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Abstract

The Active Inference framework is a neuroscience theory based on the Free Energy Principle by
Karl Friston that has gained considerable prominence as a general theory to explain action and
perception. Despite its promising future and use in different fields, its applicability for robot
control has been barely investigated in the literature so far. This thesis aims at discerning if
the current Active Inference implementation can be used for the control of robot manipulators
and which are the requirements to do so. Firstly, an analysis of the current implementation
of robot control under the Active Inference is made to understand its accomplishments and
limitations. Secondly, both offline and online control schemes under the Active Inference
framework are proposed. To continue with, a low-level controller is designed to be used in the
Active Inference control scheme as a prior of the robot behaviour. The performance of the
designed controller and the Active Inference scheme using this controller as a prior is compared
to a benchmark controller. This comparison shows that the proposed implementation of the
Active Inference scheme does not perform better than the current methods, but with further
research on the how to implement this scheme using a real process it may become a valid
alternative to these methods. Finally, recommendations on future work are given to bring
this framework to online implementations and to verify the results obtained regarding the
applicability of the Active Inference framework to robot manipulator control.
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Chapter 1

Introduction

Society is evolving towards a future where robots are becoming more important and their
presence is being increased in different fields. Therefore, robot control is a topic that is in
permanent evolution and new methods to obtain more autonomous behaviour are constantly
researched.

Some of the current methods for robot control, such as optimal control approaches, are efficient
and widely used. However, these methods usually require an inverse model to be computed.
When dealing with a specific type of robots like the robot manipulators (with redundant
joints), this inverse model becomes non trivial and its computation requires knowledge about
the dynamic properties of the system.

The recent appearance of a biologically inspired method known as Active Inference, which
dispenses with the inverse model as the inversion is done internally, has grabbed the engineer-
ing community attention. This framework has been applied in theoretical simulations to solve
typical control problems such as the mountain car problem [2]. Thus, the Active Inference
framework seems a promising theory that could be applied to robot control and demands
further research to investigate its possibilities in this field.

The Active Inference framework [3–5] has acquired significant prominence in computational
and systems neuroscience. This framework can be considered a general theory of brain and
behaviour that tries to explain action and perception and considers the brain as a predictive
processing machine.

In line with the aforementioned, in [1], the first attempt to implement the Active Inference
scheme for robot control of a 7 degrees of freedom manipulator is done. It is shown in
this paper how Active Inference applied to a robot arm can deal with noise present in the
signals. However, from an initial analysis, it has been seen that this implementation may
have limitations present in its formulation from a low-level controller perspective. Therefore,
a revision of the implementation for robot control seems necessary in order to give a clear
picture about the possibilities of this scheme for robot control.

Master of Science Thesis A. Cibiach Mercadé



2 Introduction

1-1 Thesis objective and contribution

Based on what has been mentioned in the previous section, the thesis objective can be defined.
The main research question that this thesis is built around is:

Can the current Active Inference framework formulation be used for controlling a
robot manipulator in a reaching task?

Thus, this thesis aims at discerning whether the Active Inference scheme can be used for robot
manipulator control. In this thesis, a low-level controller (joint torque control) is intended
since when applying this type of control there is no need to rely on an internal controller of the
robot manipulator. To achieve such control in Active Inference, how a designed controller can
be embedded in this scheme and the resulting control loop needs to be defined. Furthermore,
a comparison between the designed controller and a current method available is needed to
determine how the proposed implementation performs with respect to the state of the art
controller.

In this document, an analysis of the current implementation of robot control for Active
Inference [1] is used to understand and to define a proper Active Inference scheme for robot
control. The offline control loop of this scheme is achieved in this thesis and is used to test the
performance of the controllers. In contrast to what is done in [1], where a low-level position
control embedded in the robot manipulator is required, a low-level joint torque control is
used in the implementation proposed. This offline control loop also permits a feed-forward
control using the Active Inference scheme to test with the real process. Moreover, an online
implementation and its requirements are defined.

1-2 Document outline

This document is structured as follows:

• In Chapter 2, the Active Inference framework and the Free Energy Principle are de-
scribed,

• In Chapter 3, the background of robot control and its application using Active Inference
is presented,

• Chapter 4 presents the robot manipulator used in this project and its kinematic and
dynamic formulations. The setup that is used for the experiments is also described,

• In Chapter 5, the state of the art and proposed controllers are presented and the control
topologies are described,

• In Chapter 6, the different controllers are tested and the simulation results are discussed,

• Finally, Chapter 7 presents the conclusions derived from this thesis and the recommen-
dations for future work.
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Chapter 2

Active Inference framework

In the recent years, many theories trying to explain the brain cognitive process have appeared.
Moreover, inference-based theories, and more specifically Bayesian inference ones, have served
as a starting point for theories in different fields such as decision-making and planning [6].
One of the theories that has brought more attention is Active Inference, based on the Free
Energy Principle (FEP), which has gained considerable prominence in computational and
systems neuroscience and philosophy as a general theory of brain and behaviour [4].

In this chapter, the FEP is described to understand its main idea; after that, the Active
Inference framework is outlined. Finally, a view of Active Inference from a control perspective
is given. This chapter aims at giving an overview of the Active Inference framework and the
FEP, in which is based, together with the concepts that become important when Active
Inference is intended for control.

2-1 The Free Energy Principle

Biological systems are thermodynamically open as they are constantly exchanging energy and
entropy with their environment showing a self-organizing behaviour. However, the organisms
interact with the environment to endure over periods of time by changing their position
within it or their relation to it. This interaction is carried in a way that allows the organism
to maintain their states within the bounds that do not affect their physical structure [3]. This
idea has been captured in a theory called the Free Energy Principle. In this principle, the
agent has an internal model of the world which is known as the generative model.

The FEP bases its theory on the minimization of a concept called free energy F , which is an
upper bound on the surprisal of the system states µ. The free energy is a scalar function of
the ensemble density and the current sensory input ϕ̃. Note that tilde denotes variables in
generalised coordinates of motion1. The ensemble density q(ϑ;µ) can be considered as the

1Generalized coordinates specify movements as predicted trajectories, which include speed, acceleration,
jerk, etc. [5]

Master of Science Thesis A. Cibiach Mercadé



4 Active Inference framework

probability density that a specific causal state ϑ is chosen based on the actual system state
µ.

In order to allow for tractable computations, the FEP uses variational inference which enables
to summarize beliefs about hidden states with a single quantity. In other words, by means of
the Laplace assumption, the ensemble densities are parametrised by its mode or expectation
and covariance assuming a Gaussian form [3].

F = −
∫
q(ϑ) ln p(ϕ̃, ϑ)

q(ϑ|µ) dϑ

= −〈ln p(ϕ̃, ϑ|m)〉q + 〈ln q(ϑ|µ)〉q
(2-1)

As it can be seen in Equation (2-1) [3], the free energy is defined by two densities; namely,
the ensemble density q(ϑ|µ) and the generative density p(ϕ̃, ϑ|m). The latter factorises into
a likelihood and prior density p(ϕ̃|ϑ)p(ϑ) which determines a probabilistic generative model
m. Equation (2-1) can be rewritten as follows [3]:

F = D(q(ϑ|µ)||p(ϑ|ϕ̃,m))− ln p(ϕ̃|m)
= D(q(ϑ|µ)||p(ϑ|m))− 〈ln p(ϕ̃|ϑ,m)〉q

(2-2)

From the equation shown above, it can be see that the free energy, F , minimization can be
accomplished with two alternative expressions. The first one shows how perception can be
used to optimize the predictions and infer the causes of its sensory samples (by changing
internal states q(ϑ|µ)); the second equation shows how action can reduce the free energy
(through the effect of actions on hidden states and the consequent sensory input p(ϕ̃|ϑ,m))
by increasing accuracy, the expected surprise of sensory data under the recognition density
(for more detailed mathematical explanation of the theory see [4, 5, 7, 8]).

2-2 Active Inference

The Active Inference framework uses the FEP - surprise minimization - to explain perception
and action and is often considered a corollary of the FEP [9] described in the previous section.
It is cast in terms of Bayesian inference: the agent has a model of the world which is optimized
using the sensory inputs by predicting and explaining its sensations. The possibility to actively
modify the inference of the world through action is what gives the name to this framework.

The main idea behind Active Inference is that the brain can manipulate the sensory input
and the brain states in order to minimize the prediction error. In this way, as explained in
section 2-1, action and perception are used to minimize the free energy, either by changing
its sensory input through action or by modifying its beliefs about the states of the world.

The generative model plays an important role in the Active Inference framework as it captures
the dynamics of the interaction between the agent and its environment and is the responsible
for generating behaviour that minimizes the prediction error. A schematic layout of the
generative model of an active inference agent is shown in figure 2-1. The generative model
assumed for Active Inference is generally non-linear, dynamic and deep (i.e. hierarchical) [1].

A. Cibiach Mercadé Master of Science Thesis



2-2 Active Inference 5

Figure 2-1: Generative model for an active inference agent. Interaction between the generalised
brain states (µ, µ′, . . . ) and the sensory data (ϕ,ϕ′, . . . ).The agent acts on the world, via variable
a (red arrow), to change sensory input ϕ and minimise free-energy indirectly. Solid arrows repre-
sent dependencies within the brain and dashed arrows represent incoming sensory data. Figured
reproduced from [8].

Perception and action are defined by the generative model with the following equations [7]:

µ̇ = −Dµ− ∂µF (2-3)
ȧ = −∂aF (2-4)

where µ are the internal states, a is the action of the agent, F is the free-energy term and D
is a differential matrix operator used to describe the motion of conditional expectations.

The equations shown above are both a gradient descent on the variational free energy F . By
using the method generalised filtering, the gradients equations can be expressed in terms of
prediction errors ε (for a more detailed explanation of the mathematics related to generalised
filtering see [10]):

ε̃x = Dµ̃x − f̃(µ̃x, µ̃v)
ε̃v = µ̃v − g̃(µ̃x, µ̃v)

(2-5)

where f(·) and g(·) correspond to the plant dynamics and the sensory mapping of the gener-
ative model, respectively.

As mentioned before, the Active Inference scheme does not only have an internal model of the
world (generative model) but also represents the real world dynamics by considering them
in the generative process. These generative model and generative process are considered two
of the main aspects of the Active Inference framework as they define the true and modelled
sensory information used in this scheme.

2-2-1 Generative Process

The true dynamics of the system generating the sensory information are defined by the gener-
ative process [5]. Since this process corresponds to the dynamics of the real world, the action
derived from the Active Inference scheme is part of it. Moreover, this process can be divided
in two parts:

Master of Science Thesis A. Cibiach Mercadé



6 Active Inference framework

• Plant dynamics: f(x,v,a)

• Real sensations mapping: g(x,v)

where x corresponds to the true hidden states, v to the true causal states and a to action.

The plant dynamics correspond to the true equations of motion, which are function of the true
hidden and causal states and the action; on the other hand, the real sensations correspond to
the true sensory mapping, function of the true hidden and causal states.

2-2-2 Generative Model

The generative model comprises the dynamics of the system that model the sensory informa-
tion [5]. As opposed to the generative process, where the action is part of the true dynamics,
the generative model depends only on the hidden and casual states. Similar to the generative
process, the generative model can also be divided in two parts:

• Modelled dynamics: f(µx, µv)

• Modelled sensations mapping: g(µx, µv)

where µx represents the hidden states and µv the causal states.

The modelled dynamics correspond, in this case, to the equations that model the motion of the
system, which are function of the hidden and causal states; on the other hand, the modelled
sensations correspond to the sensory mapping modelling sensory information, function of the
hidden and causal states.

2-3 Active Inference for control: encoding the prior

As the generative model represents the internal model that the agent has about the environ-
ment, this model does not have to represent the real environment but a version of it based on
the agent beliefs. Therefore, the modelled dynamics of the system, present in the generative
model, can be influenced by prior beliefs that the system has about the causes of the sensory
information. This allows for a prior on the behaviour to be encoded in the generative model
through the use of these beliefs.

By modifying the defined equations of motion of the generative model, a desired performance
of the system can be achieved; the desire to behave in such way can be seen as the influence
of the prior beliefs that the system has and that forces it to act in a specific way. This prior
belief that acts on the behaviour of the system can be seen as a control signal that drives the
motion. Therefore, from a control perspective, a controller can be designed to accomplish a
desired motion and the control signal can be used as the prior belief that steers the states of
the system towards the desired ones. In this way, the agent believes that it has to behave in
a particular way that is specified by these priors.
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Chapter 3

Related work

Robot control is a key aspect in obtaining improved performances in robotic systems and,
therefore, a lot of development is made to increase the performance and introduce new func-
tionalities. It is important to study the current situation and limitations that the available
methods present to obtain a clearer picture of the possible advantages of using the Active
Inference scheme for robot control.

This chapter serves as a basis for understanding the current state of robot control and its
limitations. Furthermore, it is also discussed how Active Inference can be used for robot
manipulator control and the outcomes from the analysis that have helped defining the Active
Inference control scheme proposed in this thesis.

