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Abstract The durability of building materials with

respect to salt crystallization is commonly determined

by accelerated weathering tests, carried out in the

laboratory. An effective laboratory weathering test

should assess the durability and, in the case of

conservation of historic buildings, the compatibility

of repair materials with those existing. Besides, the

test should provide reliable results within a reasonable

period of time, accelerating the deterioration process

without however altering its mechanism. Despite

several national and international standards, recom-

mendations and guidelines, a commonly accepted

testing protocol does not yet exist. Researchers often

develop and apply their own procedure, a fact that

complicates comparison between different studies.

The RILEM Technical Committee 271 ASC has been

set up with the scope of developing improved test

procedures for the assessment of the behaviour of

materials under the influence of salt crystallization,

which should overcome the limitations of existing

standards and recommendations. This paper consti-

tutes one of the first results of the work of the

Technical Committee. It critically reviews the litera-

ture on salt crystallization tests, identifies advantages

and limitations of the several test protocols and
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provides new ideas for the development of improved

salt crystallization procedures.

Keywords Literature review � Salt damage � Salt
crystallization test � Porous materials � RILEM

1 Introduction

Salt crystallization is a major cause of damage in porous

building materials (e.g. [1–3]). Despite extensive on-

going research in this field, the complexity of the problem

has hindered the use of theoretical models for forecasting

decay due to salt crystallization. Indeed, in the practice of

construction and conservation, the durability ofmaterials

with respect to salt crystallization, when not well-known

from past field experience, is generally determined by

accelerated weathering laboratory tests.

An effective laboratory weathering test should

assess the durability of a material and, in the case of

conservation of historic buildings, the compatibility of

repair materials with pre-existing ones. Besides, the

test should provide reliable results within a reasonable

period of time, accelerating the deterioration process

without altering its mechanism.

Despite the availability of a European standard (EN

12370) [4], three RILEM recommendations (RILEM

1980 [5], MS-A.1 [6], MS-A.2 [7]) and other

guidelines (e.g. [8]), a commonly accepted testing

protocol does not yet exist. In fact, there is a reluctance

among researchers to use standard tests, a fact which

hinders comparison between the results of different

studies. This reluctance is probably motivated by some

important limitations of the above mentioned stan-

dards and recommendations. For example, the Euro-

pean standard EN 12370 prescribes very aggressive

weathering conditions (cycles of immersion in highly

concentrated sodium sulphate solution followed by

drying at 105 �C) [9, 10]. This may result in damage

patterns that are different from those known from

practice for the material concerned (Fig. 1). RILEM

MS-A.1 [6] proposes the use of more realistic test

conditions, i.e. contamination by capillary absorption
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Fig. 1 Decay due to salt crystallization. aBrick exfoliation and

spalling due to sodium sulphate crystallization (Westertoren,

Amsterdam, the Netherlands). b Powdering of brick due to

sodium chloride crystallization (Waag building, Amsterdam,

the Netherlands)
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of 10 wt% sodium sulphate or sodium chloride

solution followed by drying at 20 �C and 50% relative

humidity (RH), but still has the important limitation of

being very time consuming.

Moreover, none of the existing standards prescribes

an accurate, reliable and quantitative method or

technique for monitoring damage development during

the test. Another limitation of current standards

consists in the scarce validation of the results from

the accelerated test through comparison with field

data, e.g. in terms of damage type and severity [11].

The RILEM Technical Committee 271-ASC (Accel-

erated laboratory test for the assessment of the durability

of materials with respect to salt crystallization), initiated

in 2016, aims at overcoming the above-mentioned

limitations by the development of improved test proce-

dures for the assessment of the behaviour of building

materials with respect to salt crystallization.

The present paper is a first step towards this

objective. It reviews the literature on the subject with

the aim of:

• Providing an overview of existing standards and

other test procedures;

• Identifying advantages and limitations of different

test procedures;

• Providing input for the development of improved

test procedures.

This review, as well as the to-be-developed test,

focuses on the simulation of salt damage triggered by

capillary transport of salt solution and evaporation at

the surface, which is the situation most often observed

in practice. Test procedures simulating sea-salt spray

will not be considered, as standard tests in this field are

quite well-accepted.

This paper is structured in five sections, each

focusing on one of the crucial variables defining a salt

crystallization test procedure:

• Specimen type, shape, size and number of

replicates;

• Salt type and amount;

• Salt contamination procedure;

• Drying conditions;

• Methods for the assessment of damage and criteria

for the evaluation of decay.

Based on the review, ideas are provided for the

development of effective salt crystallization

procedures.

2 Specimen

2.1 Single material or combination

Most standards and guidelines prescribe the use of

single material specimens (EN 12370, WTA 2005,

RILEM 1980, RILEMMS-A.1 1998) [4–8]. Similarly,

much of the experimental research reported in the

literature has been carried out on single materials.

However, although testing single materials may

resemble practice in the case of objects like statues,

in general, different materials are assembled in

structures and the interaction between them can affect

the durability of each material and of the whole

structure.

To the authors’ best knowledge, the first recommen-

dation to propose the use of specimens comprising a

combination ofmaterials isMS-A.2 ‘‘Uni-directional salt

crystallization test for masonry units’’ (RILEM TC

127-MS,1998) [7]. Later on, the use of multi-material

specimens became more common in laboratory tests.

While assemblages of different natural stones are rarely

tested [12], combinations ofmaterials are quite oftenused

when assessing the durability of bedding and pointing

mortars or plasters (e.g. [13–19]) (Fig. 2a). In fact, testing

mortars or plasters as single materials could result in

misleading or incomplete results, as the behaviour of

these materials is strongly affected by the adjacent ones.

Furthermore, cracking and detachment of a plaster layer

from its substrate, which is a common decay type in

plasters with water repellent properties when applied on

salt loaded substrates (Fig. 2b), cannot be simulated

when testing theplaster alone.Anadditional reason to test

a mortar in combination with another material is that the

latter can absorb water from the fresh mortar and affect

the pore structure of the hardened mortar, thus possibly

influencing its salt resistance [20, 21].

For natural stone, the orientation of the bedding

plane is another variable to consider. Smith and

MacGreevy [22] and Cnudde et al. [23] showed how

this orientation can affect decay type and

development.

