briefly touched upon in[4], schedule-trees, has been introduced in ISL as an alterna-
tive schedule representation. Although these schedule-trees have become the preferred
method, using relations to represent schedules is still supported in the ISL.

In the context of this thesis both ISL approaches are relevant. A PDG gives a schedule
for each node in the graph in the form of a relation. The ISL implemented scheduler
produces a schedule-tree.

The concept of schedule-trees has developed since it has been proposed[8]. A helpful
treatise on the subject can be found in[4, Section 5.6]. The latest version of the ISL
manual describes the current implementation in ISL.

The concept of a schedule-tree is that it is a structured representation of the schedule.
The individual nodes in the graph typically give a partial schedule. The schedule of a
specific statement is retrieved by traversing the schedule-tree.

Although the actual implementation is quite detailed, the general concept of a schedule-
tree can be understood by considering four different node types.

A Domain node models the instances sets of the statements referenced in the tree.
The root-node of a schedule-tree is always a domain node.

A Sequence Node models a compound statement (i.e. a sequence of statements that
should be executed in sequential order). It has as children a sequence of nodes that
should be executed in the specified order.

A Band Node models a loop-statement. The band node has an associated partial (i.e.
one-dimensional) schedule. Mapping the statement instances to one dimension of
the timestamp.
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Domain Node: 
[N, M] -> { S1[]; 
S2[i] : 0 <= i < N ;
S3[i, j] : 0 <= i < N and 0 < j < M }

Sequence Node:

Filter Node:  
[N, M] -> { S1[] }

Filter Node: 
[N, M] -> { S2[i]; S3[i, j]}

Band Node: 
[N, M] -> { S2[i] -> [(i)]; S3[i, j] -> [(i)] }

Filter Node: 
[N, M] -> { S2[i] }

Filter Node:
[N, M] -> { S3[i, j] }

Band Node: 
[N, M] -> { S3[i, j] -> [(j)] }

Sequence Node:

Figure 2.4: The schedule-tree corresponding to the code in Listing 2.2

A Filter Node specifies a sub-set of a particular instance set that applies to the sub-
tree of which the filter node is the root. The filter nodes may refer to the whole
instance set.

An example of a schedule-tree based on the code in Listing 2.2 is depicted in Figure 2.4.
This tree is to be traversed in depth-first order. Children of a node are traversed from
left to right.

The members of a band node can be labeled as coincident, if the dependences allow, mean-
ing they can be executed in parallel. The first band node visited, in depth-first traversal of
the schedule-tree depicted in Figure 2.4, has two members (i.e. partial schedules):

S2[i]→ [(i)]

S3[i, j]→ [(i)]
(2.14)

Both these partial schedules can be labelled as coincident meaning that this band node can
be implemented as a parallel for loop. Such labelling is performed by a scheduler.
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The schedule-tree implementation in ISL additionally provides set nodes, which are se-
quence nodes that don’t prescribe an order.

The alternative to a scheduling tree is to provide a schedule, in the form of a relation,
for each statement. Considering the code in Listing 2.2, the schedules are modelled
as follows:

S1[]→ [0, 0, 0];

S2[i]→ [i, 0, 1];

S3[i, j]→ [i, j, 2];

(2.15)

Note that the first dimension only contains constants. This dimension is used to express
the sequential order of the statements in the original code text.

2.3 Polyhedral Scheduling and Transformations

There is quite some similarity between the idea of polyhedral transformations and poly-
hedral schedules. The two terms are often used interchangeable there is however a sub-
tle difference between the two. Where a schedule assigns an timestamp to each in-
stance in an instance set, a transformation specifies an alternative execution order of
an instance set.

The classical loop transformations are all expressible as affine transformations. The
following examples, based on[9], show how loop transformations can be expressed as
affine transformations. Appendix C provides some additional examples.

Loop Interchange

A loop interchange transformation switches the inner and outer loop around.

Original Code:

f o r ( i n t i =0; i<N; i++)
f o r ( i n t j =0; j<M; j++)

S( i , j ) ;

Instance Set: [N ]→ {S[i, j] : 0 ≤ i < N ∧ 0 ≤ j < M}
Original Schedule: {S[i, j]→ [i, j]}
Transformation: {[i, j]→ [j, i]}

Transformed Code:

f o r ( i n t j =0; j<M; j++)
f o r ( i n t i =0; j<N; i++)

S( i , j ) ;
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Loop Tiling

Loop tiling splits the original program in smaller sub problems. In this example the
original instance set is split up in tiles of size 4 by 4. Note that these tiles do not have to
be square, they even do not have to be rectangular (i.e. the can even be skewed).

A tiling transformation doubles the dimensionality of the instance set. In the example the
original instance set is transformed from 2-dimensional to 4-dimensional. The two outer
most loops (iterators Ti and Tj) iterate over the tiles, while the two inner most loops
provide the iteration order local to the tile. Loop tiling typically requires some transfor-
mation of the iterators used by the statement(s) in the transformed loop nest.

Original Code:

f o r ( i n t i =0; i<N; i++)
f o r ( i n t j =0; j<N; j++)

S( i , j ) ;

Instance Set: [N ]→ {S[i, j] : 0 ≤ i < N ∧ 0 ≤ j < N}
Original Schedule: {S[i, j]→ [i, j]}
Transformation: {[i]→ [bi/4c, bj/4c, i mod 4, j mod 4]}

Transformed Code:

f o r ( i n t Ti=0; Ti<N/4 ; Ti++)
f o r ( i n t Tj=0; Tj<N/4 ; Tj++)

f o r ( i n t t i =0; t i <4; t i++)
f o r ( i n t t j =0; t j <4; t j++)

S(4∗Ti+t i , 4∗Tj+t j ) ;

Scheduling

In Section 2.2.4 we have discussed the idea of a polyhedral schedule in this section we will
explore how such schedule (i.e. its defining parameters) can be found. In the previous
example we have seen how the classical loop transformations are performed within the
context of PC. However, the real challenge is to figure out which transformations or
combination of transformations are beneficial.

In order to do the latter, scheduling algorithms exist that automatically construct a
transformation or schedule. There are two such scheduling algorithms in the polyhe-
dral community that are of particular interest: because (1) they are the most mature
approaches and (2) they are both implemented in the ISL.

The two algorithms are the Feautrier scheduler [10, 11] and the Pluto scheduler [7]. The
Feaurtrier scheduler is a greedy iterative algorithm that looks for a schedule with minimal
latency. The algorithm tries to resolve, in each step, as much dependences as possible.
Generally the schedule maximises fine-grain parallelism.
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The Pluto scheduler tries to find a tiling-schedule. And optimises for both parallelism
and data-locality. This strategy has proven to be beneficial when targeting a Graphics
Processing Unit (GPU)[12]. In the ISL, the Pluto algorithm is used as the primary
scheduling algorithm. However it may occur that the Pluto algorithm can not find a
schedule, in which case one iteration of the Feautrier scheduler is performed instead that
will hopefully satisfy the dependence or dependences that prevent the Pluto scheduler
from finding a schedule. After this step and when no total schedule has been found yet,
the ISL switches back to the Pluto scheduler. This latter is the standard scheme of the
ISL, it is however also possible to only use either scheduler. A detail description of the
ISL scheduling strategy can be found in[12]. The latter publication also includes further
details regarding the two mentioned scheduling algorithms .

2.4 The Integer Set Library

The Integer Set Library is a library that allows working with integer sets and integer
relations. In principle the library is a more or less general library, however it is designed
for and used in the field of PC. Two documents have served as inspiration for this
section[4]: A tutorial on the underlying concepts of the ISL approach to Polyhedral
Compilation and [5]: The official ISL Manual. This section can both be regarded as an
introduction as well as a summary of the two mentioned documents. The focus will be
on the aspects that are relevant to this thesis.

Some of the concepts from the ISL have informally been introduced previously, deliber-
ately skipping over some formal details, primarily to not confuse the reader by introducing
to much detail at once. In this section we will discuss and explore these details. Ap-
pendix A describes, including an example, how dependence analysis is performed in the
ISL approach to PC.

2.4.1 Named Integer Tuples

In order to understand a set of named integer tuples let us first define what is meant
by a named integer tuple. A named integer tuple simply "is an identifier followed by a
comma delimited list of integer values enclosed in square brackets"[4]. So A[2, 8, 1] is a
named integer tuple, however [] could also be considered a named integer tuple without
an identifier and an empty sequence of integers.

Sets of these named integer tuples can be constructed, as shown in Equation 2.16 by
simply listing the members of the set. This latter is called an extensional description.

{A[2, 8, 1];B[4, 5]; []} (2.16)

Relations can for example be described as follows:

{A[2, 8, 1]→ B[5];A[2, 8, 1]→ B[6];B[5]→ B[5]} (2.17)
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In this extensional description the members of a set or relation must be explicitly enumer-
ated. For this reason their usefulness, in the context of PC is limited, however it could
serve as a more or less gentle introduction to the intentional description that follows in
the next section.

2.4.2 Named Integer Tuple Templates

The next concept I would like to introduce are named integer tuple templates which
are used to describe the members of the set or relation intensional. In the extensional
description the members of the set are explicitly listed. This in contrast to an inten-
sional description, which uses variables and constraints on these variable to describe the
members of the set.

The difference between a named integer tuple and a named integer tuple template is
that the latter uses a list of variables instead of integers. This allows for an intensional
description of a set or relation. Let us first consider a set both described extensional as
well as intensional.

A possible intensional description of a set could be:

{B[i] : 5 ≤ i ≤ 6;C[]} (2.18)

An extensional description of the same set would be:

{B[5];B[6];C[]} (2.19)

Both the intensional and extensional description of the set are in fact equal.

2.4.3 Structured Named Integer Tuple Templates

A structured named Integer Tuple Template is basically a generalisation of named integer
tuple templates, such that the definition is also applicable to relations. An relation has
both a domain and range integer tuple. As stated in [4] a structured named integer tuple
is either:

• A named integer tuple, (i.e., an identifier n along with d ≥ 0 integers) ij for
0 ≤ j < d, written n[i0, i1, ..., id], or,

• A named pair of structured named integer tuples, (i.e. an identifier n along with
two structured named integer tuples i and j written n[i→ j].

An example of a set of structured named integer tuples is:

{B[5];S[B[6]→ A[2, 8, 1]];Q[B[5]→ S[B[6]→ A[2, 8, 1]]]} (2.20)

The following is example of a binary relation of structured named integer tuples:

{B[5]→ A[2, 8, 1];S[B[6]→ A[2, 8, 1]]→ B[5]} (2.21)
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2.4.4 Spaces

An important concept in ISL is that of spaces. A space gives the identifier and the
number of dimension of a named integer tuple. The space of tuple A[i] is A/1 while the
space of B[1, i, j] is B/3.

2.4.5 Presburger Formulas

The sets and relations used in the ISL approach to PC are officially called Presburger
sets and Presburger Relations, because the functions that are used in the intensional
description of these sets and relations are Presburger formulas.

A Presburger formula is a first order formula in the Presburger language. The Pres-
burger language also referred to as Presburger arithmetic is a first-order theory on
the natural numbers that includes addition but excludes multiplication. One spe-
cific property of a first-order languages in general is that it allows existential and
universal quantification of variables. For a detailed and technical treatise on the
Presburger Language see[4, Section 3.2].

The main practical reason for using Presburger formulas in the ISL is that they
are decidable[4] (i.e. it is always possible to decide whether a Presburger Formula
is satisfied or not).

The practical consequence of the former is that one can not use a multiplication of
variables when constructing a function describing the set or relation membership. This
seems at first restrictive, however it is not more restrictive than the restrictions enforced
by a classical polyhedral description. Therefore Presburger sets and relations can be used
to abstract code, and have the same expressive potential as the classical approach.

2.4.6 Presburger Sets and Presburger Relations

Using the concepts covered so far we can dissect the notation of Presburger sets
and Presburger Relations. The set and relation used for this example are derived
from a polyhedral model, doing so simultaneously links the theoretical concept to a
practical implementation.

The following Presburger set abstracts the instance set of the code shown in Listing 2.3.
Formally this is considered to be a union of Presburger sets, since it contains two sets
with distinct spaces. A set is typically associated with a list of parameters, referred to
as the context.

S : prod = 0 ;
f o r ( i n t i = 0 ; i < N; ++i )

T: prod += A[ i ] ∗ B[ i ] ;

Listing 2.3: Inner Product Kernel
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[N ]→ {S[];T [i] : 0 ≤ i < N} (2.22)

[N ]→ Represents the context (i.e. list of parameters) of the set, In this example there is
only one parameter (i.e. N).
S[] The first set of the union, it has only one member.
T [i] A template for members of the second set in the union set.
0 ≤ i < N The Presburger formula defining membership of the second set.

Similarly a Presbuger relation can be described as follows:

[N ]→ {S[]→ prod[];T [i]→ prod[] : 0 ≤ i < N} (2.23)

2.5 Polyhedral Process Networks

A Polyhedral Process Network (PPN) is as the name suggests a process network that uses
Polyhedral Compilation (PC) concepts. The structure of a PPN is a graph. In this graph
the nodes or vertices represent the statements or processes, while the edges represent the
communication channels between processes. Polyhedral Compilation techniques are used
to describe the processes, but also the communication channels (i.e. the edges).

Research into process networks has been done for decades. The famous Khan Process
Networks (KPNs) are the most well-know result of this research. Although originally
developed for distributed computing KPNs, have found application in many other fields.
A KPN or in fact any process network can be considered a model of computation.

In the KPN approach the channels between the processes in the network are modelled as
unbound FIFO’s. PPNs are a variation of KPNs which use PC techniques to model the
process and the communication channels between the processes. In contrast to KPNs,
PPNs model the communication channels exactly. Using the PPN methodology it is
possible to determine the type and the volume of the communication channels.