3-1 Robot control

There are different controller types that can be used for robot control. These can be divided
in two groups:

• Feed-back controller: where the current state of the system is used to compute the
control action. In this case, a desired position is compared to the current one and
by defining a proper gain the needed controller action is obtained, for instance, the
PID controllers. This closed loop control is the most common one because stabilization
is easier as the controller is considering the real states of the system and exogenous
disturbances can be counteracted.

• Feed-forward controller: where the control action is a function of some parameters that
are measured in advance and does not consider the current state of the system. This is
type of control is open loop and possible divergences between the model used to obtain
the control signal and the real plant are crucial for the stability of the system. However, a
variation of this type of controllers can include a feedback loop that considers the current
state of the system to adjust the control signal compensating for those divergences.
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When dealing with a robot manipulator with the mentioned controllers and intending a low-
level torque control, the inverse model is needed to obtain the required torques given joint
positions, velocities and accelerations that generate the motion from an initial position to a
desired end-effector position.

The inverse dynamics model required to obtain the torques for the robot manipulator is
usually hard to compute for manipulators with redundant joints (robot arms with 7 degrees
of freedom). Furthermore, all the dynamical parameters of the manipulator, such as the
inertia of each joint, need to be known. Therefore, an approach that does not require the
aforementioned inverse model and that is easily adaptable to different manipulators would
facilitate the control of these manipulators.

As mentioned in the introduction, this thesis aims at implementing the Active Inference
scheme for a reaching task. The reaching task consists on a motion from point A to point B,
in which the trajectory between these is not defined. Usually, for a reaching task in a robot
manipulator, the variables related to the control are the following:

Concept Symbol Description

reference xd End-effector target position in Cartesian coordinates

control signal Φ Actuator signal, for low-level controllers: joint torques

states
[
q
q̇

]
Joint positions and velocities

posee posee Current end-effector position

error e Difference between reference and current end-effector position

Table 3-1: Variables in the robot control reaching task addressed in this thesis

In figure 3-1, the control scheme using a feedback loop for robot control is depicted. In this
case, two different options are shown: first, where the robot states are available (known as
joint-space control [11]); and finally, where only the end-effector position is known (known as
Cartesian control [12]).

In the first scenario, different controllers can be used: regulation control (PID control), com-
puted torque control (also known as inverse dynamics control). In the second scenario, some
of the possible controllers are: Cartesian torque control, joint-space torque control (using
inverse kinematics to transform from Cartesian-space to joint-space).
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3-2 Active Inference robot control 9

(a) States available

(b) End-effector position available

Figure 3-1: Control scheme for robot manipulator control

3-2 Active Inference robot control

Robot manipulator control has been already addressed in a published paper by Pio-Lopez
et al.: "Active inference and robot control: a case study" [1]. A thorough analysis of the
paper has been done to extract the interesting contributions and to finesse the control scheme
proposed taking into consideration the limitations identified.

3-2-1 Analysis of "Active inference and robot control: a case study"

The authors of this paper present the first implementation of Active Inference for a robot
manipulator control. It is applied to a 7 degrees of freedom arm of the PR2 robot, which
is simulated using the Robot Operating System (ROS). Their main contribution consists on
demonstrating how the Active Inference scheme can control a robot arm under different noise
conditions in the sensory mapping (vision) and in the dynamical model (proprioception).
The correspondence between the Active Inference scheme and the robot manipulator variables
used in the aforementioned paper [1] is shown in table 3-2.

Generative process

As mentioned in section 2-2, the generative process corresponds to the true dynamics of
the real world but in this case the generative process was defined with a dynamical model
replacing the actual robot simulation.
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Active Inference Robot manipulator
Concept Variable Variable Concept

Hidden states x =
[
x
ẋ

] [
q
q̇

]
Joint positions and velocities

Causal states v T Target position

Action a τ Torque signal

Prior belief Φ Φ Controller signal

Table 3-2: Active Inference - robot manipulator correspondence of variables in [1]

As it can be seen in equation 3-1, the sensory mapping function g(x, v) consists on the input
states (hidden and causal states) and the end-effector current position. On the other hand,
the equations of motion f(x, v, a) comprehend the velocities and accelerations of the joints.
The velocities are obtained using the second half of the hidden states corresponding to the
velocities q̇, while the accelerations are obtained assuming Newtonian dynamics as it has been
done for a human arm in [5].

g(x, v) =

 x
v

Pos

 f(x̃, v, a) =



x′1
x′2
...
x′7

(a1−k1x1−κ1x′1)
m1

(a2−k1x2−κ1x′2)
m1

(a3−k1x3−κ1x′3)
m1

(a4−k2x4−κ2x′4)
m2...

(a7−k2x7−κ2x′7)
m2



(3-1)

where x = (x1, x2, . . . , x7) are the angles of the joints (hidden states); v = (v1, v2, v3) is
the target position of the end effector; Pos corresponds to the actual position of the end
effector; mi is the mass, ai corresponds to the action and κi and ki are viscosity and elasticity
coefficients.

Generative model

Regarding the generative model, the one proposed in [1] is shown in equation 3-2. The
sensory mapping used corresponds to the same as the one from the generative process; while
the equations of motion only differ on the acceleration part. The action signal used in the
equations of motion from the generative process is substituted here for a controller signal Φ.
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3-2 Active Inference robot control 11

g(x, v) =

 x
v

Pos

 f(x̃, v) =



x′1
x′2
...
x′7

(Φ1−k1x1−κ1x′1)
m1

(Φ2−k1x2−κ1x′2)
m1

(Φ3−k1x3−κ1x′3)
m1

(Φ4−k2x4−κ2x′4)
m2...

(Φ7−k2x7−κ2x′7)
m2



(3-2)

where x = (x1, x2, . . . , x7) are the angles of the joints (hidden states); v = (v1, v2, v3) is the
target position of the end effector; Pos corresponds to the actual position of the end effector;
m1 is the mass, Φi corresponds to the control signal and κi and ki are viscosity and elasticity
coefficients.

Controller

The controller signal (Φ) provides angular increments per joint and is obtained as a sum of
two actions α and β:

Φi = αi + βi (3-3)

The first action α corresponds to a PI controller that considers the following feedback error:

ei = (ϕ× φi) · Posi (3-4)

where ϕ = T − J describes the shortest path to reach the target being T the target position
and J the end effector position, φi = Ji − J/‖Ji − J‖ is a unit vector that links each joint
position to the end the end effector one, where Ji corresponds to the ith joint position and J
to the end effector position, and Posi is a unit vector collinear to the rotation axis of the ith
joint. The PI controller ensures that:

ėi = αi = −ppei + pi

∫ t=t0

t=0
ei(t)dt, (3-5)

where t0 corresponds to the current time and pi and pp are two positive gains to adjust the
convergence rate.

The second action β is used to predict the influence of the stretched arm singularity. This
action is only acting on the elbow and shoulder joints (β2 and β4):

β1 = β3 = β5 = β6 = β7 = 0
β2 = γmγcpp2

β4 = −γmγcpp4

 (3-6)
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where pp2 and pp4 are two positive gains used to balance the contribution of the two joints
and γm and γc correspond to:

γm =
∣∣∣∣ ϕ‖ϕ‖ · φ2

‖φ2‖

∣∣∣∣
γc = ϕ · φ2

 (3-7)

The controller used in this implementation has been specifically designed for this robot ma-
nipulator considering its kinematics properties. Moreover, 4 different parameters (pp, pi, pp2
and pp4) need to be tuned for each implementation, which makes this controller less adaptable
to different manipulators.

Implementation

Regarding the implementation proposed in this paper shown in figure 3-2, the action obtained
from the Active Inference scheme is not used directly on the PR2 robot simulation. In this
case, the updated hidden states (joint positions q) are sent to an internal position controller
that the simulation includes and that brings the robot arm to the desired joint positions.
Furthermore, their implementation consists on an offline scheme as there is no feedback from
the simulation in terms of actual joint positions.

Figure 3-2: Active Inference control scheme implementation used in Pio-Lopez et al. [1]

As described in the section above, the controller provides a per-joint angular increment action,
but when embedded in the generative model, this action is being used as a force in the
Newtonian dynamics model described. Moreover, this dynamic model does not consider
gravity, while it is considered in the simulation; however, their simulation still converges
thanks to the aforementioned internal position control that computes the necessary torques
to keep the robot arm in the desired joint positions.
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Additionally, the equations of motion of the generative model proposed in the paper do not
correspond to the ones used for their simulations. In these, the elasticity coefficient ki is set
to zero modifying the equations of motion to the following ones:

f(x̃, v) =



x′1
x′2
...
x′7

(Φ1−κ1x′1)
m1

(Φ2−κ1x′2)
m1

(Φ3−κ1x′3)
m1

(Φ4−κ2x′4)
m2...

(Φ7−κ2x′7)
m2



(3-8)

3-2-2 Outcomes

After the analysis of the implementation proposed in [1] and the assumptions made by the au-
thors and by replicating their experiments, the interesting outcomes that have been obtained
are:

• Robot manipulator implementation: it is the first implementation of the Active Inference
scheme for a robot manipulator control and therefore represents a proof of concept.

• Embedding a controller in the generative model: based on the work by Karl Friston
in [7], it is shown how using a controller as a prior in the generative model can steer
the motion as desired.

• Offline implementation: the authors are not closing the loop in their simulations since
only the position command is sent to the robot simulation and there is no data obtained
from the real process used in the Active Inference scheme.

• Difference between process and model: even though in the paper the generative model
and generative process share the same format of equations of motion, the ones used in
the simulations differ one from the other as shown in the section before.

On the other hand, the results obtained are conditioned by the following limitations:

• Dynamic model of a robot manipulator with human-like Newtonian dynamics: the
equations of motion of both the generative model and generative process use elasticity
and viscosity coefficients to obtain the acceleration of the joints. This dynamic model
does not represent the true dynamics of the system that is being controlled and therefore
the action computed in the Active Inference scheme does not represent the real action
needed to perform the desired motion.
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• Position control using internal controller from the simulated robot: in the simulation, the
robot motion is controlled by sending a desired vector of joint positions to the simulation
and an internal position control computes the required torques to move to the desired
position. This limits the application of this scheme only to robot manipulators where
the position control is already available.

• Real world dynamics: there is no gravity considered in the dynamic model of the system
even though it is considered in the simulation. The results obtained are possible thanks
to a joint position control that the simulation includes and that is able to compensate for
the gravity internally. Since the model used does not include gravity, the applicability
of this scheme is again limited to robot manipulators where the joint position control is
available.

• Increments in angular position used as force to compute accelerations: in the equations
of motion of the generative model, the acceleration of the joints is obtained using joint
angular increments (controller signal) instead of forces. This may not be seen as a
limitation but a conceptual error of using angular increments as a force that drives the
motion.

• Controller: to obtain a stable system, the controller used has been specifically designed
and tuned based on the characteristics of the robot manipulator used in the simulations,
including not only the error between the desired and actual position but a component
to predict the stretched arm singularity. This particular design becomes a limitation
when trying to generalise the scheme to different manipulators.
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Chapter 4

Robot manipulator

In this chapter, the robot manipulator chosen for the experiments is depicted. The robot
manipulator used is the KUKA LBR iiwa robot arm. In order to design controllers for
a given robot manipulator, the kinematics and dynamics of this manipulator need to be
studied. Therefore, the forward kinematics and dynamics of this robot manipulator are
described, together with their implementation. Finally, the experimental setup used in this
thesis is reported.

4-1 KUKA LBR iiwa

The KUKA LBR iiwa is a lightweight robot manipulator with 7 degrees of freedom widely used
in research. This ensures the existence of a 3D robot model that can be used for simulating
the experiments. Besides, the availability of this robot in the DCSC lab has influenced the
decision as an implementation in the real robot was initially intended.

Figure 4-1: KUKA LBR iiwa robot manipulator (Image: KUKA)
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16 Robot manipulator

4-2 Kinematics and dynamics of the robot manipulator

The kinematics and dynamics of the KUKA LBR iiwa robot manipulator are needed in order
to control the system. The controller that is described in section 5-2 requires the forward
kinematics and the Jacobian matrix, while the Active Inference scheme requires the forward
dynamics model to obtain a part of the robot states as depicted in section 5-3.
As mentioned before, the KUKA LBR iiwa robot manipulator has 7 controlled axes that for
this thesis they have been defined as shown in figure 4-2 to obtain the end-effector position
using the forward kinematics.

Figure 4-2: KUKA LBR iiwa robot manipulator with the defined axes for each joint

Furthermore, for the forward kinematics problem the lengths of the links are also indispens-
able. These lengths are shown in table 4-1 referring to the di parameters appearing in figure
4-3.