2.2 Number, size and shape

The number of replicate specimens specified in

standard crystallization tests is generally larger than

what is actually used by researchers. EN 12370 [4]

prescribes the use of at least 6 replicates, whilst
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RILEM MS-A.1 [6] suggests 10. However, in the

literature, the number of replicates is mostly limited to

a maximum of three. In a few cases, more replicates

are used, especially when damage is monitored with

destructive techniques [23–25].

The size of the test specimens varies considerably:

for single materials, EN 12370 [1] prescribes the use of

40 mm side cubic specimens; RILEM MS-A.2 (for

brick units) [7] suggests the use of prismatic speci-

mens (entire brick units) with a maximum length of

120 mm between the absorption and the test (crystal-

lization) faces. In general, except when small masonry

units are used (ca. 200 9 200 9 100 mm3 [6, 14]),

the specimen size is less than 1 dm3. The use of small

specimens not only saves material, but it can consid-

erably speed up the test, as it reduces the absorption

and drying times [15, 26].

The size of the specimen is sometimes chosen based

also on the selected assessment method. Cubic or

prismatic specimens are most often used in laboratory

tests. Sometimes, cylinders are used; this shape has the

advantage of reducing corner effects and stress

concentrations [27, 28]. Additionally, when using

X-ray CT to monitor the weathering dynamically,

cylinders allow the analysis of a larger volume at a

specific resolution [23, 29].

The choice of the shape is also affected by other

factors, such as the contamination procedure (e.g.

elongated specimens are generally used in continuous

partial immersion tests) and the assessmentmethod. For

example, Nunes et al. [30] used 40 9 40 9 160 mm3

mortar prisms to enable measurement of the flexural

strength before and after the crystallization test.

In general, the concept of a representative elemen-

tary volume (i.e. the smallest volume over which a

measurement can be made that will yield a value

representative of the material properties and of the

length scale over which salt crystallization damage

may occur [31, 32]) might be used to define the

minimum size of the specimen.

3 Salts

3.1 Single salts

In laboratory tests, mainly single salts are used; in

buildings, however, salt mixtures are commonly

found, rather than individual salts.

The most common salt used in laboratory tests is

sodium sulfate (Fig. 3), which is often prescribed in

standards (e.g. [4]) and recommendations (e.g. [6]). As

alternatives, magnesium sulphate [33] or sodium

chloride [6] are considered. The main reason for using

sodium sulphate is its aggressiveness, which is

Fig. 2 Commonly observed decay types due to salt crystal-

lization reproduced in the laboratory on specimens made of

more than one material: push out of pointing mortar (a) and
detachment of a plaster with mixed-in water repellent agent

from the substrate (b)

Fig. 3 Salts used in salt crystallization tests (percentage based

on 90 publications on salt crystallization tests reviewed in this

paper (in some studies more than one salt is considered))
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attributed to its several hydrated phases with different

solubility degrees (e.g. [34–37]) and which has been

widely experimentally confirmed by the scientific

literature. In 1970, Goudie et al. [38] and Kwaad [39]

began extensive experimental research to compare the

aggressiveness of different salts (Na2SO4, MgSO4,

NaCl, Na2CO3, CaCl2, CaSO4) in the weathering of

natural stone. Both studies showed Na2SO4 to be the

most destructive salt, the most recurrent weathering

patterns being splitting in sedimentary rocks and

disintegration in granites. The aggressiveness of

Na2SO4 was confirmed by Cooke [40], who used

saturated solutions of Na2SO4, CaSO4, NaCl and

NaNO3, as well as a sea salts mixture, to test the

durability of sandstones and slate. Sodium sulphate

produced extensive disintegration, whereas other salts

induced no significant damage during a forty-day test

period. Smith and McGreevy [22] performed crystal-

lization tests on sandstones using solutions of Na2SO4,

MgSO4 and NaCl. They found that, under the selected

test conditions (spraying of 10% salt solutions fol-

lowed by drying at 100 �C), MgSO4 and, in some

cases, NaCl can produce more damage than Na2SO4.

Besides, they observed that the type of damage is also

affected by the number of cycles: initially, granular

disintegration occurred, followed by cracks and flak-

ing during the last cycles.

Like sodium sulphate, magnesium sulphate has

multiple hydrated formswith different solubilities, and

hence, it can be very aggressive. Several researchers

[22, 38, 41–43], compared the aggressiveness of

magnesium sulphate to other salts using different

laboratory tests and all confirmed that magnesium

sulphate can cause severe damage. Ruiz-Agudo et al.

[42], underline that sodium and magnesium sulphates

lead to different weathering patterns due to differences

in solution properties and crystallization behaviour: in

the case ofNa2SO4 scale formationwas observed in the

tested calcarenites, whereas MgSO4 caused crack

development throughout the bulk of the stone. These

differences are confirmed by Balboni et al. [44] and

Espinosa-Marzal and Scherer [45]. Despite its aggres-

siveness, magnesium sulphate is used much less

commonly than sodium sulphate in laboratory studies.

Another salt often used in laboratory tests is NaCl.

This salt is generally reported to be much less

damaging than Na2SO4. When comparing the aggres-

siveness of NaCl to that of other salts, Goudie et al.

[38] found that NaCl could not produce any damage in

immersion tests. Different results were obtained by

Kwaad [39], who reported that NaCl produced some

damage in granites, albeit less than that caused by

Na2SO4, MgSO4 and Na2CO3. Rodriguez Navarro and

Doehne [46] compared the effect of NaCl and Na2SO4

on the weathering of oolitic limestone, at two RH

conditions, under continuous capillarity solution sup-

ply. Also in these experiments, NaCl was considered

much less aggressive than Na2SO4, as damage was

negligible at any RH. Gentilini et al. [47] studied

masonry specimens contaminated with Na2SO4 and

NaCl solutions at low concentrations. They found that

in specimens contaminated with NaCl efflorescences

were spread on the surface, not leading to any

significant visible damage, whereas in samples

affected by Na2SO4 efflorescences were concentrated

in the mortar joints and edges of the specimens,

causing exfoliation and flaking of the brick corners.

Stefanidou and Papayanni [48] studied air-lime and

pozzolanic mortars contaminated with sodium sul-

phate and sodium chloride solutions at different

concentrations, using the weathering procedure of

EN 12370 [4]: they found that sodium sulphate

produced severe damage in the form of cracks in the

bulk of the mortar, whereas in the case of NaCl some

sanding and scaling of the surface was observed.

