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Everything is energy and that’s all there is to it.  
Match the frequency of the reality you want 

and you cannot help but get that reality.  
It can be no other way. 
This is not philosophy.  

This is physics. 
 

Darryl Anka 
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Abstract 
 

Introduction 
The prediction of structural vibrations in vibration sensitive laboratory structures is a complex 
problem involving heavy computational models with long computational times. However, in 
the early design phases of a project the structural engineer prefers to perform multiple 
iterations to see what choices should be made for the structural design to meet the vibration 
requirements of the building. A long computational time is undesirable, therefore the wish of 
Pieters Bouwtechniek is the development of a practical engineering tool that can be used in 
the early design phases of such a project. This led to the initiation of the current Master thesis 
research about the development of a practical engineering design tool for an early design of 
vibration sensitive laboratory building structures.  
 

Scope of research 
From a comprehensive literature study to this complex dynamic problem it appeared that for 
many projects, vibrations induced by heavy traffic driving over a nearby road irregularity, is 
one of the dominant excitations for vibration sensitive laboratory structures. Therefore, the 
main focus of this Master thesis is about structural vibrations induced by heavy traffic at 
geological locations with soft soils. Computational iterations are made for one specific 
geological location: Amsterdam, The Netherlands. 
  
The dynamic problem is split up into the four consecutive parts: source of vibrations, 
transmission of vibrations, soil-structure interaction and the vibration receiving structure. 
 

Source of vibrations 
The source of vibrations (heavy traffic) is implemented as a moving load, which excites the soil 
underneath the road. The loading on the soil depends on the vehicle characteristics, the road 
irregularity profile, the vehicle speed and the stiffness of the road. The dominant frequency 
content of the loading (the frequencies at which the moving harmonic loads are applied) is 

generally in-between the ranges 0.8 –  3 Hz (1st mode) and 8 –  15 Hz (2nd mode) with peaks in 
the mid-region of these ranges.  
 

Transmission of vibrations 
The transmission of vibration is implemented as a layered semi-infinite halfspace (a soil 
medium with perfectly horizontal layers and a free surface). Three important types of waves 
exist in a semi-infinite homogeneous halfspace: the compressional wave, the shear wave and 
the Rayleigh wave. The Rayleigh wave contains the largest portion of energy and is only 
present near the soil surface. The wavelengths of Rayleigh waves, and thus their influence zone 
in the soil, depend on the frequency of excitation and the soil layering, but can be 
approximated for soft soils to be around 15 m. The layering of the soils causes reflections and 
refractions of the incident wavefield and therefore makes the predictions of the soil response a 
challenging task, especially because in reality soil layers are hardly ever perfectly horizontal. 
The soil layering determines at which frequencies the soil amplifies or attenuates the dynamic 
moving loads and mainly depends on the stiffness of the layers. Stiff soils excited by heavy 
traffic have a responsive frequency spectrum generally in-between 10 and 40 Hz, while the 
responsive frequency spectrum of soft soils is generally in-between 3 and 15 Hz. Wave barriers 
can be used to mitigate the vibrations before they reach the receiving structure.  
 

Vibration receiving structure 
The vibration receiving structure is simplified to a very stiff and rigid 2D structure, which 
makes that the global structural vibrations can be computed by considering a 3DoF system. 
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The assumption here is that the dominant vibrations occur in a 2D (x,z)-plane and that the 
building is not vulnerable to torsion. The dominant eigenfrequencies of a large and rigid 
concrete building structure are generally below 3 Hz. Additionally to the global structural 
response the local flexible floor response of the foundation slab or first floor is considered in 
the form of an analytical expression of the Euler-Bernoulli beam (EB-beam). The surrounding 
elements of this floor of interest (adjacent walls and floor) which cause deformation resistance 
of the floor are also taken into account as EB-beams. This results in a frame of eight flexible 
Euler-Bernoulli beam elements. The frequency content of the local floor response in case of 
stiff concrete floors is generally in-between 8 and 12 Hz. 
 

Soil-structure interaction 
The soil-structure interaction affects the incident wavefield, and thus the excitation on the 
3DoF structure, and affects the vibrations of the structure. Due to the presence of the 
structure, the incident wavefield is reflected and refracted which may cause either 
amplification or attenuation of the soil response near the structure. The flexibility of the 
supporting soil surrounding the structure partly determines the eigenfrequencies of the 3DoF 
system. Different approaches exist for taking into account the soil-structure interaction. In this 
thesis the sub-structuring approach is implemented, based on the research of Gazetas et al. 
(Gazetas G. , 1991). 
 

Numerical method 
The software FEMIX is used for computing the moving loads and the soil response. FEMIX is 
an already existing Beta-version software and uses the Thin-Layer Method and 2.5D BEM-FEM 
coupling in the computations.  
Python is used for the development of the computational script of the practical engineering 
tool ‘EDDABuSGS’ (Early Design Dynamic Analysis of Building Structures by Gerwin Schut). 
The script takes the computed soil response by FEMIX as input and determines the global- 
(3DoF) and local (EB-beam) structural response based on the input parameters (for the 
supporting soil and the structure) given by the user. 
 

Verification of results 
Verification projects are used to verify the results computed by FEMIX and EDDABuSGS. The 
available verification projects are scarce, however prof. Degrande et al. of the KU Leuven have 
performed measurements for projects in Belgium to verify their own prediction model 
(Degrande & Lombaert, 2002). Despite the fact that these projects are not in The Netherlands, 
they are used as verification projects for this thesis research. The source and transmission stage 
have been verified and agree very well with the verification projects. The receiving stage could 
only partly be verified because the type of building (flexible and dominant floor spans parallel 
to the length of the road) is not suitable for the EDDABuSGS-tool (rigid buildings with 
dominant floor spans perpendicular to the length of the road).  
A confined amount of modelling information is available for a vibration sensitive project of 
Pieters Bouwtechniek in Amsterdam. The information is extended with the knowledge gained 
from the literature study and with the verification projects in Belgium to approximate the soil 
response for a location in Amsterdam. This soil response is used as input excitation for the 
final EDDABuSGS-tool.  
 

Research iterations 
After verification of the tool several iterations have been performed by changing the structural 
parameters and the supporting soil in EDDABuSGS. A design chart has been developed based 
on these iterations and the literature research. It appears that, in general, it cannot be said in 
advance whether changing a certain parameter is conservative or not. It depends on the 
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interrelations of all the parts of the problem. However for soft soils, excited by heavy traffic, it 
generally holds that the eigenfrequencies of the global building response should be made 
relatively low (< 3 Hz), while the eigenfrequencies of the local structural elements (e.g. floors) 
should be made relatively high (> 12 Hz). Additionally, the resistance against vibrations 
(impedances) of the structural elements need to be as large as possible, which might 
sometimes contradict the preferred shift of the eigenfrequencies. 
 

Conclusion 
The EDDABuSGS-tool together with the design chart give an extensive overview of the 
influence of the structural parameters and the supporting soil. The verification of EDDABuSGS 
and the observations from the computed iterations show that the outcomes of the tool are well 
in line with general known theory about structural dynamics. Therefore the goal of this thesis, 
to develop a practical engineering tool for an early design phase of a project concerning 
vibration sensitive laboratory structures, is accomplished. 
The influence factors that can be determined from changing certain parameters should be 
reliable, however it is advised not to use the tool to predict the vibration amplitudes in 
absolute sense. Too many unknowns remain in the modelling parameters, but also some 
simplifications made for the EDDABuSGS-tool need to be verified. These simplifications mainly 
concern the implementation of the supporting soil impedances, the supporting pile foundation 
impedances and the consideration of the floor element as a simple one-span EB-beam. 
Therefore the recommendations stated for future research mainly focus on these aspects. Also, 
extending the applicability of the tool for more possible situations (e.g. different loading, 
different soil layering, different vehicle characteristics and speeds) is recommended to 
consider in future research. 
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Symbols 
 
Meaning of the symbols used in this thesis (unless described differently in the text). The 
meaning of double mentioned signs should become clear from the context in which the sign is 
used. 
 
Sign Description Unit 

𝐴 Area 𝑚2 
𝐴𝑏 Effective surface area of the foundation basemat 𝑚2 
𝐴𝑟 Amplitude reduction ratio − 
𝐴𝑤 Side wall-soil contact surface  𝑚2 
𝐶 Parameter used for the determination of the natural 

frequencies of EB-beams by means of equivalent masses 
− 

𝐶𝑗(𝜔) Frequency-dependent damping impedance term of the 
3DoF system (in 2D, 𝑗 = 𝑥, 𝑧, 𝜑) 

𝑁𝑠/𝑚  or 
𝑁𝑚𝑠/𝑟𝑎𝑑 

𝐶𝑝 Damping of the vehicle’s primary suspension in a MDoF 
model 

𝑁𝑠/𝑚 

𝐶𝑠 Shear wave speed of vibrations through a specific 
material 

𝑚/𝑠 

𝐶𝑡 Damping of the vehicle’s tyre in a MDoF model 𝑁𝑠/𝑚 
𝑪 Global damping matrix − 
𝑪∗ Modal damping matrix − 

�̂�(𝜔) Frequency-dependent radiation damping matrix − 
𝐷 Depth of embedment 𝑚 
𝐸 Young’s modulus 𝑁/𝑚2 
𝑬 Eigenmatrix − 

𝑬𝑻 Transposed eigenmatrix − 
𝐹 Force 𝑁 
FwAVG Vibration level reduction based on AVG − 
𝐹𝑖,𝑗,𝑎𝑣𝑔(𝑡, 𝜔) Frequency dependent average excitation load on the 

3DoF system (𝑖 = 𝑢, 𝑣) (𝑗 = 𝑥, 𝑧, 𝜑) 
𝑁  or 𝑁𝑚 

𝐺 Shear modulus 𝑁/𝑚2 
𝐻 Height 𝑚 
𝐻𝑗(Ω) Frequency response function for the subject ‘𝑗,’ 

depending on the loading radial frequency ‘𝜔’ or ‘Ω’ 
− 

𝐻𝑗(𝑓) Modulus of the transfer function for the subject ‘𝑗,’ 
depending on the frequency ‘𝑓’ 

− 

𝐼 Second moment of area 𝑚4 
𝐼𝑏 Moment of inertia of the vehicle’s body in a MDoF model 

or moment of inertia of the building 
𝑘𝑔𝑚2 

𝐼𝑚(𝑔) Imaginary part of the function 𝑔 − 
𝐽 Mass Moment of inertia 𝑘𝑔𝑚2 
𝐽𝐶𝐺 Mass Moment of inertia around the centre of gravity 𝑘𝑔𝑚2 
𝐾𝑝 Stiffness of the vehicle’s primary suspension in a MDoF 

model 
𝑁/𝑚 

𝐾𝑡 Stiffness of the vehicle’s tyre in a MDoF model 𝑁/𝑚 
𝐾𝑗(𝜔) Frequency-dependent stiffness impedance term of the 

3DoF system (in 2D, 𝑗 = 𝑥, 𝑧, 𝜑) 
𝑁/𝑚  or 
𝑁𝑚/𝑟𝑎𝑑 

Ҟ𝑗(𝜔) Frequency-dependent impedance terms (in 2D, 
𝑗 = 𝑥, 𝑧, 𝑟𝑦) 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑢𝑛𝑖𝑡𝑖𝑒𝑠 
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Ҟ𝑗
𝐺(𝜔) Frequency-dependent impedance terms (in 2D, 

𝑗 = 𝑥, 𝑧, 𝑟𝑦) of a foundation pile-group 
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑢𝑛𝑖𝑡𝑖𝑒𝑠 

Ҟ𝑗,𝑖
𝑠 (𝜔) Frequency-dependent impedance terms (in 2D, 

𝑗 = 𝑥, 𝑧, 𝑟𝑦) of a single foundation pile (𝑖) 
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑢𝑛𝑖𝑡𝑖𝑒𝑠 

𝑲 Global stiffness matrix − 
𝑲∗ Modal stiffness matrix − 

�̃�(𝜔) Frequency-dependent stiffness matrix − 
𝐿 Length 𝑚 
𝐿𝑏 Length of building 𝑚 
𝑀 Moment 𝑁𝑚 
𝑀𝑎 Mass of the vehicle’s axle in a MDoF model 𝑘𝑔 
𝑀𝑏 Mass of the vehicle’s body in a MDoF model or 

Mass of the building in the 3DoF system 
𝑘𝑔 

𝑴 Global mass matrix − 
𝑴∗ Modal mass matrix − 
𝑁 Normal force (should become clear from the context) 𝑁 
𝑁 Number of summation terms (should become clear from 

the context) 
− 

𝑁(𝑧) Interpolation function in the vertical direction − 
𝑃 Period of the Fourier expansion 𝑚 
𝑄 Shear force 𝑁 
𝑅𝑒(𝑔) Real part of the function 𝑔 − 
𝑇 Period of a vibration 

𝑇 =
1

𝑓
 

𝑠 

𝑇𝑛 Natural period  𝑠 
𝑈𝑗,𝑎𝑣𝑔(𝑡) Average prescribed excitation motion on the 3DoF 

system (𝑗 = 𝑥, 𝑧, 𝜑) 
𝑚  or 𝑟𝑎𝑑 

𝑉 Volume 𝑚3 
𝑉𝑟 Rayleigh wave velocity  𝑚/𝑠 
𝑉𝑠 Shear wave velocity  𝑚/𝑠 
𝑊 Width 𝑚 
X1 Horizontal translation of the 3DoF system response 𝑚 
X2 Vertical translation of the 3DoF system response 𝑚 
X3 Rotational motion of the 3DoF system response 𝑟𝑎𝑑 
𝑍 Impedance (resisting against vibrations) 𝑁𝑠/𝑚 
   
𝑎 Acceleration 𝑚/𝑠2 
𝑎0, 𝑎𝑛, 𝑏𝑛 Coefficients of the Fourier expansion − 
𝑐 Wave speed (should become clear from the context) 𝑚/𝑠 
𝑐 Damping coefficient of a dashpot (should become clear 

from the context) 
𝑁𝑠/𝑚 

𝑐1 Damping coefficient of the primary suspension in a 
quarter truck vehicle model 

𝑁𝑠/𝑚 

𝑐2 Damping coefficient of the tyre in a quarter truck vehicle 
model 

𝑁𝑠/𝑚 

𝑐𝑝 Wave speed of the P-wave 𝑚/𝑠 

𝑐𝑟 Wave speed of the R-wave 𝑚/𝑠 
𝑐𝑠 Wave speed of the S-wave (or shear wave speed) 𝑚/𝑠 
𝑑 Depth 𝑚 
𝑓 Frequency 𝐻𝑧 
𝑓𝑑𝑜𝑚,𝑙𝑜𝑎𝑑 Dominant frequency of the loading (the excitation) 𝐻𝑧 
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𝑓𝑛,𝑠𝑡𝑟 Natural frequency of the structure 𝐻𝑧 

ℎ Height 𝑚 
𝑘 Wavenumber (should become clear from the context) 𝑚−1 
𝑘 Spring stiffness (should become clear from the context) 𝑁/𝑚 
𝑘1 Stiffness of the primary suspension in a quarter truck 

vehicle model 
𝑁/𝑚 

𝑘2 Stiffness of the tyre in a quarter truck vehicle model 𝑁/𝑚 
𝑘𝑗 Wavenumber for subject ‘𝑗’ 𝑚−1 

𝑙 Length 𝑚 
𝑚 Mass 𝑘𝑔 
𝑚𝑠 Mass of part of the body in a quarter truck vehicle model 𝑘𝑔 
𝑚𝑢 Mass of the axle in a quarter truck vehicle model 𝑘𝑔 
𝑛 Damping parameter 𝑛 =

1

2
𝑐/𝑚 𝑁𝑠/𝑚2 

𝑞 Distributed load 𝑘𝑁/𝑚 
𝑟 Distance from a reference point 𝑚 
𝑠 Position along a Cartesian coordinate 𝑚 
𝑠𝑛 Characteristic exponent − 
𝑡 Time (should become clear from the context) 𝑠 
t Traction (should become clear from the context) 𝑁/𝑚2 
𝑢 Displacement 𝑚 
�̇� First time derivative of displacement 𝑢 (speed): 

�̇� =
𝛿𝑢

𝛿𝑡
= 𝑎 

𝑚/𝑠 

�̈� Second time derivative of displacement 𝑢 (acceleration): 

�̈� =
𝛿2𝑢

𝛿𝑡2
= 𝑣 

𝑚/𝑠2 

𝑢𝑏,𝑖,𝑗 3DoF motion (displacements or rotations) (in 2D, 

𝑖 = 𝑥, 𝑧, 𝜑) (𝑗 = 1𝑠𝑡 , 2𝑛𝑑, …𝑁𝑡ℎ harmonic loading term) 

𝑚  or 𝑟𝑎𝑑 

𝑢0,𝑖,𝑗 3DoF prescribed motion (displacements or rotations), i.e. 
the excitation on the 3DoF system 

𝑚  or 𝑟𝑎𝑑 

𝑢𝑖 EB-beam wall element (𝑖 = 1,2,3,4) − 
𝑣 Speed or velocity (should become clear from the context) 𝑚/𝑠 
𝑣 Poisson’s ratio (should become clear from the context) − 
𝑣0 Initial velocity (at 𝑡 = 0) 𝑚/𝑠 
𝑣𝑅𝑀𝑆 RMS-value of the vibration level velocity 𝑚/𝑠 
𝑣𝑤1(𝑥, 𝑡) Vibration velocities of EB-beam element 𝑤1 at a 

particular 𝑥-coordinate along the length of the element 
𝑚/𝑠 

𝑤 Width 𝑚 
𝑤𝑖 EB-beam floor element (𝑖 = 1,2,3,4) − 
𝑥 Cartesian coordinate (generally horizontal) 𝑚 
�̇� First time derivative of Cartesian coordinate 𝑥:  

�̇� =
𝛿𝑥

𝛿𝑡
 

𝑚/𝑠 

�̈� Second time derivative of Cartesian coordinate 𝑥:  

�̈� =
𝛿2𝑥

𝛿𝑡2
 

𝑚/𝑠2 

𝑥 Vector of variable 𝑥 − 
𝑥 Eigenvector (the solution to the homogeneous set of 

equations for a multi-degrees of freedom system) 
(−𝜔2𝑴+𝑲)𝑥 = 0 

− 

𝑥0 Initial translation (at 𝑡 = 0) 𝑚 
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𝑦 Cartesian coordinate (generally horizontal) 𝑚 
𝑧 Cartesian coordinate (generally vertical) 𝑚 
   
𝜒 Dimensionless frequency − 
Ω Angle of rotation (should become clear from the context) 𝑟𝑎𝑑 
Ω Radial frequency (should become clear from the context) 𝑟𝑎𝑑/𝑠 

𝜴𝟐 Diagonal matrix − 
   
𝛽 Material damping ratio (should become clear from the 

context) 
− 

𝛽 Parameter used for solving continuous systems: 

𝛽4 =
𝜌𝐴𝜔2

𝐸𝐼
 (should become clear from the context) 

− 

𝛾 The amount of damping 𝛾 = 2𝑛/𝜔𝑛 with 𝑛 =
1

2
𝑐/𝑚   

𝑁𝑠

𝑚2𝑟𝑎𝑑
  

∆ Delta, i.e. difference between two values of the same 
parameter 

−  

𝛿 Partial derivative − 
휀 Strain − 
휀0 Volumetric Strain (휀𝑥𝑥 + 휀𝑦𝑦 + 휀𝑧𝑧) − 

𝜖 Strain − 
𝜖0 Volumetric Strain (𝜖𝑥𝑥 + 𝜖𝑦𝑦 + 𝜖𝑧𝑧) − 

𝜃 Angle  𝑟𝑎𝑑 
𝜆 Wavelength (should become clear from the context) 𝑚 
𝜆 Lamé’s first parameter (should become clear from the 

context) 
𝑁/𝑚2 

𝜆𝑗 Wavelength for subject ‘𝑗’ 𝑚 

𝜆𝑅 Rayleigh wavelength 𝑚 
𝜇 Lamé’s second parameter 𝑁/𝑚2 
𝜇𝑚 Micrometer 10−6 𝑚 
𝜉𝑖 Modal damping ratio per uncoupled degree of freedom ’𝑖’ 

of a damped multi-degrees of freedom system: 

𝜉𝑖 =
1

2𝜔𝑖
∗
𝑥𝑖
𝑇𝑪𝑥𝑖

𝑥𝑖
𝑇𝑴𝑥𝑖

 

− 

𝜑 Phase lag 𝑟𝑎𝑑 
𝜌 Density 𝑘𝑔/𝑚3 
𝜎 Stress 𝑁/𝑚2 
𝜔 Radial frequency 𝑟𝑎𝑑/𝑠 
𝜔1 Modified representation of the natural frequency 𝜔𝑛 in 

combination with the damping parameter 𝑛: 𝜔1 =

√𝜔𝑛
2 − 𝑛2 

0  

𝜔𝑛 Natural frequency (a property of a system) 𝑟𝑎𝑑 
   

∇2 Laplace operator: (
𝜕

𝜕𝑥2
+

𝜕

𝜕𝑦2
+

𝜕

𝜕𝑧2
) − 
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1. Introduction 
 

1.1. Background 
Structural vibrations are always present and even the smallest vibrations can give rise to 
hindrance of experiments taking place in research laboratories. Since the research industry 
keeps on evolving and needs to do more and more accurate experiments, the vibration level 
requirements for such research facilities are expected to increase in strictness. For the research 
industry one can think of research to medicines, developing new antibiotics, computer chips, 
optics, or other industries in which work is taking place on nanoscale.  
The vibrations are induced by loadings within or outside the building and, among other things, 
may be caused by walking, machinery, wind, traffic, etc. Each type of loading has its own 
frequency (range) at which the vibration waves propagate. It appears that low-frequency 
loading is hard to mitigate due to their large wavelength and low damping rate along their 
traveling path. Heavy traffic is one of those loadings which generally have a low-frequency 
content (the frequencies at which the harmonic loads are applied).  
Since research facilities need to be easily accessible by the organizations which use them, for 
example a university, the laboratory is preferably built close to these organizations. 
Unfortunately this often happens to be in a big, crowded, city, where heavy traffic can drive by 
at any moment of the day, which means that the vibration sensitive laboratory building is 
exposed to heavy vibrations. The structure of the building needs to be designed such that 
vibrations from inside and outside the building are reduced to such an extent that research can 
be done without obstructing disturbances. Here the structural engineer comes into play who 
designs the structure of the building. However vibration mitigation is not the main aspect of 
the structural engineer’s work. Very often a specific vibration expert is involved to make 
statements about the vibration level reduction of a certain (structural) design and to help in 
further mitigating the vibration level when necessary.  
It appears that, in practice, very heavy computational models with long computational times 
are often needed to get insight into the vibration levels for a structure in a certain situation. 
This way of working is less desired when the building is still in the initial design phases. In the 
initial design phase it should be possible to make a lot of iterations and see what the influences 
of changing certain parameters are. If each iteration takes a long computation time, the 
feasibility to make a lot of iterations is obstructed. To overcome this problem, Pieters 
Bouwtechniek (Dutch advising company for structural engineering and design) has the wish 
for a practical engineering design tool for vibration sensitive laboratory structures. This tool 
should give the structural engineer / designer insight into the consequences of changing a 
certain parameter in a specific environmental situation on the vibration levels in the building 
structure without the need for long computational times. This thesis lays the foundation for 
such a practical engineering design tool, called ‘EDDABuSGS’ (Early Design Dynamic Analysis 
of Building Structures by Gerwin Schut). 
 

1.2. Scope 

1.2.1. Aim 
The aim of this research is to increase the ability of a structural engineer, who is not 
specialized in soil dynamics and structural dynamics, to make fundamental choices for a 
vibration sensitive laboratory building structure, which is excited by traffic induced vibrations 
(e.g. road traffic, trams or trains), in the early design phase of a project. This requires a 
practical computational design tool which is relatively simple to use and requires a (limited) 
number of parameters as input and gives the response of the structure (in m and m/s (because 
the vibration criteria are given in m/s), in both the time domain and the frequency domain) as 
output.  
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In addition to this computational tool (EDDABuSGS) a static tool in the form of a design chart 
will be presented which states what steps the engineer should go through and what types of 
mitigation measures one can think of when designing a vibration sensitive laboratory 
structure. Together the EDDABuSGS-tool and the design chart form the desired practical 
engineering design tool (Figure 1). The design decisions based on the practical engineering tool 
should always be verified by a building physics/vibrations expert. 
 

 
Figure 1. Diagram representation of the practical engineering design tool 

Central research question 
How can a scientific model be created as the basis of a practical engineering tool for the design 
of vibration sensitive laboratory building structures, excited by traffic induced vibrations, 
which is sufficiently accurate for an early design phase of a project? 

Key research questions 
1. How can a 2D model give reliable predictions for the 3D problem? 
 
2. How do the properties of the structure (e.g. mass distribution, stiffness, embedment depth, 

foundation piles) influence its vibrations? 
 
3. In what ways do variations in built-ups of different soil layers influence the design of the 

structure? 
 
4. How do sensitivities in the used models influence the structure’s design and how can these 

sensitivities be minimized? 
4.1. What are the sensitivities influencing the structural design? 
4.2. How can a robust model be made? 

 
5. What is the influence of external interventions (e.g. a wave barrier and cavities) on the 

structure’s design? 

1.2.2. Approach 
For approaching the development of this design tool the computational model will be split into 
four interrelating and consecutive parts: source, transmission, interaction, receiver. The source 
describes the source of the loading and what kind of loading types are applicable. The 
transmission describes the soil through which waves, initiated by the source, propagate 
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towards the structure. The interaction describes the dynamic soil-structure-interaction (SSI) 
between the soil surrounding (and supporting) the structure and the structure itself. And 
finally the receiver describes the structure and more in particular the bottom- or first storey 
floor of the structure on which the laboratory activities take place (or on which vibration 
isolating islands stand on).   
The literature study and the development of the computational model will be done in a similar 
separated sense. Eventually the computational model (EDDABuSGS) will combine all the four 
consecutive parts into one integrated tool which should be easy to use and only requires the 
input of (a limited amount of) certain parameters. The tool will be verified with measurements 
performed for real projects. After verifying the output of the EDDABuSGS-tool, the tool will be 
used to perform iterations by changing the parameters of the soil and the structure. 
Finally, the thesis is concluded with comprehensive answers to the research questions and the 
possibilities and shortcomings of the EDDABuSGS-tool created. Also, recommendations will be 
given for possible future research to enhance the product delivered by this thesis. 

1.2.3. Limitations 

Model dimensions 
The dimensions of the computational model for computing the soil response (FEMIX) are 
bounded to a 2.5D model, which represents the 3rd dimension as an aggregate of 2D solutions, 
i.e. a moving load can be implemented, but the model geometry is invariant in the 3rd 
dimension.   
The dimensions of the EDDABuSGS-tool for the structural response will be limited to a 2D 
model. A 2D model (vertical cross section of soil and structure) should compute the influence 
of changing a model parameter sufficiently reliable in order to be used as a design tool for an 
early design phase of a project. The 3rd dimension is assumed to be invariant. 

Soil model wave propagation 
The research part of the thesis concerning the wave propagation in the soil (linear elastic half-
space with free surface (Figure 2)) will be done with the aid of already available FEM software: 
FEMIX.  
The eventual EDDABuSGS-tool will not use FEM software, but instead uses the results 
computed by the FEM software (.csv-files) for one particular geological situation as input for 
the computational script for the structural response. Focus is on the built-up of soil layers in 
the Western part of The Netherlands where softer soil layers are overlying stiffer soil layers 
deeper in the ground (e.g. Amsterdam).  

Loading 
The literature study about the loading source will focus on several kinds of sources (e.g. a 
traffic road with cars, lorries, or rail tracks for trams or trains etc.). However, to narrow the 
scope of this thesis research the loading of the vibrations source in the eventual EDDABuSGS-
tool will be limited to only one particular loading condition: heavy traffic driving over a road 
irregularity. This load appears to be one of the governing loading types for several projects 
Pieters Bouwtechniek is working on (see 2.3 ‘Transfer of Vibrations and Measurements’).  
It is assumed that the internal vibration sources of the building are completely separated from 
the laboratory structure, i.e. they are placed in a building part that is completely separated 
from the laboratory structure. It is assumed that the vibrations caused by internal vibration 
sources inside the remaining part of the building do therefore not influence the vibrations in 
the laboratory structure.  
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Soil-Structure Interaction 
In the EDDABuSGS-tool soil-structure interaction (SSI) is assumed to act on the (embedded) 
structure and on the pile foundation (if applicable). However, the loading is assumed to act on 
the (embedded) structure only and not on the foundation piles. 

Structure 
The global structural response computed by EDDABuSGS is limited to a rigid 3DoF system in a 
2D (x,z)-plane of which the structural parameters (total mass, mass moment of inertia, soil- 
and pile impedances) are determined for a 3D building model. The 3D building model is 
assumed to be symmetrical around the vertical (x,z)- and the (y,z)-plane but can be invariant 
around any horizontal (x,y)-plane. The structure can be placed on top of the soil or (partly) 
embedded into the soil (implemented as a variable model parameter) and can either be 
supported by a pile foundation or not (implemented as a variable model parameter). 
The local structural response computed by EDDABuSGS is limited to the bottom slab or the 
first storey floor of the structure. A flexible 2D frame, composed of (the analytical descriptions 
of) Euler-Bernoulli beam elements, is used in the (x,z)-plane. 

Scientific model 
The central research question mentions the terms ‘scientific model’. In this thesis a ‘scientific 
model’ entails that the computations and possible approximations in the tool (and therefore 
also the results given by the tool) are based on (/ argued by) scientific laws, formulations and 
researches as they can be found in the scientific literature of the TU Delft, other universities, 
productions of professors, papers, experiments, in-situ measurements, realized projects in 
practice etc. 

Illustrative figures 
Figure 2 presents some illustrative figures to make clear the intended approach and limitations 
for this thesis. The assumptions made in these figures (rigidity, excitation, global and local 
structural response), are explained in Part II ‘Literature Study’ and in Part III ‘Method’ of this 
thesis.  
 

1.3. Outline 
Part II ‘Literature Study’ starts with chapter 2 ‘In Practice’ and gives a description of design 
aspects of vibration sensitive laboratory structures in practice, what kind of vibration level 
requirements exist and what the generally known vibration mitigation measures are. 
Thereafter more theory is gathered about the four main aspects of the computational model 
which describes the source of the vibration (chapter 3), the transmission of the vibration waves 
through the soil medium (chapter 4) towards the vibration receiver which is the laboratory 
structure (chapter 5). Chapter 6 describes how the vibrations are altered due to the interaction 
between the soil medium and the receiving structure and how the flexible soil and pile 
foundation support the receiving structure.  
All theory is then used for implementation into the actual parts of the computational model 
(FEMIX and EDDABuSGS). This is described in part III ‘Method’, consisting of chapters 7 to 12, 
with again the elements source, transmission, interaction and receiver. Eventually the 
computational tool EDDABuSGS is created and verified by comparing the results with 
measurements performed in situ for already realized projects. EDDABuSGS is then used in part 
IV ‘Results & Conclusion’ in which chapter 13 ‘Results from Iterations by EDDABuSGS and 
Design Chart’ describes iterations performed by using the EDDABuSGS-tool and combines the 
observations of the computed results and of the literature study in a design chart. Eventually 
chapter 14 ‘Conclusions and Recommendations’ will discuss the findings of all the preceding 
chapters by answering the research questions and will give recommendations for using the 
EDDABuSGS-tool and for future research. 
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Figure 2. Illustrative figure to make clear the approach of this thesis: In the total overview, the source 
and the soil response will be calculated. The soil response is implemented as excitation and as soil-
structure interaction-springs and -dashpots for the rigid MDoF structure. Locally the floor response 

(vibrations) will be determined using a frame composed of Euler-Bernoulli bending beams 
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Literature Study 
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2. In Practice 
 
For a better understanding of the problem statement, research has been done to the vibration 
level criteria for vibration sensitive buildings and what kind of sources might be causing these 
vibrations. The research also considered already realized- and on-going projects of Pieters 
Bouwtechniek.  
This section will first describe the vibration level criteria which are generally used for 
laboratory buildings (2.1. ‘Vibration Level Criteria’), thereafter a brief overview will be given for 
the sources that should be considered when predicting whether these vibration criteria are 
within the limits (2.2. ‘Vibration Sources’). In practice the vibration levels at a particular site 
are often determined by means of measurements and the vibration transfer to the building is 
approximated by measuring similar building situations. This procedure is described briefly in 
2.3. ‘Transfer of Vibrations and Measurements‘. Eventually possible mitigation measures used 
in practice are discussed in 2.4. ‘Vibration Mitigation Measures‘. 
 

2.1. Vibration Level Criteria 
The vibration level requirements for buildings are applicable for the surfaces at which the 
vibration sensitive equipment is placed, for example the structural floor. The requirements are 
generally applicable for all the three translational degrees of freedom: x-, y- (two horizontal), 
and z- (one vertical) translational direction of the supporting surface. Nowadays VC-curves 

(velocities μm/s in the frequency range 1 –  80 Hz) are used very often as general criteria for 
vibration sensitive setups. These curves were created in the early 1980’s (Amick, Gendreau, 
Busch, & Gordon, 2005) and have since then been developed into the most recent criteria 
shown in Figure 3. Table 3 in Appendix A describes the usage-type for these criteria.  
The requirements for VC-C to VC-E have become stricter over the years, because the allowed 
rms-velocities are now constant for all frequencies while before the criteria for frequencies < 8 
Hz were higher in a similar linear manner as for the VC-B requirements. This change is due to 
the fact that nowadays some equipment often have internal pneumatic vibration isolation 
which shifts the frequency of greatest vibration sensitivity down to the range of 1 to 4 Hz, 
while before the lowest resonance frequencies of equipment where higher than 8 Hz (Amick, 
Gendreau, Busch, & Gordon, 2005).    

 

  
Figure 3. Generic vibration criterion (VC) curves for vibration-sensitive equipment (Amick, Gendreau, 

Busch, & Gordon, 2005) 
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Relating to Figure 3:  
 

 

rms Velocity [μm/s] = 𝜈𝑅𝑀𝑆,𝑖(𝑓) ≈
𝜈𝑃𝑒𝑎𝑘,𝑖(𝑓)

√2
 

with 𝑖 = (1,2,…𝑁), where 𝑁 is the last 1/3-octave band  
(every octave band is split up into three smaller ‘1/3-octave bands’. For every 

1/3-octave band the 𝜈𝑅𝑀𝑆,𝑖 is computed in the frequency (𝑓) domain)  

(2.1) 

 
While the vibration level criteria are a good indication of the preferred vibration-less 
environmental demands of the users, still the chance of exceedance of this vibration level is 
hardly ever zero. Exceedance could be caused for example by a vibration source that was not 
accounted for in the design of the building and may produce vibrations for a limited amount of 
time, only a couple of times per year (i.e. ‘incidents’). Whether this exceedance is bad or not 
should be weighed against the consequences of this exceedance (e.g. availability and costs for a 
new experiment are high or low) and how often the exceedance is possible to take place. In 
case experimental activities are bounded by long processes, an exceedance of the vibration 
criteria could have large consequences compared to short term experimental activities.    
 

2.2. Vibration Sources 
Many kinds of vibration sources exist. A short summary based on already realized projects is 
listed here to give an indication of what kind of sources one should think of when 
encountering a structural design of a vibration sensitive laboratory structure:  

 Environmental traffic (busses, trucks, cars, etc. on roads and trams, trains etc. on rails).  

 Vibration generating equipment of neighbouring sites (compressors, wind tunnel, 
emptying of containers, local logistics, pumps). 

 Hot-and-cold storage and corresponding pumps in the soil. 

 Internal vibration generating equipment (heat-, ventilation- and air conditioning systems 
(HVAC), elevators, pumps, aggregates, hoisting installations, etc.). 

 Personal logistics (walking, sports, dancing) inside the building. 

 Wind loading on the building.  

 Construction works (e.g. pile driving).  

 Earthquakes.  
 

2.3. Transfer of Vibrations and Measurements  
For information about how the transfer of vibrations are predicted and measured in practice, 
two example projects of Pieters Bouwtechniek will be considered in this section. The principles 
of both projects are similar and other known projects at Pieters Bouwtechniek underline the 
same kind of approach.  

2.3.1. TNW Zuid 
For the project Faculty of Applied Sciences of the Technical University in Delft the vibration 
level of the floor is determined by the multiplication of the excitation spectrum with the 
relevant transfer function of the soil (dependent on distance from the source) and with the 
relevant transfer function of the structure (from soil to structure). In formula form this looks 
like (Snoeij B. , 2011): 
 

 𝑉𝑓𝑙𝑜𝑜𝑟(𝑓) = 𝐻𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑓) ∙ 𝐻𝑠𝑜𝑖𝑙(𝑓) ∙ 𝑉𝑠𝑜𝑢𝑟𝑐𝑒(𝑓) (2.2) 

where: 
𝐻𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑓) = transfer function of soil to floor structure 
𝐻𝑠𝑜𝑖𝑙(𝑓) = transfer function of soil over a certain distance 
𝑉𝑠𝑜𝑢𝑟𝑐𝑒(𝑓) = spectrum vibration source, velocity in the soil 
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𝑉𝑓𝑙𝑜𝑜𝑟(𝑓) = spectrum vibrations at the topside of the floor, velocity 

𝑓 = frequency 
 
A similar kind of approach can also be found in other literature (e.g. the lectures of Soil 
Dynamics at the TU Delft (Hölscher, 2017)). This approach generally consists of the partition 
into the parts: source, transmission, interaction and receiver. This partition will also be used as 
guidance through this thesis research.  
 
For this particular project the transfer function from soil to vibration sensitive floor is 
determined by measuring the vibrations, caused by a falling Bigbag filled with sand (Figure 4), 
in the soil and on the floor at the same time. The measurements are then compared to the 
results of a predictive FEM calculation. A normalized method for determining the vibration 
transfer from soil to floor does not exist, however the method with the falling Bigbag is a 
method that is used more often for similar kind of researches.  
 

 
Figure 4. Execution of experiment for determining transfer function of vibrations from soil to floor: a 

falling Bigbag at a certain distance from the building (Eilders, 2015) 

The prediction by the FEM calculations for the vibration sensitive floors appeared to be 
conservative compared to the measured values (much more reduced vibrations were 
measured). The fact that the FEM calculations are conservative is most presumable due to the 
shielding effect of the foundation of the building volumes surrounding the vibration sensitive 
floors (the surrounding structures make that the vibrations cannot reach the vibration 
sensitive floors (directly)). This shielding effect was taken into account conservatively in the 
FEM calculations (Eilders, 2015).  

2.3.2. VU Amsterdam 
For the project Research facility VU Amsterdam an analytical model is used by TNO to 
approximate the vibration transfer from the soil to the foundation of the structure. This 
analytical model is first validated by comparing the results with measurements performed by 
TNO at the nearby Medical Faculty (similar soil and building situation). The second validation 
is done by comparing the results with the predictive FEM computations performed by RHDHV 
for the vibration-less block (Pruiksma, 2015).  
Without validation of the model the results of the calculations will not be sufficiently accurate 
for determining the actual vibration levels of the laboratory floors. However, the ratio of the 
influence of certain parameters can still be determined. It is advised to perform actual 
measurements to validate the model in absolute sense. The model can then be tuned with 
realistic values and can therefore make a much better prognosis of the actual vibration levels of 
the laboratory floors (Fennema, 2018). After the validation the analytical model is used to 
determine the vibration transfer from the soil to the foundation of the vibration sensitive 
building.  
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The measurements performed by TNO show large values for the vibration amplitudes, 
indicating the presence of a very soft soil. These large values can be the result of reflections of 
vibrations at deeper soil layer interfaces or a strong wave propagation in relatively thin soil 
layers which lay on a soft soil. In both of the situations it is expected that there will also be a 
great amount of vibration reduction at the transfer of vibrations from soil to the building. This 
vibration reduction will be greater in case the building is heavy (a great mass) and has a 
foundation with piles which are supported by a deeper stiff soil layer (sand) (Fennema, 
Definitief Ontwerp bouwfysica, akoestiek, energiezuinigheid en trillingstechniek, 2018).  
The following conclusions were made based on the measurements (Koopman, 2012): 

 Road traffic is the most important source for vibrations 

 There is proper damping through the soil by distance 

 Very strong vibrations within 30 m due to soft soil 
 
Similar to the project Faculty of Applied Sciences of the Technical University in Delft the 
loading of heavy traffic driving over a road unevenness is implemented in the model for 
determining the maximum vibration levels of the structure in Amsterdam.  
 
Based on the analytical model of TNO the following prognosis has been made for the 
achievable vibration levels of the structure in Amsterdam (without taking into account the 
influence of the shielding effect of the building in front): 
Trams: vibration prognosis façade/basement-floor/ground floor:   3 μm/s = VC-E 
Heavy traffic: vibration prognosis façade/basement-floor/ground floor:  8 μm/s = VC-C/D 
The storey floors are excited by amplification of the foundation vibrations due to the flexibility 
of the superstructure (which is placed on top of the foundation) and by sources inside the 
building itself. The vibration levels of the storey floors are therefore believed to be one 
vibration level class lower than the vibration level class of the façade/basement floor/ground 
floor (Fennema, February 2018).  
 
As the above studies about the vibration generating sources for laboratory buildings point out 
the vibrations induced by road traffic (and trams) is generally the governing loading type of 
such kind of laboratory building structures. This is partly due to the fact that these types of 
buildings are rarely placed nearby train rail tracks, because of the general conception that train 
rail tracks can produce significant vibration levels. Therefore, the loading type concerning 
heavy vehicles driving over an unevenness in the road will be the focus of the research 
performed in this thesis.  
 

2.4. Vibration Mitigation Measures 
Several mitigation measures are possible to reduce the influence of environmental vibrations 
in the building. The standard strategy for mitigating vibrations considers, among other things: 
I. Choice of location / area and control environmental aspects. 
II. Spatial separation of source and receiver. 
III. Structural separation of source and receiver. 
IV. Vibration separation of source and receiver (isolate). 
The measures are further elaborated in the following text. It must be noted that the mitigation 
measures that need to be chosen for a specific project can differ for different situations.  

I. Choice of location 
Most of the (high frequency) vibration sources (e.g. pumps and subways) are damped out over 
a distance of 200 m to 300 m such that a vibration level class VC-E is achievable. However 
heavy traffic needs 400 m to be damped out to a similar extent. All locations in an urban 
environment are therefore disadvantageous for a vibration-less building (Hermens, 2012). Note 
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that these distances hold as approximate maxima, i.e. in case no other mitigation measures can 
be realized. The values can differ for every specific project and depend, among other things, on 
the soil (stiffness and damping).   

II. Spatial separation of source and receiver 
Generally known measures taken close to (or at) the vibration generating source are: 

 Smoothen traffic roads (asphalt) and lower traffic speed 

 No spots where traffic has to stop or accelerate.  

 Arrange a plan with other parties for certain time-windows in which vibration generating 
activities (e.g. emptying containers, arrivals of goods, etc.) may take place. 

 Place vibration generating equipment on vibration isolators.  

III. Structural separation of source and receiver 
Generally known measures taken around the building are: 

 Realization of a wave barrier in the form of diaphragm walls in the soil surrounding the 
close proximity of the building.  

 Support roads by foundation piles.  

 High frequency operation of equipment in the soil (high frequencies are hard to transfer 
through the soil and are easier to reduce in the isolation set-up of the vibration sensitive 
equipment). 

V. Vibration separation of source and receiver (isolate):  
Generally known measures taken in the building design are: 

 Heavy mass and great stiffness of building. 

 Limited length of spans and no cantilevers.  

 Minimize the number of floor openings (if needed, surround the opening by stiffening 
beams).   

 An active or passive vibration isolation table, to support the vibration sensitive equipment 
(Figure 5) (Snoeij B. , 2011).  

 Eigenfrequencies of floors above dominant frequencies of excitation. For traffic excitation 
the eigenfrequencies of the floors should be high in bending (> 8 Hz) (Fennema, 2017).  

 Isolate vibration generating installations and components and maximize distance to 
laboratory rooms.  

 
Figure 5. Passive vibration isolation table (PES Ltd, 2019) 

The resistance against vibrations (impedance, see 12.1.3 ‘Computation of the building response 
due to a harmonic loading term’) of a structure can be increased by adding mass, damping 
and/or stiffness. When increasing the floor stiffness, the resistance against vibrations is 
increased, however the vibration transfer to other structural components will remain the same. 
When increasing the floor mass locally (e.g. with a poured concrete part on top) the generation 
of vibrations will be decreased and (with similar floor stiffness) the vibration transfer to other 
structural components will be decreased. Therefore, adding a poured concrete layer on top of 
floors is an effective measure to reduce the generation and transmission of vibrations from a 
floor with vibration generating equipment to adjacent structural elements. (Fennema, 2017).  
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TNW Zuid 
For the project Faculty of Applied Sciences of the Technical University in Delft the following 
specific mitigation measures have been applied (Figure 6 (left)): 

 Separation of floor islands on the ground floor from the surrounding building volume.  

 Floor islands (min. size in preliminary design 𝑊 x 𝐿 x 𝐻: 10 𝑥 10 𝑥 0.8 𝑚3), completely 
dilatated from the rest of the building, on a dense grid (2 𝑥 2 𝑚2) of (partly) inclined 
foundation piles. 

VU Amsterdam 
For the project Research Facility of the VU Amsterdam the following specific mitigation 
measures have been applied (Figure 6 (right)): 

 Separation of building volumes: all vibration generating equipment is placed in a taller 
building volume closest to the road. A lower building volume which contains all vibration-
sensitive equipment is structurally separated from the taller building volume. The taller 
building volume has a shielding effect to ground- and wind vibrations for the lower 
building volume.  

 The lower building volume is designed as a stiff and heavy structure consisting of multiple 
floor levels. Due to the great inertia of the structure, it should be harder to dynamically 
excite the structure.  

 The basement is designed as a very stiff and heavy box volume supported by a dense grid of 
foundation piles.  

 

   
Figure 6. Structural design of (left) the Faculty of Applied Sciences of the TU Delft (Janssen & Ku, 2014) 

and (right) VU Amsterdam (Versteegen & Koekoek, 2018) 

Note that both projects have a different approach for reducing the vibration levels in the 
building. The design of the more recent building in Amsterdam makes use of great mass, 
stiffness and inertia while the building in Delft makes use of more elaborated vibration 
separation. Experience from a number of already realized projects indicates that the 
application of large vibration-less volumes gives a higher vibration reduction than multiple 
smaller vibration-less islands. However which vibration mitigation measures should be chosen 
best is project specific and depends, among other things, on the excitation intensity and 
characteristics (e.g. vibration amplitude and -frequencies), demands of the building users and 
design freedom/(im)possibilities.  
 
Measures taken at the vibration source are much more effective than measures taken in the 
building design. Isolating the source generally is much quicker and simpler than measures to 
be taken at the vibration receiver / the building. Therefore, it is recommended to first explore 
the possibilities to reduce the vibration generation at the source and only if these possibilities 
are not sufficient, the building design might be taken into consideration.  
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3. Source of Vibrations 
 
As described in chapter 2 ‘In Practice’ vibration levels caused by passing by traffic at a relative 
close distance is the governing loading condition for the projects Pieters Bouwtechniek was 
involved in. Since buildings (in which Pieters Bouwtechniek is specialized in) are placed in 
densified city locations, the focus of the remaining part of this thesis will be on traffic induced 
building vibrations. The predominantly traffic type appears to be heavy traffic in the form of 
busses or trucks (or trams) that drive over an unevenness in the road. Also, other studies 
aiming at environmental building vibrations show that heavy traffic like busses and trucks are 
the predominant traffic type as vibration source. Hereafter this type of traffic will be referred 
as ‘truck,’ but implies all similar heavy traffic vehicles, including e.g. busses.  
In this section the specifics of this type of loading (heavy traffic) will be briefly discussed and 
the dominant influencing parameters of the loading will be stated. Several additions to this 
chapter are included in Appendix B ‘Appendix: Additions to Chapter 3 ‘Source of Vibrations’,’ 
explaining more thoroughly several topics of this section, consisting of the empirical 
prediction model and the influence of the road stiffness and the vehicle speed on the vertical 
soil velocity. 
 

3.1. Road Traffic Induced Vibrations – Measurements in Practice 
Several studies have been performed concerning the measurements of traffic induced 
vibrations in the underlying soil. One of these studies, performed by Osama Hunaidi (Hunaidi, 
2000) and Martin Tremblay (Hunaidi & Tremblay, 1997) shows measurements performed in 
front of nine different houses which are situated nearby a traffic road in Montreal, Canada. The 
soil conditions differed from silty clay to sand or silty sand. Both a transit bus (empty approx. 
10 000 kg and loaded approx. 14 000 kg) and a truck (loaded approx. 14 000 kg) were used to 
perform the measurements. When the vehicles both drive at 50 km/h a difference in the 
generated vibration levels can be observed: for the truck the vibration level is 33 mm/s2, while 
for the transit bus the vibration level is 65 mm/s2.  
A part of the measurements is presented in Figure 7 with the unit velocity (mm/s) (instead of 
acceleration). The difference in vibration level is caused by differences in the suspension 
systems of both vehicles (bus had air-bag suspension, which are more complicated but provide 
a smoother ride and prevents sensitive cargo for getting damaged; truck had multi-leaf steel 
spring suspension, which is cheaper and applicable for heavy duty where ride isn’t as 
important and cargo is not as sensitive (FE Staff, 2017)). This indicates the importance of 
considering the suspension type of vehicles driving nearby a vibration sensitive building. 
 

   
Figure 7. Comparison between vibration levels induced by an empty transit bus (air-bag suspension) and 

a loaded truck (multi-leaf steel spring suspension) (Hunaidi, 2000) 

However, the fact that busses generate higher vibration levels than trucks is contradicted by 
another research, performed by the Transportation Association of Canada (Woodrooffe, 
LeBlanc, & LePiane, 1986). In this study the dynamic loads induced by a test truck fitted with 
air-bag suspension is about 60% of the dynamic loads induced by the same truck but fitted 
with steel multi-leaf suspension. This contradiction between the two researches can be 
explained by the differences in frequency content of a vehicle with a steel leaf suspension or air 
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suspension and how these suspension frequency contents compare to the frequency content of 
the specific site. According to the research by J. Sing, S.P. Sing and E. Joneson (Singh, Singh, & 
Joneson, 2006) the frequency contents of the vehicle suspensions deviate per manufacturer. 
However a global difference between leaf suspensions and air suspension can be recognized 
(Figure 8). The frequency content of the vehicle with air suspension is somewhat shifted to the 
left compared to the vehicle with leaf suspension, due to the smaller stiffness (but higher 
damping) of the air suspension.  
Also the axle mass plays an important role in the shift of the natural frequencies: for a higher 
axle mass, the eigenfrequencies shift to the left (decrease). The soil in Montreal has a 
dominant frequency range between 10 and 20 Hz. This frequency range corresponds to one of 
the natural frequencies of the vehicle with air suspension. Therefore, for this particular site the 
vehicle with air suspension (the bus) generates higher vibration levels than the vehicle with 
leaf suspension (the truck).  
 

 
Figure 8. Frequency spectrum of a truck with leaf suspension or air suspension (Singh, Singh, & Joneson, 

2006) and for reference of soil vibration amplification, also the frequency content of a specific site is 
included 

Additionally, the research in Montreal compared the vibration levels in case the soil was frozen 
or not (summer versus winter conditions) (Figure 9). Measured vibration levels caused by road 
traffic (frequency range < 20 Hz) while the top soil was frozen in winter were about one half of 
those measured while the soil was not frozen (Hunaidi & Tremblay, 1997). However, another 
study (referred by (Hunaidi & Tremblay, 1997) as ‘Private communication’ with Bracken, M. 
1994. Aercoustics Engineering Limited) showed that vibration levels, induced by subways in 
Toronto, were higher in winter. This observation can also be substantiated from Figure 9 since 
the dominant frequency range for subways is between 40 and 50 Hz.  
 

 
Figure 9. Vertical response obtained by the drop weight device in summer and winter for the ground in 

front of the building at a particular site (Hunaidi & Tremblay, Traffic-induced buiding vibrations in 
Montréal, 1997) 
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3.2. Road Traffic Induced Vibrations - Empirical Prediction Model 
According to the research performed by G.R. Watts (Watts, 1990) about traffic induced 
vibrations in buildings (in the United Kingdom, which has stiffer soils than in The 
Netherlands), ground-borne traffic vibrations have dominant frequencies in a relative low 
frequency band, ranging from 8 Hz to 20 Hz.  
Ground vibrations are dependent on a number of factors which include the vehicle 
characteristics such as axle load, suspension design and operating speed, the road surface 
profile and the nature of the ground between the road base and the building foundations. All 
these factors make that a practical prediction method is hard to determine. However, a 
relatively simple prediction technique has been developed in order to make a first estimate on 
the peak vertical vibration levels at the foundation of buildings.  
The method is based on making predictions of vertical peak particle velocities (PPV) at 6 m 
from the source using the observed trends with amplitude of road surface irregularity and 
speed, and the most appropriate ground scaling factor. By combining these factors the 
expected value of the maximum vertical PPV at a building foundation can be calculated as 
(also see Appendix B ‘Appendix: Additions to Chapter 3 ‘Source of Vibrations’’): 
 

 𝑃𝑃𝑉𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 = 0.028 ∙ 𝑎 ∙
𝜈

48
∙ 𝑡 ∙ 𝑝 ∙ (

𝑟

6
)
𝑥

 (3.1) 

 
where: 
 
𝑃𝑃𝑉 = peak particle velocity of the soil at the foundation (m/s) 
𝑎 = maximum height or depth of surface defect (mm) 
𝜈 = maximum expected speed of heavy good vehicles (HGVs) (km/h) 

𝑡 = ground scaling factor (see Table 4) (-) 

𝑝 
= 0.75 in case surface defect occurs in one wheel path only (-) 
= 1.00 in case surface defect occurs in both wheel path (-) 

𝑟 = distance of foundation from the defect   (m) 
𝑥 = power factor for most appropriate soil type (-) 

 
Generally, peak particle velocities increase with speed for all vehicles.  
 
As stated before the predictive empirical model is only suited for a very rough estimate of the 
PPV at a particular site. Some of the shortcomings of this model are: 

 No incorporation of building characteristics (mass, inertia, stiffness, damping). 

 Difficult to determine soil characteristics as one particular ground type. 

 The dominant frequency is approximated to be 12 Hz, however this depends on the 
frequency of excitation and the soil stratification and can thus deviate significantly.  

 Non-transparent about the underlying wave propagation theory and occurring 
mechanisms. 

 Applicable for significant irregularity in the road surface and not so much for small 
irregularities.  

 Applicable for great magnitude of vibration levels (not so much for sensitive equipment). 

 No incorporation of possible mitigation measures (e.g. a wave barrier). 
 
Because of the major uncertainties in such kind of empirical models a more scientific model 
has to be developed which can take these factors into account more accurately. Hereafter, first 
a scientific approach which has been developed within the KU Leuven will be described for the 
vibration source. In the following chapters the propagation of ground vibrations through the 
soil and the response of the building structure are considered.  
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3.3. Road Traffic Induced Vibrations – Scientific Prediction Model 
As already stated in the previous section some particularities about traffic loading exist which 
govern the type, magnitude and frequency of the loading applied at the soil surface. A more 
scientific determination of these factors follows from the scientific model presented in this 
section, developed by G. Degrande and G. Lombaert from the KU Leuven (Lombaert, 
Degrande, & Clouteau, 2000).  
 
First, a simplified dynamical model of a truck is considered. The truck can be modelled as a 2D 
multi-degrees of freedom (MDoF) system consisting of a rigid body (the chassis and/or 
bodywork of the truck), mass-spring-dashpot elements for the suspension, rigid masses for the 
axles and another mass-spring-dashpot element for the tire (Lombaert, Degrande, & Clouteau, 
2000) (Figure 10). The stiffness of the road is much larger than the stiffness of the tyre, 
therefore the solutions of the equations of motion of the vehicle and the road can be 
uncoupled. 

 
 

Figure 10. 2D 4 DoF model for a truck with two axles (Lombaert, Degrande, & Clouteau, 2000) 

After solving the equation of motion of the vehicle 2D model the dynamic axle loads can be 
computed. The dynamic axle loads impose the dynamic loading on the surface of the road and 
are determined by the vehicle dynamics, the profile of the road (the road unevenness), the 
road flexibility and the vehicle speed. Loss of contact cannot be modelled with this simplified 
model.  
Each longitudinal road profile is characterized by unevenness, which subjects the vehicle to 
vertical oscillations that cause dynamic axle loading. A profile of a traffic plateau or a 
kink/dent in the road with a particular length, height and slope is implemented by a 
mathematical expression, for example as the equation (Lombaert, Degrande, & Clouteau, 
2000): 

 𝑢𝑤/𝑟(𝑦) =

{
  
 

  
 𝐻 |𝑦| <

𝐿

2

𝐻 [1 − cos (
2𝜋(|𝑦| − 𝐿/2 + 𝑙)

2𝑙
)]

𝐿

2
< |𝑦| <

𝐿

2
+ 𝑙

0 |𝑦| >
𝐿

2
+ 𝑙

 (3.2) 

The physical representation of this unevenness is given in Figure 11 in which 𝐿 = 5 m. 
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Figure 11. The longitudinal road profile of a traffic plateau with sinusoidal slopes as a function of the 

coordinate y along the road (Lombaert, Degrande, & Clouteau, 2000) 

The dynamic axle loads 
Two groups of eigenmodes dominate the frequency content of the axle loads: the pitch and 
bounce modes at relatively low eigenfrequencies between 0.8 Hz and 3 Hz and the axle hop 
modes at frequencies between 8 Hz and 15 Hz (Figure 12) (Lombaert & Degrande, 2001).  
 

 
Figure 12. Eigenmodes of the 2D 4-DoF model for a truck: (a) pitch and bounce mode; (b) axle hop mode 

The pitch and bounce frequencies are determined by the weight of the vehicle body and the 
stiffness of the suspension and the tire, while the axle hop frequencies are determined 
primarily by the weight of the axle and the tire stiffness (Lombaert & Degrande, 2001). 
An example of the time history of the front axle load clearly shows the impact at the ascending 
(𝑡 = −0.3 𝑠) and the descending (𝑡 = 0.4 𝑠) slope of the traffic plateau (Figure 13). An 
analogous observation can be made for the rear axle loads.  
 

 
Figure 13. Results of the calculated front axle load (Lombaert, Degrande, & Clouteau, 2000) 

Influence of road stiffness on the vertical soil velocity 
The road stiffness can influence the generated soil vibrations significantly. A stiffer road 
reduces the vibration levels of the dynamic axle loads, but when a soft road is applied the 
dynamic axle loads are hardly influenced. If one wants to incorporate this influence into the 
model the road-soil interaction needs to be taken into account.  
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Influence of vehicle speed on the vertical soil velocity 
Several literature (e.g. (Watts, 1990), (Lombaert, Degrande, & Clouteau, 2000), (Hunaidi & 
Tremblay, Traffic-induced buiding vibrations in Montréal, 1997)) indicate that the vehicle 
speed is a very important factor for the magnitude of the dynamic axle loads. An increase in 
vehicle speed shifts the frequency content to the axle hop modes, resulting in a higher PPV. 
From the model of Degrande and Lombaert (Lombaert, Degrande, & Clouteau, 2000) one can 
observe that as the vehicle speed increases, the time delay between the impact at the 
ascending and the descending of plateau decreases and the PPV increases (Figure 14). It also 
follows that the frequency content of the axle loads widens for increasing vehicle speeds. This 
illustrates that the relationship between vehicle speed and vibration levels is a function of the 
suspension system, the condition of the road surface and the dynamic properties of the 
underlying soil. This has also been observed during in-situ measurements.  
 

 
Figure 14. Time history and frequency content of the vertical soil velocity for a vehicle speed 𝑣 equal to 

8, 12, 16 and 20 m/s (Lombaert, Degrande, & Clouteau, 2000) 

Concluding key factors influencing the free field traffic induced vibrations 
Lombeart and Degrande also performed an elaborative parametric study to identify the key 
factors for the generation of free field traffic induced vibrations (Lombaert & Degrande, 2001). 
This study is related to parameters that determine the road unevenness, the vehicle dynamics 
and characterize the road and the soil. The influence of the vehicle speed is also discussed 
extensively. According to Lombaert and Degrande (Lombaert & Degrande, 2001) the following 
conclusions can be drawn from the parametric study: 

 The relevant content of wavenumbers 𝑘𝑦 of the longitudinal unevenness road profile in the 

wave domain is situated between 2.5 rad/m and 12 rad/m, corresponding to wavelengths 
between 0.5 m and 2.5 m. In this range, the wavenumber content of a joint in the road 
surface with a limited height has the same order of magnitude as the profile of a traffic 
bump with a much larger height. As a result, the free field vibrations generated by the 
passage of a vehicle on a traffic plateau and a joint in the road surface have the same order 
of magnitude (Figure 15).  

 The height and the slope of the ramps are the predominant factors. The wavenumber 
content increases linearly with the height H. Steep ramps result in a disadvantageous high 
wavenumber content. The shape of the ramps is only of secondary importance. 
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 For the passage of a vehicle on a traffic plateau with sine shaped slopes, the free field 
vibration levels can increase with a factor 3 when the vehicle speed increases from 8 m/s to 
20 m/s. However, in case of a passage on a joint in the road surface, the vehicle speed has 
no large influence on the generated vibrations. 

 An excitation of the axle hop modes is responsible for the generation of the free field 
vibrations in the frequency range between 8 Hz and 15 Hz. A study of the vehicle FRF 
shows that, more than the gross vehicle weight, the masses of the individual axles are 
important. Vehicles with high axle masses will therefore generate the largest vibrations, 
both in laden and unladen state. The stiffness of the tires and the damping of the 
suspension system are parameters that affect the FRF’s in an equally important way.  

 At large distance from the source, the soil’s material damping is very important. In the case 
of a stratified soil the nature of stratification determines at which frequencies the response 
is attenuated or amplified. The dynamic soil properties have to be determined up to a 
sufficiently large depth in order to accurately predict the low frequency content (large 
wavelengths) of the response.  

 The results suggest that the gross vehicle weight does not play a large role in the 
generation of traffic induced vibrations. However, the experiment of Watts (Watts, 1990) 
showed that an unladen vehicle with steel leaf suspension generates larger vibrations than 
the laden vehicle. This is due to the loss of contact between the road and the vehicle, a 
non-linear effect that is not taken into account in the present study. Although the 
difference between the vibrations generated by unladen and laden vehicles is not always 
clear, the heavier vehicle types are still responsible for the generation of the highest 
vibration levels.  

 

 
Figure 15. Time history of the predicted rear axle load for the passage of a truck on (left) a traffic plateau 

and (right) a joint in a road surface (Lombaert & Degrande, 2001) 
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4. Transmission of Vibrations 
 
The vibrations generated by a source like road traffic can only reach a building’s structure once 
it is transmitted through a medium. This medium consists of the soil which is different for 
every site and can even differ within 1 m2 at one site. The soil is often layered and consists of 
soil types of different densities and stiffness laying over each other. Also, in the Netherlands 
the soil is often layered where typically softer layers overly stiffer soil layers. The wavespeeds 
and the depth of the different layers influence the frequencies of the generated waves in the 
soil medium.  
In the previous sections it was already discussed that determining the wave propagation for a 
certain soil layering is difficult. However, several models have been created over the past half 
century which enables the prediction of wave propagation in layered media in a simplified 
manner. These approaches will be discussed in section 4.2. ‘Layered Elastic Soil Halfspace‘. 
However first a simpler case will be discussed concerning a non-layered homogenous soil (4.1. 
‘Homogeneous Elastic Soil’) to give a more general introduction to the soil dynamics of the 
transmission path. A more extensive overview of this chapter is given in Appendix C: 
‘Appendix: Extensive overview of Chapter 4 ‘Transmission of Vibrations’’ 
 

4.1. Homogeneous Elastic Soil 
Among many other authors (Verruijt, 2008), (Kramer, 1996), (Hölscher, 2016) and (Metrikine & 
Vrouwenvelder, 2018) give a comprehensive overview of the elastodynamics of a homogeneous 
elastic soil medium. A brief overview will be given in the present section, which is a 
confinement of the work of the previous mentioned authors. First let us consider waves in an 
infinite medium, in other words: a medium that has no bounds.  

4.1.1. Waves in a three-dimensional infinite body 
The derivation of the three-dimensional equations of motion follows the same steps as those 
used for one-dimensional propagation (see Appendix C: ‘Appendix: Extensive overview of 
Chapter 4 ‘Transmission of Vibrations’’). However, in the three-dimensional case the various 
relationships are more complex and the derivation is more cumbersome. The three-
dimensional case will be briefly discussed. 
 
In the derivation a Cartesian coordinate system is used (𝑥, 𝑦, 𝑧) with corresponding 
displacements 𝑢, 𝑣, 𝑤 (Figure 16). 

 
Figure 16. Cartesian coordinate system 
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The equilibrium equations, neglecting the body forces 𝑋 give the three-dimensional equations 
of motion for an isotropic, linear elastic solid: 
 

 𝜌
𝛿2𝑢

𝛿𝑡2
= (𝜆 + 𝜇)

𝛿𝜖0
𝛿𝑥

+ 𝜇∇2𝑢 (4.1) 

 

 𝜌
𝛿2𝑣

𝛿𝑡2
= (𝜆 + 𝜇)

𝛿𝜖0
𝛿𝑦

+ 𝜇∇2𝑣 (4.2) 

 

 𝜌
𝛿2𝑤

𝛿𝑡2
= (𝜆 + 𝜇)

𝛿𝜖0
𝛿𝑧

+ 𝜇∇2𝑤 (4.3) 

with: 

 𝜖0 =
𝛿𝑢𝑥
𝛿𝑥

+
𝛿𝑢𝑦

𝛿𝑦
+
𝛿𝑢𝑧
𝛿𝑧

 (4.4) 

and the Laplacian operator ∇2 represents: 

 ∇2=
𝛿2

𝛿𝑥2
+
𝛿2

𝛿𝑦
+
𝛿2

𝛿𝑧2
 (4.5) 

 
These equations can be manipulated to produce two wave equations. Consequently, only two 
types of waves can travel through such an unbounded solid: the compressional waves and the 
shear waves.  

Compressional waves (P-waves) 
The irrotational- or dilatational wave propagates through the body at a velocity: 

 𝑐𝑝 = √
𝜆 + 2𝜇

𝜌
 (4.6) 

 
This wave is called a P-wave (or primary wave) and 𝑐𝑝 is referred to as the P-wave velocity of 

the material. The particle displacements are parallel to the direction of wave propagation 
(Figure 17). 
 

 
Figure 17. Representation of a P-wave. Alternating compression and dilation particle motion and parallel 

to direction of propagation (Braile, 2019) 

Shear waves (S-waves) 
The other type of waves is the equivoluminal- or distortional wave. The particle motion is 
described as a rotation about either the x-, y- or z-axis. The distortional wave will propagate 
through the solid at a velocity 

 𝑐𝑠 = √
𝜇

𝜌
= √

𝐺

𝜌
 (4.7) 
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This type of wave is commonly known as a S-wave (or shear wave) and 𝑐𝑠 is referred to as shear 
wave velocity of the material. The particle motion is constrained to a plane perpendicular to 
the direction of wave propagation.  
S-waves are often divided into two types: SH-waves, having particle motion occurring only in a 
horizontal plane and SV-waves, having particle motion occurring only in a vertical plane 
(Figure 18).   
 

 
Figure 18. Representation of a S-wave. Alternating transverse particle motion in any plane (here in 

vertical plane) and perpendicular to the direction of propagation (Braile, 2019) 

For comparison of the wavespeeds of the different kind of waves in an unbounded solid the 
ratio between the wavespeeds is computed as: 

 
𝑐𝑝

𝑐𝑠
= √

2 − 2𝑣

1 − 2𝑣
 (4.8) 

 
It becomes obvious that the Poisson’s ratio 𝑣 is the only factor that affects the ratio. For a 
typical Poisson’s ratio of 0.3 for geologic materials, the ratio 𝑐𝑝/𝑐𝑠 =  1.87 and for a Poisson’s 

ratio of 0.49, the ratio 𝑐𝑝/𝑐𝑠 =  7.14. This shows that, depending on the soil material, the P-

wave can arrive at a certain location much earlier than the S-wave.  

4.1.2. Waves in a three-dimensional semi-infinite body 
Till now it was assumed that the body had infinite dimensional length. However, a realistic soil 
body cannot be assumed to be infinitely long in all directions. One dimension is restricted to 
the soil’s surface (Figure 19) where, generally speaking, no stresses occur. This surface is often 
referred to as the planar free surface and introduces two new types of surface waves that are of 
primary importance for buildings: the Rayleigh wave and the Love wave. The Love wave can 
only exist when the soil is layered and is discussed in Appendix C: ‘Appendix: Extensive 
overview of Chapter 4 ‘Transmission of Vibrations’’ Other types of surface waves also exist but 
are much less significant for excitation to buildings at the free surface (Kramer, 1996).  
 

 
Figure 19. Geometrical attenuation for body waves (left) and surface waves (right) (Persson, 2016) 
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Rayleigh waves (R-waves) 
The existence of elastodynamic waves propagating along the surface of an elastic half space 
was first considered by Rayleigh (Lord Rayleigh, 1885). This wave propagates near the free 
surface of an elastic halfspace and it strongly decreases exponentially with depth. The Rayleigh 
wave is generated by the interaction between the two body waves and the surface itself. A brief 
overview will be given of the characteristics of the Rayleigh wave. 
 
The Rayleigh wavespeed 𝑐𝑟 can be approximated by an analytical expression depending on the 
Poisson’s ratio 𝑣 of the soil and the S-wave velocity 𝑐𝑠 by the following expression (Bergmann 
& Hatfield, 1938): 
 

 𝑐𝑟 =
0.87 + 1.12𝑣

1 + 𝑣
𝑐𝑠  (4.9) 

 
and thus, varies between 0.87𝑐𝑠 and 0.95𝑐𝑠 (Figure 20). 
 

 
Figure 20. Variation of Rayleigh wave and body wave propagation velocities with poisson’s, ratio relating 

to the shear wavespeed vs (Kramer, 1996) 

Rayleigh waves can be thought of as combinations of P- and S-waves (SV-waves in the case of a 
vertical (x,z)-plane). In isotropic solids, the individual particles move in ellipses parallel to the 
direction of propagation (Figure 21). 
 

 
Figure 21. Representation of a Rayleigh wave. Elliptical particle motion in vertical plane and parallel to 

direction of propagation. Amplitude decreases with depth (Braile, 2019) 

Also, the displacement amplitudes of the Rayleigh wave can be derived from the expression 
obtained when considering the velocity of the Rayleigh wave. The horizontal and vertical 
displacement amplitudes are illustrated for several values of Poisson’s ratio (Figure 22) 
(Kramer, 1996).  
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Figure 22. Horizontal and vertical motion of Rayleigh waves. A negative amplitude ratio indicates that 

the displacement deeper underneath the surface is in the opposite direction of the surface displacement 
(Kramer, 1996) after (Richart, Hall, & Woods, 1970) 

From Figure 22 it appears that the horizontal displacement will be zero when the vertical 
displacement reaches its maximum (or minimum), and vice versa. Despite the fact that the 
amplitude decrease of the Rayleigh wave with depth is exponential, the superficial zone is still 
influenced by the soil material up to a depth of about a wavelength. In practice an absolute 
number for this wavelength is hard to determine since the soil is layered and all soil layers 
influence the wavelength. Also, the excitation frequency influences the (Rayleigh) wave 
frequency, and thus the wavelength. To give an impression of this Rayleigh wavelength one 
can do a very rough estimate for road traffic induced vibrations by assuming an excitation 
frequency of 8 Hz (road traffic induced vibrations in The Netherlands are usually within the 
range of 3 Hz < 𝑓 < 15 Hz) and a Rayleigh-wave velocity of the soil about 120 m/s 
(approximation for soft soil, taken from (Deltares, 2019)). The wavelength would then be: 
𝜆 = 𝑐𝑟 𝑓⁄ = 120 8⁄ = 15 m. 