Let us consider an instructive example to explore the concept of a PPN. We choose
some relevant kernel, say matrix multiplication and work out how it is converted to
a PPN. Listing 2.5a shows the C code for this kernel while Figure 2.5b shows its
corresponding PPN.

Each node in the PPN is labeled with the statement label from the original code.
The edges are labeled with the corresponding array, and the size required when im-
plementing the dependence as communication channel. Beside this, the PPN also spec-
ifies the type of a communication channel. The choices are FIFO, shift-register and
reordering buffer.

The code in Listing 2.5a has besides the basic kernel some functions added that simulate
the data-transfer from a host system to for example a Maxeler Data Flow Engine (DFE).
This approach is also taken by[3] and is instructive and useful for this thesis, because
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it allows the data transfers between host and DFE to be modelled. In a more mature,
implementation of the ideas in this thesis, the necessity of these data transfer functions
to be explicitly modelled in the input code could be dropped.
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Considering that the data of matrix B is transferred in transposed order, this allows the
associated data channel to be constructed as a shift-register. An automatic reordering
of input data could be done using PC concepts. The dimensions of the arrays and loop
bounds in this example are hard-coded. This allows for the communication channels
to be specified exactly, however the PPN implementation used in this work allows the
dimensions and loop bounds to be specified as parameters as well.

A dependence can be implemented as a FIFO if the order in which elements are written
is equal to the order in which they are read. A shift-register is a special case of the
FIFO type. In addition to the order requirement the distance in the iteration space
between a write and its corresponding read must be constant. If none of the mentioned
conditions hold the dependence can only be implemented as a reordering-buffer (i.e. a
random access memory). In figure 2.5b the thick edges signify that these edges can be
implemented as shift-registers. All other edges are FIFOs of size 1, which are trivially
implemented as registers.

Figure 2.6 shows a more detailed representation of a PDG. The focus in this diagram
is on the PC concepts used in the PDG. For each node the statements are shown in
bold. Above each statements its schedule is printed in a box. This depiction clearly
shows that a dependence, represented by an arrow, is actually between accesses. The
dependence relation of each dependence is annotated with its associated dependence
relation (in the dashed box). The instance sets of the statements have been omitted
from this representation to maintain readability. These instance sets are represented as
Presburger sets and shown next.

The instance sets for the nodes of the PDG as shown in Figure 2.6:

ReadA: {ReadA[i, j] : 0 ≤ i ≤ 99 ∧ 0 ≤ j ≤ 99}

ReadB: {ReadB[i, j] : 0 ≤ i ≤ 99 ∧ 0 ≤ j ≤ 99}

InitC: {InitC[i, j] : 0 ≤ i ≤ 99 ∧ 0 ≤ j ≤ 99}

Comp: {Comp[i, j, k] : 0 ≤ i ≤ 99 ∧ 0 ≤ j ≤ 99 ∧ 0 ≤ k ≤ 99}

WriteC :{WriteC[i, j] : 0 ≤ i ≤ 99 ∧ 0 ≤ j ≤ 99}

In the top-right of Figure 2.6 a node with a incoming edge (i.e. dependence) is dissected.
Most of it is considered self-explanatory, however some details might need some further
clarification. Like for example the distinction between read and write access. Furthermore
the right-hand-side of the statement is implemented as an AST. The operators ( *, + ) are
considered function calls, width arguments either accesses or other function calls.
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Comp: C[i][j] = C[i][j] + A[i][k] * B[k][j];

ReadA: A[i][j] = ReadMatrix(); ReadB: B[j][i] = ReadMatrix();

Comp: C[i][j] = C[i][j] + A[i][k] * B[k][j];

WriteC: WriteMatrix(C[i][j]);

InitC: C[i][j] = 0;

 ReadA[i, j] -> Comp[i'=i, j'=0, k=j] 
: 0 <= i <= 99 & 0 <= j <= 99

{ InitC[i, j] -> Comp[i'=i, j'=j, k=0] 
: 0 <= i <= 99 & 0 <= j <= 99 }

Comp[i, j, k] -> Comp[i'=i, j'=j, k'=1+k] 
: 0 <= i <= 99 & 0 <= j <= 99 & 0 <= k <= 98

 ReadB[i, j] -> Comp[i'=0, j'=i, k=j] 
: 0 <= i <= 99 & 0 <= j <= 99 

 Comp[i, j, k] -> Comp[i'= i, j'=1+j, k'=k]
 : 0 <= i <= 99 & 0 <= j <= 98 & 0 <= k <= 99

 Comp[i, j, k = 99] -> WriteC[i'=i, j'=j]
 : 0 <= i <= 99 & 0 <= j <= 99 

 Comp[i, j, k] -> Comp[i'=1+i, j'=j, k'=k] 
: 0 <= i <= 98 & 0 <= j <= 99 & 0 <= k <= 99 

Comp[i, j, k] -> [i j, k, 1]

InitC[i, j] -> [i, j, 0, 0]

ReadA[i, j] -> [i, 0, j, 0] ReadB[i, j] -> [0, i, j, 0]

WriteC[i, j] -> [i, j, 99, 2]

Comp[i, j, k] -> [i j, k, 1]

Access
write

Label Access
read

Access
read

Access
Read

Function call

Function call

Statement

Schedule

{ InitC[i, j] -> Comp[i'=i, j'=j, k=0]
: 0 <= i <= 99 & 0 <= j <= 99 }

Dependence RelationReadA

Comp

ReadB InitC

WriteC

PDG Abstract

PDG Detailed

How to read this diagram

Figure 2.6: A PDG graph
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2.5.1 ISA library

The tools for generating PPNs are implemented in the Integer Set Analysis (ISA) library.
Figure 2.7 shows the tool-flow for generating a PPN from input C code. In this library the
PPN implementation is called a PDG. Such PDG can be constructed from a C file using
the c2pdg command-line tool. This tool will produce a YAML Ain’t Markup Language
(YAML)2 file (i.e. a serialisation of an instantiation of the PDG data-structure). At
this point the PDG only contains nodes, the dependences (i.e. edges) can be added to
it by passing the PDG to the pn tool. This tool produces again a PDG including the
dependences. This last PDG is an actual PPN implementation.

ISA-library

C
c2pdg

PDG
Exl.dep pn

PDG
Incl. dep

Tool File Data-structure

Figure 2.7: The ISA library tool-flow

2.5.2 Polyhedral Process Networks Implementation

Having discussed the abstract idea of a PPN, let us consider details of its implementation
in the ISA library as a PDG. This PDG is implemented as a C++ class. Figure 2.8 shows
a simplified class diagram of the PDG data-structure. Some details that are currently
irrelevant and could only add confusion are deliberately left out.

The PDG class implements a graph data-structure by providing a set of nodes; and a set
of edges, that link two nodes. The latter are implemented as a vector of type node (i.e. the
nodes of the graph) and a vector of type dependence (i.e. the edges of the graph).

The nodes themselves are implemented by the node class. A node object (i.e. an instan-
tiation of a node) has a number (nr) giving a node a unique identifier. It also has a name,
which is either the label of the statement in the input code, or an automatically generated
name of the form S_<nr>, in case no labels are provided by the input code.

The source member represents the iteration domain of the node as an isl_set (i.e. a
Presburger set), while schedule represents the schedule of the node, it is an isl_map (i.e.
a Presburger relation). It is noteworthy to mention that this schedule is a global schedule,
in context of the complete network. The statement represents the actual statement
implemented by this node. The pdg:statement class details are discussed later.

2The acronym officially stands for: YAML Ain’t Markup Language. "YAML is a human friendly data
serialization standard for all programming languages." According to yaml.org
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Recall that a node represents a statement in the original code. This statement is repre-
sented by the member statement. This member is of type statement. An object of type
statement provides a list of input accesses of the statement as well as a list of outputs
access. The members of both these lists are of type access. The seq type, used for im-
plementing the lists, is a wrapper type, under the hood it is actually a std::vector.

The actual data manipulation done by the statement is abstracted using a object of
type function_call. Operators like addition (+) and multiplication (*) are also regarded
as functions. A function_call object has a name, which is a C-string containing the
name of the function in the original C code. In case of an operator, the name is the
operator symbol as used in the C code. The object provides a vector of arguments.
These arguments are of type call_or_access, which is a type that behaves either as a
call or a access. An argument it self could actually be the result of a function call or
operation. A fuction_call object is very similar to an Abstract Syntax Tree (AST) of
the original C statement.

The dependences in the graph are modelled as edges between two nodes, actually between
two accesses. Therefore the dependence specifies the two nodes involved in the dependence
(the members from and to), but also the two accesses (from_access and to_access).

A dependence is associated with a specific array, the member array is a pointer to an
object representing the associated array. Furthermore the class holds some tags that
give information regarding the nature of the dependence: reordering tells whether the
dependence reorders data accessed, while multiplicity tells whether elements written to
the channel are read multiple times at the other end. The latter indicates reuse and is
usually transferred into a self dependence on the node by the pn tool.

The value_size member gives the size of a buffer. In general this member is a function
that expresses the size in term of the parameters. If the parameters are known at compile
time an actual number can be deduced from this function.

The class access abstracts an access. The map represents the access function discussed
earlier in the theoretical discussion. A pointer to the associated array object is kept in
array. An integer number is used to give the access an identifier, this identifier is not
globally unique (i.e. in the context of the PDG), but only locally (i.e. per node) unique.
The type of the access, read and write, is given by type.
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PDG
nodes : seq<node*>
edges : seq<dependence*>

node
nr : int
name : str*
source : IslSet*
schedule : IslMap*
statement : statement*

dependence

relation : IslMap*
from : node*
to : node*
from_access : access*
to_access : access*
array : array*
reordering : int
multiplicity : int
value_size : integer *

access
array : array *
map : IslMap*
nr : int
type : enum type

statement
accesses : seq<access>
top_function : function_call*
top_outputs : seq<access>

function_call

name : str*
seq<call_or_access>arguments

Figure 2.8: Class diagram of the PDG data-structure
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In this chapter the general concept of data flow computing is covered as well as the
specific approach, Maxeler Data Flow Engines (DFEs), used in this work.

3.1 Data Flow Computing vs Control Flow Computing

There are two computing paradigms that are relevant in the scope of this thesis. The
most widespread paradigm now-a-days is the control flow paradigm. All mainstream
computing is in fact control flow computing. The basic idea of the control flow paradigm
is a fixed processor architecture that is applicable to all Turing-computable problems. In
control flow computing the control is programmable using binary instructions.

The data flow paradigm is different in that it envisions a specific data path to be con-
structed for each particular problem. The data is streamed through this data path. The
control, if any, is simple and there is no need for binary instructions. The logical conclu-
sion is that the data flow paradigm requires a computational vehicle that allows a custom
data path to be constructed. One device that can emulate this is an Field Programmable
Gate Array (FPGA).

Data flow computing is usually harder to implement than control flow. Platforms enabling
data flow computing, oftem involving FPGAs, usually run at a lower clock-frequency,
compared to a General Purpose Processor (GPP). However the achievable throughput
on these platforms is higher when compared to control flow computing platforms. One
advantage to data flow computing that is in particular relevant today, is the greatly
reduced power consumption. Given the increasing power consumption of computing
today, and the demand to reduce carbon-dioxide emission, data flow computing might
be a significant contributor to sustainable future.

In the field of High Performance Computing (HPC) data flow based computing might be
the solution to the power crisis control flow based computing is currently facing[13]. The
later is especially significant in the pursued for exa-scale computing within a affordable
energy budget.

29
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3.2 Computation on FPGA

In section 1.1.1 we have briefly touched upon the challenges of reconfigurable HPC.
In this section we will elaborate on this subject in the specific case of using FPGAs
as computational vehicle.

An Field Programmable Gate Array (FPGA) is a logic device that can be reconfigured
in order to implement a digital logic system. Reconfiguring an FPGA can be done post
production, and not just ones but as often as required by the application. The basic
form of an FPGA is an array of configurable look-up tables connected via a configurable
network of wires. This allows for the desired flexibility at the expense of logic density
and speed compared to a fully hard-wired digital system. Besides look-up tables, modern
FPGA’s also are equipped with configurable on-chip memory and arithmetic units.

FPGA’s where first used as prototyping platform and for custom digital systems for low-
volume markets. When used for general purpose or scientific computation, the reconfig-
urability of an FPGA allows to build specific computational units for a given algorithm.
From the conceptual point of view this has obvious advantages. However, turning these
ideas in reality can be challenging.

First, we should consider the features of an FPGA in order to understand its strengths
and weaknesses when applied as computational device. One of the major advantages of
doing computations on FPGA is that one can construct a complex custom data path for
a statement. This statement can be an elaborated statement with multiple inputs and
many operations. This statement is typically deeply pipelined. Furthermore, the data
path can be replicated multiple times, on the surface of the chip, in order to execute
parallel instances of the statement.

The achievable degree of parallelism and the degree of pipelining is much higher than
what can be achieved with conventional systems. However, this may require high I/O
bandwidth, in order to provide enough data so that the data path is fully utilised. The
latter is a challenge due to the limited capacity of on-chip memory (bounded by sil-
icon area) and the limited bandwidth to external memory (bounded by the number
of pins of the package).

The major challenge seems to be the efficient usage of on-chip memory and external I/O
bandwidth. It is not far fetched to assume that data reuse optimisation is a promising
technique in this context. The on-chip memory is highly configurable and can be organ-
ised with an arbitrary width (number of bits per addressable data-word) and depth (the
capacity in data-words). The latter comes with a speed penalty, as expected.

With regard to external memory, an FPGA usually provides multiple independent inter-
faces. The latter allows for parallelism. However the achievable parallelism is dependent
on how the input data is distributed over the individual channels. Preferably one wants
to distribute the input data over the available channels in an optimal way.

Probably one of the most impactful features of an FPGA is that it allows, within certain
bounds, to construct custom arithmetic operations. An FPGA allows for the construction
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of for example a floating-point adder of custom precision. But it could also be used to
implement a specific complex function like a square root.