The literature shows that there is a striking

discrepancy between the limited damage observed in

laboratory and the severe decay occurring in the field

when materials are contaminated with NaCl (Fig. 1b).

When considering damage due to salt crystallization in

pores, the lower destructive potential of NaCl in

laboratory tests has been attributed to its low tendency

to supersaturate (e.g. [46, 49]) and high tendency to

form efflorescence rather than subflorescence [17, 46].

Some authors focused on the development of a

laboratory crystallization test specific for NaCl, able

to reproduce more effectively the decay observed in

the field. Lubelli [50] developed a test which first

enhanced the accumulation of salt just beneath the

surface of the material and then subjected the spec-

imen to RH cycles between 0 and 96% RH. When

using this procedure, damage was obtained in NaCl

laden materials in a relatively short time [50]. Diaz-

Goncalves and Delgado-Rodrigues [51] compared the

resistance of painted and unpainted plasters to NaCl

and Na2SO4 crystallization. Dissolution and crystal-

lization cycles were produced both by rewetting with

water and drying at variable temperature and RH. In
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these test conditions, NaCl proved to be more

aggressive than Na2SO4.

Nitrates (mostly NaNO3), carbonates (mostly

Na2CO3), and other sulphates (mostly gypsum) have

occasionally been used. Goudie [52] carried out salt

crystallization experiments with different salts using

continuous absorption followed by drying at temper-

atures between 22 and 55 �C. He reports Na2CO3 to be

the most aggressive salt under the studied conditions,

followed by MgSO4 and Na2SO4. In contrast, De

Freece et al. [53], in an experiment consisting of

crystallization/dissolution induced by RH changes,

found Na2CO3 to be less aggressive than Na2SO4 and

attributed its lower aggressiveness to its slower rate of

response to RH variations. The aforementioned dis-

crepancies are most probably due to the differences

between the test procedures used.

3.2 Salt mixtures

The use of salt mixtures is less common in salt

weathering tests. WTA recommendation [8] pre-

scribes the use of a mixture of NaCl, Na2SO4 and

NaNO3 for testing the salt resistance of renovation

plasters.

Some researchers choose the composition of the

brine for salt weathering tests based on the analysis of

the salt present in naturally weathered building

materials [54] to reproduce as well as possible a

specific field condition. Other authors compare the

aggressiveness of single salts to that of their mixtures.

The aggressiveness of sea salt mixtures has been

compared to that of NaCl [40] and Na2SO4 [55]. With

only a few exceptions, the decay observed in speci-

mens contaminated with sea salts was slightly more

severe than in those laden with NaCl alone. Williams

and Robinson [56] investigated the aggressiveness of

salts common in efflorescence on rock outcrops in

Central Europe: next to gypsum, potassium alum,

ammonium alum, a combined potassium alum and

alunogen were tested, both as single salts and as

combinations. In these tests alunogen was ‘‘ineffec-

tive’’, whereas the three alums were highly destruc-

tive; gypsum as a single salt caused minimal

weathering, but the addition of gypsum significantly

enhanced the damage caused by alums. The same

authors [57] also tested NaCl and combinations of

alums with NaCl and alunogen. They concluded that

some combinations of salts can significantly enhance

weathering, while other combinations are less dam-

aging; however, no explanation is given for these

differences. De Clercq [58, 59] investigated the effect

of NaNO3, KNO3 and K2SO4 on the crystallization

damage caused by sodium sulfate and concluded that

the deteriorating effect of Na2SO4 was diminished due

to the formation of double salts. The formation of

different types of double salts and their different

effects on pore clogging is reported also by Godts et al.

[60], who investigated the behaviour of sodium and

magnesium sulfate and mixtures of both at different

environmental conditions.

Menendez and Petřánová [61] performed tests

using three different salts (NaCl, Na2SO4 and CaSO4)

and a mixture of them. They concluded that the

mixture induced less damage than the single salts, and

highlighted the complexity of the possible influencing

factors, e.g. alteration of salt accumulation and drying

rates, in the case of mixtures.

4 Salt contamination

4.1 Salt contamination procedure

The most common salt contamination procedures

entail the repeated total or partial immersion of

specimens in a salt solution, followed by a drying

period (wet-dry cycles), or their continuous partial

immersion (simultaneous absorption and drying, i.e.

the so-called wick effect) (Fig. 4). Generally, in partial

immersion tests, contamination with salt solution is

provided through the surface opposite to the evapo-

ration surface (test surface). In those cases when total

immersion or spraying techniques are used, the

contamination and the evaporation surfaces coincide.

Arizzi et al. [62] studied the effect of salt deposition

(from the test surface) and capillary salt up-take on

mortar specimens, and observed that salt capillary

uptake produced more damage than salt deposition.

Experiments using full immersion techniques pre-

vail in the literature (often some variant of EN 12370

(e.g. [63]). Some authors (e.g. [64]) argue that, while

this is not a common condition in practice, it reduces

the dispersion of the results. Full immersion is not

considered suitable to test specimens with surface

treatments; in this case, contamination (and possibly

rewetting) by partial immersion from the side opposite

to the treated one (e.g. [65, 66]) is a better option.
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In repeated total or partial immersion tests, salt can

either be introduced only in the first cycle (further re-

wetting is carried out with water), e.g. [16, 67–69], or

at every re-wetting, e.g. [4, 18, 70–74].

In wet-dry cycles, the duration of the contamination

phase can be set to: (1) a fixed time interval; (2) an

interval required for the complete saturation of the

specimen; and (3) an interval required for the intro-

duction of a fixed amount of salt. In the last two cases,

the interval depends on the absorption behaviour of the

test specimen, which has to be assessed in advance.

The use of a fixed period of absorption, regardless of

the water absorption properties of the materials, can

better represent practice, because materials with

different properties in similar onsite conditions are

likely to absorb different amounts of solution [17].

Common standards and recommendations, e.g. [4–7],

prescribe a fixed contamination period. The resulting

amount of salt and the depth reached by the salt

solution in the material are, therefore, governed by the

specimen’s absorption properties. In the case of slow

absorbing materials and/or of large specimen size,

incomplete saturation of the specimen might lead to

accumulation of salts in depth and, consequently, to

damage in the bulk of the specimen, which is not likely

to be representative of the type of decay generally

observed in the field (Fig. 5).