Figure 4-3: KUKA LBR iiwa robot manipulator with distances of the links

d1 d2 d3 d4 d5 d6 d7 dee

0.1575 0.2025 0.2045 0.2155 0.1845 0.2155 0.0810 0.0450

Table 4-1: Length of the robot manipulator links in meters as seen in figure 4-3

4-2-1 Forward kinematics

The forward kinematics are used to obtain the end-effector position and orientation of the
robot manipulator knowing the joint angles using kinematic equations of the robot manipu-
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lator. In other words, it is a transformation from the joint space (qi) to the cartesian space
(x, y, z,Φ,Θ,Ψ). In this case, only the position (x, y, z) of the end-effector is needed and it is
obtained using the Denavit-Hartenberg convention. To do so, the Denavit-Hartenberg (D-H)
link parameters are needed. These parameters correspond for each link i to:

• di: distance along zi−1 to the common normal

• ri: distance along xi to the common normal

• αi: angle between zi−1 and zi measured about xi

• θi: angle between xi−1 and xi measured about zi−1

Given the chosen configuration of the joint axis shown in figure 4-2, the D-H parameters to
compute the forward kinematics are shown in table 4-2.

Joint d r α θ

1 d1 0 −π/2 q(1)
2 0 −d2 π/2 q(2)
3 d3 0 π/2 q(3)
4 0 −d4 −π/2 q(4)
5 d5 0 −π/2 q(5)
6 0 −d6 π/2 q(6)
7 d7 0 0 q(7)

End-effector dee 0 0 0

Table 4-2: Denavit-Hartenberg parameters

Once the D-H parameters are defined, the end effector position can be obtained by computing
the transformation matrix:

[T ] = 0Tn =
n∏
i=1

i−1Ti(θi) (4-1)

where

n−1 Tn =


cos θn − sin θn cosαn sin θn sinαn rn cos θn
sin θn cos θn cosαn − cos θn sinαn rn sin θn

0 sinαn cosαn dn
0 0 0 1


However, as mentioned before, only the position of the end-effector is required; this corre-
sponds to the top 3 rows of the last column of the transformation matrix [T ]:

[T ] =

 Rotation Position

0 0 0 1
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The implementation of the forward kinematics method in Matlab corresponds to the file
IIWA_FW_kinematics.m and can be seen in appendix A-1. However, the getTransform
method included in the robotics toolbox of Matlab can also be used to obtain the end-
effector position. This is possible as the robot chosen, KUKA LBR iiwa, is included in the
toolbox as one of the available robots. The getTransform method computes the transfor-
mation matrix [T ] given the joint positions (q) and the name of the joint for which the
transformation is required (iiwa_link_ee corresponding to the end-effector link in this case).

These two methods have been compared to verify if the IIWA_FW_kinematics.m function
created provides the same results as the getTransform method. This comparison is shown
in appendix B-1.

4-2-2 Jacobian

The Jacobian corresponds to the dynamic relationship between two different representations
of a system. In this case, the Jacobian matrix (J) relates the velocities in the joint space (q̇)
to Cartesian space (ẋ):

ẋ = Jq̇ (4-2)

Furthermore, the Principle of the Virtual Work [13] demonstrates that the Jacobian matrix
also relates the join torques (τ) and the force or torque applied by the end-effector (F ):

F = Jτ (4-3)

this relationship is needed to implement the controller since a force field needs to be converted
into a torque field.

For the computation of the Jacobian, the symbolic expression of the end-effector position is
obtained by slightly modifying the forward kinematics method described before. The position
vector [x; y; z] is an expression which consists on sin and cos functions that depend on the joint
positions q. The Jacobian matrix (J) is then obtained by computing the partial derivatives
of each component of the position vector with respect to each of the joint positions q:

J =



∂x

∂q1

∂x

∂q2
. . .

∂x

∂q7

∂y

∂q1

∂y

∂q2
. . .

∂y

∂q7

∂z

∂q1

∂z

∂q2
. . .

∂z

∂q7


(4-4)

The implementation of the Jacobian matrix function in Matlab is divided in two files to
improve the performance of the algorithm. One file corresponds to the symbolic compu-
tation of the Jacobian matrix that is time consuming (IIWA_Jacobian.m) and therefore
only executed once and the other corresponds to the substitution of the joint positions
(IIWA_Jacobian_sub.m); both files can be seen in appendix A-1.
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4-2-3 Forward dynamics

The forward dynamics is a mathematical model that describes how the motion of rigid body,
a robot manipulator in this case, changes due to applied torques. This relation becomes
essential when the joints accelerations are required, as it will be shown in section 5-3. The
dynamics that represent the aforementioned relation is:

q̈ = [M(q)]−1τ + C(q, q̇) +G(q) (4-5)

where q, q̇, q̈ represent joint positions, velocities and accelerations, τ the applied torque, M(q)
the mass matrix, C(q, q̇) the Coriolis and centrifugal forces and G(q) the gravitational force.

However, all the dynamic parameters (inertia, mass, . . . ) need to be known to analytically
compute this relation. As this is not the case, the forwardDynamics method included in
the robotics toolbox of Matlab is used. This is possible as the robot chosen, KUKA LBR
iiwa, is included in the toolbox as one of the available robots. The forwardDynamics method
computes the joint accelerations (q̈) using the Composite Rigid Body Algorithm [14] given
the joint positions (q) and velocities (q̇) and the torque applied (τ).

4-2-4 Gravity compensation

As introduced in section 5-2, a gravity compensation torque needs to be computed. In order
to obtain the needed torque to compensate the gravity forces existing on the simulation
environment, the gravity_torque method included in the robotics toolbox of Matlab is
used. This is, again, possible as the robot chosen, KUKA LBR iiwa, is included in the
toolbox as one of the available robots. The gravity_torque method computes the joint
torques (τg) needed to keep the robot manipulator in a desired position determined by the
joint positions (q) by using the inverse dynamics model.

4-3 Experimental setup

In order to simulate the experiments, two main components are needed, namely the 3d model
simulation and the platform to run the control algorithm. In this case, the 3d model simulation
is provided by the GazeboR© simulator engine, while the platform used to run the control
algorithm is Matlab.

Initially, an offline configuration of the setup shown in figure 4-4 is used to test the experi-
ments, where the 3d model simulation is not used during the execution of the algorithm and
a mathematical model is used to represent the robot manipulator in Matlab. However, the
3d model is used once the necessary commands are obtained from the control loop to verify
if the system behaves as predicted.

On the other hand, the online configuration of the setup shown in figure 4-5 uses the 3d
model simulation in real time together with the control algorithm, as this uses the sensory
information from the Gazebo simulation.
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Figure 4-4: Offline configuration of the setup

Figure 4-5: Online configuration of the setup

4-3-1 Gazebo simulation

The Gazebo simulator can be used in a virtual machine together with the Robot Operating
System (ROS)packages to provide the tools to connect Matlab to Gazebo through the ROS
interface. As mentioned before, since the KUKA LBR iiwa is often used for research, the
model of this robot manipulator is available in the virtual machine based on UbuntuR© LinuxR©

that already includes the necessary packages for the connection with Matlab1.

The KUKA LBR iiwa robot manipulator that is available in the Gazebo simulator is shown
in figure 4-6. The interface that is included with this robot manipulator in the simulation
engine provides torque control for each joint. Furthermore, it also allows to modify the
physics applied to the simulated world, for instance, the gravity. This is useful when testing
simulations as it permits different environments to verify the results.

1http://www.mathworks.com/robotics/v3/ros_vm_install
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Figure 4-6: KUKA LBR iiwa robot manipulator in the Gazebo simulation engine
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Chapter 5

Controller design

Once the current background on robot manipulator control in Active Inference is known, the
Active Inference scheme can be designed. This implies the design of a controller to be used
as a prior in this scheme. In contrast to what is done in [1], a low-level controller is intended
for the reaching task. To demonstrate the possible benefits of this method, the performance
of this controller needs to be compared with the current methods available; therefore, a state
of the art controller is also needed.

In this chapter, a state of the art controller using an inverse model to obtain the position
and velocities used as a benchmark is described. The torque controller designed dispensing
with the inverse model is shown together with a gravity compensation. After that, the Active
Inference control scheme, where the aforementioned controller serves as a prior, is defined and
its main parts are outlined. Finally, the control topologies are shown to ease the understanding
and observe the similarities and differences between the 3 schemes.

5-1 State of the art controller

The desire to control a robot manipulator at a low-level (without need of any internal con-
troller) implies the use of a controller where the control signal corresponds to the torque.
Joint torque controllers allow to control each joint’s torque instead of its position or velocity.
This type of controller is useful for human interaction since any external forces are considered
in the controller [15].

In this experiment, the state of the art controller is defined as the joint torque controller
proposed in [16] where two different torques are computed to control the motion of a robot
arm:

• The first torque component (τff ) corresponds to a feed-forward torque pre-computed
using inverse dynamics to obtain the required torque for a desired motion (angular
position qd, velocity q̇d and acceleration q̈d).
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• The second component (τPD) corresponds to a PD torque controller to compensate for
the errors in joint positions and velocities with respect to the desired ones [17].

Finally, the command that is used to control the robot corresponds to the sum of the torques:

τ = τff + τPD (5-1)

where,
τff = f(qd, q̇d, q̈d)
τPD = kP (qd − q) + kD(q̇d − q̇)

(5-2)

However, based on the availability and use of the signals that the rest of controllers have, the
PD torque controller to compensate for errors is applied only to the joint positions (q):

τPD = kP (qd − q), (5-3)

and the feed-forward torque τff is only computed using the desired position and velocity
(qd, q̇d).

A schematic of the control loop used for the state of the art controller is shown in Figure 5-1.

Figure 5-1: Control loop scheme for the joint torque controller with qd, q̇d, q̈d vectors describing
desired motion of each joint, kP and kD being the proportional and derivative gains of the PD
controller respectively and q, q̇ vectors representing the sensed angular positions and velocities of
each joint of the robot arm.

As it can be seen in figure 5-1, the set-point consists on a desired motion used to compute the
trajectory. This desired motion is specified with two vectors: one describing the desired joint
positions in this motion, while the other one defines the time at which this joint positions
should be accomplished. Once the trajectory is obtained using the Piecewise Cubic Hermite
Interpolating Polynomial [18], the torque needed to generate this motion is obtained using
the inverse dynamics model.

5-2 Torque controller

In section 3-1, the relevance of the inverse model has been pointed out. The obtention of this
model is not trivial and, therefore, dispensing with it reduces the difficulty to obtain a robot
manipulator controller. Based on this, the designed controller described here does not require
an inverse model to compute the control signal required to accomplish the reaching task.
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As mentioned before, a low-level controller is intended and since the robot interface provided
by the Gazebo simulation offers the possibility of a low-level torque control, the controller
that will generate the desired behaviour consists on a torque controller.

The controller used for this experiment is based on the idea proposed by Mohan and Morasso
[19]. They proposed the Passive Motion Paradigm (PMP) as an alternative to optimal control.
This paradigm makes use of force fields in the context of motor control to attract the end-
effector position to a desired position. As it can be seen in figure 5-2, the PMP consists on a
closed loop where the force field is mapped into a torque field to obtain joint velocities and
then, using the Jacobian and an integrator, mapped into the end effector position.

Figure 5-2: Passive Motion Paradigm scheme where xd corresponds to the desired position, K is
a matrix that determines the shape and intensity of the force field F , A is a matrix that transforms
the torque field to the degree of participation of each joint and J is the Jacobian matrix of the
kinematic transformation.

However, for the implementation proposed in this thesis, a torque controller is intended and,
therefore, only the part of the original PMP scheme where the torque is obtained given the
actual end-effector position and the desired one is used. The mathematical formulation of the
controller designed is:

• First, a virtual attractive force field F to the target is defined:

F (x) = K(xd − posee), (5-4)

where posee corresponds to the vector that identifies the pose of the end-effector and
xd the target position, both, in Cartesian coordinates; and K a matrix that determines
the shape and intensity of the force field.

• Second, the force vector F is mapped into an equivalent torque vector τc:

τc = JTF, (5-5)

where J is the Jacobian matrix of the kinematic transformation.

The designed controller computes the needed torque τc obtained from the equation above and
this torque is added to the torque τg which corresponds to the needed torque to compensate
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for gravity based on the joint positions q. As described in the mathematical formulation, the
end-effector position is needed and, therefore, the forward kinematics method described in
section 4-2 is used to compute this position given the joint positions q. The control loop of
the designed controller is shown in figure 5-3.

Figure 5-3: Control loop of the torque controller designed including gravity compensation

5-2-1 Gravity compensation

When the controller wants to be tested in the simulation, to bring this simulation closer to the
real world robot, the gravity needs to be considered. This leads to the need of a compensation
torque to be added to the control signal obtained from the controller that is defined in section
4-2-4.

The gravity compensation is required since the designed controller and the PMP in which
it is based do not consider external forces, such as gravity. However, these can be added in
addition to the torque obtained as mentioned in [20]; this is shown in figure 5-3.