Both GPPs and Graphics Processing Units (GPUs) are equipped with a number of basic
fixed precision arithmetic operators. A specific processor could for example be equipped
with a 32-bit fixed point adder. When doing 16-bit fixed-point arithmetic this provided
precisions is over-kill. However, when we want to do 64-bit fixed-point arithmetic multiple
steps and additional control is required. On an FPGA one could implement the fixed-
point adder with the required precision. According to [14] this is actually the most
important feature of FPGAs that makes them compete with GPPs and GPUs in the
HPC domain. The Flopoco project [15] is based on these ideas.

3.3 Maxeler Data Flow Computing

In the previous section we were introduced to the data flow computing paradigm. In this
section we will discuss a particular approach to data flow computing. This particular
approach is used in here as the target for the proposed tool-flow and methodology.

Maxeler is a company specialised in multi-scale data flow computing. In order to enable
efficient data flow computing Maxeler has developed a complete solution composed of
hardware, programming tools, a run-time environment and a dedicated tool-flow. The
tool-flow allows for applications to be developed that run partially on a host Central
Processing Unit (CPU) and partially on the Maxeler DFE.

3.3.1 Maxeler Data Flow Engine

A Maxeler Data Flow Engine (DFE) is an FPGA based computational architecture
optimised for data flow computing. There are multiple DFE versions. The versions
differ mainly in capacity while they have a general architectural idea in common. A
DFE includes one or more FPGAs; is equipped with Synchronous Dynamic Random Ac-
cess Memory (SD-RAM); and provides a high bandwidth bi-directional communication
channel with a host system. The latter is usually realised via the, industry standard,
Peripheral Component Interconnect Express (PCIe) bus.

The most common form of a DFE is a PCIe card that is additionally equipped with
SD-RAM. Multiple such cards can be connected so that the DFEs can communi-
cated directly. A box may contain more that one DFE, which are interconnected
by a network. The network topology is a ring (i.e. each DFE is connected to two
neighbouring DFEs).
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3.3.2 Maxeler Tool flow

A Maxeler application consists of three parts:

Host Code The CPU part of the application, which can interact with the DFE imple-
mented part through the Simple Live CPU (SLiC)-interface. This SLiC interface
provides an Application Programmer Interface (API) to interact with the DFE
implemented part of the application.

Kernel Code Implements the custom computing sub-system on a DFE. Running an
actual computation, called an action, on a specific DFE implementation is initiated
from the host code using the SLiC-interface.

Manager Code Implements the I/O between kernels of which multiple can be simul-
taneous active on one DFE. It also provides the interface to the on-card SD-RAM
and the host, via PCIe, as well as possibly streaming links to other DFEs.

The mentioned SLiC-interface is a C API providing functions to interact with a DFE
implementation. SLiC Skins provide native calls to the SLiC API in languages other than
C. Such Skins for Python, Matlab and R among others are currently available.

Coding the DFE part, both the kernel and the manager, is done using Java. The DFE
philosophy is not to translate general Java code to a DFE implementation. Rather, it
provides the application developer with a library of Java classes to construct a data path
with optionally some tightly-coupled control implemented using counters and multiplex-
ers. Such code is referred to as MaxJ code.

By running the MaxJ code, a data flow graph is generated that in turn is trans-
lated to a DFE implementation. This process will also generate the SLiC-interface,
which is specific for each DFE implementation. The tools also enable to simulate
the DFE implementation.

3.3.2.1 Kernel

The example, shown in Listing 3.1 implements a kernel in MaxJ that performs a moving
average calculation using a 3 value wide window on a stream of single-precision floating-
point values. The object DFEVar, actually implements a stream. A stream is a channel
through which data sequentially flows driven by a systolic clock.

A DFE kernel operates conceptually on the basis of a discrete unit of time. This latter
is called a tick in Maxeler jargon. The tick can be thought of as a clock-cycle, however
there is a bit more to it than that. In the actual hardware there might be some latencies
because of PCIe transfers or due to data stream synchronisation (on the level of the
kernel all data streams are synchronised). This however is hidden from the perspective of
the application developer. So the tick is the unit of time in which the state of the kernel
changes or, alternatively in which the data actually advances.
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package movingaveragesimple ;

import com . maxeler . maxcompiler . v2 . k e rne l comp i l e r . k e rne l ;
import com . maxeler . maxcompiler . v2 . k e rne l comp i l e r . kerne lParameters ;
import com . maxeler . maxcompiler . v2 . k e rne l comp i l e r . types . base .DFEVar ;

c l a s s MovingAverageSimpleKernel extends Kernel {

MovingAverageSimpleKernel ( KernelParameters parameters ) {
super ( parameters )

DFEVar x = io . input ("x" , d f eF loa t (8 , 2 4 ) ) ;

DFEVar prev = stream . o f f s e t (x , −1);
DFEVar next = stream . o f f s e t (x , 1 ) ;
DFEVar sum = prev + x + next ;
DFEVar r e s u l t = sum / 3 ;

i o . output ("y" r e su l t , d f eF loa t (8 , 2 4 ) ) ;
}

}

Listing 3.1: A DFE kernel implementing the moving average computation

MaxJ code allows to read a value from a specific stream relative to the current tick.
Therefore stream.offset(x, -1) gives the value of stream x at the previous tick while
stream.offset(x, 1) gives the value of stream x at the next tick1. These concepts of ticks
and streams provide an elegant mental framework that allows programmers to implement
a computation on a DFE. It relieves a developer from much headache, compared to
implementing such data flow kernel on an FPGA using a Hardware Description Language
(HDL). In this case developers have to introduce FIFO’s and shift-registers, to buffer
and delay data and signals manually in order to synchronise data streams.

Another concept of MaxJ code demonstrated in the example code is the possibility of
multi-precision arithmetic. MaxJ allows for customisable precision for both integer and
floating-point arithmetic. This example shows how this works for floating-point arith-
metic. The statement dfeFloat(8, 24) defines a floating-point type with 8 exponent bits
and 24 mantissa bits. The latter is in fact the format of single precision floating point.
However, as the reader can see any number of bits for both mantissa and exponent can
be conveniently used.

The io object is used to define the inputs and outputs of the kernel. The io.input method
returns a stream while the method io.output takes a stream as input. The string passed
to both methods, functions as identifier used to address the kernel input/outputs at the
DFE manager level.

Because of the streaming performed by an DFE there is some notion of an implicit outer
loop. When the reference C implementation of a kernel has only one loop, the kernel

1The tick can be regarded as the clock-cycle of the kernel level clock-domain.
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can be implemented without any notion of the loop. The loop is actually implemented
in space because the data is streamed through the kernel. This is the very idea of the
implicit outer loop.

When the original C implementation contains a more complicated loop nest, the kernel
implementation usually requires some control to be implemented. This control is usually
implemented using chained counters. I will discuss such an example in Section 5.2.

For loop constructs in MaxJ code implement parallel replication of the computation
described in their body. This means that a for loop creates multiple parallel instantiations
of the computation on the surface of the chip.

package movingaveragesimple ;

import com . maxeler . maxcompiler . v2 . bu i ld . EngineParameters ;
import com . maxeler . maxcompiler . v2 . k e rne l comp i l e r . Kernel ;
import com . maxeler . maxcompiler . v2 . managers . standard . Manager ;
import com . maxeler . maxcompiler . v2 . managers . standard . Manager . IOType ;

c l a s s MovingAverageSimpleManager {
pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {

EngineParameters params = new EngineParameters ( args ) ;
Manager manager = new Manager ( params ) ;

// I n s t a n t i a t e the ke rne l
Kernel k e rne l = new MovingAverageSimpleKernel (

manager . makeKernelParameters ( ) ) ;

manager . s e tKerne l ( k e rne l ) ;
// Connect a l l k e rne l por t s to the CPU
manager . setIO ( IOType .ALL_CPU) ;
manager . c r e a t eSL iC in t e r f a c e ( ) ;
manager . bu i ld ( ) ;

}
}

Listing 3.2: DFE manager implementing of a moving average

3.3.2.2 Manager

The manager can be regarded as the interface between one or more kernels and the
outside world. Within the manager code the kernel’s inputs and outputs are connected
to either streams from and to the host or from and to the on-card memory. In multi-
DFE configurations, the manager code is used also to connect streams from and to
neighbouring DFEs.

The manager code for the moving average example is shown in Listing 3.2. Most of
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this code is rather obvious. A manager object is instantiated, then the earlier discussed
kernel is instantiated and the kernel is "added" to the manager. The method call man-
ager.setIO(IOType.ALL_CPU) connects all the inputs and outputs of the kernel to the
PCIe between the DFE and the CPU.

The method call manager.createSLiCinterface() generates an API that can be used to
interact with the DFE from the host code.

3.3.2.3 Host code

The third part of a Maxeler DFE implementation is the host code. The host code initiates
DFE execution, sends data to the DFE and receives data back from the DFE.

During DFE development one will usually include a reference implementation in the host
code. and compare the results of the DFE and the reference code, in order to validate
the former.

Listing 3.3 shows the host code of the example we have been discussing. In this example
running the DFE is as simple as a single function call. The function call MovingAvera-
geSimple(8, dataIn, dataOut) is used to run the DFE. The input and output array are
provided as well as the size of the input data. The inputs are arrays in the host memory
which are transferred to the DFE using Direct Memory Access (DMA) transfers over
PCIe. The output data is stored in the dataOut array. The function call used here is
blocking (i.e. will return only after the output data has been produced).

More advanced interactions, like for example non-blocking calls, are provided. But are
deliberately excluded from the current discussion. It is also possible to communicate
scalars to the DFE, the SLiC-interface will accommodate this using function arguments
of the function that is meant to initiate DFE execution.

#inc lude "Maxf i l e s . h" // Inc lude s .max f i l e s
#inc lude <MaxSLiCInterface . h> // Simple Live CPU i n t e r f a c e

f l o a t dataIn [ 8 ] = { 1 , 0 , 2 , 0 , 4 , 1 , 8 , 3 } ;
f l o a t dataOut [ 8 ] ;

i n t main ( )
{

p r i n t f ("Running DFE\n " ) ;
MovingAverageSimple (8 , dataIn , dataOut ) ;

f o r ( i n t i = 1 ; i < 7 ; i++) // Ignore edge va lue s
p r i n t f (" dataOut[%d ] = %f \n" , i , dataOut [ i ] ) ;

r e turn 0 ;
}

Listing 3.3: Host code for the moving average DFE implementation
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State of the Art 4
This chapter describes related research both from academia and industry. The chapter is
divided in two major parts: Section 4.1 discussing approaches that similar to Maxeler’s
Data Flow Engine (DFE) technology target Field Programmable Gate Array (FPGA)
based computing; and Section 4.2 discussing projects and frameworks using Polyhedral
Compilation (PC).

4.1 FPGA based Computing Platforms and Tools

This section discusses platforms and tools that target FPGA based computing. This sec-
tion is restricted to approaches that are similar to Maxeler’s DFE approach. A detailed
analysis of these alternatives is not within the scope of this thesis. However, to give some
idea regarding the performance of Maxeler DFE Technology in comparison with a number
of alternatives, the reader is referred to[1]. This paper compares an implementation of
gzip on DFE with two other FPGA based gzip implementations. One is a Open Comput-
ing Language (OpenCL) implementation and the other a Verilog implementation.

It is shown in[1] that the DFE implementation out performs the two other implementa-
tions. It also makes a compelling case for the higher productivity in DFE implementation
as compared to OpenCL and Verilog.

4.1.1 OpenCL

The OpenCL is a framework for writing applications for heterogenous systems. OpenCL
is an open standard originally developed by Apple Inc. but currently maintained by a
non-profit consortium called Khronos Group. Both proprietary and open-source imple-
mentations of the standard exist for various platforms. Most implementations make use
of C or C++ syntax width specific extensions. An OpenCL implementation is usually
composed of some host code that runs on a General Purpose Processor (GPP) and one
or more compute kernels that can be run on an accelerator. One of the major appeals
of OpenCL is that a kernel’s functionality is portable between accelerators, however per-
formance is not portable. The fact that the performance is not portable exposes a major
issue facing OpenCL. A consequence of the lack of performance portability necessitates a
OpenCL kernel to be optimised for each specific computational device, which challenges
the claimed portability of OpenCL.
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OpenCL can be used to code FPGA implementations. Software Development Kits
(SDKs) are provided by both Xilinx and Altera/Intel to do the latter, enabling FPGA
based accelerator cards to be programmed using OpenCL. There are various FPGA
acceleration cards available on the market. They usually interface to a host system us-
ing the Peripheral Component Interconnect Express (PCIe) bus and have Synchronous
Dynamic Random Access Memory (SD-RAM) memory available on the card. Like in
the mainstream computing market the choice for SD-RAM is motivated by the capacity
and reduced cost compared to Static Random Access Memory (SRAM). Besides external
memory these cards usually provide other I/O interfaces such as TCP/IP networking etc.
One specific accelerator card is discussed in more detail in the next section.

4.1.2 The Intel Acceleration Stack for Xeon CPU with FPGAs

Intel provides a stack for FPGA accelerated computation. This stack provides an
Application Programmer Interface (API) to the application programmer through which
the FPGA can be controlled and reconfigured. It provides also functions to write to
and read from registers in the FPGA; as well as functions for accessing data using a
shared memory. There is an Intellectual Property Core (IP-CORE) library available to
create accelerators. The actual communication exposed by the API is implemented by an
FPGA Driver. The FPGA is configured with a static part that implements the commu-
nication between the host and the user defined accelerator. Applications are developed
using OpenCL

4.1.3 Xilinx Vivado High Level Synthesis (HLS)

Vivado is Xilinx’s HLS solution. It allows for hardware creation from C, C++ and
System C specifications. It is meant to easy the creation of custom hardware for Xilinx
programmable devices. Its primary aim is to boost productivity compared to using
Hardware Description Languages (HDLs). Vivado HLS does not provide a solution for
data flow computing.