4.1.3. Wave attenuation 
The amplitude of a wave decreases as the wave travels through the soil medium. There are two 
primary mechanisms that cause this attenuation of wave amplitude: radiation damping and 
material damping.  

Radiation damping 
Radiation damping is the result from the spreading of wave energy over a larger volume of 
material as it travels away from its source. In the case of a point source the surface waves 
exhibit radiational damping in the form of plane surface circles in the direction away from the 
source (an annular wave field) (Figure 19). However, body waves (P- and S-waves), generated 
by a point source attenuate in all three-dimensional directions in the form of volumetric 
spheres in the direction away from the source (Figure 19).  
In summary for a linear elastic homogeneous halfspace, excited by a point source, a simple 
power law of the following type can express the radiation damping consequences on waves 
amplitude (Foti, 2000): 
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1

𝑟𝑛
  𝑤𝑖𝑡ℎ  𝑛 =  {

2 for longitudinal and shear waves on the surface
1 for body waves (P − and S − waves) in the solid
1
2⁄ for Rayleigh waves

 (4.10) 

 
where 𝑟 is the distance from the point source. However, these radiation damping terms are for 
the far field only. Close to the source, the terms are more in line with 1/𝑟2 for Rayleigh waves 
and 1/𝑟3 for body waves in the solid.  
 
Due to the much slower attenuation of the Rayleigh wave, most vibration energy at a particular 
distance from the source is carried by the Rayleigh wave. Lamb has predicted the wavefield for 
a surface point source on an elastic homogeneous halfspace which can be observed in Figure 
23.  
 

  
Figure 23. Complete wavefield predicted by Lamb (1904) for a surface point source on an elastic 

halfspace (a) horizontal radial motion; (b) vertical motion; (c) particle path of Rayleigh waves (Foti, 
2000) 

Material damping 
Next to radiation damping the waves amplitudes also decay over distance because of material 
damping. Material damping occurs due to the absorption of energy by the materials the wave 
is travelling through. In the materials, part of the elastic energy of a travelling wave is 
converted to heat. The conversion is accompanied by a decrease in the amplitude of the wave.  
 

4.2. Layered Elastic Soil Halfspace 
The existing waves just described were found for a homogeneous soil halfspace. However, this 
is rarely a realistic situation. The soil is composed of layers, e.g. softer layers near the surface 
and stiffer layers deeper down into the soil. The composition of the layers is different for every 
region and can even deviate significantly within one particular building site.  
The waves that were found in the previous section still exist in the realistic stratified soil, 
however the differences between the layer properties causes the incident waves to reflect and 
refract at the interface between two layers. This makes that predicting the vibration 
propagation in a stratified soil becomes a difficult task. However, many studies have been done 
to this problem and several approaches exist for theoretical prediction models (see Part III 
Method). 
This section will briefly describe the mechanisms that occur in a stratified soil halfspace.  

4.2.1. Three-dimensional wave propagation 
In a layered soil the incident waves are partly reflected and transmitted due to the difference in 
stiffness between the soil layers and also due to the existence of the free surface. In general, the 
incident waves in a layered soil halfspace will not approach the interfaces at 90° angles. In 
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addition, the soil layers have different wave propagation speeds, depending on their material 
characteristics. As a consequence, both the reflected and transmitted waves have another 
propagating angle relative to the horizontal than the incident wave. Therefore, the transmitted 
waves are called refracted waves instead.  
 
The direction of propagation of a wave is generally called a ‘ray path’. Snell considered the 
change of direction of ray paths at interfaces between materials with different wave 
propagation velocities. Using Fermat’s principle, Snell showed that  
 

 
sin 𝑖

𝑐
= constant (4.11) 

 
where 𝑖 is the angle between the ray path and the normal to the interface and 𝑐 is the velocity 
of the wave of interest. Snell’s law indicates that waves travelling from higher-velocity material 
into lower-velocity material will be refracted closer to the normal to the interfaces (Figure 24).  
 

 
Figure 24. Refraction principle of an SH-wave ray path (reflected waves are not shown) (Kramer, 1996) 

The creation of new waves and the reflection and refraction of the waves by these 
heterogeneities cause traffic induced vibration to reach a building by many different (ray) 
paths (Figure 25). Since the paths have different lengths and wavespeeds, the motion of the soil 
is spread out in time by this scattering effect.  
 

 
Figure 25. Simplified representation of possible paths along which energy is transferred (Spijkers, 

Vrouwenvelder, & Klaver, 2005) 

4.2.2. Conclusion layered soil medium 
In a realistic stratified soil, a complex wave field is present, consisting of different kind of 
waves, propagating with different wavespeeds and different particle motions. For a prediction 
model which should give quite accurate results for the soil response a complex mathematical 
model is required. Several models have been created by different authors, relying on different 
kind of mathematics but all with the same aim: to predict the soil response in a stratified soil 
halfspace. In the next part of the thesis, ‘Part III Method,’ one method will be chosen for 
implementation into the practical engineering design tool EDDABuSGS.  
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4.3. Dominant Frequencies Soil Medium 
As waves propagate through soil media, their amplification or attenuation is mainly dependent 
on the fundamental natural period of the soil deposit. This fundamental natural period 
depends on mechanical and geometrical characteristics of the layered soil deposit.  
 
Figure 26 presents an illustrative example of the soil response for a soil in Amsterdam, The 
Netherlands, due to the passage of a truck at a distance of approximately 30 m from the 
receiver. The figure clearly shows an amplification of the soil response for the frequency range 
4 Hz <  𝑓 <  7 Hz. This frequency range is generally within the frequency range of the 
eigenmodes of a truck, which are in the frequency range 1 Hz <  𝑓 <  15 Hz (see 3.3 Road 
Traffic Induced Vibrations – Scientific Prediction Model). However, the strong peak at 
𝑓 = 5 Hz indicates some sort of resonance behaviour of the soil. This can be explained by the 
fact that for that particular frequency, the excitation frequency and the dominant frequency of 
the soil deposit are very close to each other, resulting in a strong magnification of the soil 
response. It is interesting to see in advance of the design process of a structure at which 
frequency the soil response is likely to be amplified strongly. The designer should then make 
sure that the eigenfrequencies of the structural system are far away from that dominant 
frequency (or frequencies) of the soil deposit.  
 

 
Figure 26. Illustrative soil response for soft soil deposits (e.g. Amsterdam, The Netherlands) excited by a 

passing truck at a particular distance from the road 

 

4.4. Wave Barriers 
The rectangular wave barrier (open or infilled trenches), frequently used in engineering 
practice, reduces the ground vibration by interception, scattering and diffraction of the surface 
(Rayleigh) waves of relatively small wave lengths. Properly designed open or infilled trenches 
can be used for an effective vibration isolation (or screening) system.  
This section describes the results of one particular Master thesis research by A. de Zeeuw 
concerning wave barriers in layered soils. Two other researches concerning the effectiveness of 
wave barriers are included in Appendix C: ‘Appendix: Extensive overview of Chapter 4 
‘Transmission of Vibrations’’. 

4.4.1. Optimization of wave barriers in layered soils by A. de Zeeuw 
A. de Zeeuw performed a research for his Master thesis in Civil Engineering at the TU Delft 
concerning the effectiveness of wave barriers in 2D layered soils when excited by a vertical 
harmonic point load at the surface. The soil is considered to be undamped.  

Wave barrier in a two-layered soil 
The 2D two-layered soils consist of a soft upper layer and a stiffer underlying halfspace (Figure 
27 and Figure 28). 
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Figure 27. Inner FEM domain of the two-layered soil profiles. Left: shallow upper layer. Right: deep 

upper layer (de Zeeuw, 2018) 

According to the research the following conclusions can be made regarding the effectiveness of 
wave barriers in 2D two-layered soils when excited by a vertical harmonic point load at the 
surface: 

 The effectiveness of the wave barrier was sensitive to changes of the interface depth.  

 Most of the energy from the loading is propagated in two wave types: a Rayleigh wave and 
a shear wave.  

 The Rayleigh wave is propagating along the surface.  

 Most energy of the shear wave is propagating at an angle of around 40 to 45 degrees.  

 Much of the energy propagating as a shear wave is reflected from the interface upwards.  

 The barrier shows a diminished effectiveness resulting from deviations in the interface 
depth.  

 

 
Figure 28. Displacement amplitude �̂�𝒓𝒆𝒂𝒍(𝜇m/kN) for wave barriers optimized for 50 Hz. Left: �̂�𝒓𝒆𝒂𝒍 for 
an optimized wave barrier in homogeneous soil. Middle: �̂�𝒓𝒆𝒂𝒍 for a homogeneous-soil-optimized wave 
barrier in layered soil. Right: �̂�𝒓𝒆𝒂𝒍 for an optimized wave barrier in layered soil model (de Zeeuw, 2018) 
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Wave barrier in a three-layered soil 
The 2D three-layered soils consist of a stiff top soil layer on a soft intermediate layer and a 
stiffer underlying halfspace (Figure 29 and Figure 30). 
 
According to the research the following conclusions can be made regarding the effectiveness of 
wave barriers in 2D three-layered soils when excited by a vertical harmonic point load at the 
surface: 

 An optimization objective function for a receiver at the surface only can result in a wave 
barrier that decreases the energy at the surface, while increasing the energy below the 
surface.  

 For the optimized wave barrier, much of the energy appears to be continuously reflected 
within the softer layer, never reaching the surface (Figure 30). This is possible for shear 
waves approaching the interface at an angle lower than the critical angle, resulting in a full 
reflection as a shear wave. 

 The diminishing effect of the barrier in a three-layered soil with deviation of the interface 
depth is larger than for a two-layered soil.  

 
Figure 29. Inner FEM domain of the three-layered soil profile (de Zeeuw, 2018) 

 
Figure 30. Displacement amplitude �̂�𝒓𝒆𝒂𝒍(𝜇m/kN) for wave barrier optimized for 50 Hz. The embedded 

softer soil layer is used as a waveguide (de Zeeuw, 2018) 

Optimized wave barrier in layered soil 
Several optimization algorithms have been used to come to a new form of a wave barrier, 
optimized for the particular two-layered soil as described before. The final simplified wave 
barrier, which also takes manufacturability into account, has a relatively simple design while 
still providing a significant reduction of the vibration level at the receiver (factor 0.31). The 
design is essentially a combination of two straight vertical barriers connected horizontally at 
the surface, see Figure 31, where FwAVG indicates the vibration level reduction at receivers at 
the soil surface due to that specific wave barrier.  
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Figure 31. The shape of optimized wave barriers in a two-layered soil with increasing level of 

manufacturability with the soil interface at 10 m depth (de Zeeuw, 2018) 

However, for the three-layer soil case it appears that, when taking into account the vertical 
optimization constraints, the reference barrier is in fact the optimal topology (Figure 32).  
 

 
Figure 32. The shape of optimized wave barriers in a three-layered soil with increasing level of 

manufacturability (de Zeeuw, 2018) 

4.4.2. Conclusion wave barrier 
The stratification of the soil makes that a wave barrier can perform very differently from the 
case in which a wave barrier is used in a homogeneous soil halfspace. However, in all studies it 
is observed that the wave barrier does decrease the vibration levels in the soil in the close 
proximity behind the wave barrier. However, the soil surrounding this ‘shadowed’ region can 
exhibit amplified vibration levels. A general reduction factor created by the wave barrier 
cannot easily be determined and depends on every specific situation. 
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5. Structural System (Receiver of Vibrations) 
 
The system to be considered for this thesis is a system with multiple degrees of freedom 
(MDoF) (e.g. the global dynamic response of the entire building). However, to remind the 
reader of the particularities of the dynamic response of a system, first a brief overview of the 
simple case of a single degree of freedom (SDoF) is presented. Thereafter the simple single 
degree of freedom case is extended to the case of a two degree of freedom system (which is 
already a multi-degrees of freedom system). After this introduction of a multi-degrees of 
freedom system, the two degrees of freedom system is extended to a 𝑛-multi-degrees of 
freedom system. Finally, the case of continuous systems (e.g. a local floor element) is briefly 
discussed. This system may be referred to as a 𝑛-multi-degrees of freedom system where 𝑛 goes 
to infinity.  All systems discussed in this thesis are supposed to be linear. This is justified by the 
fact that the vibration levels considered for vibration sensitive laboratory structures are 
relatively small so that all materials remain in their linear elastic state.  
An extensive overview of this chapter is given in Appendix D: ‘Appendix: Extensive overview of 
Chapter 5 ‘Structural System (Receiver of Vibrations)’,’ while the text in this chapter only 
highlights the most important particularities.  
 

5.1. Simplification Laboratory Structure 
The laboratory structure is simplified to a system that can be solved by established methods 
for structural dynamics. Since a laboratory structure has such strict vibration level criteria, the 
structure is often made very heavy and stiff in order to realize a system with a great resistance 
against vibrations (impedance) and natural frequencies as far away as possible from the 
fundamental excitation frequencies. The most straightforward approximation one can make 
for such a structure is, therefore, a rigid slab or a rigid building volume (depending on the 
design) which has only three degrees of freedom: two translational (horizontal and vertical) 
and one rotational (rocking). This system is often referred to as a multi-degrees of freedom 
system (MDoF system).  
 
However, due to this simplification, only the global modal shapes of the system can be 
determined. In reality, the floors and walls are not infinitely rigid, but are flexible, which 
causes these elements to undergo local modal shapes. These local modal shapes of for example 
the floors and the walls are neglected by the simplification of rigidity, while the natural 
frequencies of these local elements are often different than the natural frequencies of the 
global rigid system. Therefore, in order to make a proper estimation of the vibration levels of a 
local floor, on which the laboratory equipment is placed, the local modal shapes should also be 
taken into account. Since these local modal shapes makes the interaction (chapter 6 Soil-
Structure Interaction) between the structure and the soil mathematically very complicated, the 
interaction is only based on a rigid slab or rigid building volume. Once the response of the 
rigid structure is known, the local elements, e.g. the floors are analysed separately. The 
excitation of these local elements consists of the global response of the rigid structure.  
 

5.2. Single Degree of Freedom system 
Before hopping into the mathematics of the multi-degrees of freedom system (MDoF system), 
the simpler case of a single degree of freedom is briefly discussed to explain the fundamentals 
of the dynamic characteristics of a structure. The reader is expected to have some knowledge 
about the mathematical approach to such kind of systems, therefore only a brief explanation is 
given here. In case the reader wants to know more in-depth theory, he or she is kindly referred 
to the lecture notes of the Technical University Delft about Structural Dynamics, with course 
codes CT4140 (Spijkers, Vrouwenvelder, & Klaver, 2005), CT4145 (Metrikine, 2018) and CIE 
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5260 (Tsouvalas, 2018). The following text is a brief summary of the theory explained in these 
lecture notes.  

5.2.1. Governing equations 
To determine the dynamic response of a structural system, first the governing equations 
should be determined. For this thesis the Displacement Method is used for obtaining these 
equations. 

5.2.2. Undamped free vibration 
First the most simple case of a single degree of freedom (SDoF) will be considered: the free 
vibration of un undamped system (Figure 33) where the loading term 𝐹(𝑡) is zero. 
 

 
Figure 33. Idealization of horizontal motion of an offshore platform, excited by waves, by a mass-spring 

system with a translational degree of freedom (in 𝑥 − direction) (Metrikine, 2018) 

By applying the Displacement Method (displace the mass in the direction of the degree of 
freedom and write the equilibrium equations for the dynamic forces), the following equation 
of motion for the mass-spring system, which is a second ordinary linear differential equation, 
is obtained: 
 
 𝑚�̈� + 𝑘𝑥 = 0 (5.1) 
 
The natural frequency of the mass-spring system is equal to: 
 

 𝜔𝑛 = √𝑘 𝑚⁄  (5.2) 

 
This is the frequency, at which the mass-spring system would vibrate given arbitrary initial 
conditions and no loading.  

5.2.3. Undamped forced vibration 
The previously considered case was a state of free vibration, i.e. the loading term was zero. The 
obtained results indicate the characteristics of the system, independent of any loading applied. 
However, when a force is applied the dynamic response of the system is altered. The case of a 
harmonic loading is considered, since any time-dependent force can be represented as a 
superposition of harmonic forces with different amplitudes and phases.  

Harmonic loading 
Assume the external harmonic loading to be applied at the single degree of freedom as 
illustrated in Figure 33. The obtained equation of motion then is: 
 

 𝑚�̈� + 𝑘𝑥 = 𝐹0 cos(𝜔𝑡) (5.3) 
 
The general solution for this equation of motion is in the form of a homogeneous solution (the 
solution for the free vibration) plus a particular solution. The mass-spring system vibrates at 
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two frequencies, one being the natural frequency 𝜔𝑛 and the other being the frequency 𝜔 of 
the external force. The amplitude- and phase-frequency dependencies are shown in Figure 34.  
 

 
Figure 34. (left) Amplitude-frequency characteristic (magnification factor) and (right) phase-frequency 

characteristic (Metrikine, 2018) 

These figures indicate that for 𝜔 close to 𝜔 = 0, the loading frequency is extremely slow, and 
the mass will deflect by the force to its static deflection only. For very high frequencies 
𝜔/𝜔𝑛 ≫ 1, the force changes its direction so fast that the mass simply has no time to follow 
and the amplitude of the response is very small. At 𝜔/𝜔𝑛 = 1, the amplitude of the response 
becomes infinitely large. The frequency of the force coincides exactly with the natural 
frequency of the system, therefore, the force can push the mass always in the direction in 
which the mass moves itself, thereby increasing the amplitude of vibrations indefinitely. This 
phenomenon is known as resonance. The amplitude of resonant vibrations grows in time 
linearly and the displacement of the mass-spring system increases to infinity (note that this 
holds only in the undamped case).  

5.2.4. Damped free vibration 
Every engineering system experiences damping that dissipates the energy of vibrations. Now 
the mass-spring system is considered to be subject to viscous damping (Figure 35), which is 
proportional to the velocity of the mass.  

 
Figure 35. A mass-spring-dashpot system with a translational degree of freedom (in 𝑥 − direction) 

(Metrikine, 2018) 

Again, by applying the Displacement Method, and writing the balance of forces, one obtains 
the following scalar equation, which has one additional term compared to the undamped case: 
 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹(𝑡) (5.4) 
 
Due to the damping, the vibrations are attenuated over time (Figure 36). Thus, damping 
extracts energy from the system leading to a decay of the amplitude of vibrations. 
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Figure 36. Free vibration of the mass-spring-dashpot system in the case 𝑛 < 𝜔𝑛 (Metrikine, 2018) 

The period of vibration 𝑇 and its reciprocal, the frequency of vibration 𝑓1, depend also on the 
damping parameter 𝑛: 
 

 𝑓1 = 𝑓𝑛 (1 −
𝑛2

2𝜔𝑛
2) , where   𝑓𝑛 =

𝜔𝑛
2𝜋
  (5.5) 

 

5.2.5. Damped forced vibration 
When taking into account the loading term, a similar approach is followed as for the 
undamped mass-spring system.  

Harmonic loading 
Again, the case of harmonic loading is considered, and the equation of motion is: 
 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹0 cos(𝜔𝑡) (5.6) 
 
The magnification factor of the vibration amplitude and the phase lag can be plotted as 
function of 𝜔/𝜔𝑛 for different amounts of damping (Figure 37).  
 

 
Figure 37. (left) Magnification factor and (right) Phase lag of the damped SDoF steady-state solution 

(Metrikine, 2018) 

Note that, compared to the undamped SDoF-case (Figure 34), the peak at 𝜔/𝜔𝑛 = 1 for the 
damped SDoF system does not go towards infinity anymore, but is finite.  
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5.3. Two Degrees of Freedom system 
Previously, only single degree of freedom systems have been discussed. These systems enable 
us to explain the resonance phenomenon and to calculate the natural frequencies of a number 
of structures. However, most realistic structures have multiple degrees of freedom. In order to 
explain additional phenomenon that occur in case of multiple degrees of freedom, the theory is 
developed to more complicated systems. As a first step, a system with two degrees of freedom 
is considered, which will yield the explanation of most ‘vibration dampers’ applied in practice.  
The most general undamped two degree of freedom system can be schematized as in Figure 38. 
 

 
Figure 38. Undamped two degrees of freedom system with spring coupling (Metrikine, 2018) 

Following the same principle as before, by applying the Displacement Method, two scalar 
equations are obtained: 
 

 
𝑚1�̈�1 + 𝑘1𝑥1 + 𝑘3(𝑥1 − 𝑥2) = 𝐹1(𝑡) 
𝑚2�̈�2 + 𝑘2𝑥2 + 𝑘3(𝑥2 − 𝑥1) = 𝐹2(𝑡) 

(5.7) 

5.3.1. Undamped forced vibration 
Now the case is considered in which a harmonic load is applied at one mass and the spring at 
the right-hand-side is not taken into account (Figure 39). The forced steady-state vibrations 
are considered. This vibration takes place at the frequency of the force.  
 

 
Figure 39. Forced two degrees of freedom system. The vibrations absorber k-m is attached to the main 

system K-M (Metrikine, 2018) 

Since no damping is considered in this steady-state-case, the masses vibrate with infinite 
amplitudes when the frequency of the force becomes equal to one of the two natural 
frequencies of the system (Figure 40). Furthermore, if the frequency of the force becomes 
equal to the natural frequency of the auxiliary system (𝜔𝑏), the amplitude of the main system 
(𝐴1) becomes zero.  
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Figure 40. Displacement-frequency curves for the two degrees of freedom system (Metrikine, 2018) 

5.4. Multi-Degrees of Freedom system 
According to (Spijkers, Vrouwenvelder, & Klaver, 2005), many technical structures are so 
complicated that the dynamic behaviour of it cannot be described accurately with merely one 
or two degrees of freedom. Also, the structure to be considered in this thesis cannot be 
described by only one or two degrees of freedom. Therefore, in this section the two degrees of 
freedom system is expanded to the more general case of a 𝑛-multi-degrees of freedom system 
(𝑛MDoF system). The text is a brief summary of the very comprehensive explanation, given in 
the lecture notes ‘Structural Dynamics CT 4140 – Part I Structural Vibrations’ of the Technical 
university Delft (Spijkers, Vrouwenvelder, & Klaver, 2005). 

5.4.1. Differential equations (undamped case) 
Again, the Displacement Method is used. As an example, a 2D block foundation with three 
degrees of freedom (3DoF, in the plane of the drawing) is considered (Figure 41). The degrees 
of freedom are two translations and a rotation about the centre of gravity, all three measured 
with respect to the state of static equilibrium, so that the deadweight load (𝑚𝑔) does not play a 
role in the dynamic analysis. 

 
Figure 41. Foundation block with three degrees of freedom (Spijkers, Vrouwenvelder, & Klaver, 2005) 

The equations of motion can be noted down in matrix notation:  
 

 [
𝑚 0 0
0 𝑚 0
0 0 𝐽

] [

�̈�1
�̈�2
�̈�3

] + [

𝑘1 + 𝑘2 0 𝑎𝑘1 − 𝑏𝑘2
0 𝑘3 ℎ𝑘3

𝑎𝑘1 − 𝑏𝑘2 ℎ𝑘3 𝑎2𝑘1 + 𝑏
2𝑘2 + ℎ

2𝑘3

] [

𝑥1
𝑥2
𝑥3
] = [

𝐹1
𝐹2

𝐹3 + 𝑒𝐹1 − 𝑔𝐹2

] (5.8) 

 
or symbolically: 
 

 𝑴�̈� + 𝑲𝑥 = 𝐹 (5.9) 
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For this 3DoF-case the mass and stiffness matrices are both symmetrical (3 x 3) matrices in 
which the mass matrix is a diagonal matrix. However, for a 𝑛MDoF system, the matrices are of 
the size (𝑛 x 𝑛). 

5.4.2. Undamped free vibration of a 𝒏MDoF system 
In the case the loading terms are zero, the 𝑛MDoF system undergoes only free vibrations. As 
homogeneous solution, a synchronic harmonic motion is assumed: 
 

 𝑥(𝑡) = 𝑥 sin(𝜔𝑡 + 𝜑) (5.10) 
 
This solution implies that all degrees of freedom vary in time in the same manner. The free 
vibration is called a principal mode (or normal mode) of vibration. The unknown amplitude 
vector 𝑥 is called an eigenvector.  
After substituting the proposed solution into the homogeneous system of equations, the 
generalized eigenvalue problem is obtained. A non-trivial solution will be found if the set of 
equations proves to be dependent, thus the determinant of the system should be equal to zero: 
 

 det[−𝜔2𝑴+𝑲] = 0 (5.11) 
 
with 𝜔2 representing the so-called eigenvalue. This leads to a polynomial of degree 𝑛 in 𝜔2, 
which is called the characteristic polynomial. The determination of the roots of the 
characteristic equation is often not possible without numerical methods. By the aid of the 
computer the 𝑛 natural frequencies and 𝑛 associated eigenvectors of the system with 𝑛 degrees 
of freedom can be found, but are only determined up to scalar multiples (Spijkers, 
Vrouwenvelder, & Klaver, 2005). The eigenvectors represent the principal modes of vibration 
and are therefore often displayed graphically. So for linear systems with 𝑛 degrees of freedom, 
there appear to be 𝑛 principal modes of vibration (eigenmodes). The free vibration of the 
system is the summation of all possible eigenmodes. The remaining unknown constant can be 
found from the prescribed initial conditions.  

5.4.3. Harmonic loads for a 𝒏MDoF system 
The frequency response function of one specific degree of freedom 𝑥𝑞(𝑡) possesses vertical 

asymptotes at the position of the (𝑛) natural frequencies, showing some kind of resonance 
phenomenon when the loading frequency is equal to one of the natural frequencies of the 
system (Figure 42). This phenomenon is similar to the previously described SDoF system 
(Figure 34 in 5.2.3 ‘Undamped forced vibration’). 
 

 
Figure 42. Frequency-response function for an undamped five degrees of freedom system for the degree 

of freedom 𝑥𝑞(𝑡) (Spijkers, Vrouwenvelder, & Klaver, 2005) 
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5.4.4. Viscous damped systems with n degrees of freedom 
In case damping is taken into account for a 𝑛MDoF system, the equations of motions have an 
additional term: 
 

 𝑴�̈� + 𝑪�̇� + 𝑲𝑥 = 𝐹(𝑡) (5.12) 
 
In the case we are interested in one specific degree of freedom, for example the degree of 
freedom 𝑥𝑞(𝑡), the frequency response function (absolute values only) for this degree of 

freedom due to a harmonic loading in the point 𝑥𝑝 has the form as in Figure 43. Similar to the 

damped SDoF system (5.2.5 ‘Damped forced vibration’), the resonance peaks are now finite due 
to the damping in the system. 
 

 
Figure 43. Example of a frequency response function for the degree of freedom 𝑥𝑞(𝑡) when a harmonic 

loading is applied in the point 𝑥𝑝 (Spijkers, Vrouwenvelder, & Klaver, 2005) 

5.5. Continuous Systems 
The multi-degrees of freedom systems discussed before are classified as discrete systems. They 
are described by means of a coupled set of ordinary differential equations. However, when a 
system is analysed of which the mass is continuously distributed along a line, plane or volume, 
then also a continuous function should be chosen for the degree of freedom. These systems are 
typified as continuous systems. Their dynamic behaviour is described by means of partial 
differential equations (Spijkers, Vrouwenvelder, & Klaver, 2005). The soil, subject of the 
previous chapters, and described by an elastic half-space, is an example of a three-dimensional 
continuous system. In a linear structure two dimensions are small with regard to the third 
dimension, which is for example the case for the bending beam. 

5.5.1. Bending beam (Euler-Bernoulli beam model) 
An example of linear structures which can be described by a continuous system is the bending 
beam. The bending beam is described by means of a fourth-order partial differential equation. 
The way a beam is supported (clamped, hinged, free, guided or movable end) is essential for its 
dynamic behaviour. The supports are not expressed in the differential equations describing its 
dynamic behaviour, but they are introduced by means of so-called boundary conditions, which 
are needed when solving the differential equations.   

5.5.2. Governing differential equations 
The displacement in the positive z-direction is indicated by the symbol 𝑤(𝑥, 𝑡) and it 
represents the degree of freedom, which is a continuous function of the position variable 𝑥, 
and naturally is a function of the time variable 𝑡 too. The beam has a flexural stiffness 𝐸𝐼 
(Nm2), a cross-sectional area 𝐴 (m2) and a mass density 𝜌 (kg/m3). The Displacement Method 
is used for the derivation of the equation of motion of an infinitesimal element 𝑑𝑥 of the beam 
(Figure 44).  
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Figure 44. Sign convention and indication of the meaning of the symbols used for the prismatic beam 

(Spijkers, Vrouwenvelder, & Klaver, 2005) 

The complete derivation of the problem is not included here. The reader is kindly referred to 
the lecture notes on Structural Vibrations ‘CT 4140 part I’ of the Technical University Delft 
(Spijkers, Vrouwenvelder, & Klaver, 2005). Only a very brief overview is given of the governing 
equations. 
 
After substitution of the kinematic relations and the constitutive relation into Newton’s 
second law, the following inhomogeneous partial differential equation of the fourth order is 
obtained: 
 

 𝐸𝐼
𝛿4𝑤(𝑥, 𝑡)

𝛿𝑥4
+ 𝜌𝐴

𝛿2𝑤(𝑥, 𝑡)

𝛿𝑡2
= 𝑓(𝑥, 𝑡) (5.13) 

 
This is commonly referred to as the Euler-Bernoulli beam. 

5.5.3. Free vibration 
In case the free vibrations are considered, again a solution 𝑤(𝑥) is sought for the eigenvalue 
problem. This solution is referred to as the eigenfunction. Eventually the solution is of the 
form: 
 

 
𝑤(𝑥) = 𝐶1𝑒

𝛽𝑥 + 𝐶2𝑒
−𝛽𝑥 + 𝐶3𝑒

𝑖𝛽𝑥 + 𝐶4𝑒
−𝑖𝛽𝑥 

or 
𝑤(𝑥) = 𝐴 cosh(𝛽𝑥) + 𝐵 sinh(𝛽𝑥) + 𝐶 cos(𝛽𝑥) + 𝐷 sin(𝛽𝑥) 

(5.14) 

 
in which: 
 

 𝛽4 =
𝜌𝐴𝜔2

𝐸𝐼
 (5.15) 

 
This parameter 𝛽 appears to be convenient for the further elaboration of the problem. The 
unknown constants are depending on the manner the beam is supported: the applied 
boundary conditions.  

5.5.4. Boundary conditions 
For the five unknown constants, only four boundary conditions exist: two at each end of the 
beam, thus one equation is missing. It appears that, apart from an unknown constant, the 
modal shapes of the structural system can be derived.  
Boundary conditions concerning the deflection or slope are called kinematic boundary 
conditions. The boundary conditions concerning the bending moment and shear force are 
called dynamic boundary conditions. One types of in practice often applied boundary 
conditions will be briefly considered to illustrate the obtained results by applying the method 
for continuous systems: the simply support beam. 



Structural System (Receiver of Vibrations) 

 

75 

Simply supported beam 
The bending beam appears to have an infinite number of natural frequencies. For each natural 
frequency there appears to be a corresponding eigenfunction 𝑤𝑛(𝑥). The three lowest 
eigenfunctions are displayed in Figure 45, each with an arbitrary (still undetermined) 
amplitude 𝐷𝑛. 

 
Figure 45. First three eigenmodes of the simply supported Euler-Bernoulli bending beam (Spijkers, 

Vrouwenvelder, & Klaver, 2005) 

The remaining unknown constants are determined from the initial conditions at 𝑡 = 0. This 
procedure is completely analogous with the way this occurs in discrete systems (the systems 
with a finite number of degrees of freedom described before). The eigenfunctions do have 
orthogonal properties with regard to the mass and the stiffness.  

Natural frequencies beams - equivalent masses 
The method of equivalent masses enables to find only the fundamental natural frequency in a 
simplified and approximate manner. Table 1 has been realized with which the first five natural 
frequencies of the Euler-Bernoulli beam can be approximated for specific boundary conditions. 
The natural frequencies can be determined, based on the value 𝐶 (given in Table 1) by the 
formula: 
 

 𝜔𝑛 = 𝐶√𝐸𝐼 (𝜌𝐴𝑙
4)⁄  (5.16) 

 
Table 1. First five natural frequencies and eigenmodes of Euler-Bernoulli beams with constant 𝐸𝐼 𝜌𝐴⁄  

(Spijkers, Vrouwenvelder, & Klaver, 2005) 
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6. Soil-Structure Interaction 
 
In the case of static design, fixed foundations can be assumed, however, in case of designing a 
structure excited dynamically, the effect of the soil must be taken into account. The interaction 
between the structure and the soil causes altering effects to the structural system and the soil 
vibrations near the structure. This interaction is called dynamic soil-structure interaction 
(SSI). Many studies have already been performed concerning SSI, however the description of it 
remains still a challenging task.  
This chapter will briefly discuss the effects of soil-structure interaction on both the structure 
and the soil near the structure. The focus of this explanation will be on the dynamics problem 
considered for this thesis: a (partly embedded) structure, supported by foundation piles, and 
excited by an incident wave field propagating through the soil. 
This section is greatly derived from the lecture notes ‘Structural Response to Earthquakes,’ 
written by A. Tsouvalas for the similar-named course at the Technical University Delft 
(Tsouvalas, 2018). Among other things, these lecture notes give a very comprehensive and 
understandable explanation of the SSI problem, which is summarized in the current chapter. 
Additional explanatory text for this chapter can be found in Appendix E: ‘Appendix: Additions 
to Chapter 6 ‘Soil-Structure Interaction’,’ concerning the effect of energy dissipation, non-
linear soil response and the approaches for modelling of the soil-foundation system.   
 

6.1. Effect of Soil-Structure Interaction on the Response of Structures 
According to (Tsouvalas, 2018) the primary effects of SSI in the structural response can be 
summarized as follows: 

Effects on the incident wavefield  
The presence of the structure, resting on top of the soil, alters the free-field ground motion to 
some other (unknown) incident wavefield. This is usually referred to as kinematic interaction 
and it is caused by the fact that the equilibrium that needs to be satisfied at the structure-soil 
interface is not the same as for a stress-free surface, while the stress-free surface was the basis 
for the determination of the original site response spectra. Therefore, the engineer should 
consider the dynamic SSI to modify the site response spectra accordingly (Tsouvalas, 2018).  

Effect on structural periods of vibration and energy dissipation 
The presence of the soil can alter the structure’s vibration characteristics considerably. The 
amount of influence depends on the dynamic properties of both the structure and the soil. It 
also depends on the type of foundation (resting on the ground surface or embedded in the 
soil). The original structure, founded on a rigid base, is substituted by a new one, founded on 
an elastic (or visco-elastic) soil continuum. The effect is usually an elongation of the structural 
periods (and thus a decrease in natural frequencies) and an increased energy dissipation due to 
the radiation of waves into the soil during structural vibrations. However, there are cases in 
which the presence of a soft soil deposit can amplify the structural response significantly due 
to local site amplification and energy trapping (soil resonances) (Tsouvalas, 2018).  
 
According to A. Tsouvalas (Tsouvalas, 2018) engineers usually neglect SSI in engineering 
practice, arguing that this yields generally conservative results (the radiation damping is not 
taken into account). However, this commonly shared opinion is not always justified due to a 
number of reasons: 

 Structural period elongation, thus a decrease of the natural frequencies of the structural 
system, is not always beneficial, as it depends very much on the frequency content of the 
excitation input. In case the (fundamental) natural frequency of the structural system gets 
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closer to the dominant frequency of the excitation, the vibration response might even be 
amplified. In that case, neglecting SSI results in a non-conservative simplification.  

 In a complex dynamic system, the actual response cannot possibly be known without first 
modelling the soil (in a coupled manner to the structure).  

 Soil amplification effect may be overlooked. 
 

6.2. Modelling of the Soil-Foundation System 
The most comprehensive approach to solve SSI problems is through a full Finite Element (FE) 
analysis. However, such models are computationally expensive, therefore this approach is less 
convenient at the initial stages of the design of a structure. For this reason, several simplified 
methods have been developed, which allow for an equivalent representation of the soil 
reaction.  

Shallow foundations 
The consideration of the SSI effects can be greatly simplified by assuming rigid foundations. 
Since, for this thesis problem, the structure is indeed very rigid, this assumption is expected to 
give reliable results. First the shallow foundation on top of the soil surface is regarded.  
Several theories exist to describe the dynamic reaction of a shallow rigid foundation block 
from generally applicable frequency dependent dynamic impedance matrices. Eventually the 
goal is to derive an equivalent (frequency-dependent) spring-dashpot representation of the soil 
reaction to a rigid foundation block. To do this, one of the methods is to separate the coupled 
soil-structure system in two substructures (subsystems): the rigid foundation block and the 
stratum beneath. Subsequent application of a unit amplitude (harmonic) force at each of the 
six degrees of freedom of a massless rigid foundation on the soil (Figure 46), provides each 
column of the so-called flexibility matrix. Inversion of the flexibility matrix yields the dynamic 
stiffness matrix. Instead of applying an unit force or moment to obtain first the flexibility 
matrix and then invert it, one can apply directly unit displacements and rotations to derive 
column-by-column the elements of the (frequency-dependent) stiffness matrix (Tsouvalas, 
2018).  

 
Figure 46. Derivation of the third column of the flexibility matrix, including all cross-coupling dynamic 

stiffness’s (Tsouvalas, 2018) 

The frequency-dependent stiffness matrix depends on: 

 The shape of the foundation-soil system (circular, rectangular, etc.); 

 Amount, or depth, of embedment; 

 Characterization of the soil profile (variable layered soil); 

 Mode of vibration and excitation frequency; 

 Flexibility of the foundation block (rigid or flexible). 
 

The frequency-dependent stiffness matrix �̃�(𝜔) is a complex-valued matrix, which can be 
expressed as: 
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 �̃�(𝜔) = Re (�̃�(𝜔)) + Im(�̃�(𝜔)) = �̂�(𝜔) + 𝑖𝜔�̃�(𝜔) (6.1) 

with: 
 �̃�(𝜔) = �̂�(𝜔) + 2𝛽/𝜔�̂�(𝜔) (6.2) 

 

The real part of the complex-valued stiffness (�̂�(𝜔) = Re (�̃�(𝜔))) reflects the inertia and 

stiffness of the supporting soil. It’s dependence on frequency reflects solely the influence of the 
inertia of the soil.  

The imaginary component of the complex-valued stiffness (𝑖𝜔 �̃�(𝜔)) reflects two types of 

damping: radiation damping (�̂�(𝜔)) and material damping (2𝛽/𝜔�̂�(𝜔)). Radiation damping is 
due to the energy carried away by waves from the structure into the soil (also see 6.1 Effect of 
Soil-Structure Interaction on the Response of Structures) and the material damping is due to 
the energy dissipation from hysteric soil behaviour. When multiple soil layers are present, 
numerical techniques are needed to derive the frequency-dependent stiffness matrix per 
excitation frequency.  
 
Tables can be used in engineering design to obtain the dynamic stiffness coefficients and 
radiation dashpot coefficients for the evaluation of the soil impedance in each direction 
(Gazetas G. , 1991). However, these tables are only applicable for rigid foundation blocks and 
for the assumption of a homogeneous soil halfspace. The tables provide expressions for 
equations (6.1)-(6.2) which depend on the input parameters:  

 Soil-foundation contact surface: area (𝐴𝑏) and area moments of interia about different axes 
(𝐼𝑏𝑥, 𝐼𝑏𝑦, 𝐼𝑏𝑧).  

 Half-width (𝐵) and half-length (𝐿) of the circumscribed rectangle.  

 Shear modulus (𝐺) and Poisson’s ratio (𝑣) of the soil 

 Depth of embedment (𝐷) 

 Side wall-soil contact surface (𝐴𝑤) and depth (𝑑), which should be smaller than the 
nominal contact surface to account for slippage and separation near the ground surface 
(this can deviate per mode of oscillation) 

Effect of embedment 
Embedment of the structure is investigated in the research computed by K. Miura (Miura, 
2016), where tests were carried out using test specimen, first standing on the soil surface, and 
then partly embedded in the soil. According to the research the embedment increases the 
resonance frequency, but the specimen response amplitude is also more damped. A simplified 
building with basement and variable basement depth D was modelled, excited horizontally at 
the base of the building by an incident horizontal wavefield. The results show a similar 
phenomenon as the tests (Figure 47). 
 

 
Figure 47. Effect of embedment depth D of the structure when excited horizontally at the structure’s 

base. The response amplitude at the top of the building (Ub) is normalized by the excitation amplitude 
at the surface of the free field (Ug) (Miura, 2016) 
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When increasing the embedment depth, the resonance frequency of the coupling system is 
shifted towards the natural frequency of the building under the fixed-base condition (2 Hz), 
indicating a stiffening (increased restraint) effect. But also the amplitude of the system’s 
vibration is more damped due to larger embedment depth (Miura, 2016). 

Foundation on piles 
To complete the elements that exhibit soil-structure interaction within this thesis research, 
foundation piles are considered. The formulations for pile foundations focus on the dynamic 
impedance matrix at the level of the pile-head alone and assume a pile of length 𝐿 embedded 
in a homogeneous soil of depth 𝐻 =  𝐿. With these formulations the impedances in case of 
swaying, cross swaying-rocking and rocking at the pile head are computed.  
 
Again, tables can be used in engineering design to obtain the dynamic stiffness coefficients and 
radiation dashpot coefficients, used for the evaluation of the pile-soil impedance at the head of 
the pile in each direction (Gazetas G. , 1991). However, these tables are only applicable for 
simplified soil models (such as a homogeneous soil halfspace or a soil halfspace with linearly 
increasing stiffness with depth). The tables provide expressions for equations (6.1)-(6.2) which 
depend on the input parameters (Figure 48):  

 Diameter of the pile (𝑑); 

 Length of the pile (𝐿); 

 Active length of the pile (𝐿𝑐); 

 Height from ground surface to bedrock (𝐻); 

 Characteristic soil profile (soil modulus profile with depth: linear, parabolic or constant); 

 Shear wave velocity of soil (𝑉𝑠𝐻) at depth 𝑧 =  𝐻. 
Also the pile-to-pile interaction factors can be taken into account by these tables for assessing 
the response of floating pile groups. A more elaborate explanation is given in chapter 11 ‘Soil-
Structure Interaction Modelling in EDDABuSGS‘. 

 
Figure 48. Input parameters for the tables considering SSI for foundation piles (Tsouvalas, 2018) 

6.3. Modelling of the Soil-foundation System 
At the initial stages of the design of a structure, simplified approaches are desired for taking 
into account SSI. When foundations are relatively rigid and/or of simple geometry, several 
methods exist to overcome the need for a full detailed description of the foundation-soil 
system. In principal, there are two main ways to solve dynamic SSI problems (Figure 49): 

 Direct approach (suitable for both linear and non-linear formulations) 

 Sub-structuring approach (limited to linear formulations) 
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Figure 49. Levels of modelling the effect of the soil on the structure: (a) fixed support, (b) elastic 

support, (c) substructure approach, (d) direct approach (Pap & Kollár, 2018) 

Due to the large computational effort of the direct approach and the computational efficiency 
of the sub-structuring approach in case of linear systems, the sub-structuring approach is the 
most practical approach for the initial design stages.  
 

6.4. Conclusion Soil-Structure Interaction 
In general, the soil-structure interaction can be rather significant for stiff structures resting on 
soft soil sites, while it may not be that significant for soft (flexible) structures founded on stiff 

soil deposits. The natural periods (𝑇 =
1

𝑓
) of the soil-structure system are longer (the natural 

frequencies decrease) compared to a fixed-base structure. The ground motions due to SSI may 
be amplified or de-amplified due to the presence of the structure, and their estimation is 
important for attaining dedicated designs for structures excited by dynamical loading (Jia, 
2018).  
 
Basically the difference between the fixed base structure and the coupled soil-structure system 
in mathematical terms is as follows (Papadopoulos, 2018): The modal characteristics of 
structures, disregarding any interaction with the soil and any source of damping, are obtained 
as the solution of the generalized eigenvalue problem: 
 

 det[−𝜔2𝑴+𝑲] = 0 (6.3) 
 
If viscous damping is included inside the structure, the modal characteristics are obtained as 
the solution of the following quadratic eigenvalue problem: 
 

 det[−𝜔2𝑴+ 𝑖𝜔𝑪 +𝑲] = 0 (6.4) 
 
When dynamic SSI is taken into account, the computation of the modal characteristics of the 
coupled soil-structure system generally requires the solution of the following eigenvalue 
problem: 
 

 det[−𝜔2𝑴+ 𝑖𝜔𝑪 + 𝑲 + �̃�(𝜔)] = 0 (6.5) 

 
Thus, now the determinant has a frequency dependent stiffness component which requires 
numerical solution methods to compute the modal characteristics of the structural system. 
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7. Numerical Method for Computations 
 
The literature study has given sufficient insight in the complex problem at hand so that the 
computational script of the practical engineering tool ‘EDDABuSGS’ can be developed in the 
numerical programming software Python. First the loading generation phase is considered by 
the aid of the software FEMIX. This software uses input data-files and computes the 
characteristics of the moving loads and the soil response at any desired location in the layered 
soil stratum due to these moving loads. Python is used for computing the data-files needed by 
FEMIX and to implement the output of FEMIX as input to EDDABuSGS which computes the 
dynamic structural response of the excited building. Both software packages (FEMIX and 
Python) will be briefly discussed in the following sections. Additional explanatory text for the 
section about FEMIX can be found in Appendix F: ‘Appendix: Additions to Chapter 7 
‘Numerical Method for Computations’’, concerning the Thin-Layer Method, material 
assumptions, the possibility of the inclusion of a structure on or in the soil, the input files 
needed by FEMIX and a brief overview of the interface of the software.  
 

7.1. FEMIX 
According to the website of FEMIX (Azevedo, 2019): “FEMIX is a non-commercial (Beta 
Version) Finite Element Analysis software which can be used for static and dynamic analysis of 
structures. Both linear and nonlinear material behaviour can be considered.” The development 
of FEMIX was initiated by Alvaro Azevedo in 1991, currently Assistant Professor at the 
University of Porto, Portugal, and has since then been further developed by Alvaro Azevedo 
and, among others, Joaquim Barros (1991-), Jose Sena Cruz (1996-), Ventura Gouveia (1999-), 
Sergio Neves (2005-), Rajendra Varma (2006-) and João Barbosa (2008-).  
 
The version of the software FEMIX that is used for this Master Thesis considers soil- and 
structural vibrations only. The soil vibrations are computed based on the Thin Layer Method 
with Perfectly Matched Layers at the boundaries of the half-space (Boundary Element Method 
or BEM). The structural vibrations are computed based on a Finite Element Model (FEM). The 
soil and the structure are coupled by means of a BEM-FEM coupling. This section will briefly 
discuss some particularities of FEMIX. 

7.1.1. Thin Layer Method in FEMIX 
The Thin Layer Method (TLM) is a semi-discrete numerical technique used for the analysis of 
wave motion in layered media (Barbosa J. , 2013). The TLM discretizes the soil in perfect 
horizontal layers which are continuous in the horizontal direction but are discretized in 
several layers in the vertical direction (similar to a FEM-mesh, but only in the vertical 
direction). The horizontal directions are therefore described by analytical solutions, along 
which the material properties are assumed to be constant.  
 
The stresses (or tractions 𝑡) at the layer boundaries / interfaces need to be in equilibrium and 
the displacements (𝑢) at the interfaces need to be compatible. Interpolation functions 𝑁(𝑧) in 
the vertical direction are used for accommodating these requirements. If the order of the 
interpolation function is equal to 2, the interpolation function is linear and thus gives a linear 
relation between the displacements at the top interface and the bottom interface of the Thin 
Layer. In case the interpolation order is higher than 2, inner surfaces are created inside one 
Thin Layer. Figure 50 presents an interpolation order 𝑚 = 3, which corresponds to a quadratic 
interpolation with one internal nodal surface. FEMIX uses interpolation functions with order 
𝑚 = 3. A system of linear partial differential equations is the result (Barbosa J. , 2013). The 
obtained results are exact for all three Cartesian coordinate directions (x, y, z).  
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Figure 50. Discretization into thin-layers (left) and a thin-layer as a free body in space with the order of 

the interpolation function equal to 3 (Barbosa J. , 2013) 

7.1.2. Perfectly Matched Layer in FEMIX 
Due to the discrete character of the TLM, the analyses are limited to bounded domains. 
However, soil is often represented as a half-space, which has two of the three coordinate 
directions that or not bounded (i.e. the domain goes to infinity). To simulate the infinite 
domains, the Perfectly Matched Layer (PML) has been successfully coupled to the TLM by 
Barbosa et al. (Barbosa, Park, & Kausel, 2012). As described in the work of Barbosa (Barbosa J. , 
2013), the PML is a numerical technique used for purposes similar to those of absorbing or 
transmitting boundaries, namely to suppress undesirable echoes and reflections of waves in 
infinite media modelled with discrete finite systems. In FEMIX, the PML is formulated based 
on the coordinate stretching approach. This approach causes the waves within the PML to 
attenuate exponentially. Also, since there is no impedance contrast at the PML boundary, no 
reflections take place no matter what the angle of propagation of the waves entering the PML 
is (while this was a problem with techniques involving the Paraxial Boundaries as were used 
before).  

7.1.3. Possibilities of FEMIX 
The part of FEMIX that is used for this Master Thesis particularly considers the wave 
propagation in layered soils. The waves are induced by moving vehicles which drive in the 
direction that is considered to be invariant for the geometry. FEMIX can compute the soil 
response for every given point coordinate in the (x, y, z)-domain. This section will briefly 
discuss the (im)possibilities of FEMIX. 

Any vehicle model and road irregularity 
Any 3D or 2D vehicle model can be implemented in the software, for example a train or a 
truck. For this Master Thesis, a heavy road vehicle (truck) is considered only and it will be 
implemented as a 2D multi-degrees of freedom system.  
 
Instead of a perfectly horizontal track or road, which will barely induce soil vibrations, an 
irregularity can be implemented by means of a continuous function (the y-direction is 
assumed to be invariant, i.e. the 2.5D fundamental solution, therefore a continuous function is 
needed in the (y,z)-plane). In order to be able to consider all possible irregularity profiles, a 
Fourier expansion is most suitable. The Fourier expansion is a summation of sines and cosines, 
which, with a sufficient amount of summation terms ‘𝑁,’ can approximate the irregularity 
profile quite accurately. The Fourier expansion ‘𝑓(𝑥)’ can be represented as follows (note that 
𝑁 is taken equal to ∞): 
 

 𝑓(𝑥) = 𝑎0 +∑𝑎𝑛 cos(𝑛𝑥𝜋/𝐿)

∞

𝑛=1

+∑𝑏𝑛 sin(𝑛𝑥𝜋/𝐿)

∞

𝑛=1

 

 

(7.1) 
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𝑎0 =
1

2𝐿
∫ 𝑓(𝑥)𝑑𝑥
𝐿

−𝐿

 

 

𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑥) cos(𝑛𝑥𝜋/𝐿) 𝑑𝑥
𝐿

−𝐿

 

 

𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥) sin(𝑛𝑥𝜋/𝐿) 𝑑𝑥
𝐿

−𝐿

 

 
where: 
 
𝑓(𝑥) = the function that is wanted  

   (over the range of x in-between the bounds of the integral) 

𝐿 = half of the period 𝑃 of the function 
𝑎0, 𝑎𝑛, 𝑏𝑛 = coefficients of the Fourier expansion 
 
The greater the number 𝑁, the more the Fourier expansion 𝑓(𝑥) looks like the actual desired 
function. See for example the explanation of the Fourier expansion by the website 
‘mathisfun.com’ (MathIsFun.com, 2019), where a square wave is created by a Fourier expansion 
with an increasing value of 𝑁 (Figure 51): 
 

Desired function: square wave 

 
 

Start with 1st Fourier term (𝑁 = 1): 𝑓(𝑥) = sin (𝑥) 

 
 

Extend Fourier expansion (𝑁 =  20): 𝑓(𝑥) = sin(𝑥) +
sin(3x)

3
+
𝑠𝑖𝑛(5𝑥)

5
+⋯+

sin(39𝑥)

39
 

 
 

And so on 
 

Figure 51: Principle of the Fourier expansion (representing any arbitrary function by a summation of 
continuous sines and cosines) (MathIsFun.com, 2019) 

 
Since the Fourier expansion is continuous, there is always a repetition, i.e. there exists a period 
‘𝑃’ at which the irregularity repeats itself. Since for this Master Thesis only one irregularity at a 
particular spot will be considered, the value of 𝑃 should be large enough. The distance 𝑃 
should be taken such that for the receiver point 𝐴(𝑥, 𝑦, 𝑧) at an arbitrary location of interest in 
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the soil, the propagating waves initiated by the vehicle driving over the bump at longitudinal 
distance 𝑦 = 𝑠 (m) are not influenced by the propagating waves initiated by the vehicle driving 
over the next bump at longitudinal distance 𝑦 = 𝑠 + 𝑃 (m) or over the previous bump at 
longitudinal distance 𝑦 = 𝑠 − 𝑃 (m) (Figure 52). 
 

 
Figure 52. Principle of influence of the repetition period 𝑃 in the Fourier expansion (snapshots 

taken at different time instances). In case 𝑃 is taken too small the wave fields at the receiver 
points are influenced by multiple repetitive unevenness profiles 

 
After implementing the vehicle model and the road irregularity in the form of a Fourier 
expansion in FEMIX, it is possible to investigate the dynamic vehicle behaviour by means of 
visualizing the load-frequency spectrums and the load-time representation for the different 
axles of the vehicle.  

Any track- or road layering 
The layering of the track or the road is implemented as a FEM model which can contain any 
elastic isotropic material for each element in the mesh. The FEM-model is coupled to the soil 
(BEM) by means of a BEM-FEM coupling, which takes into account the soil-structure 
interaction. This makes it possible to take into account the affected moving loads when the 
road and the soil underneath the road deform and therefore influence the generated loads. In 
other words: because the road material and the soil deform due to the loading, the irregularity 
takes a different shape and therefore affects the loading (similar to a second-order effect).  

Any soil layering 
Since the soil is modelled with the thin-layer method the soil layers must be perfectly 
horizontal, which is, in many cases, not very realistic. However, this assumption has shown for 
other experimental modelling (e.g. (Degrande & Lombaert, 2002)) that it can still produce 
reliable results. Apart from the soil layers being 100 % perfectly horizontal, any soil layering 
can be implemented with any material and depth of the soil desired.  
The soil response can be computed for any given coordinate point in the layered soil. The soil 
response as a result of the moving loads can be computed for both the frequency- and time 
domain.  

2D structure embedded in the soil or 3D structure on the soil 
It is also possible to implement a structure in or on the soil, next to or at some distance from, 
the track/road. This structure is implemented as a FEM-model and is coupled to the soil by 
means of a BEM-FEM coupling that takes into account the soil-structure interaction. A 
numerical script (e.g. Matlab or Python) is needed for this coupling.  
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7.2. Python 
Python is an open source programming language (Python Software Foundation, 2019) and is 
used for this Master Thesis research to compute the data-files which are needed as input for 
the FEMIX software. It will also be used to compute the structural response (EDDABuSGS) to 
the excitation from FEMIX. The topics will be briefly addressed in the following subsections in 
order to give some insight into how Python works.  

7.2.1. Numerical programming of input files 
The data-files for the input of the software FEMIX require a lot of lines and repetitive actions. 
Therefore, it is much more convenient to write a numerical script that computes these data-
files automatically based on a limited amount of input parameters. The input parameters for 
the computation of the data-files are gathered in one Excel-file. The Python script reads these 
input parameters and mainly uses definitions (assigning functions), for-loops and if/else-
statements to compute all the lines of the data-files. The ‘running’ of such a Python script only 
takes a couple of seconds. An example of part of the script is presented in Figure 53. 
 

 
Figure 53. Example of the numerical Python scripts that computes the data-files needed as input for 

FEMIX. The current part of the script defines a function that is used for the computation of the 
coefficients of the Fourier expansion of the road irregularity 

Every Python script is programmed such that after the computation of the script the text 
‘computation of sheet complete’ is printed to the screen of the user. If this message appears, 
the computation of the script ran smoothly, otherwise the script could not be computed 
entirely but was interrupted by an error. If the latter is the case one should check whether the 
input of the Excel-file is correct. If so, the user should contact the script writer (the author of 
this Master Thesis) in order to find where the error could originate from. 

7.2.2. Computing structural response 
FEMIX will be used to compute the soil response due to the passage of a specified vehicle over 
a specified road unevenness with specified road layering, on top of a specified layered soil 
medium. That soil response is used as input for the calculation of the structural response, 
which will be computed by writing another Python script: EDDABuSGS. EDDABuSGS will 
include all numerical computations for computing and analysing the dynamical structural 
response and is the main part of the final computational tool. 
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8. Verification Projects 
 
The numerical software described in the previous chapter will be used to write a 
computational script for obtaining results for the soil response (soil vibrations in the free field 
by FEMIX) and for obtaining results for the structural response (vibrations in the structural 
elements by EDDABuSGS). The results should be reliable in order to be used as indication of an 
educated guess about the vibration levels in the soil but mainly for the structure. Therefore, 
the results should be verified with experimental computed vibration levels for both the free 
field soil and the structural elements. Verification projects are needed for this verification 
work. Since the design tool is aimed to be used for projects in The Netherlands at first, or more 
particularly, for projects of Pieters Bouwtechniek, it is desired to verify the design tool with 
experimental measurements performed for locations in The Netherlands. However, the 
projects of Pieters Bouwtechniek appear to be considered in a very practical sense and not all 
information is provided that is needed for modelling the dynamic problem. Therefore, a more 
scientific approach is considered: after performing additional literature study, the scientific 
and experimental work of prof. Degrande et al. of the KU Leuven seemed to be promising. 
Their work will be summarized in 8.1 ‘Projects KU Leuven’ together with figures to which the 
results of the design tool can be compared, and eventually to which the results of the design 
tool can be verified. An extensive overview of this chapter is given in Appendix G: ‘Appendix: 
Extensive overview of Chapter 8 ‘Verification Projects’‘. 
  

8.1. Projects KU Leuven 
The KU Leuven has performed experimental measurements to validate their own numerical 
prediction model. Several projects were used to validate their numerical model.  
 
The paper ‘The experimental validation of a numerical model for the prediction of the 
vibrations in the free field produced by road traffic’ (Degrande & Lombaert, 2002) describes the 
project concerning the validation of the predicted free field soil response due to the passage of 
a truck driving over an artificial road unevenness. This project will be referred to as 
‘verification project Degrande et al. (1) – Free Field’ from hereon.  
The paper ‘Validation of a Source-Receiver Model for Road Traffic-Induced Vibrations in 
Buildings. I: Source Model’ (Degrande, Pyl, Lombaert, & Haegeman, 2004) describes the 
project concerning the validation of the predicted soil response in front of a building due to 
the passage of a truck driving over an artificial road unevenness. This project will be referred to 
as ‘verification project Degrande et al. (2) – Soil Building’ from hereon.  
The paper ‘Validation of a Source-Receiver Model for Road Traffic-Induced Vibrations in 
Buildings. II: Receiver Model’ (Degrande, Pyl, & Clouteau, 2004) describes the project 
concerning the validation of the predicted structural response of a building due to the passage 
of a truck driving over an artificial road unevenness. This project will be referred to as 
‘verification project Degrande et al. (3) – Building Response’ from hereon.  
 
A brief summary will be given in the following subsections. The computed results by FEMIX 
and EDDABuSGS will be verified by comparison with the results of the verification projects 
Degrande et al. (1) to (3).  

8.1.1. Verification Project Degrande et al. (1) – Free Field 
The verification project ‘The experimental validation of a numerical model for the prediction 
of the vibrations in the free field produced by road traffic’ (Degrande & Lombaert, 2002) will be 
used to verify the computed results by FEMIX for the free field soil response.  
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Results 
The generated loads due to the passage of the truck (modelled as a 2D 4DoF dynamical model) 
over the artificial unevenness are given in both the frequency- and time domain (Figure 54).  
 

 
Figure 54. Frequency content (left) and time history (right) of the predicted front axle load of the Volvo 

FL6 truck when passing the artificial profile at a vehicle speed 𝑣 = 58 km/h (Degrande & Lombaert, 
2002) 

The vibration levels (speed of the soil particle motion) have been determined for several 
receiver points. The most interesting points to verify with are points FF2. FF4 and FF5 since 
these are the points that are measured in all three directions. In this way the results of FEMIX 
can be compared for all three (x-, y- and z-) directions. Figure 55 shows the soil response of 
point FF4 (at 16 m from the middle of the road) for the z-direction. The soil response results 
for the other directions and the other points are given in Appendix G: ‘Appendix: Extensive 
overview of Chapter 8 ‘Verification Projects’‘.  
 

 
Figure 55. Predicted (solid line) and measured (dash-dotted line) soil response in the z-direction of point 
FF4 (at 16 m from the middle of the road) in the frequency- (left) and time (right) domain (Degrande & 

Lombaert, 2002) 

8.1.2. Verification Project Degrande et al. (2) – Soil Building 
The verification project ‘Validation of a Source-Receiver Model for Road Traffic-Induced 
Vibrations in Buildings. I: Source Model’ (Degrande, Pyl, Lombaert, & Haegeman, 2004) will be 
used to verify the computed results by FEMIX for the soil response. Note that this project 
cannot be used for the verification of the free field soil response because the presence of the 
building (reflection of vibrations) has to be taken into account for this project.  

Results 
The generated loads due to the passage of the truck over the artificial unevenness are given in 
both the frequency- and time domain (Figure 56).  
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Figure 56. Frequency content (left) and time history (right) of the predicted front axle load of the Volvo 
FL6 truck when passing the artificial profile at a vehicle speed 𝑣 = 50 km/h (Degrande, Pyl, Lombaert, & 

Haegeman, 2004) 

The vibration levels (speed of the soil particle motion) for point FF3 can be found in Appendix 
G: ‘Appendix: Extensive overview of Chapter 8 ‘Verification Projects’‘. Figure 57 shows the soil 
response of point FF3 for the z-direction.  
 

 
Figure 57. Predicted soil response in the z-direction of point FF3 (at 16 m from the middle of the road) 

in the frequency- (left) and time (right) domain (Degrande, Pyl, Lombaert, & Haegeman, 2004) 

8.1.3. Verification Project Degrande et al. (3) – Building Response 
The verification project ‘Validation of a Source-Receiver Model for Road Traffic-Induced 
Vibrations in Buildings. II: Receiver Model’ (Degrande, Pyl, & Clouteau, 2004) will be used to 
verify the computed results of the structural response by EDDABuSGS. For the source and 
transmission characteristics, see the Verification Project Degrande et. al. (2) – Soil Building, as 
described before.  

Results 
The structural response / vibration levels for point F11 (located at the first floor of the building, 
closest to the road) can be found in Appendix G: ‘Appendix: Extensive overview of Chapter 8 
‘Verification Projects’‘. Figure 58 shows the predicted structural response (velocity) of point F11 
for the z-direction.  

   
Figure 58. Measured structural response in the z-direction of point F11 (on the ground floor of 

the building) in the frequency- (left) and time (right) domain (Degrande, Pyl, & Clouteau, 
2004) 
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8.2. VU Amsterdam 
EDDABuSGS eventually considers the dynamic response of the soil for locations in The 
Netherlands. Therefore, the confined information provided for the project ‘VU Amsterdam 
site’ of Pieters Bouwtechniek is used for determining the characteristics of the road irregularity 
and the vehicle. In the documents of DGMR a soil layering is presented which is used by them 
for predicting the vibrations in the soil and the structure of this specific project (Table 15 in 
Appendix G: ‘Appendix: Extensive overview of Chapter 8 ‘Verification Projects’’). This soil 
layering is used to model the layered soil in FEMIX. Also, figures are presented for the soil 
response at some particular locations on site for the passage of a sand truck laden with 40 
tonnes of sand (and Figure 59). It is stated that the soil response in vertical direction, with a 
distance of 30 m from the road, due to the passage of the truck is approximately 250 μm/s. The 
sand truck is of the type MAN TGS 10x8 WSA (Figure 60). 
 

 
Figure 59. Soil response at the top left measurement point from Figure 172 at the VU Amsterdam site, 

taken from the documents of TNO (Koopman, 2012) 

 
Figure 60. MAN TGS 10x8 WSA sandtruck used for the measurements at the VU Amsterdam site 

(modderaandebanden.nl, 2019)  
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9. Source Modelling and Results in FEMIX 
 
The possibilities of the computational tool will be limited in order to narrow the scope of this 
Master Thesis research. For the source-part (of the parts source, transmission, interaction, 
receiving structural system) only two specified vehicles will be considered: a light truck with 
two axles (for verification with the Degrande projects) or a heavy truck with five axles (for 
considering the excitation similar to the VU Amsterdam situation), which drives over a 
specified road irregularity: a speed bump with specific dimensions (height, length, slopes).  
This section will describe what vehicle models are used, what the vehicle characteristics are 
and how the road irregularity is modelled. Additional explanatory text for this chapter can be 
found in Appendix H: ‘Appendix: Additions to Chapter 9 ‘Source Modelling and Results’,’ 
concerning the mathematical description of the road unevenness and the generated moving 
loads. 
 

9.1. 2D Vehicle Model 
Similar to the verification projects discussed in 8 ‘Verification Projects’ the vehicle that is 
implemented in the software FEMIX consists of a linear 2D 4DoF dynamical model (Figure 61). 
All the values for the vehicle characteristics are as specified in the verification projects 
(Appendix G ‘Appendix: Extensive overview of Chapter 8 ‘Verification Projects’’). 
 

 
Figure 61. 2D 4 DoF dynamical vehicle model for the implementation in the FEMIX software (left) and a 
representation of the mass-dashpot-spring systems in a more reality-based representation in the form of 
the vehicle body, a spring-dashpot for the primary suspension, a mass for the axle and a spring-dashpot 

system for the tyre (right)  

9.2. Road Unevenness 
Also the characteristics of the road irregularity (Figure 62) over which the vehicle drives are 
similar to the verification projects discussed in 8 ‘Verification Projects’. Similar to what was 
discussed in 7.1.3 ‘Possibilities of FEMIX,’ the road irregularity is implemented by means of a 
Fourier expansion. The variables ‘𝑃’ (period of the continuous function) and ‘𝑁’ (number of 
summations in the expansion) for computing the Fourier expansion greatly influence the 
profile of the road irregularity and thus the generated loads. If 𝑃 is chosen too small, multiple 
consecutive road bumps will influence the soil response at a specific location. Which value for 
𝑃 should be chosen depends on the vehicle speed and the distance to the receiver points, but 
for the verification projects it appears that a value for 𝑃 equal to 50 m gives satisfying results 
(the generated loads are equal to those of the verification project). 
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Figure 62. Representation of the road irregularity with specified variable input parameters (LTirreg, 

LBirreg, Hirreg and P) for computing the road irregularity profile 

The combination of the values for 𝑃 and 𝑁 determine how well the road irregularity 
approaches the actual desired road irregularity. Figure 63 presents the road irregularity profile 
for a specified value of 𝑃 (equal to 50 m) and deviating values for 𝑁. A big difference can be 
observed when 𝑁 is increased from 𝑁 = 50 to 𝑁 = 200. However, when further increasing the 
value for 𝑁 (from 𝑁 = 200 to 𝑁 = 600) the profile of the road irregularity doesn’t change that 
much. The more summation coefficients used, the more the Fourier expansion approaches the 
actual road irregularity profile. However, it will also increase the computational time for the 
soil response by a factor equal to the increase of 𝑁. For the verification projects it appears that, 
in combination with a value for 𝑃 equal to 50 m, a value of ‘𝑁’ equal to 200 gives satisfying 
results. From this one could conclude that the combination of 𝑃 and 𝑁 being: 
 

 𝑁 = 4𝑃 (9.1) 
 
should give satisfying results for the problem under consideration in this Master thesis.  
 

 
Figure 63. Representation of the road irregularity by means of a Fourier expansion with period 
‘𝑃′ = 50 m  and deviating values for the number of summations ‘𝑁’. Note that the height of the 

irregularity is equal to 0.054 m, the length at the bottom of the bump is equal to 1.9 m and the length at 
the top of the bump is equal to 1.3 m 

9.3. Generated Moving Loads 
The vehicle’s response when driving over the road irregularity generates the moving axle loads 
that are applied to the road. These moving loads can be presented in the frequency domain 
and the time domain.  

9.3.1. Loads in the frequency domain  
The frequency spectrum of the vehicle’s axles presents the frequency range at which the axle 
vibrates, i.e. what the loading frequencies are, and what load value is applied harmonically to 
the road at every frequency. The verification projects show only the frequency spectrum of the 
front axle of the vehicle. Figure 64 shows the frequency spectrum of the front axle computed 
by the software FEMIX (left) next to the frequency spectrum of the front axle of Verification 
Project Degrande et al. (1) – Free Field (right). The frequency spectrums are very similar and 
can be concluded to give the same results. 
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Figure 64. Computed front axle frequency spectrum by FEMIX (top left, blue) and the frequency 
spectrum of Verification Project Degrande et al. (1) – Free Field (top right, black) (Degrande & 

Lombaert, 2002). In the bottom figure the differences between both spectrums can be observed 

9.3.2. Loads in the time domain 
Next to the loads in the frequency domain also the loads in the time domain computed by 
FEMIX are compared with the loads in the time domain of the verification project (Figure 65). 
The loading in the time domain computed by FEMIX is very similar to that of the verification 
project and can be concluded to give the same results. 
 

 
 

 
Figure 65. Computed front axle loading in the time domain by FEMIX (top left, blue) and the loading in 

the time domain of Verification Project Degrande et al. (1) – Free Field (top right, black) (Degrande & 
Lombaert, 2002). In the bottom figure the differences between both graphs can be observed 

Since the differences between the computed results with FEMIX and the results of the 
verification project are very small, the generated loads by the software FEMIX are considered 
to be verified.  
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10.  Transmission Modelling and Results in FEMIX 
 
In the previous section the generation of the moving loads was considered and verified with 
the verification projects. The moving loads are applied to the elastic road which is supported 
by the elastic layered soil. This section describes how the road- and soil layering are taken into 
account by the computational tool and in what ways the receiver points in the soil are 
considered.  
 

10.1.  Road Layering  
The moving loads are applied to the FEM-model of the road. The stiffness of the road makes 
that the moving point loads are distributed over a larger contact/ interface area between the 
road and the soil and therefore decreases the absolute impact loading onto the soil when 
comparing to the situation without the presence of a road.  
The road can be modelled containing multiple layers with different materials (Figure 66). The 
FEM-model of the road is coupled to the soil (BEM) by means of a BEM-FEM coupling (see 
also 7.1 ‘FEMIX’) at the interface between the road package and the soil. In this way the loads, 
altered by the stiffness of the road, are applied to the soil surface of the layered soil.  
 

 
Figure 66. Representation of the vehicle on the layered FEM-model of the road which is connected to 
the soil surface by means of a BEM-FEM coupling. The order of the node-numbers is from left to right 

and from the bottom of the road to the top of the road 

The road of the verification projects is modelled such that it is (partly) embedded in the soil 
and the bottom of the road is only connected to the soil vertically. This can also be modelled 
partly in FEMIX by modelling BEM-FEM elements only at the bottom of the road. However, 
the modelling is not exactly the same as in the verification project, because the BEM-FEM 
elements also account for coupling in the x- and y-direction (rather than in the z-direction 
only), which could cause some small discrepancies in the computed soil response. 
 

10.2.  Soil Layering  
The layering of the soil can contain as many layers as desired by the user, however the deeper 
the soil domain gets (and therefore the more thin-layers have to be considered), the longer the 
computational time will be to compute the soil response. The verification projects of the KU 
Leuven have a maximum of five different soil layers with deviating depths, from which the 
bottom layer is the half-space (depth = infinity). Each layer is divided into the previously 
described thin-layers, therefore the soil layer heights have to be a multiple of the thin-layer 
thickness. 
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10.3. Receiver Points and Verification of Soil Response 
The soil response by FEMIX can be computed for any point coordinate which is not part of a 
FEM-element and can be anywhere in the soil domain (any combination of 𝑥, 𝑦, 𝑧). The more 
points are specified for the soil response, the longer the computational time will be for 
computing the soil response.  
 