5-3 Active Inference scheme

In order to understand how the Active Inference scheme needs to be implemented, an overview
of the process is needed. The Active Inference loop consists on a prediction error minimization
iterative process as shown in figure 5-4. This loop consists on the offline implementation of
the Active Inference process from the spm_ADEM.m file contained in the Statistical Parametric
Mapping (SPM)1 suite for Matlab originally developed by Karl Friston.

1More information on the SPM software: https://www.fil.ion.ucl.ac.uk/spm/
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Figure 5-4: Active Inference scheme: prediction error minimisation based on spm_ADEM.m

The following table shows the relation between the Active Inference scheme variables from
figure 5-4 and the robot manipulator variables that are used throughout the document:

Active Inference Robot manipulator
Concept Variable Variable Concept

hidden states x =
[
x
ẋ

] [
q
q̇

]
true joint positions and velocities

internal hidden states µx =
[
µx
µ̇x

] [
q
q̇

]
modelled joint positions and velocities

causal states v xd target position
internal causal states µv xd target position

action a τ torque signal
prior belief Φ Φ controller signal

Table 5-1: Active Inference - robot manipulator correspondence of variables

As it can be seen in figure 5-4 and the figures in the coming sections, the target position xd
does not appear as part of the scheme. This is because this variable is only used to initialise
µv at the beginning of the execution.

Now that the controller that will be used as a prior has been defined and the Active Inference
loop has been shown, the Active Inference scheme that will make use of this controller can
be studied. To do so, three important aspects have to be defined, these aspects needed in
order to apply the Active Inference scheme are: the control loop, the generative model and
the generative process.
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5-3-1 Control loop

In terms of control, the scheme of the control loop is a fundamental aspect for understanding
what is happening. This control loop consists of a schematic visualisation of the process by
which the control signal is generated and how it is used as a feedback for the system that
needs to be controlled. In this case, two different options for the control loop are possible
when using the Active Inference scheme: offline and online. These two schemes are detailed
in what follows.

Offline control loop

The offline configuration of the scheme does not consider a real world process, but an internal
simulation of it (generative process). In this case, the control loop includes an evaluation of
the generative process simulated in order to obtain the causal states and the evolution of the
true hidden states derivatives. The causal states from the generative process ( ỹ, used as the
true response from the system) and the internal states µ̃ are used to compute the prediction
error. These internal states are also used in the generative model evaluation, which includes
the controller signal Φ as the prior belief.

The prediction errors, the internal states are updated through a gradient descent on the Free
Energy. Since the real process is part of the scheme, the true states x̃ are also updated by
integrating them. Furthermore, the updated action that needs to be applied to the generative
process is also obtained through a gradient descent on the Free Energy. The schematic of this
control loop is shown in figure 5-5.

Figure 5-5: Proposed offline Active Inference scheme control loop

Using this control loop, when the Active Inference iterations are completed, the actions ob-
tained can be used as a feed-forward torque similar to what is done in the state of the art
controller.
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Online control loop

On the other hand, the online configuration uses the real world process. In this case, the
generative process is no longer part of the control system. Since it is a real world process, the
hidden states of this process are unknown from the perspective of the control system and the
evolution of them depends on the action received from the control system and it is not used
for the control loop.

Similar to the offline control loop, only the response y, which corresponds to the sensory
mapping, is used for the prediction errors computation. However, the generalised response
ỹ is needed for this computation. As it can be seen in the schematic of this control loop in
figure 5-6, the rest of the loop remains the same.

Figure 5-6: Proposed online Active Inference scheme control loop

5-3-2 Generative process

The generative process corresponds to the real world process. In the offline situation, it
corresponds to a model of the real world (which should be the closest to reality), while in the
online configuration, this process remains outside the control loop as shown in 5-6. When
defining this process for the offline configuration, an important part of it is the true plant
dynamics function f that represents the equations of motion and that is defined as:

f(x,v, a) =
[

q̇
q̇′

]
=
[

q′
f1(q,q′, a)

]
=



q′1
q′2
...

q′7
f1(q1,q′1, a1)
f1(q2,q′2, a2)

...
f1(q7,q′7, a7)


(5-6)
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where q′ corresponds to the true velocities of the joints and f1 represents a forward dynamics
model function that returns the true accelerations q̇′ given the true hidden states (q,q′) and
the computed action a.

The other important part of the generative process is the function g that corresponds to the
sensory mapping that returns the true position of the end-effector:

g(x,v) =

 x
v

posee

 (5-7)

where posee corresponds to the true position of the end-effector of the robot.

5-3-3 Generative model

On the other hand, the generative model corresponds the internal model of the process which
is does not need to necessarily be equal to the generative process. In the same way, the plant
dynamics function f represents the modeled equations of motion and it is defined as:

f(x, v) =
[
q̇

q̇′

]
=
[

q′

f1(q, q′, τ)

]
=



q′1
q′2
...
q′7

f1(q1, q
′
1, τ1)

f1(q2, q
′
2, τ2)

...
f1(q7, q

′
7, τ7)


(5-8)

where q′ corresponds to the velocities of the joints (part of the hidden states) and f1 represents
a forward dynamics model function that returns the accelerations given the modelled positions
q and velocities q′ and the computed torque τ (controller signal).

The function g corresponds to the sensory mapping that returns the modelled end effector
position of the robot arm:

g(µx, µv) =

 µx
µv
posee

 (5-9)

where posee corresponds to the end-effector position obtained through the forward kinematic
model given the angular positions of the joints (hidden states q).

5-4 Active Inference scheme models

As mentioned in previous chapters, the generative model and generative process play an
important role in the Active Inference framework. Both of them are composed by equations
of motion that describe the dynamics of the system and sensory mappings that relate the
hidden states with the sensations, which in this case are the end-effector position.
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The choice of these two aspects, equations of motion and sensory mapping, becomes a crucial
aspect of this implementation. Based on the related work by Pio-Lopez in [1] and the methods
given in section 4-2, there are different options available when choosing the aforementioned
aspects.

5-4-1 Equations of motion

For the equations of motion of the generative model and generative process, these two options
are considered:

1. Forward dynamics model (forwardDynamics method) from the robotics toolbox (see
section 4-2-3)

2. Newtonian dynamics model from the paper by Pio-Lopez [1] (see section 3-2)

For the generative process, the forward dynamics model (option 1) seems to be the most
appropriate as it corresponds to the model which would be closer to the true dynamics of
the model as it is based on the urdf file which includes all the mechanical information of the
robot manipulator used in the simulation.
On the other hand, for the generative model, any of the options available can be accepted as
the internal model of the robot could differ from the real one. However, when using option 2,
the gravity cannot be considered as this model does not include the effect of gravity on the
acceleration.
Based on the theoretical definition of Active Inference, using the same option for the generative
process and the generative model is supposed to be the optimal scenario. This is the case
because minimizing the prediction error when using the same model implies that the difference
between the true and internal states is also minimized.

5-4-2 Sensory mapping

For the sensory mapping of the generative process and generative model, which consists on
the forward kinematics returning the end-effector position posee given the joint positions q,
two options are available:

1. Forward kinematics model (getTransform method to obtain the transformation matrix)
from the robotics toolbox (see section 4-2-1)

2. Forward kinematics function created based on the robot information (see section 4-2-1)

As mentioned in section 4-2-1, both options are equivalent. Therefore, any possible com-
bination between these two options will result in the same response as shown in appendix
B-1. However, the ease of changing parameters in the function created (option 2) allowing
to modify the sensory mapping, has been considered to use this option as the one for the
generative model.
On the other hand, the generative process sensory mapping uses the forward kinematics model
(option 1) so that the changes applied to the function created do not affect the true sensory
mapping. This will allow for future work studying the influence of model deviations in the
sensory mapping.
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5-4-3 Testing and conclusion

In this section, the simulations carried out to verify what has been mentioned earlier in this
chapter are shown and the conclusions regarding the optimal options are described.

Equations of motion

Regarding the equations of motion, it has been mentioned that the optimal option would
require the generative model and the generative process to have the same equations of motion.
However, the four different combinations are tested to verify this initial hypothesis.

The following simulations to chose the optimal equations of motion model for the generative
process and generative model are done:

# Generative model Generative process
1 forwardDynamics model forwardDynamics model

2 Newtonian dynamics (Pio-Lopez) Newtonian dynamics (Pio-Lopez)

3 forwardDynamics model Newtonian dynamics (Pio-Lopez)

4 Newtonian dynamics (Pio-Lopez) forwardDynamics model

Table 5-2: Active Inference scheme simulations for equations of motion choice

Figure 5-7: Active Inference scheme response for equations of motion simulation 1; response:
blue solid, target position: red dotted, 5%: black solid
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Figure 5-8: Active Inference scheme response for equations of motion simulation 2; response:
blue solid, target position: red dotted, 5%: black solid

From simulations number 1 and 2 (figures 5-7 and 5-8) in which the generative model and
the generative process are the same, which is supposed to be optimal, it can be seen that the
system is not converging towards the desired position.

Simulation 1 (figure 5-7) has a response that is becoming unstable and does not converge at
all. This is an unexpected behaviour as the initial hypothesis implied that this case would
be the optimal. Many simulations have been carried out, checking the model and the signals,
modifying the initial conditions and the parameters of the simulation, trying to figure out
the cause of this behaviour. However, the reason has not been found during the process of
this thesis. Further research on the implementation of the Active Inference framework by the
SPM suite, the forward dynamics model used and the foundational basis of this framework is
required to discern whether this is a particular case.

In simulation 2 (figure 5-8), the robot manipulator shows an oscillatory behaviour tending
to instability around a point that is not close to the desired goal. The reason why this is
happening comes from the form of the equations of motion given in 3-2:

q̈i = (Φi−kixi−κix
′
i)

mi
.

In these equation, where the acceleration is computed, even if the torque is not equal to zero,
the acceleration can be zero and then the agent believes it does not have to move. This is
possible given a combination of joint positions xi which, when multiplied by ki, is equal to
the computed torque Φi and therefore, even if the control signal is different from 0 because
the end-effector is not at the desired position, the acceleration that drives the motion can be
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Figure 5-9: Active Inference scheme response for equations of motion simulation 3; response:
blue solid, target position: red dotted, 5%: black solid

Figure 5-10: Active Inference scheme response for equations of motion simulation 4; response:
blue solid, target position: red dotted, 5%: black solid

equal to 0. This is also verified by changing the parameters of this equation and therefore the

A. Cibiach Mercadé Master of Science Thesis



5-4 Active Inference scheme models 35

converging point varies, but never reaching the desired one.

On the other hand, simulations 3 and 4 (figures 5-9 and 5-10), where the models are com-
binations of the two options available, show a convergence towards the desired end-effector
position. However, simulation 3 has a slower response with respect to simulation 4 because
the dynamics used in generative process of the former correspond to the Newtonian dynamics
one, while the latter uses the real forward dynamics model.

Furthermore, as mentioned before, the most appropriate option would be using the forward
dynamics model from the Matlab robotics toolbox for the generative process (which cor-
responds to simulation 4). This choice is made because when the offline Active Inference
scheme is used as a feed-forward controller, in the case of simulation 3, the command signals
obtained from this scheme correspond to the signals necessary to control a process described
by the Newtonian dynamics of the paper by Pio-Lopez [1]. These signals are not sufficient to
control the real process of the simulation which is determined by the the forwardDynamics
function from the robotics toolbox.

Therefore, the schemes corresponding to the definitive equations of motion functions for the
generative model and the generative process are shown in figure 5-11. The Matlab functions
corresponding to both equations of motion (IIWA_spm_fx_robot_dem_reach_offline and
IIWA_spm_fx_robot_adem_reach_offline) can be found in appendix A-2-1.

(a) Generative model (b) Generative process

Figure 5-11: Equations of motion schemes

Once these equations have been defined, the controller gain K is optimized through an iter-
ative process of simulations. These simulations and the final choice for this gain that is used
in the simulations for comparison are shown in appendix B-2.

The controller gain K is set to:

40 0 0
0 40 0
0 0 40

.
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Sensory mapping

As shown in appendix B-1 and described in 5-4-2, the schemes corresponding to the definitive
sensory mapping functions for the generative model and the generative process are shown
in figure 5-12. The Matlab functions created corresponding to these sensory mappings
(IIWA_spm_gx_robot_dem_reach_offline and IIWA_spm_gx_robot_adem_reach_offline)
can be found in appendix A-2-2.

(a) Generative model (b) Generative process

Figure 5-12: Sensory mapping schemes

Conclusion

Once the Active Inference scheme models have been chosen the simulations to compare this
method with the other controllers proposed in chapter 5 can be executed. The final Ac-
tive Inference scheme including the controller and the final equations of motion and sensory
mappings can be seen in figure 5-13.
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Figure 5-13: Definitive offline Active Inference scheme for the simulations
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5-5 Control topologies

In order to obtain a better picture of the controllers, the three control topologies used are
shown here. This allows the reader to understand better the comparison that is described in
the following chapter as all the variables and parameters can be related through the following
figures.