The introduction of a fixed amount of salt can be

advantageous to study the response of a material to a

specific salt amount in relation to its pore volume [75];

this can prove useful, e.g. to establish salt contents

below which a surface treatment can be safely applied

[58, 76–79]. By adjusting the concentration of the

solution to the porosity of the material, and defining

the amount of solution as that sufficient for the wetting

front to reach the evaporation surface during imbibi-

tion by capillarity, the amount of salt in the specimen

can be easily controlled. This procedure can favour the

development of deterioration at the surface (more

representative of the situation in practice). However,

introducing a given amount of salt can be virtually

impossible in some cases, e.g. restoration plasters with

water repellent additives. In the European project

COMPASS (EU project Compatibility of plasters and

renders with salt loaded substrates in historic build-

ings, EVK4-CT-2001-00047) several procedures were

developed to overcome the aforementioned disadvan-

tages. To assess the performance of plasters applied on

a substrate, a fixed amount of solution, sufficient to

just saturate the substrate, was introduced [15, 17, 80].

In this case the amount of salt and its distribution in the

Fig. 4 Overview of the

most common salt

contamination procedures:

a repeated total immersion

of the specimen; b repeated

partial immersion;

c continuous partial
immersion

Fig. 5 Limestone specimen after incomplete saturation by

partial immersion in a solution of sodium sulphate. Salt has

accumulated at depth and led to spalling of a thick layer; this

kind of damage is generally not observed in this stone on-site

(Nunes C 2008, Methods for the artificial ageing of stone by salt

crystallization for use in investigation of stone conservation

treatments. M.Sc. dissertation, Instituto Superior Tecnico da

Universitade Tecnica de Lisboa, unpublished)
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plaster layer will depend on the moisture transport

properties of the substrate/plaster combination.

4.2 Properties of the salt solution

Another important variable in salt contamination

procedures is the concentration of the salt solution.

The use of highly concentrated or saturated solutions

of Na2SO4 [4, 81–83], and NaCl [68, 84, 85] is

common in salt crystallisation tests. The same solution

concentration is often used for different salt types [6],

regardless of their different solubility. As pointed out

by Goudie [86], a procedure comprising the continu-

ous or repeated immersion of specimens in saturated

salt solutions may simulate the effect of inundation in

saline pan environments, but this is a marginal

occurrence in practice.

The concentration of the salt solution affects the

location of salt accumulation and crystallization and

thus damage type and severity. Given the same

amount of salt in a specimen, damage is more likely

to develop if salt accumulates in a thin layer of

material rather than if it is homogeneously distributed

in the specimen, because pores become more com-

pletely filled, which leads to the development of a

higher crystallization pressure [87]. One of the

drawbacks of using very high salt concentrations is

that the solution viscosity increases, favouring deeper

crystallization of the salt in the material [88]. As

explained by Ruiz-Agudo et al. [42], the physical

properties of the salt solution, i.e. density, surface

tension and, in particular, viscosity, have a critical

effect on the dynamics of solution flow and evapora-

tion, and therefore, on where and in which pores

crystallization occurs, thus determining the damage

type and severity. Higher salt concentrations can also

favour pore clogging, depending on the type of salt,

specimen pore structure [89] and drying conditions

[90]. Pore clogging can subsequently reduce the

drying rate and favour subflorescences (i.e. crystal-

lization beneath the surface) [60]. Besides, a high salt

solution concentration slows down the evaporation

rate because the difference in vapour pressure between

the material and the environment is reduced [17].

Little attention has been paid to reporting the details

about the solution preparation procedure, e.g. density,

freshly prepared or aged solution [91]. This aspect can

be particularly relevant when using (nearly) saturated

solutions. The re-utilization of salt solution may also

be an issue, particularly in the case of materials that

contain a significant amount of exchangeable ions

resulting in change in the actual composition of the

salt solution [92]. EN 12370 prescribes the use of a

fresh solution for each cycle but some researchers opt

to change the solution only every 5 cycles [93]. For

salts with solubility highly dependent on temperature,

such as sodium sulphate, it is also important to control

the temperature of both the solution and the specimen

[94].

4.3 Dissolution/crystallization cycles

Deliquescence/dissolution/crystallization events are

required for damage to develop. Only in a few cases,

and especially when using sodium sulphate, damage

has been observed after one single crystallization

cycle [95–97]; most often, repeated cycles are needed

for damage to occur. The results from extensive NaCl

crystallization tests suggest that wetting and drying of

the salt loaded specimens can be more relevant for the

development of damage than the total amount of salt in

the specimens [98]. Similarly, Balboni et al. [44], who

studied the damage mechanisms of magnesium sul-

phate salts in limestone, showed that specimens can

also undergo significant deformations at low salt

contents, provided they are subjected to several

drying-rewetting cycles. These observations are pos-

sibly related to salt accumulation in a thin layer of the

material, as a result of the repeated wet-dry cycles.

After the first salt contamination phase, dissolution/

re-crystallization cycles can be achieved by re-wetting

the specimens with a salt solution or with pure water

(liquid or vapour). Re-wetting can take place either

from the same surface as in the initial contamination

with salt solution (most usual), or from the evaporation

surface, opposite to the contamination surface, e.g.

[60, 62, 99, 100]. A risk related to re-wetting from the

top might be the transport of the salt back into the core

of the specimen [99, 101].

Re-wetting with salt solution is often proposed to

speed up the development of damage [17]; this can be

effective and realistic, provided that the concentration

of the solution is not too high. Conversely, repeated

immersion in highly concentrated solutions is

expected to: (1) favour pore clogging (e.g. [60]), (2)

slow down the drying thus limiting the number of

cycles which can be carried out in a given period of

time, and (3) hinder salt transport and accumulation
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close to the evaporation surface, possibly leading to

cracking and/or bursting in the bulk of the specimen, a

type of damage that is not representative of the field

situation.