First the soil response for ‘verification project Degrande et. al. (1) – Free Field’ is computed and 
compared to verify the free field soil response. Thereafter the soil response for ‘verification 
project Degrande et. al. (2) – Soil Building’ is computed and compared to verify the soil 
response with the presence of a building. 

10.3.1. Soil response verification project Degrande et al. (1) – Free Field 
Since the coupling of the road with the soil cannot be modelled in the exact same way as in the 
verification project, the free field soil response at a somewhat larger distance from the road 
will be compared (Figure 67 and Figure 68). This is because the influence of the different road-
soil coupling is expected to be noticeable close to road but hardly noticeable further away.  

Free Field soil response in the frequency domain 
 

 

 
 

 
Figure 67. Computed frequency spectrum of the Free Field soil response (from left to right: x-,y-,z-

direction) at 16 m from the middle of the road by FEMIX (top, blue) and of Verification Project 
Degrande et al. (1) – Free Field  (middle, black) (Degrande & Lombaert, 2002), where the solid line is the 

predicted soil response and the dashed line is the measured soil response. In the bottom figure the 
differences between both spectrums of the vertical soil response can be observed 
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The frequency spectrums computed by FEMIX and of the verification project are very similar 
(Figure 67). However, the frequency spectrum computed by FEMIX slightly overestimates the 
soil response at higher frequencies (𝑓 > 30 Hz).  

Free Field soil response in the time domain 
 

 

 
 

 
Figure 68. Computed time history of the Free Field soil response (from left to right: x-,y-,z-direction) at 
16 m from the middle of the road by FEMIX (top) and of Verification Project Degrande et al. (1) – Free 

Field  (middle) (Degrande & Lombaert, 2002), where the solid line is the predicted soil response and the 
dashed line is the measured soil response. In the bottom figure the differences between both time 

histories of the vertical soil response can be observed 

The time histories computed by FEMIX and of the verification project are very similar (Figure 
68). However, the amplitudes computed by FEMIX are slightly overestimated. This is a direct 
consequence of the overestimated soil response at the higher frequencies as described in the 
comparison of the frequency spectrums.  
The differences between the computed results with FEMIX and the results of the verification 
project are very small and are probably a consequence of the difference in road-soil coupling. 
Therefore, the computed soil response by the software FEMIX is considered to be verified. 
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Free Field soil response in case the road is not embedded 
The previous computations were for the situation where the road is embedded in the top soil 
layer in order to be in line with the model of Degrande et al. However when computing the 
same results for the situation where the road is on top of the soil surface, one can observe that 
the soil response has slightly larger amplitudes, but is very similar to the case with the 
embedded road (Figure 69). Also, for increasing distance from the road, the soil responses of 
both models get closer, indicating that the embedment of the road only influences the near 
field (close to the location of loading). Since the computational time of the soil response 
increases significantly for an embedded road, the situation for the road on top of the soil is 
more favourable for design practice.  
 

 
 

 
Figure 69. Difference of the frequency spectrums (top) and time histories (bottom) of the Free Field soil 

response (from left to right: x-,y-,z-direction) at 16 m from the middle of the road between the 
computation by FEMIX for the road embedded in the soil (blue lines) and the computation by FEMIX 

for the road on top of the soil surface (red lines). 

10.3.2. Soil response verification project Degrande et al. (2) – Soil Building 
The presence of the building might affect the soil response in the close proximity of the 
building. Due to the interference of the incoming waves (towards the building) and the 
reflected waves (away from the building), the soil response might be either amplified or 
attenuated. Due to the 2.5D approach of FEMIX the building can only be modelled as an 
infinitely long empty trench. However, the building of the verification project is rather narrow 
(only 5.6 m), therefore first the free field soil response is computed to compare with the 
measurement point of the verification project which is located close to the building (Figure 
70).  
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Figure 70. Difference of the frequency spectrum (left) and time history (right) of the vertical Free Field 
soil response between the computation by FEMIX (blue lines) and the results of the Verification Project 

Degrande et al. (2) – Soil Building  (black lines) (Degrande, Pyl, Lombaert, & Haegeman, 2004) 

As can be observed from Figure 70 the computed soil response by FEMIX has much higher 
amplitudes than the results of the verification project of Degrande et al. When including the 
building as an infinitely long empty trench, the soil response is even further amplified by a 
factor between 1.1 (soil approximated as a homogeneous halfspace) and 1.3 (layered soil). 
There might exist multiple reasons why the soil response computed by FEMIX has higher 
amplitudes than in the verification project. Among other things, it could be that: 

 the road is modelled differently by Degrande et al. (the modelling of the road is not clearly 
specified), e.g. a stiffer road would decrease the amplitudes of the soil response; 

 the soil properties are modelled differently by Degrande et al., perhaps taken into account 
the sloped soil and the pavement that is present at the particular building (Figure 71). Both 
the extra soil layer and the pavement would decrease the amplitudes of the soil response. 
 

 
Figure 71. Picture taken from Google Maps (Google, 2019) at the specific site 

Since both the modelling of the road and the modelling of the soil are not clearly specified in 
the literature, it can be concluded that the currently computed soil response by FEMIX comes 
close to the Degrande project but cannot be modelled the same due to lack of information. 
Therefore, the model of FEMIX is considered to be verified and is on the conservative side. To 
implement the results of FEMIX as excitation on the MDoF building system, the response will 
be factorized to come closer to the vibration amplitudes of the Degrande project. The 
computed response will be factorized in the frequency domain. The factor is frequency- and 
direction dependent (x-, y-, z-direction) and is used for both the soil response displacements 
and velocities (Figure 72). The modified soil response in the time domain is computed from 
the modified frequency spectrums (Figure 73) and is similar to the soil response of the 
verification project. 
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Figure 72. Factorizing functions for the computed soil response for Verification Project Degrande et al. 
(2) – Soil Building in the frequency domain for the soil response in the horizontal x-direction (left), the 

horizontal y-direction (middle) and the vertical z-direction (right) 

  
Figure 73. Difference of the frequency spectrum (left) and time history (right) of the vertical Free Field 

soil response between the modified computation by FEMIX (blue lines) and the results of the 
Verification Project Degrande et al. (2) – Soil Building  (brown lines) (Degrande, Pyl, Lombaert, & 

Haegeman, 2004) 

10.3.3. Soil response in Amsterdam 
The soil layering and the (5-axled) vehicle model as stated in ‘8.2 VU Amsterdam’ are used to 
model the soil at a location similar to the VU in Amsterdam and to model the vehicle which 
generates the moving loads for this problem. Since the measurements performed at this 
location are done for the free field situation, all other model parameters (road layering and 
irregularity) are assumed to be equal to Verification Project Degrande et al. (1) – Free Field. It 
appears that the vertical soil response at 30 m from the road is much larger than the measured 
250 μm/s (see ‘8.2 VU Amsterdam’). Therefore the height of the road irregularity is decreased 
by a factor 0.083 (from 0.054 m to 0.0045 m) which makes that the vertical soil response 
computed by FEMIX is approximately equal to 250 μm/s (Figure 74 and Figure 75) and is in 
line with the measurements performed at this particular site.  
 

 
Figure 74. Frequency spectrums of the Free Field soil response for the soil similar to VU Amsterdam 

(from left to right: x-,y-,z-direction) at 30 m from the middle of the road, computed by FEMIX 
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Figure 75. Time histories (bottom) of the Free Field soil response for the soil similar to VU Amsterdam 

(from left to right: x-,y-,z-direction) at 30 m from the middle of the road, computed by FEMIX 

The soil response is computed over a distance of 100 m from the middle of the road with 
intervals of 2 m. The soil responses are also computed at a depth of −3 m. These soil responses 
are used as excitation input for the computational script of the practical engineering tool 
EDDABuSGS. This makes that EDDABuSGS is used for the situation of Amsterdam, which has a 
softer soil than the verification projects in Belgium. Note that the soil response holds for the 
free field, i.e. the influence of the presence of a building is not taken into account. 
In order to compute the soil impedances (see 11.2 Derivation of Impedances) the layered soil of 
Amsterdam is approximated by a homogeneous halfspace. The parameters of the halfspace 
given in Table 2 give a similar soil response (similar PPV and dominant frequency range) as in 
the layered soil (Figure 76). The fact that the time domain representation of the soil response 
does not convert to zero before 𝑡 =  −0.25 𝑠 and after 𝑡 =  1.25 𝑠 is due to a too large 
frequency step (0.4 Hz) for which the results are computed. A frequency step of 0.4 Hz means 
that the soil response repeats itself in opposite sign after 1/0.4 Hz =  2.5 𝑠.  
 

Table 2. Simplification of the layered soil of Amsterdam into a homogeneous halfspace used for 
computing the dynamic soil impedances for the computational tool EDDABuSGS 

Layer 𝑑 (m) 𝑣 (-) 
𝜌 

(kg/m3) 
𝐸 x 106 N/m2) 𝐺 x 106 (N/m2) 𝐶𝑠 (m/s) 𝛽 (-) 

1 ∞ 0.48 2000 22.2 7.5 61 0.0200 
 

   
Figure 76. Frequency spectrum (left) and time history (right) of the Free Field soil response velocities for 
the approximated homogeneous halfspace for Amsterdam (z-direction) at 30 m from the middle of the 

road, computed by FEMIX 

10.3.4. Soil response attenuation by wave barrier in soil of Amsterdam 
Additionally, a small research was performed for comparing the free field soil responses for the 
location in Amsterdam after construction of a wave barrier with the free field soil response 
before construction of the wave barrier. The wave barrier is placed at 28 m from the middle of 
the road and has a thickness of 1.6 m. The depth of the wave barrier is 4 m only, because the 
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computational time of FEMIX increases significantly with increasing depth of the wave barrier. 
What is observed from the frequency domain is that the higher frequency range is attenuated 
for a much greater distance from the loading than the low frequency range (Figure 77). This is 
in line with what was found in the literature study and is caused by the fact that the wave 
barrier performs much better in attenuating the high frequency waves (short wavelengths) 
than the low frequency waves (long wavelengths).  
For the time domain the PPV is computed for all distances from the middle of the road. The 
ratio 𝑃𝑃𝑉𝑊𝑖𝑡ℎ𝐵𝑎𝑟𝑟𝑖𝑒𝑟/𝑃𝑃𝑉𝑁𝑜𝐵𝑎𝑟𝑟𝑖𝑒𝑟 is computed for all directions (x, y, z) and at both the soil 
surface and at a depth of 3 m in the soil (Figure 78). Also see the absolute PPV values in 
Appendix J: ‘Appendix: PPV with- and without wave barrier in soil Amsterdam‘. At the soil 
surface the wave barrier with a depth of 4 m has effect on mitigating the soil response until a 
distance of 25 m behind the wave barrier (vertical direction of soil response, U3), while this 
distance increases for the other two horizontal directions. However, at a depth of 3 m below 
soil surface the PPV is only decreased very close to the wave barrier. After this distance the 
wave reflections even cause an amplification of the soil responses at this depth (note that the 
absolute PPV values are still small).    
 

   
Figure 77. Frequency spectrum of soil response (velocities in vertical direction at soil surface) at 52 m 

from the middle of the road (or 24 m behind the wave barrier). Left: no wave barrier, right: wave barrier 
at 28 m from the middle of the road 

 

 
Figure 78. Effect on PPV (m/s) of the free field soil response with the realization of a wave barrier (width 

= 1.6 m, depth = 4 m) at 28 m from the middle of the road (represented by the two black vertical lines) 
for the 3 directions x (U1), y (U2) and z (U3) at the soil surface (top) and at a depth of 3 m 
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11.  Soil-Structure Interaction Modelling in EDDABuSGS 
 
As described in chapter 6 ‘Soil-Structure Interaction’ of Part II ‘Literature Study’ there exist 
different approaches to compute the soil-structure interaction (SSI) between a given soil 
stratum and a specified structure. Since the subject of this thesis is about a practical 
engineering tool, the computational time of the tool should be kept low and therefore the 
most rigorous approach to compute the SSI, the ‘direct approach,’ is not convenient, because 
this approach asks for an elaborate modelling of the soil and the structure together by means 
of finite elements and asks for a long computational time. Instead the sub-structuring 
approach can be used to give reliable results for the computation of the SSI while still keeping 
the computational time relatively low. This sub-structuring approach has already been briefly 
introduced in chapter 6 ‘Soil-Structure Interaction’ of Part II ‘Literature Study’ and will be used 
for implementation in  EDDABuSGS. The computation of the springs and dashpots that support 
the flexibly-supported building (the impedances) (Figure 49 c.) will be based on the tables of 
Gazetas (Gazetas G. , 1991).  
Additional explanatory text for this chapter can be found in Appendix K: ‘Appendix: Additions 
to Chapter 11 ‘Soil-Structure Interaction Modelling’,’ concerning the derivation of the 
impedances given in the tables of Gazetas and the assumptions needed for the practical use of 
the tables. 
 

11.1. Background and Structural Simplifications in the Tables of Gazetas 
In 1991 Mr G. Gazetas, Professor of Soil Mechanics at the National Technical University Athens, 
Greece and at the State University of New York, Buffalo, wrote the paper ‘Foundation 
vibrations’ (Gazetas G. , 1991) concerning the sub-structuring method for computing the 
impedances for SSI problems. This method estimates the dynamic ‘spring’ (stiffness) and 
‘dashpot’ (damping) coefficients of flexibly-supported foundations. The research was 
performed for machine foundation vibrations which are generally small of size and move 
rigidly (Figure 79). Since machine foundations are constructed as rigid reinforced-concrete 
blocks, the response to the dynamic loads solely arises from the deformation of the supporting 
ground. Such foundations possess six degrees of freedom: three translational and three 
rotational (i.e. dynamic displacements along the axes x, y, z and dynamic rotation around the 
same axes).  

 
Figure 79. Rigid foundation block with its six degrees of freedom (Gazetas G. , 1991) 

In the research of Gazetas the assumption is that the two bodies: the soil medium and the 
structure, remain always in contact, i.e. their displacements are identical and equal to the rigid 
body displacements of the foundation.  
 



Soil-Structure Interaction Modelling in EDDABuSGS 

 

105 

The type of structures under consideration within this thesis, the vibration sensitive laboratory 
building structures, are generally also made very stiff to minimize the dynamic response to the 
external excitation on the structure. This means that the simplification of a rigid structure is 
quite accurate for these kind of building structures and therefore the assumption of the global 
building to be rigid is used to determine the global dynamic response of the entire building.  
 
The formulas and graphs given in the tables of Gazetas have been compiled from publications 
by Mr. Gazetas and his co-workers (Dobry and Fotopoulou). They are based on some simple 
physical models calibrated with results of rigorous boundary-element formulates and data 
from other literature (Lysmer, Veletsos, Luco, Roesset and Kausel) (referred to as tables 15.1 
and 15.2 in (Gazetas G. , 1991)). The tables 15.3 to 15.6 (Gazetas G. , 1991) are based on results of 
other research literature. An extensive overview of all the sources is given in the paper 
‘Foundation vibrations’ (Gazetas G. , 1991).  
 

11.2. Derivation of Impedances 
Gazetas performed a lot of iterations to compute the impedances for a vast amount of different 
structural- and soil configurations. The impedances refer to axes passing through the 
foundation basemat-soil interface. The tables (Gazetas G. , 1991) used for this thesis are: 
1. Table 15.1 and accompanying set of graphs refer to foundations of any solid shape resting 

on the surface of a homogeneous halfspace. 
2. Table 15.2 and related graphs are for foundations with any solid basemat shape partially or 

fully embedded in a homogeneous halfspace. 
3. Table 15.6 is mainly for laterally oscillating single floating piles in two inhomogeneous and 

a homogeneous stratum or halfspace. Some information is also given for vertical 
oscillations, and for pile-soil-pile dynamic interaction factors.  

 
The layered soil stratum is approximated as a homogeneous halfspace (see 10.3.3 Soil response 
in Amsterdam). With this assumption the tables 15.1, 15.2 and 15.6 (Gazetas G. , 1991) and the 
accompanying graphs are used to determine the impedances of the rigid building structure. In 
symbols the impedance terms are computed as: 
 

 Ҟ𝑗(𝜔) = �̅�𝑗(𝜔) + 𝑖𝜔𝐶𝑗(𝜔) (11.1) 

 

 �̅�𝑗(𝜔) = 𝐾𝑠𝑡𝑎𝑡𝑖𝑐 ∙ 𝑘(𝜔) (11.2) 

 

 𝐶𝑗(𝜔) = 𝑐(𝜔) ∙ 𝜌 ∙ 𝑓(𝐶𝑠, 𝑣) ∙ 𝑔(𝐵, 𝐿) + 2 ∙
�̅�𝑗(𝜔)

𝜔
∙ 𝛽 (11.3) 

 
where 𝑓(𝐶𝑠, 𝑣) is a function of both 𝐶𝑠 and 𝑣 (𝑉𝐿𝑎(𝐶𝑠, 𝑣)) in case of the vertical- and rocking 
impedances or depends solely on 𝐶𝑠 in case of the horizontal impedances and where 𝑔(𝐵, 𝐿) is 
equal to 𝐴𝑏 (the effective surface area of the foundation basemat) in case of the translational 

impedances or is equal to 𝐼𝑏𝑗 where 𝐼𝑏𝑗 is the inertia of the soil, computed as: 
1

12
∙ 2𝐿 ∙ (2𝐵)3 

(depending on the orientation of the building L and B should be interchanged) in case of the 
rocking impedances. 
 

11.3. Practical Use of the Tables 
The use of the graphs is bounded by a maximum value of 𝑎0 = 𝜔𝐵/𝐶𝑠 = 2, where 𝜔 is the 
excitation frequency, B is the half width of the building (shortest side) and 𝐶𝑠 is the shear wave 
speed of the soil. The problem statement of this thesis concerns heavy road traffic induced 
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vibrations for laboratory buildings in The Netherlands. This means that values for the 
mentioned parameters might be within the following ranges: 
 

 
0 Hz < 𝑓 < 15 Hz ,  thus:   0 rad/s < 𝜔 < 95 rad/s 

2 m < 𝐵 < 15 m 
150 m/s < 𝐶𝑠 

(11.4) 

 
which might reasonably lead to values of 𝑎0 up to 95 rad/s ·  15 m / 150 m/s = 9.5 rad, which is 
far out of the bounds of the graphs. In order to make the tables of Gazetas applicable for the 
problems of interest for this thesis, the graphs accompanying the tables of Gazetas are 
extrapolated. Note that the extrapolation of these figures is a major simplification made for 
this thesis research.  

Curve fitting for extrapolation of the graphs accompanying the tables of Gazetas 
The numerical Python software will be used for the extrapolation of the graphs accompanying 
the tables of Gazetas in case of a homogeneous halfspace. Python has the possibility to use the 
function ‘curve fitting’. This method has been used to extrapolate most of the graphs. Two 
examples are given in Figure 80 and Figure 81. By using this method, a continuous function is 
derived which will give a value for the stiffness- or dashpot coefficient based on any possible 
input value 𝑎0. 
 

 
Figure 80. Graph a accompanying table 15.1, left: Gazetas (Gazetas G. , 1991), middle: extrapolated, right: 

both graphs in one 

 
Figure 81. Graph ky, L/B = ∞ accompanying table 15.2, left: Gazetas (Gazetas G. , 1991), middle: 

extrapolated, right: both graphs in one 

Behaviour of pile groups in a homogeneous halfspace 
The pile group interaction of the rigidly capped piles takes into account the arrival of 
vibrations at a particular pile that are induced by the oscillations of another pile in the pile-
group (Figure 82). The greater the number of piles within the pile group, and the closer the 
piles are placed to each other, the more interaction that will takes place. However, there is a 
limit to the total amount of piles in the group that affect each other due to the scattering of 
waves and the corresponding shadowing effect formed by the intermediate piles (Gazetas & 
Dobry, 1988). This number is yet unknown for this thesis, but an assumption has been made 
which is explained further on.  
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Figure 82. Distribution of displacement amplitudes of the soil along the shaft of an oscillating (active) 

pile and of a neighbouring (passive) pile (Gazetas & Dobry, 1988) 

The ratio Ҟ𝑗
𝐺(𝜔) ∑ Ҟ𝑗,𝑖

𝑠 (𝜔)
𝑃𝑡𝑜𝑡𝑎𝑙
𝑖=1⁄  (pile-group impedance / sum of single pile impedances) is 

approximated based on the graphs accompanying the paper of Gazetas et al. (Gazetas & Dobry, 
1988). The following important assumptions have been made to come to this simplification: 

 All piles are assumed to have the same axis-to-axis distance.  

 The pile spacings (S) for the problems solved by the EDDABuSGS-tool are small (centre-to-
centre distance of piles close to 2d and < 4d, where d is the pile diameter). This makes that 

the ratio Ҟ𝑗
𝐺(𝜔) ∑ Ҟ𝑗,𝑖

𝑠 (𝜔)
𝑃𝑡𝑜𝑡𝑎𝑙
𝑖=1⁄  can be approximated by a parabolic function (group 

stiffness) or constant value (group damping) (Figure 83) which are dependent on the total 
number of piles in the pile group.  
Note that the horizontal axis concerns a different value of the dimensionless frequency 
𝑎0 = 𝜔𝑑/𝐶𝑠, which, for The Netherlands, is generally below 15 Hz ∙ 2𝜋 ∙ 0.6 m/150 m/s =
0.38 rad, meaning that the figures for pile-groups do not have to be extrapolated.  
 

  
Figure 83. Principle of the assumptions made for the pile-group impedance terms based on the graphs 

accompanying the paper of Gazetas et al. (Gazetas & Dobry, 1988) 

 The graphs are based on values L/d = 15 and Epile/Esoil = 1000. 

 Also, since only graphs are presented for a limited amount of piles in a pile group, the 
assumption has been made that the interaction between the piles does not change for pile-
groups larger than 16 piles. This means that for pile-groups containing more than 16 piles 

in total, the interaction ratio Ҟ𝑗
𝐺(𝜔) ∑ Ҟ𝑗,𝑖

𝑠 (𝜔)
𝑃𝑡𝑜𝑡𝑎𝑙
𝑖=1⁄  is based on the 4 x 4 pile group. 
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Now that the graphs for the embedded structure have been extrapolated and the graphs for the 
pile group impedance terms have been simplified, the tables of Gazetas can be used for the 
EDDABuSGS-tool of this thesis. For every calculation frequency the impedances have to be 
determined. Since the excitation on the structure is given as a Fourier expansion of the form: 

 

 𝑈𝑖(𝑡) =∑[𝑈𝑖,𝑐,𝑗 cos(𝑘𝑦𝑗 ∙ 𝑡) + 𝑈𝑖,𝑠,𝑗 sin(𝑘𝑦𝑗 ∙ 𝑡)]

𝑁

𝑗=1

 (11.5) 

 
with 𝑁 summation terms, the impedances have to be determined 𝑁-times as well. After 

performing a Forward Fourier Transform of 𝑈𝑖(𝑡) (excitation in the time domain) to �̃�𝑖(𝜔) 
(excitation in the frequency domain), the excitation frequencies 𝜔 for which the impedances 
have to be determined are known. With the values of the impedances known, the structural 
response of the 3DoF structure can be determined. The impedances due to the embedment of 
the structure and the impedances due to the pile foundation are summed to obtain the total 
impedance.  
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12.  Receiving Structural System Modelling and Results in EDDABuSGS 
 
In the previous chapters the excitation on the structural system is computed (by FEMIX) and 
the impedances are obtained that represent the flexibly supported structure on a flexible soil 
(and is applicable a pile foundation) (in EDDABuSGS). Now what remains is to determine the 
dynamic structural response of the structure itself (by EDDABuSGS). To this end the structural 
response is subdivided in the global dynamic response of the entire building which is assumed 
to be rigid and the local dynamic response of one particular flexible floor. The global dynamic 
response of the rigid building is used as excitation on the local flexible floor. The local dynamic 
response of the floor, RMS-velocities in the frequency domain, is the end result of EDDABuSGS 
and is in the same unit as the VC-curves (vibration requirements). This chapter will describe 
how the dynamic responses of both the global rigid building and the local flexible floor are 
computed. 
Additional explanatory text for this chapter can be found in Appendix L: ‘Appendix: Additions 
to Chapter 12 ‘Receiving Structural System Modelling and Results’,’ concerning the derivation 
of the structural parameters of-, the excitation on- and the responsive motions of the 3DoF 
system. Also, the computation of the structural response of the flexible frame is considered 
more thoroughly. 
 

12.1.  Global Dynamic Response of the 3DoF Rigid Building 
As described in chapter 11 ‘ Soil-Structure Interaction’ the impedances of the flexibly supported 
building are based on the assumption that the global building motion can be simplified to a 
rigid volume with six degrees of freedom (three translational and three rotational). Since the 
buildings of interest of this master thesis concern vibration sensitive laboratory building 
structures, which are generally made relatively very stiff in order to minimize the vibrations in 
the building, the assumption of rigidity for the global building motion is justified. Therefore, 
the global building motion computed for this thesis research will also be considered as being 
rigid. 
In order to minimize the computational time of the practical engineering tool EDDABuSGS 
only a 2D representation of the rigid building will be considered. This 2D plane is 
perpendicular to the longitudinal length of the road at which the heavy traffic induces the 
moving dynamic loads (Figure 2). This simplification makes that the global building response 
is computed for three degrees of freedom (3DoF) only: two translational and one rotational. 
The 3D computed impedances related to this 2D plane will be used for the flexible supports of 
the 2D rigid building. These impedances are Ҟ𝑥(𝜔), Ҟ𝑧(𝜔) and Ҟ𝑟𝑦(𝜔) (Figure 85), where 

every Ҟ𝑗(𝜔) is composed of a real part (stiffness) and an imaginary part (damping), in line with 

the elaboration in chapter 11 ‘ Soil-Structure Interaction‘. The excitation on the 3DoF structure 
is composed of a horizontal excitation (in the x-direction), a vertical excitation (in the z-
direction) and a rocking excitation (around the y-axis). The excitations follow from the soil 
response for one particular situation and are modified such that the point of application is at 
the same location as the springs- and dashpots of the flexible building supports.  

12.1.1. Structural parameters 
The structural properties of the 3DoF global building are gathered into two parameters: 𝑀𝑏 
(total mass of the building) and 𝐽𝐶𝐺 (total mass moment of inertia around the centre of gravity 
(CG) in the (x,z)-plane) (Figure 85). A simplification taken into account for the computation of 
the structural properties is that the building is symmetric around the two vertical planes and 
that all floor spans and wall thicknesses in one vertical plane are equal (Figure 84). 𝑀𝑏 is 
composed of the masses of all structural floors, walls/columns, while 𝐽𝐶𝐺 is composed of the 
summation of the mass moment of inertia of all structural elements. 
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Figure 84. Simplified model for the computation of the parameters needed for the dynamic response of 

the 3DoF building 

 
Figure 85. Simplified dynamical model which is used to set up the equations of motion for the rigid 

3DoF building 

12.1.2. Excitation 
The excitation on the 3DoF system is derived from the soil response of one particular situation 
as described in chapter 10 ‘ Transmission‘. The excitations are taken as averages of the soil 
response at multiple points in the soil over the building length. These excitations 
(displacements/rotations and velocities) act on the springs and dashpots supporting the 3DoF 
system. The compression or extension of the springs and dashpots due to the imposed 
displacements and rotations causes dynamic forces to act on the 3DoF system.  

12.1.3. Computation of the building response due to a harmonic loading term 
As described before the loading on the 3DoF building is in the form of a summation of cosines 
and sines in the direction of every three degrees of freedom. Every pair consisting of a cosine- 
and sine term represent a dynamic harmonic loading with loading frequency 𝑘𝑦𝑗 (rad/s). The 
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building response due to the harmonic loading terms 𝑗 (𝑗 = 1,2, …𝑁) (either the cosine or sine-
terms) with loading frequency 𝑘𝑦,𝑗 (rad/s) is computed in line with Figure 85 and are added all 

together for the total building response. The equations of motions (derived by the aid of the 
Displacement Method), with the origin of the reference system at the center of gravity of the 
building, for every cosine- (or sine-) term with loading frequency 𝑘𝑦,𝑗 (rad/s) then become: 

 

 

[

𝑀𝑏 0 0
0 𝑀𝑏 0
0 0 𝐽𝐶𝐺

] [

�̈�𝑏,𝑥,𝑗
�̈�𝑏,𝑧,𝑗
�̈�𝑏,𝜑,𝑗

] + 

 

[

𝐶𝑥(𝜔) 0 −𝐶𝑥(𝜔) ∙ 𝑧𝐶𝐺
0 𝐶𝑧(𝜔) 0

−𝐶𝑥(𝜔) ∙ 𝑧𝐶𝐺 0 𝐶𝜑(𝜔) + 𝐶𝑥(𝜔) ∙ 𝑧𝐶𝐺
2
] [

�̇�𝑏,𝑥,𝑗
�̇�𝑏,𝑧,𝑗
�̇�𝑏,𝜑,𝑗

] + 

 

[

𝐾𝑥(𝜔) 0 −𝐾𝑥(𝜔) ∙ 𝑧𝐶𝐺
0 𝐾𝑧(𝜔) 0

−𝐾𝑥(𝜔) ∙ 𝑧𝐶𝐺 0 𝐾𝜑(𝜔) + 𝐾𝑥(𝜔) ∙ 𝑧𝐶𝐺
2
] [

𝑢𝑏,𝑥,𝑗
𝑢𝑏,𝑧,𝑗
𝑢𝑏,𝜑,𝑗

] 

 
= 

 

[

𝐶𝑥(𝜔) 0 0

0 𝐶𝑧(𝜔) 0

−𝐶𝑥(𝜔) ∙ 𝑧𝐶𝐺 0 𝐶𝜑(𝜔)
] [

�̇�0,𝑥,𝑗
�̇�0,𝑧,𝑗
�̇�0,𝜑,𝑗

] + 

 

[

𝐾𝑥(𝜔) 0 0
0 𝐾𝑧(𝜔) 0

−𝐾𝑥(𝜔) ∙ 𝑧𝐶𝐺 0 𝐾𝜑(𝜔)
] [

𝑢0,𝑥,𝑗
𝑢0,𝑧,𝑗
𝑢0,𝜑,𝑗

] 

(12.1) 

 
Which can be represented in a more concise expression as: 
 

 𝑴�̈�𝑏(𝑡) + 𝑪(𝜔)�̇�𝑏(𝑡) + 𝑲(𝜔)𝑢𝑏(𝑡) = 𝐹(𝑡, 𝜔) (12.2) 
 
Note that the stiffness-, dashpot- and loading terms are frequency dependent. This is because 
the soil impedances are frequency dependent as was already discussed in chapter 11 ‘ Soil-
Structure Interaction‘. The circular frequencies 𝜔 are the calculation frequencies for which the 
building response in the frequency domain is computed.  
The eigenfrequencies of the 3DoF system are computed by solving the frequency dependent 
characteristic equation of the homogeneous equations of motions with aid of Maple (see 
Appendix M: ‘Appendix: Maple sheet for determining 3DoF eigenfrequencies’) and can be 
simplified to the following notation: 
 

 

det[−𝜔2𝑴+𝑲(𝜔)] = 0  , i. e.: 
 

𝐾𝑥(𝜔)𝑀𝑏
2𝑧𝐶𝐺
2 𝜔4 − 𝐽𝐶𝐺𝑀𝑏

2𝜔6 − 𝐾𝑥(𝜔)𝐾𝑧(𝜔)𝑀𝑏𝑧𝐶𝐺
2 𝜔2 + 𝐽𝐶𝐺𝐾𝑥(𝜔)𝑀𝑏𝜔

4 
+𝐽𝐶𝐺𝐾𝑧(𝜔)𝑀𝑏𝜔

4 + 𝐾𝜑(𝜔)𝑀𝑏
2𝜔4 − 𝐽𝐶𝐺𝐾𝑥(𝜔)𝐾𝑧(𝜔)𝜔

2 − 𝐾𝜑(𝜔)𝐾𝑥(𝜔)𝑀𝑏𝜔
2

− 𝐾𝜑(𝜔)𝐾𝑧(𝜔)𝑀𝑏𝜔
2 + 𝐾𝜑(𝜔)𝐾𝑥(𝜔)𝐾𝑧(𝜔) = 0 

(12.3) 

 
The damping terms are left out of this computation because these terms significantly 
complexify the computation of the eigenfrequencies, while the damping terms only slightly 
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change the value of the eigenfrequencies (see the analogy with the SDoF system in 5.2 ‘Single 
Degree of Freedom system’). 
 
The building response is computed in the frequency domain because this makes it easier to 
implement the frequency dependent stiffness and dashpot terms. A Forward Fourier 
Transform is used to find the building response in the frequency domain: 
 

 �̃�𝑏(𝜔) = ∫ 𝑢𝑏(𝑡) ∙ 𝑒
−𝑖𝜔𝑡𝑑𝑡

∞

𝑡=−∞

 (12.4) 

 
Which transforms the equations of motion into: 
 

 (−𝜔2𝑴+ 𝑖𝜔𝑪(𝜔) + 𝑲(𝜔))�̃�𝑏(𝜔) = 𝐹(𝜔) (12.5) 

 

Where (−𝜔2𝑴+ 𝑖𝜔𝑪(𝜔) + 𝑲(𝜔)) is called the dynamic stiffness matrix (the impedance). The 

building response is computed by pre-multiplying both the left and right terms by the inverse 
of the dynamic stiffness matrix: 
 

 �̃�𝑏(𝜔) = (−𝜔
2𝑴+ 𝑖𝜔𝑪(𝜔) + 𝑲(𝜔))

−𝟏
𝐹(𝜔) (12.6) 

 
The now computed building response �̃�𝑏(𝜔) is complex numbered and thus has a real- and an 

imaginary part (�̃�𝑏(𝜔) = 𝑅𝑒 (�̃�𝑏(𝜔)) + 𝐼𝑚(�̃�𝑏(𝜔))). The frequency spectrum of the building 

response (absolute values) is computed as: 
 

 |�̃�𝑏(𝜔)| = √𝑅𝑒 (�̃�𝑏(𝜔))
2
+ 𝐼𝑚(�̃�𝑏(𝜔))

2
 (12.7) 

 
The response of the building in the time domain is computed by performing the inverse 
Fourier Transform on the building response in the frequency domain: 
 

 𝑢𝑏(𝑡) =
1

2𝜋
∫ �̃�𝑏(𝜔) ∙ 𝑒

𝑖𝜔𝑡𝑑𝜔
∞

𝜔=−∞

 (12.8) 

 
Which is basically a summation of the form: 
  

 𝑢𝑏(𝑡) =
1

2𝜋
∙ 2 ∙ 𝑑𝜔 ∙∑(𝑅𝑒 (�̃�𝑏(𝜔𝑗)) ∙ cos(𝜔𝑗 ∙ 𝑡) + 𝐼𝑚 (�̃�𝑏(𝜔)) ∙ sin(𝜔𝑗 ∙ 𝑡))

𝑁

𝑗=1

 (12.9) 

 
The now computed building response is only for the global rigid building motion. In case the 
structural design of the vibration sensitive structure only consists of a very rigid foundation 
block, this rigid building response can be used to compute the rms-velocities in the frequency 
domain (similar to the computation in 12.2.2 ‘Finding the response of the floor in the same 
form as the VC-curves’). The influence of changing a structural parameter can then be 
investigated. However, if one is interested in the dynamic response of a flexible (non-rigid) 
floor element, an additional computation is needed that takes into account the flexibility of the 
structural elements. The 3DoF rigid building motions (displacements) in the time domain are 
used as excitations on the flexible structural elements. This computation is elaborated in the 
next section 12.2 ‘Local Dynamic Response of Flexible Floor‘.  
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12.2.  Local Dynamic Response of Flexible Floor 
The dynamic response of the bottom storey floor (or first floor) is of particular interest, 
because the vibration sensitive equipment is generally placed either on the foundation slab or 
the first floor. For this thesis a flexible frame is used to compute the dynamic response of the 
storey floor of interest, named ‘𝑤1’ (Figure 86 and Figure 87). The flexible frame takes into 
account the adjacent elements to 𝑤1 as well to consider their influence on the dynamic 
response of 𝑤1 (e.g. rotation stiffness at the boundaries of 𝑤1 and the influence of the 
horizontal excitation on the vertical dynamic response of 𝑤1). Since the response of interest of 
the local floor is the dynamic response, described more particular: the dynamic velocity, the 
gravity loading does not play a role, because the gravity loading is only static. Therefore, the 
gravity loading is not taken into account for the computation of the dynamic response of the 
flexible frame. 

12.2.1. The composition of the flexible frame 
The flexible frame is composed of four (undamped) Euler-Bernoulli beam floor elements: 
𝑤1, 𝑤2, 𝑤3, 𝑤4 and four Euler-Bernoulli beam wall/column elements: 𝑢1, 𝑢2, 𝑢3, 𝑢4. The principle 
of an Euler-Bernoulli beam (EB-beam) element was discussed in 5.5 ‘Continuous Systems‘. 
Figure 86 is repeated from 5.5 ‘Continuous Systems’ and gives a typical presentation of an EB-
beam. 

 
Figure 86. Typical representation of an EB-beam element 

The dynamical properties of every EB-beam element consist of 𝐸𝐼𝑖,𝑗 (Nm2), 𝜌𝑖,𝑗 (kg/m3) and 𝐴𝑖,𝑗 

(m2) where: (𝑖 = 𝑤, 𝑢) and (𝑗 = 1, 2, 3, 4). The dynamic response of every EB-beam element is 
computed as its displacement (depending on time and the longitudinal coordinate of the 
element) perpendicular to the longitudinal axis of the element: 𝑤𝑗(𝑥, 𝑡) and 𝑢𝑗(𝑧, 𝑡) with 

(𝑗 = 1, 2, 3, 4). All EB-beam elements are assumed being inextensible (i.e. 𝐸𝐴 = ∞).  
 

 
Figure 87. Principles for the flexible frame for computation of the local dynamic response of 𝑤1. Left: 

displaced flexible frame due to rigid building movement of 3DoF system. Right: flexible frame composed 
of four flexible Euler-Bernoulli beam floor elements 𝑤1, 𝑤2, 𝑤3, 𝑤4and four flexible Euler-Bernoulli beam 

wall/column elements 𝑢1, 𝑢2, 𝑢3, 𝑢4 
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The equation of motion (EOM) of an EB-beam element consists of a fourth-order differential 
equation: 
 

 

𝐸𝐼𝑤,𝑖
𝛿4𝑤𝑖(𝑥, 𝑡)

𝛿𝑥4
+ 𝜌𝐴𝑤,𝑖

𝛿2𝑤𝑖(𝑥, 𝑡)

𝛿𝑡2
= 0 

or 

𝐸𝐼𝑢,𝑖
𝛿4𝑢𝑖(𝑧, 𝑡)

𝛿𝑧4
+ 𝜌𝐴𝑢,𝑖

𝛿2𝑢𝑖(𝑧, 𝑡)

𝛿𝑡2
= 0 

(12.10) 

 
where (𝑖 = 1, 2, 3, 4). 
 
The unknowns in the general solutions of the fourth-order differential equations need to be 
solved with the aid of the Boundary Conditions (BCs) of the element.  
 
The flexible frame is rigidly fixed to the foundation slab which has a dynamical response equal 
to the 3DoF rigid building response computed in the previous section. This makes that the 
flexible frame for this thesis research is excited by the rigid building motion of the 3DoF 
system only. The BCs and ICs are such that they are compatible with the 3DoF rigid building 
motion and such that they make sure that the flexible frame is internally in equilibrium. 
The dynamic response of the flexible EB-beam frame is solved as a summation of the dynamic 
responses of the frame due to all prescribed horizontal and vertical displacements and all 
prescribed rotations. In formula form this summation would look like: 
 

 
𝐷𝑦𝑛_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 

𝐷𝑦𝑛_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑢𝑏,𝑥 + 𝐷𝑦𝑛_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑢𝑏,𝑧 + 𝐷𝑦𝑛_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑢𝑏,𝜑 
(12.11) 

 
Where the BCs and ICs for every 𝐷𝑦𝑛_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑖 (𝑖 = 𝑢𝑏,𝑥 , 𝑢𝑏,𝑧, 𝑢𝑏,𝜑) can be different. All BCs 

and ICs per 𝐷𝑦𝑛_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑖 are given in Appendices P to S (referenced as Model𝑥, Model𝑧 and 
Model𝜑 respectively).  

12.2.2. Finding the response of the floor in the same form as the VC-curves 
In order to compare the dynamic response of 𝑤1 with the VC-requirements, the dynamic 
response has to be transformed to velocities in the frequency domain. The expression of 
velocities of 𝑤𝑖 is simply the computation of the time derivative: 𝜕𝑤𝑖(𝑥, 𝑡)/𝜕𝑡, which is 
numerically implemented in Python as: 
 

 
𝜕𝑤𝑖(𝑥, 𝑡)

𝜕𝑡
=
𝑤𝑖(𝑥, 𝑡 + 𝑑𝑡) − 𝑤𝑖(𝑥, 𝑡)

𝑑𝑡
 (12.12) 

 
The representation of the dynamic response of 𝑤1 (velocities, m/s), from here on called 
‘𝑣𝑤1(𝑥, 𝑡)’ in the frequency domain is computed by a Forward Fourier Transform: 
 

 �̃�𝑤1(𝑥, 𝜔) = ∫ 𝑣𝑤1(𝑥, 𝑡) ∙ 𝑒
−𝑖𝜔𝑡𝑑𝑡

∞

𝑡=−∞

 (12.13) 

 
and is numerically implemented in Python as: 
 

 �̃�𝑤1(𝑥, 𝜔) = ∑ 𝑣𝑤1(𝑥, 𝑡) ∙ 𝑒
−𝑖𝜔𝑡𝑑𝑡

𝑡𝑚𝑎𝑥

𝑡=𝑡𝑚𝑖𝑛

 (12.14) 
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The result is a complex number (a real and an imaginary part). The absolute value is of interest 
to compare with the VC-requirement and is computed as: 
 

 |�̃�𝑤1(𝑥, 𝜔)| = √𝑅𝑒(�̃�𝑤1(𝑥, 𝜔))
2
+ 𝐼𝑚(�̃�𝑤1(𝑥, 𝜔))

2
 (12.15) 

 
Which gives the frequency spectrum of the dynamic floor response for a particular x-
coordinate. The designing engineer (the user of the EDDABuSGS-tool) can give an array of x-
coordinates for which the frequency spectrums need to be computed. However, the more x-
coordinates, the longer the computational time for obtaining the results. Since the vibration 
sensitive equipment is often placed in the middle of the floor span, it is advised to compute the 
frequency spectrum at least for 𝑥 = span/2. The VC-curves consider 1/3-octave bands and in 

every 1/3-octave band (𝑗) the peak value of |�̃�𝑤,𝑖(𝑥, 𝜔)| is divided by √2, which gives the RMS-

value of the frequency spectrum: 
 

 �̃�𝑤1,𝑅𝑀𝑆,𝑗(𝑥) =
|�̃�𝑤1(𝑥)|𝑝𝑒𝑎𝑘,𝑗

√2
 (12.16) 

 
These RMS-spectrums are in the same unit as, and can be compared to, the VC-curve 
corresponding to the VC-requirement. Based on this the designing engineer can conclude 
whether or not the change in structural parameters is beneficial or not for reducing the 
vibration levels. 
 

12.3. Verification of the Local Dynamic Response of the Flexible Floor 
In order to verify EDDABuSGS the results are compared to the ‘verification project Degrande et. 
al. (3) – Building Response’. The 3DoF system is excited by the prescribed displaced soil (soil 
response) computed in 10.3.2 ‘Soil response verification project Degrande et al. (2) – Soil 
Building’ for distances from the middle of the road from 16 m to 36 m with intervals of 2 m. 
The prescribed displacements and velocities of the soil excite the impedance springs and 
dashpots, which produces a force on the 3DoF system (Figure 88). The prescribed 
displacements and rotations are computed as averages of the soil response: 
 

 𝑈𝑥,𝑎𝑣𝑔(𝑡) = (∑𝑢𝑥,𝑖,𝑧=0(𝑡) + 𝑢𝑥,𝑖,𝑧=𝑑𝑒𝑚𝑏(𝑡)

𝑁

𝑖

) 2𝑁⁄  (12.17) 

 

 𝑈𝑧,𝑎𝑣𝑔(𝑡) = (∑𝑢𝑧,𝑖,𝑧=𝑑𝑒𝑚𝑏(𝑡)

𝑁

𝑖

) 𝑁⁄  (12.18) 

 

 𝑈𝜑,𝑎𝑣𝑔(𝑡) = (−
𝑈𝑥,𝑎𝑣𝑔(𝑡)

𝑧𝐶𝐺 − 𝑑𝑒𝑚𝑏/2
+∑𝑢𝑧,𝑖,𝑧=𝑑𝑒𝑚𝑏(𝑡)/𝑠𝑖

𝑁

𝑖

) (𝑁 + 1)⁄  (12.19) 

 
Where 𝑠𝑖 is positive if the soil response point is located to the left of the vertical line of 
symmetry, and negative if the soil response point is located to the right of the vertical line of 
symmetry. The prescribed velocities (𝑉𝑥,𝑎𝑣𝑔, and 𝑉𝑧,𝑎𝑣𝑔) and angular velocities (𝑉𝜑,𝑎𝑣𝑔) are 

computed similarly. With the prescribed excitation the forces on the system are computed as: 
 

 

𝐹𝑢,𝑗,𝑎𝑣𝑔(𝑡, 𝜔) = 𝑈𝑗,𝑎𝑣𝑔(𝑡) ∙ 𝐾𝑗(𝜔) 

and 
𝐹𝑣,𝑗,𝑎𝑣𝑔(𝑡, 𝜔) = 𝑉𝑗,𝑎𝑣𝑔(𝑡) ∙ 𝐶𝑗(𝜔) 

(12.20) 
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where 𝑗 = 𝑥, 𝑧, 𝜑, which makes that the equations of motions: 𝑴�̈�𝑏(𝑡) + 𝑪(𝜔)�̇�𝑏(𝑡) +

𝑲(𝜔)𝑢𝑏(𝑡) = 𝐹(𝑡, 𝜔) can be solved as described in 12.1 ‘Global Dynamic Response of the 3DoF 
Rigid Building‘. The averaging of the soil responses as excitation to the 3DoF system can be 
justified for this thesis research since only low frequency soil responses, with a large 
wavelength (soft soils: 𝜆 ≥ 15 m), are considered. Due to the large wavelength the soil 
response along the length- and the depth of the building deviates only for small amounts and 
can therefore be averaged out (Figure 89). Also, due to the assumption of rigidity of the 
structure, the structure cannot deform in the shape of the high frequency soil response (with 
small wavelengths), which makes that the structure reflects the high frequency soil responses 
for a great part back into the soil medium. 
 

 
Figure 88. Principle of the computation of the excitation for the 3DoF rigid building system (displaced 

springs and dashpots) 

 

 
Figure 89. Principle of maximum building length which can be assumed to be rigid for a given 

wavelength of the soil response 

The input parameters given for the computation of the structural response are included in 
Appendix N ‘Appendix: Input parameters for Verification Project Degrande et al. (3) – Building 
Response‘. The entire building lengths are assumed to be rigid for the 3DoF system. The 
structural response of the global 3DoF system is represented in Figure 90. The local floor 
parameters are chosen in line with the figures that were given in the report of the verification 
project (Degrande, Pyl, & Clouteau, 2004). The prediction of the local floor response matches 
the measured floor response well. The prediction done in this Master thesis is more similar to 
the measured floor response than the prediction done in the verification project, therefore only 
the floor response computed by EDDABuSGS and the measured floor response are compared in 
(Figure 91). The floor response computed by the EDDABuSGS in the time domain has a peak 
velocity of approximately 1.0 ∙ 10−3 m/s, while the measurements show a peak velocity of 
approximately 0.75 ∙ 10−3 m/s.  
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Figure 90. Structural response in the time domain (top) and the frequency domain (bottom) for all three 

DoF (𝑥, 𝑧, 𝜑) of the 3DoF system modelled for verification project Degrande et al. (3) – Building 
Response 

 

 
Figure 91. Predicted local EB-beam- (top) and measured- (bottom) structural response of the first floor 

in the time domain (left) and frequency domain (right) for verification project Degrande et al. (3) – 
Building Response 

Since the computed structural response of the floor is very similar to the measured response of 
the floor, the computation of the structural response by EDDABuSGS is now assumed to be 
verified. The verified EDDABuSGS-tool will be used for performing several iterations for a 
vibration sensitive laboratory building located in Amsterdam, The Netherlands, to see the 
influence of changing certain parameters. This is done in the next chapter 13 ‘Results from 
Iterations by EDDABuSGS and Design Chart‘. 
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12.4. Consequences for soil response and structural response when changing the 
Belgium soil into the Amsterdam soil 

The structural response is also computed for the situation in which the building of the 
verification project is located in Amsterdam, The Netherlands. The only difference which is 
taken into account is the soil layering (softer soil). 
 
First the free field soil response is compared between the case of the layered soil of Verification 
Project Degrande et al. (1) – Free Field (in Belgium, ‘stiffer’ soil) and the layered soil of 
Amsterdam (in The Netherlands, ‘soft’ soil). The results of this computation are included in 
Appendix O ‘Appendix: Results for Verification Project Degrande et al. (1) – Free Field and (3) – 
Building Response with layered soil of Amsterdam‘. A different soil layering significantly 
influences the soil vibrations: 

 Amplitudes of the soil velocities are amplified by a factor 2 to 3. 

 The frequency content of the soil velocities around 5 Hz is amplified by a factor > 20  

 The frequency content of the soil velocities between 10 and 17 Hz is amplified by a factor 
2.5 to 3. 

 
The principle of the altered soil response due to the softer soil layering also holds for 
Verification project Degrande et al. (3) – Building Response. The consequence for the 
computation of the building response is that the excitation on the building has larger 
amplitudes, with a lower frequency content, and the impedances of the flexible supported 
building are smaller. The results of this computation are also included in Appendix O 
‘Appendix: Results for Verification Project Degrande et al. (1) – Free Field and (3) – Building 
Response with layered soil of Amsterdam’ and show that a different soil layering significantly 
influences the structural vibrations:  

 Amplitudes of the structural vibration are amplified by a factor 2 to 3 

 The lower frequency content (between 3 and 10 Hz) is much more excited (factor 10 
around 5 Hz). 

 
It is expected that the EDDABuSGS-tool will perform better for the type of buildings that is 
aimed for when developing the tool, namely rather rigid and heavy vibration sensitive 
laboratory buildings, which can be assumed invariant in the y-direction. The building in the 
verification project, however, is more flexible and has a much smaller width in the y-direction 
than the length in the x-direction, and thus can only be modelled reliably to a certain extent. 
Measurements performed for rigid vibration sensitive buildings, which are specified such that 
they can also be modelled in EDDABuSGS, are scarce. Therefore, future research should aim om 
performing measurements for structures that can be modelled by the computational model in 
order to verify the EDDABuSGS-tool more thoroughly.  
  



Receiving Structural System Modelling and Results in EDDABuSGS 

 

119 

 
  



Master Thesis of Gerwin Schut 

120 

  

Part IV  

Results & Conclusion 
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13.  Results from Iterations by EDDABuSGS and Design Chart 
 
After verifying the computational tool EDDABuSGS with the verification projects the tool has 
been used to perform iterations on the structural parameters to see what the influence of a 
parameter on the computed structural response is. A list of the computed iterations has been 
included in Appendix T ‘Appendix: Iterations of structural parameters to compute structural 
response‘. A brief summary of the observations is given here and the design chart for vibration 
sensitive laboratory structures is computed from all knowledge gained by the literature study, 
the computations made for the verification projects and the iterations that were made with 
EDDABuSGS (manual for tool included in Appendix U ‘Appendix: User manual of EDDABuSGS’). 
It must be noted that the described observations only hold for the specific modelled situation. 
The excitation and structural response might be different for other cases.  
 

13.1. Observations from Iterations 

Reference case 
The reference case is based on a fictional building in Amsterdam, The 
Netherlands. A brief description of the observations from the computations 
of the reference case has been included: 

 Loading: dominant loading frequency content is in-between 3 and 10 
Hz.  

 3DoF response: dominant 3DoF response frequency content is also in-
between 3 and 10 Hz. The horizontal translational motion 𝑢𝑏,𝑥 (X1) has   

the greatest response and from the time domain one can observe that X1 is approximately 4 
times larger than X2 (vertical translation 𝑢𝑏,𝑧) and 10 times larger than X3 (rotational 
motion 𝑢𝑏,𝜑). 

 3DoF response: the eigenfrequencies of the global 3DoF system in the range 0.2 Hz ≤ 𝑓 ≤
20 Hz are approximately 1.8 Hz, 1.95 Hz and 8.3 Hz. 

 3DoF response: The structural response amplitude is much larger for the horizontal 
translation than the vertical translation and rotation.  

 3DoF response: the damping-impedance terms for the horizontal translation are the 
smallest. The damping-impedance terms of the vertical translation are approximately 2 to 
7 (depending on the frequency) times larger than the horizontal translational damping-
impedance term. The rotational damping-impedance term is the highest and is 
approximately 100 to 200 (depending on frequency) times larger than the horizontal 
translational damping-impedance term.  

 3DoF response: The RMS values of the global 3DoF response are equal- or smaller than 15 
μm/s. 

 EB-beam floor response: the local structural response has no damping, therefore the 
response is never zero. After approximately 1.5 seconds, the floor is vibrating freely 
(without any excitation). Due to the numerical solution strategy (continuous Fourier 
expansion) the floor response is non-zero before 𝑡 =  0 as well.  

 EB-beam floor response: the local structural floor response has a maximum RMS value 
equal to 18.5 μm/s. The structural response has thus been amplified by a factor 1.23 when 
comparing the global structural response to the local structural response.  

 Computational time for structural response results in the time domain: 42 mins. 

 Computational time for structural response results in the time domain and frequency 
domain, including the RMS values of the velocities in the frequency domain: 342 mins.  
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Iteration: greater global building mass & stiffer local EB-beam floor 
The greater global building mass (2 ∙ 𝑀𝑏) realizes a greater resistance 
against vibrations (impedance) for the 3DoF global building response. The 
eigenfrequencies have become smaller (factor 0.9), further away from the 
dominant loading frequencies, which makes that the structural response 
(globally and locally) has smaller amplitudes. 
The stiffer local EB-beam floor element (1.6 ∙ 𝐸)  realizes a greater 
resistance against vibrations (impedance) for the local EB-beam floor. The  
eigenfrequencies have shifted to the higher frequency range (> 10 Hz, further away from the 
dominant loading frequencies) which makes that the structural response (locally) has smaller 
amplitudes (factor 1.1 to 1.3).  

Iteration: small rigid block 
The structure is changed from large and heavy structure with flexible 
elements locally, into a smaller and very rigid structure. The following 
observations were made: 

 Loading: lower forces (factor 10) and higher frequency content 
(dominant loading frequencies shifted to the right). 

 3DoF response: higher eigenfrequencies (5.85 Hz, 9.0 Hz, 11.95 Hz), 
smaller displacements and velocities X1 (horiz. Translation, factor 0.4),   

but larger displacements and velocities X2 (vert. translation, factor 2.4) and X3 (rotation, 
factor 4.3). Lower supporting impedances (factor 5 to 100).  

 EB-beam floor response: larger velocity peak in the time domain (factor 1.2). Smaller RMS 
value of velocities (factor 0.77). 

 RMS value of EB-beam floor increased by factor 2.3 compared to RMS value of 3DoF. 
Conclusion: Due to the smaller dimensions of the structure, the stiffness impedance terms are 
mostly positive (while for the reference case, they become negative for a great frequency 
range) (see the tables of Gazetas and accompanying figures (Gazetas G. , 1991)). This means 
that the soil vibrations do not amplify the structural vibrations (which would be the case for 
negative stiffness terms), resulting in smaller RMS velocities eventually. However, it is 
expected that the stiffness impedance terms of the reference case are underestimated; they 
should attain lesser negative values or even positive values. Less negative impedance terms for 
the reference case would result in smaller RMS velocities as well.  

Iteration: greater G value for (stiffer) soil impedances 
The soil shear modulus is increased by a factor 5. This is only done in the 
impedance terms for the building supports. The excitation was remained 
unaffected (thus not taking into account the reduced excitation amplitudes 
and increased frequency content which would be the case in a real stiffer 
soil). The following observations were made:  

 Loading: larger amplitudes (factor 1.75 to 3) and similar frequency 
content.   

 3DoF response: higher eigenfrequencies (2.85 Hz, 3.6 Hz, 11.85 Hz), larger amplitudes for 
displacements and velocities (factor 1 to 1.1). Greater supporting impedances (factor 
2.5 to 3.5). 

 EB-beam floor response: slightly larger amplitudes for (RMS) velocities (factor 1.1). 

 RMS value of EB-beam floor increased by factor 1.3 compared to RMS value of 3DoF. 
Conclusion: the greater stiffness of the soil (without taking into account the altered soil 
response) increases the impedance terms that support the 3DoF system. However due to the 
stiffening effect, the eigenfrequencies of the 3DoF system have come closer to the dominant 
excitation frequencies. The amplification of the vibration amplitude due to the higher 
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eigenfrequencies is greater than the decreasing effect of the vibration amplitude due to the 
increased impedance, which eventually results in a larger (RMS) value of the velocities. 
 
This phenomenon can be explained from a more general approach, including all structural 
properties: 
 
The mass distribution 𝑀𝑏 and the mass moment of inertia 𝐽𝐶𝐺 of the structure influence the 
eigenfrequencies at which the structure vibrates. A larger value for both of these properties 
means an elongation of the natural period and thus lower eigenfrequencies. However, a greater 
stiffness 𝐾𝑗 (which could be caused by a stiffer soil, a greater embedment depth and/or a stiffer 

pile foundation) creates a stiffening effect. The result is a shortening of the natural period and 
an increase of the eigenfrequencies.  
 
Next to an influence on the eigenfrequencies, the mass, mass moment of inertia and the 
stiffness of the structural supports influence the resistance against vibrations (impedance, i.e. 

�̃�𝑏(𝜔) = (−𝜔
2𝑴+ 𝑖𝜔𝑪(𝜔) + 𝑲(𝜔))

−𝟏
𝐹(𝜔)) as well. A larger value for all of these properties 

means a greater impedance.  
Whether or not a larger value of the mass, mass moment of inertia and the stiffness of the 
structural supports is beneficial depends on the ratio between the dominant frequencies of the 
loading and the eigenfrequencies of the structure (𝑓𝑑𝑜𝑚,𝑙𝑜𝑎𝑑 𝑓𝑛,𝑠𝑡𝑟⁄ ~𝜔 𝜔𝑛⁄ ). The meaning of 

this can in principle be derived from the single degree of freedom system (Figure 92): in case 
𝜔 𝜔𝑛⁄  is close to 1 and an increase of the value 𝐾𝑗 (or 𝑘𝑠 in the figure) makes that this ratio is 

even closer to 1 (red arrow), the change in eigenfrequency makes that the response amplitude 
is raised to the power > 1 (parabolic, derivative ‘𝑟𝑐’ > 1), while the change in impedance makes 
that the response amplitude is only decreased to the power ≈ 1 (linearly, derivative ‘𝑟𝑐’ ≈ 1). In 
that case, the increase in stiffness is not beneficial in reducing the structural vibrations, 
because the amplification due to the change in eigenfrequency is greater than the reduction 
due to the increased impedance. However if 𝜔 𝜔𝑛⁄  is approximately smaller than 0.4 or larger 
than 1.6 (green arrow) (these values are related to Figure 92 for a SDoF system and can differ 
for a specific situation), the change in eigenfrequency makes that the response amplitude is 
raised to the power ≪ 1 (𝑟𝑐 ≪ 1), while the impedance makes that the response amplitude is 
decreased to the power ≈ 1 (𝑟𝑐 ≈ 1). In that case the increase of stiffness is beneficial in 
reducing the structural vibrations.  
In the case of this specific iteration it thus appears that the increase of the eigenfrequencies 
has more influence on the amplitude of the vibrational response (amplification) than the 
increased impedance. 

 
Figure 92. Principal of the effect on the amplitude of the structural response due to an increased 

impedance (left) and increased eigenfrequency (right) caused by a higher spring stiffness 𝑘𝑠. Green 
arrow: effect of increased impedance is greater than effect of increased eigenfrequency. Red arrow: effect 

of increased impedance is smaller than effect of increased eigenfrequency 
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Iteration: smaller pile length and raised sand layer 
The pile length is reduced by a factor 3 and the load bearing sand layer has 
been lifted up together with the pile toes. Similar to the iteration with a 
greater shear modulus of the soil (𝐺), the shorter pile lengths realize a 
stiffening effect for the global 3DoF system (mainly in the vertical and 
rotational direction: factor 10 increase of the vertical and rotational 
impedance stiffness terms). The eigenfrequencies have shifted to the right 
(higher eigenfrequencies: factor > 3). Both the global 3DoF- and local EB-   
beam floor response have slightly larger amplitudes (factor 1.1), while the resistance against 
vibrations (impedances) has increased. The reason for this is in principle similar to the 
previous iteration ‘iteration: greater 𝐺 value for (stiffer) soil impedances,’ where the increase of 
the eigenfrequency has more influence on the amplitude of the vibrational response 
(amplification) than the increased impedance. 

Iteration: decreased computational time by changing computational parameters 
The iterations for changing the computational parameters 𝑡𝑠𝑡𝑒𝑝, 𝑡𝑛𝑟, 𝑓𝑠𝑡𝑒𝑝 and 𝑓𝑛𝑟 show that 

the computational time of EDDABuSGS can be decreased while still obtaining reliable results. 
However, taking too large steps and/or a too small range will result in unreliable results. It 
appears that, for the reference case (building in Amsterdam), the computational time can be 
reduced by a factor 0.35 (results in the time domain) to 0.55 (results in the time- and 
frequency domain), while still obtaining reliable results if the time- and frequency steps are 
unchanged, but the frequency range is decreased by a factor 2 (resulting in 𝑓𝑚𝑎𝑥 = 10.1 Hz). 
The frequencies higher than 10 Hz do not significantly contribute to the structural response 
and can therefore be left out. The resulting computational times are: 

 Computational time for structural response results in the time domain: 24 mins. 

 Computational time for structural response results in the time domain and frequency 
domain, including the RMS values of the velocities in the frequency domain: 118 mins.  
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13.2. Design Chart for Vibration Sensitive Laboratory Structures 
This section will briefly describe the particularities that need to be considered when designing 
a vibration sensitive laboratory structure which is excited by traffic induced vibrations, first in 
general and then more specific for the situation of soft soils in The Netherlands (Amsterdam). 
Note that the chart is limited to traffic induced vibrations and does not account for any other 
type of loading specifically. Also, no such elements as vibration isolating islands are mentioned 
because these are not part of the superstructure. The early design decisions based on this 
design chart should always be verified by a building physics/vibrations expert.  
The representation of these particularities is done in the form of a design chart in top-down 
order: 
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14. Conclusions and Recommendations 
 
The aim of this research was to create a practical engineering tool consisting of a 
computational part and a design chart which should give a structural engineer the ability to 
get insight into the influence of changing certain building parameters on the dynamic 
structural behaviour. This chapter concludes the research by answering the research questions 
that were derived at the start of this research, mentioned in 1.2 ‘Scope‘. Thereafter 
recommendations will be given on how the EDDABuSGS-tool should be used for designing 
purposes. Also, recommendations are considered for future work with the aim to further 
improve the EDDABuSGS-tool. 
Note that the conclusions made are based on the literature study and on the computed results 
(iterations in chapter 13) for a 2D building model, which is assumed to be rigid globally (entire 
building) and flexible locally (floor), located in a soft soil (more specific Amsterdam, The 
Netherlands), which is excited by heavy traffic induced soil vibrations only.  
 

14.1. Discussion of Results 
This section describes the relevant results for each of the research questions which are derived 
from the observations made by the iterations (described in 13.1 ‘Observations from Iterations’) 
and from the literature research. 

How can the 2D model give reliable predictions for the 3D problem? 
The 2D approximation 

The 2D model considers the computation of the structural response in the (x,z)-plane. This 
means that the EDDABuSGS-tool can only be expected to give reliable predictions for buildings 
that are not vulnerable to torsion, have dominant floor spans parallel to the x-direction (and 
thus can be assumed invariant in the y-direction) and are placed such that the (x,z)-plane is 
parallel to the dominant line of soil excitation.  

The EDDABuSGS-tool in general 
First it is worth mentioning that the model in general is developed based on well-established 
mathematics and computational techniques and is verified with practical cases and examples 
that are relevant for this specific research.  

 Rigidity of the structure 
The 2D model assumes rigidity of the global structural response which is generally a 
simplification that can be made for vibration sensitive laboratory structures, because these 
buildings are often realized with a rigid structure. Flexible buildings, such as the one in the 
verification project of Degrande et al. can therefore be modelled less accurately and the 
vibration predictions are less reliable. Also due to rigidity of the structure, the excitation on 
the 3DoF system can be assumed as an average loading in the direction of every three degrees 
of freedom at a particular point of engagement. Flexible structures ask for a loading which is 
distributed along the building length. A similar reasoning applies to the soil impedances that 
are determined by the substructuring approach, assuming rigid body motions of the structure. 

 Low frequency content of the soil response  
Next to the rigidity of the structure itself, also the frequency content of the soil response, and 
thus the length of the dominant shear waves determines whether or not the assumption of 
global rigidity can be made. In case of traffic induced vibrations in soft soils, the dominant 
frequency content is generally low (< 10 Hz). Low frequency loadings have longer wavelengths 
(𝜆). The longer wavelengths make that larger building lengths (𝐿𝑏) can be assumed to be rigid 
(𝐿𝑏 ≤ 1 4⁄ ∙ 𝜆𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡) (Figure 89).  

 Governing loading type is heavy traffic induced vibrations 
The type of loading for this computational tool considers the soil responses in Amsterdam due 
to heavy traffic only. This means that loading due to e.g. walking and machinery inside the 
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building and e.g. wind loading outside the building are not considered for this tool. The results 
obtained by this tool can only be reliable in the case that heavy traffic induced vibrations are 
the dominant loading type and in case the soil is similar to the modelled soil of Amsterdam.  

 Small frequency- and time step but large frequency- and time range 
The requirements for a reliable computation of the results ask for a small time- (≤ 0.02 s) and 
frequency- (≤ 0.25 Hz) step, a small minimum value of the frequency range (𝑓𝑠𝑡𝑒𝑝/2) and a 

large time- (e.g. −0.2 ≥ 𝑡 ≥ 1.5 s) and frequency- (e.g. 0.125 ≥ 𝑓 ≥ 20 Hz) range. These 
requirements directly contradict the aim of a practical engineering tool which should compute 
the structural response within a couple of minutes. The smaller the step and the larger the 
range, the longer the computational time will be, which can add up to a day or even more. 
Therefore the frequency- and time step can be chosen bigger and a smaller range can be 
considered to make the computational time lower (see Appendix T: ‘Appendix: Iterations of 
structural parameters to compute structural response’). The dominant frequencies of the 
loading and the structural response are still reliable, however the amplitudes of both are 
generally overestimated (too large amplitudes, factor: 2 to 3.5) for a too coarse frequency 
domain and underestimated (too small amplitudes, factor: 0.75 to 1) for a too coarse time 
domain. Note that these values relate to the iterations made within this thesis research.  

 Overestimation of eigenfrequencies local floor element 
An important note to make here is that the Euler-Bernoulli (clamped-clamped) representation 
of the local floor generally overestimates the floor’s eigenfrequencies (factor 1.5 − 3.4). 
Determining the influence factor of changing parameters can therefore be unreliable.  

 Verification of the computed results 
Comparison of the computed results with the verification projects and the knowledge gained 
from the literature study show good agreement. The verification of the structural response 
could only partly be done because the type of building of the available verification project is 
not entirely suitable for the computational tool EDDABuSGS.  

How do the properties of the structure influence its vibrations? 

 Influence on the eigenfrequencies of the structure 
From the iteration results performed by EDDABuSGS the following conclusions can be made. 
The mass 𝑀𝑏 and the mass moment of inertia 𝐽𝐶𝐺 of the structure influence the 
eigenfrequencies at which the structure vibrates. A larger value for both of these properties 
means an elongation of the natural period and thus (a) lower eigenfrequencies (or 
eigenfrequency). However, a greater embedment depth creates a larger value for damping and 
a stiffening effect. The structure can then be assumed to have stiffer structural supports 
(horizontal translation and rotational). The result is a shortening of the natural period and an 
increase of the eigenfrequencies (or eigenfrequency). End-bearing foundation piles also create 
a stiffening effect, however the amount of this effect depends on the excitation frequency and 
the axis-axis distance between the foundation piles. These conclusions are well in line with the 
applicable theory and therefore substantiate the reliability of the EDDABuSGS-tool.  

 Influence on the impedances of the structure 
Next to an influence on the eigenfrequencies, the mass, mass moment of inertia and the 
stiffness of the structural supports influence the resistance against vibrations (impedance, i.e. 

�̃�𝑏(𝜔) = (−𝜔
2𝑴+ 𝑖𝜔𝑪(𝜔) + 𝑲(𝜔))

−𝟏
𝐹(𝜔)) as well. A larger value for all of these properties 

means a greater impedance. This conclusion is well in line with the applicable theory and 
therefore substantiates the reliability of the EDDABuSGS-tool. 

 Reduction of vibration amplitude depends on both the shift in eigenfrequencies 
and the increase of the impedances 

Whether or not a larger value of the mass, mass moment of inertia and the stiffness of the 
building and the structural supports is beneficial for reducing the vibration amplitude depends 
on the change in ratio between the eigenfrequency of the structure and the dominant 
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frequency of the loading (𝑓𝑛,𝑠𝑡𝑟 𝑓𝑑𝑜𝑚,𝑙𝑜𝑎𝑑⁄ ) and on the increase of the impedance (see 13.1 

‘Observations from Iterations’). An increase in the values of mass and stiffness can be regarded 
to be beneficial for reducing the structural vibrations always if the ratio 𝑓𝑛,𝑠𝑡𝑟 𝑓𝑑𝑜𝑚,𝑙𝑜𝑎𝑑⁄  gets 
further away from the value 1.0. This conclusion is well in line with the applicable theory and 
therefore substantiates the reliability of the EDDABuSGS-tool. 

 Damping always reduces the vibration amplitude 
Damping in the system appears to be beneficial always because it hardly affects the 
eigenfrequencies of the structure but does increase the resistance against vibrations.  

In what ways do variations in built-ups of different soil layers influence the design of the 
structure? 

 Frequency content of stiff soils is high, while for soft soils it is low 
The built-up of the different soil layers determines how stiff the soil reacts to the induced loads 
and how stiff the support of the soil towards the building is. Generally, a stiff soil has a 

relatively high frequency content (10 –  40 Hz excitation on the building), while soft soils have 

a lower frequency content (3 –  15 Hz excitation on the building).  

 Stiff soils: conventional design, soft soils: special design attention needed 
This makes that in stiff soils the dominant eigenfrequencies of the structure should be lower 
than 10 Hz. This is generally quite well realisable in a conventional building design. However, 
in case of soft soils the dominant eigenfrequencies of the structure should be either very low (< 
3 Hz) or relatively high (> 15 Hz). However, it is not easy to design a structure that has 
eigenfrequencies higher than 15 Hz (locally) or lower than 3 Hz (globally) while still realizing 
a large impedance of the structure. 

How do sensitivities in the used models influence the structures design and how can these 
sensitivities be minimized? 

 Simplifications made in the modelling 
The sensitivities in the model are introduced by simplifications made for the EDDABuSGS-tool 
and by input parameters that can only be approximated to a limited extent. Also, the model is 
developed for one particular situation only: a soft soil (western part and northern of the 
Netherlands) which is excited by heavy traffic. The excitation is limited to one particular 
vehicle speed and induces loads on a very rigid building structure. The structure is not 
vulnerable to torsion and its structural vibrations are dominant the (x,z)-plane. Any deviation 
in these parameters brings an extra uncertainty to the reliability of the computed results.  