Figure 5-14: State of the art controller topology

In figure 5-14, the state of the art controller topology is shown. In this figure, the desired
motion is specified as a vector of desired positions at a certain time; using this, the trajectory is
generated (qD, q̇D). The feed-forward torque is pre-computed to satisfy the desired trajectory
using the trajectory generated. During the simulation, these torques are the control signal
sent to the robot manipulator adding an extra compensation torque that regulates possible
deviations between the desired and actual trajectory.

Figure 5-15: Torque controller designed topology

In figure 5-14, the control topology corresponding to the designed torque controller is shown.
In this case, the controller computes a torque τcontroller based on the difference between the
current position posee, obtained using a forward kinematics model, and the desired position
xd by using the Jacobian matrix J . However, the gravity compensation torque τgravity is
added to the controller one to obtain the control signal sent to the robot manipulator.
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Figure 5-16: Offline Active Inference scheme control topology

In figure 5-16, the offline Active Inference scheme topology is shown. In this figure, the offline
Active Inference block corresponds to the process shown in figure 5-13, where, after all the
iterations are completed, the action signals (torques) are used as a feed-forward control signal
(similar to the benchmark topology, figure 5-14). Inspired by the benchmark controller, a
compensation torque to regulate possible deviations is also included in this scheme. Finally,
the gravity compensation torque is also added to the control signal.

Figure 5-17: Online Active Inference scheme control topology

In figure 5-17, the control topology corresponding to the online Active Inference scheme is
shown. In this case, the online Active Inference block corresponds to the process shown in
figure 5-6 where the end-effector position corresponds to the input together with the de-
sired position and the action signal (torque) is used as the control signal sent to the robot
manipulator.

As it can be seen in figures 5-14, 5-15, 5-16, the controller blocks share the same inputs and
outputs, as well as the real world process (plant). The controllers proposed use the joint
positions obtained from the robot manipulator simulation to compute the torque (control
action) that needs to be sent to the simulation in order to satisfy the desired task (a reaching
task in this case). However, the state of the art controller requires the desired motion to
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generate the trajectory to reach a target position instead of the desired end-effector position,
this implies that the manipulator motion can be defined but requiring the inverse dynamics
model unnecessary in the two other controllers. On the other hand, the online Active Inference
scheme (figure 5-17), which has been discarded (see section 6-0-2), should only have access
the end-effector position from the robot manipulator, modifying, in this case, the input signal
used in the controller.
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Chapter 6

Simulations and results

In this chapter, the simulations necessary to verify if the Active Inference scheme can be
used for robot control are done. Together with the simulations needed to compare the Active
Inference scheme with the designed controller as a prior to the designed controller itself and
the benchmark controller shown in chapter 5.

6-0-1 Preliminary considerations

Some aspects concerning the simulations need to be considered beforehand. While the con-
troller gains are optimized throughout an iterative process of simulations, there are constants
such as the sampling time that need to be defined. In this case, the fast dynamics of the
system that is being controlled (robot manipulator) require a low value for this parameter.
After simulations with the state of the art controller and considering that a robot manipulator
presents fast dynamics, it has been seen that a sampling time of 0.01 seconds is sufficient to
capture the dynamics of the system to be able to control it.

Besides, the Active Inference scheme process involves the configuration of different parameters
that are outlined in what follows.

• The embedding order parameters corresponds to the amount of derivatives of the state
included in the generalized coordinates vector. Based on Karl Friston’s recommenda-
tions for the hidden states, a value between 4 and 6 is sufficient to capture the necessary
dynamics of a trajectory. For the causal states, as these are defined constant, a standard
value is used.

• Error precisions correspond to the inverse covariance of the noise considered in the sig-
nals. Values equal or higher than exp16 correspond to a no-noise scenario. In this thesis,
the no-noise scenario is chosen to prove the validity of the implementation proposed with
ideal conditions.
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• Integration time used to update the states in the Active Inference loop which has to be
the same as the sample time in order to obtain states and actions for each of the time
steps; as mentioned before, due to the fast dynamics a low value is chosen.

The following table lists the final values chosen for these parameters that remain invariant in
all the simulations carried out:

Parameter Value

Embedding order of hidden states 4

Embedding order of causal states 2

Error precision of hidden states exp16

Error precision of sensations exp16

Integration time (sample time) 0.01

Table 6-1: Active Inference parameters for simulations

6-0-2 Control loop considerations

Regarding the control loop, only the offline implementation of the Active Inference scheme
has been considered, this implementation corresponds to the one shown in figure 5-5. The
online implementation initially considered has been discarded due to:

• Computational time: each iteration of the spm_ADEM implementation of the Active Infer-
ence scheme where the states are updated takes about 1 second to complete. Therefore,
for a system with fast dynamics like the robot manipulator in which a low sample time
is required, the implementation in real time is currently not possible.

• Current Matlab implementation: the current Active Inference scheme implementation
in Matlab, included in the Statistical Parametric Mapping (SPM) suite, is not prepared
for an online implementation as it was originally developed for offline simulations. This
results from the true hidden states x being part of the scheme, when in an online
implementation, these states are unknown from the Active Inference scheme perspective.

• Generalised coordinates in the system response: the Active Inference scheme requires
not only the response of the system y but the generalised coordinates of this variable ỹ
as shown in 5-6. Generally, the derivatives included in the generalised coordinates are
not available directly as outputs of the real process.

Thus, all the Active Inference scheme simulations that are shown in this chapter correspond
to the offline Active Inference scheme control topology shown in figure 5-16.
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6-0-3 Simulation settings and considerations

All simulations carried out in this chapter consist on a reaching task performed by the robot
manipulator. This reaching task consists on the robot manipulator moving from point A to
B, in which A corresponds to the home configuration of the robot manipulator, which means
that the joint positions are equal to zero and corresponds to the upright configuration; and B,
the final position, consists on the joint positions that represent a randomly chosen end-effector
position.

As it will be shown in the coming sections, the chosen trajectory (point A to point B) does
not present any singularities during the motion obtained when using the state of the art
controller and the designed torque one. However, it is still possible that some of the results
may be biased by this specific trajectory used. Originally, different random desired end-
effector positions were considered, however, due to the computational time required for each
simulation of the Active Inference scheme only the following desired end-effector position has
been used for the comparison:

xy
z

 =

−0.4689
−0.2024
0.7339

.
Apart from that, the simulations are going to be compared according to the amount of
iterations needed to settle within a 5% of the desired position (settling time), the overshoot
present in their responses and the time required for the response to rise from 10% to 90% of
the target position (rise time). Furthermore, the time required to run each simulation has
also been considered for the comparison of the controllers.

6-1 Zero-gravity simulations

Once the generative process and generative model have been defined for the Active Inference
scheme, the simulations of the three proposed controllers, in order to compare them, has to
be carried out. The first comparison is made for a situation with zero-gravity conditions. The
three controllers are compared using the same sample time dt = 0.01 and for a number of
samples/iterations n = 5000 which corresponds to 50 seconds.

6-1-1 Benchmark simulation

The state of the art controller described in section 5-1 and that corresponds to the control
topology shown in figure 5-14 is tested in this section. The only variable of the controller
corresponding to the gain kp is kept as defined in [16]. Furthermore, as this simulation
corresponds to the non-gravity ones, the inverse dynamics model is configured with gravity
equal to zero.

One of the advantages that this controller presents is the possibility to define not only the
initial and end position but the trajectory between these points thanks to the use of the
inverse dynamics model. Therefore, the other parameters that need to be set in this controller
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correspond to the desired trajectory. In this case, the trajectory is only defined in two points,
the initial position and the desired one. This is done to bring this simulation closer to the
other controllers where only these two positions are defined. Each point of the trajectory also
requires the time in which these positions should be achieved. For the simulations, the time
where the target position should be achieved has been chosen considering the dynamics of
the system and to obtain a smooth response with a low settling time and overshoot. This has
been done through an iterative process observing the response of the system when modifying
the target position timing. Finally, it has been seen that with 2 seconds as the time between
the initial and final position, a response with low overshoot and with a reasonable settling
time is obtained.

The response obtained using the benchmark controller is shown in figure 6-1. From this
simulation it can be seen that the response obtained with this controller is smooth, this is
because of the generated trajectory using the inverse model. In this case, the time needed for
this controller to settle within the boundaries of the 5% margin is close to 4 seconds. The
transient state of the response does not present overshoot in the y and z components while, in
the x component it is 5.16%. Moreover, the rise time of the 3 components is: [1.55; 1.93; 2.02]

seconds . Furthermore, the steady state error after 50 seconds is: 1e−4×

 0.3817
−0.2851
0.4462

.

Figure 6-1: Benchmark controller response of the x,y,z components in Cartesian coordinates
considering zero gravity; response: blue solid, target position: dotted red, 5% margin settling:
black solid
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6-1-2 Torque controller simulation

In this section, the torque controller designed in section 5-2 and with the control topology
shown in figure 5-15 is tested. The input of this controller consists on the desired end position
defined in section 6-0-3 and the only variable that needs to be defined is the controller gain
K. Since this simulation corresponds to the zero-gravity section, the gravity compensation
torque block is not needed as the resultant torque would be zero.

Regarding the controller gain K, this is chosen to be the same as the one mentioned in section
5-4-3 and obtained in appendix B-2. As the value determined in the mentioned section is
the controller gain that will be used to test the Active Inference scheme and it is intended to
compare the performance of these controllers, the controller gain K is set to:

40 0 0
0 40 0
0 0 40

.
The response obtained using the designed torque controller is shown in figure 6-2. From
this simulation it can be seen that the time needed for this controller to settle within the
boundaries of the 5% margin is around 5.5 seconds. The transient state of the response shows
oscillations in the 3 components with remarkable overshoots (specially in the y component);
the overshoot for each component is: [31.29%; 71.34%; 68.71%]; furthermore, the rise time for
this response is: [0.24; 0.23; 0.18] seconds. Nonetheless, after these oscillations, the steady

state error after 50 seconds is: 1e−7×

 0.1211
−0.6205
0.0516

.

Master of Science Thesis A. Cibiach Mercadé



46 Simulations and results

Figure 6-2: Designed torque controller response of the x,y,z components in Cartesian coordinates
considering zero gravity; response: blue solid, target position: dotted red, 5% margin settling:
black solid

Tuning the controller gain to a lower value, the system has a smoother response while still
being fast at settling within the boundaries, however since the same controller wants to be
compared the responses are compared using the same gain K.

6-1-3 Active Inference scheme simulation

The Active Inference scheme in closed loop defined in section 5-3 and that corresponds to the
topology shown in figure 5-16 is tested in this section. In this case, since the Active Inference
scheme is executed offline and the commands are therefore used as a feed-forward gain, two
different responses are available. One corresponds to the Active Inference scheme loop and is
shown in figure 6-3, while the other one corresponds to the real simulation response (figure
6-4).

In the first response (figure 6-3), one can see a smooth response with some oscillations at
the transient state and some remarkable overshoots. However, it can be seen that the time
needed for this controller to settle within the boundaries of the 5% margin is around 8 seconds

and with a steady state error after 50 seconds of: 1e−7×

−0.5294
−0.2273
0.8136

.
Furthermore, the overshoot for this response in each component is: [64.47%; 74.31%; 22.92%];
on the other hand, the rise time is: [0.73; 1.06; 1.14] seconds.
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Figure 6-3: Active Inference scheme controller expected response of the x,y,z components in
Cartesian coordinates considering zero gravity; response: blue solid, target position: dotted red,
5% margin settling: black solid

On the other hand, when bringing these commands to the real simulation and closing the loop
(figure 6-4), the response is less smooth. In this case, there are big oscillations at the transient
state, which is far from the desired behaviour and the one obtained in the Active Inference
loop. At the beginning of the simulation, the z component (height) has big oscillations that
go from the highest point possible for the robot manipulator to the ground, this happens
because the initial state is highly unstable when the gravity is considered and the system
needs some iterations to recover from it. However, the system is able to stabilize and the the
time needed for this controller to settle within the boundaries of the 5% margin is around 11

seconds and with a steady state error after 50 seconds of: 1e−6×

−0.3240
0.1228
0.0014

.
In this case, the overshoots present are large: [257.50%; 549.95%; 128.11%]; while the rise time
is influenced by the initial instability: [0.26; 0.36; 0.29] seconds.
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Figure 6-4: Active Inference scheme controller response of the x,y,z components in Cartesian
coordinates considering zero gravity; response: blue solid, target position: dotted red, 5% margin
settling: black solid

6-1-4 Comparison

Once the three response of the controllers have been shown, the comparison in terms of
performance can be discussed. Table 6-2 shows the settling time needed for each of the
controllers to be within a 5% margin, the response overshoot and rise time for the (x, y, z)
components, as well as the computational time.