Producing salt dissolution/crystallization cycles in

specimens by rewetting with water, in liquid [6, 7] or

vapour form, can be very effective, while still keeping

the salt content within realistic values. Several studies

have been carried out in an effort to keep the salt

amount at a realistic level and increase the number of

dissolution/re-crystallisation cycles by re-wetting with

water [50, 88, 98, 102, 103]. Indeed, for salts with

multiple anhydrous and hydrated forms with differing

solubility (e.g. Na2SO4), wet-dry cycles with liquid

water can be very damaging [97, 103]. Damage in this

case is believed to be caused by the dissolution of the

anhydrous phase (thenardite) followed by the rapid re-

crystallization of the hydrated phase (mirabilite)

[35, 104]. Recently, the possible role of heptahydrate

in the damage induced by sodium sulphate has been

investigated [105].

Even if damage in specimens contaminated with

sodium sulfate can occur through RH cycles alone

[106], re-wetting of thenardite with water vapour has

been reported to be less damaging than re-wetting with

liquid water [37, 97]. In contrast, in the case of sodium

chloride, wet-dry cycles obtained by varying the RH of

the air around the equilibrium RH of the salt can

produce several crystallization-dissolution cycles in a

short period of time and lead to damage, provided that

the salts have accumulated near the surface of the

specimen and are, hence, responsive to RH changes

[50]. This behaviour can be attributed to the fast

hygroscopic uptake of the salt at high RH and to the

growth of pure high-quality large crystals from a

highly supersaturated solution [107]. In the case of

Na2SO4, damage is less likely to occur in deliques-

cence-crystallization cycles due to the lower hygro-

scopicity of this salt and because the growth of isolated

hydrated crystals is slow and their life time is short

[37].

Continuous partial immersion tests, i.e. simulta-

neous absorption and drying (wick-effect), are used

to simulate the condition in which materials are

permanently exposed to rising damp. In this case, no

dissolution/re-crystallization cycles of the salt are

simulated and damage is caused by the accumula-

tion and crystallization of salts at the drying front.

The results of this procedure seem to be highly

dependent on the type of salt used and on the

environmental conditions. Benavente et al. [93]

compared the standard test EN 12370 [4] (wet-dry

cycles by total immersion) with the continuous

partial immersion of stone in a Na2SO4 solution

with cycles of temperature and RH (implying

thenardite-mirabilite conversion). They observed

significant differences in the extent and type of

damage between the two test procedures. The

continuous partial immersion test gave a distribution

and type of damage more similar to that observed in

the field than cycles of total immersion. The authors

concluded that continuous partial immersion tests

were probably a better way to simulate damage

resulting from rising damp. Besides, they underlined

that this procedure can be easily automated. How-

ever, other authors consider that continuous partial

immersion might lead to unrealistic conditions: the

existence of a permanently saturated surface on

which salts crystallize in forms rarely or never seen

in buildings, namely large near-equilibrium crystal

shapes forming transparent crusts or cauliflower-like

agglomerates [17]. This might help explain why the

continuous partial immersion test is generally inef-

fective for those salts, such as NaCl, which tend to

effloresce. Moreover, depending on the concentra-

tion of the salt solution, an unrealistically high salt

content might be reached in the specimen. Using

NaCl, Wijffels and Lubelli [15] observed that wet-

dry cycles with a fixed amount of NaCl (1.5 wt%)

introduced by partial immersion in specimens com-

posed of a brick substrate and a salt resistant plaster

promoted higher salt accumulation close to the

plaster surface (thus increasing the risk of salt

damage) than continuous immersion in a NaCl

solution (10 wt%). The authors concluded that a

procedure allowing as many as possible repeated

wet-dry cycles should, therefore, be preferred for

this type of salt and substrates.

5 Drying conditions

The drying and cooling conditions used in salt

crystallization tests have a major influence on the

nature, location and rate of salt crystallization, and

thus the type of damage induced. Goncalves and

Brito [96] provide a summary of the key theoretical

stages of drying involved in porous building
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materials. Stage 1 occurs when moisture contents

are high and the evaporation front is at the surface

(causing a constant drying rate and efflorescence).

Stage 2 occurs when moisture contents are lower,

and the evaporation front is located within the

porous material (declining drying rate and subflo-

rescence result during this stage). However, in

practice a transitional phase can also occur, and

the presence of salts can complicate any simple

drying curves. Pel et al. [108] studied the drying of

fired-clay brick specimens contaminated with NaCl

solution in an NMR set-up. They reported that the

salt laden specimens showed no receding drying

front throughout the duration of the drying exper-

iment (14 days) which was attributed to both the

low drying rate conditions used and the wetting

properties of the NaCl solution. Goncalves et al.

[26] pointed out that when soluble salts are present,

the drying kinetics is not only slower but also more

irregular, and drying curves show higher dispersion

than for pure water. The authors believe this occurs

because salts amplify the dispersion effect that

material heterogeneity has on the drying kinetics.

Factors affecting drying rates are temperature, air

movement and relative humidity within the experi-

mental set-up. As the complete drying of specimens

may require a very long time, particularly when they

are salt-contaminated, drying is often accelerated by

the use of high temperatures, low RH and high air

speed. The way that high temperatures are obtained

can also influence the results. Gomez Heras and Fort

[109] investigated whether heating by radiation and

convection caused different effects. They found that

radiation favoured subflorescence more than convec-

tive heating despite identical temperature cycling

regimes. When drying occurs in an oven, low repro-

ducibility between different laboratories has been

reported [9] which suggests that, as well as temper-

ature, other conditions (e.g. RH and air flow) should

also be specified to improve the reproducibility of the

test.

Crystallization experiments using full immersion

techniques are very common in the literature (e.g.

[4, 12, 110]). In these experiments, a short period of

immersion in saline solution (often 2 h) is followed by

an extended period of drying (usually 16–20 h), which

in turn is usually followed by a short period of cooling

(2–8 h). In most cases, the three stages together add up

to 24 h, and this diurnal cycle is repeated several

times. Drying temperatures between 60 and 105 �C
are generally used, with cooling under room condi-

tions, despite it being known that temperatures higher

than 50–60 �C can cause microfissures in some stone

types (see e.g. [111]). West [9] suggests that the

EN12370 [4] procedure might be improved by low-

ering the drying temperature to 65 �C, as done in the

Australian standard AS/NZS 4456:2003 (‘‘Masonry

units, segmental pavers and flags—Methods of test’’)

[112].