 Approximation of the soil impedances based on extrapolation of existing results 
The main sensitivities of the EDDABuSGS-tool consist of the simplification of the soil 
impedances based on the extrapolation of the tables of Gazetas which simplifies the soil to a 
non-layered homogeneous halfspace. It has not been verified whether this extrapolation is 
reliable. The expectation is that the vertical impedances are underestimated for 𝑓 ≥ 3 Hz 
(factor −4 to 1), thus underestimating the stiffness and damping of the supporting soil and 
overestimated for 𝑓 < 3 Hz (factor 1 to 2). The horizontal impedances are, depending on the 
frequency, either underestimated or overestimated (factor 0.8 − 3). The underestimation of 
the stiffness impedance terms might be on the non-conservative side since the 
eigenfrequencies of the global building response can in reality come closer to the dominant 
loading frequencies.  

 Approximation of the pile impedances based on extrapolation of existing results 
Also, the impedances generated by the pile foundation is greatly simplified by considering one 
particular situation and extrapolating this situation to all possible situations that can be 
modelled. First, the assumptions made for the geometry of the individual piles (L/d and 
Epile/Esoil) and the pile groups (S) possibly bring a great sensitivity to the reliability of the 
computed results. Also, the fact that the pile group interaction factors are based on a limited 
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amount of information for already existing computations of pile groups might oversimplify the 
group interaction between the piles. The expectation is that the group interaction factors are 
underestimated for 𝑓 ≤ 5 Hz (factor 0.8 to 1), meaning that the stiffness and damping of the 
pile group is underestimated, and overestimated for 𝑓 > 5 Hz (factor 1 to 4). The 
underestimation might be on the non-conservative side since the eigenfrequencies of the 
global building response can in reality come closer to the dominant loading frequencies. 

 Computational parameters considering the frequency- and time instants 
For the computation of the results themselves a big sensitivity lies in the chosen 
computational parameters considering the time step, time range, frequency step and frequency 
range. The larger the time- and frequency step, the more unreliable the results will be. Also, a 
small time- and frequency range will make the results more unreliable. The expectation is that 
a larger frequency step will overestimate the response amplitude and is thus on the 
conservative side. However, a larger time step is expected to underestimate the response 
amplitude (see ‘Small frequency- and time step but large frequency- and time range’ in this 
section). Also, choosing a small step and a large range increases the computational time 
significantly, which makes that a large step and a small range is more preferred in the design 
phase.  

 Results computed for limited amount of positions on the local floor 
In addition, to keep the computational time of the EDDABuSGS-tool low, the structural 
response is only computed for a limited amount of 𝑥-coordinates along the length of the floor. 
It is not known in advance at which location the maximum RMS velocity in the frequency 
domain is going to occur. This makes that the reasoning whether or not a change in 
parameters is beneficial based on the limited amount of points can be unreliable (factor 0.6 to 
1.5). A great amount of points should be considered for a reliable overview, however the 
problem then is the significantly increased computational time. 

What is the influence of external interventions on the structure’s design? 
In general, a decreased soil response results in a decreased excitation on the structure, thus 
allowing for less vibration mitigation measures in the (structural) design. 

 Wave barriers reduce the soil vibrations only in the shadowing region 
From the literature study and the brief analysis in 10.3.4 ‘Soil response attenuation by wave 
barrier in soil of Amsterdam’ it can be concluded that the wave barrier always decreases the 
soil response in the shadowing region just behind the wave barrier (factor 0.2 to 1). However, 
the wave barrier needs to be thick enough (width ≥ 0.1 ∙ 𝜆𝑅) in order to give sufficient 
resistance to the vibration. Also, the depth of the wave barrier should be sufficiently large so 
that the receiving structure behind the wave barrier falls within the shadowing region of the 
wave barrier (depth barrier ≥ depth of building and depth barrier ≥ 1 3⁄ ∙ length building for a 
reduction factor approximately equal to 0.5 at soil surface). A drawback of the wave barrier is 
that it can significantly amplify the vibration amplitude at the side of the incoming waves 
(factor 1 to 2).  

 Road on pile foundation decreases vibrations at soil surface but can cause a 
bridging effect (substantiated by literature research only) 

An external intervention in the form of making a pile foundation underneath the road on 
which the moving loads are generated assures a decreased soil response at the surface of the 
soil. However, if both the building and the road have a pile foundation and the pile toes are 
placed on the same sand layer, a bridging effect of the vibrations might occur. In that case the 
vibrations propagate through the piles underneath the road, continuing through the stiff soil 
layer at the pile toes, and eventually exciting the piles underneath the building. The result is a 
non-beneficial effect on the vibration mitigation.  
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 Cavities decrease the soil response in the shadowing region but also 
significantly lower the impedances of the building (substantiated by literature 
research only) 

A cavity surrounding the structure assures that no soil excitation on the building can take 
place at these locations. However, in soft clay soils, the buildings are generally placed on 
foundation piles and since the cavities can practically not be made longer than the pile length, 
the soil can still excite the foundation piles. Due to the cavity near the soil surface the building 
barely has any horizontal resistance against vibrations. This makes that only a dense and 
complex pile grid (inclined piles) can give sufficient horizontal resistance. 

Overall conclusion 
Due to the comprehensive approach of this Master thesis research, many factors influencing 
the design of a vibration sensitive laboratory structure have been considered, analysed, verified 
and implemented in the EDDABuSGS-tool. Together, the computational EDDABuSGS-tool and 
the design chart give an extensive overview of the influence of several important structural 
(and non-structural) parameters on the vibration levels inside the building. The computed 
results and the conclusions that are made from these results are in line with what is to be 
expected from the applicable theory. Therefore, the EDDABuSGS-tool does what it is expected 
to do and the goal of this thesis, to develop a practical engineering tool for an early design 
phase of a project concerning vibration sensitive laboratory structures, is accomplished.  
However, the reliability of EDDABuSGS can be improved by a more thorough verification of the 
simplifications made and by the implementation of more realistic, but computationally heavy, 
modelling of e.g. the structure and the soil medium. 
 

14.2. Recommendations for Designing, Using EDDABuSGS 
 Use the EDDABuSGS-tool for determining influences factors only 

It is advised to use the EDDABuSGS-tool only for the purpose to see the effect of changing 
certain parameters on the structural response (ratios) and not to compute an absolute value on 
which will be based whether or not the design meets the vibration level requirements. This 
holds in general because due to all simplifications made the absolute value of the amplitudes 
cannot be predicted reliably. 

 Model an equivalent local floor element with reliable dominant eigenfrequency 
First model a reference floor in a FEM software (e.g. Scia) and from that model obtain the 
dominant eigenfrequency (for heavy traffic induced vibrations, generally the first). Then model 
an equivalent Euler-Bernoulli beam in the EDDABuSGS-tool with a similar dominant 
eigenfrequency. From this equivalent model the influence factor of changing parameters can 
be computed more reliably. Compute results at the 𝑥-coordinate along the length of the beam 
where the vibration sensitive equipment is expected to be located.  

 Check the influence of affected eigenfrequencies and affected impedance 
In case the ratio 𝑓𝑑𝑜𝑚,𝑙𝑜𝑎𝑑 𝑓𝑛,𝑠𝑡𝑟⁄  comes closer to 1 (see 13.1 ‘Observations from Iterations’) the 

engineer should check whether or not the vibration amplitudes are decreased. 

 Increase impedances, decrease eigenfrequencies of global structural response, 
increase eigenfrequencies of local structural response 

Generally, the global building response has low dominant eigenfrequencies (< 3 Hz), thus for 
the global building response for buildings in soft soils it is beneficial for decreasing the 
vibration amplitude to increase the mass and mass moment of inertia (decreasing the 
dominant eigenfrequencies). However, the local building response, e.g. stiff concrete floors, 
generally have dominant frequencies between 8 Hz and 12 Hz, thus for these elements the 
stiffness should be increased more than the increase in mass to come to higher dominant 
eigenfrequencies. 
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 Minimize sensitivities in results by performing a rigorous computation of a 
preliminary (reference) design first 

The sensitivity of the computed results can be minimized by performing first an extensive 
calculation by EDDABuSGS for a reference case (preliminary design) and let this calculation run 
for a long computational time. Then the time- and frequency step can be made larger, while 
the time- and frequency ranges and the number of response points can be made smaller to see 
the influence of these simplifications on the computed vibration amplitude and the 
computational time. This influence factor can be taken into account for making iterations of 
the design with a large step, a small range and possibly only one response point. 

 Design pile toes of adjacent structures on a less deep soil layer 
To avoid the bridging effect through the foundation piles of two adjacent structures, the 
structural design of the foundation piles should preferably be such that the pile toes of the 
building and the adjacent structure (e.g. the road) are not on the same stiff sand layer. 
 

14.3. Recommendations for Future Research 
 Verify computed results by measurements in practice 

Since the EDDABuSGS-tool contains some simplifications which still need to be verified, it is 
highly recommended to verify the results of the tool by measurements in practice. The 
currently available measurements are scarce, therefore it is recommended to perform 
measurements in future research. The building type, soil layering, and load generation for 
which the verification is performed should be in line with the assumptions made for this tool 
in order for a fair comparison between the predictions by the tool and the measurements.  

 Expand the applicability of the EDDABuSGS-tool 
It is interesting for future research to expand the applicability of the EDDABuSGS-tool for e.g. 
more types of soil layering, vehicle speeds, road irregularity profiles, vehicle characteristics, 
and even different types of loading (e.g. subways and wind or walking and machinery inside 
the building). 
Implementing more types of soil excitation (due to heavy traffic, trams, trains etc.) can be 
done relatively easily by adding more sub-folders to the EDDABuSGS-tool with pre-computed 
soil excitations.    

 Verify the simplified soil- and pile foundation impedances by rigorous 
computational methods 

It is expected that the greatest sensitivity of the EDDABuSGS-tool lays in the simplification of 
the soil- and pile foundation impedances. The values taken into account for the impedances 
should be verified, preferably by measurements in practice, but since that is hard to realize a 
verification with rigorous computational methods might also suffice (see 6.2 ‘Modelling of the 
Soil-Foundation System’). The computational time of these rigorous computational methods is 
generally very long, therefore it is recommended to tune the simplified functions for the 
impedances incorporated in the tool with the results of the rigorous computation. In this way 
the computational time of the EDDABuSGS-tool still remains relatively low while the reliability 
of the results is increased.  

 Implement a floor element instead of an Euler-Bernoulli beam 
Also, the implementation of a more reliable floor element is an aspect that can be interesting 
for future research. The current EDDABuSGS-tool simplifies the floor to an Euler Bernoulli 
beam which spans in one direction only and has a continuous support on both sides, while in 
reality, floors can span in multiple directions and might be point-supported only, rather than a 
continuous support along an edge. By implementing a more reliable floor element, the 
computational time of the tool is expected to increase. Whether or not this weighs up against 
the more reliable results should be determined in that same future research.  
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A. Appendix: application and interpretation of VC-curves 
 
Table 3. Application and interpretation of the generic vibration criterion (VC) curves (Amick, Gendreau, 

Busch, & Gordon, 2005). 

Criterion Curve 
Amplitude1 

μm/s 
Description of use 

Workshop (ISO) 800 
Distinctly perceptible vibration. Appropriate to 
workshops and non-sensitive areas. 

Office (ISO) 400 
Perceptible vibration. Appropriate to offices and non-
sensitive areas. 

Residential day (ISO) 200 

Barely perceptible vibration. Appropriate to sleep areas 
in most instances. Usually adequate for computer 
equipment, hospital recovery rooms, semiconductor 
probe test equipment, and microscopes less than 40x. 

Operating theatre 
(ISO) 

100 
Vibration not perceptible. Suitable in most instances 
for surgical suites, microscopes to 100x and for other 
equipment of low sensitivity. 

VC-A 50 
Adequate in most instances for optical 
microscopes to 400x, microbalances, optical balances, 
proximity and projection aligners, etc. 

VC-B 25 
Appropriate for inspection and lithography equipment 
(including steppers) to 3 μm line widths. 

VC-C 12.5 

Appropriate standard for optical microscopes to 1000x, 
lithography and inspection equipment (including 
moderately sensitive electron microscopes) to 1 μm 
detail size, TFT-LCD stepper/scanner processes. 

VC-D 6.25 
Suitable in most instances for demanding equipment, 
including many electron microscopes (SEM5 and 
TEM5) and E-Beam systems. 

VC-E 3.12 

A challenging criterion to achieve. Assumed to be 
adequate for the most demanding of sensitive systems 
including long path, laserbased, small target systems, 
E-Beam lithography systems working at nanometer 
scales, and other systems requiring extraordinary 
dynamic stability. 

VC-F 1.56 
Appropriate for extremely quiet research spaces; 
generally difficult to achieve in most instances, 
especially cleanrooms. 

VC-G 0.78 
Appropriate for extremely quiet research spaces; 
generally difficult to achieve in most instances, 
especially cleanrooms. 

1As measured in one-third octave bands of frequency 
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B. Appendix: Additions to Chapter 3 ‘Source of Vibrations’ 
 

1.1. Road Traffic Induced Vibrations - Empirical Prediction Model 
A relatively simple prediction technique has been developed in order to make a first estimate 
on the peak vertical vibration levels at the foundation of buildings. This method is based on 
tests performed at the test track at the Transport and Road Research Laboratory (TRRL) in the 
UK with a wide range of heavy goods vehicles (HGVs). With these tests the trends in peak 
vibration levels, depending on vehicle speed, load and size of irregularity (Figure 93), have 
been established. The test results were then generalized to different site conditions by 
determining the amplitudes and attenuation rates of vibrations generated in different soils 
using a controlled impact method (with the aid of a hammer device).  
 

 
Figure 93. Test profiles used at the Transport and Road Research Laboratory (Watts, 1990) 

Measurements had indicated that traffic vibrations generated in soft ground such as alluvium 
and peat soils were much greater than was the case for firmer soils under similar conditions. 
The expected PPV obtained from the tests at the test track were then factorized by the ratio 
|𝐻𝑠(𝑓)| / |𝐻𝑡(𝑓)|, where |𝐻𝑠(𝑓)| and |𝐻𝑡(𝑓)| are the moduli of the transfer function of 
mobilities at the site and on the track respectively and ‘𝑓’ is the loading frequency. This 

frequency is typically between 10 –  12 Hz and results from the ‘wheel hop’ mode of vibrations 
of the heavy good vehicle (HGV) suspension (i.e. the vertical oscillatory motion of the wheels 
between the vehicle body and road surface). There is a large difference of up to two orders of 
magnitude between the response of a soft soil (peat) and very hard ground (chalk rock) (Figure 
94). 

 

Figure 94. Transfer function for vertical PPV at 12 Hz by distance (Watts, 1990) 
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Obviously, it is difficult to model the generation of vibrations in these situations therefore the 
predictions developed by G.R. Watts are for the much more common situation only where a 
significant irregularity in the road surface is the cause of vibration effects.  
The method is based on making predictions of vertical PPV at 6 m using the observed trends 
with amplitude of road surface irregularity and speed, and the most appropriate ground scaling 
factor. By combining these factors, the expected value of the maximum vertical PPV at a 
building foundation can be calculated as: 
 

 𝑃𝑃𝑉𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 = 0.028 ∙ 𝑎 ∙
𝜈

48
∙ 𝑡 ∙ 𝑝 ∙ (

𝑟

6
)
𝑥

 (0.1) 

 
where: 
 

𝑃𝑃𝑉 = peak particle velocity of the soil at the foundation (m/s) 
𝑎 = maximum height or depth of surface defect (mm) 

𝜈 = maximum expected speed of heavy good vehicles (HGVs) (km/h) 

𝑡 = ground scaling factor (see Table 4) (-) 

𝑝 
= 0.75 in case surface defect occurs in one wheel path only (-) 
= 1.00 in case surface defect occurs in both wheel path (-) 

𝑟 = distance of foundation from the defect   (m) 
𝑥 = power factor for most appropriate soil type (see Table 4) (-) 

 
Table 4. Effect of ground characteristics on transmission of vibration (Watts, 1990) 

Ground type 

Number 
of sites 
tested 

Power coefficient for 
attenuation with distance 

‘x’** 

Modulus of transfer function (x 103) in mm/s 
per kN 

Ground*** 
scaling factor 

𝑡 =
|𝐻𝑠(𝑓)| 

|𝐻𝑡(𝑓)|
 

In ground at 6 m Expected 
value at 

foundations 
6 m Range Average Range Average 

Peat* 1 - -1.19 - 189 41.9 3.84 
Alluvium 2 -0.79 to -0.80 -0.79 72.5 to 82.0 77.3 77.3 7.07 

London clay 3 -0.99 to -1.13 -1.06 20.9 to 56.3 33.8 33.8 3.10 
Sand/gravel 3 -0.69 to -0.82 -0.74 9.92 to 11.0 10.3 10.3 0.94 
Boulder clay 3 -0.71 to -1.18 -0.93 2.43 to 6.67 4.73 4.73 0.43 
Chalk rock 1 - -1.08 - 1.14 1.14 0.10 

* For peat soil transfer function values and power coefficients are for 10 Hz. 
** Power law for attenuation with distance is 𝑟𝑥 where 𝑟 is distance from source. 

*** |𝐻𝑠(𝑓)| and |𝐻𝑡(𝑓)| are the moduli of the site and track transfer functions.  

 

1.2. Road Traffic Induced Vibrations – Scientific Prediction Model 

Influence of road stiffness on the vertical soil velocity 
The road stiffness can influence the generated soil vibrations significantly. A stiffer road 
reduces the vibration levels of the dynamic axle loads, but when a soft road is applied the 
dynamic axle loads are hardly influenced. If one wants to incorporate this influence into the 
model the road-soil interaction needs to be taken into account. A predictive model can be 
created by modelling the road as an elastic beam with a rigid cross section, located at the 
surface of a horizontally layered halfspace. Both the road’s bending and torsional deformations 
need to be accounted for. The soil’s impedance is calculated by means of a boundary element 
method (Lombaert & Degrande, 2001).  
 
In the past, the presence of the road has often been disregarded for the calculation of the free 
field road traffic induced vibrations. In this case, the dynamic axle loads are directly applied to 
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the soil. This assumption is only valid if the wavelength of the soil is large with respect to the 
area of the road-soil interface that accounts for the transmission of the forces to the soil. 
Also, in other studies it has been discovered that the effect of the pavement structure on the 
road-soil transfer function only affects the free field vibrations at small distances from the 
source and at high frequencies. 

Influence of vehicle speed on the vertical soil velocity 
Wave propagation induced by traffic driving over a traffic plateau has also been investigated in 
the lectures of Soil Dynamics at the TU Delft (Hölscher, 2014). Paul Holscher has shown that at 
relative small distance from the source the upgoing and the downgoing movement of the 
vehicle on the traffic plateau can be clearly distinguished (at 12 m: first a wave group initiated 
by the ascending- (0.2 ≤ 𝑡 ≤ 0.8 s), then a pause (0.8 ≤ 𝑡 ≤ 1.0 s), and finally another wave 
group for the descending (1.0 ≤ 𝑡 ≤ 1.6 s) on the traffic plateau) (Figure 95). However, at 
larger distances this distinction is lost due to the fact that the different kind of waves 
propagate at different speeds and the faster reflected waves coincide with the slower non-
reflected incident waves. The interfaces between the layers cause reflection and transmission 
of the incident waves. This phenomenon is very important when considering the wave 
propagation in a layered soil. Chapter 4. ‘Transmission’ introduces the propagation of waves 
first without soil layering (thus without layer interfaces) and thereafter considers the more 
realistic layered soil which accounts for the reflection and transmission of waves at the layer 
interfaces.  
 

 

Figure 95. Propagation of waves in the soil (m / m/s / m/s
2
) induced by a 2-axle vehicle driving over a 

traffic plateau at different distances from the plateau in the time domain (Hölscher, Soil Dynamics, 
2014) 

Additional concluding key factors influencing the free field traffic induced vibrations 
 Compared to the use of simple empirical models, an elaborate numerical model, that is 

based on the physical nature of the problem, has the advantage that it provides physical 
insight and that it is well suited for a parametric study.  

 A change of the characteristics of the suspension system or the tyres of a particular axle of 
the vehicle only affects the FRF of the same axle.  
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C. Appendix: Extensive overview of Chapter 4 ‘Transmission of Vibrations’ 
 
The vibrations generated by a source like road traffic can only reach a building’s structure once 
it is transmitted through a medium. This medium consists of the soil which is different for 
every site and can even differ within 1 m2 at one site. The soil is often layered and consists of 
soil types of different densities and stiffness laying over each other. Also, in the Netherlands 
the soil is often layered where typically softer layers overly stiffer soil layers. The wavespeeds 
and the depth of the different layers influence the frequencies of the generated waves in the 
soil medium.  
In the previous sections it was already discussed that determining the wave propagation for a 
certain soil layering is often difficult. However, several models have been created over the past 
half century which enables the prediction of wave propagation in layered media in a simplified 
manner. These approaches will be discussed in section 1.2 ‘Layered Elastic Soil Halfspace’. 
However first a simpler case will be discussed concerning a non-layered homogenous soil (1.1 
‘Homogeneous Elastic Soil’) to give a more general introduction to the soil dynamics of the 
transmission path.  
 

1.1. Homogeneous Elastic Soil 
Among many other authors (Verruijt, 2008), (Kramer, 1996), (Hölscher, 2016) and (Metrikine & 
Vrouwenvelder, 2018) give a comprehensive overview of the elastodynamics of a homogeneous 
elastic soil medium. A brief overview will be given in the present section, which is a 
confinement of the work of the previous mentioned authors. First let us consider waves in an 
infinite medium, in other words: a medium that has no bounds.  

1.1.1. Waves in unbounded soil 
Before hopping on to the three-dimensional medium, first the one-dimensional case will be 
briefly discussed in the form of an infinite long, linear elastic, rod. This representation should 
remind the reader of the fundamentals of soil dynamics but are not comprehensive. For more 
detailed derivations, please refer to the literature that is stated in the references.  
 
For soil dynamics two important different types of vibrations can occur in a thin rod: 
longitudinal vibration (the axis of the rod extends and contracts) and torsional vibration (the 
rod rotates about its axis).  

Longitudinal waves in an infinitely long rod 
By using the basic requirements of equilibrium of forces and compatibility of displacements 
and using strain-displacement and stress-strain relationships, a one-dimensional wave 
equation can be derived and solved. Using Figure 96 the simplified governing equations can be 
derived. 

 

Figure 96. A thin road (a) with co-ordinate 𝑥 and displacement 𝑢 of a section and (b) the stresses acting 
on element ∆𝑥 of the rod (Metrikine & Vrouwenvelder, Part 2 Wave Dynamics, 2018) 

In-line with Figure 96 the equation of the rod motion in the 𝑥-direction reads: 
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 −𝜎(𝑥)𝐴 + 𝜎(𝑥 + ∆𝑥)𝐴 + 𝑞𝐴∆𝑥 = 𝜌𝐴∆𝑥
𝛿2𝑢

𝛿𝑡2
 (0.2) 

 
where 𝜌 is the mass density and 𝐴 is the cross-sectional area of the rod. The latter is a constant 
in case of a prismatic rod. By taking into account the Taylor expansion of 𝜎(𝑥 + ∆𝑥) = 𝜎(𝑥) +
(𝛿𝜎 𝛿𝑥⁄ )∆𝑥 and assuming a homogeneous material for the rod (the Young’s modulus 𝐸 does 
not vary with 𝑥) and in the absence of body forces 𝑞, this equation reduces to: 
 

 
𝛿2𝑢

𝛿𝑥2
=
1

𝑐2
𝛿2𝑢

𝛿𝑡2
, 𝑐 = √

𝐸

𝜌
 (0.3) 

 
which is called the wave equation. In this partial differential equation 𝑢 is the longitudinal 
displacement of the bar’s cross-section, 𝑡 represents time, 𝑥 represents the special coordinate 
of a cross-section of the rod and 𝑐 is a constant and represents the wave propagation velocity 
(or wave speed) and depends on the Young’s modulus 𝐸 and the density 𝜌 of the bar’s material. 
The wave propagation increases with increasing stiffness and with decreasing density.  
The wave propagation velocity is not the same as the particle velocity while they both have the 
unit m/s. The wave speed is the speed at which an entire stress wave would travel along the 
rod. The particle velocity, however, is the velocity at which a single point within the rod would 
move as the wave passes through it (see also e.g. the differences between Figure 99 and Figure 
100).  The particle velocity can be shown to be related to the stress according to the expression 
(Metrikine & Vrouwenvelder, 2018): 
 

 𝑣(𝑥, 𝑡) = −
𝑐

𝐸
𝜎(𝑥, 𝑡) = −

1

𝜌𝑐
𝜎(𝑥, 𝑡) (0.4) 

 
The above equation shows that the particle velocity is proportional to the axial stress in the rod 
which generally changes continuously in dynamics. Wave speed in materials used in 
geotechnical and civil engineering range from 30 m/s to 10 000 m/s, while particle velocities 
range from 10−6 m/s to 10 m/s.  
The coefficient of proportionality, (𝜌𝑐), is called the specific impedance of the material. This 
coefficient is another important property that influences the behaviour of waves at boundaries 
(Kramer, 1996).  

Torsional waves in an infinitely long rod 
For torsional waves the particle motion is constrained to planes perpendicular to the direction 
of wave propagation. However, the development of a wave equation for torsional vibrations 
follow the same steps as for longitudinal vibration and the following torsional wave equation 
can be derived (Kramer, 1996): 
 

 
𝛿2𝜃

𝛿𝑥2
=
1

𝑐2
𝛿2𝜃

𝛿𝑡2
 (0.5) 

 

where 𝜃 is the angle of twist of the rod and in this case 𝑐 = √𝐺/𝜌  with 𝐺 the shear modulus of 
the rod material.  
 
The solution of the wave equations can be written in the general form, also referred to as the 
D’ Alembert’s solution: 
 
 𝑢(𝑥, 𝑡) = 𝑓(𝑐𝑡 − 𝑥) + 𝑔(𝑐𝑡 + 𝑥) (0.6) 
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Where 𝑓 and 𝑔 can be any arbitrary functions of (𝑐𝑡 − 𝑥) and (𝑐𝑡 + 𝑥) that satisfy the wave 
equation. This solution describes a displacement wave 𝑓(𝑐𝑡 − 𝑥) traveling at velocity 𝑐 in the 
positive 𝑥-direction and another displacement wave 𝑔(𝑐𝑡 + 𝑥) traveling at the same speed in 
the negative 𝑥-direction. It also implies that the shapes of the waves do not change with 
position or time.  
In the case where the rod is subjected to an arbitrary steady-state harmonic stress, e.g. 
𝜎(𝑡) = 𝜎0 cos(𝜔𝑡), where 𝜎0 is the stress wave amplitude and 𝜔 is the circular frequency of the 
applied loading, the solution can be expressed in the wavenumber 𝑘 = 𝜔/𝑣 in the form: 
 
 𝑢(𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 − 𝑘𝑥) + 𝐵 cos(𝜔𝑡 + 𝑘𝑥) (0.7) 
 
Here the first term describes harmonic waves propagating in the positive 𝑥-direction and the 
second term described harmonic waves propagating in the negative 𝑥-direction. In case of an 
infinitely long rod no waves exist in the opposite direction of the incident wave (the radiation 
condition). In that situation the constant 𝐵 has to be equal to zero, which results in an 
equation for the wave propagating in one direction only. 
The wavenumber 𝑘 is related to the wavelength, 𝜆, of the motion by: 
 

 𝜆 = 𝑐𝑇 =
𝑐

𝑓
=
2𝜋

𝜔
𝑐 =

2𝜋

𝑘
 (0.8) 

 
Where 𝑇 is the period of the applied loading and 𝑓 =  1/𝑇. Note that at a given frequency, the 
wavelength increases with increasing wave propagation speed. The wavenumber can be 
considered as having the same meaning to the wavelength as the meaning of the circular 
frequency has to the period of vibration (Figure 97).  
 

 
Figure 97. Particle displacement (a) as a function of time, and (b) as function of position along the rod 

(Kramer, 1996) 

1.1.2. Waves in a three-dimensional infinite body 
The described process for the one-dimensional case can be repeated for the case of wave 
propagation in a three-dimensional infinite medium. The derivation of three-dimensional 
equations of motion follows the same steps as those used for one-dimensional propagation. 
However, in the three-dimensional case the various relationships are more complex and 
derivation more cumbersome. The three-dimensional case will be briefly discussed. 
 
In the derivation a Cartesian coordinate system is used (𝑥, 𝑦, 𝑧) with corresponding 
displacements 𝑢, 𝑣, 𝑤 (Figure 98). 
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Figure 98. Cartesian coordinate system 

The kinematic equations can then be given in the form: 
 

 

𝜖𝑥𝑥 =
𝛿𝑢

𝛿𝑥
, 𝜖𝑦𝑦 =

𝛿𝑣

𝛿𝑦
, 𝜖𝑧𝑧 =

𝛿𝑤

𝛿𝑧
,   

𝜖𝑥𝑦 = 𝜖𝑦𝑥 =
1

2
(
𝛿𝑢

𝛿𝑦
+
𝛿𝑣

𝛿𝑥
),  

 𝜖𝑦𝑧 = 𝜖𝑧𝑦 =
1

2
(
𝛿𝑣

𝛿𝑧
+
𝛿𝑤

𝛿𝑦
),   

𝜖𝑧𝑥 = 𝜖𝑥𝑧 =
1

2
(
𝛿𝑤

𝛿𝑥
+
𝛿𝑢

𝛿𝑧
) 

(0.9) 

 
The constitutive equations can be given in matrix formulation as: 
 

 

[
 
 
 
 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑥𝑦
𝜎𝑦𝑧
𝜎𝑧𝑥 ]

 
 
 
 
 

=

[
 
 
 
 
 
𝜆 + 2𝜇
𝜆
𝜆
0
0
0

   

𝜆
𝜆 + 2𝜇
𝜆
0
0
0

   

𝜆
𝜆

𝜆 + 2𝜇
0
0
0

    

0 0 0
0 0 0
0 0 0
𝜇 0 0
0 𝜇 0
0 0 𝜇]

 
 
 
 
 

[
 
 
 
 
 
𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
2𝜖𝑥𝑦
2𝜖𝑦𝑧
2𝜖𝑧𝑥]

 
 
 
 
 

 (0.10) 

with: 

 𝜆 =
𝐸𝑣

(1 + 𝑣)(1 − 2𝑣)
, 𝜇 = 𝐺 =

𝐸

2(1 + 𝑣)
 (0.11) 

 
Finally, the equilibrium equations can be given as: 
 

 𝜌
𝛿2𝑢

𝑑𝑡2
= 𝜌𝑋 +

𝛿𝜎𝑥𝑥
𝛿𝑥

+
𝛿𝜎𝑦𝑥

𝛿𝑦
+
𝛿𝜎𝑧𝑥
𝛿𝑧

 (0.12) 

 

 𝜌
𝛿2𝑣

𝑑𝑡2
= 𝜌𝑌 +

𝛿𝜎𝑥𝑦

𝛿𝑥
+
𝛿𝜎𝑦𝑦

𝛿𝑦
+
𝛿𝜎𝑧𝑦

𝛿𝑧
 (0.13) 

 

 𝜌
𝛿2𝑤

𝑑𝑡2
= 𝜌𝑍 +

𝛿𝜎𝑥𝑧
𝛿𝑥

+
𝛿𝜎𝑦𝑧

𝛿𝑦
+
𝛿𝜎𝑧𝑧
𝛿𝑧

 (0.14) 

 
Neglecting body forces 𝑋, 𝑌 and 𝑍 gives the three-dimensional equations of motion for an 
isotropic, linear elastic solid: 
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 𝜌
𝛿2𝑢

𝛿𝑡2
= (𝜆 + 𝜇)

𝛿𝜖0
𝛿𝑥

+ 𝜇∇2𝑢 (0.15) 

 

 𝜌
𝛿2𝑣

𝛿𝑡2
= (𝜆 + 𝜇)

𝛿𝜖0
𝛿𝑦

+ 𝜇∇2𝑣 (0.16) 

 

 𝜌
𝛿2𝑤

𝛿𝑡2
= (𝜆 + 𝜇)

𝛿𝜖0
𝛿𝑧

+ 𝜇∇2𝑤 (0.17) 

with: 

 𝜖0 =
𝛿𝑢𝑥
𝛿𝑥

+
𝛿𝑢𝑦

𝛿𝑦
+
𝛿𝑢𝑧
𝛿𝑧

 (0.18) 

and the Laplacian operator ∇2 represents: 

 ∇2=
𝛿2

𝛿𝑥2
+
𝛿2

𝛿𝑦
+
𝛿2

𝛿𝑧2
 (0.19) 

 
These equations can be manipulated to produce two wave equations. Consequently, only two 
types of waves can travel through such an unbounded solid.  

Compressional waves (P-waves) 
The solution for the first type of wave can be obtained by differentiating each of the equations 
of motion (without body forces) with respect to 𝑥, 𝑦, and 𝑧 and adding the results together 
(Kramer, 1996). Rearranging the solution yields the wave equation: 
 

 
𝛿2𝜖0
𝛿𝑡2

=
𝜆 + 2𝜇

𝜌
∇2𝜖0 (0.20) 

 
This wave equation describes an irrotational, or dilatational, wave. It indicates that a 
dilatational wave will propagate through the body at a velocity: 
 

 𝑐𝑝 = √
𝜆 + 2𝜇

𝜌
 (0.21) 

 
This wave is called a P-wave (or primary wave) and 𝑐𝑝 is referred to as the P-wave velocity of 

the material. The particle displacements are parallel to the direction of wave propagation 
(Figure 99). The longitudinal wave in the considered one-dimensional rod is actually a P-wave.  
 

 
Figure 99. Representation of a P-wave. Alternating compression and dilation particle motion and 

parallel to direction of propagation (Braile, 2019) 
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Shear waves (S-waves) 
To obtain the solution for the second type of wave, 𝜖0 is eliminated by differentiating the 
equation of motion with respect to (𝑣, 𝑦) (equation (0.16)) with respect to 𝑧 and the equation 
of motion with respect to (𝑤, 𝑧) (equation (0.17)) with respect to 𝑦, and subtracting one from 
another (Kramer, 1996): 

 𝜌
𝛿

𝛿𝑡2
(
𝛿𝑤

𝛿𝑦
−
𝛿𝑣

𝛿𝑧
) = 𝜇∇2(

𝛿𝑤

𝛿𝑦
−
𝛿𝑣

𝛿𝑧
) (0.22) 

 
With the definition of rotation: 
 

 
Ω𝑥 =

1

2
(
𝑑𝑤

𝑑𝑦
−
𝑑𝑣

𝑑𝑧
) ,    Ω𝑦 =

1

2
(
𝑑𝑢

𝑑𝑧
−
𝑑𝑤

𝑑𝑥
) ,    Ω𝑧

=
1

2
(
𝑑𝑣

𝑑𝑥
−
𝑑𝑢

𝑑𝑦
) 

(0.23) 

 
equation (0.22) can be written in the form of the wave equation: 
 

 
𝛿2Ω𝑥
𝛿𝑡2

=
𝜇

𝜌
∇2Ω𝑥 (0.24) 

 
which describes an equivoluminal, or distortional wave, of rotation about the x-axis. A similar 
expression can be obtained by the same procedure for rotation about the y- and z-axes. 
Equation (0.24) shows that the distortional wave will propagate through the solid at a velocity 
 

 𝑐𝑠 = √
𝜇

𝜌
= √

𝐺

𝜌
 (0.25) 

 
This type of wave is commonly known as a S-wave (or shear wave) and 𝑐𝑠 is referred to as shear 
wave velocity of the material. The particle motion is constrained to a plane perpendicular to 
the direction of wave propagation (Figure 100), just as it was in the case of the one-dimensional 
torsional wave.  
S-waves are often divided into two types: SH-waves have particle motion occurring only in a 
horizontal plane and SV-waves have particle motion occurring only in a vertical plane.   
 

 
Figure 100. Representation of a S-wave. Alternating transverse particle motion in any plane (here in 

vertical plane) and perpendicular to direction of propagation (Braile, 2019) 

For comparison of the wavespeeds of the different kind of waves in an unbounded solid the 
ratio between the wavespeeds is computed as: 

 
𝑐𝑝
𝑐𝑠
= √

2 − 2𝑣

1 − 2𝑣
 (0.26) 
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It becomes obvious that the Poisson’s ratio is the only factor that affects the ratio. For a typical 
Poisson’s ratio of 0.3 for geologic materials, the ratio 𝑐𝑝/𝑐𝑠 =  1.87 and for a Poisson’s ratio of 

0.49, the ratio 𝑐𝑝/𝑐𝑠 =  7.14. This shows that, depending on the soil material, the P-wave can 

arrive at a certain location much earlier than the S-wave.  

1.1.3. Waves in a three-dimensional semi-infinite body 
Till now it was assumed that the body had infinite dimensional length. However, a realistic soil 
body cannot be assumed to be infinite long in all directions. One dimension is restricted to the 
soil’s surface where, generally speaking, no stresses occur. This surface is often referred to as 
the planar free surface (the effects of the earth’s curvature are neglected) (Figure 101). New 
boundary conditions for the equations of motion are needed to account for this free surface. 
The additional solutions to the equations of motion obtained describe waves whose motion is 
concentrated in a shallow zone near the free surface. These waves are called surface waves and 
they attenuate with distance more slowly than body waves (P- and S-waves). Since laboratory 
buildings are placed at the free surface of the soil, the surface waves are very important, and 
they contain the largest part of energy that excites the objects at the free surface.  
Two types of surface waves are of primary importance for buildings: the Rayleigh wave and the 
Love wave. The Love wave can only exist when the soil is layered and will therefore be 
discussed briefly in the next section 1.2 ‘Layered Elastic Soil Halfspace‘. Other types of surface 
waves also exist but are much less significant for excitation to buildings at the free surface.  
 

 
Figure 101. Geometrical attenuation for body waves (left) and surface waves (right) (Persson, 2016) 

Rayleigh waves (R-waves) 
The existence of elastodynamic waves propagating along the surface of an elastic half space 
was first considered by Rayleigh (Lord Rayleigh, 1885). This wave propagates near the free 
surface of an elastic half space and it strongly decreases exponentially with depth. The Rayleigh 
wave is generated by the interaction between the two body waves and the surface itself. 
Derivations of the Rayleigh wave solution can be found in many textbooks on soil dynamics 
and earthquake engineering (e.g. Kolsky (1963); Richart, Hall & Woods (1970); Das (1993); 
Kramer (1996)). A brief overview will be given of the characteristics of the Rayleigh wave. 
 
The derivation of the Rayleigh wavespeed is a comprehensive procedure. When following the 
method used by Achenbach (Achenbach, 1975) referred to by (Verruijt, 2008) a very brief 
description can be given:  
Consider the solution to the basic equations of elastodynamics in the form of expressions for 
the displacement in the (x,z)-plane. The solution is such that the displacement tends towards 
zero for 𝑧 → ∞ (the radiation condition). In this solution the amplitude of the displacement 
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components is independent of the lateral distance 𝑥. The two remaining unknown constants 
can be found by considering the boundary conditions at the free surface: 𝑧 =  0:   𝜎𝑧𝑧 =
0  &  𝜎𝑧𝑥 = 0. After reformulating and rearranging the expressions it appears to be possible to 
approximate the Rayleigh wavespeed 𝑐𝑟 by an analytical expression depending on the Poisson’s 
ratio 𝑣 of the soil and the S-wave velocity 𝑐𝑠 by the following expression (Bergmann & Hatfield, 
1938): 
 

 𝑐𝑟 =
0.87 + 1.12𝑣

1 + 𝑣
𝑐𝑠  (0.27) 

 
The above equation is only valid for values of 0 <  𝑣 <  0.5, a range that is valid for soils. From 
this equation it can be observed that the Rayleigh wave velocity is very close but a little smaller 
than the S-wave velocity in the same material. In the range of 0 <  𝑣 <  0.5, the Rayleigh 
wavespeed varies between 0.87𝑐𝑠 and 0.95𝑐𝑠 (Figure 102). 
 

 
Figure 102. Variation of Rayleigh wave and body wave propagation velocities with poisson’s ratio 

(Kramer, 1996) 

Rayleigh waves can be thought of as combinations of P- and S-waves (SV-waves in the case of a 
vertical (x,z)-plane). In isotropic solids, the individual particles move in ellipses parallel to the 
direction of propagation (Figure 103). 
 

 
Figure 103. Representation of a Rayleigh wave. Elliptical particle motion in vertical plane and parallel to 

direction of propagation. Amplitude decreases with depth (Braile, 2019) 

Also, the displacement amplitudes of the Rayleigh wave can be derived from the expression 
obtained when considering the velocity of the Rayleigh wave. The horizontal and vertical 
displacement amplitudes are illustrated for several values of Poisson’s ratio (Figure 104) 
(Kramer, 1996).  
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Figure 104. Horizontal and vertical motion of Rayleigh waves. A negative amplitude ratio indicates that 

the displacement deeper underneath the surface is in the opposite direction of the surface displacement 
(Kramer, 1996) after (Richart, Hall, & Woods, 1970) 

From Figure 104 it appears that the horizontal displacement will be zero when the vertical 
displacement reaches its maximum (or minimum), and vice versa. Despite the fact that the 
amplitude decrease of the Rayleigh wave with depth is exponential, the superficial zone is still 
influenced by the soil material up to a depth of about a wavelength. In practice an absolute 
number for this wavelength is hard to determine since the soil is layered and damped and all 
soil layers influence the wavelength. Also, the excitation frequency influences the (Rayleigh) 
wave frequency, and thus the wavelength. To give an impression of this Rayleigh wavelength 
one can do a very rough estimate for road traffic induced vibrations by assuming an excitation 
frequency of 8 Hz (road traffic induced vibrations in The Netherlands are usually within the 
range of 3 Hz < 𝑓 < 15 Hz) and a Rayleigh-wave velocity of the soil about 120 m/s (soft soil, 
see 10.3.3 ‘Soil response in Amsterdam’). The wavelength would then be: 𝜆 = 𝑐𝑟 𝑓⁄ = 120 8⁄ =
15 m. 

1.1.4. Wave attenuation 
The amplitude of a wave decreases as the wave travels through the soil medium. There are two 
primary mechanisms that cause this attenuation of wave amplitude: radiation damping and 
material damping.  

Radiation damping 
Radiation damping is the result from the spreading of wave energy over a larger volume of 
material as it travels away from its source. Since Rayleigh waves, generated by a line load, 
propagate as plane waves in the direction away from the line source, the Rayleigh waves don’t 
have radiational damping. However, in the case of a point source the surface waves exhibit 
radiational damping in the form of plane surface circles in the direction away from the source 
(an annular wave field) (Figure 101).  
Moreover, body waves (P- and S-waves), generated by a point source attenuate in all three-
dimensional directions in the form of volumetric spheres in the direction away from the source 
(Figure 101).  
In summary for a linear elastic homogeneous halfspace, excited by a point source, a simple 
power law of the following type can express the radiation damping consequences on waves 
amplitude (Foti, 2000): 
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1

𝑟𝑛
  𝑤𝑖𝑡ℎ  𝑛 =  {

2 for longitudinal and shear waves on the surface
1 for body waves (P − and S − waves) in the solid
1
2⁄ for Rayleigh waves

 (0.28) 

 
where 𝑟 is the distance from the point source. However, these radiation damping terms are for 
the far field only. Close to the source, the terms are more in line with 1/𝑟2 for Rayleigh waves 
and 1/𝑟3 for body waves in the solid.  
 
Typically for elastic halfspaces the compressional wave (P-wave) arrives first at a particular 
location, before the arrival of the shear wave (S-wave). The Rayleigh wave arrives as last. This 
can also be observed in Figure 105 where Lamb has predicted the wavefield for a surface point 
force on an elastic homogeneous halfspace. Note also that the displacement caused by the 
arrival of the Rayleigh wave is much larger than the displacement caused by the arrival of the 
body waves.  
 
However due to the much slower attenuation of the Rayleigh wave, most vibration energy at a 
particular distance from the source is carried by the Rayleigh wave. Lamb has predicted the 
wavefield for a surface point source on an elastic homogeneous halfspace which can be 
observed in Figure 105. Also an indication is given by R.D. Woods (Woods, 1968) for the energy 
ratio between the different kind of waves, generated by a point source at the surface of the 
elastic homogeneous soil medium. A visible representation is given in Figure 106.  
 

  
Figure 105. Complete wavefield predicted by Lamb (1904) for a surface point source on an elastic 

halfspace (a) horizontal radial motion; (b) vertical motion; (c) particle path of Rayleigh waves (Foti, 
2000) 
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Figure 106. Harmonic vertical point source acting on the surface of a homogeneous, isotropic, linear 

elastic halfspace: (a) Complete displacements wave field; (b) partition of energy between different types 
of waves (Foti, 2000) from (Woods, 1968) 

Material damping 
Next to radiation damping the waves amplitudes also decay over distance because of material 
damping. Material damping occurs due to the absorption of energy by the materials the wave 
is travelling through. In the materials, part of the elastic energy of a travelling wave is 
converted to heat. The conversion is accompanied by a decrease in the amplitude of the wave. 
Material damping only plays a role when further away from the source (Hölscher, 2017).  
Different types of material have different kinds of damping, e.g. damping in peat is viscous, 
however, damping in sand is not viscous. Sand and clay have hysteric damping. When 
modelling the material damping an equivalent viscous damping based on stiffness (G) should 
be used. The equivalent viscous damping depends on amplitude, frequency and average static 
stress (Hölscher, 2017).  
 
In order to include the effect of material damping, in addition to radiation damping, Bornitz 
(1931) has suggested to use a formula of the type (Verruijt, 2008): 
 

 
𝑤

𝑤0
= √

𝑟0
𝑟
𝑒−𝛼(𝑟−𝑟0) (0.29) 

 
Where: 
𝑤 = amplitude of soil vibrations at distance 𝑟 (-) 

𝑤0 = reference amplitude of soil vibrations at distance 𝑟0 (-) 
𝑟 = observation distance from the load (m) 

𝑟0 = reference distance from the load (m) 
𝛼 = coefficient of wave energy absorption (see Table 5) (m-1) 
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Table 5. Approximate values of the coefficient of absorption of wave energy (damping constant) 
obtained as a result of investigations of wave propagation in different soils (Barkan, 1962) 

No. Soil 
Coefficient of 

absorption 𝛼 (m-1) 

1 Yellow water-saturated fine-grained sand 0.100 
2 Yellow water-saturated fine-grained sand in frozen state 0.060 
3 Gray water-saturated sand with laminae of peat and organic silt 0.040 

4 
Clayey sands with laminae of more clayey sands and of clays with 
some sand and silt, above ground-water level 

0.040 

5 Heavy water-saturated brown clays with some sand and silt 0.040 - 0.120 
6 Marly chalk 0.100 
7 Loess and loessial soil 0.100 

 

1.2. Layered Elastic Soil Halfspace 
The existing waves just described were found for a homogeneous soil halfspace. However, this 
is rarely a realistic situation. The soil is composed of layers, e.g. softer layers near the surface 
and stiffer layers deeper down into the soil. The composition of the layers is different for every 
region and can even deviate significantly within one particular building site.  
The waves that were found in the previous section still exist in the realistic stratified soil, 
however the differences between the layer properties causes the incident waves to reflect and 
refract at the interface between two layers. This makes that predicting the vibration 
propagation in a stratified soil becomes a difficult task. However, many studies have been done 
to this problem and several approaches exist for theoretical prediction models (see Part III 
Method). 
This section will briefly describe the mechanisms that occur in a stratified soil halfspace. But 
first the one-dimensional problem will be extended to a case in which reflection and refraction 
occurs.  

1.2.1. One dimensional wave propagation 
Consider the rod from 1.1.1 ‘Waves in unbounded soil’ again. However, this time the rod is 
composed of two semi-infinite rods, where there is a discontinuity in the cross-section, in the 
material properties, or both (Metrikine & Vrouwenvelder, 2018)(Figure 107). In the figure the 
incident wave is represented by an arbitrary shaped stress wave to the left of the junction of 
the two semi-infinite rods, propagating from left to right (in positive 𝑥 − direction). The 
reflected wave is also to the left of the junction, however this wave propagates in the opposite 
direction (negative 𝑥 − direction). The transmitted wave propagates from the left to the right 
(positive 𝑥 − direction) at the right side of the junction.  
 

  

Figure 107. Incident (𝜎𝑖), reflected (𝜎𝑟) and transmitted (𝜎𝑡) stress waves at the junction of two rods 
(𝑍2 > 𝑍1) (Metrikine & Vrouwenvelder, 2018) 
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Similar to what was presented in 1.1.1 ‘Waves in unbounded soil’ the solution can be expressed 
in terms of the D’ Alembert’s solution. The rod displacements associated with these waves can 
then be described as: 
 𝑢𝑖 = 𝑓

+(𝑡 − 𝑥/𝑐1), 𝑢𝑟 = 𝑓
−(𝑡 + 𝑥/𝑐1), 𝑢𝑡 = 𝑓

+(𝑡 − 𝑥/𝑐2) (0.30) 
 
From these displacement solutions the stress and particle velocity associated with the waves 
can be computed. In the case the rods are free of external loading, the force field and the 
particle velocity field must be continuous at the junction.  
Problems involving wave transmission across junctions are often spoken of in terms of an 
impedance (𝑍). This term expresses the ratio of a driving force to the resulting velocity at a 
given point of the structure (resistance against vibrations). For an elastic rod, the impedance is 
given by: 
 

 𝑍 =
𝐹

𝑣
=
𝜎𝐴

𝑣
=
𝐸𝐴

𝑐
= 𝐴√𝜌𝐸 (0.31) 

 
Using the impedance, and substituting the stress-velocity relations into the continuity 
conditions of the particle velocity field at the junction, it is possible to write the stress fields of 
the transmitted and reflected waves in terms of the stress field of the incident wave as 
(Metrikine & Vrouwenvelder, 2018): 
 

 𝜎𝑡 =
2(𝑍2/𝑍1)(𝐴1/𝐴2)

1 + 𝑍2/𝑍1
𝜎𝑖, 𝜎𝑟 =

𝑍2/𝑍1 − 1

1 + 𝑍2/𝑍1
𝜎𝑖  (0.32) 

 

where  𝑍1 = 𝐴1√𝜌1𝐸1,   𝑍2 = 𝐴2√𝜌2𝐸2 . 

 
These expressions show the following: 

 If the impedances of the left and right rod are equal, no reflected waves occur at the 
junction. 

 The transmitted stress pulse always keeps the sign of the incident stress pulse 
(compression is transmitted as compression and tension as tension). 

 The sign of the reflected stress pulse depends on the ratio of 𝑍2 and 𝑍1. 

1.2.2. Three-dimensional wave propagation 
A similar kind of mechanism of incident waves, reflected waves and transmitted waves occurs 
in a layered soil, where the previous example of the junction of two rods is similar to an 
interface between two soil layers. The free surface can be considered as a ‘free end’ (impedance 
ratio is zero). However, in general, the incident waves in a layered soil halfspace will not 
approach the interfaces at 90° angles as they do in the one-dimensional case. Also, the soil 
layers have different wave propagation speeds, depending on their material characteristics. As 
a consequence, both the reflected and transmitted waves have another propagating angle 
relative to the horizontal than the incident wave. Therefore, the transmitted waves are called 
refracted waves instead.  
Fermat’s principle defines the propagation time of a seismic pulse between two arbitrary points 
A and B as the minimum travel time along any continuous path that connects the two points. 
The path that produces the minimum travel time is called a ray path, and its direction is often 
represented by a vector called a ray. A wavefront is defined as a surface of equal travel time, 
consequently, a ray path must (in an isotropic material) be perpendicular to the wavefront 
(Figure 108).  
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Figure 108. Ray path, ray, and wavefront for (a) plane wave and (b) curved wavefront (Kramer, 1996) 

Snell considered the change of direction of ray paths at interfaces between materials with 
different wave propagation velocities. Using Fermat’s principle, Snell showed that  
 

 
sin 𝑖

𝑐
= constant (0.33) 

 
where 𝑖 is the angle between the ray path and the normal to the interface and 𝑐 is the velocity 
of the wave of interest. It indicates that the transmitted waves will be refracted (except when 𝑖 
= 0) when the wave propagation velocities are different on each side of the interface (Figure 
109).  
 

 
Figure 109. Reflected and refracted rays resulting from incident (a) p-wave, (b) SV-wave, and (c) SH-

wave (Kramer, 1996) 

The directions and relative amplitudes of the waves produced at the interface depend on both 
the direction and amplitude of the incident wave. Using Snell’s law and the requirements of 
equilibrium and compatibility, these directions and amplitudes can be determined.  
The angle of incidence is equal to the angle of reflection for both P- and S-waves. The angle of 
refraction is uniquely related to the angle of incidence by the ratio of the wave velocities of the 
materials on each side of the interface. Snell’s law indicates that waves travelling from higher-
velocity material into lower-velocity material will be refracted closer to the normal to the 
interfaces (Figure 110).  

 
Figure 110. Refraction principle of an SH-wave ray path (reflected waves are not shown) (Kramer, 1996) 



Appendices 

 

157 

The creation of new waves and the reflection and refraction of the waves by these 
heterogeneities cause traffic induced vibration to reach a building by many different (ray) 
paths (Figure 111). Since the paths have different lengths and wavespeeds, the motion of the soil 
is spread out in time by this scattering effect (also see Figure 95 in Appendix B ‘Appendix: 
Additions to Chapter 3 ‘Source of Vibrations’’).  
 

 
Figure 111. Simplified representation of possible paths along which energy is transferred (Spijkers, 

Vrouwenvelder, & Klaver, 2005) 

Other waves 
In a stratified soil medium also other waves can occur. One of these waves is the Love wave, 
which only exists in the situation when a surficial layer of lower S-wave velocity is overlying a 
half-space with a higher S-wave velocity. Love waves essentially consist of SH-waves (S-waves 
in the horizontal (x,y)-plane) that are trapped by multiple reflections within the surficial layer 
(Kramer, 1996) (Figure 112).  
 

 

Figure 112. Representation of a Love wave (a horizontal S-wave). Particle motion perpendicular to 
direction of propagation. Amplitude decreases with depth (Braile, 2019) 

For very low frequencies (and thus long wavelengths), the main part of the wavelength is 
within the underlying half-space. In that case the Love wave velocities are similar to the s-wave 
velocity of the underlying half-space. However, in case of high frequencies, the main part of 
the wavelength is within the surficial layer and barely reaches into the underlying half-space. 
In that case the Love wave velocities are similar to the S-wave velocity of the surficial layer. 
This frequency dependence indicates that Love waves are dispersive. This principle holds for 
all surface waves in a stratified soil medium. Therefore, also the Rayleigh waves are frequency 
dependent and characterised as being dispersive. 
Also, a Stonely wave may be generated at the interface of two solids with certain properties. 
The wave propagates along the interface between the two solids. This resembles a Rayleigh 
wave in the sense that is it confined to the vicinity of the interface (Verruijt, 2008).  
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1.2.3. Conclusion layered soil medium 
In a realistic stratified soil, a complex wave field is present, consisting of different kind of 
waves, propagating with different wavespeeds and different particle motion. For a prediction 
model which should give quite accurate results for the soil response a complex mathematical 
model is required. Several models have been created by different authors, relying on different 
kind of mathematics but all with the same aim: to predict the soil response in a stratified soil 
halfspace.  
 

1.3. Dominant Frequencies Soil Medium 
As waves propagate through soil media, their amplification or attenuation is mainly dependent 
on the fundamental natural period of the soil deposit. This fundamental natural period 
depends on mechanical and geometrical characteristics of the layered soil deposit.  
 
Figure 113 presents an illustrative example of the soil response (soft soil) due to the passage of a 
truck at a distance of approximately 30 m from the receiver. The figure clearly shows an 
amplification of the soil response for the frequency range 4 Hz <  𝑓 <  7 Hz. This frequency 
range is generally within the frequency range of the eigenmodes of a truck, which are in the 
frequency range 1 Hz <  𝑓 <  15 Hz (see 3.3 Road Traffic Induced Vibrations – Scientific 
Prediction Model). However, the strong peak at 𝑓 = 5 Hz indicates some sort of resonance 
behaviour of the soil. This can be explained by the fact that for that particular frequency, the 
excitation frequency and the dominant frequency of the soil deposit are very close to each 
other, resulting in a strong magnification of the soil response. It is interesting to see in advance 
of the design process of a structure at which frequency the soil response is likely to be 
amplified strongly. The designer should then make sure that the eigenfrequencies of the 
structural system are far away from that dominant frequency of the soil deposit. 
 

 
Figure 113. Illustrative soil response for soft soil deposits excited by a passing truck at a particular distace 

from the road 

According to the paper ‘Computation of Fundamental Period of Soil Deposit: A Comparative 
Study’ (Vijayendra, Prasad, & Nayak, 2010), the fundamental period of a soil deposit is 
dependent on its thickness, low strain stiffness and density. The paper discusses different 
methods to determine an approximate value for the fundamental natural period of the soil. A 
very brief summary is given in this section. 

Fundamental natural period of homogeneous soil deposits 
For the case of homogeneous soil deposit overlying rigid bedrock, with a constant shear wave 

velocity profile throughout its depth 𝐻, the natural period 𝑇𝑛 corresponding to the 𝑛𝑡ℎ mode of 
vibration is given by: 
 

 𝑇𝑛 =
4𝐻

(2𝑛 − 1)𝑐𝑠
 (0.34) 
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Hence, the natural period 𝑇 corresponding to the fundamental mode (𝑛 = 1) is given by: 
 

 𝑇𝑛 =
4𝐻

𝑐𝑠
 (0.35) 

Fundamental natural period of non-homogeneous soil deposits 
Several procedures are discussed in the paper (Vijayendra, Prasad, & Nayak, 2010) for 
computing the fundamental natural period of a non-homogeneous soil deposit. The most 
simple method is less accurate than the other methods, but requires much less elaborated 
work. Therefore, only the simplest method is given here for use in preliminary design stages 
only.  
In case of stratified soil deposits, made of several layers with different soil properties, the 
fundamental period of the entire deposit is usually computed using the equivalent shear wave 
velocity 𝑐𝑠 of the deposit which is calculated using weighted average of shear wave velocities of 

the individual layers. If ℎ𝑖 is the uniform thickness of the 𝑖𝑡ℎ layer and its average shear wave 
velocity is (𝑐𝑠)𝑖, then the equivalent shear wave velocity of the deposit consisting of 𝑚 layers is 
calculated as: 
 

 
1

𝑐𝑠
=
1

𝐻
(∑

ℎ𝑖
(𝑐𝑠)𝑖

𝑚

𝑖=1

) (0.36) 

 
Substituting 𝑐𝑠 in the equation of 𝑇𝑛, the fundamental natural period of the deposit can be 
computed as: 
 

 𝑇 = 4(∑
ℎ𝑖
(𝑐𝑠)𝑖

𝑚

𝑖=1

) =∑∆𝑇𝑖

𝑚

𝑖=1

 (0.37) 

 
where ∆𝑇𝑖 (𝑖 = 1,2,… .𝑚) are the natural periods of each of the layers in the deposit.   
 

1.4. Wave Barriers 
The rectangular wave barrier (open or infilled trenches), frequently used in engineering 
practice, reduces the ground vibration by interception, scattering and diffraction of the surface 
(Rayleigh) waves of relatively small wave lengths. Properly designed open or infilled trenches 
can be used for an effective vibration isolation (or screening) system.  
This section describes the results of some researches performed concerning the effectiveness of 
the wave barrier as mitigation measure for ground-borne vibrations. First the research by T.M. 
AI-Hussaini and S. Ahmad concerning research of trenches in a 2D homogeneous soil 
halfspace will be considered. Thereafter the Master thesis research by A. de Zeeuw concerning 
wave barriers in layered soils is briefly discussed and finally the efficiency of wave barriers as 
subject of the research of J.M.O. Barbosa is regarded. 

1.4.1. Simple design methods by T.M. AI-Hussaini and S. Ahmed 
The following text summarizes the research performed by T.M. AI-Hussaini and S. Ahmad (AI-
Hussaini & Ahmad, 1991) who presented models involving simple algebraic formulas for the 
design of rectangular wave barriers in homogeneous soil deposits. Vibration screening by open 
trenches in layered soils was also studied to identify the effects of layering on vibration 
screening. Since the research was performed for homogeneous soil deposits, with a relatively 
high excitation frequency (50 Hz), it must be noted that the algebraic formulas may not 
represent a realistic isolation behaviour for stratified soils excited by traffic induced vibrations. 
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For the research performed a rigorous 2D Direct Boundary Element method based on infinite-
plane fundamental solution (in frequency domain) is used for the study. The depth, width and 
the distance of the trench are normalized with respect to the Rayleigh wavelength 
(Rayleigh wavelength = 𝜆𝑅 = 𝐿𝑟 ;   𝐷 = 𝑑 𝐿𝑟⁄ ;  𝑊 = 𝑤 𝐿𝑟⁄ ;  𝐿 = 𝑙 𝐿𝑟⁄ ), see Figure 114.  
 

 

Figure 114. Schematic diagram of the problem studied: Passive vibration isolation by rectangular 
trenches in a viscoelastic halfspace (AI-Hussaini & Ahmad, 1991) 

Screening of vertical vibration - open trench 
The normalized width of the trench 𝑊 is of very little importance except for shallow 
(normalized) depths (𝐷 <  0.8). For shallow depths, increase in width, in general, results in 
better performance of the trench. Considering narrow open trenches (𝑊 =  0.1 to 0.3), the 
simple expression: 
 

 𝐴𝑟 ≅
1

6
(𝐷)−1.07 (0.38) 

 
may be used to represent the screening effectiveness of open trenches in the entire depth 
range of D = 0.4 to 2.0.  

Screening of vertical vibration - infilled trench 
For an infilled trench both 𝐷 and 𝑊 appear to be equally important. For efficient design 𝐷 
should not be more than 1.2 ∙ 𝐿𝑟 (Figure 115 and Figure 116). Vibration screening effectiveness 
of an infilled trench directly depends on the contrast (physical anomaly) in the material 
properties of the trench material and the soil. Increase in 𝑉𝑠𝑡/𝑉𝑠𝑠 -ratio (= shear wave velocity 
of trench material / shear wave velocity of soil) results in better vibration screening. This 
means that a material of higher shear modulus provides greater resistance to the incoming 
wave. It is recommended that the 𝑉𝑠𝑡/𝑉𝑠𝑠 -ratio should at least be 2.5. Also increased density of 
the trench material contributes to its screening efficiency. The simple model developed 
describes the average amplitude reduction ratio Ā𝑟𝑣 due to an infilled trench, for 𝐷 < 1.2, 
according to: 
 
 Ā𝑟𝑣 = 𝐼𝑠𝐼𝑣𝐼𝑑𝐼𝑎 (0.39) 
 
where: 
𝐼𝑠 = shape factor (see Figure 116, a function of both 𝐷/𝑊 and 𝐴) 

𝐼𝑣 = velocity factor, for 𝑉𝑠𝑡 𝑉𝑠𝑠⁄ > 2.5, 𝐼𝑣 = [𝑉𝑠𝑡 𝑉𝑠𝑠⁄ ]𝑛, where 𝑛 = 0.54 ∙ 𝐴 
𝐼𝑑 = density factor: 𝐼𝑑 = [𝜌𝑠/𝜌𝑡]

𝑚, where 𝑚 = 0.94 ∙ 𝐴 

𝐼𝑎 = area factor: 𝐼𝑎 = 0.57 · (𝐴)
−0.25 

𝐴 = normalized cross-sectional area: 𝐴 = 𝐷𝑊 = 𝑑𝑤/𝐿𝑟
2  
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Figure 115. Influence of normalized trench depth and width for concrete (infilled) trench  (AI-Hussaini & 
Ahmad, 1991) 

 

Figure 116. Influence of D/W ratio in the vibration screening by a concrete trench (AI-Hussaini & 
Ahmad, 1991) 

Screening of vertical vibration - open trench in layered soil 
A layered soil problem differs from the corresponding homogeneous half-space problem 
principally in two aspects. First, significant wave energy can be reflected from the layer 
interface back to the upper layer. Secondly, if the bottom layer is close to the ground surface, a 
significant part of the Rayleigh wave travels in the bottom layer. The conclusions may be 
summarized as follows: 

 If the lower layer has a lower stiffness than the upper layer, the effect of layering can be 
ignored.  

 If the lower layer has a higher stiffness than the upper layer, the effect of layering needs to 
be considered, because it reduces the screening effectiveness. However, at a 𝐻 value of 8.0 
(or more), the effect of layering is zero. In fact, the effect gets diminished drastically at a 𝐻 
value of around 6.0. Compared to a corresponding half-space problem, trenches need to be 
built deeper. Especially for 𝑉𝑠1/𝑉𝑠2 values (shear wave velocity ratio of top to bottom layer) 
smaller than around 0.7 −  0.75, trenches may have to be built deep down (𝐷 =  𝐻 + 1.0) 
into the lower layer to achieve a good isolation effect (Ā𝑟𝑣 value of 0.25 or less). When the 
top layer is shallow, such as 𝐻 = 0.5, and the lower layer is much stiffer (𝑉𝑠1/𝑉𝑠2 = 0.25), 
one needs to consider the trench depth in terms of the wavelength for the lower layer.  

Screening of horizontal vibration – infilled trench 
Similar to the case of vertical vibration screening, 𝑊 and 𝐷 appear to be equally important 
parameters. Considering design efficiency, depths greater than 1.5 or smaller than 0.6 are not 
considered. The amplitude reduction ratio for concrete infilled trenches can, be uniquely 
related to the cross-sectional area according to: 
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 Ā𝑟ℎ ≅ 0.4 ∙ (𝐴)
−0.33 (0.40) 

 
Increase in the ratio 𝑉𝑟𝑡/𝑉𝑟𝑠 of the Rayleigh wave velocity of the trench to that of the soil, 
results in better screening. The amplitude reduction ratio appears to decrease linearly with the 
density ratio 𝜌𝑡/𝜌𝑠 of the trench material and the soil. The simple model expresses the average 
amplitude reduction ratio for 0.6 <  𝐷 <  1.5 by: 
 
 Ā𝑟ℎ = 𝐼𝑎𝐼𝑣𝐼𝑑 (0.41) 
where: 
 

𝐼𝑎 = area factor: 𝐼𝑎 = 0.4 · (𝐴)
−0.33 

𝐼𝑣 = velocity factor, 

for  𝑉𝑟𝑡 𝑉𝑟𝑠⁄  > 4.72, 𝐼𝑣 = 1.0 

for 2.63 < 𝑉𝑟𝑡 𝑉𝑟𝑠⁄  < 4.72, 𝐼𝑣 = 1.0 + 𝑚(4.72 −
𝑉𝑟𝑡

𝑉𝑟𝑠
⁄ )/𝐼𝑎 

for  𝑉𝑟𝑡 𝑉𝑟𝑠⁄  < 2.63, 𝐼𝑣 = 1.0 + (2.09𝑚 + 0.92 (
𝑉𝑟𝑡

𝑉𝑟𝑠
⁄ )

−0.58

− 0.526)/𝐼𝑎 

where,  𝑚 = 0.006 + 0.0382(𝐴) 

𝐼𝑑 = density factor: 𝐼𝑑 = 1.0 − 0.24(
𝜌𝑡
𝜌𝑠⁄ − 1.37)/𝐼𝑎 

𝐴 = normalized cross-sectional area: 𝐴 = 𝐷𝑊 = 𝑑𝑤/𝐿𝑟
2  

Conclusions by T.M. AI-Hussaini and S. Ahmed 
The results predicted by the simple models, for trenches in homogeneous soils, compare 
favourably well with those obtained by rigorous numerical methods and available experimental 
data. The study identifies the important dimensionless parameters that control the 
effectiveness of a vibration screening system.  
 

1.4.2. Optimization of wave barriers in layered soils by A. de Zeeuw 
A. de Zeeuw performed a research for his Master thesis in Civil Engineering concerning the 
effectiveness of wave barriers in 2D layered soils when excited by a vertical harmonic point 
load at the surface. The soil is considered to be undamped.  

Wave barrier in a two-layered soil 
The 2D two-layered soils consist of a soft upper layer and a stiffer underlying halfspace (Figure 
117 and Figure 118). 

 
Figure 117. Inner FEM domain of the two-layered soil profiles. Left: shallow upper layer. Right: deep 

upper layer (de Zeeuw, 2018) 

According to the research the following conclusions can be made regarding the effectiveness of 
wave barriers in 2D two-layered soils when excited by a vertical harmonic point load at the 
surface: 

 The effectiveness of the wave barrier was sensitive to changes of the interface depth.  
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 Most of the energy from the loading is propagated in two wavetypes: a Rayleigh wave and a 
shear wave.  

 The Rayleigh wave is propagating along the surface.  

 Most energy of the shear wave is propagating at an angle of around 40 to 45 degrees.  

 Much of the energy propagating as a shear wave is reflected from the interface upwards.  

 The barrier shows a diminished effectiveness resulting from deviations in the interface 
depth.  

 

 
Figure 118. Displacement amplitude �̂�𝒓𝒆𝒂𝒍(𝜇m/kN) for wave barrier optimized for 50 Hz. Left: �̂�𝒓𝒆𝒂𝒍 for 

optimized wave barrier in homogeneous soil. Middle: �̂�𝒓𝒆𝒂𝒍 for homogeneous-soil-optimized wave 
barrier in layered soil. Right: �̂�𝒓𝒆𝒂𝒍 for optimized wave barrier in layered soil model (de Zeeuw, 2018) 

Wave barrier in a three-layered soil 
The 2D three-layered soils consist of a stiff top soil layer on a soft intermediate layer and a 
stiffer underlying halfspace (Figure 119 and Figure 120). 
 
According to the research the following conclusions can be made regarding the effectiveness of 
wave barriers in 2D three-layered soils when excited by a vertical harmonic point load at the 
surface: 

 An optimization objective function for a receiver at the surface only can result in a wave 
barrier that decreases the energy at the surface, while increasing the energy below the 
surface.  

 For the optimized wave barrier, much of the energy appears to be continuously reflected 
within the softer layer, never reaching the surface (Figure 120). This is possible for shear 
waves approaching the interface at an angle lower than the critical angle, resulting in a full 
reflection as a shear wave. 

 The diminishing effect of the barrier in a three-layered soil with deviation of the interface 
depth is larger than for a two-layered soil.  
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Figure 119. Inner FEM domain of the three-layered soil profile (de Zeeuw, 2018) 

 
Figure 120. Displacement amplitude �̂�𝒓𝒆𝒂𝒍(𝜇m/kN) for wave barrier optimized for 50 Hz. The embedded 

softer soil layer is used as a waveguide (de Zeeuw, 2018) 

Optimized wave barrier in layered soil 
Several optimization algorithms have been used to come to a new form of a wave barrier, 
optimized for the particular two-layered soil as described before. The final simplified wave 
barrier, which also takes manufacturability into account, has a relatively simple design while 
still providing a significant reduction of the vibration level at the receiver. The design is 
essentially a combination of two straight vertical barriers connected horizontally at the 
surface, see Figure 121, where FwAVG indicates the vibration level reduction at receivers at the 
soil surface due to that specific wave barrier.  
 

 
Figure 121. The shape of optimized wave barriers in a two-layered soil with increasing level of 

manufacturability with the soil interface at 10 m depth (de Zeeuw, 2018) 

However, for the three-layer soil case it appears that, when taking into account the vertical 
optimization constraints, the reference barrier is in fact the optimal topology (Figure 122).  
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Figure 122. The shape of optimized wave barriers in a three-layered soil with increasing level of 

manufacturability (de Zeeuw, 2018) 

1.4.3. Effectiveness of wave barriers by J.M.O. Barbosa 
According to João Manuel de Oliveira Barbosa (Barbosa J. , 2013), who researched wave 
propagation induced by railway traffic, countermeasures at the propagation path have the goal 
to impede the waves of reaching a building, or at least, reducing the amplitude of the incident 
vibrations. The most common strategies are: subgrade stiffening; WIBs (wave impeding block); 
trenches and row of piles.  
Subgrade stiffening consists of stiffening the soil in the proximity of the tracks, usually though 
jetgrouting or soil mixing techniques, which results in the reduction of the vibrations that are 
induced in the ground.  
WIBs may be constructed beneath the track (active isolation) with the intention of replicating 
a rigid base, resulting in the decrease of the cut-off frequency of the foundation and in the 
attenuation of vibrations below this frequency, or under the building (passive isolation), with 
the purpose of deflecting waves that are about to impinge the building.  
Trenches and row of piles are used to reflect surface waves and, like WIBs, can be bored or 
driven near the track (active isolation) or near the building that is going to be shielded (passive 
isolation). Their efficiency largely depends on the depth, and so, for moderate dimensions, 
they are merely suitable for reducing the vibrations at medium and high frequency ranges.  
 