4.1.4 Xilinx SDAccel

SDAccel is a famework for FPGA acceleration developed by Xilinx. It allows to de-
velop applications that partially run on a Central Processing Unit (CPU) and par-
tially on an FPGA. SDAccel is aimed at datacenter employment of FPGA accelera-
tion. The CPU part of the application is developed in C/C++ using OpenCL API
calls, while the hardware part of the application is developed in C/C++, OpenCL or
Register Transfer Level (RTL).
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4.1.5 Chisel

Chisel[16] is a hardware construction language. Like MaxJ it uses an existing language
to embed hardware generation constructs. Chisel uses Scala a Java like language that
is object oriented and also supports functional programming. Chisel is developed as an
open-source language at UC Berkeley. The language is primary aimed at generating
hardware modules at a higher level of abstraction compared to HDLs and is not specifi-
cally aimed at data flow computing. It does not provide the notion of streams which are
prevalent in MaxJ code. The Chisel language translates to low-level Verilog to be passed
to FPGA or Application Specific Integrated Circuit (ASIC) tools. It does not provide a
complete solution that both integrates the tools and a hardware platform.

4.1.6 Liquid Metal

The Liquid Metal project is an approach in some sense similar to the goals of OpenCL,
in that it envisions one language to be used to program both Graphics Processing Unit
(GPU) based and FPGA based accelerators. The language, developed as part of the
project, is called Lime and is described as "a Java-compatible synthesisable language
for heterogenous architectures"[17]. The Lime language is based on Java and supports
data flow computing.

4.1.7 BlueSpec Verilog

Bluespec SystemVerilog (BSV)[18] is a high-level HDL, developed by Bluespec. A com-
piler is provided that compiles BSV into synthesisable Verilog RTL or SystemC. The
approach is comparable to Chisel. The language syntax has the taste of a higher level
HDL and not a data flow language, it lacks the higher abstraction concepts MaxJ and
Lime provide.

4.2 Frameworks using Polyhedral Compilation

The are a number of mostly academic projects that have resulted in compiler and code
transformation frameworks using Polyhedral Compilation (PC). The most relevant ap-
proaches are discussed in this section. This discussion is focused primarily on approaches
that target High Performance Computing (HPC) and accelerators or are for other reasons
relevant to this thesis. None of the approaches target FPGAs specifically.

4.2.1 CARP Project

A research project related to this work is the Correct and Efficient Accelerator Program-
ming (CARP) project. The goal of the CARP project was to develop techniques and
tools to ease the programming of accelerators. The overall idea of the project is to enable
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accelerator programming using Domain Specific Languages (DSLs). The DSLs are com-
piled into Platform Neutral Compute Intermediate Language (PeNCIL) code. PeNCIL
in essence is a subset of C-99 with additional pragmas an other means of annotating
the code. PeNCIL is, because it is a C-99 subset, human readable. Coding directly in
PeNCIL is therefore also possible. Using PC the PeNCIL code is compiled into OpenCL
code. Target hardware in the CARP project is GPUs, to the authors knowledge FPGAs
have not been targeted in this research.

4.2.2 PPCG

The Polyhedral Parallel Code Generator (PPCG)[19] is a compiler that generates par-
allel code from a sequential C code input. The current focus of the project is on code
generation for GPUs. The PPCG project has its origins in the CARP project.

4.2.3 Polly

Polly[20] is implemented as a LLVM1 compiler pass. Polly uses PC to perform opti-
misations. Polly works on the LLVM Intermediate Representation (LLVM-IR) which is
the specific Intermediate Representation (IR) LLVM uses. Like most compiler IRs, it is
implemented as an assembly-like language.

4.2.4 Pluto

Pluto is a tool focussed on tiling transformations of input code. It is the result
of the Phd. research of Uday Bondhugula[7]. A tiling scheduling algorithm is at
the heart of the Pluto project. An implementation of this algorithm is used in the
Integer Set Library (ISL).

1The original acronym LLVM is inherited from the founding project, and is kept, but is currently
regarded the name of the project not an acronym.
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This chapter describes the architecture of the tool developed during this thesis. The
envisioned function of this tool is to generate a Data Flow Engine (DFE) implemen-
tation based on a Polyhedral Process Network (PPN) produced by the tools from
the Integer Set Analysis (ISA) library. These tools produce a Polyhedral Dependence
Graph (PDG) which is a specific implementation of the PPN concept. In this chapter
the architecture of this tool is specified, additionally some design choices during its de-
velopment are discussed. The specific implementation of the tool will be discussed in
the next chapter.

Proposed in this work

ISA-library (external dependency)

C c2pdg
PDG

Exl.dep pn
PDG

Incl. dep

DfeGraphppn2dfe ppn2dfe
MaxJ
kernel

MaxJ
manager

C
 Host code

Tool File Data-structure

Figure 5.1: Tool Flow

5.1 Architecture

Figure 5.1 shows the envisioned tool-flow of the tool developed in this work, as well as
the tools used from the ISA library. A PDG file forms the input for the ppn2dfe tool
developed as part of this thesis. This input PDG file must be the output of the pn
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tool. This tool performs the dependence analysis and adds the dependences to the PDG
(i.e. the PDG produced by c2pdg does not include the dependences). The pn tool also
annotates the dependences in the PDG with size and type information. This informa-
tion specifies the volume and type of a communication channel required to implement
this dependence.

The ISA library provides a tool that can produce an alternative representation of a PPN.
The latter is an Approximated Dependence Graph (ADG) which can be generated from a
PDG. The ADG is more specific and is tailored to a particular implementation strategy
not necessarily compatible with the implementation target envisioned in this work.

A PDG is stored in a YAML1 file, this file contains a serialisation of a C++ data struc-
ture. The ISA library provides a function to load this YAML file returning a C++ data
structure. This structure is the PDG described in Section 2.5.2.

The envisioned output of the tool is a DFE implementation consisting of: host code,
kernel code and manager code. Currently the kernel code generation is implemented in
the tool, provisions have been made to generate the other two files. Because the kernel
code generation is the most challenging part of the tool flow the focus has been on this
part during this thesis. The implementation of the other two parts is therefore left to
future work.

In the tool-flow the data-structure DfeGraph is used as an intermediate abstraction,
while translating a PDG to MaxJ code. This DfeGraph is implemented as part of
this thesis.

5.2 A Manual MaxJ Implementation

In order to attain insight in what is exactly involved in generating a MaxJ kernel from a
PDG, a manual implementation based on a PDG was first implemented. The PDG used
for this experiment is generated from a matrix multiplication kernel written in C. It is in
fact the example we have used throughout this thesis.

In this section we will go through this manual implementation and consider how it corre-
sponds to the related PDG. The PDG under consideration is shown in Figure 5.2, while
the kernel in MaxJ is depicted in Listing 5.2. Figure 5.4 can be consulted for a graphical
depiction of the implementation.

This MaxJ code performs a naive sequential implementation, which can actually be im-
proved significantly. However in order to get some idea of how the correct MaxJ code can
be automatically generated from the information provided by the PDG this is actually
very helpful.

1"YAML is a human friendly data serialization standard for all programming languages." yaml.org
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i n t ReadMatrix ( ) ;
void WriteMatrix ( i n t output ) ;

i n t main ( void ){

i n t A[ 1 0 0 ] [ 1 0 0 ] ;
i n t B [ 1 0 0 ] [ 1 0 0 ] ;
i n t C[ 1 0 0 ] [ 1 0 0 ] ;

f o r ( i n t i = 0 ; i < 100 ; i++) {
f o r ( i n t j = 0 ; j < 100 ; j++) {

ReadA : A[ i ] [ j ] = ReadMatrix ( ) ;
ReadB : B[ j ] [ i ] = ReadMatrix ( ) ;
In i tC : C[ i ] [ j ] = 0 ;

}
}

f o r ( i n t i = 0 ; i < 100 ; i++) {
f o r ( i n t j = 0 ; j < 100 ; j++) {

f o r ( i n t k = 0 ; k < 100 ; k++) {
Comp: C[ i ] [ j ] = C[ i ] [ j ] + A[ i ] [ k ] ∗ B[ k ] [ j ] ;

}
}

}

f o r ( i n t i = 0 ; i < 100 ; i++) {
f o r ( i n t j = 0 ; j < 100 ; j++) {

WriteC : WriteMatrix (C[ i ] [ j ] ) ;
}

}

re turn 0 ;
}

Listing 5.1: The input code used by the ISA tool-flow

ReadA

Comp

A:1

ReadB InitC

WriteC

B:1 C:1

C:1

C:1
A:100

B:10000

Figure 5.2: The PPN Corresponding to the Matrix Multiplication Kernel



44 CHAPTER 5. DESIGN AND ARCHITECTURE

The general idea of this implementation is that it stores a single row of matrix A and
the complete matrix B in two separate memories. Then sequentially the inner products
of the row of A and the columns of B are computed. After that the next row of A is
fetched and inner product computation is repeated in order to compute the next row of
the output matrix C.

One of the consequences of the latter is that the data of matrix A can not be streamed
continuously. Instead this data is transferred in bursts (i.e. per matrix row). This is
accomplished by using a counter-chain. A counter-chain is simply a number of counters
which wrap-signal (or overflow) is connected to the enable-signal of the next counter in
the chain. The behaviour of such counter-chain is similar to how a nested for loop iterates
through an iteration space.

The MaxJ code implements the three iterators of the original code i, j and k using a
counter-chain, in fact the counter-chain has one extra member we will discuss later.

ReadA: A[i][ j] = ReadMatrix();

Comp: C[i][ j] = C[i][j] + A[i][k] * B[k][ j];

 ReadA[i, j] -> Comp[i'=i, j'=0, k'=j]
: 0 <= i <= 99 & 0 <= j <= 99

 Comp[i, j, k] -> Comp[i'= i, j'=1+j, k'=k]
 : 0 <= i <= 99 & 0 <= j <= 98 & 0 <= k <= 99

Comp[i, j, k] -> [i, j, k, 1]

ReadA[i, j] -> [i, 0, j, 0]

Figure 5.3: Part of the PDG related to the data reuse on array A

Using the counter values the data transfers can be controlled. To do this an io.input is
used with an additional enable signal. This signal controls whether data is read from
this input. From the original code, but also from the PDG it can be deduced that the
new data must be read when j == 0. Figure 5.3 shows the part of the PDG relevant
to the data reuse on array A. In order to deduce that array A data is read from the
host when j == 0, we consider the the node labelled ReadA in the partial PDG shown
in Figure 5.3.

Note that this node models, in the PDG interpretation used in this thesis, the data
communication between the host and the DFE. What it in fact does is describe the order
in which the data is streamed to the DFE. How this is represented in the PDG is best
understood when considering the schedule of node ReadA as described by the following
Presburger relation.
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1 package sequential_mat_mult ;
2
3 class sequentialMatMultDFEKernel extends Kernel {
4 sequentialMatMultDFEKernel ( f ina l KernelParameters parameters ) {
5 super ( parameters ) ;
6 f ina l DFEType sca larType = dfeF loa t (8 , 2 4 ) ;
7 // Retr i eve the feedback loop length in number o f t i c k s
8 OffsetExpr loopLength = stream . makeOffsetAutoLoop ( " loopLength" ) ;
9 DFEVar loopLengthVal = loopLength . getDFEVar ( this , dfeUInt ( 4 ) ) ;

10 // Counter chain
11 // Created a counter to dea l with the feedback
12 Count . Params paramsLoopLengthCounter = con t r o l . count . makeParams (4)
13 . withMax ( 1 2 ) ;
14 Counter loopLengthCounter = con t r o l . count . makeCounter (
15 paramsLoopLengthCounter ) ;
16 // Create a counter f o r i t e r a t o r k and add i t to the counter−chain
17 Count . Params paramsCountK = con t r o l . count . makeParams (4 )
18 . withEnable ( loopLengthCounter . getWrap ( ) )
19 . withMax ( 1 6 ) ;
20 Counter CountK = con t r o l . count . makeCounter ( paramsCountK ) ;
21 // Create a counter f o r i t e r a t o r j and add i t to the counter−chain
22 Count . Params paramsCountJ = con t r o l . count . makeParams (4 )
23 . withEnable (CountK . getWrap ( ) )
24 . withMax ( 1 6 ) ;
25 Counter CountJ = con t r o l . count . makeCounter ( paramsCountJ ) ;
26 // Create a counter f o r i t e r a t o r i and add i t to the counter−chain
27 Count . Params paramsCountI = con t r o l . count . makeParams (5 )
28 . withEnable (CountJ . getWrap ( ) )
29 . withMax (16)
30 . withWrapMode(WrapMode .STOP_AT_MAX) ;
31 Counter CountI = con t r o l . count . makeCounter ( paramsCountI ) ;
32
33 DFEVar i = CountI . getCount ( ) ;
34 DFEVar j = CountJ . getCount ( ) ;
35 DFEVar k = CountK . getCount ( ) ;
36 DFEVar l = loopLengthCounter . getCount ( ) ;
37 // Inputs
38 f ina l DFEVar a_in = io .
39 input ( "a_in" , d f eF loa t (8 , 24) , j === 0 & i < 16 & l === 0 ) ;
40 f ina l DFEVar b_in = io . input ( "b_in" , d f eF loa t (8 , 24) , i === 0 & l === 0 ) ;
41 // Memory a l l o c . array A s t o r e s one row o f A
42 Memory<DFEVar> rowOfA = mem. a l l o c ( d f eF loa t (8 , 24 ) , 1 6 ) ;
43 DFEVar a_int = rowOfA . port (
44 k , a_in , j===0 & i <16 & l===0, RamWriteMode .WRITE_FIRST) ;
45 // Memory a l l o c . array B s t o r e s a l l o f array B
46 Memory<DFEVar> matrixB = mem. a l l o c ( d f eF loa t (8 , 24 ) , 16∗16) ;
47 DFEVar b_addr = j . s l i c e (0 , 4) # k . s l i c e (0 , 4 ) ;
48 DFEVar b_int = matrixB . port (
49 b_addr , b_in , i===0 & l===0, RamWriteMode .WRITE_FIRST) ;
50 // The mu l t i p l i c a t i o n
51 DFEVar mult = a_int ∗ b_int ;
52 // The loop body i t s e l f
53 // At the head o f the loop , we s e l e c t whether to take the i n i t i a l value ,
54 // or the value that i s be ing c a r r i e d around the loop cy c l e
55 DFEVar carriedSum = scalarType . newInstance ( this ) ; // s o u r c e l e s s stream
56 DFEVar sum = k === 0 ? 0 .0 : carriedSum ;
57 DFEVar newSum = mult + sum ;
58 DFEVar newSumOffset = stream . o f f s e t (newSum, −loopLength ) ;
59 // At the f oo t o f the loop , we add the backward edge
60 carriedSum <== newSumOffset ;
61 // We have a c on t r o l l e d output to d e l i v e r the sum at the end o f each row
62 DFEVar outputVal id = k === 15 & l === ( loopLengthVal −1);
63 // Output
64 i o . output ( "c_out" , newSum, scalarType , outputVal id ) ;
65 }
66 }