Controller Settling
time (s)

Overshoot
(%)

Rise
time (s)

Computational
time

State of the art 4

5.16
0
0


1.55

1.93
2.02

 Low

Designed torque controller 5.5

31.29
71.34
68.71


0.24

0.23
0.18

 Real time

Active Inference scheme control 11

257.50
549.95
128.11


0.26

0.36
0.29

 High

Table 6-2: Controllers performance comparison with zero gravity
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Regarding the settling time, it can be seen that the state of the art obtains the best perfor-
mance; however, the designed torque controller is able to settle with a difference of around
1.5 seconds. Considering that the latter does not require an inverse model and the control
loop is executed in real time, the designed controller performance is comparable to the one
from the state of the art controller.

On the other hand, the Active Inference scheme controller requires 11 seconds to settle. The
difference between the behaviour of the designed controller and the Active Inference scheme,
where the designed controller is used as a prior, is due to the dynamics used for the control.
In the first case, the true dynamics of the simulation are used as this simulation is run online,
while for the Active Inference scheme, the dynamics used in the model are different from the
true ones (equations of motion by Pio-Lopez [1]).

In terms of the overshoot present in the three controllers, the state of the art controller
offers the best performance as its overshoot is almost inexistent except for the x component.
This is possible due to the definition of the trajectory in which the time between the initial
and final point plays a crucial role. On the other hand, the designed controller presents
higher overshoots in the 3 components due to the initial instability of the system caused by
the upright initial position. Finally, even thought the expected Active Inference response
(6-3) presented overshoots similar to the ones from the designed controller, the closed loop
simulation shows huge overshoots for the 3 components. This is, again, due to the initial
instability of the system that forces the robot manipulator to oscillate.

Regarding the rise time, both, the designed controller and the Active Inference scheme present
fast rise time; however this is also related to the overshoot in these responses. On the other
hand, the state of the art controller has a slower rise time (1.5− 2 seconds).

In terms of the computational time, the designed torque controller does not require any
previous computation as the control is done in real time, while the state of the art controller
requires of the previous computation of all the control signals (torques) need to perform the
reaching task. This pre-computation of the torques is executed in around 20 seconds for
all the time instances (5000). On the other hand, as mentioned before, the current Active
Inference implementation takes about 1 second per iteration; therefore, for a 5000 iterations
simulation, the computational time required is about 3500-4500 seconds.

6-2 Earth’s gravity simulations

Once the performance of the three controllers has been compared in a zero gravity environ-
ment, their performances need to be tested in a environment considering Earth’s gravity.
This simulations are required to obtain a better understanding of the performances of the
controllers in a real world environment where the gravity is present.

This has not been the initial point of the simulations, since the way the system dynamics
are defined in the generative model for the Active Inference scheme does not consider grav-
ity. However, in this section the suitability of the gravity compensation block added in the
designed torque controller and the Active Inference scheme control topologies is verified.

As mentioned in section 4-3, the simulation environment Gazebo allows different settings of
the gravity and, therefore for this simulations, it is set to: [0; 0; −9.8].

Master of Science Thesis A. Cibiach Mercadé



50 Simulations and results

6-2-1 Benchmark simulation

This simulation is defined in the same way as the zero-gravity one. The only difference remains
in the gravity values used for the inverse dynamics model. When importing the model from
the robotics toolbox in Matlab that is used for the inverse dynamics computation, the
gravity vector that applies to this model is modified to consider gravity.

The response obtained using the benchmark controller with gravity is shown in figure 6-5.
From this simulation it can be seen that the response obtained with this controller is smooth,
this is because of the generated trajectory using the inverse model. In this case, the time
needed for this controller to settle within the boundaries of the 5% margin is around 4 seconds.
The transient state of the response does not present overshoot in the y and z components
while, in the x component it is 4.73%. Moreover, the rise time of the 3 components is:

[1.63; 2.15; 2.31] seconds. Furthermore, the steady state error after 50 seconds is:

 0.0011
−0.0006
0.0014

.

Figure 6-5: Benchmark controller response of the x,y,z components in Cartesian coordinates
considering Earth’s gravity; response: blue solid, target position: dotted red, 5% margin settling:
black solid

6-2-2 Torque controller simulation

Like the benchmark controller, this simulation is defined in the same way as the zero-gravity
one. The only difference remains in the gravity compensation torque block which is considered
in this simulation. This is done through the adjustment of the gravity vector of the model
imported in Matlab which is used in the gravity compensation block.
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The response obtained using the designed torque controller with gravity is shown in figure 6-6.
From this simulation it can be seen that the time needed for this controller to settle within the
boundaries of the 5% margin is around 6 seconds. The transient state of the response shows
oscillations in the 3 components with important overshoots of: [40.07%; 73.91%; 73.50%];
furthermore, the rise time of each of the components is: [0.18; 0.20; 0.14] seconds. Nonetheless,

after these oscillations, the steady state error after 50 seconds is: 1e−5×

0.2757
0.1151
0.0091

.

Figure 6-6: Designed torque controller response of the x,y,z components in Cartesian coordinates
considering Earth’s gravity; response: blue solid, target position: dotted red, 5% margin settling:
black solid

6-2-3 Active Inference scheme simulation

Like the two other controllers, this simulation is defined in the same way as the zero-gravity
one. In this case, as done in the designed torque controller, the gravity compensation torque
block is considered in this simulation. This is also done through the adjustment of the gravity
vector of the model imported in Matlab which is used in the gravity compensation block.

The response obtained using the Active Inference scheme with gravity is shown in figure 6-7.
The response obtained in this simulation corresponds to the robot manipulator falling to the
ground. This can be seen as the z component drops to almost 0 within the first iterations and
stabilises in that point, while the other two components are barely changing. As predicted,
the simulation does not converge to the desired position even if the gravity compensation
block is added. The fact that the generative model does not represent the true dynamics
influences the response obtained and shows that just adding the gravity compensation is not
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sufficient to generate the desired motion.

Figure 6-7: Active Inference scheme response of the x,y,z components in Cartesian coordinates
considering Earth’s gravity; response: blue solid, target position: dotted red, 5% margin settling:
black solid

6-2-4 Comparison

Once the three response of the controllers have been shown, the comparison in terms of
performance can be discussed. Table 6-3 shows the settling time needed for each of the
controllers to be within a 5% margin, the response overshoot and rise time for the (x, y, z)
components, as well as the computational time.

As it can be seen in the table 6-3, the Active Inference scheme row is empty because as shown
in the previous section, this scheme is not able to obtain a stable response when the gravity
is present.

In this section, only a comparison between the state of the art controller and the designed
one is possible. In terms of settling time, the results obtained are similar to the zero-gravity
simulations, where the benchmark controller was slightly faster; in this case, the difference
between these controllers is of 2 seconds.

Regarding the overshoot, like the zero-gravity simulations, the state of the art presents an
almost inexistent overshoot, while the designed controller reaches values of approximately
73%. This can be explained, again, because of the initial instability of the system. In the
case of the rise time, similar results are obtained with respect to the zero-gravity simulations.
Here, the rise time of the designed controller is also lower (approximately 0.20 seconds) but
increases the oscillations of the transient state.
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Controller Settling
time (s)

Overshoot
(%)

Rise
time (s)

Computational
time

State of the art 4

4.73
0
0


1.63

2.15
2.31

 Low

Designed torque controller 6

40.07
73.91
73.50


0.18

0.20
0.14

 Real time

Active Inference scheme control

Table 6-3: Controllers performance comparison with Earth’s gravity

Finally, in terms of computational time, the same as the zero-gravity simulations can be
applied. The designed torque control is executed in real time, without any pre-computation
needed, while the benchmark controller requires the computation of the torques needed which
takes about 20 seconds.

6-3 Conclusions

After having showed the performances of the three controllers in two different scenarios (zero-
gravity and Earth’s gravity), the conclusions about these performances can be extracted.

From the zero-gravity simulations, one can observe that the three controllers are properly
designed as they can stabilise the system within the required time span. However, the optimal
performance corresponds to the state of the art controller as its response does not present
important overshoots and the settling and rise time are satisfactory.

Furthermore, the simulation has shown that using the offline Active Inference scheme as a
feed-forward signal does not result in an optimal behaviour, whereas looking only at the Active
Inference scheme loop simulation response (figure 6-3), it presents a better performance. The
different behaviour between these may be caused by the difference of the internal model used
with respect to the real world process. In the former, consisting on the equations of motion in
Pio-Lopez paper [1], the inertial forces are not considered and, therefore, the first iterations
present an oscillatory behaviour until these are counteracted with the feed-back loop.

From the simulations that consider gravity, similar conclusions can be extracted regarding
the state of the art and designed controllers. The optimal performance corresponds to the
benchmark one, but the designed controller is also able to stabilise the system but with higher
overshoots. On the other hand, the Active Inference scheme controller is not able to stabilise
the system when closing the loop, this is due to the torques obtained in the offline computation
that do not include any gravitational force. However, from the offline simulation results, one
could say that an online implementation of this scheme should obtain a similar response to
the offline one.
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In conclusion, the state of the art controller has shown the best performance among the
compared controllers in both scenarios. However, the designed torque controller tested is also
able to stabilise the system (in both scenarios) in a similar amount of time but including
higher overshoots than the benchmark controller. Finally, the Active Inference scheme has
shown that it is able to stabilise the system, only for the zero-gravity case, in the offline
loop and the simulation response. However, the impossibility of using a dynamic model that
considers gravity in the generative model has become crucial in the non-converging behaviour
of the response in the simulations that consider gravity.
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Chapter 7

Conclusions and Future work

In this chapter, the final conclusions obtained from the work done throughout the thesis and
some recommendations on future work are given.

7-1 Conclusions

As mentioned in the Introduction chapter, the purpose of this thesis consists on discerning
whether the current Active Inference implementation can be used for robot manipulator
control in a reaching task. To do so, the current state of the art has been studied, a low-level
controller has been designed to use in the Active Inference scheme and a comparison of this
scheme with a benchmark controller is performed.

To begin with, in Chapter 3, a thorough analysis on the related work on robot control using
Active Inference was carried out. More specifically, the analysis of the paper by Pio-Lopez [1]
brought many outcomes about the interesting work (embedding a controller as a prior, offline
implementation) done in the paper and how these could help in the implementation proposed
here. But, this analysis also showed some limitations that the implementation proposed in
the paper had (internal position control required, dynamic model different from true process).
This served as an starting point to understand what had to be done in order to improve the
current state of the art.

From the analysis mentioned before, the need of a controller arose. Therefore, a torque
controller that does not require an inverse model to control the robot manipulator has been
designed inspired in the Passive Motion Paradigm (PMP), which was researched during the
literature review prior to this thesis. This low-level controller allows to control the robot
manipulator without the need of any internal position controller as was done in the previous
implementation [1]. However, in order to give a better understanding of the benefits that the
Active Inference scheme can contribute with, a benchmark controller is required.

Once the controllers were designed, the Active Inference scheme has been defined. From the
aforementioned analysis, an offline implementation of the Active Inference scheme has been
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studied and redefined giving a clear picture of the control loop and the evolution of the signals
within the scheme. Furthermore, an online implementation in which the process is not part
of the algorithm of the Active Inference scheme has also been defined in order to bring this
scheme to real world simulations.

To continue with, the robot manipulator that has been used for the simulations has been
studied in order to obtain the necessary models to implement the Active Inference scheme
described. The forward kinematics, Jacobian, forward dynamics and a gravity compensation
torque have been defined either by obtaining them analytically or using the available methods
in the Matlab robotics toolbox.

Having defined all the required aspects for the implementation of the Active Inference scheme,
the three controllers can be tested and the comparison done. Regarding the simulations, the
online implementation of the Active Inference scheme has been discarded, however, a definition
of it and recommendations on future work based on the current implementation method have
been proposed.

Besides this, the comparison between the controllers has shown that the offline Active Infer-
ence scheme is able to control a robot manipulator for a reaching task with a similar behaviour
than the designed torque controller. In contrast to what has been done in Pio-Lopez paper,
this thesis has designed an implementation in which the control loop is closed and the Ac-
tive Inference scheme stabilises the system using the pre-computed actions and a feed-back
component. However, using the closed loop implementation, the performance is still far from
an optimal behaviour compared to the other controllers tested. While the benchmark con-
troller is able to obtain a stable response without overshoot, the designed controller can also
obtain a stable response with a satisfactory settling time but with higher overshoots. On the
other hand, as mentioned before, the close loop Active Inference scheme response requires
twice the time to settle within the defined margins and the overshoots are also higher. The
aforementioned simulations correspond to the zero-gravity scenario comparison.

Furthermore, a comparison of the controllers when gravity is considered has also been carried
out. In this case, for the benchmark controller, the gravity considered in the model used for
the pre-computation of the feed-forward torque is modified. For the two other controllers
(designed torque controller and Active Inference scheme), the gravity compensation blocks
that compute an extra torque that is added to the one obtained from the controllers is
considered. From these simulations, it has been shown that the responses obtained with the
benchmark controller and the designed one, do not differ much from the simulations where
gravity was not considered in terms of settling time, overshoot and rise time. On the other
hand, the Active Inference scheme is not able to stabilise the system when the gravity torque
compensation is included. This may be due to the fact that the offline computation of the
Active Inference loop used to generate the actions required (torque) does not include the
gravity in its generative model.