Several studied scenarios that focus on the reduction of vibrations through the use of trenches 
can be divided, according to the nature of the source, into mitigation of vibrations induced by 
standing loads or moving loads. The difference between the two resides in the vibration field 
that is induced in the ground. For a standing source, the ground responds with the same 
frequency as the excitation, while for moving loads the ground responds in a range of 
frequencies that depend on the speed of the source and on its frequency content (Doppler 
effect). 
 
Vibrations induced by heavy traffic driving over an unevenness in the road are composed of 
both types. The standing source vibration field is induced by the impulsive load when the 
vehicle ascends and descends on the unevenness. However, the fact that the vehicle moves 
with a certain speed causes the creation of a vibration field of a moving load.  
 
Works of (Ahmad and Al-Hussaini, 1991; Alzawi and Hesham El Naggar, 2010; Celebi et al., 
2009; Klein et al., 1997; Murillo et al., 2009; Ahmad et al., 1996; Beskos et al., 1986; Dasgupta et 
al., 1990; Hung and Ni, 2012; Leung et al., 1990; Shrivastava and Kameswara Rao, 2002; Yang 
and Hung, 1997; Celebi and Kirtel, 2012) indicate the following aspects as those that 
significantly influence the efficiency of trenches: 

 Trench dimensions (depth and width): for open trenches only, the depth plays a role, while 
for in-filled trenches both dimensions matter. 
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 Properties of the in-fill material: open trenches perform better than in-filled trenches but 
their application in practical situations is complex due to the need of support of the trench 
walls.  

 Properties and stratification of the soil: wave propagation in the soil depends on the 
stratification, and consequently so does the behaviour of trenches; nevertheless, the 
stratification of the soil can be neglected if the lower layers are softer than the upper layers.  

Study linear homogenous halfspace 
The study performed by Barbosa concerns the far field (𝑙 = 5𝜆𝑅, where 𝑙 is the distance 
between the source and the trench).  
 
For a study performed of a trench in a linear homogeneous halfspace with trench dimensions: 
𝑑 = 1.0𝜆𝑅 and 𝑤 = 0.1𝜆𝑅, and the trench positioned at 𝑙 = 5𝜆𝑅 from the source, the resulting 
reduction ratio for the soil vibration amplitude is given in Figure 123. 
 

 
Figure 123. Reduction ratio 𝐴𝑟 for an open trench as a function of the distance from the source. The 

different lines represent different calculation methods, but appear to be very similar (Barbosa J. , 2013) 

It can clearly be observed that the vibration level just before the trench is significantly 
amplified due to reflections. However, for the field behind the trench the amplitude of the soil 
vibration is significantly reduced and is only 25 % compared to the case without a trench.  
 
It was also concluded that, for an open trench, increasing the depth above 𝑑 = 1.0𝜆𝑅 does not 
seem to result in a considerable change of the trench efficiency. For a trench filled with a soft 
material the maximum reduction is reached with a trench depth of about 𝑑 = 0.5𝜆𝑅. For a 
trench filled with a stiff material the maximum reduction is reached with a trench depth 
deeper than 𝑑 = 1.5𝜆𝑅.  
 
When considering a change in the width of the trench it was concluded that for the open 
trench, the width does not have a significant influence, while for the in-filled trenches, the 
increase of the width leads, in general, to an increase of the trench performance. The optimal 
width is 𝑤 = 1.2𝜆𝑅 for the soft in-fill material and 𝑤 = 1.0𝜆𝑅 for the stiff in-fill material. 
 
The stiffness of the in-fill material should preferably be lower than the soil stiffness. However 
also for in-fill materials that are stiffer than the soil it holds that the stiffer the material, the 
more reduction can be achieved (Figure 124). Also, the density of the in-fill material influences 
the behaviour of the trenches considerably. While for soft in-fill materials a lighter material is 
beneficial, for stiffer materials it is convenient to have high densities. The density has more 
influence on the behaviour of the stiff material than on the behaviour of the soft material.  
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Note that these conclusions are based on the case for a linear homogeneous halfspace with a 
very deep and wide trench (𝜆𝑅 ≈ 15 𝑚), while in a realistic situation the soil is layered, and the 
trench will rarely be this (deep and) wide.  
 

 
Figure 124. Reduction ratio 𝐴𝑟 as a function of the stiffness of the in-fill material over the stiffness of the 

soil (Barbosa J. , 2013) 

Influence stratification of halfspace 
The homogenous halfspace is replaced by a layer on top of a halfspace. The thickness of the 
layer is 𝐻 = 𝜆𝑅. When the lower halfspace is stiffer than the upper layer the stratification 
considerably changes the behaviour of the trenches. The influence of stratification is more 
noticeable for the open trench than for the in-filled trenches.  
 
It must be noted that each parameter is studied independently of the others, and so, if more 
than one parameter varies in each study, different conclusions may be reached. Also, the 
studies performed concern standing line loads only. In the case of moving loads, the response 
of the ground is characterized by a wide frequency band and so the dimensionless study 
becomes difficult because the trench performs differently for every frequency.  

Trenches for the mitigation of train induced vibrations 
The following conclusions are achieved: 

 Neglecting the train tracks leads to higher vibration levels in the soil surface (at least for 
short and medium distances) and to lower efficiency of trenches. Thus, its inclusion in the 
numerical model is necessary to assess the need for mitigation measures. 

 The presence of the trench (causing wave reflections) does not influence the train-track 
interaction phenomenon.  

 The behaviour of trenches when acted upon by moving loads is very different from their 
behaviour when acted upon by 2D line loads. In fact, 2D simulations tend to underestimate 
the efficiency of trenches, and that is more pronounced for concrete trenches than for 
geofoam trenches.  

 Ranking the in-fill materials according to the efficiency of the trench, from the 2D 
simulations open trenches are placed first, geofoam trenches second, and concrete 
trenches in last place, while from the 3D simulations concrete trenches and open trenches 
come together in the first place, and geofoam trenches are placed last clearly. 
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The efficiency of trenches 
The trench solutions are compared based on the insertion loss (IL) and on the running root 
mean square (RRMS) of the vertical velocity induced by the passage of the train. The IL curves 
show that above the frequency 10 Hz, the displacements are attenuated for all trench solutions 
(Figure 125). For this frequency the Rayleigh wavelength is 18 m, while the depth of the shallow 
trench (3 m) is only 1/6 of the Rayleigh wavelength. Still the shallow trenches are able to 
reduce the vibrations.  
Also, based on the IL plots, the 6 m deep trenches tend to perform better than the 3 m deep 
trenches, as expected. For the ranking of the in-fill material it is concluded, based on the 3D 
analyses, that concrete trenches come first, empty trenches come second, though very close to 
the concrete trenches, and geofoam trenches come last, way below the other two. This ranking 
differs from the results of the 2D analyses, for which the open trenches come first, geofoam 
trenches come second, and concrete trenches get last place.  
 

 
Figure 125. Typical figure for the insertion loss (IL) of the 3D analyses for different in-fill materials and 

depths of the trench (Barbosa J. , 2013) 

The reason why the concrete trenches outperform the geofoam trenches when acted upon by 
moving loads (as opposed to what happens in the 2D simulations) is related to their high 
bending stiffness. The transmission of plane waves in the soil with a longitudinal wavelength 
smaller than the longitudinal bending wavelength of the barrier is hindered. In other words, 
when the longitudinal wavelength 𝜆𝑦 of a propagating wave is smaller than the free bending 

wavelength in the barrier 𝜆𝑦𝐵, but not shorter than the Rayleigh wavelength of the soil 𝜆𝑅, then 

the waves are reflected at the barrier due to its bending stiffness. In plane strain conditions 
(2D), the wavelength is infinite and so the bending stiffness has no influence, but in 3D 
conditions, waves can propagate in all directions and so surface waves that propagate with an 
angle 𝜃 such that sin 𝜃 > 𝜆𝑅 𝜆𝑦𝐵⁄  are reflected by the trench. The reflecting property supports 

the idea that 2D simulations are not sufficient to predict with enough accuracy the abatement 
of vibrations induced by moving loads, since the obtained results will tend to underestimate 
the actual reduction.  

1.4.4. Conclusion wave barrier 
The stratification of the soil makes that a wave barrier can perform very different from the case 
in which a wave barrier is used in a homogeneous soil halfspace. However, in all studies it is 
observed that the wave barrier does decrease the vibration levels in the soil in the close 
proximity behind the wave barrier. Since the vibration reduction holds for the soil right behind 
the wave barrier only, and since the vibration levels in the soil surrounding this ‘shadowed’ 
region can exhibit amplified vibration levels, it is advised to make the depth of the wave barrier 
always as deep, or deeper, than the toe of the foundation piles underneath the structure.  
The reduction factor created by the wave barrier cannot easily be determined and depends on 
the situation.  



Appendices 

 

169 

D. Appendix: Extensive overview of Chapter 5 ‘Structural System (Receiver of 
Vibrations)’ 

 
The system to be considered for this thesis is a system with multiple degrees of freedom 
(MDoF). However, to remind the reader of the particularities of the dynamic response of a 
system, first a brief overview of the simple case of a single degree of freedom (SDoF) is 
presented. Thereafter the simple single degree of freedom case is extended to the case of a two 
degree of freedom system (which is already a multi-degrees of freedom system). After this 
introduction of a multi-degrees of freedom system, the two degree of freedom system is 
extended to a 𝑛-multi-degrees of freedom system. Finally, the case of continuous systems is 
briefly discussed. This system may be referred to as a 𝑛-multi-degrees of freedom system where 
𝑛 goes to infinity.  All systems discussed in this thesis are supposed to be linear. This is 
justified by the fact that the vibration levels considered for vibration sensitive laboratory 
structures are relatively small so that all materials remain in their linear elastic state.  
 
The structure considered in this thesis will then be simplified to a system which can be 
composed of the multi-degrees of freedom systems described in the preceding sections.  
 

1.1. Simplification Laboratory Structure 
The laboratory structure is simplified to a system that can be solved by established methods 
for structural dynamics. Since a laboratory structure has such strict vibration level criteria, the 
structure is often made very stiff in order to realize a system with natural frequencies higher 
than the fundamental excitation frequency. The most straightforward approximation one can 
make for such a structure is, therefore, a rigid slab or a rigid box volume (depending on the 
design) which has only three degrees of freedom: two translational (horizontal and vertical) 
and one rotational (rocking). This system is often referred to as a multi-degrees of freedom 
system (MDoF system).  
 
However, due to this simplification, only the global modal shapes of the system can be 
determined. In reality, the floors and walls are not infinitely rigid, but are flexible, which 
causes these elements to undergo local modal shapes. These local modal shapes, for example, 
the natural frequencies of the floors and the walls are neglected, while these natural 
frequencies are often different than the natural frequencies of the global rigid system. 
Therefore, in order to make a proper estimation of the vibration levels of one floor, on which 
the laboratory equipment is placed, the local modal shapes should also be taken into account. 
Since these local modal shapes makes the interaction (chapter 6 Soil-Structure Interaction) 
between the structure and the soil mathematically very complicated, the interaction is only 
based on a rigid slab of rigid box volume. Then the response of this rigid structure is 
determined. Once the response of the rigid structure is known, the local elements, e.g. the 
floors are analysed separately. The excitation of these local elements is approximated by the 
response of the rigid structure, and this excitation is implemented as initial conditions for the 
local element.  
 

1.2. Single Degree of Freedom system 
Before hopping into the mathematics of the multi-degrees of freedom system (MDoF system), 
the simpler case of a single degree of freedom is briefly discussed to explain the fundamentals 
of the dynamic characteristics of a structure. The reader is expected to have some knowledge 
about the mathematical approach to such kind of systems, therefore only a brief explanation is 
given here. In case the reader wants to know more in-depth theory, he or she is kindly referred 
to the lecture notes of the Technical University Delft about Structural Dynamics, with course 
codes CT4140 (Spijkers, Vrouwenvelder, & Klaver, 2005), CT4145 (Metrikine, 2018) and CIE 
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5260 (Tsouvalas, 2018). The following text is a brief summary of the theory explained in these 
lecture notes.  

1.2.1. Governing equations 
To determine the dynamic response of a structural system, first the governing equations 
should be determined. This procedure can be done following different kind of methods. The 
most applicable methods for a single degree of freedom are the Displacement method and the 
Lagrangian formalism. For now, only the displacement method will be considered, since this 
method is very suitable for the structure subjected in this thesis and this method directly 
provides the stiffness matrix. 

1.2.2. Undamped free vibration 
First the most simple case of a single degree of freedom (SDoF) will be considered: the free 
vibration of un undamped system (Figure 126) where the loading term 𝐹(𝑡) is zero. 
 

 
Figure 126. Idealization of horizontal motion of an offshore platform, excited by waves, by a mass-spring 

system with a translational degree of freedom (in 𝑥 − direction) (Metrikine, 2018) 

By applying the displacement method (displace the mass in the direction of the degree of 
freedom and write the equilibrium equations for the dynamic forces), the following equation 
of motion for the mass-spring system, which is a second ordinary linear differential equation, 
is obtained: 
 
 𝑚�̈� + 𝑘𝑥 = 0 (0.42) 
 
The system can only move if given an initial displacement or/and an initial velocity: 
 

 
𝑥(0) = 𝑥0 
�̇�(0) = 𝑣0 

(0.43) 

 
where the dot above the translational degree of freedom (displacement) means the first 
derivative of this DoF (two dots means the second derivative of this DoF), thus, in this case, 
velocity. 
 
The general solution of an ordinary linear differential equation of 𝑁 − 𝑡ℎ order with constant 
coefficients can be written as: 
 

 𝑥(𝑡) = ∑𝑋𝑛

𝑁

𝑛=1

exp (𝑠𝑛𝑡) (0.44) 

 
Substitution of this general solution in the equation of motion, and simplifying the expression, 
one obtains the characteristic equation: 
 
 𝑚𝑠𝑛

2 + 𝑘 = 0 (0.45) 
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The characteristic exponents 𝑠𝑛 are the roots of this equation and read for this case: 
 

 𝑠1 = 𝑖√𝑘 𝑚⁄ , 𝑠2 = −𝑖√𝑘 𝑚⁄  (0.46) 

 
The general solution can then be written as: 
 

 𝑥(𝑡) = 𝑋1 exp (𝑖𝑡√𝑘 𝑚⁄ ) + 𝑋2 exp (−𝑖𝑡√𝑘 𝑚⁄ ) (0.47) 

 
and with the Euler formula: 
 
 exp(𝑖𝛼) = cos𝛼 + 𝑖 sin 𝛼 (0.48) 
 
the equation of the general solution can be written as: 
 
 𝑥(𝑡) = 𝐴 cos(𝜔𝑛𝑡) + 𝐵 sin(𝜔𝑛𝑡) (0.49) 
 
where 
 

 𝜔𝑛 = √𝑘 𝑚⁄  (0.50) 

 
is the natural frequency of the mass-spring system. This is the frequency, with which the mass-
spring system would vibrate given arbitrary initial conditions.  
The constants can be determined by substituting the general solution into the initial 
conditions. The expression then obtained is: 
 

 𝑥(𝑡) = 𝑥0 cos(𝜔𝑛𝑡) +
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡) (0.51) 

 
The free vibration looks like (Figure 127): 

 
Figure 127. The free vibration of the undamped mass-spring system (Metrikine, 2018) 

1.2.3. Undamped forced vibration 
The previously considered case was a state of free vibration, i.e. the loading term was zero. The 
obtained results indicate the characteristics of the system, independent of any loading applied. 
However, when a force is applied the dynamic response of the system is altered. First the case 
of a harmonic loading is considered, since any time-dependent force can be represented as a 
superposition of harmonic forces with different amplitudes and phases. Thus, the dynamic 
behaviour of the mass-spring system under a harmonic force may be considered as a 
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fundamental knowledge, which facilitates understanding of the behaviour of the system under 
a force of arbitrary time signature. Thereafter, the more general loading case of arbitrary 
loading is considered.  

Harmonic loading 
Assume the external harmonic loading to be applied at the single degree of freedom as 
illustrated in Figure 126. The obtained equation of motion then is: 
 

 𝑚�̈� + 𝑘𝑥 = 𝐹0 cos(𝜔𝑡) (0.52) 
 
The general solution for this equation of motion is in the form of a homogeneous solution (the 
solution for the free vibration) plus a particular solution. Again, the unknown constants 
depend on the initial conditions. The finally obtained general solution is of the form: 
 

 𝑥(𝑡) = 𝑥0 cos(𝜔𝑛𝑡) +
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡) +
𝐹0
𝑘

1

1 − 𝜔2/𝜔𝑛
2 (cos(𝜔𝑡) − cos(𝜔𝑛𝑡)) (0.53) 

 
This expression shows that the mass-spring system vibrates at two frequencies, one being the 
natural frequency 𝜔𝑛 and the other being the frequency 𝜔 of the external force.  
 
After a sufficiently long time, the dynamic behaviour of the mass-spring system subjected to a 
small damping (not yet taken into account here) is approximately described by the particular 
solution only. In this case the solution is called the steady-state solution and it is independent 
of the initial conditions. The steady-state solution for this problem reads: 
 

 𝑥𝑠𝑡𝑒𝑎𝑑𝑦 = 𝑋 cos(𝜔𝑡) =
𝐹0
𝑘

1

1 − 𝜔2/𝜔𝑛
2 cos(𝜔𝑡) (0.54) 

 

When plotting 𝑋 𝑥𝑠𝑡𝑎𝑡𝑖𝑐 =⁄
1

1−𝜔2/𝜔𝑛
2 as function of 𝜔/𝜔𝑛 one obtains the resonance diagram 

(Figure 128). 

 
Figure 128. The resonance diagram of the forced single degree of freedom system (Metrikine, 2018) 

The amplitude- and phase-frequency dependencies are shown in Figure 129.  
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Figure 129. (left) Amplitude-frequency characteristic (magnification factor) and (right) phase-frequency 

characteristic (Metrikine, 2018) 

These figures indicate that for 𝜔 close to 𝜔 = 0, the loading frequency is extremely slow, and 
the mass will deflect by the force to its static deflection only.  
For very high frequencies 𝜔/𝜔𝑛 ≫ 1, the force changes its direction so fast that the mass 
simply has no time to follow and the amplitude of the response is very small.  
At 𝜔/𝜔𝑛 = 1, the amplitude of the response becomes infinitely large. The frequency of the 
force coincides exactly with the natural frequency of the system, therefore, the force can push 
the mass always in the direction in which the mass moves itself, thereby increasing the 
amplitude of vibrations indefinitely. This phenomenon is known as resonance. The amplitude 
of resonant vibrations grows in time linearly and the displacement of the mass-spring system 
increases to infinity (in the undamped case) (Figure 130). 
 

 
Figure 130. Development of resonance of the undamped forced single degree of freedom system in time 

(Metrikine, 2018) 

General disturbing force 
Next to a harmonic force, a general disturbing force can be taken into account in the 
mathematical formulation of the dynamical problem. This can be done by representing the 
force by Duhamel’s integral in which the (non-periodic) force is represented as a sequence of 
short impulses. The total response is obtained by a continuous superposition (integral) of the 
system responses to these impulses: 
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 𝑥(𝑡) = 𝑥0 cos(𝜔𝑛𝑡) +
𝑣0
𝜔𝑛
sin(𝜔𝑛𝑡) +

1

𝑚𝜔𝑛
∫ 𝐹(𝑡′) sin(𝜔𝑛(𝑡 − 𝑡′))𝑑𝑡′
𝑡

0

 (0.55) 

 
Another method is based on the application of the Laplace transform. The loading is 
represented as a continuous superposition (integral) of its harmonic components (instead of 
responses to the impulses) and the response to each of these harmonics can be found 
separately. The responses are then integrated by means of the inverse Laplace transform to 
give the dynamic response to the original non-harmonic load. This procedure is not further 
outlined here.  

1.2.4. Damped free vibration 
Every engineering system experiences damping that dissipates the energy of vibrations. Now 
the mass-spring system is considered to be subject to viscous damping, which is proportional 
to the velocity of the mass (Figure 131).  

 
Figure 131. A mass-spring-dashpot system with a translational degree of freedom (in 𝑥 − direction) 

(Metrikine, 2018) 

Again, by applying the displacement method, and writing the balance of forces, one obtains 
the following scalar equation, which has one additional term compared to the undamped case: 
 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹(𝑡) (0.56) 
 
The procedure of finding the homogeneous solution (the loading term 𝐹(𝑡) is zero) of this 
damped system is similar to the undamped system. However, different notations are 
introduced: 
 

 𝜔𝑛 = √𝑘 𝑚⁄ , 𝑐/𝑚 = 2𝑛 (0.57) 

 
Because of the damping parameter, the roots of the characteristic equation can become real 
(𝑛 > 𝜔𝑛), which represents a non-vibration (aperiodic) motion. The mass simply gradually 
creeps back towards the equilibrium position. However, in mechanics, more often the case is 
encountered in which (𝑛 < 𝜔𝑛), so that the roots are complex. The motion now is vibratory 
and the homogeneous solution, taking into account the initial conditions, is of the form: 
 

 𝑥(𝑡) = exp(−𝑛𝑡) (𝑥0 cos(𝜔1𝑡) + (
𝑣0
𝜔1

+
𝑛𝑥0
𝜔1
) sin(𝜔1𝑡)) (0.58) 

 
Due to the damping, the vibrations are attenuated over time (Figure 132). Thus, damping 
extracts energy from the system leading to a decay of the amplitude of vibrations. 
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Figure 132. Free vibration of the mass-spring-dashpot system in the case 𝑛 < 𝜔𝑛 (Metrikine, 2018) 

The period of vibration 𝑇 and its reciprocal, the frequency of vibration 𝑓1, depend on the 
damping parameter 𝑛: 
 

 𝑓1 = 𝑓𝑛 (1 −
𝑛2

2𝜔𝑛
2) , where   𝑓𝑛 =

𝜔𝑛
2𝜋
  (0.59) 

 

1.2.5. Damped forced vibration 
When taking into account the loading term, a similar approach is followed as for the 
undamped mass-spring system.  

Harmonic loading 
First the case of harmonic loading is considered again, and the equation of motion is: 
 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹0 cos(𝜔𝑡) (0.60) 
 
Again, the general solution is the summation of the homogeneous solution (see the case of free 
vibration before) and a particular solution. The amount of damping is represented by the 
parameter 𝛾 = 2𝑛 𝜔𝑛⁄ . The particular solution, in case of the harmonic loading, is of the form: 
 

 𝑥𝑝𝑎𝑟𝑡 =
𝑓0

(𝜔𝑛
2 −𝜔2) + 4𝑛2𝜔2

((𝜔𝑛
2 −𝜔2) cos(𝜔𝑡) + 2𝑛𝜔 sin(𝜔𝑡)) (0.61) 

 
The particular solution is the steady-state solution. When rearranging this expression, the 
magnification factor: 
 

 

|𝑋|

𝑥𝑠𝑡𝑎𝑡𝑖𝑐
=

1

√(1 −
𝜔2

𝜔𝑛
2) + 𝛾

2𝜔
2

𝜔𝑛
2

 
(0.62) 

 
and the phase lag can be platted as function of 𝜔/𝜔𝑛 for different amounts of damping (Figure 
133). 
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Figure 133. (left) Magnification factor and (right) Phase lag of the damped SDoF steady-state solution 

(Metrikine, 2018) 

Note that, compared to the undamped SDoF-case (Figure 129), the peak at 𝜔/𝜔𝑛 = 1 for the 
damped SDoF system does not go towards infinity anymore, but is finite.  

General disturbing force 
When considering the case of an arbitrary time dependence of the external forces, the total 
solution can be obtained in exactly the same manner as it was done for the undamped mass-
spring system, by using Dyhamel’s integral. The total solution takes the form: 
  

 

𝑥(𝑡) = exp(−𝑛𝑡) (𝑥0 cos(𝜔1𝑡) + (
𝑣0
𝜔1

+
𝑛𝑥0
𝜔1
) sin(𝜔1𝑡))

+
1

𝜔1
∫ 𝐹(𝑡′) exp(−n(t − t′))sin(𝜔1(𝑡 − 𝑡′))𝑑𝑡′
𝑡

0

 
(0.63) 

 
As example the case of an external force suddenly applied to the mass: 
 

 𝐹(𝑡) = {
0 𝑡 < 0
𝐹0 𝑡 ≥ 0

 (0.64) 

 
is considered. The obtained solution of the relative displacement 𝑥 𝑥𝑠𝑡𝑎𝑡𝑖𝑐⁄  is represented in 
Figure 134 as function of the dimensionless time 𝜏 for three values of the damping (𝛾).  
 

 
Figure 134. Response of a (damped) SDoF system to suddenly applied constant force (Metrikine, 2018) 
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1.3. Two Degrees of Freedom system 
Before only single degree of freedom systems have been discussed. This system enables us to 
explain the resonance phenomenon and to calculate the natural frequencies of a number of 
structures. However, most realistic structures have multiple degrees of freedom. In order to 
explain additional phenomenon that occur in case of multiple degrees of freedom, the theory is 
developed to more complicated systems. As a first step, we consider a system with two degrees 
of freedom, which will yield the explanation of most ‘vibration dampers’ applied in practice.  
The most general undamped two degree of freedom system can be schematized as in Figure 
135. 

 
Figure 135. Undamped two degrees of freedom system with spring coupling (Metrikine, 2018) 

Following the same principle as before, by applying the displacement method, two scalar 
equations are obtained: 
 

 
𝑚1�̈�1 + 𝑘1𝑥1 + 𝑘3(𝑥1 − 𝑥2) = 𝐹1(𝑡) 
𝑚2�̈�2 + 𝑘2𝑥2 + 𝑘3(𝑥2 − 𝑥1) = 𝐹2(𝑡) 

(0.65) 

 

1.3.1. Undamped free vibration 
Considering the undamped free vibrations of this system (the homogeneous solution), with the 
loading term 𝐹𝑖(𝑡) = 0,where 𝑖 = 1,2, the general solution can be written in the form similar to 
the SDoF system, but then for both degrees of freedom: 
 

 𝑥1(𝑡) = ∑𝑋𝑛
(1)

4

𝑛=1

exp(𝑠𝑛𝑡) , 𝑥2(𝑡) = ∑𝑋𝑛
(2)

4

𝑛=1

exp(𝑠𝑛𝑡) (0.66) 

 
Substituting the general solution into the equation of motion. The system of obtained 
equations has a non-trivial solution if the determinant of its coefficient matrix vanishes. This 
forms the characteristic equation of the two degrees of freedom system: 
 

 (𝑚1𝑠
2 + 𝑘1 + 𝑘3)(𝑚2𝑠

2 + 𝑘2 + 𝑘3) − 𝑘3
2 = 0 (0.67) 

 
This characteristic equation has two values of 𝑠2 as solutions. They are real and negative, so 
that the corresponding values of 𝑠 are all imaginary. This implies that the motion of the two 
degree of freedom system is vibratory and takes place at two distinct frequencies.  
 
The amplitudes of the free vibrations of the masses 𝑚1 and 𝑚2 are intrinsically related to each 
other. The free vibrations of the two degrees of freedom system are characterized by the 
natural frequencies and by the shapes of vibration at these frequencies, in case 𝑘1 = 𝑘2 = 𝑘, 
the natural frequencies are: 
 

 𝜔𝑛1 = √𝑘/𝑚, 𝜔𝑛2 = √(𝑘 + 2𝑘3)/𝑚 (0.68) 
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These shapes are normally referred to as normal modes and imply a specific motion of the 
masses with respect to each other (Figure 136).  
 

 
Figure 136. Normal modes of the undamped two degrees of freedom system. In mode 1, the two masses 
move in-phase with each other (𝑘3 is not stretched, nor compressed). In mode 2, the two masses move 

out-of-phase with each other (𝑘3 is stretched or compressed from both sides at the same time). 
(Metrikine, 2016)  

Another example is the two degree of freedom share frame in Figure 137 which is not further 
outlined here. 
 

 
Figure 137. Normal modes of the undamped two degrees of freedom system: the shear frame 

(Blauwendraad, 2016) 

The procedure can also be written in matrix notation, which is more convenient for the case in 
which more degrees of freedom in the system have to be considered: 
 

 𝑴�̈� + 𝑲𝑥 = 0 (0.69) 
 
And determining the determinant of this matrix: 
 

 det[−𝜔2𝑴+𝑲] = 0 (0.70) 
 
This is equivalent to finding the eigenvalues of the matrix 𝑲𝑴−1. The natural frequencies can 
be obtained in both ways. The normal modes of the free vibrations can be found by searching 
for the eigenvectors of the matrix 𝑲𝑴−1. 

1.3.2. Undamped forced vibration 
Now the case is considered in which a harmonic load is applied at one mass and the spring at 
the right-hand-side is not taken into account (Figure 138). The forced steady-state vibrations 
are considered. This vibration takes place at the frequency of the force.  
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Figure 138. Forced two degrees of freedom system. The vibrations absorber k-m is attached to the main 

system K-M (Metrikine, 2018) 

This auxiliary mass-spring system is normally referred to as an undamped dynamic vibration 
absorber. The parameters of the absorber (𝑘,𝑚) can be chosen such that the main system does 
not vibrate although it is subjected to the external harmonic force.  
Compared to the scalar equations obtained before (in correspondence with Figure 135), the 

following terms are interchanged: 𝑘1 = 𝐾, 𝑚1 = 𝑀, 𝐹0
(1)
= 𝐹0, 𝑘3 = 𝑘, 𝑘2 = 0, 𝑚2 = 𝑚,

𝐹0
(2)
= 0. 

Since no damping is considered in this steady-state-case, the masses vibrate with infinite 
amplitudes when the frequency of the force becomes equal to one of the two natural 
frequencies of the system (Figure 139). Furthermore, if the frequency of the force becomes 
equal to the natural frequency of the auxiliary system, the amplitude of the main system 
becomes zero.  
 

 
Figure 139. Displacement-frequency curves for the two degrees of freedom system (Metrikine, 2018) 

1.4. Multi-Degrees of Freedom system 
According to (Spijkers, Vrouwenvelder, & Klaver, 2005), many technical structures are so 
complicated that the dynamic behaviour of it cannot be described accurately with merely one 
or two degrees of freedom. Also, the structure to be considered in this thesis cannot be 
described by only one or two degrees of freedom. Therefore, in this section the two degrees of 
freedom system is expanded to the more general case of a 𝑛-multi-degrees of freedom system 
(MDoF system). The text is a brief summary of the very comprehensive explanation, given in 
the lecture notes Structural Dynamics CT 4140 – Part I Structural Vibrations of the Technical 
university Delft (Spijkers, Vrouwenvelder, & Klaver, 2005). 
Different methods can be used to determine the solutions of these kind of systems. However, 
the Modal Analysis is mostly used as the basis of many computer programmes to determine 
the natural frequencies and eigenvectors of the system.  
Due to the large number of degrees of freedom, it is more convenient to formulate the 
dynamic problem in matrix notation. However, when the number of degrees of freedom are 
limited (e.g. three DoF), the dynamic behaviour can be described quite accurately. This type of 
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structures will be applied to illustrate the theory with respect to the systems with 𝑛 degrees of 
freedom. Also, the rigid slab or box volume considered for this thesis will also have only three 
degrees of freedom.  

1.4.1. Differential equations (undamped case) 
Again, the displacement method is used. As an example, a block foundation with three degrees 
of freedom (in the plane of the drawing) is considered (Figure 140). The degrees of freedom are 
two translations and a rotation about the centre of gravity, all three measured with respect to 
the state of static equilibrium, so that the deadweight load (𝑚𝑔) does not play a role in the 
dynamic analysis. 

 
Figure 140. Foundation block with three degrees of freedom (Spijkers, Vrouwenvelder, & Klaver, 2005) 

The equations of motion can be noted down in matrix notation:  
 

 [
𝑚 0 0
0 𝑚 0
0 0 𝐽

] [

�̈�1
�̈�2
�̈�3

] + [

𝑘1 + 𝑘2 0 𝑎𝑘1 − 𝑏𝑘2
0 𝑘3 ℎ𝑘3

𝑎𝑘1 − 𝑏𝑘2 ℎ𝑘3 𝑎2𝑘1 + 𝑏
2𝑘2 + ℎ

2𝑘3

] [

𝑥1
𝑥2
𝑥3
] = [

𝐹1
𝐹2

𝐹3 + 𝑒𝐹1 − 𝑔𝐹2

] (0.71) 

 
or symbolically: 
 

 𝑴�̈� + 𝑲𝑥 = 𝐹 (0.72) 
 
For this 3DoF-case the mass and stiffness matrices are both symmetrical (3 x 3) matrices in 
which the mass matrix is a diagonal matrix. However, for a 𝑛MDoF system, the matrices are of 
the size (𝑛 x 𝑛). 

1.4.2. Undamped free vibration of a 𝒏MDoF system 
In the case the loading terms are zero, the 𝑛MDoF system undergoes only free vibrations. As 
homogeneous solution, a synchronic harmonic motion is assumed: 
 

 𝑥(𝑡) = 𝑥 sin(𝜔𝑡 + 𝜑) (0.73) 
 
This solution implies that all degrees of freedom vary in time in the same manner. The free 
vibration is called a principal mode (or normal mode) of vibration. The unknown amplitude 
vector 𝑥 is called an eigenvector.  

After substituting the proposed solution into the homogeneous system of equations, the 
generalized eigenvalue problem is obtained. A non-trivial solution will be found if the set of 
equations proves to be dependent, thus the determinant of the system should be equal to zero: 
 

 det[−𝜔2𝑴+𝑲] = 0 (0.74) 
 
with 𝜔2 representing the so-called eigenvalue. This leads to a polynomial of degree 𝑛 in 𝜔2, 
which is called the characteristic polynomial. The determination of the roots of the 
characteristic equation is often not possible without numerical methods. By the aid of the 
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computer the 𝑛 natural frequencies and 𝑛 associated eigenvectors of the system with 𝑛 degrees 
of freedom can be found, but are only determined up to scalar multiples (Spijkers, 
Vrouwenvelder, & Klaver, 2005). The eigenvectors represent the principal modes of vibration 
and are therefore often displayed graphically. So, for system with 𝑛 degrees of freedom, there 
appear to be 𝑛 principal modes of vibration (eigenmodes). The free vibration of the system is 
the summation of all possible eigenmodes. The remaining unknown constant can be found 
from the prescribed initial conditions.  
 
For the (forced) inhomogeneous problem. The vibrations are written in the more general form 
(no synchronous harmonic motion, but an arbitrary time function 𝑢𝑖(𝑡)): 
 

 𝑥(𝑡) =∑𝑥𝑢𝑖(𝑡)

𝑛

𝑖=1

 (0.75) 

 
The solutions for 𝑢𝑖 are derived from the following set of uncoupled homogeneous differential 
equations: 
 

 �̈�𝑖(𝑡) + 𝜔𝑖
2𝑢𝑖(𝑡) = 0, (𝑖 = 1,2,… , 𝑛) (0.76) 

 
The free vibration can be formulated symbolically by: 
 

 𝑥(𝑡) = 𝑬𝑢(𝑡) (0.77) 
 
Where the square (𝑛 x 𝑛) matrix 𝑬 is called the eigenmatrix and contains the eigenvectors as 
columns. This eigenmatrix plays an important role in solving the forced vibration (the 
inhomogeneous problem). 
 
For the foundation block example (𝑛 = 3), three natural frequencies and three eigenvectors 
can be determined, from which the first natural frequency is called the ‘fundamental natural 
frequency’.  

1.4.3. Undamped forced vibration of a 𝒏MDoF system by the Modal Analysis 
For the forced vibration of the 𝑛MDoF system a particular solution, next to the homogeneous 
solution, is considered. The particular solution is similar to the homogeneous solution, 
however, now the time function 𝑢𝑖(𝑡) is unknown: 
 

 𝑥(𝑡) = 𝑬𝑢(𝑡) (0.78) 
 
Here also a summation of synchronised motions is assumed. This assumption is the essence of 
the so-called Modal Analysis. In mathematical terminology, it is assumed that also in the case 
of forced vibration the response can be expanded in eigenvectors each weighed with an 
unknown time function.  
The assumed particular solution is substituted in the inhomogeneous set of differential 
equations and the orthogonality condition is used to decouple the degrees of freedom.  

Intermezzo: orthogonality conditions 
Eigenvectors possess two characteristic properties, which are known as the 
orthogonality conditions. With the orthogonality conditions, the Modal Mass 

Matrix (𝑴∗ = 𝑬𝑻𝑴𝑬) and the Modal Stiffness Matrix (𝑲∗ = 𝑬𝑻𝑲𝑬) can be 

introduced, where 𝑬 is the eigenmatrix and 𝑬𝑻 the transposed eigenmatrix.  
The following relation holds between the diagonal matrices 𝑴∗ and 𝑲∗: 
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𝜴𝟐𝑴∗ = 𝑲∗. Where 𝜴𝟐 is a diagonal matrix, with the eigenvalue 𝜔𝑖
2 as elements 

on the main diagonal 

 
The decoupled degrees of freedom 𝑢𝑖(𝑡), are also called Modal or Generalized degrees of 
freedom. A physical or geometrical interpretation of modal degrees of freedom is seldom 
available.  
 
For a load function which is equal to zero when 𝑡 <  0, a particular solution of the uncoupled 
set can be obtained by means of the integral of Duhamel. For the complete solution, the 
homogeneous solution and the particular solution are summed: 
 

 𝑢𝑖(𝑡) = 𝐶𝑖 sin(𝜔𝑖𝑡 + 𝜑𝑖) + ∫
𝑥𝑖
𝑇𝐹(𝜏)

𝑥𝑖
𝑇𝑴�̂�𝑖

𝑡

𝜏=0

1

𝜔𝑖
sin{𝜔𝑖(𝑡 − 𝜏)}𝑑𝜏 (0.79) 

 
The unknown constants are determined by the initial conditions. However, now the response 
is still described by the non-physical degrees of freedom 𝑢𝑖(𝑡). The response in the physical 
degrees of freedom 𝑥𝑖(𝑡) can be obtained by: 
 

 

𝑥(𝑡) =∑𝑥𝑢𝑖(𝑡)

𝑛

𝑖=1

= 𝑬𝑢(𝑡)

=∑{�̂�𝑖𝐶𝑖 sin(𝜔𝑖𝑡 + 𝜑𝑖) +
𝑥𝑖𝑥𝑖

𝑇

𝑥𝑖
𝑇𝑴𝑥𝑖

1

𝜔𝑖
∫ 𝐹(𝜏)
𝑡

𝜏=0

sin{𝜔𝑖(𝑡 − 𝜏)}𝑑𝜏}

𝑛

𝑖=1

 

(0.80) 

 
The method described is generally applicable and is more or less adapted for numerical 
computer applications. However, the procedure offers a structured method for hand 
calculations as well.  
 
The expressions shown might not give a very clear overview, however, summarizing the modal 
analysis, it entails finding the solution of the inhomogeneous coupled system. This comes 
down to solving a decoupled set of differential equations formulated in the modal degrees of 
freedom. This uncoupled system is derived by assuming that the forced vibration can be 
written as a summation of eigenvectors; in other words: the response can be expanded in 
eigenvectors (the so-called Modal Analysis) (Spijkers, Vrouwenvelder, & Klaver, 2005). 
 

1.4.4. Harmonic loads for a 𝒏MDoF system 
When analysing the response of the system to a harmonic load function (with loading 
frequency Ω), the particular solution is assumed to be also a harmonic time function, having 
the same frequency as the load function. The amplitude of the particular solution can be 
determined by substitution into the decoupled system.  
As example, it is considered that a harmonic loading is applied at one degree of freedom only, 
in this case, the degree of freedom 𝑥𝑝. The amplitude of the response �̂�𝑖 can be obtained and 

the frequency response function 𝐻𝑢𝑖𝐹𝑃(Ω) is introduced as: 

 

 
𝐻𝑢𝑖𝐹𝑃(Ω) =

𝑢𝑖(𝑡)

𝐹𝑝(𝑡)
=
�̂�𝑖
𝐹𝑝
=

1

1 − (
Ω
𝜔𝑖
)
2

1

𝜔𝑖
2

𝑥𝑝𝑖

𝑥𝑖
𝑇𝑴�̂�𝑖

  

where (𝑖 = 1,2, … , 𝑛)   ;   (𝑝 = 1,2, … , 𝑛) 

(0.81) 
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Both 𝑖 and 𝑝 can assume values between 1 to 𝑛, therefore 𝑛2 different frequency response 
functions are defined. All these frequency response functions are collected in the non-
symmetrical frequency response matrix: 
 

 𝐻𝑢𝑖𝐹𝑃 =

[
 
 
 
 
 
𝐻𝑢1𝐹1 𝐻𝑢1𝐹2 𝐻𝑢1𝐹𝑛

𝐻𝑢2𝐹1 𝐻𝑢2𝐹2 𝐻𝑢2𝐹𝑛

𝐻𝑢𝑛𝐹1 𝐻𝑢𝑛𝐹2 𝐻𝑢𝑛𝐹𝑛]
 
 
 
 
 

 (0.82) 

 
In case of the synchronous loads (all loads vary according to the same harmonic time function) 
and concerning one specific degree of freedom 𝑥𝑞(𝑡), again a frequency response can be 

defined. This frequency response function possesses vertical asymptotes at the position of the 
(𝑛) natural frequencies (Figure 141). 
 

 
Figure 141. Frequency-response function for an undamped five degrees of freedom system for the degree 

of freedom 𝑥𝑞(𝑡) (Spijkers, Vrouwenvelder, & Klaver, 2005) 

1.4.5. Viscous damped systems with n degrees of freedom 
In case damping is taken into account for the system, the equations of motions have an 
additional term: 
 

 𝑴�̈� + 𝑪�̇� + 𝑲𝑥 = 𝐹(𝑡) (0.83) 
 
Also, here the orthogonality condition is applied, introducing the modal damping matrix: 
 

 𝑪∗ = 𝑬𝑻𝑪𝑬 (0.84) 
 
However, the modal damping matrix is not diagonal. The consequence is that the set of 
differential equations is only partly uncoupled; so-called damping coupling is present. This 
means that the modal analysis is not applicable for damped systems. However, there are 
techniques for these damped systems, where an uncoupled system is obtained and in which 
the modal analysis can be used in an altered (complex) form (complex modal analysis).  
However, for now, the theory is restricted to a special class of damped systems, namely 
systems of which the model damping matrix is forced to be a diagonal matrix.  

Diagonal modal damping matrix 
It is assumed that the damping matrix 𝑪 is built up such that the eigenvectors with respect to 
this damping matrix also possess the characteristic orthogonality. In that case the modal 
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damping matrix 𝑪∗ is a diagonal matrix. The advantage of a diagonal modal damping matrix is 
that the set of differential equations is fully decoupled.  
Also here a relative damping ratio 𝜉𝑖 is defined per uncoupled degree of freedom. This term is 
called the modal damping ratio. The value for each of the modal damping ratios should be 
estimated based on insight and experience.  
Most software packages, which are based on modal analysis, make the presumption of 
damping uncoupling. Generally, it can be said that damping uncoupling delivers reasonably 
accurate results for structures where the damping is reasonably uniformly distributed in the 
whole structure and moreover is not too large.  

Proportional damping (Rayleigh damping) 
An alternative for taking into account is by the method of proportional damping. In that case 
the modal damping matrix is a summation of two diagonal matrices and is therefore a diagonal 
matrix too: 
 

 𝑪 = 𝑎0𝑴+ 𝑎1𝑲, 𝑪∗ = 𝑎0𝑴
∗ + 𝑎1𝑲

∗ (0.85) 
 
This procedure will not be elaborated any further.  

1.4.6. Forced vibration of a damped 𝒏MDoF system 
The general solution is again the summation of the homogeneous solution and a particular 
solution. A particular solution can be obtained by means of the integral of Duhamel for any 
given load function. The unknown constants are determined by the initial conditions. The 
solution formulated in the physical degrees of freedom, then is: 
 

 

𝑥(𝑡) =∑

{
 

 

𝑥𝑖𝐶𝑖𝑒
−𝜉𝑖𝜔𝑖𝑡 sin (𝜔𝑖 {√1 − 𝜉𝑖

2} 𝑡 + 𝜑𝑖)

𝑛

𝑖=1

+∫
𝑥𝑖𝑥𝑖

𝑇𝐹(𝜏)

𝑥𝑖
𝑇𝑴𝑥𝑖

1

𝜔𝑖√1 − 𝜉𝑖
2

𝑒−𝜉𝑖𝜔𝑖𝑡
𝑡

𝜏=0

sin(𝜔𝑖 {√1 − 𝜉𝑖
2} (𝑡 − 𝜏))𝑑𝜏

}
 

 

 

(0.86) 

1.4.7. Harmonic loads for a damped 𝒏MDoF system 
The harmonic function constitutes a basis for the analysis of all periodic loads. Here only the 
steady state solution is considered (the initial conditions, and thus the homogeneous vibration 
are damped out). Again, only the case is considered in which a harmonic load acts at one 
specific degree of freedom 𝑥𝑝. After obtaining the frequency-response function, it can be 

observed that the quotient �̂�𝑖 �̂�𝑝⁄  depends on the loading frequency Ω. As a result of the 

presence of damping, a phase sift occurs in the response 𝑢𝑖(𝑡) with respect to the load 𝐹𝑝(𝑡). 

Therefore, in the damped case the following applies: 
 

 𝐻𝑢𝑖𝐹𝑃(Ω) =
�̂�𝑖

�̂�𝑝
≠
𝑢𝑖(𝑡)

𝐹𝑝(𝑡)
 (0.87) 

 
Figure 142 presents examples of both the frequency-response function 𝐻𝑢𝑖𝐹𝑃(Ω) for particular 

values of 𝑖 and 𝑝 and the phase shift phi for the same particular values of 𝑖 and 𝑝 . Since 𝑖 and 𝑝 
can both attain values between 1 and 𝑛, in total 𝑛2 different frequency response functions can 
be obtained. Each frequency response function is of a simple type (similar to the damped SDoF 
case).  
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Figure 142. Frequency response function 𝐻𝑢𝑖𝐹𝑃(Ω)for particular values of 𝑖 and 𝑝 (Spijkers, 

Vrouwenvelder, & Klaver, 2005) 

 
The response is formulated in the physical degrees of freedom with the similar approach as 
described before.  
 
In the case we are interested in one specific degree of freedom, for example the degree of 
freedom 𝑥𝑞(𝑡), the frequency response function for this degree of freedom due to a harmonic 

loading in the point 𝑥𝑝 has the form as in Figure 143. 
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Figure 143. Example of a frequency response function for the degree of freedom 𝑥𝑞(𝑡) when a harmonic 

loading is applied in the point 𝑥𝑝 (Spijkers, Vrouwenvelder, & Klaver, 2005) 

1.5. Continuous Systems 
The multi-degrees of freedom systems discussed before are classified as discrete systems. They 
are described by means of a coupled set of ordinary differential equations. However, when a 
system is analysed of which the mass is continuously distributed along a line, plane or volume, 
then also a continuous function should be chosen for the degree of freedom. These systems are 
typified as continuous systems. Their dynamic behaviour is described by means of partial 
differential equations (Spijkers, Vrouwenvelder, & Klaver, 2005). The soil, subject of the 
previous chapters, and described by an elastic half-space, is an example of a three-dimensional 
continuous system. In a linear structure two dimensions are small with regard to the third 
dimension, which is the case for example for the bending beam (or a floor slab). 

1.5.1. Bending beam (Euler-Bernoulli beam model) 
An example of linear structures which can be described by a continuous system is the bending 
beam. The bending beam is described by means of a fourth-order partial differential equation. 
The way a beam is supported (clamped, hinged, free, guided or movable end) is essential for its 
dynamic behaviour. The supports are not expressed in the differential equations describing its 
dynamic behaviour, but they are introduced by means of so-called boundary conditions, which 
are needed when solving the differential equations.   

1.5.2. Governing differential equations 
The displacement in the positive z-direction is indicated by the symbol 𝑤(𝑥, 𝑡) and it 
represents the degree of freedom, which is a continuous function of the position variable 𝑥, 
and naturally is a function of the time variable 𝑡 too. The beam has a flexural stiffness 𝐸𝐼 
(Nm2), a cross-sectional area 𝐴 (m2) and a mass density 𝜌 (kg/m3). The displacement method 
will be used for the derivation of the equation of motion of an infinitesimal element 𝑑𝑥 of the 
beam (Figure 144).  

 
Figure 144. Sign convention and indication of the meaning of the symbols used for the prismatic beam 

(Spijkers, Vrouwenvelder, & Klaver, 2005) 
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The complete derivation of the problem is not included here. The reader is kindly referred to 
the lecture notes on Structural Vibrations CT 4140 part I of the Technical University Delft 
(Spijkers, Vrouwenvelder, & Klaver, 2005). A very brief overview is given here of the governing 
equations. 
After substituting of the kinematic relations and the constitutive relation into Newton’s second 
law, the following inhomogeneous partial differential equation of the fourth order is obtained: 
 

 𝐸𝐼
𝛿4𝑤(𝑥, 𝑡)

𝛿𝑥4
+ 𝜌𝐴

𝛿2𝑤(𝑥, 𝑡)

𝛿𝑡2
= 𝑓(𝑥, 𝑡) (0.88) 

 
This is commonly referred to the Euler-Bernoulli beam. 

1.5.3. Free vibration 
In case the free vibrations are considered, again a solution 𝑤(𝑥) is sought for the eigenvalue 
problem. This solution is referred to as the eigenfunction. Eventually the solution is of the 
form: 
 

 
𝑤(𝑥) = 𝐶1𝑒

𝛽𝑥 + 𝐶2𝑒
−𝛽𝑥 + 𝐶3𝑒

𝑖𝛽𝑥 + 𝐶4𝑒
−𝑖𝛽𝑥 

or 
𝑤(𝑥) = 𝐴 cosh(𝛽𝑥) + 𝐵 sinh(𝛽𝑥) + 𝐶 cos(𝛽𝑥) + 𝐷 sin(𝛽𝑥) 

(0.89) 

 
in which: 
 

 𝛽4 =
𝜌𝐴𝜔2

𝐸𝐼
 (0.90) 

 
This parameter 𝛽 appears to be convenient for the further elaboration of the problem. The 
unknown constants are depending on the manner the beam is supported: the applied 
boundary conditions.  

1.5.4. Boundary conditions 
For the five unknown constants, only four boundary conditions exist: two at each end of the 
beam, thus one equation is missing. It appears, again, apart from a unknown constant the 
modal shapes of the structural system can be derived.  
Boundary conditions concerning the deflection or slope are called kinematic boundary 
conditions. The boundary conditions concerning the bending moment and shear force are 
called dynamic boundary conditions. Two different types of, in practice often applied, 
boundary conditions will be briefly considered to illustrate the obtained results by applying the 
method for continuous systems: the simply support beam and the cantilevering beam. 

Simply supported beam 
Substituting the boundary conditions: 
 

 𝑥 = 0 → {

𝑤(0) = 0

𝑀(0) = −𝐸𝐼
𝑑2𝑤(0)

𝑑𝑥2
= 0

 , 𝑥 = 𝑙 → {

𝑤(𝑙) = 0

𝑀(𝑙) = −𝐸𝐼
𝑑2𝑤(𝑙)

𝑑𝑥2
= 0

  (0.91) 

 
into the expression for the eigenfunction 𝑤(𝑥) gives a set of algebraic equations. Further 
elaboration and substitution of 𝛽 gives the following expression for the natural frequencies of 
the system: 
 



Master Thesis of Gerwin Schut 

188 

 𝜔𝑛 = 𝑛
2 (
𝜋

𝑙
)
2

√
𝐸𝐼

𝜌𝐴
, (𝑛 = 1,2,…∞) (0.92) 

 
The bending beam appears to have an infinite number of natural frequencies (increasing 
quadraticly with 𝑛). Since this result is neglecting the shear deformation and the rotation 
inertia, the formula derived for the natural frequencies gives only reliable results for low values 
of 𝑛.  
For each natural frequency there appears to be a corresponding eigenfunction 𝑤𝑛(𝑥): 
 

 𝑤𝑛(𝑥) = 𝐷𝑛 sin (2𝜋
𝑥

𝜆𝑛
) , (𝑛 = 1,2,…∞) (0.93) 

 

in which 𝜆𝑛 = 2𝑙/𝑛 is the wavelength of the 𝑛𝑡ℎ eigenfunction. The three lowest 
eigenfunctions are displayed in Figure 145, each with an arbitrary (still undetermined) 
amplitude 𝐷𝑛. 
 

 
Figure 145. First three eigenmodes of the simply supported Euler-Bernoulli bending beam (Spijkers, 

Vrouwenvelder, & Klaver, 2005) 

The remaining unknown constants are determined from the initial conditions at 𝑡 = 0. This 
procedure is completely analogous with the way this occurs in discrete systems (the systems 
with a finite number of degrees of freedom described before). The eigenfunctions do have 
orthogonal properties with regard to the mass and the stiffness.  
 
If the order of magnitude of the wavelength is equal to 10 times the height 𝐻 of the beam, then 
the shear deformation starts to play a noticeable roll. Eigenfunctions with wavelengths smaller 
than 10 times the height of the beam must be approached with the utmost suspicion. For a 
reliable calculation of higher natural frequencies, the mechanical model must be elaborated 
with the shear deformation and rotation inertia. This approach delivers the much more 
complex Timoshenko beam model.  

Cantilever beam 
For the cantilever beam the boundary conditions are different from the simply supported 
beam: 
 

 𝑥 = 0 → {
𝑤(0) = 0
𝑑𝑤(0)

𝑑𝑥
= 0

 , 𝑥 = 𝑙 →

{
 

 𝑀(𝑙) = −𝐸𝐼
𝑑2𝑤(𝑙)

𝑑𝑥2
= 0

𝑄(𝑙) = −𝐸𝐼
𝑑3𝑤(𝑙)

𝑑𝑥3
= 0

  (0.94) 

 
Finding the natural frequencies of the cantilever beam gives more complicated expressions and 
eigenfunctions, but the procedure is similar as to the case of a simply supported beam. The 
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three lowest eigenfunctions are displayed in Figure 146, again, each with an arbitrary (still 
undetermined) amplitude 𝐷𝑛. 
 

 
Figure 146. First three eigenmodes of the cantilever Euler-Bernoulli bending beam (Spijkers, 

Vrouwenvelder, & Klaver, 2005) 

Natural frequencies beams - equivalent masses 
The method of equivalent masses enables to find only the fundamental natural frequency in a 
simplified and approximate manner. Table 6 has been realized with which the first five natural 
frequencies of the Euler-Bernoulli beam can be approximated for specific boundary conditions. 
The natural frequencies can be determined, based on the value 𝐶, that is given in the table, by 
the formula: 
 

 𝜔𝑛 = 𝐶√𝐸𝐼 (𝜌𝐴𝑙
4)⁄  (0.95) 

 
Table 6. First five natural frequencies and eigenmodes of Euler-Bernoulli beams with constant 𝐸𝐼 𝜌𝐴⁄  

(Spijkers, Vrouwenvelder, & Klaver, 2005) 

  



Master Thesis of Gerwin Schut 

190 

E. Appendix: Additions to Chapter 6 ‘Soil-Structure Interaction’ 
 

1.1. Effect of Soil-Structure Interaction on the Response of Structures 

Effect on energy dissipation 
Physically, the following happens according to K. Miura (Miura, 2016) when the ground and 
the building interact with each other (Figure 147): when the incident waves reach the bottom 
of the foundation, they are divided into two types: the waves entering into the building 
(𝐸1 = 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑤𝑎𝑣𝑒𝑠) and the waves being reflected into the ground 
(𝐹0 = 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑎𝑣𝑒𝑠).  
The transmission waves 𝐸1, entering into the building, travel towards the top of the building 
which subject the building to vibration. Then, they are reflected at the top and travel back 
down to the foundation (𝐹1). Here, a crucial phenomenon occurs for consideration of the SSI. 
When the waves, that are reflected at the top of the building and are travelling downwards, 
reach the foundation, a part of them is transmitted into the ground (𝑅1 = 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑤𝑎𝑣𝑒𝑠), 
while the rest is reflected back again into the building and starts to move upwards through the 
building. When the amount of radiation waves (𝑅1) is small, the waves once transmitted into 
the building, continue to remain in the building, and the building continues to vibrate for a 
long time. The apparent vibration condition becomes the same as that of the small damping of 
the building. The damping caused by escape of the (transmission) waves, from the building 
back into the ground, is called ‘radiation damping’.  
 

 
Figure 147. Physical representation of soil-structure interaction (Miura, 2016) 

However, in case of a layered soil medium, the waves transmitted from the building are 
reflected at the layer interfaces and are returned to the building. Therefore, the radiation 
damping becomes normally smaller and the entire phenomenon becomes more complicated. 

Non-linear soil response 
Non-linear response of the soil can be caused by excessive structural deformation at the 
foundation level, or high-amplitude waves travelling through the soil caused by wave reflection 
at the interface with the structure (Tsouvalas, 2018). However, since this thesis focusses on 
rather stiff structures, excited by wavefields with relatively small amplitude, non-linear effects 
are disregarded from now on.  
 
In conclusion, it is difficult to a priori decide whether neglecting SSI effects is generally 
conservative or not. However, it is clear that only though proper understanding of SSI effects, 
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one can adequately consider (or conservatively neglect) SSI effects in engineering design 
(Tsouvalas, 2018).  
 

1.2. Modelling of the Soil-foundation System 
At the initial stages of the design of a structure, simplified approaches are desired for taking 
into account SSI. When foundations are relatively rigid and/or of simple geometry, several 
methods exist to overcome the need for a full detailed description of the foundation-soil 
system (Figure 148). In principal, there are two main ways to solve dynamic SSI problems: 

 Direct approach (suitable for both linear and non-linear formulations) 

 Sub-structuring approach (limited to linear formulations) 

Direct approach 
In the direct approach, both soil and structure are modelled in a single step using a Finite 
Element model of the coupled system. This approach requires fewer assumptions compared to 
other approaches, yet the following issues limit its wide applicability by engineers: 

 A large soil medium needs to be modelled and the boundaries of the truncated domain 
need to be properly defined (unwanted reflections of propagating waves may not occur). 

 The mesh size should be adequately small (depending on the wavelength of the desired 
frequency range of the incident wavefield). 

 The stability of the numerical integration scheme should be checked.  

 The time step of the integration scheme should be small enough. 
 
 

 
Figure 148. Levels of modelling the effect of the soil on the structure: (a) fixed support, (b) elastic 

support, (c) substructure approach, (d) direct approach (Pap & Kollár, 2018) 

Due to the large computational effort of the direct approach and the computational efficiency 
of the sub-structuring approach in case of linear systems, the sub-structuring approach is the 
most practical approach for the initial design stages.  

Sub-structuring approach 
The idea of the sub-structuring method is very simple: since most of the difficulties in the FE 
formulation originate from the modelling of the soil domain. However, the engineer is mainly 
interested in the response of the structure and the response of the soil is of secondary 
importance. Then, an equivalent representation of the soil reaction with proper consideration 
of the incident wavefield usually suffices.  
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In this method the fully coupled system is treated as two separate systems joined at the 
common soil-structure interface by imposing force equilibrium conditions and kinematic 
compatibility at all times. The procedure for solving the problem is basically: 

 Derivation of the impedance matrix (dynamic stiffness matrix) of the foundation-soil 
system. 

 Formulation of the equations of motion (EOMs) of the structure in partitioned form, by 
separating the structural degrees of freedom from the foundation degrees of freedom. 

 Formulation of the equilibrium conditions at the soil-structure interface (force equilibrium 
and displacement compatibility). This is usually formulated in the frequency domain for 
linear systems, because the soil impedance functions are obtained in the frequency domain 
as well.  

 Solution of the coupled problem to determine the structural response and the motion of 
the soil at the interface (which is different from the free-field ground motion).  
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F. Appendix: Additions to Chapter 7 ‘Numerical Method for Computations’ 
 

1.1. FEMIX 

1.1.1. Thin Layer Method 
The Thin Layer Method (TLM) is a semi-discrete numerical technique used for the analysis of 
wave motion in layered media (Barbosa J. , 2013). The TLM discretizes the soil in perfect 
horizontal layers which are continuous in the horizontal direction but are discretized in 
several layers in the vertical direction (similar to a FEM-mesh, but only in the vertical 
direction). The horizontal directions are therefore described by analytical solutions, along 
which the material properties are assumed to be constant. Simply said the TLM is a Finite 
Element Method (FEM) (Figure 149) but with a mesh for which the horizontal dimensions of 
the mesh-elements are infinitesimal small (limℎ→0(h)).  
 

 
Figure 149. Finite Element mesh. As representation of the TLM the element width ‘h’ is infinitesimal 

small (Lysmer, 1970) 

For obtaining the TLM, the wave equations are first expressed in matrix notation an are then 
discretized in the vertical direction. Therefore, the medium is subdivided into horizontal layers 
which are thin in the finite element sense, i.e., which are small in comparison with the 
expected wavelengths and strain gradients (Barbosa J. , 2013). In general, a Thin Layer 
Thickness of 0.1 m is a well-chosen division parameter.  
 
The stresses (or tractions 𝑡) at the layer boundaries / interfaces need to be in equilibrium and 
the displacements (𝑢) at the interfaces need to be compatible. Interpolation functions 𝑁(𝑧) in 
the vertical direction are used for accommodating these requirements. If the order of the 
interpolation function is equal to 2, the interpolation function is linear and thus gives a linear 
relation between the displacements at the top interface and the bottom interface of the Thin 
Layer. In case the interpolation order is higher than 2, inner surfaces are created inside one 
Thin Layer. Figure 150 presents an interpolation order 𝑚 = 3, which corresponds to a quadratic 
interpolation with one internal nodal surface. FEMIX uses interpolation functions with order 
𝑚 = 3. 
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Figure 150. Discretization into thin-layers (left) and a thin-layer as a free body in space with the order of 

the interpolation function equal to 3 (Barbosa J. , 2013) 

Similar to the Finite Element Method the thin-layer matrices (mass, stiffness,..) are overlapped 
layer by layer in the natural top down order of the interfaces, which results in a narrowly 
banded set of global system matrices and vectors that characterizes the complete stack of thin-
layers. A system of linear partial differential equations is the result (Barbosa J. , 2013). The 
obtained results are exact for all three Cartesian coordinate directions (x, y, z).  

1.1.2. Materials 
Real soil behaves different when loaded in the horizontal directions than when loaded in the 
vertical direction. This is the case because the layers are formed by vertical sedimentation of 
particles and therefore, they present different mechanical characteristics in the vertical and 
horizontal directions (Barbosa J. , 2013). These types of materials are called cross-anisotropic 
materials and they can be included in the determination of the TLM. However, a drawback of 
considering cross-anisotropic materials is that they require the quantification of more elastic 
constant, thus requiring more experiments in order to obtain the corresponding parameters. 
Also, several studies (see for example the work of prof. Degrande et. al. of KU Leuven, 
discussed in section 8.1 ‘Projects KU Leuven’) have shown that when considering isotropic 
materials only (the material behaves similar when loaded in all different directions) the 
predictions of the wave propagation and the soil response are well comparable to in-situ 
experiments and measurements. This indicates that considering isotropic materials for wave 
propagation in soils is a justified simplification and will therefore also be used for the research 
performed for this Master Thesis. The result is that only a limited number of parameters is 
needed to describe the soil material which makes the computation of the input parameters 
more practical.  

1.1.3. Possibilities 

2D structure embedded in the soil or 3D structure on the soil 
It is also possible to implement a structure in or on the soil, next to or at some distance from, 
the track/road. This structure is implemented as a FEM-model and is coupled to the soil by 
means of a BEM-FEM coupling that takes into account the soil-structure interaction. The 
current version of FEMIX is built as such that the BEM-FEM coupling can only be taken into 
account in case the structure is either: 

 A 2D structure embedded into the soil, which is invariant in the longitudinal (y-)direction 
(BEM-FEM coupling between the vertical walls of the structure and the layered soil) 
(Figure 151). 

 A 3D structure resting on the soil (not embedded), which can be invariant in the 
longitudinal (y-)direction (BEM-FEM coupling between the horizontal foundation footings 
and the soil surface) (Figure 152).   
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Figure 151. Example of a 2D structure (trench) in the soil (embedded) which is invariant in the 

longitudinal (3
rd

) direction (Barbosa J. , 2013) 

  
Figure 152. Example of a 3D structure on the soil (not embedded) for which the BEM-FEM coupling can 

be considered by FEMIX (Barbosa J. , 2013) 

The dynamic structural behaviour is not computed within FEMIX but must be considered 
separately in a numerical computational script, such as Matlab or Python. The numerical 
computational script will use the output of FEMIX as input for the calculation (e.g. as 
excitation on the structure).  
 
It must be noted that the BEM-FEM coupling between the track/road with the soil does not 
consider any coupling with a structure that might be present in the soil at some distance from 
the loading that could influence the deformation of the track/road and the soil underneath it, 
i.e. there is weak coupling between the track/road and the structure (Figure 153). This could be 
a relevant drawback in case the structure (e.g. a wave barrier, a building, …) is close to the 
track/road and the waves propagating from the track/road towards the structure are reflected 
back to the track/road which influence the generation of the moving loads.  
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Figure 153. Weak coupling between track and structure (Barbosa J. , 2013) 

1.1.4. Input files and computation 
In order for FEMIX to start the computation of the soil response, the software needs input files 
in the form of .dat-files (data files). Separate data files are needed for: 

 The vehicle model (MDoF system) 

 The road irregularity 

 The soil layering in the (𝑦, 𝑧)-plane 

 The geometry in the (𝑥, 𝑧)-plane (point coordinates, calculation frequencies, and the BEM- 
& FEM geometries, such as a layered track/road, a wave barrier, and again the same soil 
layering) 

 
An example of such a data-file is given in Figure 154. 
 

 
Figure 154. Example of data-file for the geometry in the (𝑥, 𝑧)-plane, needed as input for the FEMIX 

software 

The data-files used by FEMIX are rather cumbersome to fill-in manually after a parameter has 
been changed, therefore a Python script is created that computes the data-files automatically 
after a change in the input parameters. Python is a numerically programming language and is 
further explained in section 7.2 ‘Python’. 
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1.1.5. Execution of PREFEMIX, FEMIX and POSFEMIX 
After all needed data-files are created the software FEMIX can be used. The software can be 
executed by calling it in the command prompt of the working computer. First the command 
‘prefemix’ should be used. This part of the software takes only a couple of seconds for the 
computational time and it checks whether the necessary data-files are present for computing 
the ‘femix’ command and whether these data-files contain the right information (Figure 155). 
The ‘femix’ command performs the actual computation of the soil response. Depending on 
multiple input parameters (e.g. the road irregularity profile, the desired calculation 
frequencies, the number of points in the soil for which the soil response is wanted) the 
computational time can vary from a couple of minutes to a couple of days. FEMIX will indicate 
when the computation is complete. After the computation of ‘femix,’ the user should call 
‘posfemix’ to generate the desired output for the soil response. Multiple options are available 
for the output of the soil response, but the most interesting options for this Master Thesis are 
mlopt  fvcsv and mlopt  tvcsv, which computes the soil response (particle velocity ‘𝑣’) in 
the frequency domain (‘f’) and in the time domain (‘t’). These options will generate the soil 
response for one specific point in the soil.  
 

 
Figure 155. Example of computing the command ‘prefemix’ of FEMIX for the data-file ‘soilprofile’ in the 

command prompt which describes the soil layering of the problem to be considered  
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G. Appendix: Extensive overview of Chapter 8 ‘Verification Projects’ 
 
The numerical software described in the previous chapter will be used to write a 
computational script for obtaining results for the soil response (soil vibrations in the free field) 
and for obtaining results for the structural response (vibrations in the structural elements). 
The results should be reliable in order to be used as indication of an educated guess about the 
vibration levels in the soil but mainly for the structure. Therefore, the results should be 
verified with experimental computed vibration levels for both the free field soil and the 
structural elements. Verification projects are needed for this verification work. Since the 
EDDABuSGS-tool is aimed to be used for projects in The Netherlands at first, or more 
particularly, for projects of Pieters Bouwtechniek, it is desired to verify the tool (FEMIX and 
EDDABuSGS) with experimental measurements performed for locations in The Netherlands. 
Pieters Bouwtechniek has already worked on projects with vibration sensitive structures in The 
Netherlands. These projects will be considered first (see 1.1 ‘Projects Pieters Bouwtechniek’).  
The given measurement results for the projects of Pieters Bouwtechniek appear to be 
considered in a practical sense and not all information is provided that is needed for modelling 
the dynamic problem. Therefore, a more scientific approach is considered: after performing 
additional literature study, the scientific and experimental work of prof. Degrande et. al. of the 
KU Leuven seemed to be promising. Their work will be summarized in 8.1 ‘Projects KU Leuven’ 
together with figures to which the results of FEMIX and EDDABuSGS can be compared, and 
eventually to which the results of the EDDABuSGS-tool can be verified.  
 

1.1. Projects Pieters Bouwtechniek 
Since the EDDABuSGS-tool is meant to be used in engineering practice and particularly for the 
use by Pieters Bouwtechniek, first a verification project is sought for in the projects done by 
Pieters Bouwtechniek. The following projects have been considered, however it appeared that 
the projects are not suitable to use as verification project for the tool (FEMIX and 
EDDABuSGS). The reasons for this are also indicated for every project.  
 

TNW Zuid 

 Source Bigbag used for measuring vibration levels just outside the building and 
inside the building. Weight of Bigbag and falling-height are unknown. 
Approximation for sand filling = 1500 kg and falling height is in-between 
1.5 and 2.0 m.  
 Approximated loading can be modelled but cannot be verified. 

 Transmission Soil layering (in terms of 𝑐𝑠) unknown but might possibly be approximated 
based on CPTs. 
Only one receiver point just outside the building. Reflection of vibrations 
due to the presence of the building have to be taken into account. 
 Soil layering can be modelled but cannot be verified. 

 Structure Structural characteristics known. 
 Structural response can be verified when loading and soil layering are 
correct.  

VU Amsterdam neighbourhood (Medical Faculty) 

 Source Small logistics vehicle on site: specifications are lacking completely. 
Dump truck driving by over the adjacent road: approximate infill mass is 
known. Vehicle characteristics (stiffness and damping of suspension and 
tyres and mass of axles unknown). 
 The loading cannot be modelled, no verification of generated loads 
possible. 

 Transmission Soil layering unknown (might be possible to check with the aid of 
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DinoLoket.nl). 
Not enough receiver points. Receiver point close to the building, reflection 
of vibrations due to presence building has to be taken into account. 
 No verification for free field soil vibrations possible. 

 Structure One receiver point on foundation of structure. Structural specifications in 
a very broad sense known.  
 Limited verification of structural vibrations possible. 

VU Amsterdam site 

 Source Dump truck driving by over the adjacent road: approximate infill mass is 
known. Vehicle characteristics (stiffness and damping of suspension and 
tyres and mass of axles unknown). 
 the loading cannot be modelled, no verification of generated loads 
possible. 

 Transmission Soil layering (in terms of 𝑐𝑠) known approximately (given by DGMR). 
Many receiver points on site and no obstructing buildings.  
 The measurements can be used to verify the tool for the VU Amsterdam 
site (at least to see a similar shape of the frequency spectrum of the soil 
response). 

 Structure No structure is present, so also no measurements. 
 No verification of structural vibrations possible. 

Science Campus Leiden 

 Source No specification of the loading given / known.  
 Loading cannot be verified. 

 Transmission No measurements performed outside the building. 
 Soil layering cannot be verified. 

 Structure Measurements performed over a month at the 2nd floor of the building. 
Structural characteristics are available.  
 Loading cannot be modelled. No verification of structural vibrations 
possible. 

SRON Leiden 

 Source Measurements are performed for one location. Loading by traffic in the 
proximity of the location. 
 Loading cannot be verified. 