Listing 5.2: Matrix multiplication DFE implementation
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{ReadA[i, j]→ [i, 0, j, 0]} (5.1)

This relation (i.e. a schedule) maps each statement instance of statement ReadA to a
global timestamp. This global timestamp is a state of the counter-chain. The timestamp
is 4-dimensional, however the first (i.e. rightmost) dimension is constant. This dimension
is used to specify the textual order in the original code. This notion is irrelevant in the
context of a DFE implementation and is therefore ignored. The actual schedule we
consider is:

{ReadA[i, j]→ [i, 0, j]} (5.2)

What this schedule dictates is the following: The statement instance at the coordinate
[i,j] in the instance set, is executed at timestamp [i, 0, j] (e.g. ReadA[1,2] is executed at
timestamp [1, 0, 2]). These timestamps are "generated" by the counter-chain. We can
express this timestamp in the counters (i, j and k) as follows: [i, j, k]. From this we can
conclude that the statement ReadA is only executed when counter j is zero.

In the MaxJ code there are actual some additional constraints. One of them is i < 16
which stops the reading when the whole matrix has been fetched. The other condition
are explained later.

The counters are also used for the addressing of the memories. In order to address the
memory that stores a row of A, iterator k can be used. Because each dimension of this
particular hard-coded problem is a power of two, a simple concatenation of iterators i
and j can be used without wasting memory. The latter trick could be used in general
but would, when the iterator range is not a power of 2, lead to a some memory slack.
In such cases an arithmetic expression can be used to generate the address. This latter
approach requires a multiplier and an adder.

This brings us to the computational part of the algorithm. Form the very nature of matrix
multiplication we know that the computational part is a multiply-accumulate. It is a mul-
tiplication of two scalars, which results are accumulated by addition per inner-product.
The multiplication is rather straight forward to implement in MaxJ. The accumulation,
however requires some extra attention. The accumulation results in a feedback path and
because the floating-point adder generated is pipelined, the result is only available after
a number of clock-cycles, twelve in this particular case. Therefore in this naive imple-
mentation the streams need to be stalled in order to wait for the result of the addition
to become available. Next we will see how this is implemented in MaxJ.

The accumulation is implemented starting at line 55 of Listing 5.2. It starts with instan-
tiating a so called source-less stream, which source we will connect later. The next line
implements a multiplexer that is used to initialise the sum to "0" at the start of each
inner-product computation. The line after that implements the addition. The next line is
a stream-offset operation we have discussed earlier. This time it is used to read a previous
value from the stream. This is used to synchronise the result being feedback with the
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result of the multiplication. The method stream.makeOffsetAutoLoop can automati-
cally determine the maximal feedback loop within the kernel in terms of ticks. Finally the
offset stream is connected as source to the earlier instantiated source-less stream.

The feedback path requires to delay the result. This is actually what the
LoopLengthCounter is used for. This counter actually implements an additional inner-
loop. This counter is used as an additional condition to the input enable signal, for this
very reason. It is also used in determining the output enable that signals when there is
valid data available on the output. The stream or DFEVar called OutputV alid defines
the valid condition.

5.3 Generating MaxJ from a PDG

In this section we explore the input PDG and how it can be used to generate the required
output. Comparing the PDG in Figure 5.2 with the MaxJ code in Listing 5.2, it is clear
that there is no trivial one to one correspondence between the two.

There are multiple constructs in the MaxJ code that have no direct relation to the
PDG. The MaxJ code includes the counter-chain that is not present in the PDG. Other
constructs missing form the PDG are the memories that are used to buffer A and B and
the multiplexer. Some further analysis reveals that the information to generate the MaxJ
constructs is present in the PDG. However, extracting it is not always trivial, moreover
the code constructs can not always be generated in one go. It is often necessary to add
some information to earlier detected constructs. When directly generation the MaxJ
syntax, the latter procedure will be complex if not impossible to implemented. Therefore
the choice was made to develop an intermediate abstraction to aid the MaxJ generation
from a PDG.

In the MaxJ code one can only refer to a DFEVar that has been previously defined, as
is common in programming languages. Therefore the manual implemented MaxJ code
in Listing 5.2 gives the order in which the output code should be generated. From this
code, we see that the counter-chains must be generated first. There is no direct notion of
these counter-chains present the PDG shown in Figure 5.2. However, the information to
generate the counter-chain is present in the PDG. The bounds for the counter-chain (i.e.
the global iteration domain of the PDG in Polyhedral Compilation (PC) terminology)
can be extracted from the union of the node schedules. In the next chapter we will discuss
the exact implementation.

5.4 The DfeGraph

The intermediate abstraction developed is essentially an abstract representation of the
target MaxJ code. The nodes represent structures like memories, multiplexers, and com-
putational operations. Nodes are connected using streams, which more or less represent
the DFEVars in a MaxJ implementation.
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Let us examine the intermediate representation by example. For this example we use
the earlier introduced matrix multiplication code. For convenience we repeat the code in
Listing 5.1. Figure 5.4 depicts a graphical representation of the intermediate abstraction
from now on referred to as a DfeGraph.

A DfeGraph implements a representation that can easily be mapped to MaxJ code. This
is obvious when comparing the particular instantiation shown in Figure 5.4 to the MaxJ
code shown in Listing 5.2.

Figure 5.4 shows that there are two distinguishable parts to this graph: namely the
counters implementing control and the data path implementing the computation. In
Figure 5.4 some details have been deliberately left out to prevent confusion.

The DfeGraph is generated while traversing the input PDG. The basic idea is that for
each node it is decided based on some characteristics of that node what should be added
to the DfeGraph. Figure 5.5 depicts the transformation of a PDG to a DfeGraph. Much
detail has been left out of this picture, however it gives a high-level overview of the
process, and how parts of the two graphs relate.

How each particular node of the DfeGraph is generated is discussed in
the next chapter.
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5.5 Transformations, Parallelism and C-slow retiming

Although it has turned out to be infeasible within the duration of this thesis to implement
transformations and parallelisation some design considerations are discussed next.

A data parallel view on PPNs is proposed in[21], these ideas are not implemented in the
current PPN implementation in the ISA library. Therefore to enable parallelism these
ideas need to be implemented in the ISA library.

As discussed in Section 5.2, feedback paths on pipelined operators are a performance issue,
because they stall the data path and require significant on-chip memory for buffering
data. A solution to this problem is the technique called C-slow retiming. The primary
observation is that a pipelined accumulator (i.e. an operator whose result is feedback
to one of its inputs). Can actually compute C independent accumulations in parallel.
In order to exploit this the order of the operations has to be changed, such that C
independent accumulations are executed in interleaved order.

The transformation that is of particular interest to this work is tiling. A tiling transforma-
tion splits a nested for loop in partitions that only need to communicate before and after
the execution of the tile. The amount of data required by a tile and the data volume it has
to communicate can be controlled by the tile-sizes, which can be arbitrarily chosen.

Tiling can be used to split a problem into parts for which the data can be kept in the DFE
memory. Furthermore a tiling transformation can be used to exploit C-slow retiming as
proposed in [22]

In Figure 5.7a it is shown how the trivial execution order in a matrix multiplication
kernel stalls the pipeline. Figure 5.7b displays how stalling is prevented by using C-
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Slow retiming. In this example 3 inner-products are, pipeline-parallel, computed. The
pipeline of the adder is used to store the 3 partial inner-products. For this to work the
3 streams of data, one for each inner-product need to be interleaved. This can be done
using tiling.

Tiling divides the computation in uniform partitions, each operating on segments of the
original dataset(s). There is both an internal execution order on the tile-level and an ex-
ecution order on the tiles. These orders must, both, respect the data dependences.

Figure 5.7b shows the effect of tiling from a data flow perspective. The data partition of
A is streamed in column-major order. This allows to interleave the data for independent
inner-products in one stream. The number of pipeline stages of the adder determine the
number of independent inner products that can be processed using pipelined parallelism.
This can be controlled by the tile-size in the column major direction of matrix A. This
order should be chosen equal to the pipeline depth of the adder. The tile-size in the other
direction can be arbitrarily chosen.
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Implementation 6
The previous chapter introduced the DfeGraph. This chapter goes in more detail es-
pecially regarding how this DfeGraph is generated from the Polyhedral Dependence
Graph (PDG). It discusses the node types in more detail and how they are generated.
Consequently this chapter will elaborate on how, while traversing a PDG, it is decided
which node type to generate and how to extract the information from the PDG and insert
the required information into the DfeGraph.

6.1 DfeGraph Generation Algorithm

There are two major parts of the algorithm for generating a DfeGraph given a PDG. The
first step generates the control part of the DfeGraph, while the second step generates the
data path part of the DfeGraph. Some information specifying the connections between
the control and data path needs to be communicated between step 1 and step 2. This is
done by means of a table that links nodes in the PDG to specific control signals. The
control is typically based on a number of counters that form a counter-chain. The control
signals are some logical expression in terms of the outputs of these counters.

6.1.1 Step 1: Counter-chain Generation

The algorithm to add the control part to the DfeGraph is depicted in Algorithm 6.1.
First an Abstract Syntax Tree (AST) is created from the PDG using the Integer Set
Library (ISL). Algorithm 6.2 is called by the Algorithm 6.1 to extract the control, both
the counter-chain and additional control signals, from this AST. Note that Algorithm 6.2
is a recursive function.

By recursively traversing the AST, the for loop nodes are visited from the inner-most
loop outwards. From each for loop a counter is generated the order in which they are
generated makes it easy to chain them in a counter-chain.

For each if-statement an entry, consisting of the condition and the PDG node it relates
to, is added to a table. For the construction of the table the traversal order is not of
importance. The related PDG is the PDG that is mentioned in the if statements then
clause. The table used to store the (condition, PDG node) pairs is called control table in
Algorithm 6.2.

Figure 6.1b shows a C-style printout of the AST corresponding to the PDG shown in
Figure 6.1a. Because of the recursive traversal of the AST the first counter generated

55
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will be the one that implements iterator c2, then the one implementing c1 and last the
one implementing c0. Note that the iterators in the AST have been renamed: they
correspond to the iterators in the original code as follows: c0 = i, c1 = j, c2 = k.

The three counters are organised into a counter-chain by connecting the wrap-signal of a
counter to the enable-signal of the next counter in the chain. The counter-chain generated
from the AST in Figure 6.1b operates as follows: the c2 counter will increase with every
tick ; c1 will increase on every wrap-around of c2 and c0 will increase on every wrap-
around of c1. The behaviour of the counter-chain will be equal to the nested for loop
represented by the AST in Figure 6.1b.

Algorithm 6.1: Counter-chain generation
Input: a PDG
Output: a partial DfeGraph containing;
- a counter-chain;
- a table of <PDG node, condition> pairs referred to as control table;
forall nodes in PDG do

add schedule of PDG node to a union of schedules;

Generate AST from the union of schedules;
extractControl(root node of AST);

Algorithm 6.2: extractControl(AST-node)
forall child ∈ childeren of AST-node do

extractControl(child)
if AST node is for-loop then

generate counter based on loop bounds and stride;
if #counters in counter-chain > 0 then

Connect enable of previous counter to wrap of this counter;

return;
else if AST node is if-statement then

Store a pair of <pdg node, condition> in control table;
return;

else
return;
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The if-statements in the AST put restrictions on the executions of statements in their
then clause. For example ReadB(c1, c2) is only executed if (c0 == 0). This ReadB
statement will become an input in the Data Flow Engine (DFE) implementation. The
c0 == 0 condition will be the enable signal for this input. So we need this condition to be
added to the input node in the DfeGraph, when generating the data path, later. In order
to save this information the condition and the node corresponding to the statement, is
added to a the control table. For the statement ReadB the following entry will be added
to the control table1:<ReadB, c0==0>

ReadA

Comp

A:1

ReadB InitC

WriteC

B:1 C:1

C:1

C:1
A:100

B:10000

(a) The PDG Corresponding to the
Matrix Multiplication Kernel

f o r ( i n t c0 = 0 ; c0 <= 99 ; c0 += 1)
f o r ( i n t c1 = 0 ; c1 <= 99 ; c1 += 1) {

InitC ( c0 , c1 ) ;
f o r ( i n t c2 = 0 ; c2 <= 99 ; c2 += 1) {

i f ( c0 == 0)
ReadB( c1 , c2 ) ;

i f ( c1 == 0)
ReadA( c0 , c2 ) ;

Comp( c0 , c1 , c2 ) ;
}
WriteC ( c0 , c1 ) ;

}
}

(b) AST corresponding to the PPN (printed as C code)

Figure 6.1: The PDG and the corresponding AST

1See Algorithm 6.2
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Algorithm 6.3: Data path generation
Input: a PDG
Output: aDfeGraph Data path
forall nodes in PDG traverse in ascending order of their ids do

switch classify PDG node do
case input node do

add input node to DfeGraph;
if PDG is in the map control table then

add condition from map control table to the enable of this DfeNode;

case output node do
add output node to DfeGraph;
find input DfeStreams for this node and add as input;
if PDG is in the map control table then

add condition from map control table to the enable of this DfeNode;

case constant node do
add constant node to DfeGraph

case compute node do
forall incoming dependences do

if DfeStream corresponding to this dependences /∈ DfeGraph then
switch Classify Input dependence do

case dependence represents a memory do
add memory node in DfeGraph;
inputStreams += output stream of memory

case dependence represents feedback path do
add Feedback stream to DfeGraph;
inputStreams += feedback stream

forall i ∈InputStreams do
forall j ∈ InputStreams > i do

if InputStreams share destinatio then
add Multiplexer node to DfeGraph;
inputStreams += output stream of multiplexer;

generate statement of compute node;



6.1. DFEGRAPH GENERATION ALGORITHM 59

6.1.2 Data Path Generation

Algorithm 6.3 shows the procedure for generating the data path of the DfeGraph. The
algorithm traverses the nodes of the graph and translates them in one or more nodes in
the DfeGraph, see Figure 6.2. Dependences of size 1 are translated into DfeStreams. A
DfeNode of type memory is generated if the size is larger than 1.