However, as shown in the designed controller response, an online implementation of the Active
Inference scheme should be able to stabilise the system by adding the gravity compensation
torque to the action obtained from the Active Inference loop. Further research on this matter
is needed when the Active Inference scheme can be implemented online and real time.

Finally, an unexpected outcome obtained during this thesis is related to the dynamic model
used in the generative process and generative model. While the initial hypothesis, based on
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the Active Inference theory, was that the performance would be optimal when the generative
process and model had the same equations, the simulations have shown that, in this case, the
simulation does not converge to the desired position. During the execution of this thesis, no
explanation could be found to describe this behaviour and further research is needed to verify
whether this is a problem of the Active Inference implementation proposed.
As a final conclusion, this thesis serves as an initial point for further research on Active
Inference for online robot control, while defining the limitations of current implementations
and providing the requirements needed for an online implementation. The implementation
proposed here generalises the Active Inference scheme loop as it can be easily adapted to other
manipulators, in contrast to the available implementations. This adaptability is due to the
controller created, in which only the forward kinematics and the Jacobian matrix are needed.
Regarding the applicability of Active Inference for robot control, the simulations have shown
that the current implementation does not improve the state of the art methods; however, it
also demonstrates that the Active Inference framework can be used for robot control and with
further research it may be an alternative to the current methods.

7-2 Recommendations and future work

The work done throughout the thesis has brought many interesting insights that need to be
researched further.
The online implementation of the Active Inference scheme, which is needed to verify the
true advantages of the framework, requires an implementation different from the one that has
been used here. The Statistical Parametric Mapping (SPM) suite by Karl Friston of Matlab
is developed for offline loops, where the generative process is not a real world process but a
simulation of it. This becomes a problem when trying to use this implementation for an online
loop, as the hidden states of the process, which should be unknown from the perspective of
the Active Inference scheme, are part of the whole process.
Another problem encountered when defining the online implementation is also related to the
other uses of the SPM suite. In this case, the software includes different calculations that are
not required for the purpose of implementing Active Inference for robot control. However, the
software is programmed in such a way, that deleting these calculations cannot be done and
therefore a new implementation of the algorithm is needed. The computational time is one of
the limitations of the current implementation as each of the iterations takes about one second,
to solve this issue, apart from removing unnecessary calculations, the new implementation
should be done in a faster programming language, such as C++.
Furthermore, another issue related to the online implementation of the Active Inference
scheme arises when observing at the sensations from the real world process. These sensa-
tions, that should be the only input to the Active Inference scheme from the real world
process, need to be in generalised coordinates. However, from a real system only the first
component of the generalised coordinates of the sensations is usually available. To complete
these coordinates, the derivatives of the sensations are needed. Thus, further research on how
this issue can be addressed is needed.
Besides, it has been seen that the offline implementation of Active Inference has been accom-
plished using equations of motion for the generative model that do not correspond to the real
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dynamic model of the system. Even though, this has given satisfactory results when tested
without gravity, the model used does not consider the effect of the gravity in the dynamics
of the system. Therefore, further research is needed in this direction, either on obtaining
a forward dynamics model that considers gravity or on finding the reason why the Active
Inference loop presented does not converge when the generative model and the generative
process are the same.

Finally, with a functioning online implementation of Active Inference as described in this
thesis, the promising properties of this framework in terms of model deviations and noise
rejection [1] could be verified.
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Appendix A

Matlab code

A-1 KUKA kinematics methods

A-1-1 Forward kinematics method

1 function [ Pos , Rot , Tr ] = IIWA_FW_kinematics (q , k )
2 % @author: Arnau Cibiach
3 %
4 % returns the i-joint position and rotation matrix of the iiwa robot

given
5 % the joint angles q in [rad]
6 %
7 % FORMAT [Pos,Rot,Tr] = IIWA_FW_kinematics(q,k)
8 %
9 % x - hidden states

10 % x(1) - joint angle ’mw_iiwa_link_1_roll ’
11 % x(2) - joint angle ’mw_iiwa_link_2_flex ’
12 % x(3) - joint angle ’mw_iiwa_link_3_roll ’
13 % x(4) - joint angle ’mw_iiwa_link_4_flex ’
14 % x(5) - joint angle ’mw_iiwa_link_5_roll ’
15 % x(6) - joint angle ’mw_iiwa_link_6_flex ’
16 % x(7) - joint angle ’mw_iiwa_link_7_roll ’
17 %
18 % k - number of joint
19 %
20 % This function solves the problem of the forward kinematics for the
21 % "KUKA LBR iiwa 14 R820" robot manipulator.
22 %________________________________________________________________________
23
24 if ~exist (’k’ ,’var’ )
25 k = 8 ;
26 end
27
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28 d1 = 0 .1575 ;
29 d2 = 0 .2025 ;
30 d3 = 0 .2045 ;
31 d4 = 0 .2155 ;
32 d5 = 0 .1845 ;
33 d6 = 0 .2155 ;
34 d7 = 0 .0810 ;
35 de = 0 .0450 ;
36 DH=[d1 0 −pi/2 q (1 ) ;
37 0 −d2 pi/2 q (2 ) ;
38 d3 0 pi/2 q (3 ) ;
39 0 −d4 −pi/2 q (4 ) ;
40 d5 0 −pi/2 q (5 ) ;
41 0 −d6 pi/2 q (6 ) ;
42 d7 0 0 q (7 ) ;
43 de 0 0 0 ] ;
44
45
46 for i=1:k
47 d=DH (i , 1 ) ; % d
48 r=DH (i , 2 ) ; % r
49 al=DH (i , 3 ) ; % alpha
50 t=DH (i , 4 ) ; % theta
51
52 T ( : , : , i )=[cos (t ) −sin (t ) ∗cos (al ) sin (t ) ∗sin (al ) r∗cos (al ) ;
53 sin (t ) cos (t ) ∗cos (al ) −cos (t ) ∗sin (al ) r∗sin (al ) ;
54 0 sin (al ) cos (al ) d ;
55 0 0 0 1 ] ;
56
57 end
58
59 Tr=eye (4 ) ;
60 for i=1:k
61 Tr=Tr∗T ( : , : , i ) ;
62 end
63
64 Rot = Tr ( 1 : 3 , 1 : 3 ) ;
65 Pos = Tr ( 1 : 3 , 4 ) ;
66
67 end

A-1-2 Jacobian matrix method

1 function [ Jacobian ] = IIWA_Jacobian (k )
2 % @author: Arnau Cibiach
3 %
4 % returns the symbolical Jacobian matrix of the iiwa robot to reduce
5 % computational time
6 %
7 % FORMAT [Jac] = IIWA_Jacobian(k)
8 %
9 % k - number of joint

10 %_____________________________________________________________________
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11
12 syms q_1 q_2 q_3 q_4 q_5 q_6 q_7
13 persistent Jac
14
15 T = sym (’T’ , [ 4 4 7 ] ) ;
16 if isempty ( Jac )
17
18 % link lengths obtained from the specifications
19 d1 = 0 .1575 ;
20 d2 = 0 .2025 ;
21 d3 = 0 .2045 ;
22 d4 = 0 .2155 ;
23 d5 = 0 .1845 ;
24 d6 = 0 .2155 ;
25 d7 = 0 .0810 ;
26 de = 0 .0450 ;
27
28 DH=[d1 0 −sym (pi ) /2 0 ; %q(1)
29 0 −d2 sym (pi ) /2 0 ; %q(2)
30 d3 0 sym (pi ) /2 0 ; %q(3)
31 0 −d4 −sym (pi ) /2 0 ; %q(4)
32 d5 0 −sym (pi ) /2 0 ; %q(5)
33 0 −d6 sym (pi ) /2 0 ; %q(6)
34 d7 0 0 0 ; %q(7)
35 de 0 0 0 ] ;
36
37 T_=[q_1 , q_2 , q_3 , q_4 , q_5 , q_6 , q_7 , 0 ] ;
38
39 for i=1:k
40 d=DH (i , 1 ) ;
41 a=DH (i , 2 ) ;
42 al=DH (i , 3 ) ;
43 t=T_ (i ) ;
44
45 T ( : , : , i )=[cos (t ) −sin (t ) ∗cos (al ) sin (t ) ∗sin (al ) a∗cos (al ) ;
46 sin (t ) cos (t ) ∗cos (al ) −cos (t ) ∗sin (al ) a∗sin (al ) ;
47 0 sin (al ) cos (al ) d ;
48 0 0 0 1 ] ;
49 end
50
51 Tr=eye (4 ) ;
52 for i=1:k
53 Tr=Tr∗T ( : , : , i ) ;
54 end
55
56 Pos = Tr ( 1 : 3 , 4 ) ;
57 Jac = [ diff ( Pos (1 ) , q_1 ) diff ( Pos (2 ) , q_1 ) diff ( Pos (3 ) , q_1 ) ;
58 diff ( Pos (1 ) , q_2 ) diff ( Pos (2 ) , q_2 ) diff ( Pos (3 ) , q_2 ) ;
59 diff ( Pos (1 ) , q_3 ) diff ( Pos (2 ) , q_3 ) diff ( Pos (3 ) , q_3 ) ;
60 diff ( Pos (1 ) , q_4 ) diff ( Pos (2 ) , q_4 ) diff ( Pos (3 ) , q_4 ) ;
61 diff ( Pos (1 ) , q_5 ) diff ( Pos (2 ) , q_5 ) diff ( Pos (3 ) , q_5 ) ;
62 diff ( Pos (1 ) , q_6 ) diff ( Pos (2 ) , q_6 ) diff ( Pos (3 ) , q_6 ) ;
63 diff ( Pos (1 ) , q_7 ) diff ( Pos (2 ) , q_7 ) diff ( Pos (3 ) , q_7 ) ] ’ ;
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64 end
65
66 Jacob (q_1 , q_2 , q_3 , q_4 , q_5 , q_6 , q_7 ) = Jac ;
67 Jacobian = matlabFunction ( Jacob ) ;
68
69 end

1 function [ Jacobian ] = IIWA_Jacobian_sub (Jac , q )
2 % @author: Arnau Cibiach
3 %
4 % returns the analytical Jacobian matrix of the iiwa robot given the
5 % symbolical Jacobian and the joint angles q in [rad]
6 %
7 % FORMAT [Jacobian] = IIWA_Jacobian(Jac,q,k)
8 %
9 % Jac - symbolical Jacobian matrix

10 %
11 % q - joint angles
12 % q(1) - joint angle ’mw_iiwa_link_1_roll ’
13 % q(2) - joint angle ’mw_iiwa_link_2_flex ’
14 % q(3) - joint angle ’mw_iiwa_link_3_roll ’
15 % q(4) - joint angle ’mw_iiwa_link_4_flex ’
16 % q(5) - joint angle ’mw_iiwa_link_5_roll ’
17 % q(6) - joint angle ’mw_iiwa_link_6_flex ’
18 % q(7) - joint angle ’mw_iiwa_link_7_roll ’
19 %_____________________________________________________________________
20
21 Jacobian=double ( Jac (q (1 ) ,q (2 ) ,q (3 ) ,q (4 ) ,q (5 ) ,q (6 ) ,q (7 ) ) ) ;
22
23
24 end

A-2 Active Inference

A-2-1 Equations of motion

1 function [ f ]= IIWA_spm_fx_robot_dem_reach_offline (x , v , P )
2 % @author: Arnau Cibiach
3 %
4 % returns the flow for a seven -joint robot manipulator
5 %
6 % FORMAT [f]= IIWA_spm_fx_robot_dem_reach(x,v,P)
7 %
8 % x - hidden states
9 % x(1) to x(7) - joint angles