 Transmission Location of measurement point unknown. 
Distance between loading and measurement point unknown. 
 Transmission cannot be verified. 

 Structure No structure is present, so also no measurements. 
 No verification of structural vibrations possible. 

 

1.2. Projects KU Leuven 
Since the projects of Pieters Bouwtechniek are lacking specifications of one or more stages 
(source, transmission, interaction, receiver), they cannot be used for verification of the tool 
(FEMIX and EDDABuSGS): another verification project is needed. The KU Leuven has 
performed experimental measurements to validate their own numerical prediction model. 
Several projects were used to validate their numerical model.  
 
The paper ‘The experimental validation of a numerical model for the prediction of the 
vibrations in the free field produced by road traffic’ (Degrande & Lombaert, 2002) describes the 
project concerning the validation of the predicted free field soil response due to the passage of 
a truck driving over an artificial road unevenness. This project will be referred to as 
‘verification project Degrande et. al. (1) – Free Field’ from hereon.  
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The paper ‘Validation of a Source-Receiver Model for Road Traffic-Induced Vibrations in 
Buildings. I: Source Model’ (Degrande, Pyl, Lombaert, & Haegeman, 2004) describes the 
project concerning the validation of the predicted soil response in front of a building due to 
the passage of a truck driving over an artificial road unevenness. This project will be referred to 
as ‘verification project Degrande et. al. (2) – Soil Building’ from hereon.  
The paper ‘Validation of a Source-Receiver Model for Road Traffic-Induced Vibrations in 
Buildings. II: Receiver Model’ (Degrande, Pyl, & Clouteau, 2004) describes the project 
concerning the validation of the predicted structural response of a building due to the passage 
of a truck driving over an artificial road unevenness. This project will be referred to as 
‘verification project Degrande et. al. (3) – Building Response’ from hereon.  
 
A brief summary will be given in the following subsections. The tool (FEMIX and EDDABuSGS) 
will be verified by comparing the results from the tool to the results of the verification projects 
Degrande et. al. (1) to (3).  

1.2.1. Verification Project Degrande et. al. (1) – Free Field 
The verification project ‘The experimental validation of a numerical model for the prediction 
of the vibrations in the free field produced by road traffic’ (Degrande & Lombaert, 2002) will be 
used to verify the computed results by FEMIX for the free field soil response.  

Source 
In the verification project on-site measurements were computed for the passage of a Volvo FL6 
truck at the ‘de Hemptinne site’ of the Belgian Army in Heverlee (Belgium). The truck drove 
with speeds between 23 and 58 km/h. The truck was modelled as a linear 2D four-degree-of-
freedom system (Figure 10) and the artificial road unevenness consisted of plywood planks 
with a total height of 0.054 m in both wheel paths of the truck (Figure 156 and Figure 157). 
 

 
Figure 156. The Volvo FL6 truck in front of the artificial road unevenness installed at the test site 

(Degrande & Lombaert, 2002) 

 
Figure 157. Artificial road unevenness with sizes indicated (Degrande, Pyl, Lombaert, & Haegeman, 

2004) 

The vehicle characteristics are given in Table 7. The deformation of the road due to the 
elasticity of the road material and the supporting soil is assumed to have no effect on the 
generated loads, i.e. the for the generation stage of the loads, the road is assumed to be 
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infinitely stiff. This simplification can be justified since the stiffness of the road is much greater 
than the stiffness of the tyres of the vehicle. The road is 6.2 m wide and is layered according to 
the specification in Table 8. The road is partly embedded in the soil and is connected to the 
bottom of the top soil layer (Figure 158). 
 
Table 7. Specified vehicle characteristics for modelling the Volvo FL6 truck of the verification project (1) 

(Degrande & Lombaert, 2002) 

𝑀𝑏 = 9000 𝑘𝑔 𝑀𝑎𝑟 = 600 𝑘𝑔 𝐿1 = −1.49 𝑚 𝐾𝑝𝑟 = 610000 𝑁/𝑚 𝐶𝑝𝑟 = 16000 𝑁𝑠/𝑚 
𝐼𝑏 = 35000 𝑘𝑔𝑚

2 𝑀𝑎𝑓 = 400 𝑘𝑔 𝐿2 = 3.72 𝑚 𝐾𝑝𝑓 = 320000 𝑁/𝑚 𝐶𝑝𝑓 = 10050 𝑁𝑠/𝑚 

   𝐾𝑡𝑟 = 3000000 𝑁/𝑚 𝐶𝑡𝑟 = 0 𝑁𝑠/𝑚 

   𝐾𝑡𝑓 = 1500000 𝑁/𝑚 𝐶𝑡𝑓 = 0 𝑁𝑠/𝑚 

 
Table 8. Specified road parameters of the verification project (1) (Degrande & Lombaert, 2002) 

Layer type 𝑑 (m) 𝑣 (-) 𝜌 (kg/m3) 𝐸 x 106 (N/m2) 

1 Asphalt 0.15 0.33 2100 9150 
2 Crushed stone 0.19 0.50 2000 500 

3 Crushed concrete 0.25 0.50 1800 200 

 

 
Figure 158. Road-soil interface at the bottom of the top soil layer (Lombaert & Degrande, 2001) 

Transmission 
The layering of the soil has been determined by the method ‘spectral analysis of surface waves’ 
(SASW) and seismic cone penetration tests (SCPT) on site and the specification is given in 
Table 9. The vibration levels are measured at several points in the free field next to the road 
(Figure 159). Three points are measured in all three (x-, y-, and z-) directions. For the other 
points the vibrations levels are only measured in vertical (z-) direction.   
 

Table 9. Specified soil parameters of the verification project (1) (Degrande & Lombaert, 2002) 

Layer 𝑑 (m) 𝑣 (-) 𝜌 (kg/m3) 𝐸 x 106 (N/m2) 𝐶𝑠 (m/s) 𝐶𝑝 (m/s) 𝛽 (-) 

1 0.46 0.33 1900 57 106 212 0.0500 
2 0.67 0.33 1900 133 162 324 0.0375 
3 1.35 0.33 1900 223 210 420 0.0250 
4 5.72 0.47 2000 322 234 984 0.0250 
5 ∞ 0.47 2000 1288 468 1968 0.0250 
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Figure 159. Position of the measurement points of the verification project (1) (Degrande & Lombaert, 

2002) 

Results 
The generated loads due to the passage of the truck over the artificial unevenness are given in 
both the frequency- and time domain (Figure 160). The predicted accelerations of the front- 
and rear axle appear to be well comparably with the measured accelerations of the axles.  
 

 
Figure 160. Frequency content (left) and time history (right) of the predicted front axle load of the Volvo 

FL6 truck when passing the artificial profile at a vehicle speed 𝑣 = 58 km/h (Degrande & Lombaert, 
2002) 

The vibration levels (speed of the soil particle motion) have been determined for several 
receiver points. The most interesting points to verify with are points FF2. FF4 and FF5 since 
these are the points that are measured in all three directions. In this way the results of FEMIX 
can be compared for all three (x-, y- and z-) directions. The soil response results are given in 
Figure 161 and Figure 162. 

Conclusions of the paper 
A comparison between the predicted and measured response shows that the axle accelerations 
are well reproduced by the vehicle model. The most important difference is due to the loss of 
contact between the rear axle and the road. The influence of the loss of contact increases with 
increasing vehicle speed. The loss of contact cannot be modelled in the numerical model, 
because that would ask for a non-linear vehicle model. 
The results of the validation are very satisfactory. The velocity components in the x- and z-
direction are well predicted with a ratio of 0.5 to 1.5 between the predicted and the measured 
PPV. The experimental validation shows that the prediction model described the essential 
physical phenomena with very reasonable accuracy and is therefore well suited to perform a 
parametric study and to predict free field traffic-induced vibrations.  
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Figure 161. Frequency content of the predicted (solid line) and the measured (dash-dotted line) free field 

velocity at 8, 16 and 24 m for a vehicle speed 𝑣 = 58 km/h (Degrande & Lombaert, 2002) 
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Figure 162. Time history of the predicted (solid line) and the measured (dash-dotted line) free field 

velocity at 8, 16 and 24 m for a vehicle speed 𝑣 = 58 km/h (Degrande & Lombaert, 2002) 

1.2.2. Verification Project Degrande et. al. (2) – Soil Building 
The verification project ‘Validation of a Source-Receiver Model for Road Traffic-Induced 
Vibrations in Buildings. I: Source Model’ (Degrande, Pyl, Lombaert, & Haegeman, 2004) will be 
used to verify the computed results by FEMIX for the soil response. Note that this project 
cannot be used for the verification of the free field soil response because the presence of the 
building (reflection of vibrations) has to be taken into account for this project.  

Source 
Similar to verification project Degrande et. al. (1) – Free Field, as described before, also for the 
second verification project measurements have been performed on another site (in and around 
a single-family dwelling adjacent to a road connecting the Belgium municipalities Mol and 
Retie) for the passage of a Volvo FL6 truck (Figure 156) driving over the same artificial road 
unevenness (Figure 157). However, for this verification project the chosen vehicle 
characteristics are slightly different (Table 10) (possibly due to the fact that a different Volvo 
FL6 truck has been used for this site). Again, the generated loads are independent of the elastic 
deformation of the road and the supporting soil. The road is 3.5 m wide and is layered 
according to the specification in Table 11. 
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Table 10. Specified vehicle characteristics for modelling the Volvo FL6 truck of the verification projects 
(2) and (3) (Degrande, Pyl, Lombaert, & Haegeman, 2004) 

𝑀𝑏 = 7620 𝑘𝑔 𝑀𝑎𝑟 = 600 𝑘𝑔 𝐿1 = −1.69 𝑚 𝐾𝑝𝑟 = 610000 𝑁/𝑚 𝐶𝑝𝑟 = 16000 𝑁𝑠/𝑚 
𝐼𝑏 = 30000 𝑘𝑔𝑚

2 𝑀𝑎𝑓 = 400 𝑘𝑔 𝐿2 = 3.51 𝑚 𝐾𝑝𝑓 = 320000 𝑁/𝑚 𝐶𝑝𝑓 = 10050 𝑁𝑠/𝑚 
   𝐾𝑡𝑟 = 3000000 𝑁/𝑚 𝐶𝑡𝑟 = 0 𝑁𝑠/𝑚 

   𝐾𝑡𝑓 = 1500000 𝑁/𝑚 𝐶𝑡𝑓 = 0 𝑁𝑠/𝑚 

 
Table 11. Specified road parameters of the verification projects (2) and (3) (Degrande, Pyl, Lombaert, & 

Haegeman, 2004) 

Layer type 𝑑 (m) 𝑣 (-) 𝜌 (kg/m3) 𝐸 x 106 (N/m2) 

1 Asphalt 0.15 0.33 2100 9150 
2 Crushed stone 0.19 0.50 2000 500 

3 Crushed concrete 0.25 0.50 1800 200 

Transmission 
The layering of the soil has been determined by a borehole experiment and SASW- and SCPT 
tests on site and the specification is given in Table 12. However this layered soil stratum has 
been simplified to a homogeneous halfspace (Table 13), because this would allow for a more 
computational-time efficient computation of the soil impedances used for the SSI between soil 
and structure. Note that the dynamic properties of the halfspace are equal to the second layer 
of the layered soil. 
The vibration levels are measured at five points in the free field next to the road and the 
building (Figure 163). For point FF3 several figures are presented in the paper to which the 
results of the FEMIX can be compared. The measurements are in all three (x-, y-, and z-) 
directions.  

 
Table 12. Specified soil parameters of the verification projects (2) and (3) (Degrande, Pyl, Lombaert, & 

Haegeman, 2004) 

Layer 𝑑 (m) 𝑣 (-) 𝜌 (kg/m3) 𝐸 x 106 (N/m2) 𝐶𝑠 (m/s) 𝐶𝑝 (m/s) 𝛽 (-) 

1 2.00 0.48 2000 116 140 714 0.0200 
2 3.00 0.48 2000 237 200 1020 0.0200 
3 ∞ 0.48 2000 370 250 1275 0.0200 

 
Table 13. Simplification of the layered soil into a homogeneous halfspace used for computing the 

dynamic soil- and structural response of the verification projects (2) and (3) (Degrande, Pyl, Lombaert, & 
Haegeman, 2004) 

Layer 𝑑 (m) 𝑣 (-) 𝜌 (kg/m3) 𝐸 x 106 (N/m2) 𝐶𝑠 (m/s) 𝐶𝑝 (m/s) 𝛽 (-) 

1 ∞ 0.48 2000 237 200 1020 0.0200 
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Figure 163. Position of the measurement points of the verification projects (2) and (3) (Degrande, Pyl, 

Lombaert, & Haegeman, 2004) 

Results 
The generated loads due to the passage of the truck over the artificial unevenness are given in 
both the frequency- and time domain (Figure 164). The predicted accelerations of the front- 
and rear axle appear to be well comparably with the measured accelerations of the axles.  
 

 
Figure 164. Frequency content (left) and time history (right) of the predicted front axle load of the Volvo 
FL6 truck when passing the artificial profile at a vehicle speed 𝑣 = 50 km/h (Degrande, Pyl, Lombaert, & 

Haegeman, 2004) 

The vibration levels (speed of the soil particle motion) for point FF3 are given in Figure 165 and 
Figure 166. 

Conclusions of the paper 
A comparison between the predicted and the measured vehicle responses has shown that the 
axle accelerations are well reproduced by the vehicle model.  
For the passage on the plywood unevenness, the predicted free field response in the z-
direction is overestimated, resulting in a ratio between the predicted and measured PPV equal 
to 1.6.  
A homogeneous half-space with a uniform shear wave velocity 𝑐𝑠 = 200 m/s has been assumed 
for the prediction of the free-field response. As a good correspondence between the predicted 
and measured free-field velocity has been obtained, the dynamic soil characteristics of this 
homogeneous half-space are used for part II of the paper, where the receiver model is 
validated.  
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Figure 165. Time history and frequency content of the measured soil particle velocity in point FF3 for the 

passage of the truck at a speed 𝑣 = 50 km/h on the plywood unevenness (Degrande, Pyl, Lombaert, & 
Haegeman, 2004) 

 

 
Figure 166. Time history and frequency content of the predicted soil particle velocity in point FF3 for the 

passage of the truck at a speed 𝑣 = 50 km/h on the plywood unevenness (Degrande, Pyl, Lombaert, & 
Haegeman, 2004) 
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1.2.3. Verification Project Degrande et. al. (3) – Building Response 
The verification project ‘Validation of a Source-Receiver Model for Road Traffic-Induced 
Vibrations in Buildings. I: Receiver Model’ (Degrande, Pyl, & Clouteau, 2004) will be used to 
verify the computed results by EDDABuSGS for the structural response. For the source and 
transmission characteristics, see the Verification Project Degrande et. al. (2) – Soil Building, as 
described before.  

Structure 
The building is a two-storey structure with a rectangular plan and an embedded concrete box 
foundation. The structural building elements, their sizes and their material properties are 
specified in table Table 14. The dynamic soil-structure interaction is solved with a substructure 
method.  
 
Table 14. Specified structural parameters of the verification project (3) (Degrande, Pyl, & Clouteau, 2004) 

Element Sizes Material properties 

Foundation / basement:  
embedded concrete box 

(Figure 167) 

𝐿𝑥 = 16.66 m 
𝐿𝑦 = 5.61 m 

𝑑 = 1.725 m 

𝐸 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 N/mm2 
𝑣𝑥𝑦 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 

𝜌 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 kg/m3 
Basement walls: 

concrete 
𝑡 = 0.30 m 𝐸 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 N/mm2 

𝑣𝑥𝑦 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 

𝜌 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 kg/m3 
Basement floor (base slab): 

reinforced concrete 
𝑑 = 0.25 m 𝐸 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 N/mm2 

𝑣𝑥𝑦 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 

𝜌 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 kg/m3 
(𝜌 includes non-structural layers) 

1st and 2nd storey floors: 
prestressed Stalton beams with 
intermediate members of burnt clay 
(Figure 168) 

 

𝑑 = 0.11 m Equivalent orthotropic plate model: 
𝐸𝑥 = 30.6 𝑥 10

3 N/mm2 
𝐸𝑦 = 178.0 𝑥 10

3 N/mm2 

𝐺𝑥𝑦 = 19.4 𝑥 10
3 N/mm2 

𝑣𝑥𝑦 = 0.20 

𝜌 = 5084 kg/m3 
1st and 2nd storey floors:  

longitudinal concrete stiffening 
beam at mid-span 

𝑑 = 0.11 m 
𝑤 = 0.296 m 

𝐸𝑥 = 32.6 𝑥 10
3 N/mm2 

𝜌 = 3409 kg/m3 

Internal cavity walls: 
brick 

𝑡 = 0.14 m 𝐸 = unknown N/mm2 
𝑣𝑥𝑦 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 

𝜌 = unknown kg/m3 
Floor-wall connection in y-direction: rigid 

Floor-wall connection in x-direction: hinged 
External cavity walls are disregarded because they are self-supporting 

Roof: 
six longitudinal girders and 

transverse girders with a zinc 
covering 

 Equivalent orthotropic plate model: 
𝐸 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 N/mm2 
𝑣𝑥𝑦 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 

𝜌 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 kg/m3 
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Figure 167. Embedded concrete box foundation with sizes (left) of the single-family dwelling (right) 

(Degrande, Pyl, & Clouteau, 2004) 

 
Figure 168. Cross section of the storey floors of verification project (3) (Degrande, Pyl, & Clouteau, 2004) 

The vibration levels are measured at several points in the building (Figure 169). Point F11 is 
most interesting for comparison with the EDDABuSGS-tool, because the point is situated on the 
ground floor (1st floor) which has higher vibration amplitudes than in the basement due to the 
flexibility of the walls and the free span of the floor. Since the EDDABuSGS-tool includes a 
flexible frame on top of a rigid foundation, the prediction of the structural response of the 
ground floor (1st floor) is most interesting to verify all the computed results. 
 

 
Figure 169. Position of the measurement points of the verification project (3) (Degrande, Pyl, & 

Clouteau, 2004) 
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Results 
Figure 170 and Figure 171 show the predicted structural response (velocity) of point F11. 
 

 
Figure 170. Frequency content (left) and time history (right) of the measured structural response 

(velocity) in point F11 for the passage of the truck at a speed 𝑣 = 50 km/h on the plywood unevenness 
(Degrande, Pyl, & Clouteau, 2004) 

 

 
Figure 171. Frequency content (left) and time history (right) of the predicted structural response 

(velocity) in point F11 for the passage of the truck at a speed 𝑣 = 50 km/h on the plywood unevenness 
(Degrande, Pyl, & Clouteau, 2004) 

Conclusions of the paper 
For the passage on a plywood unevenness, the results of the validation are very satisfactory. 
The time history and frequency content of the signals are well reproduced. The vertical 
response in the structure is slightly overestimated in the frequency range between 10 and 20 
Hz, whereas for frequencies above 20 Hz, the overestimation of the vertical PPV is larger. Note 
that the dynamic floor response has larger amplitudes than the soil response just in front of 
the building.   
 

1.3. Conclusion Verification Projects KU Leuven 
The predictions of the numerical model of the verification projects Degrande et al. are verified 
to give reasonable accurate results. Therefore, the results of the verification projects will be 
compared with the results of the tool (FEMIX and EDDABuSGS). First the results of the 
prediction model of the verification projects will be compared to the results of the tool since 
these results should be very similar because (almost) the exact same situations can be 
modelled (for the source- and transmission stage). However also a comparison will be made 
between the on-site performed measurements and the results of the tool, because the tool uses 
some other assumptions (e.g. a different numerical method for the soil vibrations and soil-
structure interaction based on the tables of Gazetas) and could therefore give more or less 
accurate results for the soil response and the structural response.  
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1.4. VU Amsterdam 
The EDDABuSGS-tool eventually considers the dynamic response of the soil for locations in The 
Netherlands. Therefore, the confined information provided for the project ‘VU Amsterdam 
site’ of Pieters Bouwtechniek is used for determining the characteristics of the road irregularity 
and the vehicle. In the documents of DGMR a soil layering is presented which is used by them 
for predicting the vibrations in the soil and the structure of this specific project (Table 15). This 
soil layering is used to model the layered soil in FEMIX. Also figures are presented for the soil 
response at some particular locations on site for the passage of a sand truck laden with 40 
tonnes of sand (Figure 172 and Figure 173). It is stated that the soil response in vertical 
direction, with a distance of 30 m from the road, due to the passage of the truck is 
approximately 250 μm/s. 
 

Table 15. Dynamic specification of layered soil at the VU Amsterdam site as presented by DGMR 
(Fennema, May 2018) 

Layer 𝑑 (m) 𝑣 (-) 𝜌 (kg/m3) 
𝐸 x 106 
(N/m2) 

𝐺 x 106 (N/m2) 

𝐺 =
𝐸

2(1 + 𝑣)
 

𝐶𝑠 (m/s) 

𝐶𝑠 = √𝐺 𝜌⁄  
𝛽 (-) 

1 1.00 0.25 1800 100 40,0 149 0.0100 
2 0.30 0.30 1700 40 15,4 95 0.0200 
3 1.50 0.45 1000 10 3,4 58 0.1000 
4 0.70 0.40 1230 20 7,1 76 0.0400 
5 2.90 0.40 1700 50 17,9 103 0.0400 
6 0.80 0.25 1740 100 40,0 152 0.0100 
7 2.30 0.40 1540 50 17,9 108 0.0100 
8 0.40 0.45 1000 10 3,4 58 0.1000 
9 5.50 0.25 2000 200 80,0 200 0.0100 
10 2.00 0.40 1800 80 28,6 126 0.0400 
11 ∞ 0.25 2000 450 180 300 0.0100 

 
 

 
Figure 172. Situation of measurements at the VU Amsterdam site, taken from the documents of TNO 

(Koopman, 2012). The red arrows indicate the travelling path of the sand truck. The top left 
measurement point (x,y,z) and the top three measurement points on the right (z) are used to verify the 

result computed by FEMIX 
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Figure 173. Soil response at the top left measurement point from Figure 172 at the VU Amsterdam site, 

taken from the documents of TNO (Koopman, 2012) 

The sand truck is of the type MAN TGS 10x8 WSA (Figure 174), however the dynamic 
properties of the truck are unknown. Several experts (TU Delft, KU Leuven and the MAN 
manufacturer) have been contacted to ask for the dynamic properties (in a similar form as in 
Table 10), however no satisfying response was given yet. Therefore, the vehicle characteristics 
of the heavy-weighted MAN truck are approximated based on the vehicle characteristics of the 
light-weighted Volvo FL6 truck described before and the known gross weight and weight 
distribution of the MAN truck. Since the maximum axle loads of the MAN truck can be up to 
11500 kg (modderaandebanden.nl, 2019) and the maximum axle loads of the Volvo FL6 truck 
is up to 7000 kg (volvotrucks.nl, 2019), the mass of the axles of the MAN truck are assumed to 
be 11500 / 7000 ∙  600 ∙  1.5 =  1500 kg. The tyre stiffness of the MAN truck is approximated 
to be slightly lower than those of the Volvo FL6 truck because that brings the results more in 
line with the measurements performed at the VU Amsterdam site. The stiffness and damping 
of the suspension is unchanged. The approximated vehicle characteristics of the MAN truck 
are specified in Table 16. The vehicle speed at the time of the measurements on site was in-
between 30 km/h and 50 km/h.  
 

 
Figure 174. MAN TGS 10x8 WSA sandtruck used for the measurements at the VU Amsterdam site 

(modderaandebanden.nl, 2019) 
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Table 16. Assumed specified vehicle characteristics for modelling the MAN TGS 10x8 WSA truck 

𝑀𝑏 = 47000 𝑘𝑔 𝑀𝑎 = 1500 𝑘𝑔  𝐾𝑝 = 610000 𝑁/𝑚 𝐶𝑝 = 16000 𝑁𝑠/𝑚 
𝐼𝑏 = 50000 𝑘𝑔𝑚

2   𝐾𝑡 = 2000000 𝑁/𝑚 𝐶𝑡 = 0 𝑁𝑠/𝑚 
𝐿1 = −3.2 𝑚  
(rear axle) 

𝐿2 = −1.8 𝑚 𝐿3 = 0 𝑚 
(middle axle) 

𝐿4 = 1.8 𝑚 𝐿5 = 3.6 𝑚  
(front axle) 

 
The remaining parameter that has to be tuned to meet the vibration amplitudes from the 
performed measurements is the road irregularity. Only the height of the road irregularity will 
be tuned (see 10.3.3 ‘Soil response in Amsterdam’) in order to narrow the number of 
parameters which can be tuned for this problem.  
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H. Appendix: Additions to Chapter 9 ‘Source Modelling and Results’ 
 

1.1. Road Unevenness 
The characteristics of the road irregularity (Figure 62) over which the vehicle drives are similar 
to the verification projects discussed in 8 ‘Verification Projects’. As discussed in 7.1.3 
‘Possibilities,’ the road irregularity is implemented by means of a Fourier expansion. The 
functions 𝑓(𝑦) (where 𝑦 = XG2) for the road irregularity are implemented, in line with 
(Lombaert, Degrande, & Clouteau, 2000), as: 
 

 𝑓(𝑦) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 0 −

𝑃

2
≤ 𝑦 <
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and their exact representation for the ranges of the longitudinal coordinate ‘𝑦’ for which the 
height of the road irregularity is larger than zero is given in Figure 175. Note that the scale of 
the horizontal- and vertical axes in the figure are not the same.   
 

 
Figure 175. Exact representation of the functions 𝑓(𝑦) of the road irregularity for the ranges of the 

longitudinal coordinate ‘𝑦’ for which the height of the road irregularity is larger than zero 

1.2. Generated Moving Loads 
In reality the road (and its irregularities) are elastic and might deform when the material is 
loaded. However, taking into account the affected loading by the coupling between the 
deformation of the road and the loads applied on it, increases the computational time. 
Therefore, decoupling the road deformation and the load generation simplifies the problem 
and decreases the computational time. According to Degrande et al. (Degrande & Lombaert, 
2002) who refer to (Cebon, 1993) and (Gillespie, et al., 1993), this simplification can be satisfied 
since the stiffness of the road is much greater than the stiffness of the tyres and the suspension 
system of the vehicle, and thus the stiffness of the road can be assumed to be infinitely stiff 
compared to the tyres and suspension.  
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1.2.1. Loads by steel leaf suspension and air suspension 
In section 3.1 ‘Road Traffic Induced Vibrations – Measurements’ the experiment of O. Hunaidi 
and M. Tremblay (Hunaidi & Tremblay, Traffic-induced buiding vibrations in Montréal, 1997) 
was described in which it was concluded that a city bus would generate greater vibration levels 
than a truck, while they had approximately the same total mass, but different suspension 
types. The truck had a steel leaf suspension and the bus had air suspension. Since air 
suspension damps out the vibrations more than a leaf suspension, that is for comfort purposes, 
one would not expect this vehicle to generate greater vibration levels than a truck with steel 
leaf suspension. Now this phenomenon can be investigated based on the vehicle model 
implemented in FEMIX.  
 
The trucks of the verification projects have steel leaf suspensions, so the vehicle characteristics 
used for these projects are considered here to be the reference case (steel leaf suspension). No 
reliable values have been found for the suspension characteristics of a vehicle with air 
suspension, but one can argue that air suspension has more damping and might be less stiff.  
A simplified computational model has been created in the software ‘Maple’ to deviate values of 
the vehicle characteristics. The computation of this model is much quicker than with FEMIX, 
and therefore more convenient for performing many iterations. When deviating the values of 
the damping- and stiffness coefficient of the suspension and the tyres and deviating the mass 
distribution between axles and vehicle body, the following observations can be made (Figure 
176): 

 Decreasing the axle mass (mu) (and increasing the vehicle body mass, to have the same 
total mass) shifts the 2nd peak of the frequency spectrum to the right (stiffer response).  

 Decreasing the stiffness of the suspension (kp) shifts all peaks of the frequency spectrum to 
the left (less stiff response). 

 Increasing the damping coefficient of the suspension (cp) decreases the values of the 
frequency spectrum (smaller loads). 

 Increasing the stiffness of the tyres (kt) shifts the 2nd peak of the frequency spectrum to 
the right (stiffer response). 

 Increasing the vehicle body mass (ms) (without decreasing the axle masses) shifts the 1st 
peak of the frequency spectrum to the left (less stiff response).  

 

 
Figure 176. A frequency spectrum of an arbitrary heavy vehicle with steel leaf suspension vehicle 

characteristics (left) and frequency spectrums for deviating values of the vehicle characteristics (right) 

Since the study of O. Hunaidi and M. Tremblay (Hunaidi & Tremblay, 1997) does not mention 
any values for the vehicle characteristics, a vehicle model for a bus with air suspension is 
approximated. Note that the values are chosen such that they are reasonable in line with what 
one would expect from this suspension system, but also make that the response of the vehicle 
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is in line with the experimental observations. Thus, the chosen values are not based on 
scientific experiments or literature.  
When computing the frequency spectrum of the approximated bus with air suspension and 
stiffer tyres, one can observe that the 1st peak of the frequency spectrum decreases significantly 
but the 2nd peak increases and shifts somewhat to the right (stiffer response due to greater tyre 
stiffness) (Figure 177).  
 

 
Figure 177. Frequency spectrum of the truck with steel leaf suspension of the verification project (left) 
and the approximated bus with air suspension (right). See Appendix I ‘Appendix: table of computed 
vehicle axle load-frequency spectrums for changing parameter values’ for frequency spectrums for 

deviating vehicle characteristics one-by-one  

The experimental measurements of Al-Hunaidi were computed at sites in Montreal, which 
have a frequency spectrum of the soil response typically as in Figure 178. From this figure one 
can clearly observe that for the (low) frequency range, at which the vehicles generate loads 
(typically between 0 Hz and 25 Hz), the soil response increases rapidly with increasing 
frequency. Based on the frequency spectrums of the vehicles and the soil, one can conclude 
that the soil amplifies the vibrations for increasing frequencies and therefore the bus with air 
suspension and stiffer tyres generates greater soil vibrations (similar to the resonance effect, 
i.e. the dominant excitation frequency of the bus with air suspension is shifted towards the 
dominant natural frequency of the soil).  
 

 
Figure 178. Vertical response (frequency spectrum) obtained with the drop weight device in summer and 
winter for the ground in front of a building at a particular site in Montreal (Hunaidi & Tremblay, Traffic-

induced buiding vibrations in Montréal, 1997) 
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I. Appendix: table of computed vehicle axle load-frequency spectrums for 
changing parameter values 

 
Table 17. Computed load-frequency spectrums of the 2D truck vehicle model when driving over the road 

unevenness as described in the verification project of Degrande et. al. for changing parameter values 
(Figures (a). – (h).) 

  
(a). Reference: Volvo FL 6 truck with steel leaf 
suspension 
 

(b). Approximation air: modified parameters 
of reference case to approximate a truck (or 
bus) with air suspension 

𝑀𝑏 = 9000 𝑘𝑔 
𝑀𝑎𝑟 = 600 𝑘𝑔 
𝐿1 = 1.49 𝑚 
𝐾𝑝𝑟 = 610000 𝑁/𝑚 

𝐾𝑡𝑟 = 3000000 𝑁/𝑚 
𝐶𝑝𝑟 = 16000 𝑁𝑠/𝑚 

𝐶𝑡𝑟 = 0 𝑁𝑠/𝑚 

𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑏 = 35000 𝑘𝑔𝑚2 
𝑀𝑎𝑓 = 400 𝑘𝑔 

𝐿2 = 3.72 𝑚 
𝐾𝑝𝑓 = 320000 𝑁/𝑚 

𝐾𝑡𝑓 = 1500000 𝑁/𝑚 

𝐶𝑝𝑓 = 10050 𝑁𝑠/𝑚 

𝐶𝑡𝑓 = 0 𝑁𝑠/𝑚 

𝑀𝑏 = 9500 𝑘𝑔 
𝑀𝑎𝑟 = 300 𝑘𝑔 
𝐿1 = 1.49 𝑚 
𝐾𝑝𝑟 = 406667 𝑁/𝑚 

𝐾𝑡𝑟 = 4000000 𝑁/𝑚 
𝐶𝑝𝑟 = 24000 𝑁𝑠/𝑚 

𝐶𝑡𝑟 = 0 𝑁𝑠/𝑚 

𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑏 = 35000 𝑘𝑔𝑚2 
𝑀𝑎𝑓 = 200 𝑘𝑔 

𝐿2 = 3.72 𝑚 
𝐾𝑝𝑓 = 213333 𝑁/𝑚 

𝐾𝑡𝑓 = 2000000 𝑁/𝑚 

𝐶𝑝𝑓 = 15075 𝑁𝑠/𝑚 

𝐶𝑡𝑓 = 0 𝑁𝑠/𝑚 

  

  
(c). 𝐶𝑝 higher (d). 𝐾𝑝 lower 
𝐶𝑝𝑟 = 24000 𝑁𝑠/𝑚 𝐶𝑝𝑓 = 15075 𝑁𝑠/𝑚 𝐾𝑝𝑟 = 406667 𝑁/𝑚 𝐾𝑝𝑓 = 213333 𝑁/𝑚 
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(e). 𝐾𝑡 higher (f). 𝑀𝑎 lower 
𝐾𝑡𝑟 = 4000000 𝑁/𝑚 𝐾𝑡𝑓 = 2000000 𝑁/𝑚 𝑀𝑎𝑟 = 300 𝑘𝑔 𝑀𝑎𝑓 = 200 𝑘𝑔 

  

  
(g). 𝑀𝑏 higher (h). 𝑀𝑏 lower 
𝑀𝑏 = 13500 𝑘𝑔  𝑀𝑏 = 6000 𝑘𝑔  
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Additional iterations have been made for a slightly different reference vehicle. These iterations 
give an even more comprehensive overview of the influence of several parameters. In the 
iterations it is stated what parameter is made greater or lower. ‘Greater’ means that the 
reference value is factorized by 2 and ‘lower’ means that the reference value is factorized by 
0.5. A very brief explanation is given for the observed changes.  
 

Reference: Volvo FL 6 truck with greater 
inertia of the vehicle body and a lower weight 

𝑀𝑏 = 7620 𝑘𝑔 
𝑀𝑎𝑟 = 600 𝑘𝑔 
𝐿1 = 1.49 𝑚 
𝐾𝑝𝑟 = 610000 𝑁/𝑚 

𝐾𝑡𝑟 = 3000000 𝑁/𝑚 
𝐶𝑝𝑟 = 16000 𝑁𝑠/𝑚 

𝐶𝑡𝑟 = 0 𝑁𝑠/𝑚 

𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑏 = 300000 𝑘𝑔𝑚2 
𝑀𝑎𝑓 = 400 𝑘𝑔 

𝐿2 = 3.72 𝑚 
𝐾𝑝𝑓 = 320000 𝑁/𝑚 

𝐾𝑡𝑓 = 1500000 𝑁/𝑚 

𝐶𝑝𝑓 = 10050 𝑁𝑠/𝑚 

𝐶𝑡𝑓 = 0 𝑁𝑠/𝑚 

 

 
Explanation: more damping is lower amplitude. 
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Explanation: greater suspension stiffness = less damping of impact (more direct impact with 
greater amplitude). 
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Explanation: greater tyre stiffness = less damping of impact (more direct impact with greater 
amplitude). 
 

 
Explanation: greater axle mass gives a greater natural period = lower natural frequency, but 
increases the load amplitude at that lower frequency. 
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Explanation: greater body mass does not influence the spring loading, because it is already 
compressed quite a lot. Lower body mass elongates the natural period and matches the 
oscillations of the rear axle at this particular speed. When increasing the vehicle speed:  

 
When increasing the vehicle speed the lower body mass decreases the amplitude of the loading 
oscillations at the rear axle. Also the higher frequency range (> 20 Hz) is more excited. 
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J. Appendix: PPV with- and without wave barrier in soil Amsterdam 
 

 
 
The above figures contain the peak particle velocity (PPV) of the soil (soil similar to the 
Amsterdam case) at soil surface (top) and at soil depth −3 m (bottom) for the situation 
without the realization of the wave barrier (brown colour) and for the situation with the 
realization of the wave barrier (blue colour). The position of the wave barrier is indicated by 
the vertical black lines. The wave barrier has a width of 1.6 m and a depth of 4 m (x,z)-plane 
and is infinitely long in the y-direction. 
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K. Appendix: Additions to Chapter 11 ‘Soil-Structure Interaction Modelling’ 
 

1.1. Derivation of Impedances 
In order to compute the impedances of the soil, what one basically needs to do is to imply an 
unit force or moment on the rigid foundation, supported by a specific soil with known 
parameters, in the direction of every degree of freedom and compute the flexibility matrix 
from the obtained dynamic displacements and rotations of the structure. Then by inverting the 
flexibility matrix, the dynamic stiffness matrix can be found. The dynamic stiffness matrix is 
composed of complex numbers (the impedances) and can be represented by a real part and an 
imaginary part (Ҟ𝑗(𝜔) = �̅�𝑗(𝜔) + 𝑖𝜔𝐶𝑗(𝜔), where j = x, y, z (swaying in 3 directions), rx, ry 

(rocking around two axes) or t (torsion around the vertical axis)) in which both �̅�𝑗 and 𝐶𝑗 are 

functions of the frequency 𝜔. The real part �̅�𝑗 is termed ‘dynamic stiffness’ and reflects the 

stiffness and inertia of the supporting soil. The imaginary part 𝜔𝐶𝑗 is the product of circular 

frequency times the ‘dashpot coefficient,’ which reflects the radiation- (waves spreading away 
from the structure) and material damping (energy dissipation in the soil).  
Moreover, in embedded foundations, and foundation on piles, the horizontal forces along the 
principal axes induce rotational in addition to translational oscillations, therefore, two more 
‘cross-coupling’ horizontal-rocking impedances exist: Ҟ𝑥𝑟𝑦(𝜔) and Ҟ𝑦𝑟𝑥(𝜔). 

Gazetas performed a lot of iterations to compute the impedances for a vast amount of different 
structural- and soil configurations. The impedances refer to axes passing through the 
foundation basemat-soil interface. Once for a particular excitation frequency 𝜔 the eight 
dynamic impedances have been determined, the steady-state response of a rigid foundation 
block can be computed.  
 
Gazetas developed an engineering approach of easy-to-use closed-form expression and graphs, 
based on the results of rigorous and approximate formulations. The errors encountered in a 
sensitivity analysis by Gazetas is well within an acceptable 15 percent.  
The presentation of the tables and graphs of Gazetas is subdivided in different structural 
configurations (Gazetas G. , 1991): 
4. Table 15.1 and accompanying set of graphs refer to foundations of any solid shape resting 

on the surface of a homogeneous halfspace. 
5. Table 15.2 and related graphs are for foundations with any solid basemat shape partially or 

fully embedded in a homogeneous halfspace. 
6. Table 15.3 refers mainly to circular and strip foundations on the surface of a homogeneous 

soil stratum underlain by bedrock. 
7. Table 15.4 refers to circular and strip foundations partially or fully embedded in a 

homogeneous stratum underlain by bedrock.  
8. Table 15.5 pertains to square and strip foundations on the surface of some inhomogeneous 

profiles, in which the shear modulus (𝐺) increases smoothly with depth. 
9. Table 15.6 is mainly for laterally oscillating single floating piles in two inhomogeneous and 

a homogeneous stratum or halfspace. Some information is also given for vertical 
oscillations, and for pile-soil-pile dynamic interaction factors.  

 
Since it was observed in the verification projects of the KU Leuven (8.1.2 ‘Verification Project 
Degrande et al. (2) – Soil Building’) that estimating the layered soil stratum as a homogeneous 
halfspace can give reliable results, also the layered soil stratum used for the EDDABuSGS-tool is 
approximated as a homogeneous halfspace (see 10.3.3 Soil response in Amsterdam). With this 
assumption the tables 15.1, 15.2 and 15.6 and the accompanying graphs are used to determine 
the impedances of the rigid building structure. 
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Table 15.1: Arbitrary shaped foundation on the surface of a homogeneous halfspace 
The tables of Gazetas are used first to find the static stiffness ‘K’ for every vibration mode of 
interest for a structure laying on top of a homogeneous halfspace, without pile foundation 
(most left figure of Figure 179). The other tables, to compute the impedances in case of an 
embedded structure or in case of a pile foundation (middle and right figures of Figure 179), 
refer to table 15.1 and perform certain computations on it (multiplication by or adding a 
factor). Then the dynamic stiffness coefficient ‘k’ and dynamic dashpot coefficient ‘c’ are 
computed based on the accompanying graphs (Figure 180). 
 

 
Figure 179. Geometrical assumptions for computing the SSI impedances for left: table 15.1, middle: table 

15.2, right: table 15.6 (Gazetas G. , 1991) 

 
Figure 180. Graphs accompanying table 15.1, illustrating the frequency dependency (horizontal axes) of 

the stiffness- and dashpot coefficients (vertical axes) (Gazetas G. , 1991) 

The total dynamic stiffness (�̅�𝑗(𝜔)) is computed by multiplying the dynamic stiffness 

coefficient with the static stiffness. The total dynamic damping (𝐶𝑗(𝜔)) is computed by 

multiplying the dashpot coefficient with the static properties of the soil (𝜌, 𝐶𝑠, 𝑣) and the 
geometrical properties of the structure (2B, 2L) and by adding the term 2 ∙ �̅�𝑗(𝜔)/𝜔 ∙ 𝛽, where 

𝛽 is the damping ratio of the homogeneous soil. Thus in symbols the impedance terms are 
computed as: 
 

 Ҟ𝑗(𝜔) = �̅�𝑗(𝜔) + 𝑖𝜔𝐶𝑗(𝜔) (0.97) 
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 �̅�𝑗(𝜔) = 𝐾𝑠𝑡𝑎𝑡𝑖𝑐 ∙ 𝑘(𝜔) (0.98) 

 

 𝐶𝑗(𝜔) = 𝑐(𝜔) ∙ 𝜌 ∙ 𝑓(𝐶𝑠, 𝑣) ∙ 𝑔(𝐵, 𝐿) + 2 ∙
�̅�𝑗(𝜔)

𝜔
∙ 𝛽 (0.99) 

 
where 𝑓(𝐶𝑠, 𝑣) is a function of both 𝐶𝑠 and 𝑣 (𝑉𝐿𝑎(𝐶𝑠, 𝑣)) in case of the vertical- and rocking 
impedances or depends solely on 𝐶𝑠 in case of the horizontal impedances and where 𝑔(𝐵, 𝐿) is 
equal to 𝐴𝑏 (the effective surface area of the foundation basemat) in case of the translational 

impedances or is equal to 𝐼𝑏𝑗 where 𝐼𝑏𝑗 is the inertia of the soil, computed as: 
1

12
∙ 2𝐿 ∙ (2𝐵)3 

(depending on the orientation of the building L and B should be interchanged) in case of the 
rocking impedances. 

Table 15.2: Arbitrary shaped foundation, partially or fully embedded in a homogeneous 
halfspace 
The expressions given in table 15.2 refer to table 15.1 and perform certain multiplications on it 
to derive the impedances in case the structure is embedded in a homogeneous halfspace. The 
following computations are performed for the different stiffness and dashpot terms: 

 The static stiffnesses of table 15.2 are computed by factorizing the static stiffness of table 
15.1 (for zero embedment of the foundation).  

 The dynamic stiffness coefficients in the vertical (z-) direction, for the rocking modes and 
for the torsional mode are computed by factorizing the dynamic stiffness coefficients of 
table 15.1.  

 The dynamic stiffness coefficients in the horizontal (x- and y-) directions of table 15.2 are 
computed by using the accompanying graphs with this table.  

 The dynamic dashpot coefficients of table 15.2 are computed by factorizing or adding 
(depending on which vibration mode) the dynamic dashpot coefficients of table 15.1.  

Table 15.6: Flexible single piles (in this thesis considered within a homogeneous halfspace) 
The expressions given are only for estimates of the stiffness of floating piles (so no end-
bearing) in a homogeneous stratum of total thickness H = 2L (where L is the length of the 
pile). 

 The static axial-, lateral- and rocking stiffnesses computed with table 15.6 are based on the 
geometrical- and material properties of the pile and on the material properties of the soil.  

 The dynamic axial stiffness coefficients are based on the geometrical properties of the pile. 

 The dynamic axial radiation dashpot coefficients are based on the geometrical- and 
material properties of the pile and the material properties of the soil.  

 For floating pile groups, interaction factors are given for axial in-phase oscillations of two 
piles. These factors depend on the frequency of excitation, the centre-to-centre distance of 
the piles, the geometrical properties of the piles and material properties of the soil. 

 

1.2. Practical Use of the Tables 
As one can see from the figures accompanying the tables of Gazetas (Figure 180), the use of the 
graphs are bounded by a maximum value of 𝑎0 = 𝜔𝐵/𝐶𝑠 = 2, where 𝜔 is the excitation 
frequency, B is the half width of the building (shortest side) and 𝐶𝑠 is the shear wave speed of 
the soil. The problem statement of this thesis concerns heavy road traffic induced vibrations 
for laboratory buildings in The Netherlands. This means that values for the mentioned 
parameters might be within the following ranges: 
 

 
0 Hz < 𝑓 < 15 Hz ,   thus:   0 rad/s < 𝜔 < 95 rad/s 

2 m < 𝐵 < 15 m 
150 m/s < 𝐶𝑠 

(0.100) 
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which might reasonably lead to values of 𝑎0 up to 95 rad/s ·  15 m / 150 m/s = 9.5 rad, which is 
far out of the bounds of the graphs. In order to make the tables of Gazetas applicable for the 
problems of interest for this thesis, the graphs accompanying the tables of Gazetas need to be 
extrapolated.  

Assumptions needed for extrapolation of the graphs accompanying the tables of Gazetas 
Before extrapolating the graphs accompanying the tables of Gazetas, first the graphs are 
addressed which accompany the tables concerning a soil layer overlaying a bedrock (Figure 
181). Tables 15.3 and 15.4 consider the presence of a bedrock underneath a soil layer. The 
accompanying graphs clearly show the strong oscillations in the determination of the 
frequency dependent stiffness coefficients (Figure 182). These oscillations are due to resonance 
phenomena in the soil layer, at which the excitation frequency is very close to the natural 
frequency of the soil layer overlaying the bedrock. Due to reflections of the propagating waves 
at the interface between the overlaying soil layer and the bedrock, and between the bottom of 
the foundation and the soil, the dynamic stiffnesses vary greatly with the excitation frequency. 
This means that extrapolating these figures will bring unreliable results, since it is not known 
how the figures develop for higher excitation frequencies. However, in case of a homogeneous 
halfspace, no such resonances can occur, because no reflections take place at a bedrock, since 
no bedrock exists. Extrapolation of the figures for homogeneous halfspaces is therefore much 
easier and more intuitive: the figures reach a certain asymptote for higher values of excitation 
frequency.  
 

   
Figure 181. Structure with variable embedment in a soil layer overlaying a bedrock, left: table 15.3, right: 

table 15.4 (Gazetas G. , 1991) 

 
Figure 182. Part of the graphs accompanying table 15.3 for computing the dynamic stiffness coefficient in 
the vertical (z-) direction including the consideration of a bedrock underneath the soil layer with height 

H (Gazetas G. , 1991) 

In the Netherlands, however, reality is in-between both extremes: no real bedrock is present 
(which would reflect all incoming waves), but soil layer interfaces are present within soil layers 
with different stiffness ratios which partly reflect the incoming waves. These partial reflections 
might also give rise to some kind of resonance phenomena. Therefore, if the engineer is 
looking for more reliable results for a specific soil layering, where the soil layer stiffness 
abruptly changes significantly, the engineer should compute the figures himself in a similar 
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manner as Gazetas did, but now for the particular layered soil stratum of interest. This will ask 
for a great amount of computations, and thus a long computational time. However, since the 
research of the present thesis is about a practical engineering tool, the assumption of a 
homogeneous halfspace for the soil in The Netherlands will be used which makes that 
extrapolation of the figures of Gazetas is possible. 

Curve fitting for extrapolation of the graphs accompanying the tables of Gazetas 
The numerical Python software will be used for the extrapolation of the graphs accompanying 
the tables of Gazetas in case of a homogeneous halfspace. Python has the possibility to use the 
function ‘curve fitting’ which sounds promising for extrapolating the tables of Gazetas. This 
function uses a given form of a function with certain unknown parameters, e.g. 𝑎 ∙
tan−1(𝑏 ∙ 𝑎0 + 𝑐) (needs to be given by the script developer) and a set of point coordinates 
through which the graph needs to fit. The number of point coordinates should be equal to- or 
larger than number of unknown parameters in order for Python to find a solution for the 
unknowns. This method has been used to extrapolate most of the graphs. Two examples are 
given in Figure 183 and Figure 184. By using this method, a continuous function is derived 
which will give a value for the stiffness- or dashpot coefficient based on any possible input 
value 𝑎0. 
 

 
Figure 183. Graph a accompanying table 15.1, left: Gazetas (Gazetas G. , 1991), middle: extrapolated, right: 

both graphs in one 

 
Figure 184. Graph ky, L/B = ∞ accompanying table 15.2, left: Gazetas (Gazetas G. , 1991), middle: 

extrapolated, right: both graphs in one 
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L. Appendix: Additions to Chapter 12 ‘Receiving Structural System Modelling and 
Results’ 

 

1.1. Global Dynamic Response of the 3DoF Rigid Building 

1.1.1. Structural parameters 
The structural properties of the 3DoF global building are gathered into two parameters: 𝑀𝑏 
(total mass of the building) and 𝐽𝐶𝐺 (total mass moment of inertia around the centre of gravity 
(CG) in the (x,z)-plane) (Figure 186). A simplification taken into account for the computation 
of the structural properties is that the building is symmetric around the two vertical planes and 
that all floor spans and wall thicknesses in one plane are equal (Figure 185). 
  

 
Figure 185. Simplified model for the computation of the parameters needed for the dynamic response of 

the 3DoF building 

 
Figure 186. Simplified dynamical model which is used to set up the equations of motion for the rigid 

3DoF building 

𝑀𝑏 is composed of the masses of all structural floors, walls/columns and a mass component to 
take into account the extra mass of the non-structural elements (e.g. facades, internal walls): 
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𝑀𝑏 =∑𝜌𝑓𝑙,𝑗 ∙ 𝑙𝑓𝑙,𝑗 ∙ 𝑤𝑓𝑙,𝑗 ∙ ℎ𝑓𝑙,𝑗

𝑁𝑓𝑙

𝑗=1

+ 

∑𝜌𝑤,𝑘 ∙ 𝑡𝑤,𝑥,𝑘 ∙ 𝑡𝑤,𝑦,𝑘 ∙ ℎ𝑤,𝑘

𝑁𝑤

𝑘

+ 

𝜌𝑎𝑑𝑑_𝑚𝑎𝑠𝑠 ∙ 𝑙𝑠𝑡𝑟𝑢𝑐𝑡,𝑥 ∙ 𝑙𝑠𝑡𝑟𝑢𝑐𝑡,𝑦 ∙ ℎ𝑠𝑡𝑟𝑢𝑐𝑡,𝑧 

(0.101) 

where: 
𝑀𝑏 = total mass of building [kg] 
𝑁𝑓𝑙  = total number of floors [-] 

𝜌𝑓𝑙,𝑗 = mass density of floor j [kg/m3] 

𝑙𝑓𝑙,𝑗 = length of floor ‘j’ (or building length in x-direction) [m] 

𝑤𝑓𝑙,𝑗 = width of floor ‘j’ (or building length in y-direction) [m] 

ℎ𝑓𝑙,𝑗 = height of floor ‘j’ (in z-direction) [m] 

𝑁𝑤 = total number of walls and columns [-] 
𝜌𝑤,𝑘 = mass density of wall ‘k’ [kg/m3] 
𝑡𝑤,𝑥,𝑘 = length (or thickness) of wall or column ‘k’ in x-direction [m] 
𝑡𝑤,𝑦,𝑘 = length (or thickness) of wall or column ‘k’ in y-direction [m] 

ℎ𝑤,𝑘 = height of wall or column ‘k’ in z-direction [m] 

𝜌𝑎𝑑𝑑_𝑚𝑎𝑠𝑠 
= mass density of additional (non-structural) mass (total additional  
   mass divided by total building volume) 

[kg/m3] 

𝑙𝑠𝑡𝑟𝑢𝑐𝑡,𝑥 = length of the building in x-direction [m] 
𝑙𝑠𝑡𝑟𝑢𝑐𝑡,𝑦 = length of the building in y-direction [m] 

ℎ𝑠𝑡𝑟𝑢𝑐𝑡,𝑧 = height of the building in z-direction [m] 

 
While 𝐽𝐶𝐺 is composed of the summation of the mass moment of inertias of all structural 
elements and a mass moment of inertia component of the additional non-structural mass. The 
numerical Python script is written in such a way that first all individual mass moments of 
inertia are taken around the rotation point ‘𝑂,’ which is located at the basemat of the 
foundation, where the vertical line of symmetry passes through (at the centre of the 
foundation-soil interface). This computation will lead to the parameter 𝐽𝑂 (mass moment of 
inertia around point ‘𝑂’ and can be represented mathematically as: 
 

 

𝐽𝑂 =∑
1

12
∙ 𝑚𝑓𝑙,𝑗 ∙ (𝑙𝑓𝑙,𝑗

2 + ℎ𝑓𝑙,𝑗
2 ) + 𝑚𝑓𝑙,𝑗 ∙ (𝑋𝑂,𝑓𝑙,𝑗

2 + 𝑍𝑂,𝑓𝑙,𝑗
2 )

𝑁𝑓𝑙

𝑗=1

+ 

∑
1

12
∙ 𝑚𝑤,𝑘 ∙ (𝑡𝑤,𝑥,𝑘

2 + ℎ𝑤,𝑘
2 ) + 𝑚𝑤,𝑘 ∙ (𝑋𝑂,𝑤,𝑘

2 + 𝑍𝑂,𝑤,𝑘
2 )

𝑁𝑤

𝑘=1

+ 

1

12
∙ 𝑚𝑎𝑑𝑑_𝑚𝑎𝑠𝑠 ∙ (𝑙𝑠𝑡𝑟𝑢𝑐𝑡,𝑥

2 + ℎ𝑠𝑡𝑟𝑢𝑐𝑡,𝑧
2 ) + 𝑚𝑎𝑑𝑑_𝑚𝑎𝑠𝑠 ∙ (𝑋𝑂,𝑠𝑡𝑟𝑢𝑐𝑡

2 + 𝑍𝑂,𝑠𝑡𝑟𝑢𝑐𝑡
2 ) 

(0.102) 

where: 
𝐽𝑂 = total mass moment of inertia of the building around point 𝑂 [kgm2] 
𝑁𝑓𝑙  = total number of floors [-] 

𝑚𝑓𝑙,𝑗 = total mass of floor ‘j’ (𝜌𝑓𝑙,𝑗 ∙ 𝑙𝑓𝑙,𝑗 ∙ 𝑤𝑓𝑙,𝑗 ∙ ℎ𝑓𝑙,𝑗) [kg] 

𝑙𝑓𝑙,𝑗 = length of floor ‘j’ (or building length in x-direction) [m] 

ℎ𝑓𝑙,𝑗 = height of floor ‘j’ (in z-direction) [m] 

𝑋𝑂,𝑓𝑙,𝑗 
= horizontal distance (x-direction) between centre of gravity of floor ‘j’ 
and point 𝑂 

[m] 

𝑍𝑂,𝑓𝑙,𝑗 
= vertical distance (z-direction) between centre of gravity of floor ‘j’ and 
point 𝑂 

[m] 
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𝑁𝑤 = total number of walls and columns [-] 

𝑚𝑤,𝑘 

= total mass of walls or columns ‘k’ where all elements on the same 

storey and on the same y-axis are summed (𝜌𝑤,𝑘 ∙ 𝑡𝑤,𝑥,𝑘 ∙ (∑ 𝑡𝑤,𝑦,𝑘,𝑠
𝑁𝑤,𝑦
𝑠=1 ) ∙

ℎ𝑤,𝑘) 

[kg] 

𝑡𝑤,𝑥,𝑘 = length (or thickness) of wall or column ‘k’ in x-direction [m] 
ℎ𝑤,𝑘 = height of wall or column ‘k’ in z-direction [m] 

𝑋𝑂,𝑤,𝑘 
= horizontal distance (x-direction) between centre of gravity of wall or 
column ‘k’ and point 𝑂 

[m] 

𝑍𝑂,𝑤,𝑘 
= vertical distance (z-direction) between centre of gravity of wall or 
column kj’ and point 𝑂 

[m] 

𝑚𝑎𝑑𝑑_𝑚𝑎𝑠𝑠 
= total additional (non-structural) mass (𝜌𝑎𝑑𝑑_𝑚𝑎𝑠𝑠 ∙ 𝑙𝑠𝑡𝑟𝑢𝑐𝑡,𝑥 ∙ 𝑙𝑠𝑡𝑟𝑢𝑐𝑡,𝑦 ∙

ℎ𝑠𝑡𝑟𝑢𝑐𝑡,𝑧) 

[kg/m3] 

𝑙𝑠𝑡𝑟𝑢𝑐𝑡,𝑥 = length of the building in x-direction [m] 
ℎ𝑠𝑡𝑟𝑢𝑐𝑡,𝑧 = height of the building in z-direction [m] 
𝑋𝑂,𝑠𝑡𝑟𝑢𝑐𝑡 = horizontal distance (x-direction) between centre of gravity of the total 

additional mass and point 𝑂 
[m] 

𝑍𝑂,𝑠𝑡𝑟𝑢𝑐𝑡 = vertical distance (z-direction) between centre of gravity of the total 
additional mass and point 𝑂 

[m] 

 
After the computation of 𝐽𝑂 the centre of gravity (CG) is computed for the total building. First 
all masses of every element are multiplied by their lever arm with respect to the point 𝑂. Then 
this value is divided by the summation of all masses. In a mathematical expression this looks as 
follows: 
 

 𝑍𝐶𝐺 =
∑ 𝑚𝑓𝑙,𝑗 ∙ 𝑍𝑂,𝑓𝑙,𝑗
𝑁𝑓𝑙
𝑗=1

+ ∑ 𝑚𝑤,𝑘 ∙ 𝑍𝑂,𝑤,𝑘
𝑁𝑤
𝑘=1 +𝑚𝑎𝑑𝑑_𝑚𝑎𝑠𝑠 ∙ 𝑍𝑂,𝑠𝑡𝑟𝑢𝑐𝑡

𝑀𝑏 = ∑ 𝑚𝑓𝑙,𝑗
𝑁𝑓𝑙
𝑗=1

+ ∑ 𝑚𝑤,𝑘
𝑁𝑤
𝑘=1 +𝑚𝑎𝑑𝑑_𝑚𝑎𝑠𝑠

 (0.103) 

 
Since the assumption is that the building design is symmetrical around a vertical axis, the 
horizontal coordinate of the centre of gravity is on the line of symmetry. Now that the centre 
of gravity is determined, 𝐽𝐶𝐺 can be computed as: 
 

 𝐽𝐶𝐺 = 𝐽𝑂 −𝑀𝑏 ∙ 𝑍𝐶𝐺
2  (0.104) 

1.1.2. Excitation 
The excitation on the 3DoF system is derived from the soil response of one particular situation 
as described in chapter 10 ‘ Transmission‘. The vertical excitation(s are taken as) is taken as an 
average of the vertical soil response at multiple points in the soil over the building length: 
 

 𝑢0𝑧 =
∑ 𝑢0𝑧,𝑖
𝑁𝑢𝑧
𝑖

𝑁𝑢𝑧
 (0.105) 

 
Also for the horizontal excitations an average is taken of the horizontal soil responses at 
multiple points over the embedment depth of the building: 
 

 𝑢0𝑥 =
∑ 𝑢0𝑥,𝑖
𝑁𝑢𝑥
𝑖

𝑁𝑢𝑥
 (0.106) 

 
The rocking excitation is taken as a rotation around the centre of gravity 𝐶𝐺 of the building 
and is computed as: 
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 𝑢0𝜑 =

∑
𝑢0𝑥,𝑗
𝑧𝐶𝐺,𝑗

𝑁𝑢𝑥
𝑗

𝑁𝑢𝑥
−

∑
𝑢0𝑧,𝑖
𝑥𝐶𝐺,𝑖

𝑁𝑢𝑧,𝑙
𝑖

𝑁𝑢𝑧,𝑙
+

∑
𝑢0𝑧,𝑖
𝑥𝐶𝐺,𝑖

𝑁𝑢𝑧,𝑟
𝑖

𝑁𝑢𝑧,𝑟
 (0.107) 

where: 
𝑢0𝜑 = rotational excitation [kgm2] 

𝑁𝑢𝑥 
= number of points of horizontal soil response over the embedment 
depth of the building 

 

𝑢0𝑥,𝑗 = horizontal soil response at point ‘j’  

𝑧𝐶𝐺,𝑗 
= vertical distance between horizontal soil response at point ‘j’ and the 
centre of gravity 

 

𝑁𝑢𝑧,𝑙 
= number of points of vertical soil response over the length of the 
building at the left side from the vertical symmetry line 

 

𝑢0𝑧,𝑖 = vertical soil response at point ‘i’  

𝑥𝐶𝐺,𝑖 
= horizontal distance between vertical soil response at point ‘i’ and the 
vertical symmetry line 

 

𝑁𝑢𝑧,𝑟 
= number of points of vertical soil response over the length of the 
building at the right side from the vertical symmetry line 

 

 
These excitations act on the springs and dashpots supporting the 3DoF system. The 
compression or extension of the springs and dashpots due to the imposed displacements and 
rotations causes dynamic forces to act on the 3DoF system. The dynamic forces are generally in 
the form of a Fourier expansion and are composed of a summation of cosines and sines: 
 

 𝐹𝑖(𝑡) =∑[𝐹𝑖,𝑐,𝑗 cos(𝑘𝑦𝑗 ∙ 𝑡) + 𝐹𝑖,𝑠,𝑗 sin(𝑘𝑦𝑗 ∙ 𝑡)]

𝑁

𝑗=1

 (0.108) 

1.1.3. Expressions of the building response in the direction of a degree of freedom 
In chapter 5 ‘Structural System (Receiver of Vibrations)’ it was already explained how the 
dynamic response of a multi-degrees of freedom system can be computed when the system is 
excited by a harmonic force in a particular direction. The computation of the dynamic 
response of the 3DoF rigid building motion due to a single harmonic force is in the exact same 
manner. In order to compute the total dynamic response of the 3DoF rigid building motion in 
every degree of freedom, the response of the degree of freedom due to all individual harmonic 
loading terms in the direction of all the degrees of freedom should be added: 
 

 

𝑢𝑏,𝑥(𝑡) = ∑ 𝑢𝑏,𝑥,𝑖(𝑡)

𝑖=𝑥,𝑧,𝜑

= ∑ (∑𝑢𝑏,𝑥,𝑖,𝑗(𝑡)

𝑁

𝑗=1

)

𝑖=𝑥,𝑧,𝜑

 

𝑢𝑏,𝑧(𝑡) = ∑ 𝑢𝑏,𝑧,𝑖(𝑡)

𝑖=𝑥,𝑧,𝜑

= ∑ (∑𝑢𝑏,𝑧,𝑖,𝑗(𝑡)

𝑁

𝑗=1

)

𝑖=𝑥,𝑧,𝜑

 

𝑢𝑏,𝜑(𝑡) = ∑ 𝑢𝑏,𝜑,𝑖(𝑡)

𝑖=𝑥,𝑧,𝜑

= ∑ (∑𝑢𝑏,𝜑,𝑖,𝑗(𝑡)

𝑁

𝑗=1

)

𝑖=𝑥,𝑧,𝜑

 

(0.109) 

where: 

𝑢𝑏(𝑡) 
= the time-instant dependent building response given in the form as 
either displacements, velocities or accelerations 

[m], [m/s] 
or [m/s2] 

𝑢𝑏,𝑥(𝑡) = total building response in the translational degree of freedom 𝑢𝑏,𝑥
  

𝑢𝑏,𝑥,𝑖(𝑡) 
= building response in the translational degree of freedom 𝑢𝑏,𝑥 due to 

all loading terms in the direction of the degree of freedom 
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𝑢𝑏,𝑖 (𝑖 = 𝑥, 𝑧, 𝜑)
 

𝑢𝑏,𝑥,𝑖,𝑗(𝑡) 
= building response in the translational degree of freedom 𝑢𝑏,𝑥 due to 
loading term 𝑗 (𝑗 = 1,2,…𝑁) in the direction of the degree of freedom 
𝑢𝑏,𝑖 (𝑖 = 𝑥, 𝑧, 𝜑)

 

 

𝑢𝑏,𝑧(𝑡) = total building response in the translational degree of freedom 𝑢𝑏,𝑧
  

𝑢𝑏,𝑧,𝑖(𝑡) 
= building response in the translational degree of freedom 𝑢𝑏,𝑧 due to 
all loading terms in the direction of the degree of freedom 
𝑢𝑏,𝑖 (𝑖 = 𝑥, 𝑧, 𝜑)

 

 

𝑢𝑏,𝑧,𝑖,𝑗(𝑡) 
= building response in the translational degree of freedom 𝑢𝑏,𝑧 due to 
loading term 𝑗 (𝑗 = 1,2,…𝑁) in the direction of the degree of freedom 
𝑢𝑏,𝑖 (𝑖 = 𝑥, 𝑧, 𝜑)

 

 

𝑢𝑏,𝜑(𝑡) = total building response in the translational degree of freedom 𝑢𝑏,𝜑
  

𝑢𝑏,𝜑,𝑖(𝑡) = building response in the translational degree of freedom 𝑢𝑏,𝜑 due 

to all loading terms in the direction of the degree of freedom 
𝑢𝑏,𝑖 (𝑖 = 𝑥, 𝑧, 𝜑)

 

 

𝑢𝑏,𝜑,𝑖,𝑗(𝑡) = building response in the translational degree of freedom 𝑢𝑏,𝜑 due 

to loading term 𝑗 (𝑗 = 1,2,…𝑁) in the direction of the degree of 
freedom 𝑢𝑏,𝑖 (𝑖 = 𝑥, 𝑧, 𝜑)

 

 

 

1.2.  Local Dynamic Response of Flexible Floor 
The dynamic response of the bottom storey floor is of particular interest, because the vibration 
sensitive equipment is generally placed either on the foundation slab or the first storey floor. 
For this thesis a flexible frame is used to compute the dynamic response of the storey floor of 
interest, named ‘𝑤1’ (Figure 187 and Figure 188). The flexible frame takes into account adjacent 
elements of 𝑤1 as well to consider their influence on the dynamic response of 𝑤1 (e.g. rotation 
stiffness at the boundaries of 𝑤1 and the influence of the horizontal excitation on the vertical 
dynamic response of 𝑤1). Since the response of interest of the local floor is the dynamic 
response, described more particular: the dynamic velocity, the gravity loading does not play a 
role, because the gravity loading is only static. Therefore, the gravity loading is not taken into 
account for the computation of the dynamic response flexible frame. 

1.2.1. The composition of the flexible frame 
The flexible frame is composed of four (undamped) Euler-Bernoulli beam floor elements: 
𝑤1, 𝑤2, 𝑤3, 𝑤4 and four Euler-Bernoulli beam wall/column elements: 𝑢1, 𝑢2, 𝑢3, 𝑢4. The principle 
of an Euler-Bernoulli beam (EB-beam) element was discussed in 5.5 ‘Continuous Systems‘. 
Figure 187 is repeated from 5.5 ‘Continuous Systems’ and gives  a typical presentation of an EB-
beam. 
 

 
Figure 187. Typical representation of an EB-beam element 

The dynamical properties of every EB-beam element consist of 𝐸𝐼𝑖,𝑗 (Nm2), 𝜌𝑖,𝑗 (kg/m3) and 𝐴𝑖,𝑗 

(m2) where: (𝑖 = 𝑤, 𝑢) and (𝑗 = 1, 2, 3, 4). The dynamic response of every EB-beam element is 
computed as its displacement (depending on time and the longitudinal coordinate of the 
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element) perpendicular to the longitudinal axis of the element: 𝑤𝑗(𝑥, 𝑡) and 𝑢𝑗(𝑧, 𝑡) with 

(𝑗 = 1, 2, 3, 4). All EB-beam elements are assumed as being inextensible (i.e. 𝐸𝐴 = ∞).  
 

 
Figure 188. Principles for the flexible frame for computation of the local dynamic response of 𝑤1. Left: 

displaced flexible frame due to rigid building movement of 3DoF system. Right: flexible frame composed 
of four flexible Euler-Bernoulli beam floor elements 𝑤1, 𝑤2, 𝑤3, 𝑤4and four flexible Euler-Bernoulli beam 

wall/column elements 𝑢1, 𝑢2, 𝑢3, 𝑢4 

The equation of motion (EOM) of an EB-beam element consists of a fourth-order differential 
equation: 
 

 

𝐸𝐼𝑤,𝑖
𝛿4𝑤𝑖(𝑥, 𝑡)

𝛿𝑥4
+ 𝜌𝐴𝑤,𝑖

𝛿2𝑤𝑖(𝑥, 𝑡)

𝛿𝑡2
= 0 

or 

𝐸𝐼𝑢,𝑖
𝛿4𝑢𝑖(𝑧, 𝑡)

𝛿𝑧4
+ 𝜌𝐴𝑢,𝑖

𝛿2𝑢𝑖(𝑧, 𝑡)

𝛿𝑡2
= 0 

(0.110) 

 
where (𝑖 = 1, 2, 3, 4). 
 
The unknowns in the general solutions of the fourth-order differential equations (this will be 
further explained in 1.2.2 ‘Finding the response of the flexible frame’) need to be solved with 
the aid of the Boundary Conditions (BCs) of the element. Every EB-beam element needs two 
BCs at the start-coordinate of the element and two BCs at the end-coordinate of the element. 
The BCs for a simply supported EB-beam element and for a cantilever EB-beam element were 
already given in 5.5 ‘Continuous Systems‘. However, at the nodes where one EB-beam element 
is connected to another EB-beam element, Interface Conditions (ICs) are needed instead. The 
ICs make sure that the dynamic response of one EB-beam element is compatible with the 
dynamic response of the connecting EB-beam element(s). For example, in case two EB-beam 
elements are connected to each other, this interface needs 4 ICs (2 conditions for both 
element-ends).  
 
The flexible frame is rigidly fixed to the foundation slab which has a dynamical response equal 
to the 3DoF rigid building response computed in the previous section. This makes that the 
flexible frame for this thesis research is excited by the rigid building motion of the 3DoF 
system only. The BCs and ICs are such that they are compatible with the 3DoF rigid building 
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motion and such that they make sure that the flexible frame is internally in equilibrium 
(Figure 189).  
The dynamic response of the flexible EB-beam frame is solved as a summation of the dynamic 
responses of the frame due to all prescribed horizontal and vertical displacements and all 
prescribed rotations. In formula form this summation would look like: 
 

 
𝐷𝑦𝑛_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 

𝐷𝑦𝑛_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑢𝑏,𝑥 + 𝐷𝑦𝑛_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑢𝑏,𝑧 + 𝐷𝑦𝑛_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑢𝑏,𝜑 
(0.111) 

 
Where the BCs and ICs for every 𝐷𝑦𝑛_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑖 (𝑖 = 𝑢𝑏,𝑥 , 𝑢𝑏,𝑧, 𝑢𝑏,𝜑) can be different. All BCs 

and ICs per 𝐷𝑦𝑛_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑖 are given in Appendix P ‘Appendix: Boundary- and Interface 
conditions of the three 𝐌𝐨𝐝𝐞𝐥𝐬𝒙,𝒛,𝝋’ (referenced as Model𝑥, Model𝑧 and Model𝜑 respectively). A 

combination of them all, giving the most interesting BCs and ICs, is presented in Figure 189. 
Note that the combination of BCs and ICs given in Figure 189 is not correct for the 
computation of the dynamic response of the frame and should be subdivided as presented in 
Appendix P, otherwise a non-singular matrix needs to be solved which should not be the case 
for the current problem.  
 