Angeli et al. [88] studied the effect of different

drying and cooling conditions (5 �C, room tempera-

ture, and 50 �C) on the severity and type of decay of

sedimentary stone types contaminated with different

concentrations of sodium sulphate solution. They

report that higher damage developed at low cooling

temperatures and attributed this result to the lower

solubility of sodium sulphate at low temperatures,

which allows fast supersaturation and thus very fast

decay.

Some papers report on complex experiments, such

as those carried out by Yu and Oguchi and Menendez

and David who used different temperature and RH

conditions, in order to investigate the aggressiveness

of different forms of Na2SO4 [113] and CaSO4 [114]

on the weathering. In both studies, the key role played

by drying and cooling conditions on salt damage was

confirmed.

Full immersion experiments can also involve more

complex drying regimes when they aim to predict the

behaviour of different materials under specific field

conditions. Geomorphological researchers in particu-

lar utilise this approach. Smith et al. [115] provide an

example of an experimental study designed to evaluate

the importance of stress histories to the behaviour of

rocks on desert surfaces. After immersion in NaCl for

48 h groups of pristine and pre-stressed limestone and

sandstone blocks were air dried for 96 h at 20 �C, and
then exposed in an environmental cabinet to cycles of

convective temperature with bursts of radiative heat-

ing to simulate warming by solar radiation; significant

damage was registered. Other experiments interrupt

the drying stage to spray deionized water onto the

samples to simulate fog (e.g. [41]), or use extreme

temperature and humidity cycling to simulate diurnal

cycles of solar heating and dew deposition, e.g. [106].

Arizzi et al. [62] used purpose-designed drying

conditions, with temperature and RH cycles and fog
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events (spraying water on the evaporation surface), to

study the performance of different mortar mixes.

In partial immersion experiments, samples are

contaminated with salts initially through the base of

the sample, then dried and re-wetted with deionized

water or salt solution, either from the top of the

specimen, i.e. evaporation surface, (simulating rain or

fog) or from its bottom (simulating rising damp) (see

Sect. 4.3). Godts et al. [60] contaminated limestone

with MgSO4, Na2SO4, and a mixture of the two, then

dried them at either 25 �C and 35% RH or 25 �C and

70% RH for 14 days, then applied more water to the

top and dried them for a further 14 days. The authors

report that the use of low RH favours pore clogging

and the formation of a salt crust which consequently

delays drying.

Lubelli et al. [98] used partial immersion methods

to contaminate plasters with NaCl and then dried them

under four different scenarios of temperature and RH.

The specimens were re-wetted through the side

opposite to the evaporation surface when 80% of the

initially applied water had evaporated. The results

showed that temperature and air flow have a very

important effect on the drying rate and that repeated

wet-dry cycles favour migration of the salts towards

the evaporation surface. The same author [50] pro-

poses the use of temperature and RH cycles (between

60 �C/0%RH and 20 �C/95%) during drying to speed

up the drying process and, at the same time, increase

the number of dissolution/crystallization cycles. In

this way, damage can be significantly accelerated in

NaCl contaminated specimens.

In studies involving the evaluation of mortar

performance in composite samples, a possible role of

the wetting cycles in the curing of the mortars was

highlighted (e.g. [47, 54]), which makes the interpre-

tation of the salt effect more complex.

In experiments involving the continuous partial

immersion of specimens in salt solution, different

ranges of drying conditions are used. For example,

Benavente et al. [93] used partial immersion of

limestone and sandstone specimens in Na2SO4 and a

two stage drying: 12 h at 40 �C and 80%RH, followed

by 12 h at 10 �C and 70% RH. Goudie [52] used

cycles of 7 h at 55 �C and 17 h at 22 �C (with no

control of RH) in his study of the ‘wick effect’ of a

range of salt solutions on sandstone.

The selection of the drying conditions is sometimes

determined by the goals of the experiment. Cardell

et al. [116] used temperature and humidity regimes to

reproduce natural conditions in Granada, southern

Spain, while Rodriguez-Navarro and Doehne [46]

used low (35%) and medium–high (60%) RH condi-

tions at 20 �C to compare the effects of mirabilite and

thenardite, crystallizing at RH[ 50% and at RH\
50%, respectively.

Another relevant parameter is the use of free or

constrained drying conditions. Under free conditions,

evaporation can occur from all the faces of the

specimen, whilst under constrained conditions 4 or 5

faces are sealed to prevent evaporation. Sealing can be

obtained either by applying a tape, film or adhesive, or

by applying an impermeable coating (usually an epoxy

resin) or placing blocks within polystyrene ‘moulds’

or other devices, which may also exert a mechanical

constraint or thermal insulation on blocks.

6 Assessment method

Many, more or less complex, methods and techniques

are used for the assessment of the results of salt

crystallization tests. The occurrence of damage is

mostly assessed by comparison between the situation

before and after the test. The methods used depend on

the aims of the study and, sometimes, also on the

available laboratory equipment.

6.1 Visual and photographic observations

and weight change

Standards and recommendations suggest simple

assessment methods, which can be carried out at any

laboratory, without the need for specific facilities.

RILEM Tests No. V.1a, b (total immersion) [5] and

EN 12370 [4] prescribe reporting the mass change or

the number of cycles needed to completely destroy the

samples (in case complete disintegration occurs in less

than 15 cycles). A photographic record of the spec-

imen condition is required only at the beginning and at

the end of the test. RILEM Test No. V.2 (partial

immersion) [5] requires a ‘‘visual (photographic)

evaluation’’ only, and recording the mass change is

stated to be ‘‘less suitable’’ in this case. Similarly,

RILEM MS-A.1 [6] suggests recording the visual

changes (by photographs and description) and the

number of units that have failed after each cycle. The

criterion of ‘‘failure’’ must be specified in every
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individual case. Thus, a comparison between different

materials and units is difficult and might be biased by

subjective considerations.

All in all, as ‘‘visual (photographic) evaluation’’ is

highly affected by subjectivity, mass change is the

only measurable and quantitative property proposed in

the standard tests. However, recording the mass

change has important limitations: mass change is a

combination of mass increase due to repeated salt

contamination and mass loss due to damage. Besides,

when damage occurs as cracking of the specimen

without any material loss, it becomes impossible to

use mass change as the only criterion.