Each node in the PDG is labelled with a numeric id. These ids, in ascending order,
provide a traversal order that respects the dependences in the PDG, except for feedback
and reuse dependences. This traversal order makes sure that the input DfeStreams from
earlier DfeNodes are available when generating the current DfeNode.

Considering the PDG shown in Figure 6.1a the traversal order will be:

1. ReadA

2. ReadB

3. InitC

4. Comp

5. WriteC

The PDG nodes ReadA and ReadB are translated into input nodes in the DfeGraph.
The node InitC represents the initialisation of variable C to "0" in the original code.
This node is translated into a DfeNode of type constant. When adding a node to the
DfeGraph the outgoing dependences of the corresponding PDG node are also generated
and added to the DfeGraph as DfeStreams.

PDG node Comp represents the actual computation of the matrix multiplication kernel.
This node is classified as a computational node by Algorithm 6.3. These computational
nodes can have some challenging dependences associated with them, these dependence
types can not occur in association with input, output or constant nodes. Before gen-
erating computational nodes the incoming dependences of that node need to be dealt
with first.

Some of these dependences might not yet have a DfeStream associated with them in
the DfeGraph. The dependences can either represent a feed-back path or a reuse-buffer.
In case of a feed-back path a feedback stream is added as input, which source will be
later connected. In case of reuse buffers the dependence is translated into a node of type
memory in the DfeGraph. How the two cases are detected and additional details regarding
their implementation we will be discussed in Section 6.2.2 and Section 6.2.3.

Once all the incoming dependences are dealt with, an additional step has to be taken.
It may occur that multiple of the incoming dependences have the same destination (i.e.
both dependences represent a write to one and the same memory element). Both writes
will not occur simultanious therefore we can use a multiplexer to select between the two
data streams. An extra node, of type multiplexer, is added to the DfeGraph. Additionally
the appropriate control signal for the multiplexer needs to be derived.
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The final step in translating a compute node in the PDG is to generate the actual
computational statement represented by the node. In case of our example this would
be the statement:

C[i][j] = C[i][j] +A[i][k] ∗B[k][j]

This statement is translated to a partial DfeGraph in which each operator will be a node.
Streams are added to this partial graph to communicate partial results.

6.2 Implementation Details

This section gives some additional details regarding the generation of the DfeGraph. The
translation of specific node types in the PDG to constructions in the DfeGraph is covered.
Additionally we will explore how to detect feed-back paths and reuse buffers in the PDG
and how to add them to the DfeGraph

6.2.1 Inputs and Outputs

Input and output nodes are to be implemented as inputs and outputs in the DFE kernel
code. These are the streams that either receive data from or send data to the host. The
current selection criterion for determining whether a node is an input is to check if it has
no incoming dependences and its associate statement is a function call without arguments.
For an input node, a node of type input is added to the DfeGraph. For each outgoing
dependence of the node a DfeStream is generated and added to the DfeGraph. A node
in the input PDG is classified as an output if it has no out-going dependences. For both
input and output nodes it has to be checked whether they have an enable signal.

6.2.2 Reuse Buffer Detection and Generation

Earlier, when discussing the Polyhedral Process Network (PPN) concept, we have seen
that the dependences actually model communication channels. The dependences specify,
both the type and size of the channel. Some channels can, for example, be implemented
as a FIFO while others would require a random access memory. How a FIFO, shift-
register or memory is actually implemented may depend on the target. For example a
channel of size 1 can simply be implemented as a register or a DFEVar since we are
considering MaxJ code.
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Figure 6.2: The DfeGraph data path generation from a PDG earlier shown as Figure 5.5
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Figure 6.3: Part of the PDG shown in Figure 6.1a

One important issue to consider is how to detect the size and type of the memory to
be generated. Let us consider the matrix multiplication example and in particular its
PDG representation in Figure 6.1a. When visiting node Comp in the PDG we detect
a dependence, which is not yet represented in the DfeGraph. Figure 6.3 shows the part
of the PDG relevant for the current discussion. The dashed edge shows the dependence
that lacks representation in the DfeGraph.

The dependence, represented by the dashed edge in Figure 6.3, is associated with the
array A, has a size of 100 elements and as type a shift-register. This information, available
in the PDG, defines the type and size of the memory that has to be implemented.

The next thing to consider is what functions as data input and data output to this shift-
register. To get an answer to these questions a systematic method is implemented in
the tool.

Comp: C[i][ j] = C[i][j] + A[i][k] * B[k][ j];

ReadA: A[i][ j] = ReadMatrix();

Read-after-read dependence
From Access: A[i][k] (read)
To Access: A[i][k] (read)

Read-after-write dependence
From Access: A[i][j] (write)
To Access: A[i][k] (read)

Figure 6.4: A detailed view of the partial PDG shown in 6.3

In order to explain this method, let us have a look at the properties of this dependence.
Both the source and the destination of the dashed dependence in Figure 6.3 are one and
the same node. Additionally both the from access and to access turnout to refer to the
same access and the type of this access is a read, see Figure 6.4. So what the dependence
actually models is a Read-after-read dependence.
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The dependence models the data-reuse on matrix A. Considering the typical implemen-
tation of matrix multiplication if we buffer a single row of matrix A we can reuse it N
(i.e. number of columns of matrix B) times. In this specific example we need to buffer
one row of 100 elements. The implicit idea of the PDG (N.B. this is not how our tool
implements this channel), is that the data element is used as input to the computation
and simultaneously pushed into a shift-register to re-emerge after 100 clock-cycles at the
other end exactly at the moment it is again required.

Because the dependence under consideration only models the read-after-read dependence
it does not tell us where the data is originated. There must be a read-after-write relation
with as to access the access of the read-after-read dependence. There is in fact such
dependence in the PDG. According to the PDG the source of the data is the PDG-node
ReadA. Figure 6.4 shows this clearly.

Note that the to access of the dependence between ReadA and Comp (the non-dashed)
dependence in Figure 6.4 refers to the same access as the one on either side of the (dashed)
read-after-read dependence. The dependence (i.e. communication channel) that functions
as source of the data to our memory is the non-dashed edge.

Now that we have found the source of the data, there still remain some issues to consider
before we could add the memory node to the DfeGraph. The first matter of concern
comes from the observations that some times data should be read from the stream from
ReadA while in other instances the data comes from the reuse buffer. In the target DFE
implementation we should implement this behaviour.

The memory, to be implemented, should function as a reuse-buffer. A burst of data is
written to the memory, the data is reused multiple times and then overwritten by a new
burst, which will in turn be reused. Considering the running example we see that in this
particular example one row is streamed into de buffer, the data is read multiple times
and when no longer required replaced by the next row of the matrix. This is exactly how
it works in the manual MaxJ code discussed earlier.

One alternative implementation considered is using an multiplexer and a stream offset.
A stream offset is implemented as FIFO. Using the multiplexer we either provide the
source stream to the FIFO or we provide the output of the FIFO to its own input. This
however has one major and significant draw-back, since it forces the data to "move" on
each tick. In other words, the stream can not be halted as in case of a feedback-path is
sometimes necessary.

Another more flexible implementation is to use a memory. And in particular one with a
so called read/write port. This memory enables to read and conditional write, simultane-
ously. One advantage is that we would not need a multiplexer. Because the memory type
is a shift-register there is a rather obvious way to implement this in MaxJ. We can simply
use the inner-most loop-counter to provide the address. The address will sequentially run
trough the address space and then wrap-around and start reading again from the start.
A new row should be read, when iterator j is 0. When j is 0 we enable the write signal
and the data in the memory is overwritten with new data. Note that the enable (i.e.
write) signal in implements the data multiplexing. The latter solution, which has been



64 CHAPTER 6. IMPLEMENTATION

implemented, is more elegant easier to generate and possibly cheaper in resources than
the idea we have previously considered.

In the DfeGraph we add the memory as a node, this node is written to by a stream from
node ReadA and read from one of the nodes the comp node in the PDG will be translated
to. We place this node in between these two nodes.

Because the reuse buffer size is smaller than the original array, a new address mapping
has to be generated. This new address mapping needs to be valid (i.e. the addresses
should stay within the address range of the buffer and simultaneous live data should
not be mapped to the same address). There is some work done to determine such map-
pings in the context of Polyhedral Compilation (PC) see[23]. This work explores valid
modular mappings, in such mappings a modulo operator is used to keep the address
within range of the reuse buffer. In our running example and in many other cases one
of the iterators could actually function as a legal addressing function. From our manual
MaxJ implementation we know that we can simple use iterator k as address for the reuse
buffer on matrix A.

In the context of this thesis a simple algorithm that can find whether a simple expression
in the iterators is a legal address function, is implemented. This algorithm is explained
by the following example based on the matrix multiplication example.

Comp: C[i][ j] = C[i][j] + A[i][k] * B[k][ j];

ReadA: A[i][ j] = ReadMatrix();

 ReadA[i, j] -> Comp[i'=i, j'=0, k'=j] 
: 0 <= i <= 99 & 0 <= j <= 99

 Comp[i, j, k] -> Comp[i'= i, j'=1+j, k'=k]
 : 0 <= i <= 99 & 0 <= j <= 98 & 0 <= k <= 99

Comp[i, j, k] -> [i, j, k, 1]

ReadA[i, j] -> [i, 0, j, 0]

Figure 6.5: A detailed view of the dependences in the partial PDG

We again consider the reuse buffer on array A we have earlier discussed in this section.
The method requires two inputs:

• The dependence relation of the dashed dependence in Figure 6.5.

• The schedule of node Comp also in Figure 6.5
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Both the dependence relation and the schedule are Presburger relations.The dependence
relation of the dashed dependence in Figure 6.5:

R = {Comp[i, j, k]→ Comp[i′ = i, j′ = 1 + j, k′ = k]

: 0 ≤ i ≤ 99 ∧ 0 ≤ j ≤ 98 ∧ 0 ≤ k ≤ 99}
(6.1)

The schedule of node Comp also in Figure 6.5:

S = {Comp[i, j, k]→ [i, j, k, 1]} (6.2)

By performing the following operations a Presburger relation can be attained that links
the timestamps of dependent statement instance executions:

D = S ◦ (R ◦ S−1)
D = {[i, j, k, 1]→ [i, j + 1, k, 1] : 0 ≤ i ≤ 99 ∧ 0 ≤ j ≤ 98 ∧ 0 ≤ k ≤ 99}

(6.3)

Next the deltas function is applied. This deltas functions produces a Presburger set
containing the element-wise difference between the domain and the range of all elements
in the relation D:

∆ = deltas(D)

∆ = [0, 1, 0, 0]
(6.4)

From a more applied perspective we have calculated the reuse distance for elements of
array A. The reuse distance in this case is a single vector, this was anticipated, because
a dependence labelled as shift-register by definition has a constant reuse distance.

The dimensions of the vector relate to the iterators in the original code, but also to
the counters in the counter-chain that implement these iterators in the DFE imple-
mentation. The first dimension is actual a constant dimension we can ignore in our
current discussion. The dimensions of the distance vectors relate to the counters, and
constant as shown next:

[c0, c1, c2, const]

[0, 1, 0, 0]
(6.5)

The constant dimension is dropped in the remainder of the discussion.

The dependence distance vector models that an element of array A is read again af-
ter [0,1,0] ticks of the counter-chain. So between these dependence the counter c0 will
wrap-around once. Therefore the counter c0 can be used as address for the reuse buffer
containing A. This procedure works because the dependence is labeled a shift-register
and because the vector has a "1" in one and only one dimension.
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Repeating this procedure for the reuse buffer containing B results in the following reuse
distance vector:

[c0, c1, c2]

[1, 0, 0]
(6.6)

Note that the constant dimension has been dropped. The reuse distance in this instance
is larger in lexicographical sense. To address the reuse buffer a combination of c0 and c1
is required. There are two options to generate the address:

1. a concatenation of c1 and c0 (i.e. c1#c0)

2. a linearisation of c1 and c0 (i.e c1 ∗max(c0) + c0)

Option 1 is efficient in the sense that it does not require additional computation resources.
However, if max(c1) and max(c0) are not both a power of two, one needs to allocate
more memory than strictly necessary.

Option 2 does not require more memory than strictly necessary, but does require addi-
tional compute resources to compute the address.

6.2.3 Feedback Path Detection and Generation

The occurrence of feedback paths in the source PDG calls for special attention, be-
cause it requires a specific construct in the MaxJ code. As we have seen when dis-
cussing the manual MaxJ implementation in Section 5.2. In this example we have found
that in MaxJ a feedback path is constructed by first declaring a source-less stream, and
later, in the program text, connect the source. Therefore we need to find a mecha-
nism to detect a feedback path in the source PDG. And a procedure to generate the
appropriate MaxJ code.