 
Figure 189. Combination of most interesting Interface- and Boundary Conditions of the flexible EB-beam 
frame, excited by the prescribed time dependent rigid building motion of the 3DoF system. The ICs and 
BCs per rigid body excitation (𝑥, 𝑧, 𝜑), as implemented in the Python script, can be found in Appendix P 

Two BCs are needed at every node at which only one EB-beam element is connected. Four ICs 
are needed for the nodes with two EB-beam elements, six ICs for the nodes with three EB-
beam elements and eight ICs for the nodes with four EB-beam elements. Some BCs and ICs are 
described with a ‘±’ sign. This means that either a ‘+’ or a ‘-‘ needs to be considered here, based 
on the position of the centre of gravity (CG) of the global building with respect to the node of 
interest: the horizontal displacement due to the rocking motion is positive in case CG is 
underneath the node and is negative in case CG is above the node. The vertical displacement 
due to the rocking motion is positive in case CG is to the right of the node and is negative in 
case CG is to the left of the node. Some examples are presented in Figure 190. 
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Figure 190. Some examples for determining whether the rocking motion generates a positive or negative 

horizontal and vertical displacement of a particular node in the frame based on the position of the 
centre of gravity (CG) 

1.2.2. Finding the response of the flexible frame 
The steady-state solution of the EB-beam has the same time signatures as that of the excitation 
and since the excitation (the rigid 3DoF building motion) is a summation of harmonics with 
time signatures cos(𝑘𝑦𝑗 ∙ 𝑡) and sin(𝑘𝑦𝑗 ∙ 𝑡), the steady-state solution of the EB-beams is also 

composed of these time signatures:  
 

 

𝑤𝑖(𝑥, 𝑡) =∑𝑊𝑖,𝑐,𝑗(𝑥) ∙ cos(𝑘𝑦𝑗 ∙ 𝑡) +𝑊𝑖,𝑠,𝑗(𝑥) ∙ sin(𝑘𝑦𝑗 ∙ 𝑡)

𝑁

𝑗=1

 

or 

𝑢𝑖(𝑧, 𝑡) =∑𝑈𝑖,𝑐,𝑗(𝑧) ∙ cos(𝑘𝑦𝑗 ∙ 𝑡) + 𝑈𝑖,𝑠,𝑗(𝑧) ∙ sin(𝑘𝑦𝑗 ∙ 𝑡)

𝑁

𝑗=1

 

(0.112) 

 
Where (𝑖 = 1, 2, 3, 4) and (𝑗 = 1, 2, …  𝑁). 
 
By inserting the steady-state solutions of the EB-beams into the EOMs, BCs and ICs and 
gathering the terms proportional to cos(𝑘𝑦𝑗 ∙ 𝑡) and sin(𝑘𝑦𝑗 ∙ 𝑡), 6𝑁 boundary-value problems 

are obtained: 3𝑁 boundary-value problems for all terms proportional to cos(𝑘𝑦𝑗 ∙ 𝑡) (𝑁 

boundary-value problems for every Model𝑈 (𝑈 = 𝑥, 𝑧, 𝜑)) and 3𝑁 boundary-value problems for 
all terms proportional to sin(𝑘𝑦𝑗 ∙ 𝑡) (𝑁 boundary-value problems for every Model𝑈 (𝑈 =

𝑥, 𝑧, 𝜑)). The software ‘Maple’ is used to derive the boundary-value problems and to solve the 
typical boundary-value problems related to the cos(𝑘𝑦𝑗 ∙ 𝑡) terms for every Model𝑈 (see 

Appendices Q, R and S for the elaboration of the boundary-value problem of the flexible EB-
beam frame for the terms proportional to the cos(𝑘𝑦1 ∙ 𝑡) terms). Every boundary-value 

problem is solved as a multiplication of the inversed coefficient matrix (derived from the BCs 
and ICs) and the loading vector. The procedure for each of the 6𝑁 boundary-value problems 
can be summarized as follows: 
 
By substituting the steady-state solution into the EOM, the following remains: 
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𝑑4𝑊𝑖,𝑔,𝑗(𝑥)

𝑑𝑥4
− 𝛽𝑖,𝑗

4 ∙ 𝑊𝑖,𝑔,𝑗(𝑥) = 0 (0.113) 

 
with: 
 

 𝛽𝑖,𝑗
4 =

𝜌𝐴𝑖,𝑗𝜔
2

𝐸𝐼𝑖,𝑗
   and   𝜔𝑗 = 𝑘𝑦𝑗 (0.114) 

 
and where (𝑖 = 𝑤1,𝑤2,𝑤3,𝑤4), (𝑔 = 𝑐, 𝑠), which stands for the goniometric function (cosine 
or sine) and (𝑗 = 1, 2, …  𝑁) and where the pair (𝑊,𝑥) can be interchanged with (𝑈, 𝑧) 
 
The general solution of 𝑊𝑖,𝑔,𝑗(𝑥) is given as: 

 
 𝑊𝑖,𝑔,𝑗(𝑥) = 𝐴𝑤,𝑖,𝑔,𝑗 cosh(𝛽𝑥) + 𝐵𝑤,𝑖,𝑔,𝑗 sinh(𝛽𝑥) + 𝐶𝑤,𝑖,𝑔,𝑗 cos(𝛽𝑥) + 𝐷𝑤,𝑖,𝑔,𝑗 sin(𝛽𝑥) (0.115) 

 
with the four unknowns 𝐴𝑤,𝑖,𝑔,𝑗, 𝐵𝑤,𝑖,𝑔,𝑗, 𝐶𝑤,𝑖,𝑔,𝑗 and 𝐷𝑤,𝑖,𝑔,𝑗. When the steady-state solution is 

substituted into all the BCs and ICs, corresponding to the correct Model𝑈, the coefficient 
matrix can be obtained. An example for one IC will be given (concerning the compatibility of 
rotations at the interface of 𝑢3 and 𝑢4 at 𝑥 = span, 𝑧 = h𝑤1: 
 

 
𝑑𝑢3,2
𝑑𝑧

=
𝑑𝑢4,1
𝑑𝑧

 (0.116) 

 
After substitution of the steady-state solution, the IC becomes: 
 

 
𝑑𝑈3,𝑔,𝑗(ℎ𝑤1)

𝑑𝑧
=
𝑑𝑈4,𝑔,𝑗(ℎ𝑤1)

𝑑𝑧
 (0.117) 

 
and after simplifying the substitution of the general solutions, the IC becomes: 
 

 

𝛽𝑢3,𝑔,𝑗 ∙ (𝐴𝑢,3,𝑔,𝑗 sinh(𝛽𝑢3,𝑔,𝑗 ∙ 𝑧) + 𝐵𝑢,3,𝑔,𝑗 cosh(𝛽𝑢3,𝑔,𝑗 ∙ 𝑧) − 𝐶𝑢,3,𝑔,𝑗 sin(𝛽𝑢3,𝑔,𝑗 ∙ 𝑧)

+ 𝐷𝑢,3,𝑔,𝑗 cos(𝛽𝑢3,𝑔,𝑗 ∙ 𝑧)) − 

𝛽𝑢4,𝑔,𝑗 ∙ (𝐴𝑢,4,𝑔,𝑗 sinh(𝛽𝑢4,𝑔,𝑗 ∙ 𝑧) + 𝐵𝑢,4,𝑔,𝑗 cosh(𝛽𝑢4,𝑔,𝑗 ∙ 𝑧) − 𝐶𝑢,4,𝑔,𝑗 sin(𝛽𝑢4,𝑔,𝑗 ∙ 𝑧)

+ 𝐷𝑢,4,𝑔,𝑗 cos(𝛽𝑢4,𝑔,𝑗 ∙ 𝑧)) = 0 

(0.118) 

 
And is part of the coefficient matrix as a row, e.g. row 15 (the 15th BC or IC implemented) in: 
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The matrix and vectors can be written in letter-form as: 
 

 𝑨𝑐𝑜𝑒𝑓𝑓 ∗ 𝐵𝑐𝑜𝑒𝑓𝑓 = 𝐹 (0.119) 
 
where 𝑨𝑐𝑜𝑒𝑓𝑓 is the coefficient matrix, 𝐵𝑐𝑜𝑒𝑓𝑓 is the vector containing all 32 unknowns of one 

boundary-value problem and 𝐹 is the loading vector. The IC (
𝑑𝑢3,2

𝑑𝑧
=

𝑑𝑢4,1

𝑑𝑧
) with substituted 

general solutions as described before can be written in line with the matrix notation as: 
 

 
(𝑐15,25 ∙ 𝐴𝑢,3,𝑔,𝑗 + 𝑐15,26 ∙ 𝐵𝑢,3,𝑔,𝑗 + 𝑐15,27 ∙ 𝐶𝑢,3,𝑔,𝑗 + 𝑐15,28 ∙ 𝐷𝑢,3,𝑔,𝑗) − 

(𝑐15,29 ∙ 𝐴𝑢,4,𝑔,𝑗 + 𝑐15,30 ∙ 𝐵𝑢,4,𝑔,𝑗 + 𝑐15,31 ∙ 𝐶𝑢,4,𝑔,𝑗 + 𝑐15,32 ∙ 𝐷𝑢,4,𝑔,𝑗) = 𝑓15 
(0.120) 

 
Where, for example, 𝑐15,25 = 𝛽𝑢3,𝑔,𝑗 ∙ sinh (𝛽𝑢3,𝑔,𝑗 ∙ 𝑧) and 𝑐15,31 = −𝛽𝑢4,𝑔,𝑗 ∙ sin (𝛽𝑢4,𝑔,𝑗 ∙ 𝑧)  and 

𝑓15 = 0. The vector 𝐵𝑐𝑜𝑒𝑓𝑓 is solved by the multiplication of the inversed coefficient matrix 

with the loading vector: 
 

 𝐵𝑐𝑜𝑒𝑓𝑓 = 𝑨𝑐𝑜𝑒𝑓𝑓
−𝟏 ∗ 𝐹 (0.121) 

 
This procedure is done (numerically in Python) for all 6𝑁 boundary-value problems which 
makes that all unknowns of 𝑊𝑖,𝑔,𝑗(𝑥) and 𝑈𝑖,𝑔,𝑗(𝑧) are known now and thus the steady-state 

solutions 𝑤𝑖(𝑥, 𝑡) and 𝑢𝑖(𝑧, 𝑡) (displacements) have been found (𝑖 = 1, 2, 3, 4). As already 
mentioned before, particular interest exists for the response 𝑤1(𝑥, 𝑡), 0 < 𝑥 < span, which has a 
dynamic response with the same time signatures as the excitation (the 3DoF rigid building 
motion), however the amplitudes of the response are altered due to the structural properties of 
the flexible frame (𝐸𝐼𝑖,𝑗 (Nm2), 𝜌𝑖,𝑗 (kg/m3), 𝐴𝑖,𝑗 (m

2)).  

1.2.3. Finding the response of the foundation slab in the same form as the VC-curves 
The described procedure for computing the local dynamic response heavily focusses on the 
storey floor 𝑤1. However, also the local dynamic response of the foundation slab can be 
computed by this model. Depending on the stiffness of the foundation slab the dynamic 
response of the foundation slab is either equal to the dynamic response of the, in the previous 
section, computed 3DoF rigid building response (stiffness of foundation slab is very high) or 
can be derived from the flexible EB-beam frame by taking infinitely stiff wall/column elements 
(𝐸𝐼𝑢1 = ∞ and 𝐸𝐼𝑢3 = ∞) and by choosing a floor span equal to a suitable centre-to-centre 
distance of the foundation piles (stiffness of foundation slab is not sufficient to be considered 
as being rigid). In this way the foundation slab is excited at its supports directly by the rigid 
3DoF building response, without the influence of any deformations of 𝑢1 and 𝑢3. 
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M. Appendix: Maple sheet for determining 3DoF eigenfrequencies 
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N. Appendix: Input parameters for Verification Project Degrande et al. (3) – 
Building Response  

  



Input file for computing structural dynamic response

Date: 2-9-2019  |  Author: Gerwin Schut

Input file for Python Description Parameters Unit Explanation           ← do not change this line

Author:

Date:

Project: EV 5.2

Description Parameters Unit Explanation

do not change the descriptions in this column ↓

Script 0:  0.3DoFBuildingDesignParameters
Figures to explain several input parameters of Python scripts 0, 1 and 2

Python input requirements

Gerwin Schut

2-9-2019



Input file for computing structural dynamic response

Date: 2-9-2019  |  Author: Gerwin Schut

FLOORS for 3DoF system

     Floor 1 FloorProperties1

properties of floor.

Make sure that the text 'FloorProperties' + (the number of the wall), e.g. 'FloorProperties1' is 

present in the 'descriptions' column in case this floor has to be included in the computation. 

Otherwise delete the text 'FloorProperties'.

dFloor1 = 0.25 m Thickness of floor

MaterialFloor1 = Concrete - Material name for the floor

RhoFloor1 = 2500 kg/m3 density of floor material 

EFloor1 = 30000000000 N/m2 Young's modulus of floor material 

vFloor1 = 0.2 - Poisson's ratio of floor material. Should be smaller than 0.5

     Floor 2 FloorProperties2 properties of floor.

dFloor2 = 0.26 m Thickness of floor

MaterialFloor2 = Concrete - Material name for the floor

RhoFloor2 = 2000 kg/m3 density of floor material 

EFloor2 = 30000000000 N/m2 Young's modulus of floor material 

vFloor2 = 0.2 - Poisson's ratio of floor material. Should be smaller than 0.5

     Floor 3 FloorProperties3 properties of floor.

dFloor3 = 0.26 m Thickness of floor

MaterialFloor3 = Concrete - Material name for the floor

RhoFloor3 = 2000 kg/m3 density of floor material 

EFloor3 = 30000000000 N/m2 Young's modulus of floor material 

vFloor3 = 0.2 - Poisson's ratio of floor material. Should be smaller than 0.5

     Floor 4 FloorProperties4 properties of floor.

dFloor4 = 0.1 m Thickness of floor

MaterialFloor4 = Metal - Material name for the floor

RhoFloor4 = 1000 kg/m3 density of floor material 

EFloor4 = 1000000000 N/m2 Young's modulus of floor material 

vFloor4 = 0.3 - Poisson's ratio of floor material. Should be smaller than 0.5

FREE STOREY HEIGHTS for 3DoF system Note: the number of free storey heights is equal to the number of floors - 1

FreeStoreyHeight1_2 = 1.47 m Free storey height between floor 1 and 2

FreeStoreyHeight2_3 = 2.74 m Free storey height between floor 2 and 3

FreeStoreyHeight3_4 = 3 m Free storey height between floor 3 and 4



Input file for computing structural dynamic response

Date: 2-9-2019  |  Author: Gerwin Schut

FLOORSPANS

NrOfFloorSpansX = 2 - number of floor spans in-plane (in the x-z-plane)

FloorSpanLengthX = 8.25 m length of floor spans in-plane (equal for all floor spans). Span in between the walls

NrOfFloorSpansY = 1 - number of floor spans out-of-plane (in the y-z-plane)

FloorSpanLengthY = 4.3 m length of floor spans out-of-plane (equal for all floor spans). Span in between the walls

WALLS

WallProperties

properties of wall.

Make sure that the text 'WallProperties' + (the number of the wall), e.g. 'WallProperties1' is present 

in the 'descriptions' column in case this wall has to be included in the computation. Otherwise 

delete the text 'WallProperties'.

tWallX = 0.15 m Thickness of wall in-plane (in the x-z-plane)

tWallY = 0.65 m Thickness of wall out-of-plane (in the y-z-plane)

MaterialWall = Brickwork - Material name for the wall

RhoWall = 1400 kg/m3 density of wall material 

Ewall = 8000000000 N/m2 Young's modulus of wall material 

vWall = 0.14 - Poisson's ratio of wall material. Should be smaller than 0.5

LstructX = 16.95 m total length of structure (in-plane) in x-direction

LstructY = 5.6 m total depth of structure (out-of-plane) in y-direction

HstructZ = 7.98 m total height of structure in z-direction

AdditionalMass = 47.513 kg/m3

additional mass that needs to be taken into account for the total mass of the building and the mass 

moment inertia of the building which acts as resistance against vibrations (impedance). Divide the 

total mass to be added by the total volume of the structure (LstructX x LstructY x HstructZ)

Continue on next page with script 1



Input file for computing structural dynamic response

Date: 2-9-2019  |  Author: Gerwin Schut

Script 1: 1.ScriptToCompute3DoFExcitation
Structure for 3DoF system

pos_StartStructure = 18.25 m distance along the x-axis from the middle of the road to the start of the building

pos_EndStructure = 35.2 m distance along the x-axis from the middle of the road to the end of the building

DstructZ = 1.73 m depth of structure (e.g. box or slab) without pile foundation

Excitation 3DoF system

Exc_factor = 0 -

0: the excitation is not factorized

1: the excitation is factorized according to EV5.2 by factorizing the frequency domain and copmuting 

the time domain from there

tmin_exc = -0.2 s start time-instant for the excitation input (preferably Excitation(tmin_exc) = 0)

tmax_exc = 1 s end time-instant for the excitation input (preferably Excitation(tmax_exc) = 0)

tstep_exc = 0.02 s time step for the excitation input (should be sufficiently small for reliable excitation input)

t_nr_exc = 61 nr of time instants considered to compute the excitation in the time domain

Continue on next page with script 2



Input file for computing structural dynamic response

Date: 2-9-2019  |  Author: Gerwin Schut

Script 2: 2.ImpedancesAnd3DoFStructuralResponse
Soil approximation for impedances 3DoF system

G_HS = 120000000 N/m2 shear modulus of soil approximation as homogeneous HalfSpace

rho_HS = 2000 kg/m3 material mass density of soil approximation as homogeneous HalfSpace

v_HS = 0.48 - Poisson's ratio of soil approximation as homogeneous HalfSpace

Beta_HS = 0.02 - damping ratio of soil approximation as homogeneous HalfSpace

in case of piles only Esoil0 = 237000000 N/m2 Young's modulus of soil material at the pile head (top of the pile, underneath the foundation slab)

in case of piles only rho_L = 2000 kg/m3 material mass density of soil approximation at pile-length of the foundation pile (pile tip)

in case of piles only v_L = 0.48 - Poisson's ratio of soil approximation at pile-length of foundation pile (pile tip)

in case of piles only Cs_L = 200 m/s shear wave speed of soil approximation at pile-length of the foundation pile (pile tip)

in case of piles only Cs_Lm = 100 m/s shear wave speed of soil approximation at mid-length of the foundation pile

in case of piles only Cs_H = 400 m/s

shear wave speed of soil approximation at twice the pile-length of the foundation pile (pile tip + pile 

length)

in case of piles only Beta_L = 0.01 - damping ratio of soil approximation at pile-length of the foundation pile (pile tip)

in case of piles only HsoilZ = 36 m depth of H (which is taken as twice the pile length)

Structure for 3DoF system

DstructZeff = 1.73 m effective depth of structural wall-soil interface

AbReducingFactor = 1 -

reducing factor for contact area Ab between bottom of structure and soil to take into account loss 

of contact due to e.g. rocking of the structure. 

AwReducingFactor = 1 -

reducing factor for contact area Aw between structural walls and soil to take into account loss of 

contact due to e.g. rocking of the structure. 

presence_piles = 0

0: no foundation piles are included

1: the foundation piles are included as specified below:

in case of piles only Dpile = 0.7 m diameter of a single foundation pile

in case of piles only LpileZ = 18 m length of a single foundation pile (underneath bottom of foundation slab to pile tip)

in case of piles only nrPilesX = 9 - nr of foundation piles on the same axis parallel to the x-axis (symmetrically divided)

in case of piles only nrPilesY = 26 - nr of foundation piles on the same axis parallel to the y-axis (symmetrically divided)

in case of piles only Ptot = 234 - total nr of foundation piles (minimum amount is 4)

in case of piles only Spiles = 2.1 m axis-to-axis distance foundation piles

ìn case of piles only Epile = 30000000000 N/m2 Young's Modulus of foundation pile material (e.g. concrete)



Input file for computing structural dynamic response

Date: 2-9-2019  |  Author: Gerwin Schut

Computational options 3DoF system

freq_step_str = 0.25 Hz

frequency step used to compute the 3DoF soil impedances and the 3DoF structural response and 

the EB-beam flexible frame structural response in the frequency domain. Also: freq_min_str = 

freq_step_str/2

freq_nr_str = 81 - nr of frequencies considered to compute the freq_max_str

freq_max_str = 20.125 Hz

maximum frequency considered for computing the 3DoF soil impedances and the 3DoF structural 

response and the EB-beam flexible frame structural response in the frequency domain.

tmin_resp = -0.22 s minimum time instant to consider for the computation of the structural response

tstep_resp = 0.02 s time step to consider for the computation of the structural response

t_nr_resp = 211 nr of time instants to consider for the computation of the structural response

tmax_resp = 3.98 s maximum time instant to consider for the computation of the structural response

freq_plot_forcings = 7 Hz specific frequency for which the frequency dependent forcings are plotted (compressed springs)

Plotting parameters 3DoF system

plot_3DoF_velocities_time = 1

0: do not plot the 3DoF response velocities in the time domain

1: plot the 3DoF response velocities in the time domain

plot_3DoF_velocities_freq = 1

0: do not plot the 3DoF response velocities in the frequency domain

1: plot the 3DoF response velocities in the frequency domain

plot_3DoF_RMSvelocities_freq = 1

0: do not plot the 3DoF response RMS velocities in the frequency domain

1: plot the 3DoF response RMS velocities in the frequency domain

Excitation 3DoF system (in case a simpler excitation is wanted than the stored excitation lists in the folder 'SoilResponses')

overwrite_exc_3DoF = 0 -

0: the excitation will be taken from the excitation.csv-files, computed by script 1.

1: the excitation will not be taken from the excitation.csv-files. Instead a more simple excitation can 

be constructed with the parameters specified below this parameter.

     Harmonic excitation term 1

Freq_3DoF_exc1 = 5 Hz The frequency of the harmonic excitation: U(t) = Aucj*cos(Freq_excj*t) + Ausj*sin(Freq_excj*t)

Au1cj_3DoF_exc1 = 0.00001 m Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)



Input file for computing structural dynamic response

Date: 2-9-2019  |  Author: Gerwin Schut

Au1sj_3DoF_exc1 = 0.00001 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Au3cj_3DoF_exc1 = 0.00001 m Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

Au3sj_3DoF_exc1 = 0.00001 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

AuPHIcj_3DoF_exc1 = 0.00001 rad Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

AuPHIsj_3DoF_exc1 = 0.00001 rad Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Av1cj_3DoF_exc1 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the cosine term of the velocities (v)

Av1sj_3DoF_exc1 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the sine term of the velocities (v)

Av3cj_3DoF_exc1 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the cosine term of the velocities (v)

Av3sj_3DoF_exc1 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the sine term of the velocities (v)

AvPHIcj_3DoF_exc1 = 0.0001 rad/s Amplitude of the harmonic excitation correcponding to the cosine term of the velocities (v)

AvPHIsj_3DoF_exc1 = 0.0001 rad/s Amplitude of the harmonic excitation correcponding to the sine term of the velocities (v)

     Harmonic excitation term 2

Freq_3DoF_exc2 = 10 Hz The frequency of the harmonic excitation: U(t) = Aucj*cos(Freq_excj*t) + Ausj*sin(Freq_excj*t)

Au1cj_3DoF_exc2 = 0.00001 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Au1sj_3DoF_exc2 = 0.00001 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Au3cj_3DoF_exc2 = 0.00001 m Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

Au3sj_3DoF_exc2 = 0.00001 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)
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AuPHIcj_3DoF_exc2 = 0.00001 rad Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

AuPHIsj_3DoF_exc2 = 0.00001 rad Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Av1cj_3DoF_exc2 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the cosine term of the velocities (v)

Av1sj_3DoF_exc2 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the sine term of the velocities (v)

Av3cj_3DoF_exc2 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the cosine term of the velocities (v)

Av3sj_3DoF_exc2 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the sine term of the velocities (v)

AvPHIcj_3DoF_exc2 = 0.0001 rad/s Amplitude of the harmonic excitation correcponding to the cosine term of the velocities (v)

AvPHIsj_3DoF_exc2 = 0.0001 rad/s Amplitude of the harmonic excitation correcponding to the sine term of the velocities (v)

     Insert additional excitation terms here

Continue on next page with script 3
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Script 3: 3.EB-beam frame matrix_allExcitations
Figures to explain several input parameters of Python script 3

EB-beam frame additional (or more detailed / free to pick) properties. Otherwise refer input cell to structural properties of script 0

Structure for EB-beam frame

EB_span = 5.6 m length (span) of all EB-beam floor elements

EB_hw1 = 1.6 m length (storey height) of the EB-beam wall elements u1 and u3

EB_hw2 = 3 m length (storey height) of the EB-beam wall elements u2 and u4

wj_width = 3.1 m width of the EB-beam floor elements (factorized out in the computation)

w1_height = 0.26 m floor height or thickness of EB-beam floor element w1

w2_height = 0.26 m floor height or thickness of EB-beam floor element w2

w3_height = 0.26 m floor height or thickness of EB-beam floor element w3

w4_height = 0.26 m floor height or thickness of EB-beam floor element w4

uj_width = 0.65 m width of the EB-beam wall elements (factorized out in the computation)

u1_height = 0.3 m wall height or thickness of EB-beam wall element u1

u2_height = 0.14 m wall height or thickness of EB-beam wall element u2

u3_height = 0.3 m wall height or thickness of EB-beam wall element u3

u4_height = 0.14 m wall height or thickness of EB-beam wall element u4

rho_structure = 2500 kg/m3 material mass density of the EB-beam frame structure

E_mod_structure = 8700000000 N/m2 Young's Modulus of the EB-beam frame structure
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Computation of EB-beam frame

freq_step_str_EB = 0.25 Hz

freq_nr_str_EB = 81 -

freq_max_str_EB = 20.125 Hz

tmin_resp_EB = -0.2

tstep_resp_EB = 0.02 s

t_nr_resp_EB = 105

tmax_resp_EB = 1.88 s

Plotting parameters EB-beam frame

plot_displaced_frames_UxWzPHIy = 0

0: do not plot the displaced EB-beam frame due to the excitations Ux, Wz and PHIy for a particular 

time instant

1: plot the displaced EB-beam frame due to the excitations Ux, Wz and PHIy for the time instants 

specified below:

plot_displaced_frame_tot = 0

0: do not plot the displaced EB-beam frame due to all excitation types for a particular time instant

1: plot the displaced EB-beam frame due to all excitation types for the time instants specified below:

time_instant_frame_plot_1 = 0.5 s time instant at which the results of the EB-beam frame are computed and plotted

time_instant_frame_plot_2 = 0.1 s time instant at which the results of the EB-beam frame are computed and plotted

plot_max_defl_factor = 0.1

factor multiplied with min(hw,hw2,span) to obtain a limit displacement in the EB-beam frame plots. 

This limit is used to obtain a scalingfactor for plotting the displaced EB-beam frames. Advised is to 

keep this value equal to 0.1

applying_scaling_factor = 0 -

0: no scalingfactor will be applied to the plots of the deformed EB-beam frame

1: the scalingfactor for the plots will be determined by the script (computational heavy)

2: the scaling factor will be chosen from the specified factors below:

apply_ScalingFactorUx = 600 -

Scaling factor applied when '2' is chosen above (for the response due to excitation Ux only), refers 

to plot_displaced_frames_UxWzPHIy

apply_ScalingFactorWz = 600 -

Scaling factor applied when '2' is chosen above (for the response due to excitation Wz only), refers 

to plot_displaced_frames_UxWzPHIy
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apply_ScalingFactorPHIy = 600 -

Scaling factor applied when '2' is chosen above (for the response due to excitation PHIy only), refers 

to plot_displaced_frames_UxWzPHIy

apply_ScalingFactor = 600 -

Scaling factor applied when '2' is chosen above (for the response due to all excitations), refers to 

plot_displaced_frames_tot

Plotting parameters EB-beam element w1

plot_w1_displ_time 0

0: do not plot the displaced beam element w1 along the length of the element for a particular time 

instant

1: plot the displaced beam element w1 along the length of the element for a the particular time 

instants specified below:

time_instant_w1_displ_plot_1 = 0 s time instant at which the displacements of the EB-beam element w1 are computed and plotted

time_instant_w1_displ_plot_2 = 0.1 s time instant at which the displacements of the EB-beam element w1 are computed and plotted

plot_w1_displ_coord 0

0: do not plot the displaced beam element w1 over the time domain of the forcing for a particular x-

coordinate along the element

1: plot the displaced beam element w1 over the time domain of the forcing for a particular x-

coordinate along the element as specified below:

x_coord_w1_displ_plot_1 = 2.8 m x-coordinate at which the displacements of the EB-beam element w1 are computed and plotted

x_coord_w1_displ_plot_2 = 1.4 m x-coordinate at which the displacements of the EB-beam element w1 are computed and plotted

plotting velocities of w1 in the space-time domain

plot_w1_veloc_time 0

0: do not plot the velocities of the beam element w1 along the length of the element for a particular 

time instant

1: plot the velocities of the beam element w1 along the length of the element for a the particular 

time instants specified below:

time_instant_w1_veloc_plot_1 = 0 s time instant at which the velocities of the EB-beam element w1 are computed and plotted

time_instant_w1_veloc_plot_2 = 0.1 s time instant at which the velocities of the EB-beam element w1 are computed and plotted
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plot_w1_veloc_coord 1

0: do not plot the velocities of the beam element w1 over the time domain of the forcing for a 

particular x-coordinate along the element

1: plot the velocities of the beam element w1 over the time domain of the forcing for a particular x-

coordinate along the element as specified below:

x_coord_w1_veloc_plot_1 = 2.8 m x-coordinate at which the velocities of the EB-beam element w1 are computed and plotted

x_coord_w1_veloc_plot_2 = 1.4 m x-coordinate at which the velocities of the EB-beam element w1 are computed and plotted

plotting velocities of w1 in the space-frequency domain

plot_w1_velocFreq_coord = 1

0: do not plot the velocities of the beam element w1 over the specified calculation-frequency 

domain for a particular x-coordinate along the element

1: plot the velocities of the beam element w1 over the specified calculation-frequency domain for a 

particular x-coordinate along the element as specified below:

x_coord_w1_velocFreq_plot_1 = 2.8 m position in floor w1 to compute the frequency response spectrum

x_coord_w1_velocFreq_plot_1 = 1.4 m position in floor w1 to compute the frequency response spectrum

plotting RMS-velocities of w1 in the space-frequency domain

plot_w1_RMSvelocFreq_coord = 1

0: do not plot the velocities of the beam element w1 over the specified calculation-frequency 

domain for a particular x-coordinate along the element

1: plot the velocities of the beam element w1 over the specified calculation-frequency domain for a 

particular x-coordinate along the element as specified below:

x_coord_w1_RMSvelocFreq_plot_1 = 2.8 m position in floor w1 to compute the frequency response spectrum

Excitation EB-beam frame (in case a simpler excitation is wanted than the stored excitation lists in the csv-files '3DoF_Building_Response')

overwrite_exc_EB = 0 -

0: the excitation will be taken from the excitation.csv-files. 

1: the excitation will not be taken from the excitation.csv-files. Instead a more simple excitation can 

be constructed with the parameters specified below this parameter.

     Harmonic excitation term 1

Freq_EB_exc1 = 30 Hz The frequency of the harmonic excitation: U(t) = Aucj*cos(Freq_excj*t) + Ausj*sin(Freq_excj*t)

Ax1cj_EB_exc1 = 0.0003 m Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)
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Ax1sj_EB_exc1 = 0.0003 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Ax2cj_EB_exc1 = 0.0003 m Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

Ax2sj_EB_exc1 = 0.0003 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Ax3cj_EB_exc1 = 0.00002 rad Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

Ax3sj_EB_exc1 = 0.00002 rad Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

     Harmonic excitation term 2

Freq_EB_exc2 = 8 Hz The frequency of the harmonic excitation: U(t) = Aucj*cos(Freq_excj*t) + Ausj*sin(Freq_excj*t)

Ax1cj_EB_exc2 = 0.0003 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Ax1sj_EB_exc2 = 0.0003 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Ax2cj_EB_exc2 = 0.0003 m Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

Ax2sj_EB_exc2 = 0.0003 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Ax3cj_EB_exc2 = 0.00002 rad Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

Ax3sj_EB_exc2 = 0.00002 rad Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

     Insert additional excitation terms here

End of input parameters
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O. Appendix: Results for Verification Project Degrande et al. (1) – Free Field and (3) 
– Building Response with layered soil of Amsterdam 

 

Verification Project Degrande et al. (1) – Free Field with layered soil of Amsterdam 
Another computation has been performed for the modelled situation as in ‘Verification Project 
Degrande et al. (1) – Free Field’. However, in this case the soil layering has been adjusted to the 
soil layering as described in 10.3.3 ‘Soil response in Amsterdam,’ which, compared to the 
original verification project, entails a softer soil. All other parameters are unchanged. 
 

 
 

 
Figure 191. Frequency spectrum (top) and time history (bottom) of the Free Field soil response (from left 

to right: x-,y-,z-direction) at 16 m from the middle of the road by FEMIX 

Comparison with original verification project: 
Larger amplitudes of the free field soil response velocities (factor 2 to 3). The frequency 
content around 5 Hz is amplified by a factor > 20 and the frequency content between 10 and 
17 Hz is amplified by a factor 2.5 to 3.  
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Verification Project Degrande et al. (3) – Building Response with layered soil of Amsterdam 
Another computation has been performed for the modelled situation as in ‘Verification Project 
Degrande et al. (3) – Building Response’. However, in this case the soil layering has been 
adjusted to the soil layering as described in 10.3.3 ‘Soil response in Amsterdam,’ which, 
compared to the original verification project, entails a softer soil. All other parameters are 
unchanged. 
 

 

 
Figure 192. Structural response in the time domain (top) and the frequency domain (bottom) for all 
three DoF (𝑥,𝑧,𝜑) of the 3DoF system modelled for verification project Degrande et al. (3) – Building 

Response with the layered soil of Amsterdam 

 

       
Figure 193. Predicted local EB-beam structural response of the first floor in the time domain (left) and 

frequency domain (right) for verification project Degrande et al. (3) – Building Response with the 
layered soil of Amsterdam 

Comparison with original verification project: 
Larger amplitudes of the 3DoF response (factor 2 to 3). The frequency content around 5 Hz is 
amplified by a factor 8 to 10 and the frequency content between 10 and 17 Hz is amplified by a 
factor 1 to 2.5.  
Larger amplitudes of the local EB-beam floor (factor 2). The frequency content around 5 Hz is 
amplified by a factor 10 and the frequency content between 10 and 17 Hz is amplified by a 
factor 1 to 2.5.   
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P. Appendix: Boundary- and Interface conditions of the three 𝐌𝐨𝐝𝐞𝐥𝐬𝒙,𝒛,𝝋 
 

 
Figure 194. Reference system and lever-arms within the EB-beam frame 

 

 
 

 
Figure 195. Model𝑥 representing the BCs and ICs for computing the dynamic response due to all 

horizontal excitations 
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Figure 196. Model𝑧 representing the BCs and ICs for computing the dynamic response due to all vertical 

excitations 

 

 

 
Figure 197. Model𝜑 representing the BCs and ICs for computing the dynamic response due to all 

rotational excitations 
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Q. Appendix: Maple sheet for determining dynamic EB-beams response 𝐌𝐨𝐝𝐞𝐥𝒙 
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restart;

Model_x (horizontal excitation at bottom of frame only)
Excitation

uxdUxc_j$cos Omega_j$t CUxs_j$sin Omega_j$t ;
uxdUxc_j cos Omega_j t CUxs_j sin Omega_j t

Steady-State solutions of every element in the Model
w1dW1c_1$cos Omega_j$t CW1s_1$sin Omega_j$t ;

w1dW1c_1 cos Omega_j t CW1s_1 sin Omega_j t

w2dW2c_1$cos Omega_j$t CW2s_1$sin Omega_j$t ;
w2dW2c_1 cos Omega_j t CW2s_1 sin Omega_j t

w3dW3c_1$cos Omega_j$t CW3s_1$sin Omega_j$t ;
w3dW3c_1 cos Omega_j t CW3s_1 sin Omega_j t

w4dW4c_1$cos Omega_j$t CW4s_1$sin Omega_j$t ;
w4dW4c_1 cos Omega_j t CW4s_1 sin Omega_j t

u1dU1 c_1$cos Omega_j$t CU1 s_1$sin Omega_j$t ;
u1dU1 c_1 cos Omega_j t CU1 s_1 sin Omega_j t

u2dU2 c_1$cos Omega_j$t CU2 s_1$sin Omega_j$t ;
u2dU2 c_1 cos Omega_j t CU2 s_1 sin Omega_j t

u3dU3 c_1$cos Omega_j$t CU3 s_1$sin Omega_j$t ;
u3dU3 c_1 cos Omega_j t CU3 s_1 sin Omega_j t

u4dU4 c_1$cos Omega_j$t CU4 s_1$sin Omega_j$t ;
u4dU4 c_1 cos Omega_j t CU4 s_1 sin Omega_j t

Substituting the steady-state solutions into the EOM of every element and gathering for the cos(Omega_1)- (c_1) and sin(Omega_1)- (s_1) terms gives the following EOM's and corresponding general solutions:

EOMw1c_1dKrhoA_w1$W1
2
$W1c_1CEI_w1$diff W1c_1, x$4 = 0 :

W1c_1d Aw1c_1$cosh Betaw1_j$x CBw1c_1$sinh Betaw1_j$x CCw1c_1$cos Betaw1_j$x CDw1c_1$sin Betaw1_j$x ;
W1c_1d Aw1c_1 cosh Betaw1_j x CBw1c_1 sinh Betaw1_j x CCw1c_1 cos Betaw1_j x CDw1c_1 sin Betaw1_j x

EOMw1s_1dKrhoA_w1$W1
2
$W1s_1CEI_w1$diff W1s_1, x$4 = 0 :

W1s_1d Aw1s_1$cosh Betaw1_j$x CBw1s_1$sinh Betaw1_j$x CCw1s_1$cos Betaw1_j$x CDw1s_1$sin Betaw1_j$x ;
W1s_1d Aw1s_1 cosh Betaw1_j x CBw1s_1 sinh Betaw1_j x CCw1s_1 cos Betaw1_j x CDw1s_1 sin Betaw1_j x

EOMw2c_1dKrhoA_w2$W1
2
$W2c_1CEI_w2$diff W2c_1, x$4 = 0 :

W2c_1d Aw2c_1$cosh Betaw2_j$x CBw2c_1$sinh Betaw2_j$x CCw2c_1$cos Betaw2_j$x CDw2c_1$sin Betaw2_j$x ;
W2c_1d Aw2c_1 cosh Betaw2_j x CBw2c_1 sinh Betaw2_j x CCw2c_1 cos Betaw2_j x CDw2c_1 sin Betaw2_j x

EOMw2s_1dKrhoA_w2$W1
2
$W2s_1CEI_w2$diff W2s_1, x$4 = 0 :

W2s_1d Aw2s_1$cosh Betaw2_j$x CBw2s_1$sinh Betaw2_j$x CCw2s_1$cos Betaw2_j$x CDw2s_1$sin Betaw2_j$x ;
W2s_1d Aw2s_1 cosh Betaw2_j x CBw2s_1 sinh Betaw2_j x CCw2s_1 cos Betaw2_j x CDw2s_1 sin Betaw2_j x

EOMw3c_1dKrhoA_w3$W1
2
$W3c_1CEI_w3$diff W3c_1, x$4 = 0 :

W3c_1d Aw3c_1$cosh Betaw3_j$x CBw3c_1$sinh Betaw3_j$x CCw3c_1$cos Betaw3_j$x CDw3c_1$sin Betaw3_j$x ;
W3c_1d Aw3c_1 cosh Betaw3_j x CBw3c_1 sinh Betaw3_j x CCw3c_1 cos Betaw3_j x CDw3c_1 sin Betaw3_j x

EOMw3s_1dKrhoA_w3$W1
2
$W3s_1CEI_w3$diff W3s_1, x$4 = 0 :

W3s_1d Aw3s_1$cosh Betaw3_j$x CBw3s_1$sinh Betaw3_j$x CCw3s_1$cos Betaw3_j$x CDw3s_1$sin Betaw3_j$x ;
W3s_1d Aw3s_1 cosh Betaw3_j x CBw3s_1 sinh Betaw3_j x CCw3s_1 cos Betaw3_j x CDw3s_1 sin Betaw3_j x
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EOMw4c_1dKrhoA_w4$W1
2
$W4c_1CEI_w4$diff W4c_1, x$4 = 0 :

W4c_1d Aw4c_1$cosh Betaw4_j$x CBw4c_1$sinh Betaw4_j$x CCw4c_1$cos Betaw4_j$x CDw4c_1$sin Betaw4_j$x ;
W4c_1d Aw4c_1 cosh Betaw4_j x CBw4c_1 sinh Betaw4_j x CCw4c_1 cos Betaw4_j x CDw4c_1 sin Betaw4_j x

EOMw4s_1dKrhoA_w4$W1
2
$W4s_1CEI_w4$diff W4s_1, x$4 = 0 :

W4s_1d Aw4s_1$cosh Betaw4_j$x CBw4s_1$sinh Betaw4_j$x CCw4s_1$cos Betaw4_j$x CDw4s_1$sin Betaw4_j$x ;
W4s_1d Aw4s_1 cosh Betaw4_j x CBw4s_1 sinh Betaw4_j x CCw4s_1 cos Betaw4_j x CDw4s_1 sin Betaw4_j x

EOMu1c_1dKrhoA_u1$W1
2
$U1 c_1CEI_u1$diff U1c_1, z$4 = 0 :

U1c_1d Au1c_1$cosh Betau1_j$z CBu1c_1$sinh Betau1_j$z CCu1c_1$cos Betau1_j$z CDu1c_1$sin Betau1_j$z ;
U1c_1d Au1c_1 cosh Betau1_j z CBu1c_1 sinh Betau1_j z CCu1c_1 cos Betau1_j z CDu1c_1 sin Betau1_j z

EOMu1s_1dKrhoA_u1$W1
2
$U1 s_1CEI_u1$diff U1s_1, z$4 = 0 :

U1s_1d Au1s_1$cosh Betau1_j$z CBu1s_1$sinh Betau1_j$z CCu1s_1$cos Betau1_j$z CDu1s_1$sin Betau1_j$z ;
U1s_1d Au1s_1 cosh Betau1_j z CBu1s_1 sinh Betau1_j z CCu1s_1 cos Betau1_j z CDu1s_1 sin Betau1_j z

EOMu2c_1dKrhoA_u2$W1
2
$U2 c_1CEI_u2$diff U2c_1, z$4 = 0 :

U2c_1d Au2c_1$cosh Betau2_j$z CBu2c_1$sinh Betau2_j$z CCu2c_1$cos Betau2_j$z CDu2c_1$sin Betau2_j$z ;
U2c_1d Au2c_1 cosh Betau2_j z CBu2c_1 sinh Betau2_j z CCu2c_1 cos Betau2_j z CDu2c_1 sin Betau2_j z

EOMu2s_1dKrhoA_u2$W1
2
$U2 s_1CEI_u2$diff U2s_1, z$4 = 0 :

U2s_1d Au2s_1$cosh Betau2_j$z CBu2s_1$sinh Betau2_j$z CCu2s_1$cos Betau2_j$z CDu2s_1$sin Betau2_j$z ;
U2s_1d Au2s_1 cosh Betau2_j z CBu2s_1 sinh Betau2_j z CCu2s_1 cos Betau2_j z CDu2s_1 sin Betau2_j z

EOMu3c_1dKrhoA_u3$W1
2
$U3 c_1CEI_u3$diff U3c_1, z$4 = 0 :

U3c_1d Au3c_1$cosh Betau3_j$z CBu3c_1$sinh Betau3_j$z CCu3c_1$cos Betau3_j$z CDu3c_1$sin Betau3_j$z ;
U3c_1d Au3c_1 cosh Betau3_j z CBu3c_1 sinh Betau3_j z CCu3c_1 cos Betau3_j z CDu3c_1 sin Betau3_j z

EOMu3s_1dKrhoA_u3$W1
2
$U3 s_1CEI_u3$diff U3s_1, z$4 = 0 :

U3s_1d Au3s_1$cosh Betau3_j$z CBu3s_1$sinh Betau3_j$z CCu3s_1$cos Betau3_j$z CDu3s_1$sin Betau3_j$z ;
U3s_1d Au3s_1 cosh Betau3_j z CBu3s_1 sinh Betau3_j z CCu3s_1 cos Betau3_j z CDu3s_1 sin Betau3_j z

EOMu4c_1dKrhoA_u4$W1
2
$U4 c_1CEI_u4$diff U4c_1, z$4 = 0 :

U4c_1d Au4c_1$cosh Betau4_j$z CBu4c_1$sinh Betau4_j$z CCu4c_1$cos Betau4_j$z CDu4c_1$sin Betau4_j$z ;
U4c_1d Au4c_1 cosh Betau4_j z CBu4c_1 sinh Betau4_j z CCu4c_1 cos Betau4_j z CDu4c_1 sin Betau4_j z

EOMu4s_1dKrhoA_u4$W1
2
$U4 s_1CEI_u4$diff U4s_1, z$4 = 0 :

U4s_1d Au4s_1$cosh Betau4_j$z CBu4s_1$sinh Betau4_j$z CCu4s_1$cos Betau4_j$z CDu4s_1$sin Betau4_j$z ;
U4s_1d Au4s_1 cosh Betau4_j z CBu4s_1 sinh Betau4_j z CCu4s_1 cos Betau4_j z CDu4s_1 sin Betau4_j z

Substitute the general solutions into the IC's and BC's (4*8 EB-elements = 32 needed IC's + BC's) and gather for the cos(Omega_1) terms
BC @ x = 0, z = 0 [2 BC's]

BC1c_1Md simplify subs z = 0, U1c_1 KUxc_jKPHIyc_j$hcg1 : BC1c_1d BC1c_1M = 0;
BC1c_1dKPHIyc_j hcg1CAu1c_1CCu1c_1KUxc_j = 0

BC2c_1Md simplify subs z = 0, diff U1c_1, z : BC2c_1d BC2c_1M = 0;
BC2c_1d Betau1_j Bu1c_1CDu1c_1 = 0

BC @ x = span, z = 0 [2 BC's]
BC3c_1Md simplify subs z = 0, U3c_1 KUxc_jKPHIyc_j$hcg1 : BC3c_1d BC3c_1M = 0;

BC3c_1dKPHIyc_j hcg1CAu3c_1CCu3c_1KUxc_j = 0

BC4c_1Md simplify subs z = 0, diff U3c_1, z : BC4c_1d BC4c_1M = 0;
BC4c_1d Betau3_j Bu3c_1CDu3c_1 = 0
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BC @ x = 2*span, z = hw1 [2 BC's]
BC5c_1Md simplify subs x = 2$span, W2c_1 : BC5c_1d BC5c_1M = 0;

BC5c_1d Aw2c_1 cosh 2 Betaw2_j span CBw2c_1 sinh 2 Betaw2_j span CCw2c_1 cos 2 Betaw2_j span CDw2c_1 sin 2 Betaw2_j span = 0

BC6c_1Md simplify subs x = 2$span, diff W2c_1, x : BC6c_1d BC6c_1M = 0;
BC6c_1d Betaw2_j Aw2c_1 sinh 2 Betaw2_j span CBw2c_1 cosh 2 Betaw2_j span KCw2c_1 sin 2 Betaw2_j span CDw2c_1 cos 2 Betaw2_j span = 0

BC @ x = 2*span, z = hw1+hw2 [2 BC's]
BC7c_1Md simplify subs x = 2$span, W4c_1 : BC7c_1d BC7c_1M = 0;

BC7c_1d Aw4c_1 cosh 2 Betaw4_j span CBw4c_1 sinh 2 Betaw4_j span CCw4c_1 cos 2 Betaw4_j span CDw4c_1 sin 2 Betaw4_j span = 0

BC8c_1Md simplify subs x = 2$span, diff W4c_1, x : BC8c_1d BC8c_1M = 0;
BC8c_1d Betaw4_j Aw4c_1 sinh 2 Betaw4_j span CBw4c_1 cosh 2 Betaw4_j span KCw4c_1 sin 2 Betaw4_j span CDw4c_1 cos 2 Betaw4_j span = 0

IC @ x = 0, z = hw1 [6 IC's]
IC1c_1Md simplify subs z = hw1, U1c_1 Ksimplify subs z = hw1, U2c_1 : IC1c_1d IC1c_1M = 0;

IC1c_1d Au1c_1 cosh Betau1_j hw1 CBu1c_1 sinh Betau1_j hw1 CCu1c_1 cos Betau1_j hw1 CDu1c_1 sin Betau1_j hw1 KAu2c_1 cosh Betau2_j hw1 KBu2c_1 sinh Betau2_j hw1
KCu2c_1 cos Betau2_j hw1 KDu2c_1 sin Betau2_j hw1 = 0

IC2c_1Md simplify subs x = 0, W1c_1 : IC2c_1d IC2c_1M = 0;
IC2c_1d Aw1c_1CCw1c_1 = 0

IC3c_1Md simplify subs z = hw1, diff U1c_1, z Ksimplify subs z = hw1, diff U2c_1, z : IC3c_1d IC3c_1M = 0;
IC3c_1d Betau1_j Au1c_1 sinh Betau1_j hw1 CBu1c_1 cosh Betau1_j hw1 KCu1c_1 sin Betau1_j hw1 CDu1c_1 cos Betau1_j hw1 KBetau2_j Au2c_1 sinh Betau2_j hw1

CBu2c_1 cosh Betau2_j hw1 KCu2c_1 sin Betau2_j hw1 CDu2c_1 cos Betau2_j hw1 = 0

IC4c_1Md simplify subs z = hw1, diff U1c_1, z Csimplify subs x = 0, diff W1c_1, x : IC4c_1d IC4c_1M = 0;
IC4c_1d Betau1_j Au1c_1 sinh Betau1_j hw1 CBu1c_1 cosh Betau1_j hw1 KCu1c_1 sin Betau1_j hw1 CDu1c_1 cos Betau1_j hw1 CBetaw1_j Bw1c_1CDw1c_1 = 0

IC5c_1Md simplify subs z = hw1, U1c_1 KUxc_jKPHIyc_j$hcg2 : IC5c_1d IC5c_1M = 0;
IC5c_1d Au1c_1 cosh Betau1_j hw1 CBu1c_1 sinh Betau1_j hw1 CCu1c_1 cos Betau1_j hw1 CDu1c_1 sin Betau1_j hw1 KUxc_jKPHIyc_j hcg2 = 0

IC6c_1MdKsimplify subs z = hw1, diff U1c_1, z$2 Csimplify subs z = hw1, diff U2c_1, z$2 Csimplify subs x = 0, diff W1c_1, x$2 : IC6c_1d IC6c_1M = 0;
IC6c_1dKBetau1_j2 Au1c_1 cosh Betau1_j hw1 CBu1c_1 sinh Betau1_j hw1 KCu1c_1 cos Betau1_j hw1 KDu1c_1 sin Betau1_j hw1 CBetau2_j2 Au2c_1 cosh Betau2_j hw1

CBu2c_1 sinh Betau2_j hw1 KCu2c_1 cos Betau2_j hw1 KDu2c_1 sin Betau2_j hw1 CBetaw1_j2 Aw1c_1KCw1c_1 = 0

IC @ x = 0, z = hw1+hw2 [6 IC's]
IC7c_1Md simplify subs x = 0, W3c_1 : IC7c_1d IC7c_1M = 0;

IC7c_1d Aw3c_1CCw3c_1 = 0

IC8c_1Md simplify subs z = hw1Chw2, diff U2c_1, z Csimplify subs x = 0, diff W3c_1, x : IC8c_1d IC8c_1M = 0;
IC8c_1d Betau2_j Au2c_1 sinh Betau2_j hw1Chw2 CBu2c_1 cosh Betau2_j hw1Chw2 KCu2c_1 sin Betau2_j hw1Chw2 CDu2c_1 cos Betau2_j hw1Chw2 CBetaw3_j Bw3c_1

CDw3c_1 = 0

IC9c_1Md simplify subs z = hw1Chw2, U2c_1 KUxc_jKPHIyc_j$hcg3 : IC9c_1d IC9c_1M = 0;
IC9c_1d Au2c_1 cosh Betau2_j hw1Chw2 CBu2c_1 sinh Betau2_j hw1Chw2 CCu2c_1 cos Betau2_j hw1Chw2 CDu2c_1 sin Betau2_j hw1Chw2 KUxc_jKPHIyc_j hcg3 = 0

IC10c_1MdKsimplify subs z = hw1Chw2, diff U2c_1, z$2 Csimplify subs x = 0, diff W3c_1, x$2 : IC10c_1d IC10c_1M = 0;
IC10c_1dKBetau2_j2 Au2c_1 cosh Betau2_j hw1Chw2 CBu2c_1 sinh Betau2_j hw1Chw2 KCu2c_1 cos Betau2_j hw1Chw2 KDu2c_1 sin Betau2_j hw1Chw2 CBetaw3_j2 Aw3c_1

KCw3c_1 = 0

IC @ x = span, z = hw1 [8 IC's]
IC11c_1Md simplify subs x = span, W1c_1 Ksimplify subs x = span, W2c_1 : IC11c_1d IC11c_1M = 0;

IC11c_1d Aw1c_1 cosh Betaw1_j span CBw1c_1 sinh Betaw1_j span CCw1c_1 cos Betaw1_j span CDw1c_1 sin Betaw1_j span KAw2c_1 cosh Betaw2_j span KBw2c_1 sinh Betaw2_j span
KCw2c_1 cos Betaw2_j span KDw2c_1 sin Betaw2_j span = 0

IC12c_1Md simplify subs x = span, W1c_1 : IC12c_1d IC12c_1M = 0;
IC12c_1d Aw1c_1 cosh Betaw1_j span CBw1c_1 sinh Betaw1_j span CCw1c_1 cos Betaw1_j span CDw1c_1 sin Betaw1_j span = 0

IC13c_1Md simplify subs z = hw1, U3c_1 Ksimplify subs z = hw1, U4c_1 : IC13c_1d IC13c_1M = 0;
IC13c_1d Au3c_1 cosh Betau3_j hw1 CBu3c_1 sinh Betau3_j hw1 CCu3c_1 cos Betau3_j hw1 CDu3c_1 sin Betau3_j hw1 KAu4c_1 cosh Betau4_j hw1 KBu4c_1 sinh Betau4_j hw1

KCu4c_1 cos Betau4_j hw1 KDu4c_1 sin Betau4_j hw1 = 0

IC14c_1Md simplify subs x = span, diff W1c_1, x Ksimplify subs x = span, diff W2c_1, x : IC14c_1d IC14c_1M = 0;
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IC14c_1d Betaw1_j Aw1c_1 sinh Betaw1_j span CBw1c_1 cosh Betaw1_j span KCw1c_1 sin Betaw1_j span CDw1c_1 cos Betaw1_j span KBetaw2_j Aw2c_1 sinh Betaw2_j span
CBw2c_1 cosh Betaw2_j span KCw2c_1 sin Betaw2_j span CDw2c_1 cos Betaw2_j span = 0

IC15c_1Md simplify subs z = hw1, diff U3c_1, z Ksimplify subs z = hw1, diff U4c_1, z : IC15c_1d IC15c_1M = 0;
IC15c_1d Betau3_j Au3c_1 sinh Betau3_j hw1 CBu3c_1 cosh Betau3_j hw1 KCu3c_1 sin Betau3_j hw1 CDu3c_1 cos Betau3_j hw1 KBetau4_j Au4c_1 sinh Betau4_j hw1

CBu4c_1 cosh Betau4_j hw1 KCu4c_1 sin Betau4_j hw1 CDu4c_1 cos Betau4_j hw1 = 0

IC16c_1Md simplify subs x = span, diff W1c_1, x Csimplify subs z = hw1, diff U3c_1, z : IC16c_1d IC16c_1M = 0;
IC16c_1d Betaw1_j Aw1c_1 sinh Betaw1_j span CBw1c_1 cosh Betaw1_j span KCw1c_1 sin Betaw1_j span CDw1c_1 cos Betaw1_j span CBetau3_j Au3c_1 sinh Betau3_j hw1

CBu3c_1 cosh Betau3_j hw1 KCu3c_1 sin Betau3_j hw1 CDu3c_1 cos Betau3_j hw1 = 0

IC17c_1MdKsimplify subs x = span, diff W1c_1, x$2 Csimplify subs z = hw1, diff U4c_1, z$2 Csimplify subs x = span, diff W2c_1, x$2 Ksimplify subs z = hw1, diff U3c_1, z$2 : IC17c_1d
IC17c_1M = 0;

IC17c_1dKBetaw1_j2 Aw1c_1 cosh Betaw1_j span CBw1c_1 sinh Betaw1_j span KCw1c_1 cos Betaw1_j span KDw1c_1 sin Betaw1_j span CBetau4_j2 Au4c_1 cosh Betau4_j hw1

CBu4c_1 sinh Betau4_j hw1 KCu4c_1 cos Betau4_j hw1 KDu4c_1 sin Betau4_j hw1 CBetaw2_j2 Aw2c_1 cosh Betaw2_j span CBw2c_1 sinh Betaw2_j span KCw2c_1 cos Betaw2_j span

KDw2c_1 sin Betaw2_j span KBetau3_j2 Au3c_1 cosh Betau3_j hw1 CBu3c_1 sinh Betau3_j hw1 KCu3c_1 cos Betau3_j hw1 KDu3c_1 sin Betau3_j hw1 = 0

IC18c_1Md simplify subs z = hw1, U3c_1 KUxc_jKPHIyc_j$hcg2 : IC18c_1d IC18c_1M = 0;
IC18c_1d Au3c_1 cosh Betau3_j hw1 CBu3c_1 sinh Betau3_j hw1 CCu3c_1 cos Betau3_j hw1 CDu3c_1 sin Betau3_j hw1 KUxc_jKPHIyc_j hcg2 = 0

IC @ x = span, z = hw1+hw2 [6 IC's]
IC19c_1Md simplify subs x = span, W3c_1 Ksimplify subs x = span, W4c_1 : IC19c_1d IC19c_1M = 0;

IC19c_1d Aw3c_1 cosh Betaw3_j span CBw3c_1 sinh Betaw3_j span CCw3c_1 cos Betaw3_j span CDw3c_1 sin Betaw3_j span KAw4c_1 cosh Betaw4_j span KBw4c_1 sinh Betaw4_j span
KCw4c_1 cos Betaw4_j span KDw4c_1 sin Betaw4_j span = 0

IC20c_1Md simplify subs x = span, W3c_1 : IC20c_1d IC20c_1M = 0;
IC20c_1d Aw3c_1 cosh Betaw3_j span CBw3c_1 sinh Betaw3_j span CCw3c_1 cos Betaw3_j span CDw3c_1 sin Betaw3_j span = 0

IC21c_1Md simplify subs x = span, diff W3c_1, x Ksimplify subs x = span, diff W4c_1, x : IC21c_1d IC21c_1M = 0;
IC21c_1d Betaw3_j Aw3c_1 sinh Betaw3_j span CBw3c_1 cosh Betaw3_j span KCw3c_1 sin Betaw3_j span CDw3c_1 cos Betaw3_j span KBetaw4_j Aw4c_1 sinh Betaw4_j span

CBw4c_1 cosh Betaw4_j span KCw4c_1 sin Betaw4_j span CDw4c_1 cos Betaw4_j span = 0

IC22c_1Md simplify subs x = span, diff W3c_1, x Csimplify subs z = hw1Chw2, diff U4c_1, z : IC22c_1d IC22c_1M = 0;
IC22c_1d Betaw3_j Aw3c_1 sinh Betaw3_j span CBw3c_1 cosh Betaw3_j span KCw3c_1 sin Betaw3_j span CDw3c_1 cos Betaw3_j span CBetau4_j Au4c_1 sinh Betau4_j hw1Chw2

CBu4c_1 cosh Betau4_j hw1Chw2 KCu4c_1 sin Betau4_j hw1Chw2 CDu4c_1 cos Betau4_j hw1Chw2 = 0

IC23c_1MdKsimplify subs x = span, diff W3c_1, x$2 Ksimplify subs z = hw1Chw2, diff U4c_1, z$2 Csimplify subs x = span, diff W4c_1, x$2 : IC23c_1d IC23c_1M = 0;
IC23c_1dKBetaw3_j2 Aw3c_1 cosh Betaw3_j span CBw3c_1 sinh Betaw3_j span KCw3c_1 cos Betaw3_j span KDw3c_1 sin Betaw3_j span KBetau4_j2 Au4c_1 cosh Betau4_j hw1Chw2

CBu4c_1 sinh Betau4_j hw1Chw2 KCu4c_1 cos Betau4_j hw1Chw2 KDu4c_1 sin Betau4_j hw1Chw2 CBetaw4_j2 Aw4c_1 cosh Betaw4_j span CBw4c_1 sinh Betaw4_j span
KCw4c_1 cos Betaw4_j span KDw4c_1 sin Betaw4_j span = 0

IC24c_1Md simplify subs z = hw1Chw2, U4c_1 KUxc_jKPHIyc_j$hcg3 : IC24c_1d IC24c_1M = 0;
IC24c_1d Au4c_1 cosh Betau4_j hw1Chw2 CBu4c_1 sinh Betau4_j hw1Chw2 CCu4c_1 cos Betau4_j hw1Chw2 CDu4c_1 sin Betau4_j hw1Chw2 KUxc_jKPHIyc_j hcg3 = 0

interface rtablesize = 35 ;
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Coefficient matrix
Mc_jdMatrix
 coeff BC1c_1M, Aw1c_1 , coeff BC1c_1M, Bw1c_1 , coeff BC1c_1M, Cw1c_1 , coeff BC1c_1M, Dw1c_1 ,
      coeff BC1c_1M, Aw2c_1 , coeff BC1c_1M, Bw2c_1 , coeff BC1c_1M, Cw2c_1 , coeff BC1c_1M, Dw2c_1 ,
      coeff BC1c_1M, Aw3c_1 , coeff BC1c_1M, Bw3c_1 , coeff BC1c_1M, Cw3c_1 , coeff BC1c_1M, Dw3c_1 ,
      coeff BC1c_1M, Aw4c_1 , coeff BC1c_1M, Bw4c_1 , coeff BC1c_1M, Cw4c_1 , coeff BC1c_1M, Dw4c_1 ,
      coeff BC1c_1M, Au1c_1 , coeff BC1c_1M, Bu1c_1 , coeff BC1c_1M, Cu1c_1 , coeff BC1c_1M, Du1c_1 ,
      coeff BC1c_1M, Au2c_1 , coeff BC1c_1M, Bu2c_1 , coeff BC1c_1M, Cu2c_1 , coeff BC1c_1M, Du2c_1 ,



      coeff BC1c_1M, Au3c_1 , coeff BC1c_1M, Bu3c_1 , coeff BC1c_1M, Cu3c_1 , coeff BC1c_1M, Du3c_1 ,
      coeff BC1c_1M, Au4c_1 , coeff BC1c_1M, Bu4c_1 , coeff BC1c_1M, Cu4c_1 , coeff BC1c_1M, Du4c_1 ,
 
 coeff BC2c_1M, Aw1c_1 , coeff BC2c_1M, Bw1c_1 , coeff BC2c_1M, Cw1c_1 , coeff BC2c_1M, Dw1c_1 ,
      coeff BC2c_1M, Aw2c_1 , coeff BC2c_1M, Bw2c_1 , coeff BC2c_1M, Cw2c_1 , coeff BC2c_1M, Dw2c_1 ,
      coeff BC2c_1M, Aw3c_1 , coeff BC2c_1M, Bw3c_1 , coeff BC2c_1M, Cw3c_1 , coeff BC2c_1M, Dw3c_1 ,
      coeff BC2c_1M, Aw4c_1 , coeff BC2c_1M, Bw4c_1 , coeff BC2c_1M, Cw4c_1 , coeff BC2c_1M, Dw4c_1 ,
      coeff BC2c_1M, Au1c_1 , coeff BC2c_1M, Bu1c_1 , coeff BC2c_1M, Cu1c_1 , coeff BC2c_1M, Du1c_1 ,
      coeff BC2c_1M, Au2c_1 , coeff BC2c_1M, Bu2c_1 , coeff BC2c_1M, Cu2c_1 , coeff BC2c_1M, Du2c_1 ,
      coeff BC2c_1M, Au3c_1 , coeff BC2c_1M, Bu3c_1 , coeff BC2c_1M, Cu3c_1 , coeff BC2c_1M, Du3c_1 ,
      coeff BC2c_1M, Au4c_1 , coeff BC2c_1M, Bu4c_1 , coeff BC2c_1M, Cu4c_1 , coeff BC2c_1M, Du4c_1 ,
 
 coeff BC3c_1M, Aw1c_1 , coeff BC3c_1M, Bw1c_1 , coeff BC3c_1M, Cw1c_1 , coeff BC3c_1M, Dw1c_1 ,
      coeff BC3c_1M, Aw2c_1 , coeff BC3c_1M, Bw2c_1 , coeff BC3c_1M, Cw2c_1 , coeff BC3c_1M, Dw2c_1 ,
      coeff BC3c_1M, Aw3c_1 , coeff BC3c_1M, Bw3c_1 , coeff BC3c_1M, Cw3c_1 , coeff BC3c_1M, Dw3c_1 ,
      coeff BC3c_1M, Aw4c_1 , coeff BC3c_1M, Bw4c_1 , coeff BC3c_1M, Cw4c_1 , coeff BC3c_1M, Dw4c_1 ,
      coeff BC3c_1M, Au1c_1 , coeff BC3c_1M, Bu1c_1 , coeff BC3c_1M, Cu1c_1 , coeff BC3c_1M, Du1c_1 ,
      coeff BC3c_1M, Au2c_1 , coeff BC3c_1M, Bu2c_1 , coeff BC3c_1M, Cu2c_1 , coeff BC3c_1M, Du2c_1 ,
      coeff BC3c_1M, Au3c_1 , coeff BC3c_1M, Bu3c_1 , coeff BC3c_1M, Cu3c_1 , coeff BC3c_1M, Du3c_1 ,
      coeff BC3c_1M, Au4c_1 , coeff BC3c_1M, Bu4c_1 , coeff BC3c_1M, Cu4c_1 , coeff BC3c_1M, Du4c_1 ,
 
 coeff BC4c_1M, Aw1c_1 , coeff BC4c_1M, Bw1c_1 , coeff BC4c_1M, Cw1c_1 , coeff BC4c_1M, Dw1c_1 ,
      coeff BC4c_1M, Aw2c_1 , coeff BC4c_1M, Bw2c_1 , coeff BC4c_1M, Cw2c_1 , coeff BC4c_1M, Dw2c_1 ,
      coeff BC4c_1M, Aw3c_1 , coeff BC4c_1M, Bw3c_1 , coeff BC4c_1M, Cw3c_1 , coeff BC4c_1M, Dw3c_1 ,
      coeff BC4c_1M, Aw4c_1 , coeff BC4c_1M, Bw4c_1 , coeff BC4c_1M, Cw4c_1 , coeff BC4c_1M, Dw4c_1 ,
      coeff BC4c_1M, Au1c_1 , coeff BC4c_1M, Bu1c_1 , coeff BC4c_1M, Cu1c_1 , coeff BC4c_1M, Du1c_1 ,
      coeff BC4c_1M, Au2c_1 , coeff BC4c_1M, Bu2c_1 , coeff BC4c_1M, Cu2c_1 , coeff BC4c_1M, Du2c_1 ,
      coeff BC4c_1M, Au3c_1 , coeff BC4c_1M, Bu3c_1 , coeff BC4c_1M, Cu3c_1 , coeff BC4c_1M, Du3c_1 ,
      coeff BC4c_1M, Au4c_1 , coeff BC4c_1M, Bu4c_1 , coeff BC4c_1M, Cu4c_1 , coeff BC4c_1M, Du4c_1 ,
 
 coeff BC5c_1M, Aw1c_1 , coeff BC5c_1M, Bw1c_1 , coeff BC5c_1M, Cw1c_1 , coeff BC5c_1M, Dw1c_1 ,
      coeff BC5c_1M, Aw2c_1 , coeff BC5c_1M, Bw2c_1 , coeff BC5c_1M, Cw2c_1 , coeff BC5c_1M, Dw2c_1 ,
      coeff BC5c_1M, Aw3c_1 , coeff BC5c_1M, Bw3c_1 , coeff BC5c_1M, Cw3c_1 , coeff BC5c_1M, Dw3c_1 ,
      coeff BC5c_1M, Aw4c_1 , coeff BC5c_1M, Bw4c_1 , coeff BC5c_1M, Cw4c_1 , coeff BC5c_1M, Dw4c_1 ,
      coeff BC5c_1M, Au1c_1 , coeff BC5c_1M, Bu1c_1 , coeff BC5c_1M, Cu1c_1 , coeff BC5c_1M, Du1c_1 ,
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      coeff IC13c_1M, Aw4c_1 , coeff IC13c_1M, Bw4c_1 , coeff IC13c_1M, Cw4c_1 , coeff IC13c_1M, Dw4c_1 ,
      coeff IC13c_1M, Au1c_1 , coeff IC13c_1M, Bu1c_1 , coeff IC13c_1M, Cu1c_1 , coeff IC13c_1M, Du1c_1 ,
      coeff IC13c_1M, Au2c_1 , coeff IC13c_1M, Bu2c_1 , coeff IC13c_1M, Cu2c_1 , coeff IC13c_1M, Du2c_1 ,
      coeff IC13c_1M, Au3c_1 , coeff IC13c_1M, Bu3c_1 , coeff IC13c_1M, Cu3c_1 , coeff IC13c_1M, Du3c_1 ,
      coeff IC13c_1M, Au4c_1 , coeff IC13c_1M, Bu4c_1 , coeff IC13c_1M, Cu4c_1 , coeff IC13c_1M, Du4c_1 ,
 
 coeff IC14c_1M, Aw1c_1 , coeff IC14c_1M, Bw1c_1 , coeff IC14c_1M, Cw1c_1 , coeff IC14c_1M, Dw1c_1 ,
      coeff IC14c_1M, Aw2c_1 , coeff IC14c_1M, Bw2c_1 , coeff IC14c_1M, Cw2c_1 , coeff IC14c_1M, Dw2c_1 ,
      coeff IC14c_1M, Aw3c_1 , coeff IC14c_1M, Bw3c_1 , coeff IC14c_1M, Cw3c_1 , coeff IC14c_1M, Dw3c_1 ,
      coeff IC14c_1M, Aw4c_1 , coeff IC14c_1M, Bw4c_1 , coeff IC14 c_1M, Cw4c_1 , coeff IC14c_1M, Dw4c_1 ,
      coeff IC14c_1M, Au1c_1 , coeff IC14c_1M, Bu1c_1 , coeff IC14c_1M, Cu1c_1 , coeff IC14c_1M, Du1c_1 ,
      coeff IC14c_1M, Au2c_1 , coeff IC14c_1M, Bu2c_1 , coeff IC14c_1M, Cu2c_1 , coeff IC14c_1M, Du2c_1 ,
      coeff IC14c_1M, Au3c_1 , coeff IC14c_1M, Bu3c_1 , coeff IC14c_1M, Cu3c_1 , coeff IC14c_1M, Du3c_1 ,
      coeff IC14c_1M, Au4c_1 , coeff IC14c_1M, Bu4c_1 , coeff IC14c_1M, Cu4c_1 , coeff IC14c_1M, Du4c_1 ,
 
 coeff IC15c_1M, Aw1c_1 , coeff IC15c_1M, Bw1c_1 , coeff IC15c_1M, Cw1c_1 , coeff IC15c_1M, Dw1c_1 ,
      coeff IC15c_1M, Aw2c_1 , coeff IC15c_1M, Bw2c_1 , coeff IC15c_1M, Cw2c_1 , coeff IC15c_1M, Dw2c_1 ,
      coeff IC15c_1M, Aw3c_1 , coeff IC15c_1M, Bw3c_1 , coeff IC15c_1M, Cw3c_1 , coeff IC15c_1M, Dw3c_1 ,
      coeff IC15c_1M, Aw4c_1 , coeff IC15c_1M, Bw4c_1 , coeff IC15c_1M, Cw4c_1 , coeff IC15c_1M, Dw4c_1 ,
      coeff IC15c_1M, Au1c_1 , coeff IC15c_1M, Bu1c_1 , coeff IC15c_1M, Cu1c_1 , coeff IC15c_1M, Du1c_1 ,
      coeff IC15c_1M, Au2c_1 , coeff IC15c_1M, Bu2c_1 , coeff IC15c_1M, Cu2c_1 , coeff IC15c_1M, Du2c_1 ,
      coeff IC15c_1M, Au3c_1 , coeff IC15c_1M, Bu3c_1 , coeff IC15c_1M, Cu3c_1 , coeff IC15c_1M, Du3c_1 ,
      coeff IC15c_1M, Au4c_1 , coeff IC15c_1M, Bu4c_1 , coeff IC15c_1M, Cu4c_1 , coeff IC15c_1M, Du4c_1 ,
 