10 % x(8) to x(14) - joint velocities
11 %
12 % v - causal states
13 % v(1) - target location (x)
14 % v(2) - target location (y)
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15 % v(3) - target location (z)
16 %
17 % P - model parameters (not used)
18 %
19 % This function corresponds to the equations of motion of the generative
20 % model
21 %_______________________________________________________________________
22
23 % Robot manipulator parameters (extracted from the specifications)
24 m1 = 4 ;
25 m2 = 4 ;
26 m3 = 3 ;
27 m4 = 2 . 7 ;
28 m5 = 1 . 7 ;
29 m6 = 1 . 8 ;
30 m7 = 0 . 3 ;
31 k1 = 4 ;
32 k2 = 4 ;
33 k3 = 3 ;
34 k4 = 2 . 7 ;
35 k5 = 1 . 7 ;
36 k6 = 1 . 8 ;
37 k7 = 0 . 3 ;
38 visco = 2 ;
39
40 global lbr_model
41
42 x = full (x ) ;
43 joints = x ( 1 : 7 ) ;
44 velocities = x ( 8 : 1 4 ) ;
45
46 % Target position
47 Target=[v (1 ) ; v (2 ) ; v (3 ) ] ;
48
49 % Controller action computed + torque to compensate gravity (if needed)
50 T = IIWA_Controller ( joints , Target )+gravityTorque ( lbr_model , joints ) ;
51
52 f = [ velocities (1 ) ; % joint velocities
53 velocities (2 ) ;
54 velocities (3 ) ;
55 velocities (4 ) ;
56 velocities (5 ) ;
57 velocities (6 ) ;
58 velocities (7 ) ;
59 (T (1 )−visco∗k1∗x (8 ) ) /m1 ; % velocities
60 (T (2 )−visco∗k2∗x (9 ) ) /m2 ;
61 (T (3 )−visco∗k3∗x (10) ) /m3 ;
62 (T (4 )−visco∗k4∗x (11) ) /m4 ;
63 (T (5 )−visco∗k5∗x (12) ) /m5 ;
64 (T (6 )−visco∗k6∗x (13) ) /m6 ;
65 (T (7 )−visco∗k7∗x (14) ) /m7 ; ] ;
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1 function [ f ]= IIWA_spm_fx_robot_adem_reach_offline (x , v , a , P )
2 % @author: Arnau Cibiach
3 %
4 % returns the flow for a seven -joints robot manipulator (with action)
5 %
6 % FORMAT [f]= IIWA_spm_fx_robot_adem_reach(x,v,a,P)
7 %
8 % x - hidden states
9 % x(1) to x(7) - joint angles

10 % x(8) to x(14) - joint velocities
11 %
12 % v - causal states
13 % v(1) - target location (x)
14 % v(2) - target location (y)
15 % v(3) - target location (z)
16 %
17 % a - action (forces) (x,y)
18 %
19 % P - model parameters (not used)
20 %
21 % This function corresponds to the equations of motion of the generative
22 % process
23 %_______________________________________________________________________
24
25 global lbr_process ;
26
27 action = full (a ) ;
28 x = full (x ) ;
29
30 joints = x ( 1 : 7 ) ;
31 velocities = x ( 8 : 1 4 ) ;
32
33 % Forward dynamics model to obtain the accelerations
34 accelerations = forwardDynamics ( lbr_process , joints , velocities , action ) ;
35
36 f = [ velocities (1 ) ; % joint velocities
37 velocities (2 ) ;
38 velocities (3 ) ;
39 velocities (4 ) ;
40 velocities (5 ) ;
41 velocities (6 ) ;
42 velocities (7 ) ;
43 accelerations (1 ) ; % joint accelerations
44 accelerations (2 ) ;
45 accelerations (3 ) ;
46 accelerations (4 ) ;
47 accelerations (5 ) ;
48 accelerations (6 ) ;
49 accelerations (7 ) ; ] ;

A-2-2 Sensory mapping
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1 function [ g ]= IIWA_spm_gx_robot_dem_reach_offline (x , v , P )
2 % @author: Arnau Cibiach
3 %
4 % returns the prediction for a seven -joint arm
5 %
6 % FORMAT [g] = IIWA_spm_gx_robot_dem_reach(x,v,P)
7 %
8 % x - hidden states
9 % x(1) to x(7) - joint angles

10 % x(8) to x(14) - joint velocities
11 %
12 % v - causal states
13 % v(1) - target location (x)
14 % v(2) - target location (y)
15 % v(3) - target location (z)
16 %
17 % P - model parameters (not used)
18 %
19 % This function corresponds to the sensory mapping of the generative
20 % model
21 %___________________________________________________________________
22
23 x = full (x ) ;
24
25 % End-effector position computed given the joint positions
26 Pose = IIWA_FW_kinematics (x ( 1 : 7 ) ) ;
27
28 % Sensory mapping
29 g = [ x ( 1 : 7 ) ; v ; Pose (1 ) ; Pose (2 ) ; Pose (3 ) ] ;

1 function [ g ] = IIWA_spm_gx_robot_adem_reach_offline (x , v , a , P )
2 % @author: Arnau Cibiach
3 %
4 % returns the prediction for a seven -joint arm (with action)
5 %
6 % FORMAT [g] = IIWA_spm_gx_robot_adem_reach(x,v,a,P)
7 %
8 % x - hidden states
9 % x(1) to x(7) - joint angles

10 % x(8) to x(14) - joint velocities
11 %
12 % v - causal states
13 % v(1) - target location (x)
14 % v(2) - target location (y)
15 % v(3) - target location (z)
16 %
17 % a - action
18 %
19 % P - model parameters (not used)
20 %
21 % This function corresponds to the sensory mapping of the generative
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22 % proces
23 %___________________________________________________________________
24
25 global lbr_process
26
27 joints = x ( 1 : 7 ) ;
28
29 % End-effector position computed given the joint positions
30 T = getTransform ( lbr_process , joints , ’iiwa_link_ee’ ) ;
31 Pose = T ( 1 : 3 , end ) ;
32
33 % Sensory mapping
34 g = [ joints ; v ; Pose (1 ) ; Pose (2 ) ; Pose (3 ) ] ;
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Robot control

B-1 Forward kinematics

As described in section 4-2-1, two different implementations of the forward kinematics used
for the sensory mapping are available. Both approaches are based on the transformation
matrix and should provide the same results. To verify so, the following simulations are done:

# Generative model Generative process
1 Forward kinematics getTransform Forward kinematics getTransform

2 Forward kinematics getTransform Forward kinematics function

3 Forward kinematics function Forward kinematics getTransform

Table B-1: Active Inference scheme simulations for sensory mapping choice

The responses obtained with the simulations shown in table B-1 are shown in figure B-1. The
three simulations share the same equations of motion and controller parameters, whereas the
sensory mapping is the only aspect modified in each simulation according to the mentioned
table.

The simulations have shown that no difference can be appreciated between using the two
options available for the sensory mapping of the generative process and the generative model.
Therefore, the two methods are equivalent and can be used indistinctly for both aspects.

Master of Science Thesis A. Cibiach Mercadé



68 Robot control

(a) Simulation 1

(b) Simulation 2

(c) Simulation 3

Figure B-1: End-effector position response in (x,y,z) coordinates of the sensory mapping simu-
lations
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B-2 Controller gain

Once the definitive Active Inference scheme has been chosen, the controller gains can be
tuned in order to obtain a satisfactory behaviour in the Active Inference simulations. To do
so, different gains have been tested to observe the response for each of them.

The 3 components of the gain, each corresponding to one of the x, y, z coordinates respectively,
have the same weight in all the simulations done. This implies that the importance of each of
the components is not higher than the rest. However, different weights in each of the entries
of the K matrix could be acceptable as well. Further work could be done in this area, to
study the influence of these gains in the final response of the system.

As mentioned, the controller gains consist on an identity matrix of size 3× 3 , I3, multiplied
by an integer. In this case, the different controller gains used here are:

[3, 5, 10, 20, 30, 40, 50, 60, 75, 100, 400, 500, 1000]× I3

All simulations have been executed with the same configuration parameters and with a time
step dt = 0.01 and a number of samples/iterations n = 5000. The responses obtained from
these simulations are used to create the following figures, where the settling time and the
overshoot for each component are depicted.

In the first figure B-2, the number of iterations for each of the simulation to obtain a stable
signal within a 5% margin around the desired position is shown. The circles correspond to
the measurements corresponding to the simulation, while the solid line represents a spline
function that interpolates the points in between the measurements.

In the second figure B-3, the percentage of overshoot (the highest peak with respect to the
reference) in each of the components (x, y, z) is shown. Like the previous figure, the circles
correspond to the measurements and the solid line, the spline function.

As it can be seen in both images, only the gains until 500 are considered because with a
controller gain K = 1000× I3, the response becomes unstable and the simulations crashes.

Based on the settling time figure (B-2), it can be seen that there is a minimum on the number
of iterations needed given a gain of approximately 40. It can also be seen, how gains lower
than 5 are too slow to converge within the given 5000 iterations and on the other side, values
higher than 400 present an oscillatory response that is not settled within the margins in less
than 5000 iterations.

Regarding the overshoot, it can be seen in figure B-3 that the gains in which a lower settling
time was obtained (around 40) present a considerable overshoot compared to values below 20.
However, a trade-off between the settling time and the overshoot is present and considering
the settling time and the percentage of overshoot obtained, the final controller gain is chosen
to be set at:

40× I3 =

40 0 0
0 40 0
0 0 40
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70 Robot control

Figure B-2: Settling time (number of iterations) for different controller gains; circles: measure-
ments, line: spline function

Figure B-3: Overshoot obtained with different controller gains in each component; circles:
measurements, line: spline function

A. Cibiach Mercadé Master of Science Thesis



Bibliography

[1] L. Pio-Lopez, A. Nizard, K. Friston, and G. Pezzulo, “Active inference and robot control:
a case study,” Journal of The Royal Society Interface, vol. 13, no. 122, p. 20160616, 2016.

[2] K. J. Friston, J. Daunizeau, and S. J. Kiebel, “Reinforcement learning or active infer-
ence?,” PloS one, vol. 4, no. 7, p. e6421, 2009.

[3] K. Friston, J. Kilner, and L. Harrison, “A free energy principle for the brain,” Journal
of Physiology-Paris, vol. 100, no. 1-3, pp. 70–87, 2006.

[4] K. Friston, “The free-energy principle: a unified brain theory?,” Nature Reviews Neuro-
science, vol. 11, no. 2, p. 127, 2010.

[5] K. J. Friston, J. Daunizeau, J. Kilner, and S. J. Kiebel, “Action and behavior: a free-
energy formulation,” Biological cybernetics, vol. 102, no. 3, pp. 227–260, 2010.

[6] M. Botvinick and M. Toussaint, “Planning as inference,” Trends in cognitive sciences,
vol. 16, no. 10, pp. 485–488, 2012.

[7] K. Friston, J. Mattout, and J. Kilner, “Action understanding and active inference,”
Biological cybernetics, vol. 104, no. 1-2, pp. 137–160, 2011.

[8] C. L. Buckley, C. S. Kim, S. McGregor, and A. K. Seth, “The free energy principle for
action and perception: A mathematical review,” Journal of Mathematical Psychology,
2017.

[9] K. Friston, S. Samothrakis, and R. Montague, “Active inference and agency: optimal
control without cost functions,” Biological cybernetics, vol. 106, no. 8-9, pp. 523–541,
2012.

[10] K. Friston, K. Stephan, B. Li, and J. Daunizeau, “Generalised filtering,” Mathematical
Problems in Engineering, vol. 2010, 2010.

[11] C. C. de Wit, B. Siciliano, and G. Bastin, Theory of robot control. Springer Science &
Business Media, 2012.

Master of Science Thesis A. Cibiach Mercadé



72 Bibliography

[12] D. M. Dawson, C. T. Abdallah, and F. L. Lewis, Robot manipulator control: theory and
practice. CRC Press, 2003.

[13] H. Asada, “Introduction to robotics - chapter 6 - statics.” https://ocw.mit.edu/
courses/mechanical-engineering/2-12-introduction-to-robotics-fall-2005/
lecture-notes/chapter6.pdf, Fall 2005.

[14] R. Featherstone, Forward Dynamics — The Composite-Rigid-Body Method, pp. 79–88.
Boston, MA: Springer US, 1987.

[15] V. Chawda and G. Niemeyer, “Toward torque control of a kuka lbr iiwa for physical
human-robot interaction,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 6387–6392, Sept 2017.

[16] “Control LBR Manipulator Motion Through Joint Torque Com-
mands.” https://nl.mathworks.com/help/robotics/examples/
control-lbr-manipulator-motion-through-joint-torque.html. [Online; accessed
6-August-2018].

[17] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling, planning and
control. Springer Science & Business Media, 2010.

[18] F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic interpolation,” SIAM Journal
on Numerical Analysis, vol. 17, no. 2, pp. 238–246, 1980.

[19] V. Mohan and P. Morasso, “Passive motion paradigm: an alternative to optimal control,”
Frontiers in Neurorobotics, vol. 5, p. 4, 2011.

[20] P. Tommasino and D. Campolo, “An extended passive motion paradigm for human-like
posture and movement planning in redundant manipulators,” Frontiers in Neurorobotics,
vol. 11, Nov 2017.

A. Cibiach Mercadé Master of Science Thesis

https://ocw.mit.edu/courses/mechanical-engineering/2-12-introduction-to-robotics-fall-2005/lecture-notes/chapter6.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-12-introduction-to-robotics-fall-2005/lecture-notes/chapter6.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-12-introduction-to-robotics-fall-2005/lecture-notes/chapter6.pdf
https://nl.mathworks.com/help/robotics/examples/control-lbr-manipulator-motion-through-joint-torque.html
https://nl.mathworks.com/help/robotics/examples/control-lbr-manipulator-motion-through-joint-torque.html


Glossary

List of Acronyms

FEP Free Energy Principle

PMP Passive Motion Paradigm

ROS Robot Operating System

SPM Statistical Parametric Mapping
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