In most scientific studies of salt decay, the devel-

opment of damage is usually monitored by weighing

the specimen after each drying cycle in combination

with visual and photographic record. Several authors

further developed the mass change criterion to extract

relevant and objective information on the weathering

and its evolution. Some authors collected the debris

after dissolution of the salt to monitor more precisely

the loss of material (e.g. [39, 50]). As salt can cement

loose particles, some authors suggested brushing the

specimen after the wetting phase to facilitate removal

of debris [50] or immersing it in water at the end of the

test [46]. Goudie et al. [38] classified the material loss

according to the size of the fragments in order to gain

quantitative information on the type of damage (e.g.

splitting or granular disintegration). The same author

some years later [52] used four different parameters to

express the nature of stone breakdown: (a) weight of

the largest remaining particle, expressed as a percent-

age of the initial weight; (b) combined weight of

detached particles above 2 g as a percentage of the

initial weight; (c) number of detached particles above

2 g and (d) weight percentage of particles less than

1 mm in diameter. On particles weighing less than 2 g,

a granulometry study was performed. A combination

of these parameters was used by the same author to

define an Index of Disintegration. Later on, other

authors also tried to define indices to facilitate the

comparison between specimens: e.g. Angeli et al.

[117] established the Alteration Index, i.e. the number

of the cycle during which one can see the first sign of

damage, and the Alteration Velocity, i.e. the slope of

the plot representing the weight loss in percentage as a

function of the cycle number, allowing assessment of

the dynamics of the weathering process.

In some studies, photographic recording has been

replaced by time-lapse videos, which allows a better

representation of the evolution of damage over time

[46]. In some others, a more standardized description

of the damage has been attempted in order to make

visual assessment more objective (e.g. [25, 69]).

6.2 Other methods

6.2.1 Non-destructive techniques

In most studies, visual/photographic inspection and

mass change measurement are complemented with

more or less complex investigation techniques. Some

of these are non-destructive and allow monitoring of

damage during the test, while some others are

destructive and are, therefore, generally carried out

only at the end of the test.

Some non-destructive techniques focus on the

observation of changes occurring on the surface of

the material. Vazquez et al. [118] measured color

changes in limestone samples after salt crystallization

tests, but did not observe any significant changes. As

salt damage generally affects the surface of the

material, laser [119, 120] and optical profilometers

(Fig. 6) [96] have been used to characterize the surface

Fig. 6 Optical profilometer [using a white light (CLA) gauge]

for monitoring of surface changes
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decay and monitor its evolution. Other authors use a

combination of digital camera, reflectography and

fiber optic microscope images [121]. Recently, more

advanced techniques such as X-ray CT [23, 122], and

neutron tomography [123] have been successfully

applied to study the development of damage in the

bulk of the material. These 3D imaging techniques

allow not only qualitative monitoring of the weather-

ing process, but also quantitative determination of the

location of the accumulation of salt and the opening of

fractures [90, 122–125] (Fig. 7). Synchrotron radia-

tion energy-dispersive X-ray diffraction has also been

used to monitor salt distribution in limestone samples

[126].

Another non-destructive technique which has found

application in the monitoring of the decay is acoustic

emission and measurement of ultrasonic P-wave

velocity. Menéndez and David [114] continuously

recorded the generated acoustic emission to detect salt

weathering by CaSO4 precipitation (Fig. 8), a method

which had been already suggested by Grossi et al.

[127]. Akin and Ozsan [24] found decay function

models following an exponential law between P-wave

velocity and Unconfined Compressive Strength (UCS)

as a function of the number of crystallization cycles

performed on travertine samples. Also, Aly et al. [128]

used ultrasonic P-wave velocity to characterize lime-

stone samples after partial immersion tests. Moreover,

they applied non-destructive measurements of surface

hardness (Leeb number, rebound hardness) and found

good correlation between UCS and rebound hardness,

whereas the correlation between P-wave velocity and

UCS was weak. The authors attributed this to the fact

that the P-wave velocity was first increased (compared

to the untreated samples) by the filling of stone pores

with salts; later it was reduced due to the formation of

cracks.

6.2.2 Destructive techniques

Among the destructive techniques for the study of the

effect of salt crystallization on a material, mercury

intrusion porosimetry (MIP) is one of the most

commonly used. The measurement of changes in

porosity and pore size distribution by MIP is consid-

ered to provide information on the location of salt

deposition (if carried out after the test and prior to

desalination) and on the damage (if carried out after

the test on desalinated samples) (e.g.

[42, 46, 47, 62, 98, 110, 129, 130]. The limitations

of MIP are well known (e.g. [131]): the instrument

measures the pore throat and not the actual pore size,

thus possibly leading to misinterpretation of data;

assumptions are made on contact angle values and

pore shape which may strongly affect the results.

Despite these limitations, the ease of data collection

Fig. 7 3D reconstruction of X-ray tomographic dataset of a

Savonnières limestone sample after 4 wetting–drying cycles

with a 1.4 molal Na2SO4-solution. The sample was sealed on its

lateral sides and the upper volume was treated with a

hydrophobic agent prior to the imbibition-drying cycles in

order to induce a precipitation front below the top surface. The

crack volume is indicated in red and visualized by partly cutting

the stone volume ([125], reproduced with permission of the

author). (Color figure online)

Materials and Structures  (2018) 51:55 Page 13 of 21  55 



and elaboration has contributed to the diffusion of the

use of this method.

In some studies, the difference in mechanical

(flexural, tensile and/or compressive) strength of the

material before and after the crystallization test is used

as a measure of decay [30], sometimes in combination

with NDTmethods. For example, Akin and Ozsan [24]

determined the UCS of travertine stones with different

porosity after an increasing number of crystallization

cycles and showed that repeated magnesium and

sodium sulphate crystallization significantly reduce

the compressive strength. Similarly, Ludovico-Mar-

ques [132] determined the evolution of mechanical

properties of sandstone blocks during a crystallization

test. Aly et al. [128] characterized the UCS of partially

immersed stone samples after different times of

treatment.

One of the limitations of mechanical strength

measurements is that the combined effect of salt

accumulation in pores (increasing the material

strength [133]), moisture, and damage (decreasing

the material strength), complicate the interpretation of

the results.

Microscopy techniques, including optical

[134, 135] and (environmental) electron scanning

microscopy, sometimes equipped with energy disper-

sive X-ray spectrometry (e.g. [46, 55, 101, 135, 136]),

are also often used to study damage due to salt

crystallization. Generally, microscopic observations

are carried out at the end of the test, without prior

desalination of the sample, to assess the presence and

type of damage and relate this to the salt distribution in

the specimen (e.g. [115] and the location of salt in

pores [50, 133]).