In the original C code there is an obvious feedback path on each element of the C matrix.
What we need to figure out now is how we can detect the feedback-path from the PDG.
The feedback path is expressed by the dependence on array C that has both its source
and destination at PDG node Comp. Inspecting this particular dependence we see that
its from access is a write and its to access is a read. Using the fact that the PDG nodes
are generated in the order of the data flow, we can detect when data flows "against the
stream". A dependence with a to node with an id that is either lower or equal to the
dependence’s from node where the from access is a write and the to access is a read, is
a feedback path.

6.2.4 Multiplexer Detection and Generation

When generating MaxJ code from a source PDG multiplexers have to be introduced, in
some specific cases. Let us consider again the running example. considering the MaxJ
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Comp: C[i][j]
0
 = C[i][j]

1
 + A[i][k]

2
 * B[k][j]

3
;

InitC: C[i][j]
0
 = 0;

From Access : C[i][j]
InitC 0

 (write)
     To Access : C[i][j]Comp 1 (read)
       Dep. Rel. : 
{ InitC[i, j] -> Comp[i'=i, j'=j, k=0]
: 0 <= i <= 99 & 0 <= j <= 99 }

From Access : C[i][j]
Comp 0

 (write) 
    To Access : C[i][j]Comp 1 (read)
      Dep. Rel. : 
Comp[i, j, k] -> Comp[i'=i, j'=j, k'=1+k]
: 0 <= i <= 99 & 0 <= j <= 99 & 0 <= k <= 98

Comp[i, j, k] -> [i j, k, 1]

InitC[i, j] -> [i, j, 0, 0]

Figure 6.6: The partial PDG relavant for multiplexer detection

code we can see that there is a de-facto multiplexer implemented by the conditional
statement on line 56 of Listing 5.2, this particular statement is repeated next:

DFEVar sum = k === 0 ? 0 .0 : carriedSum ;

Based on the value of iterator k either the constant 0.0 is assign to the stream sum or
the value of carriedSum.

Let us see how we can deduce this multiplexer from the PDG. A multiplexer might be
required when multiple dependences have the same to access. It is not generally the case
that this should be a multiplexer because the dependences involved in the reuse buffer,
we have discussed earlier, fulfil the exact same condition. So the additional condition
should be that the from access of both dependences should be a write. Figure 6.6 shows
the dependences and statements involved. Note that in this picture the accesses are
numbered per statement, this is to distinguish them.

When generating the DfeGraph a new node is added for each multiplexer encountered.
Adding the "conflicting" streams as its inputs and generating a new output stream. This
is the trivial part. The next part, which is more interesting, is figuring out the selection
signal of the multiplexer.

Given two conflicting dependences we can device a selection criterion that leads to a
disjunction, in time, of the inputs streams. This selection criterion needs to decide when,
which of the input streams should be forwarded to the output. The primary observation
made here is that for a set of timestamps one input should be selected and for another set
of timestamps the other input should be selected. We could use the constraints of one of
the timestamp sets as selection criterion, because the two sets are disjunct by definition.
In many cases this leads to a needlessly complicated selection criterium. Therefore an
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algorithm that is able to find simpler selection criteria, saving on hardware and reducing
complexity, is implemented in the tool developed as part of this thesis.

The algorithm is based on the observation that if the two sets of timestamps are disjunct
in one of the dimensions, this can be used to find a simple selection criterium for this
multiplexer. The Integer Set Library (ISL) can be used to test whether the two sets are
disjunct in one dimension. The concept is rather trivial, we simply project both sets to
one of the dimensions of the timestamp-space and check whether these projections are
disjunct. If they are in fact disjunct we can uses the constraints on this specific dimension
to determine a selection criterium.

In the matrix multiplication example we have been using in this document, there is one
occurrence of a multiplexer as earlier mentioned. The dependences involved are:

D1 = Init[i, j]→ comp[i′ = i, j′ = j, k = 0]

D2 = Comp[i, j, k]→ Comp[i′ = i, j′ = j, k′ = k + 1]
(6.7)

Additionally we will need the schedules of both source nodes. We use these schedules to
map the dependences to a timestamp. These tell us the source of data at each times-
tamp.

SInitC = InitC[i, j]→ [i, j, 0]

SComp = Comp[i, j, k]→ [i, j, k]
(6.8)

SInitC ◦D1 = InitC[i, j]→ [i, j, 0]

SComp ◦D2 = Comp[i, j, k]→ [i, j, k + 1]
(6.9)

The range of the two Presburger relations in Equation 6.9 are disjunct. From this we
can conclude that InitC is the source when k = 0 and Comp is the source when k > 0.
Both these conditions can be used as selection signal for the multiplexer.

6.2.5 Constants

In the running example the InitC node’s sole purpose is to assign the constant 0.0 to
the accumulation on C[i][j]. In the hand coded MaxJ implementation Listing 5.2 this
constant is explicitly coded in the multiplexer, see line 56 or Listing 5.2. Because it is
slightly easier to generate, I decided to simply generate a stream that is assigned the
constant value.

In the PDG a node representing a constant has no incoming dependences and the state-
ment represents an assignment of a constant value to a variable. The conditions are
relatively simple to check.
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6.2.6 Computation

A computational node is a node that performs actual data manipulation on an input
stream, in the current version of the tool I only consider addition and multiplication, but
this can be extended to support a wide variety of operators and mathematical functions.
In case of a computational node we generate the actual statement of the node. This
statement could exist of a tree of function calls, if there are nested function calls or
multiple operations involved in the statement. Although not particularly complicated,
the computational statement in the example actually is a tree of function calls. This tree
is implemented in space on the surface of the chip, as part of the data path.
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Conclusions 7
This chapter contains the conclusions drawn from this thesis work. The chapter starts
by addressing the research questions this thesis initially set out from. Each research
question is addressed individually. Additionally some insights regarding the proposed
tool-flow and its future development directions are explored.

7.1 Addressing the Research Questions

The research questions formulated in Section 1.2.1 were:

• Is it possible to generate a Data Flow Engine (DFE) implementation from a
Polyhedral Process Network (PPN)?

• Can such a mapping be efficient, in terms of the theoretical achievable performance?

• Can the concepts from Polyhedral Compilation (PC) be applied to perform trans-
formations on the Polyhedral Process Network (PPN) abstraction that will improve
the efficiency of the generated Data Flow Engine (DFE) implementation?

• What are performance improving transformations when a Data Flow Engine (DFE)
implementation is considered as our target?

Is it possible to generate a Data Flow Engine (DFE) implementation from a
Polyhedral Process Network (PPN)?

In this thesis a tool has been developed that is able to partially generate the MaxJ kernel
code, from a PPN1 for some simple kernels. The matrix multiplication kernel has been
primarily used to develop and test the tool. The tool is by no means complete, however
solutions are proposed and implemented to solve a number of challenges involved in
generating a DFE implementation from a PDG.

Generating a DFE implementation from a PDG has proven to be harder than initially
anticipated. The complexity of the translation is mainly because a PDG is an abstract
representation while the MaxJ code defines a specific implementation of the computation.
Additionally there is a significant amount of information that is not directly available from
the PDG, but has to be deduced from it. Finally, generating the MaxJ code can not be
done by a trivial sequential traversal of the PDG.

1The actual PPN implementation used as input for the tools is a Polyhedral Dependence Graph (PDG)
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As a solution for the challenges formulated an intermediate abstraction were proposed.
This abstraction is tailored to the structure of the target MaxJ code. The abstraction
enables relatively easy generation of MaxJ code. Additionally this representation can
be constructed iteratively. The representation is the DfeGraph discussed in Section 5.4.
This abstraction was successful in solving the challenges.

Despite this intermediate abstraction the translation form PDG to MaxJ code has proven,
by experience, to be challenging. The conclusion drawn here is that the PDG is not an
entirely suitable abstraction to easily generate a DFE implementation from. A possible
solution would be to develop a PC based abstraction that by design corresponds nat-
urally to a DFE implementations. This latter although an interesting endeavour was
unfortunately not possible in the span of this thesis.

In conclusion, PC has potential in improving programmability of a DFEs. However, it
requires the development of a polyhedral representation that is more specifically tuned
for data flow computing in general and DFE implementation in particular. The concept
of a PPN is in theory a helpful idea but needs to be extended.

Can such a mapping be efficient, in terms of the theoretical achievable per-
formance?

The developed tool, is able to generate sequential code for the matrix multiplication
kernel that is similar to the hand-coded version. However, this hand-coded version is not
optimal. In order to enable a more optimal implementation the tool should be equipped
with the notion of parallelism, in the form of parallel data path replication. The PDG
does not provide such notion and models a more or less sequential execution. The form
of parallelism available in the PDG is that of pipelined-parallelism of the processes (i.e.
the processes form a pipeline). This parallelism is exploited by the tool.

Can the concepts from Polyhedral Compilation (PC) be applied to perform
transformations on the Polyhedral Process Network (PPN) abstraction that
will improve the efficiency of the generated Data Flow Engine (DFE) imple-
mentation?

The PDG abstraction does provide information regarding the volume of communication
between processes. This can be very helpful in analysing the theoretical performance of
an implementation and the effects on the latter when applying transformations.

Because of the complexity involved in the tool the question regarding the actual effect of
transformations can not be backed by an actual implementation. However it is theoret-
ically possible to perform transformations and re-calculate the communication volumes
and edge types. This would necessitate some extensions of the PDG and Integer Set Anal-
ysis (ISA) library implementation, which was not feasible in the span of this thesis.

We have however discussed some useful transformations, that are able to perform a num-
ber of optimisations that a DFE application developer currently has to do by hand. An
example is to rearrange the order of computations to prevent a pipelined operator, in-
volving feedback, to stall the data-path. This so called C-Slow retiming can be performed
using a tiling transformation. Another example is to minimise buffer sizes between pro-
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cesses in the PDG by reordering the production and consumption of the data elements to
be buffered. If the time between production and consumption is reduced one can suffice
with smaller buffers.

What are performance improving transformations when a Data Flow Engine
(DFE) implementation is considered as our target?

Considering the envisioned target, a DFE implementation, we have concluded that the
most promising transformation is tiling. Tiling has multiple performance enhancing prop-
erties. As discussed, when addressing the previous research question, a tiling transfor-
mation can be used to apply C-Slow retiming. Tiling can also be used to reduce the
pipeline buffers. By means of tilling the computation can be split up in smaller parts
that allow the data to be kept and reused on chip. In conclusion, we state that a tiling
transformation is the most relevant in the context of data flow computing.

Another useful transformation is that of data-reordering in the host code. In the example,
matrix multiplication, we have considered through out this thesis that, it is beneficial to
stream matrix B in column major order. In order to do this the matrix needs, to be
stored in the host memory in this order. Transformations can be used to automatically
introduce data-reordering, which is beneficial in case of the mentioned example and in
many other applications.

7.2 Future Work

By analysing the development process of the tool some conclusions are drawn regarding
the applicability of PC in general and PPNs in particular to semi-automated generation
of a DFE implementation.

Based on the discussion of the research questions in the previous section the conclusion is
drawn that the application of PC in the context of data flow programming has potential,
but is also confronted with some serious challenges. This thesis has proven that although
not trivial it is possible to generate a DFE implementation. However in order to develop a
production level tool or tool-flow a number of issues have to be resolved. The development
of a PC abstraction tailored to data flow computing.

The tool-flow presented in this work has an experimental nature. It is an initial imple-
mentation of the ideas formulated in this thesis, definitely not a complete and optimal
solution. Implementing this tool-flow was a practical feasibility study and has been
helpful to gain valuable insights. Based on these insights I have drawn some additional
conclusions, specific to the tool-flow developed and possible future directions.
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From the development of the tool and my experience with data flow computing according
to the Maxeler DFE philosophy, I conclude that a tool that fully-automatically generates
a DFE implementation from imperative code is complex. Implementing such tool is not
the eventual aim of this work. In the initial exploration of the problem, partially docu-
mented in Section 1.1, I already concluded that there exist a fundamental gap between
control flow, often implemented by imperative code, and data flow computing, that is
not easily bridged.

The attempt of simplifying data flow computing by automatic translation of an imperative
algorithm has one, at least in my conclusion, significant problem. It hides from the
developer what is actually going on, so they are left without control. This is something,
we might not want to do. It is no harm exposing to the developer to the data flow
paradigm and it will give the developer control over the implementation.

What is of interest, is raising the level of abstraction of data flow computing, hiding
implementation details, without taking away control from the developer. An interesting
future direction would be to integrate PC concepts in the MaxJ code so the developer
has, for example, less to worry about generating efficiently orchestrated address streams
for memories. Additionally PC and in particular PPNs, can be used as analysis tool to
explore the affect of specific transformations. Code transformation can also be used to
automatically introduce data-reordering in the host code.

In conclusion, the most promising future direction of this work is not to pursuit a method
for translating imperative code to a DFE implementation. Instead an approach that
utilises the concepts of Polyhedral Compilation (PC) to automate specific parts of DFE
application development seems to be much more fruitful.
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Dependence Analysis in the
Integer Set Library A
This chapter gives an example of how polyhedral compilation works in the Integer Set
Library (ISL)-approach. Let us consider a trivial but practical kernel that computes the
inner product of two vectors, a C-code example is given in Listing A.1. The instance
set of both statements S and T can be expressed as a union of Presburger sets see
Equation A.1.