Sometimes, destructive methods are used to assess

quantitatively the distribution of salt in the specimens

during and/or at the end of the test. The technique

usually encompasses the slicing or grinding of the

Fig. 8 Use of acoustic emission techniques on limestone

specimens during a salt crystallization test with sodium sulfate.

a Cumulative number of events recorded by acoustic emission

technique during drying (20 h at 50 �C) and cooling (2 h at

20 �C). b Samples after 16 cycles: drying and cooling at 5% RH

(left) and 90% RH (right)
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specimen along its length or powder-drilling of the

samples at different depths. The salt content in the

samples can then be measured by the hygroscopic

moisture content method [137, 138], or by ion

chromatography (IC) [17, 50, 51, 98] or electrical

conductivity [103]. Modestou et al. [139] used the

drilling resistance measurement system (DRMS) and

the scratch tool to monitor the salt crystallization front

in salt weathered limestone, both in the laboratory and

in situ. Arizzi et al. [62] analyzed by IC the amount of

soluble cations present in mortar specimens at the end

of a crystallization test with sodium sulfate.

The precision of the salt distribution analysis is

determined by the thickness of each sampling interval.

Given the importance of salt distribution in the

development of damage, its assessment is of crucial

importance for designing a salt crystallization test,

namely regarding the contamination procedure and the

drying regime. Besides, salt distribution can be used to

determine the risk of future damage in those speci-

mens showing no decay at the end of the test: a high

accumulation of salt directly beneath the surface

implies a higher risk than a homogenous distribution

of salt throughout the depth of the specimen. A similar

approach was followed by other researchers for

assessing the risk of damage due to accumulation of

salts behind the consolidated layers in bricks [65] and

limestone [66], such accumulation possibly leading to

spalling of the treated layer.

7 Discussion and conclusions

This review highlights that a wide range of accelerated

salt weathering procedures has been proposed in the

literature, due to both the limitations of current

standardmethods and the different goals of the studies.

Focussing on the assessment of material durability

and repair material compatibility, the first key step in

the establishment of an accelerated test is the choice of

the type of specimen, which should be representative

of the situation in practice. The review highlights for

many situations the importance of testing combina-

tions of different materials (assembled specimens),

and of taking into account material peculiarities, such

as bedding planes in natural stones. Small size

specimens should be preferred to speed up the wetting

and drying steps. However, the size of the specimen

should be large enough to be representative of the

material properties and of the simulated damage

process. The shape of the specimen often depends on

the damage assessment method. Generally, cylinders

have the advantage of limiting the corner effects

present in prismatic specimens. Although standards

and recommendations suggest a high number of

replicates (6 in [4], 10 in [6]), 3 (or even fewer)

replicates are generally used in laboratory tests;

requiring a much larger number of replicates seems

therefore impractical. A compromise should never-

theless be found between practical issues and relia-

bility of the results.

The assessment of the reviewed references shows

that single salts (mainly Na2SO4 and NaCl) are most

commonly used in crystallization tests. Salt mixtures

are rarely adopted, probably because of the complexity

in the interpretation of the results and because

mixtures were often found to be less damaging than

single salts. Salts with multiple hydrates with different

solubility (such as sodium and magnesium sulphate)

are the most damaging ones in accelerated weathering

tests. However, this conclusion might be partially

biased by the test procedures generally used in

literature (immersion-drying cycles promoting the

rapid re-crystallization of the hydrated forms after

dissolution of the anhydrous one), as the kind of cycle

is decisive for the measured aggressiveness of a salt. In

fact, salts like sodium chloride have also proven to be

very damaging, provided that effective weathering

conditions are selected (frequent dissolution/crystal-

lization cycles of the salt due to RH changes). These

observations suggest that the most effective procedure

depends on the type of salt used.

Often, a very high salt content in the specimens is

used in salt crystallization tests, but this literature

review suggests that this might be counter-productive

in some cases, leading to unrealistic damage type

without necessarily speeding up the occurrence of

damage.

The large variety of contamination and drying

procedures reported in the literature, and the fact that

they are rarely compared with each other, makes it

difficult to draw conclusions on their relative effec-

tiveness and reliability. However, it is clear that

contamination and drying procedures can affect the

durability ranking of the tested materials. In fact, the

contamination procedure (amount, concentration and

supply of salt solution) and the drying conditions

affect the salt accumulation in the material. The degree
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of pore filling and the crystallization pressure, together

with the (micro)mechanical properties of the material,

determine the onset of the damage [140].Extreme

drying conditions are very often used in laboratory

weathering tests, because of the need to accelerate the

damage process; however these conditions often lead

to damage types (e.g. cracks in the bulk of the sample,

complete disintegration) that are far from representa-

tive of reality. As the decay type depends on the

location of salt crystallization, it is important in a

crystallization test that salt accumulation occurs where

this is to be expected in the field, i.e. near the surface of

the material, for a test to be reliable and significant.

This can be favoured by the use of unsaturated

solutions, initial saturation of the specimen by capil-

larity and not too extreme drying regimes.

This review shows that several techniques can be

used to assess and monitor the decay, qualitatively

and quantitatively, destructively and non-destruc-

tively, with different levels of complexity, precision

and cost. Generally, visual observation and mass

change are used for monitoring the decay, some-

times complemented by additional techniques. In the

definition of a standard crystallization test and

prescription of assessment methods, preference

should be given to economically affordable and

preferably non-destructive monitoring methods and

techniques, which are easily accessible for most

laboratories and do not require very specialized

expertise.

Existing standards and recommendations provide

no criteria for the classification of the durability of the

tested material. In publications, conclusions are drawn

only by comparison between the different tested

materials (relative ranking). Providing criteria for

such a classification would confer an additional value

to the to-be-developed salt crystallization procedure.

In conclusion, this paper provides an overview of

existing literature on accelerated salt crystallization

tests, underlines open questions and suggests direc-

tions for the to-be developed salt crystallization

procedure. These ideas, together with those resulting

from research on modelling of salt transport and

crystallization pressure [87], will contribute to the

definition of improved procedures for the assessment

of the durability of materials with respect to salt

crystallization.
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