S : prod = 0 ;
f o r ( i n t i = 0 ; i < N; ++i )

T: prod += A[ i ] ∗ B[ i ] ;

Listing A.1: Inner Product Kernel

[N ]→ {S[];T [i] : 0 ≤ i < N} (A.1)

A.1 Access Relations

In the ISL-approach to Polyhedral Compilation (PC) Presburger relations are used to
express access relations. In many cases the Presburger relations can model the access
relations exactly, however in order to improve the applicability of PC to less regular code
the ISL allows the access relations to be approximated, if they can not be expressed by
Presburger formulas. A trivial example of an access function that can not be expressed
as a Presburger relation is one that involves multiplication of variables. In the ISL three
access relations are considered, hence that the may-write and must-write overlap.

May-read Access Relation gives an over-approximation of the read accesses.

May-write Access Relation gives an over-approximation of the write accesses.

Must-write Access Relation gives the maximal sub-set of the may-write relation that
can be defined as a Presburger relation.

One may notice that there is no must-read access relation. This is because it is not
require for performing the analyses steps.

In many case the access relations can be defined exactly, in this situation the relations are
exact as well. In this example and in fact in this thesis as a whole we focus on such code,
therefore we can suffice with one read access relation and one write access relation.

considering the code in Listing A.1 the following access relations are deduced:
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Write Access Relation:

[N ]→ {S[]→ prod[];T [i]→ prod[] : 0 ≤ i < N} (A.2)

Read Access Relation:

[N ]→ {T [i]→ B[i] : 0 ≤ i < N ;T [i]→ A[i] : 0 ≤ i < N ;T [i]→ prod[] : 0 ≤ i < N}
(A.3)

A.2 Dependence Relations

The access relations, discussed in the previous section, are a relations between the state-
ments instances and array elements accessed by that statement instance. Using these
access relations we can determine the dependence relations. These dependence relations
express which statement instances depend on each other. Three types of dependences
can be distinguished, technically a fourth although one can argue whether this should
strictly be considered a dependence.

Recall that dependence relations are distinguished based on there type:

Read after Write maps a statement instance i to a statement instance j if j is executed
after i and if it reads from a data element that is written by i.

Write after Read maps a statement instance i to a statement instance j if j is executed
after i and if it writes to a data element that is read by i.

Write after Write maps a statement instance i to a statement instance j if j is executed
after i and if it writes to a data element that is written by i.

Read after Read maps a statement instance i to a statement j if j is executed after i
and if it reads a data element that is (also) read by i.
This is not actually a dependence because it implies no specific order of execution
of i and j.

For the example the dependence relations are as follows:

Read-after-Write dependence relation:

[N ]− > {S[]− > T [i] : 0 <= i < N ;T [i]− > T [i′] : i >= 0 ∧ i < i′ < N} (A.4)

Write-after-Read dependence relation:

[N ]− > {T [i]− > T [i′] : i >= 0 ∧ i < i′ < N} (A.5)

Write-after-Write dependence relation:

[N ]− > {S[]− > T [i] : 0 <= i < N ;T [i]− > T [i′] : i >= 0 ∧ i < i′ < N} (A.6)
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A.3 Filling our Toolbox

A number of tools are to be understood to perform dependence analysis using the ISL.
This section is devoted to giving a concise explanation of the require tools.

The dependence relations are derived using the schedule and the access relations. It is
instructive to see how this actually can be done. In order to do so we have to consider
some additional concepts.

A.3.1 Composition

The first tool we need is an operation on Presburger relations called composition. The
operation is in my opinion best explained by giving its definition and an example from
[4].

Given two Presburger relations A and B the composition is defined as follows.

B ◦A = {i→ j : ∃k : i→ k ∈ A ∧ k → j ∈ B} (A.7)

Example Consider the relations:

A = {B[6]→ A[2, 8, 1];B[6]→ B[5]} (A.8)

B = {A[2, 8, 1]→ B[5];A[2, 8, 1]→ B[6];B[5]→ B[5]} (A.9)

Their composition is:

B ◦A = {B[6]→ B[6];B[6]→ B[5]} (A.10)

A.3.2 The Inverse of a Presburger Relation

Secondly we need to know what the inverse of a Presburger relation is, this is even
more trivial than a composition and rather self-explanatory. I think the definition
should suffice:

R−1 = j → i : i→ j ∈ R (A.11)

A.3.3 The intersection of Presbuger Relations

Another rather obvious concept we need to understand is what a intersection of two
Presburger relations means:

The intersection A ∩ B of two binary relations A and B contains the pairs of elements
that are contained in both A and B[4].
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A.3.4 Lexicographical Order

The lexicographical order is more or less a natural order on instantiations of multi-
dimensional objects. One example is the method to decide order in a number system.
Formally in a number system the most-significant digit in which two numbers differ, while
less-significant digits are equal, determines the order. The order implied order on time
notated as hours:minutes:seconds is also an example of the lexicographical order. This
concept can clearly be extended to to vectors or integer tuples. The formal definition of
the lexicographical smaller than relations is as follows:

"Given two vectors a and b of equal length, a is said to be lexicographically smaller than
b if it is not equal to b and if it is smaller in the first position in which it differs from b.
If the shared length of the two vectors is n, then this condition can be expressed as the
Presburger formula"[4]

∨
i:1≤i<n

(( ∧
j:1≤j<i

aj = bj
)
∧ ai < bi

)
(A.12)

A.3.5 The Order Relation

The last thing we need to perform data-analysis is the execution order relation. This
relation is the lexicographically smaller relation between the schedule and itself. The
lexicographical order is a concept to compare vectors. The normal comparison operators
are usually considered to mean a component-wise comparison. However, in many cases
one wants to compare on a vector-basis (e.g. decide which one of the vectors is the greater
one). It is quite straightforward that such ordering can also be applied to sets of named
integer tuples and named integer tuple templates. Applying this ordering on the schedule
and itself gives us the ordering relation. This relation contains all the pairs of statements
for which the timestamp assigned by the schedule is lexicographically smaller than the
time stamp of the second one. One obvious observation is that this relation is quite
convoluted, this is one of the reasons for developing new schedule abstractions.

[N,M ]→ {T [i, j]→ S[i′] : i′ > i;

S[i]→ S[i′] : i′ > i;

S[i]→ T [i′, j] : i′ > i;

S[i]→ T [i′ = i, j];

T [i, j]→ T [i′, j′] : i′ > i;

T [i, j]→ T [i′ = i, j′] : j′ > j}

(A.13)

<S= S ≺ S (A.14)
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A.4 Applying the Tools

Now we have discussed all the tools to perform dependence analysis. Constructing the
dependence relation can be done using some simple though elegant statement. The read-
after-write dependence relation is given by:

(R−1 ◦W ) ∩ <S (A.15)

Dissecting this statement we see that R−1 ◦W results in a relation that contains all pairs
of writes and reads that address the same data element. To better clarify the latter we
recall the implementation and function of the access relations.

An access relations in essence relate statement instances to array indices (i.e. a particular
data element). The statement instances form the domain of this relation while the array
indices form the range of this relation.

The composition operator constructs a new relation from members of the domain of
the relation to the right of the operator to members of the range of the relation left of
the operator.

The inverse operation simply swaps the domain and the range of a relation. Therefore
R−1 is a relation from (i.e. the domain) array indices to (i.e. the range) statement
instances. Therefore R−1 ◦W produces in a new relation from statement instances from
the domain W to statement instances from the range of R−1 for which the range of W
matches the domain of R−1.

This relation contains all pairs of writes and read statement instance that address the
same address regardless of the order in which they occur. This ordering is introduced
by intersecting the relation with the order relation <S . The order relation contains all
pairs of statement instance where the first is executed before the second. Therefore the
result of the intersection is a relation that contains all pairs of statement instance where
the first is a write, the second is a read, and the first is executed before the second
according to the order set (or in fact the schedule). The former is the very definition of
the Read-after-write dependence relation.

The other types of dependence relations can be constructed similarly. Using the
following statements.

Write-after-read dependence relation:

(W−1 ◦R) ∩ <S (A.16)

Write-after-write dependence relation:

(W−1 ◦W ) ∩ <S (A.17)
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Feautrier’s Scheduler B
Freautrier’s algorithm or simply, the Feautrier algorithm, was firsts published in two
publications[10, 11]. It is also covered by[12]. An example driven concise introduction
is given by [24, Section 5.6], the remainder of this section borrows extensively from the
latter.

First we have to consider some notation we have not cover before. It is an alternative
way to describe the dependence between statement instances. The notation is shown in
Equation B.2. In order to clarify the notation we first have to considerer an alternative
notation for dependences relations. In Equation 2.9 we have seen how a polyhedron
can be used to specify a dependence between statement instances. There is however an
alternative notation, That gives a minimal form of the dependence relation.

As shown earlier in Equation 2.9 a dependence relation can be specifies using a polyhedron
that maps the source statement instance to a destination statement instance, if and only if
there is a dependence between the two statement instances. The alternative notation uses
a polyhedron Pe that describes the destination statement instances and an affine function
he that maps these destination statement instances to source statement instances. This is
probably best clarified by mathematical notation shown in Equation B.1. In this equation
Dδ(e) is the instance set of the destination of dependence e and Dσ(e)

y ∈ Pe =⇒ y ∈ Dδ(e) ∧ he(y) ∈ Dσ(e)
< x, y >∈ Re ≡ (x = he(y) ∧ y ∈ Pe)

(B.1)

Bearing in mind the previous, the dependence between a statement S statement T can
be described as shown in Equation B.2. The extra argument N in he(j,N) describes the
structural parameters of the input code.

j ∈ De =⇒ S(he(j,N))→ T (j) (B.2)

The Feautrier scheduler uses a known lemma applying to polyhedra. This lemma will
be introduced here without proof, the proof for the lemma can be found in[25].

Lemma 1. Let D be an nonempty polyhedron defined by p inequalities: akx + bk ≥ 0,
for any k ∈ {1, . . . , p}. An affine from Φ is nonnegative over D if and only if it is a
nonnegative affine combination of the affine forms used to define D:
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Φ(x) ≡ λ0 +

p∑
k=1

λk(akx+ bk),∀ ∈ [0, p]λk ≥ 0

A schedule is a Θ(S, j,NN is a nonnegative affine form defined on a polyhedron DS .
This instance set or statement domain can be described as follows:

DS = {x|∀i ∈ [1, pS ], AS,ix+BS,iN + cS,i} (B.3)

The matrix BS,i and the vector N are used to incorporate the structural parameters
into this description of the instance set. Although the notation is slightly different it is
just another way of specifying a instance set. Since Θ is a nonnegative affine function
defined on Ds it is a nonnegative affine combination of the affine forms used to define
DS . According to Lemma 1 there exist some nonnegative values µS,0, . . . , µS,pS such
that:

Θ(S, j,N) ≡ µS,0 +

pS∑
i=1

µS,i(AS,ix+BS,iN + cS,i) (B.4)

Considering a dependence from a statement S to a statement T the following constraint
must hold:

j ∈ De =⇒ Θ(S, he(j,N), N) + 1 ≤ Θ(T, j,N) (B.5)

The latter can be rewritten as an affine function that is nonnegative over a polyhedron
because the schedules are affine functions:

j ∈ De =⇒ Θ(T, j,N)−Θ(S, he(J,N), N)− 1 ≥ 0 (B.6)

Defining De as follows:

De = {x|∀i ∈ [1, pe], Ae,ix+Be,iN + ce,i} (B.7)

Then according to Lemma 1 there exist nonnegative values λe,0, . . . , λe,pe such that:

Θ(T, j,N)−Θ(S, he(J,N), N)− 1 ≡ λS,0 +

pS∑
i=1

λS,i(Ae,ij +Be,iN + ce,i) (B.8)
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The left-hand side of this equation can be rewritten using the earlier results:

µT,0 +

pT∑
i=1

µT,i(AT,ij +BT,iN + cT,i)

µS,0 +

pS∑
i=1

µS,i(AS,ij +BS,iN + cS,i)− 1

≡ λS,0 +

pS∑
i=1

λS,i(Ae,ij +Be,iN + ce,i)

(B.9)

From this equality a system of linear equations and inequalities can be constructed which
can be solved by a solver for linear systems.
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Classic Loop Transformations C
Loop Reversal

Original Code:

f o r ( i n t i =0; i<N; i++)
S( i ) ;

Instance set: [N ]→ {S[i] : 0 ≤ i < N}
Original Schedule: {S[i]→ [i]}
Transformation: {[i]→ [(N − 1)− i]}

Transformed Code:

f o r ( i n t i=N−1; i >=0; i−−)
S( i ) ;

Loop Fusion

Original Code:

f o r ( i n t i =0; i<N; i++)
S( i ) ;

f o r ( i n t i =0; i<N; i++)
T( i ) ;

Instance Set: [N ]→ {S[i] : 0 ≤ i < N ;T [i] : 0 ≤ i < N}
Original Schedule: {S[i]→ [0, i];T [i]→ [1, i]}
Transformation: {[0, i]→ [i, 0]; [1, i]→ [i, 1]}

Transformed Code:

f o r ( i n t i =0; i<N; i++){
S( i ) ;
T( i ) ;

}
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Loop Fission

Original Code:

f o r ( i n t i =0; i<N; i++){
S( i ) ;
T( i ) ;

}

Instance Set: [N ]→ {S[i] : 0 ≤ i < N ;T [i] : 0 ≤ i < N}
Original Schedule: {S[i]→ [i, 0];T [i]→ [i, 1]}
Transformation: {[i, 0]→ [0, i]; [i, 1]→ [1, i]}

Transformed Code:

f o r ( i n t i =0; i<N; i++)
S( i ) ;

f o r ( i n t i =0; i<N; i++)
T( i ) ;

Strip Mining

Original Code:

f o r ( i n t i =0; i<N; i++)
S( i ) ;

Instance Set: [N ]→ {S[i] : 0 ≤ i < N}
Original Schedule: {S[i]→ [i]}
Transformation: {[i]→ [bi/4c, i mod 4]}

Transformed Code:

f o r ( i n t i =0; i <(N/4 ) ; i++)
f o r ( i n t j =0; i <4; j++)

S(4∗ i+j ) ;
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