 coeff IC16c_1M, Aw1c_1 , coeff IC16c_1M, Bw1c_1 , coeff IC16c_1M, Cw1c_1 , coeff IC16c_1M, Dw1c_1 ,
      coeff IC16c_1M, Aw2c_1 , coeff IC16c_1M, Bw2c_1 , coeff IC16c_1M, Cw2c_1 , coeff IC16c_1M, Dw2c_1 ,
      coeff IC16c_1M, Aw3c_1 , coeff IC16c_1M, Bw3c_1 , coeff IC16c_1M, Cw3c_1 , coeff IC16c_1M, Dw3c_1 ,
      coeff IC16c_1M, Aw4c_1 , coeff IC16 c_1M, Bw4c_1 , coeff IC16c_1M, Cw4c_1 , coeff IC16c_1M, Dw4c_1 ,
      coeff IC16c_1M, Au1c_1 , coeff IC16c_1M, Bu1c_1 , coeff IC16c_1M, Cu1c_1 , coeff IC16c_1M, Du1c_1 ,
      coeff IC16c_1M, Au2c_1 , coeff IC16c_1M, Bu2c_1 , coeff IC16c_1M, Cu2c_1 , coeff IC16c_1M, Du2c_1 ,
      coeff IC16c_1M, Au3c_1 , coeff IC16c_1M, Bu3c_1 , coeff IC16c_1M, Cu3c_1 , coeff IC16c_1M, Du3c_1 ,



      coeff IC16c_1M, Au4c_1 , coeff IC16c_1M, Bu4c_1 , coeff IC16c_1M, Cu4c_1 , coeff IC16c_1M, Du4c_1 ,
 
 coeff IC17c_1M, Aw1c_1 , coeff IC17c_1M, Bw1c_1 , coeff IC17c_1M, Cw1c_1 , coeff IC17c_1M, Dw1c_1 ,
      coeff IC17c_1M, Aw2c_1 , coeff IC17c_1M, Bw2c_1 , coeff IC17c_1M, Cw2c_1 , coeff IC17c_1M, Dw2c_1 ,
      coeff IC17c_1M, Aw3c_1 , coeff IC17c_1M, Bw3c_1 , coeff IC17c_1M, Cw3c_1 , coeff IC17c_1M, Dw3c_1 ,
      coeff IC17c_1M, Aw4c_1 , coeff IC17c_1M, Bw4c_1 , coeff IC17c_1M, Cw4c_1 , coeff IC17c_1M, Dw4c_1 ,
      coeff IC17c_1M, Au1c_1 , coeff IC17c_1M, Bu1c_1 , coeff IC17c_1M, Cu1c_1 , coeff IC17c_1M, Du1c_1 ,
      coeff IC17c_1M, Au2c_1 , coeff IC17c_1M, Bu2c_1 , coeff IC17c_1M, Cu2c_1 , coeff IC17c_1M, Du2c_1 ,
      coeff IC17c_1M, Au3c_1 , coeff IC17c_1M, Bu3c_1 , coeff IC17c_1M, Cu3c_1 , coeff IC17c_1M, Du3c_1 ,
      coeff IC17c_1M, Au4c_1 , coeff IC17c_1M, Bu4c_1 , coeff IC17c_1M, Cu4c_1 , coeff IC17c_1M, Du4c_1 ,
 
 coeff IC18c_1M, Aw1c_1 , coeff IC18c_1M, Bw1c_1 , coeff IC18c_1M, Cw1c_1 , coeff IC18c_1M, Dw1c_1 ,
      coeff IC18c_1M, Aw2c_1 , coeff IC18c_1M, Bw2c_1 , coeff IC18c_1M, Cw2c_1 , coeff IC18c_1M, Dw2c_1 ,
      coeff IC18c_1M, Aw3c_1 , coeff IC18c_1M, Bw3c_1 , coeff IC18c_1M, Cw3c_1 , coeff IC18c_1M, Dw3c_1 ,
      coeff IC18c_1M, Aw4c_1 , coeff IC18c_1M, Bw4c_1 , coeff IC18c_1M, Cw4c_1 , coeff IC18c_1M, Dw4c_1 ,
      coeff IC18c_1M, Au1c_1 , coeff IC18c_1M, Bu1c_1 , coeff IC18c_1M, Cu1c_1 , coeff IC18c_1M, Du1c_1 ,
      coeff IC18c_1M, Au2c_1 , coeff IC18c_1M, Bu2c_1 , coeff IC18c_1M, Cu2c_1 , coeff IC18c_1M, Du2c_1 ,
      coeff IC18c_1M, Au3c_1 , coeff IC18c_1M, Bu3c_1 , coeff IC18c_1M, Cu3c_1 , coeff IC18c_1M, Du3c_1 ,
      coeff IC18c_1M, Au4c_1 , coeff IC18c_1M, Bu4c_1 , coeff IC18c_1M, Cu4c_1 , coeff IC18c_1M, Du4c_1 ,
 
 coeff IC19c_1M, Aw1c_1 , coeff IC19c_1M, Bw1c_1 , coeff IC19c_1M, Cw1c_1 , coeff IC19c_1M, Dw1c_1 ,
      coeff IC19c_1M, Aw2c_1 , coeff IC19c_1M, Bw2c_1 , coeff IC19c_1M, Cw2c_1 , coeff IC19c_1M, Dw2c_1 ,
      coeff IC19c_1M, Aw3c_1 , coeff IC19c_1M, Bw3c_1 , coeff IC19c_1M, Cw3c_1 , coeff IC19c_1M, Dw3c_1 ,
      coeff IC19c_1M, Aw4c_1 , coeff IC19c_1M, Bw4c_1 , coeff IC19c_1M, Cw4c_1 , coeff IC19c_1M, Dw4c_1 ,
      coeff IC19c_1M, Au1c_1 , coeff IC19c_1M, Bu1c_1 , coeff IC19c_1M, Cu1c_1 , coeff IC19c_1M, Du1c_1 ,
      coeff IC19c_1M, Au2c_1 , coeff IC19c_1M, Bu2c_1 , coeff IC19c_1M, Cu2c_1 , coeff IC19c_1M, Du2c_1 ,
      coeff IC19c_1M, Au3c_1 , coeff IC19c_1M, Bu3c_1 , coeff IC19c_1M, Cu3c_1 , coeff IC19c_1M, Du3c_1 ,
      coeff IC19c_1M, Au4c_1 , coeff IC19c_1M, Bu4c_1 , coeff IC19c_1M, Cu4c_1 , coeff IC19c_1M, Du4c_1 ,
 
 coeff IC20c_1M, Aw1c_1 , coeff IC20c_1M, Bw1c_1 , coeff IC20c_1M, Cw1c_1 , coeff IC20c_1M, Dw1c_1 ,
      coeff IC20c_1M, Aw2c_1 , coeff IC20c_1M, Bw2c_1 , coeff IC20c_1M, Cw2c_1 , coeff IC20c_1M, Dw2c_1 ,
      coeff IC20c_1M, Aw3c_1 , coeff IC20c_1M, Bw3c_1 , coeff IC20c_1M, Cw3c_1 , coeff IC20c_1M, Dw3c_1 ,
      coeff IC20c_1M, Aw4c_1 , coeff IC20c_1M, Bw4c_1 , coeff IC20c_1M, Cw4c_1 , coeff IC20c_1M, Dw4c_1 ,
      coeff IC20c_1M, Au1c_1 , coeff IC20c_1M, Bu1c_1 , coeff IC20c_1M, Cu1c_1 , coeff IC20c_1M, Du1c_1 ,
      coeff IC20c_1M, Au2c_1 , coeff IC20c_1M, Bu2c_1 , coeff IC20c_1M, Cu2c_1 , coeff IC20c_1M, Du2c_1 ,
      coeff IC20c_1M, Au3c_1 , coeff IC20c_1M, Bu3c_1 , coeff IC20c_1M, Cu3c_1 , coeff IC20c_1M, Du3c_1 ,
      coeff IC20c_1M, Au4c_1 , coeff IC20c_1M, Bu4c_1 , coeff IC20c_1M, Cu4c_1 , coeff IC20c_1M, Du4c_1 ,
 
 coeff IC21c_1M, Aw1c_1 , coeff IC21c_1M, Bw1c_1 , coeff IC21c_1M, Cw1c_1 , coeff IC21c_1M, Dw1c_1 ,
      coeff IC21c_1M, Aw2c_1 , coeff IC21c_1M, Bw2c_1 , coeff IC21c_1M, Cw2c_1 , coeff IC21c_1M, Dw2c_1 ,
      coeff IC21c_1M, Aw3c_1 , coeff IC21c_1M, Bw3c_1 , coeff IC21c_1M, Cw3c_1 , coeff IC21c_1M, Dw3c_1 ,
      coeff IC21c_1M, Aw4c_1 , coeff IC21c_1M, Bw4c_1 , coeff IC21c_1M, Cw4c_1 , coeff IC21c_1M, Dw4c_1 ,
      coeff IC21c_1M, Au1c_1 , coeff IC21c_1M, Bu1c_1 , coeff IC21c_1M, Cu1c_1 , coeff IC21c_1M, Du1c_1 ,
      coeff IC21c_1M, Au2c_1 , coeff IC21c_1M, Bu2c_1 , coeff IC21c_1M, Cu2c_1 , coeff IC21c_1M, Du2c_1 ,
      coeff IC21c_1M, Au3c_1 , coeff IC21c_1M, Bu3c_1 , coeff IC21c_1M, Cu3c_1 , coeff IC21c_1M, Du3c_1 ,
      coeff IC21c_1M, Au4c_1 , coeff IC21c_1M, Bu4c_1 , coeff IC21c_1M, Cu4c_1 , coeff IC21c_1M, Du4c_1 ,
 
 coeff IC22c_1M, Aw1c_1 , coeff IC22c_1M, Bw1c_1 , coeff IC22c_1M, Cw1c_1 , coeff IC22c_1M, Dw1c_1 ,
      coeff IC22c_1M, Aw2c_1 , coeff IC22c_1M, Bw2c_1 , coeff IC22c_1M, Cw2c_1 , coeff IC22c_1M, Dw2c_1 ,
      coeff IC22c_1M, Aw3c_1 , coeff IC22c_1M, Bw3c_1 , coeff IC22c_1M, Cw3c_1 , coeff IC22c_1M, Dw3c_1 ,
      coeff IC22c_1M, Aw4c_1 , coeff IC22c_1M, Bw4c_1 , coeff IC22c_1M, Cw4c_1 , coeff IC22c_1M, Dw4c_1 ,
      coeff IC22c_1M, Au1c_1 , coeff IC22c_1M, Bu1c_1 , coeff IC22c_1M, Cu1c_1 , coeff IC22c_1M, Du1c_1 ,
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      coeff IC22c_1M, Au2c_1 , coeff IC22c_1M, Bu2c_1 , coeff IC22c_1M, Cu2c_1 , coeff IC22c_1M, Du2c_1 ,
      coeff IC22c_1M, Au3c_1 , coeff IC22c_1M, Bu3c_1 , coeff IC22c_1M, Cu3c_1 , coeff IC22c_1M, Du3c_1 ,
      coeff IC22c_1M, Au4c_1 , coeff IC22c_1M, Bu4c_1 , coeff IC22c_1M, Cu4c_1 , coeff IC22c_1M, Du4c_1 ,
 
 coeff IC23c_1M, Aw1c_1 , coeff IC23c_1M, Bw1c_1 , coeff IC23c_1M, Cw1c_1 , coeff IC23c_1M, Dw1c_1 ,
      coeff IC23c_1M, Aw2c_1 , coeff IC23c_1M, Bw2c_1 , coeff IC23c_1M, Cw2c_1 , coeff IC23c_1M, Dw2c_1 ,
      coeff IC23c_1M, Aw3c_1 , coeff IC23c_1M, Bw3c_1 , coeff IC23c_1M, Cw3c_1 , coeff IC23c_1M, Dw3c_1 ,
      coeff IC23c_1M, Aw4c_1 , coeff IC23c_1M, Bw4c_1 , coeff IC23c_1M, Cw4c_1 , coeff IC23c_1M, Dw4c_1 ,
      coeff IC23c_1M, Au1c_1 , coeff IC23c_1M, Bu1c_1 , coeff IC23c_1M, Cu1c_1 , coeff IC23c_1M, Du1c_1 ,
      coeff IC23c_1M, Au2c_1 , coeff IC23c_1M, Bu2c_1 , coeff IC23c_1M, Cu2c_1 , coeff IC23c_1M, Du2c_1 ,
      coeff IC23c_1M, Au3c_1 , coeff IC23c_1M, Bu3c_1 , coeff IC23c_1M, Cu3c_1 , coeff IC23c_1M, Du3c_1 ,
      coeff IC23c_1M, Au4c_1 , coeff IC23c_1M, Bu4c_1 , coeff IC23c_1M, Cu4c_1 , coeff IC23c_1M, Du4c_1 ,
 
 coeff IC24c_1M, Aw1c_1 , coeff IC24c_1M, Bw1c_1 , coeff IC24c_1M, Cw1c_1 , coeff IC24c_1M, Dw1c_1 ,
      coeff IC24c_1M, Aw2c_1 , coeff IC24c_1M, Bw2c_1 , coeff IC24c_1M, Cw2c_1 , coeff IC24c_1M, Dw2c_1 ,
      coeff IC24c_1M, Aw3c_1 , coeff IC24c_1M, Bw3c_1 , coeff IC24c_1M, Cw3c_1 , coeff IC24c_1M, Dw3c_1 ,
      coeff IC24c_1M, Aw4c_1 , coeff IC24c_1M, Bw4c_1 , coeff IC24 c_1M, Cw4c_1 , coeff IC24c_1M, Dw4c_1 ,
      coeff IC24c_1M, Au1c_1 , coeff IC24c_1M, Bu1c_1 , coeff IC24c_1M, Cu1c_1 , coeff IC24c_1M, Du1c_1 ,
      coeff IC24c_1M, Au2c_1 , coeff IC24c_1M, Bu2c_1 , coeff IC24c_1M, Cu2c_1 , coeff IC24c_1M, Du2c_1 ,
      coeff IC24c_1M, Au3c_1 , coeff IC24c_1M, Bu3c_1 , coeff IC24c_1M, Cu3c_1 , coeff IC24c_1M, Du3c_1 ,
      coeff IC24c_1M, Au4c_1 , coeff IC24c_1M, Bu4c_1 , coeff IC24c_1M, Cu4c_1 , coeff IC24c_1M, Du4c_1
 ;

Mc_jd 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau1_j, 0, Betau1_j, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau3_j, 0, Betau3_j, 0, 0, 0, 0 , 

0, 0, 0, 0, cosh 2 Betaw2_j span , sinh 2 Betaw2_j span , cos 2 Betaw2_j span , sin 2 Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, Betaw2_j sinh 2 Betaw2_j span , Betaw2_j cosh 2 Betaw2_j span , KBetaw2_j sin 2 Betaw2_j span , Betaw2_j cos 2 Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh 2 Betaw4_j span , sinh 2 Betaw4_j span , cos 2 Betaw4_j span , sin 2 Betaw4_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betaw4_j sinh 2 Betaw4_j span , Betaw4_j cosh 2 Betaw4_j span , KBetaw4_j sin 2 Betaw4_j span , Betaw4_j cos 2 Betaw4_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau1_j hw1 , sinh Betau1_j hw1 , cos Betau1_j hw1 , sin Betau1_j hw1 , Kcosh Betau2_j hw1 , Ksinh Betau2_j hw1 , Kcos Betau2_j hw1 , 
Ksin Betau2_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0 , 

1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau1_j sinh Betau1_j hw1 , Betau1_j cosh Betau1_j hw1 , KBetau1_j sin Betau1_j hw1 , Betau1_j cos Betau1_j hw1 , KBetau2_j sinh Betau2_j hw1 , 
KBetau2_j cosh Betau2_j hw1 , Betau2_j sin Betau2_j hw1 , KBetau2_j cos Betau2_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0 , 

0, Betaw1_j, 0, Betaw1_j, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau1_j sinh Betau1_j hw1 , Betau1_j cosh Betau1_j hw1 , KBetau1_j sin Betau1_j hw1 , Betau1_j cos Betau1_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau1_j hw1 , sinh Betau1_j hw1 , cos Betau1_j hw1 , sin Betau1_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

Betaw1_j2, 0, KBetaw1_j2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KBetau1_j2 cosh Betau1_j hw1 , KBetau1_j2 sinh Betau1_j hw1 , Betau1_j2 cos Betau1_j hw1 , Betau1_j2 sin Betau1_j hw1 , 

Betau2_j2 cosh Betau2_j hw1 , Betau2_j2 sinh Betau2_j hw1 , KBetau2_j2 cos Betau2_j hw1 , KBetau2_j2 sin Betau2_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, Betaw3_j, 0, Betaw3_j, 0, 0, 0, 0, 0, 0, 0, 0, Betau2_j sinh Betau2_j hw1Chw2 , Betau2_j cosh Betau2_j hw1Chw2 , KBetau2_j sin Betau2_j hw1Chw2 , 

Betau2_j cos Betau2_j hw1Chw2 , 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau2_j hw1Chw2 , sinh Betau2_j hw1Chw2 , cos Betau2_j hw1Chw2 , sin Betau2_j hw1Chw2 , 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, Betaw3_j2, 0, KBetaw3_j2, 0, 0, 0, 0, 0, 0, 0, 0, 0, KBetau2_j2 cosh Betau2_j hw1Chw2 , KBetau2_j2 sinh Betau2_j hw1Chw2 , Betau2_j2 cos Betau2_j hw1Chw2 , 
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Betau2_j2 sin Betau2_j hw1Chw2 , 0, 0, 0, 0, 0, 0, 0, 0 , 

cosh Betaw1_j span , sinh Betaw1_j span , cos Betaw1_j span , sin Betaw1_j span , Kcosh Betaw2_j span , Ksinh Betaw2_j span , Kcos Betaw2_j span , Ksin Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

cosh Betaw1_j span , sinh Betaw1_j span , cos Betaw1_j span , sin Betaw1_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau3_j hw1 , sinh Betau3_j hw1 , cos Betau3_j hw1 , sin Betau3_j hw1 , Kcosh Betau4_j hw1 , Ksinh Betau4_j hw1 , 
Kcos Betau4_j hw1 , Ksin Betau4_j hw1 , 

Betaw1_j sinh Betaw1_j span , Betaw1_j cosh Betaw1_j span , KBetaw1_j sin Betaw1_j span , Betaw1_j cos Betaw1_j span , KBetaw2_j sinh Betaw2_j span , KBetaw2_j cosh Betaw2_j span , 

Betaw2_j sin Betaw2_j span , KBetaw2_j cos Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau3_j sinh Betau3_j hw1 , Betau3_j cosh Betau3_j hw1 , KBetau3_j sin Betau3_j hw1 , Betau3_j cos Betau3_j hw1 , 
KBetau4_j sinh Betau4_j hw1 , KBetau4_j cosh Betau4_j hw1 , Betau4_j sin Betau4_j hw1 , KBetau4_j cos Betau4_j hw1 , 

Betaw1_j sinh Betaw1_j span , Betaw1_j cosh Betaw1_j span , KBetaw1_j sin Betaw1_j span , Betaw1_j cos Betaw1_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau3_j sinh Betau3_j hw1 , 

Betau3_j cosh Betau3_j hw1 , KBetau3_j sin Betau3_j hw1 , Betau3_j cos Betau3_j hw1 , 0, 0, 0, 0 , 

KBetaw1_j2 cosh Betaw1_j span , KBetaw1_j2 sinh Betaw1_j span , Betaw1_j2 cos Betaw1_j span , Betaw1_j2 sin Betaw1_j span , Betaw2_j2 cosh Betaw2_j span , Betaw2_j2 sinh Betaw2_j span , 

KBetaw2_j2 cos Betaw2_j span , KBetaw2_j2 sin Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KBetau3_j2 cosh Betau3_j hw1 , KBetau3_j2 sinh Betau3_j hw1 , Betau3_j2 cos Betau3_j hw1 , 

Betau3_j2 sin Betau3_j hw1 , Betau4_j2 cosh Betau4_j hw1 , Betau4_j2 sinh Betau4_j hw1 , KBetau4_j2 cos Betau4_j hw1 , KBetau4_j2 sin Betau4_j hw1 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau3_j hw1 , sinh Betau3_j hw1 , cos Betau3_j hw1 , sin Betau3_j hw1 , 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, cosh Betaw3_j span , sinh Betaw3_j span , cos Betaw3_j span , sin Betaw3_j span , Kcosh Betaw4_j span , Ksinh Betaw4_j span , Kcos Betaw4_j span , Ksin Betaw4_j span , 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, cosh Betaw3_j span , sinh Betaw3_j span , cos Betaw3_j span , sin Betaw3_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, Betaw3_j sinh Betaw3_j span , Betaw3_j cosh Betaw3_j span , KBetaw3_j sin Betaw3_j span , Betaw3_j cos Betaw3_j span , KBetaw4_j sinh Betaw4_j span , 
KBetaw4_j cosh Betaw4_j span , Betaw4_j sin Betaw4_j span , KBetaw4_j cos Betaw4_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, Betaw3_j sinh Betaw3_j span , Betaw3_j cosh Betaw3_j span , KBetaw3_j sin Betaw3_j span , Betaw3_j cos Betaw3_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

Betau4_j sinh Betau4_j hw1Chw2 , Betau4_j cosh Betau4_j hw1Chw2 , KBetau4_j sin Betau4_j hw1Chw2 , Betau4_j cos Betau4_j hw1Chw2 , 

0, 0, 0, 0, 0, 0, 0, 0, KBetaw3_j2 cosh Betaw3_j span , KBetaw3_j2 sinh Betaw3_j span , Betaw3_j2 cos Betaw3_j span , Betaw3_j2 sin Betaw3_j span , Betaw4_j2 cosh Betaw4_j span , 

Betaw4_j2 sinh Betaw4_j span , KBetaw4_j2 cos Betaw4_j span , KBetaw4_j2 sin Betaw4_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KBetau4_j2 cosh Betau4_j hw1Chw2 , KBetau4_j2 sinh Betau4_j hw1

Chw2 , Betau4_j2 cos Betau4_j hw1Chw2 , Betau4_j2 sin Betau4_j hw1Chw2 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau4_j hw1Chw2 , sinh Betau4_j hw1Chw2 , cos Betau4_j hw1Chw2 , sin Betau4_j hw1Chw2

with CodeGeneration :
Python Mc_j, resultname = "M_matrix_c_j" ;

M_matrix_c_j = numpy.mat([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau1_j,0,
Betau1_j,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,Betau3_j,0,Betau3_j,0,0,0,0],[0,0,0,0,math.cosh(2 * Betaw2_j * span),math.sinh(2 * Betaw2_j * span),math.cos(2 * Betaw2_j * span),math.sin
(2 * Betaw2_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,Betaw2_j * math.sinh(2 * Betaw2_j * span),Betaw2_j * math.cosh(2 
* Betaw2_j * span),-Betaw2_j * math.sin(2 * Betaw2_j * span),Betaw2_j * math.cos(2 * Betaw2_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(2 * Betaw4_j * span),math.sinh(2 * Betaw4_j * span),math.cos(2 * Betaw4_j * span),math.sin(2 * Betaw4_j
* span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,Betaw4_j * math.sinh(2 * Betaw4_j * span),Betaw4_j * math.cosh(2 * Betaw4_j * 
span),-Betaw4_j * math.sin(2 * Betaw4_j * span),Betaw4_j * math.cos(2 * Betaw4_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,math.cosh(Betau1_j * hw1),math.sinh(Betau1_j * hw1),math.cos(Betau1_j * hw1),math.sin(Betau1_j * hw1),-math.cosh(Betau2_j * hw1),-math.
sinh(Betau2_j * hw1),-math.cos(Betau2_j * hw1),-math.sin(Betau2_j * hw1),0,0,0,0,0,0,0,0],[1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau1_j * math.sinh(Betau1_j * hw1),Betau1_j * math.cosh(Betau1_j * hw1),-Betau1_j * math.sin
(Betau1_j * hw1),Betau1_j * math.cos(Betau1_j * hw1),-Betau2_j * math.sinh(Betau2_j * hw1),-Betau2_j * math.cosh(Betau2_j * hw1),Betau2_j * math.
sin(Betau2_j * hw1),-Betau2_j * math.cos(Betau2_j * hw1),0,0,0,0,0,0,0,0],[0,Betaw1_j,0,Betaw1_j,0,0,0,0,0,0,0,0,0,0,0,0,Betau1_j * math.sinh
(Betau1_j * hw1),Betau1_j * math.cosh(Betau1_j * hw1),-Betau1_j * math.sin(Betau1_j * hw1),Betau1_j * math.cos(Betau1_j * hw1),0,0,0,0,0,0,0,0,0,
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0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau1_j * hw1),math.sinh(Betau1_j * hw1),math.cos(Betau1_j * hw1),math.sin(Betau1_j * hw1),0,
0,0,0,0,0,0,0,0,0,0,0],[Betaw1_j ** 2,0,-Betaw1_j ** 2,0,0,0,0,0,0,0,0,0,0,0,0,0,-Betau1_j ** 2 * math.cosh(Betau1_j * hw1),-Betau1_j ** 2 * 
math.sinh(Betau1_j * hw1),Betau1_j ** 2 * math.cos(Betau1_j * hw1),Betau1_j ** 2 * math.sin(Betau1_j * hw1),Betau2_j ** 2 * math.cosh(Betau2_j * 
hw1),Betau2_j ** 2 * math.sinh(Betau2_j * hw1),-Betau2_j ** 2 * math.cos(Betau2_j * hw1),-Betau2_j ** 2 * math.sin(Betau2_j * hw1),0,0,0,0,0,0,0,
0],[0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,Betaw3_j,0,Betaw3_j,0,0,0,0,0,0,0,0,Betau2_j * math.sinh
(Betau2_j * (hw1 + hw2)),Betau2_j * math.cosh(Betau2_j * (hw1 + hw2)),-Betau2_j * math.sin(Betau2_j * (hw1 + hw2)),Betau2_j * math.cos(Betau2_j *
(hw1 + hw2)),0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau2_j * (hw1 + hw2)),math.sinh(Betau2_j * (hw1 + hw2)),math.
cos(Betau2_j * (hw1 + hw2)),math.sin(Betau2_j * (hw1 + hw2)),0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,Betaw3_j ** 2,0,-Betaw3_j ** 2,0,0,0,0,0,0,0,0,0,-
Betau2_j ** 2 * math.cosh(Betau2_j * (hw1 + hw2)),-Betau2_j ** 2 * math.sinh(Betau2_j * (hw1 + hw2)),Betau2_j ** 2 * math.cos(Betau2_j * (hw1 + 
hw2)),Betau2_j ** 2 * math.sin(Betau2_j * (hw1 + hw2)),0,0,0,0,0,0,0,0],[math.cosh(Betaw1_j * span),math.sinh(Betaw1_j * span),math.cos(Betaw1_j 
* span),math.sin(Betaw1_j * span),-math.cosh(Betaw2_j * span),-math.sinh(Betaw2_j * span),-math.cos(Betaw2_j * span),-math.sin(Betaw2_j * span),
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[math.cosh(Betaw1_j * span),math.sinh(Betaw1_j * span),math.cos(Betaw1_j * span),math.sin
(Betaw1_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau3_j * 
hw1),math.sinh(Betau3_j * hw1),math.cos(Betau3_j * hw1),math.sin(Betau3_j * hw1),-math.cosh(Betau4_j * hw1),-math.sinh(Betau4_j * hw1),-math.cos
(Betau4_j * hw1),-math.sin(Betau4_j * hw1)],[Betaw1_j * math.sinh(Betaw1_j * span),Betaw1_j * math.cosh(Betaw1_j * span),-Betaw1_j * math.sin
(Betaw1_j * span),Betaw1_j * math.cos(Betaw1_j * span),-Betaw2_j * math.sinh(Betaw2_j * span),-Betaw2_j * math.cosh(Betaw2_j * span),Betaw2_j * 
math.sin(Betaw2_j * span),-Betaw2_j * math.cos(Betaw2_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,Betau3_j * math.sinh(Betau3_j * hw1),Betau3_j * math.cosh(Betau3_j * hw1),-Betau3_j * math.sin(Betau3_j * hw1),Betau3_j * math.
cos(Betau3_j * hw1),-Betau4_j * math.sinh(Betau4_j * hw1),-Betau4_j * math.cosh(Betau4_j * hw1),Betau4_j * math.sin(Betau4_j * hw1),-Betau4_j * 
math.cos(Betau4_j * hw1)],[Betaw1_j * math.sinh(Betaw1_j * span),Betaw1_j * math.cosh(Betaw1_j * span),-Betaw1_j * math.sin(Betaw1_j * span),
Betaw1_j * math.cos(Betaw1_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau3_j * math.sinh(Betau3_j * hw1),Betau3_j * math.cosh(Betau3_j *
hw1),-Betau3_j * math.sin(Betau3_j * hw1),Betau3_j * math.cos(Betau3_j * hw1),0,0,0,0],[-Betaw1_j ** 2 * math.cosh(Betaw1_j * span),-Betaw1_j ** 
2 * math.sinh(Betaw1_j * span),Betaw1_j ** 2 * math.cos(Betaw1_j * span),Betaw1_j ** 2 * math.sin(Betaw1_j * span),Betaw2_j ** 2 * math.cosh
(Betaw2_j * span),Betaw2_j ** 2 * math.sinh(Betaw2_j * span),-Betaw2_j ** 2 * math.cos(Betaw2_j * span),-Betaw2_j ** 2 * math.sin(Betaw2_j * 
span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-Betau3_j ** 2 * math.cosh(Betau3_j * hw1),-Betau3_j ** 2 * math.sinh(Betau3_j * hw1),Betau3_j ** 2 * math.
cos(Betau3_j * hw1),Betau3_j ** 2 * math.sin(Betau3_j * hw1),Betau4_j ** 2 * math.cosh(Betau4_j * hw1),Betau4_j ** 2 * math.sinh(Betau4_j * hw1),
-Betau4_j ** 2 * math.cos(Betau4_j * hw1),-Betau4_j ** 2 * math.sin(Betau4_j * hw1)],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh
(Betau3_j * hw1),math.sinh(Betau3_j * hw1),math.cos(Betau3_j * hw1),math.sin(Betau3_j * hw1),0,0,0,0],[0,0,0,0,0,0,0,0,math.cosh(Betaw3_j * 
span),math.sinh(Betaw3_j * span),math.cos(Betaw3_j * span),math.sin(Betaw3_j * span),-math.cosh(Betaw4_j * span),-math.sinh(Betaw4_j * span),-
math.cos(Betaw4_j * span),-math.sin(Betaw4_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,math.cosh(Betaw3_j * span),math.sinh
(Betaw3_j * span),math.cos(Betaw3_j * span),math.sin(Betaw3_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,Betaw3_j * math.
sinh(Betaw3_j * span),Betaw3_j * math.cosh(Betaw3_j * span),-Betaw3_j * math.sin(Betaw3_j * span),Betaw3_j * math.cos(Betaw3_j * span),-Betaw4_j 
* math.sinh(Betaw4_j * span),-Betaw4_j * math.cosh(Betaw4_j * span),Betaw4_j * math.sin(Betaw4_j * span),-Betaw4_j * math.cos(Betaw4_j * span),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,Betaw3_j * math.sinh(Betaw3_j * span),Betaw3_j * math.cosh(Betaw3_j * span),-Betaw3_j * math.sin
(Betaw3_j * span),Betaw3_j * math.cos(Betaw3_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau4_j * math.sinh(Betau4_j * (hw1 + hw2)),Betau4_j * 
math.cosh(Betau4_j * (hw1 + hw2)),-Betau4_j * math.sin(Betau4_j * (hw1 + hw2)),Betau4_j * math.cos(Betau4_j * (hw1 + hw2))],[0,0,0,0,0,0,0,0,-
Betaw3_j ** 2 * math.cosh(Betaw3_j * span),-Betaw3_j ** 2 * math.sinh(Betaw3_j * span),Betaw3_j ** 2 * math.cos(Betaw3_j * span),Betaw3_j ** 2 * 
math.sin(Betaw3_j * span),Betaw4_j ** 2 * math.cosh(Betaw4_j * span),Betaw4_j ** 2 * math.sinh(Betaw4_j * span),-Betaw4_j ** 2 * math.cos
(Betaw4_j * span),-Betaw4_j ** 2 * math.sin(Betaw4_j * span),0,0,0,0,0,0,0,0,0,0,0,0,-Betau4_j ** 2 * math.cosh(Betau4_j * (hw1 + hw2)),-Betau4_j
** 2 * math.sinh(Betau4_j * (hw1 + hw2)),Betau4_j ** 2 * math.cos(Betau4_j * (hw1 + hw2)),Betau4_j ** 2 * math.sin(Betau4_j * (hw1 + hw2))],[0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau4_j * (hw1 + hw2)),math.sinh(Betau4_j * (hw1 + hw2)),math.cos(Betau4_j * (hw1 
+ hw2)),math.sin(Betau4_j * (hw1 + hw2))]])

# Uxc_j=1,Uxs_j=1, PHIyc_j=1,Omega_j=1,rhoA_w1=1,rhoA_w2=1,rhoA_w3=1,rhoA_w4=1,rhoA_u1=1,rhoA_u2=1,rhoA_u3=1,rhoA_u4=1, EI_w1=1, EI_w2=1, EI_w3=1, EI_w4=1, EI_u1=1, EI_u2=1, EI_u3=
1, EI_u4=1,Betaw1_1=1,Betaw2_1=1,Betaw3_1=1,Betaw4_1=1,Betau1_1=1,Betau2_1=1,Betau3_1=1,Betau4_1=1,span=1, hw1=1,hw2=1,hcg1=1,hcg2=1,hcg3=1,

Mc_j_compd evalf subs Uxc_j = 1, Uxs_j = 1, PHIyc_j = 1, Omega_j = 1, rhoA_w1 = 1, rhoA_w2 = 1, rhoA_w3 = 1, rhoA_w4 = 1, rhoA_u1 = 1, rhoA_u2 = 1, rhoA_u3 = 1, rhoA_u4 = 1, EI_w1 = 1, EI_w2 = 1, EI_w3
= 1, EI_w4 = 1, EI_u1 = 1, EI_u2 = 1, EI_u3 = 1, EI_u4 = 1, Betaw1_j = 1, Betaw2_j = 1, Betaw3_j = 1, Betaw4_j = 1, Betau1_j = 1, Betau2_j = 1, Betau3_j = 1, Betau4_j = 1, span = 1, hw1 = 1, hw2 = 1, hcg1 = 1,
hcg2 = 1, hcg3 = 1, Mc_j :

#Mc_j_inversedLinearAlgebra MatrixInverse Mc_j :
#Python Mc_j_inverse, resultname = "M_matrix_c_j_inverse" :

Fc_jd Vector
 Uxc_jCPHIyc_j$hcg1,
 0,



 Uxc_jCPHIyc_j$hcg1,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 Uxc_jCPHIyc_j$hcg2,
 0,
 0,
 0,
 Uxc_jCPHIyc_j$hcg3,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 Uxc_jCPHIyc_j$hcg2,
 0,
 0,
 0,
 0,
 0,
 Uxc_jCPHIyc_j$hcg3
 ;
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Fc_jd

PHIyc_j hcg1CUxc_j

0

PHIyc_j hcg1CUxc_j

0

0

0

0

0

0

0

0

0

PHIyc_j hcg2CUxc_j

0

0

0

PHIyc_j hcg3CUxc_j

0

0

0

0

0

0

0

0

PHIyc_j hcg2CUxc_j

0

0

0

0

0

PHIyc_j hcg3CUxc_j

Python Fc_j, resultname = "F_vector_c_j" ;
F_vector_c_j = numpy.mat([PHIyc_j * hcg1 + Uxc_j,0,PHIyc_j * hcg1 + Uxc_j,0,0,0,0,0,0,0,0,0,PHIyc_j * hcg2 + Uxc_j,0,0,0,PHIyc_j * hcg3 + Uxc_j,
0,0,0,0,0,0,0,0,PHIyc_j * hcg2 + Uxc_j,0,0,0,0,0,PHIyc_j * hcg3 + Uxc_j])

#test_vectordvector



(61(61

> > Coeff_vectord subs Uxc_j = 1, Uxs_j = 1, PHIyc_j = 1, Omega_j = 1, rhoA_w1 = 1, rhoA_w2 = 1, rhoA_w3 = 1, rhoA_w4 = 1, rhoA_u1 = 1, rhoA_u2 = 1, rhoA_u3 = 1, rhoA_u4 = 1, EI_w1 = 1, EI_w2 = 1, EI_w3 = 1,
 EI_w4 = 1, EI_u1 = 1, EI_u2 = 1, EI_u3 = 1, EI_u4 = 1, Betaw1_j = 1, Betaw2_j = 1, Betaw3_j = 1, Betaw4_j = 1, Betau1_j = 1, Betau2_j = 1, Betau3_j = 1, Betau4_j = 1, span = 1, hw1 = 1, hw2 = 1, hcg1 = 1, hcg2
= 1, hcg3 = 1, LinearAlgebra Multiply LinearAlgebra MatrixInverse Mc_j_comp , Fc_j ;



(61(61Coeff_vectord

1.25339703571085 108

K1.24366775577511 108

K1.25339703571088 108

2.43241240701675 107

K5.29952510941048 108

5.70204863660217 108

2.33824006862509 108

2.53346470730038 107

K4.44096913240416 108

6.46311237633327 108

4.44096913240423 108

K3.73411541479704 108

7.16423506397987 108

K7.70839196635300 108

K3.16098162416494 108

K3.42489870595529 107

K1.00400733016008 108

3.01679852282316 108

1.00400735016008 108

K3.01679852282316 108

6.73301148080738 108

K8.20871843793083 108

K5.24351679186132 108

2.48422149976392 108

7.42683921800327 107

K2.23158501216791 108

K7.42683901800327 107

2.23158501216791 108

2.04915608165207 107

1.33025364648323 107

7.42775845011559 107

K1.03848661658868 108



> > 

> > 

> > 

> > 

(62(62

> > 

> > 

> > 

> > 

> > 

(63(63

> > 

> > 

> > 

Aw1c_1_compd Coeff_vector 1 ; Bw1c_1_compd Coeff_vector 2 ; Cw1c_1_compd Coeff_vector 3 ; Dw1c_1_compdCoeff_vector 4 ;
Aw1c_1_compd 1.25339703571085 108

Bw1c_1_compdK1.24366775577511 108

Cw1c_1_compdK1.25339703571088 108

Dw1c_1_compd 2.43241240701675 107

W1c_1_compd subs Aw1c_1 = Aw1c_1_comp, Bw1c_1 = Bw1c_1_comp, Cw1c_1 = Cw1c_1_comp, Dw1c_1 = Dw1c_1_comp, Betaw1_j = 1, W1c_1 ;
W1c_1_compd 1.25339703571085 108 cosh x K1.24366775577511 108 sinh x K1.25339703571088 108 cos x C2.43241240701675 107 sin x

with plots :
plotW1c_1_compd plot W1c_1_comp, x = 0 ..1 : display plotW1c_1_comp ;

x
0.2 0.4 0.6 0.8 1

K2.#107

K1.5#107

K1.#107

K5.#106

0

Uxc_jd 1 : Uxs_jd 1 : PHIyc_jd 1 : Omega_jd 10 : Omega_1dOmega_j : hcg1d 1 : hcg2d 1 : hcg3d 1 :
rhoA_w1d 1 : rhoA_w2d 1 : rhoA_w3d 1 : rhoA_w4d 1 : rhoA_u1d 1 : rhoA_u2d 1 : rhoA_u3d 1 : rhoA_u4d 1 :
EI_w1d 1 : EI_w2d 1 : EI_w3d 1 : EI_w4d 1 : EI_u1d 1 : EI_u2d 1 : EI_u3d 1 : EI_u4d 1 :

Betaw1_jd
rhoA_w1

EI_w1
$Omega_j2

1
4

: Betaw2_jd
rhoA_w2
EI_w2

$Omega_j2

1
4

: Betaw3_jd
rhoA_w3
EI_w3

$Omega_j2

1
4

: Betaw4_jd
rhoA_w4
EI_w4

$Omega_j2

1
4

:

Betau1_jd
rhoA_u1
EI_u1

$Omega_j2

1
4

: Betau2_jd
rhoA_u2

EI_u2
$Omega_j2

1
4

: Betau3_jd
rhoA_u3
EI_u3

$Omega_j2

1
4

: Betau4_jd
rhoA_u4

EI_u4
$Omega_j2

1
4

:

spand 1 : hw1d 1 : hw2d 1 :



> > 

(65(65

(67(67

(64(64

> > 

(66(66

> > 

> > 

> > 

(70(70

> > 

> > 

> > 

(71(71

(69(69

> > 

(68(68

> > 
(72(72

> > 

ux;
cos 10 t Csin 10 t

plotUx_1_compd plot ux, t = 0 ..1 : display plotUx_1_comp ;

t
0.2 0.4 0.6 0.8 1

K1

K0.5

0

0.5

1

EOMw1c_1;

KW1
2
 Aw1c_1 cosh 1001 4 x CBw1c_1 sinh 1001 4 x CCw1c_1 cos 1001 4 x CDw1c_1 sin 1001 4 x = 0

W1c_1;
Aw1c_1 cosh 1001 4 x CBw1c_1 sinh 1001 4 x CCw1c_1 cos 1001 4 x CDw1c_1 sin 1001 4 x

EOMw1s_1;

KW1
2
 Aw1s_1 cosh 1001 4 x CBw1s_1 sinh 1001 4 x CCw1s_1 cos 1001 4 x CDw1s_1 sin 1001 4 x = 0

W1s_1;
Aw1s_1 cosh 1001 4 x CBw1s_1 sinh 1001 4 x CCw1s_1 cos 1001 4 x CDw1s_1 sin 1001 4 x

EOMw2c_1;

KW1
2
 Aw2c_1 cosh 1001 4 x CBw2c_1 sinh 1001 4 x CCw2c_1 cos 1001 4 x CDw2c_1 sin 1001 4 x = 0

W2c_1;
Aw2c_1 cosh 1001 4 x CBw2c_1 sinh 1001 4 x CCw2c_1 cos 1001 4 x CDw2c_1 sin 1001 4 x

EOMw2s_1;

KW1
2
 Aw2s_1 cosh 1001 4 x CBw2s_1 sinh 1001 4 x CCw2s_1 cos 1001 4 x CDw2s_1 sin 1001 4 x = 0

W2s_1;
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R. Appendix: Maple sheet for determining dynamic EB-beams response 𝐌𝐨𝐝𝐞𝐥𝒛 
  



> > 

> > 

(1(1

> > 

> > 

> > 

> > 

(12(12

(8(8

> > 

(14(14

(2(2

> > 

(9(9

(16(16

> > 

> > 

> > 

> > 

> > 

> > 
> > 

(10(10

> > 

> > 

> > 

> > 

> > 

(5(5

> > 

(4(4

> > 

> > 

(3(3

(15(15

(11(11

> > 

(7(7

(6(6

> > 

> > 

(13(13

restart;

Model_z (vertical excitation at bottom of frame only)
Excitation

wz1dWz1c_j$cos Omega_j$t ;
wz1dWz1c_j cos Omega_j t

wz2d wz1; Wz2cjd Wz1c_j :
wz2dWz1c_j cos Omega_j t

Steady-State solutions of every element in the Model
w1dW1c_1$cos Omega_j$t CW1s_1$sin Omega_j$t ;

w1dW1c_1 cos Omega_j t CW1s_1 sin Omega_j t

w2dW2c_1$cos Omega_j$t CW2s_1$sin Omega_j$t ;
w2dW2c_1 cos Omega_j t CW2s_1 sin Omega_j t

w3dW3c_1$cos Omega_j$t CW3s_1$sin Omega_j$t ;
w3dW3c_1 cos Omega_j t CW3s_1 sin Omega_j t

w4dW4c_1$cos Omega_j$t CW4s_1$sin Omega_j$t ;
w4dW4c_1 cos Omega_j t CW4s_1 sin Omega_j t

u1dU1 c_1$cos Omega_j$t CU1 s_1$sin Omega_j$t ;
u1dU1 c_1 cos Omega_j t CU1 s_1 sin Omega_j t

u2dU2 c_1$cos Omega_j$t CU2 s_1$sin Omega_j$t ;
u2dU2 c_1 cos Omega_j t CU2 s_1 sin Omega_j t

u3dU3 c_1$cos Omega_j$t CU3 s_1$sin Omega_j$t ;
u3dU3 c_1 cos Omega_j t CU3 s_1 sin Omega_j t

u4dU4 c_1$cos Omega_j$t CU4 s_1$sin Omega_j$t ;
u4dU4 c_1 cos Omega_j t CU4 s_1 sin Omega_j t

Substituting the steady-state solutions into the EOM of every element and gathering for the cos(Omega_1)- (c_1) and sin(Omega_1)- (s_1) terms gives the following EOM's and corresponding general solutions:

EOMw1c_1dKrhoA_w1$W1
2
$W1c_1CEI_w1$diff W1c_1, x$4 = 0 :

W1c_1d Aw1c_1$cosh Betaw1_j$x CBw1c_1$sinh Betaw1_j$x CCw1c_1$cos Betaw1_j$x CDw1c_1$sin Betaw1_j$x ;
W1c_1d Aw1c_1 cosh Betaw1_j x CBw1c_1 sinh Betaw1_j x CCw1c_1 cos Betaw1_j x CDw1c_1 sin Betaw1_j x

EOMw1s_1dKrhoA_w1$W1
2
$W1s_1CEI_w1$diff W1s_1, x$4 = 0 :

W1s_1d Aw1s_1$cosh Betaw1_j$x CBw1s_1$sinh Betaw1_j$x CCw1s_1$cos Betaw1_j$x CDw1s_1$sin Betaw1_j$x ;
W1s_1d Aw1s_1 cosh Betaw1_j x CBw1s_1 sinh Betaw1_j x CCw1s_1 cos Betaw1_j x CDw1s_1 sin Betaw1_j x

EOMw2c_1dKrhoA_w2$W1
2
$W2c_1CEI_w2$diff W2c_1, x$4 = 0 :

W2c_1d Aw2c_1$cosh Betaw2_j$x CBw2c_1$sinh Betaw2_j$x CCw2c_1$cos Betaw2_j$x CDw2c_1$sin Betaw2_j$x ;
W2c_1d Aw2c_1 cosh Betaw2_j x CBw2c_1 sinh Betaw2_j x CCw2c_1 cos Betaw2_j x CDw2c_1 sin Betaw2_j x

EOMw2s_1dKrhoA_w2$W1
2
$W2s_1CEI_w2$diff W2s_1, x$4 = 0 :

W2s_1d Aw2s_1$cosh Betaw2_j$x CBw2s_1$sinh Betaw2_j$x CCw2s_1$cos Betaw2_j$x CDw2s_1$sin Betaw2_j$x ;
W2s_1d Aw2s_1 cosh Betaw2_j x CBw2s_1 sinh Betaw2_j x CCw2s_1 cos Betaw2_j x CDw2s_1 sin Betaw2_j x

EOMw3c_1dKrhoA_w3$W1
2
$W3c_1CEI_w3$diff W3c_1, x$4 = 0 :

W3c_1d Aw3c_1$cosh Betaw3_j$x CBw3c_1$sinh Betaw3_j$x CCw3c_1$cos Betaw3_j$x CDw3c_1$sin Betaw3_j$x ;
W3c_1d Aw3c_1 cosh Betaw3_j x CBw3c_1 sinh Betaw3_j x CCw3c_1 cos Betaw3_j x CDw3c_1 sin Betaw3_j x

EOMw3s_1dKrhoA_w3$W1
2
$W3s_1CEI_w3$diff W3s_1, x$4 = 0 :

W3s_1d Aw3s_1$cosh Betaw3_j$x CBw3s_1$sinh Betaw3_j$x CCw3s_1$cos Betaw3_j$x CDw3s_1$sin Betaw3_j$x ;



> > 

> > 

(29(29

> > 

(25(25

> > 

> > 

> > 
> > 

> > 

(20(20

> > 
> > 

> > 

(28(28

(16(16

> > 

> > 

(27(27

(17(17

(26(26

> > 
> > 

(23(23

(19(19

> > 

> > 
(22(22

(24(24

> > 

> > 

> > 

(30(30

> > 

> > 
> > 

> > 
> > 

> > 

(18(18

(21(21

> > 

W3s_1d Aw3s_1 cosh Betaw3_j x CBw3s_1 sinh Betaw3_j x CCw3s_1 cos Betaw3_j x CDw3s_1 sin Betaw3_j x

EOMw4c_1dKrhoA_w4$W1
2
$W4c_1CEI_w4$diff W4c_1, x$4 = 0 :

W4c_1d Aw4c_1$cosh Betaw4_j$x CBw4c_1$sinh Betaw4_j$x CCw4c_1$cos Betaw4_j$x CDw4c_1$sin Betaw4_j$x ;
W4c_1d Aw4c_1 cosh Betaw4_j x CBw4c_1 sinh Betaw4_j x CCw4c_1 cos Betaw4_j x CDw4c_1 sin Betaw4_j x

EOMw4s_1dKrhoA_w4$W1
2
$W4s_1CEI_w4$diff W4s_1, x$4 = 0 :

W4s_1d Aw4s_1$cosh Betaw4_j$x CBw4s_1$sinh Betaw4_j$x CCw4s_1$cos Betaw4_j$x CDw4s_1$sin Betaw4_j$x ;
W4s_1d Aw4s_1 cosh Betaw4_j x CBw4s_1 sinh Betaw4_j x CCw4s_1 cos Betaw4_j x CDw4s_1 sin Betaw4_j x

EOMu1c_1dKrhoA_u1$W1
2
$U1 c_1CEI_u1$diff U1c_1, z$4 = 0 :

U1c_1d Au1c_1$cosh Betau1_j$z CBu1c_1$sinh Betau1_j$z CCu1c_1$cos Betau1_j$z CDu1c_1$sin Betau1_j$z ;
U1c_1d Au1c_1 cosh Betau1_j z CBu1c_1 sinh Betau1_j z CCu1c_1 cos Betau1_j z CDu1c_1 sin Betau1_j z

EOMu1s_1dKrhoA_u1$W1
2
$U1 s_1CEI_u1$diff U1s_1, z$4 = 0 :

U1s_1d Au1s_1$cosh Betau1_j$z CBu1s_1$sinh Betau1_j$z CCu1s_1$cos Betau1_j$z CDu1s_1$sin Betau1_j$z ;
U1s_1d Au1s_1 cosh Betau1_j z CBu1s_1 sinh Betau1_j z CCu1s_1 cos Betau1_j z CDu1s_1 sin Betau1_j z

EOMu2c_1dKrhoA_u2$W1
2
$U2 c_1CEI_u2$diff U2c_1, z$4 = 0 :

U2c_1d Au2c_1$cosh Betau2_j$z CBu2c_1$sinh Betau2_j$z CCu2c_1$cos Betau2_j$z CDu2c_1$sin Betau2_j$z ;
U2c_1d Au2c_1 cosh Betau2_j z CBu2c_1 sinh Betau2_j z CCu2c_1 cos Betau2_j z CDu2c_1 sin Betau2_j z

EOMu2s_1dKrhoA_u2$W1
2
$U2 s_1CEI_u2$diff U2s_1, z$4 = 0 :

U2s_1d Au2s_1$cosh Betau2_j$z CBu2s_1$sinh Betau2_j$z CCu2s_1$cos Betau2_j$z CDu2s_1$sin Betau2_j$z ;
U2s_1d Au2s_1 cosh Betau2_j z CBu2s_1 sinh Betau2_j z CCu2s_1 cos Betau2_j z CDu2s_1 sin Betau2_j z

EOMu3c_1dKrhoA_u3$W1
2
$U3 c_1CEI_u3$diff U3c_1, z$4 = 0 :

U3c_1d Au3c_1$cosh Betau3_j$z CBu3c_1$sinh Betau3_j$z CCu3c_1$cos Betau3_j$z CDu3c_1$sin Betau3_j$z ;
U3c_1d Au3c_1 cosh Betau3_j z CBu3c_1 sinh Betau3_j z CCu3c_1 cos Betau3_j z CDu3c_1 sin Betau3_j z

EOMu3s_1dKrhoA_u3$W1
2
$U3 s_1CEI_u3$diff U3s_1, z$4 = 0 :

U3s_1d Au3s_1$cosh Betau3_j$z CBu3s_1$sinh Betau3_j$z CCu3s_1$cos Betau3_j$z CDu3s_1$sin Betau3_j$z ;
U3s_1d Au3s_1 cosh Betau3_j z CBu3s_1 sinh Betau3_j z CCu3s_1 cos Betau3_j z CDu3s_1 sin Betau3_j z

EOMu4c_1dKrhoA_u4$W1
2
$U4 c_1CEI_u4$diff U4c_1, z$4 = 0 :

U4c_1d Au4c_1$cosh Betau4_j$z CBu4c_1$sinh Betau4_j$z CCu4c_1$cos Betau4_j$z CDu4c_1$sin Betau4_j$z ;
U4c_1d Au4c_1 cosh Betau4_j z CBu4c_1 sinh Betau4_j z CCu4c_1 cos Betau4_j z CDu4c_1 sin Betau4_j z

EOMu4s_1dKrhoA_u4$W1
2
$U4 s_1CEI_u4$diff U4s_1, z$4 = 0 :

U4s_1d Au4s_1$cosh Betau4_j$z CBu4s_1$sinh Betau4_j$z CCu4s_1$cos Betau4_j$z CDu4s_1$sin Betau4_j$z ;
U4s_1d Au4s_1 cosh Betau4_j z CBu4s_1 sinh Betau4_j z CCu4s_1 cos Betau4_j z CDu4s_1 sin Betau4_j z

Substitute the general solutions into the IC's and BC's (4*8 EB-elements = 32 needed IC's + BC's) and gather for the cos(Omega_1) terms
BC @ x = 0, z = 0 [2 BC's]

BC1c_1Md simplify subs z = 0, U1c_1 : BC1c_1d BC1c_1M = 0;
BC1c_1d Au1c_1CCu1c_1 = 0

BC2c_1Md simplify subs z = 0, diff U1c_1, z : BC2c_1d BC2c_1M = 0;
BC2c_1d Betau1_j Bu1c_1CDu1c_1 = 0

BC @ x = span, z = 0 [2 BC's]
BC3c_1Md simplify subs z = 0, U3c_1 : BC3c_1d BC3c_1M = 0;

BC3c_1d Au3c_1CCu3c_1 = 0

BC4c_1Md simplify subs z = 0, diff U3c_1, z : BC4c_1d BC4c_1M = 0;



> > 

(42(42

> > 

(33(33

> > 

> > 

(36(36

(32(32

(46(46

(43(43

(37(37

> > 

(31(31

> > 

(41(41

> > 

> > 

> > 

> > 

> > 

(35(35

(30(30

(44(44
> > 

(45(45

> > 

> > 

(40(40

(34(34

> > 

> > 

(39(39

(38(38

BC4c_1d Betau3_j Bu3c_1CDu3c_1 = 0

BC @ x = 2*span, z = hw1 [2 BC's]
BC5c_1Md simplify subs x = 2$span, W2c_1 KWzc_jKPHIyc_j$scg3 : BC5c_1d BC5c_1M = 0;

BC5c_1d Aw2c_1 cosh 2 Betaw2_j span CBw2c_1 sinh 2 Betaw2_j span CCw2c_1 cos 2 Betaw2_j span CDw2c_1 sin 2 Betaw2_j span KWzc_jKPHIyc_j scg3 = 0

BC6c_1Md simplify subs x = 2$span, diff W2c_1, x : BC6c_1d BC6c_1M = 0;
BC6c_1d Betaw2_j Aw2c_1 sinh 2 Betaw2_j span CBw2c_1 cosh 2 Betaw2_j span KCw2c_1 sin 2 Betaw2_j span CDw2c_1 cos 2 Betaw2_j span = 0

BC @ x = 2*span, z = hw1+hw2 [2 BC's]
BC7c_1Md simplify subs x = 2$span, W4c_1 Ksimplify subs x = 2$span, W2c_1 : BC7c_1d BC7c_1M = 0;

BC7c_1d Aw4c_1 cosh 2 Betaw4_j span CBw4c_1 sinh 2 Betaw4_j span CCw4c_1 cos 2 Betaw4_j span CDw4c_1 sin 2 Betaw4_j span KAw2c_1 cosh 2 Betaw2_j span KBw2c_1 sinh 2 Betaw2_j span
KCw2c_1 cos 2 Betaw2_j span KDw2c_1 sin 2 Betaw2_j span = 0

BC8c_1Md simplify subs x = 2$span, diff W4c_1, x : BC8c_1d BC8c_1M = 0;
BC8c_1d Betaw4_j Aw4c_1 sinh 2 Betaw4_j span CBw4c_1 cosh 2 Betaw4_j span KCw4c_1 sin 2 Betaw4_j span CDw4c_1 cos 2 Betaw4_j span = 0

IC @ x = 0, z = hw1 [6 IC's]
IC1c_1Md simplify subs z = hw1, U1c_1 Ksimplify subs z = hw1, U2c_1 : IC1c_1d IC1c_1M = 0;

IC1c_1d Au1c_1 cosh Betau1_j hw1 CBu1c_1 sinh Betau1_j hw1 CCu1c_1 cos Betau1_j hw1 CDu1c_1 sin Betau1_j hw1 KAu2c_1 cosh Betau2_j hw1 KBu2c_1 sinh Betau2_j hw1
KCu2c_1 cos Betau2_j hw1 KDu2c_1 sin Betau2_j hw1 = 0

IC2c_1Md simplify subs x = 0, W1c_1 KWzc_jKPHIyc_j$scg1 : IC3c_1d IC3c_1M = 0;
IC3c_1d IC3c_1M = 0

IC3c_1Md simplify subs z = hw1, U1c_1 : IC2c_1d IC2c_1M = 0;
IC2c_1dKPHIyc_j scg1CAw1c_1CCw1c_1KWzc_j = 0

IC4c_1Md simplify subs z = hw1, diff U1c_1, z Ksimplify subs z = hw1, diff U2c_1, z : IC4c_1d IC4c_1M = 0;
IC4c_1d Betau1_j Au1c_1 sinh Betau1_j hw1 CBu1c_1 cosh Betau1_j hw1 KCu1c_1 sin Betau1_j hw1 CDu1c_1 cos Betau1_j hw1 KBetau2_j Au2c_1 sinh Betau2_j hw1

CBu2c_1 cosh Betau2_j hw1 KCu2c_1 sin Betau2_j hw1 CDu2c_1 cos Betau2_j hw1 = 0

IC5c_1Md simplify subs z = hw1, diff U1c_1, z Csimplify subs x = 0, diff W1c_1, x : IC5c_1d IC5c_1M = 0;
IC5c_1d Betau1_j Au1c_1 sinh Betau1_j hw1 CBu1c_1 cosh Betau1_j hw1 KCu1c_1 sin Betau1_j hw1 CDu1c_1 cos Betau1_j hw1 CBetaw1_j Bw1c_1CDw1c_1 = 0

IC6c_1MdKsimplify subs z = hw1, diff U1c_1, z$2 Csimplify subs z = hw1, diff U2c_1, z$2 Csimplify subs x = 0, diff W1c_1, x$2 : IC6c_1d IC6c_1M = 0;
IC6c_1dKBetau1_j2 Au1c_1 cosh Betau1_j hw1 CBu1c_1 sinh Betau1_j hw1 KCu1c_1 cos Betau1_j hw1 KDu1c_1 sin Betau1_j hw1 CBetau2_j2 Au2c_1 cosh Betau2_j hw1

CBu2c_1 sinh Betau2_j hw1 KCu2c_1 cos Betau2_j hw1 KDu2c_1 sin Betau2_j hw1 CBetaw1_j2 Aw1c_1KCw1c_1 = 0

IC @ x = 0, z = hw1+hw2 [6 IC's]
IC7c_1Md simplify subs x = 0, W3c_1 Ksimplify subs x = 0, W1c_1 : IC7c_1d IC7c_1M = 0;

IC7c_1d Aw3c_1CCw3c_1KAw1c_1KCw1c_1 = 0

IC8c_1Md simplify subs z = hw1Chw2, diff U2c_1, z Csimplify subs x = 0, diff W3c_1, x : IC8c_1d IC8c_1M = 0;
IC8c_1d Betau2_j Au2c_1 sinh Betau2_j hw1Chw2 CBu2c_1 cosh Betau2_j hw1Chw2 KCu2c_1 sin Betau2_j hw1Chw2 CDu2c_1 cos Betau2_j hw1Chw2 CBetaw3_j Bw3c_1

CDw3c_1 = 0

IC9c_1Md simplify subs z = hw1Chw2, U2c_1 Ksimplify subs z = hw1Chw2, U4c_1 : IC9c_1d IC9c_1M = 0;
IC9c_1d Au2c_1 cosh Betau2_j hw1Chw2 CBu2c_1 sinh Betau2_j hw1Chw2 CCu2c_1 cos Betau2_j hw1Chw2 CDu2c_1 sin Betau2_j hw1Chw2 KAu4c_1 cosh Betau4_j hw1Chw2

KBu4c_1 sinh Betau4_j hw1Chw2 KCu4c_1 cos Betau4_j hw1Chw2 KDu4c_1 sin Betau4_j hw1Chw2 = 0

IC10c_1MdKsimplify subs z = hw1Chw2, diff U2c_1, z$2 Csimplify subs x = 0, diff W3c_1, x$2 : IC10c_1d IC10c_1M = 0;
IC10c_1dKBetau2_j2 Au2c_1 cosh Betau2_j hw1Chw2 CBu2c_1 sinh Betau2_j hw1Chw2 KCu2c_1 cos Betau2_j hw1Chw2 KDu2c_1 sin Betau2_j hw1Chw2 CBetaw3_j2 Aw3c_1

KCw3c_1 = 0

IC @ x = span, z = hw1 [8 IC's]
IC11c_1Md simplify subs x = span, W1c_1 Ksimplify subs x = span, W2c_1 : IC11c_1d IC11c_1M = 0;

IC11c_1d Aw1c_1 cosh Betaw1_j span CBw1c_1 sinh Betaw1_j span CCw1c_1 cos Betaw1_j span CDw1c_1 sin Betaw1_j span KAw2c_1 cosh Betaw2_j span KBw2c_1 sinh Betaw2_j span
KCw2c_1 cos Betaw2_j span KDw2c_1 sin Betaw2_j span = 0

IC12c_1Md simplify subs x = span, W1c_1 KWzc_jKPHIyc_j$scg2 : IC12c_1d IC12c_1M = 0;
IC12c_1d Aw1c_1 cosh Betaw1_j span CBw1c_1 sinh Betaw1_j span CCw1c_1 cos Betaw1_j span CDw1c_1 sin Betaw1_j span KWzc_jKPHIyc_j scg2 = 0
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IC13c_1Md simplify subs z = hw1, U3c_1 Ksimplify subs z = hw1, U4c_1 : IC13c_1d IC13c_1M = 0;
IC13c_1d Au3c_1 cosh Betau3_j hw1 CBu3c_1 sinh Betau3_j hw1 CCu3c_1 cos Betau3_j hw1 CDu3c_1 sin Betau3_j hw1 KAu4c_1 cosh Betau4_j hw1 KBu4c_1 sinh Betau4_j hw1

KCu4c_1 cos Betau4_j hw1 KDu4c_1 sin Betau4_j hw1 = 0

IC14c_1Md simplify subs x = span, diff W1c_1, x Ksimplify subs x = span, diff W2c_1, x : IC15c_1d IC15c_1M = 0;
IC15c_1d IC15c_1M = 0

IC15c_1Md simplify subs z = hw1, diff U3c_1, z Ksimplify subs z = hw1, diff U4c_1, z : IC16c_1d IC16c_1M = 0;
IC16c_1d IC16c_1M = 0

IC16c_1Md simplify subs x = span, diff W1c_1, x Csimplify subs z = hw1, diff U3c_1, z : IC17c_1d IC17c_1M = 0;
IC17c_1d IC17c_1M = 0

IC17c_1MdKsimplify subs x = span, diff W1c_1, x$2 Csimplify subs z = hw1, diff U4c_1, z$2 Csimplify subs x = span, diff W2c_1, x$2 Ksimplify subs z = hw1, diff U3c_1, z$2 : IC18c_1d
IC18c_1M = 0;

IC18c_1d IC18c_1M = 0

IC18c_1Md simplify subs z = hw1, U1c_1 Ksimplify subs z = hw1, U3c_1 : IC14c_1d IC14c_1M = 0;
IC14c_1d Betaw1_j Aw1c_1 sinh Betaw1_j span CBw1c_1 cosh Betaw1_j span KCw1c_1 sin Betaw1_j span CDw1c_1 cos Betaw1_j span KBetaw2_j Aw2c_1 sinh Betaw2_j span

CBw2c_1 cosh Betaw2_j span KCw2c_1 sin Betaw2_j span CDw2c_1 cos Betaw2_j span = 0

IC @ x = span, z = hw1+hw2 [6 IC's]
IC19c_1Md simplify subs x = span, W3c_1 Ksimplify subs x = span, W4c_1 : IC19c_1d IC19c_1M = 0;

IC19c_1d Aw3c_1 cosh Betaw3_j span CBw3c_1 sinh Betaw3_j span CCw3c_1 cos Betaw3_j span CDw3c_1 sin Betaw3_j span KAw4c_1 cosh Betaw4_j span KBw4c_1 sinh Betaw4_j span
KCw4c_1 cos Betaw4_j span KDw4c_1 sin Betaw4_j span = 0

IC20c_1Md simplify subs x = span, W3c_1 Ksimplify subs x = span, W1c_1 : IC24c_1d IC24c_1M = 0;
IC24c_1d IC24c_1M = 0

IC21c_1Md simplify subs x = span, diff W3c_1, x Ksimplify subs x = span, diff W4c_1, x : IC21c_1d IC21c_1M = 0;
IC21c_1d Betaw3_j Aw3c_1 sinh Betaw3_j span CBw3c_1 cosh Betaw3_j span KCw3c_1 sin Betaw3_j span CDw3c_1 cos Betaw3_j span KBetaw4_j Aw4c_1 sinh Betaw4_j span

CBw4c_1 cosh Betaw4_j span KCw4c_1 sin Betaw4_j span CDw4c_1 cos Betaw4_j span = 0

IC22c_1Md simplify subs x = span, diff W3c_1, x Csimplify subs z = hw1Chw2, diff U4c_1, z : IC22c_1d IC22c_1M = 0;
IC22c_1d Betaw3_j Aw3c_1 sinh Betaw3_j span CBw3c_1 cosh Betaw3_j span KCw3c_1 sin Betaw3_j span CDw3c_1 cos Betaw3_j span CBetau4_j Au4c_1 sinh Betau4_j hw1Chw2

CBu4c_1 cosh Betau4_j hw1Chw2 KCu4c_1 sin Betau4_j hw1Chw2 CDu4c_1 cos Betau4_j hw1Chw2 = 0

IC23c_1MdKsimplify subs x = span, diff W3c_1, x$2 Ksimplify subs z = hw1Chw2, diff U4c_1, z$2 Csimplify subs x = span, diff W4c_1, x$2 : IC23c_1d IC23c_1M = 0;
IC23c_1dKBetaw3_j2 Aw3c_1 cosh Betaw3_j span CBw3c_1 sinh Betaw3_j span KCw3c_1 cos Betaw3_j span KDw3c_1 sin Betaw3_j span KBetau4_j2 Au4c_1 cosh Betau4_j hw1Chw2

CBu4c_1 sinh Betau4_j hw1Chw2 KCu4c_1 cos Betau4_j hw1Chw2 KDu4c_1 sin Betau4_j hw1Chw2 CBetaw4_j2 Aw4c_1 cosh Betaw4_j span CBw4c_1 sinh Betaw4_j span
KCw4c_1 cos Betaw4_j span KDw4c_1 sin Betaw4_j span = 0

IC24c_1Md simplify subs z = hw1Chw2, U4c_1 : IC20c_1d IC20c_1M = 0;
IC20c_1d Aw3c_1 cosh Betaw3_j span CBw3c_1 sinh Betaw3_j span CCw3c_1 cos Betaw3_j span CDw3c_1 sin Betaw3_j span KAw1c_1 cosh Betaw1_j span KBw1c_1 sinh Betaw1_j span

KCw1c_1 cos Betaw1_j span KDw1c_1 sin Betaw1_j span = 0

interface rtablesize = 35 ;
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Coefficient matrix
Mc_jdMatrix
 coeff BC1c_1M, Aw1c_1 , coeff BC1c_1M, Bw1c_1 , coeff BC1c_1M, Cw1c_1 , coeff BC1c_1M, Dw1c_1 ,
      coeff BC1c_1M, Aw2c_1 , coeff BC1c_1M, Bw2c_1 , coeff BC1c_1M, Cw2c_1 , coeff BC1c_1M, Dw2c_1 ,
      coeff BC1c_1M, Aw3c_1 , coeff BC1c_1M, Bw3c_1 , coeff BC1c_1M, Cw3c_1 , coeff BC1c_1M, Dw3c_1 ,
      coeff BC1c_1M, Aw4c_1 , coeff BC1c_1M, Bw4c_1 , coeff BC1c_1M, Cw4c_1 , coeff BC1c_1M, Dw4c_1 ,
      coeff BC1c_1M, Au1c_1 , coeff BC1c_1M, Bu1c_1 , coeff BC1c_1M, Cu1c_1 , coeff BC1c_1M, Du1c_1 ,



      coeff BC1c_1M, Au2c_1 , coeff BC1c_1M, Bu2c_1 , coeff BC1c_1M, Cu2c_1 , coeff BC1c_1M, Du2c_1 ,
      coeff BC1c_1M, Au3c_1 , coeff BC1c_1M, Bu3c_1 , coeff BC1c_1M, Cu3c_1 , coeff BC1c_1M, Du3c_1 ,
      coeff BC1c_1M, Au4c_1 , coeff BC1c_1M, Bu4c_1 , coeff BC1c_1M, Cu4c_1 , coeff BC1c_1M, Du4c_1 ,
 
 coeff BC2c_1M, Aw1c_1 , coeff BC2c_1M, Bw1c_1 , coeff BC2c_1M, Cw1c_1 , coeff BC2c_1M, Dw1c_1 ,
      coeff BC2c_1M, Aw2c_1 , coeff BC2c_1M, Bw2c_1 , coeff BC2c_1M, Cw2c_1 , coeff BC2c_1M, Dw2c_1 ,
      coeff BC2c_1M, Aw3c_1 , coeff BC2c_1M, Bw3c_1 , coeff BC2c_1M, Cw3c_1 , coeff BC2c_1M, Dw3c_1 ,
      coeff BC2c_1M, Aw4c_1 , coeff BC2c_1M, Bw4c_1 , coeff BC2c_1M, Cw4c_1 , coeff BC2c_1M, Dw4c_1 ,
      coeff BC2c_1M, Au1c_1 , coeff BC2c_1M, Bu1c_1 , coeff BC2c_1M, Cu1c_1 , coeff BC2c_1M, Du1c_1 ,
      coeff BC2c_1M, Au2c_1 , coeff BC2c_1M, Bu2c_1 , coeff BC2c_1M, Cu2c_1 , coeff BC2c_1M, Du2c_1 ,
      coeff BC2c_1M, Au3c_1 , coeff BC2c_1M, Bu3c_1 , coeff BC2c_1M, Cu3c_1 , coeff BC2c_1M, Du3c_1 ,
      coeff BC2c_1M, Au4c_1 , coeff BC2c_1M, Bu4c_1 , coeff BC2c_1M, Cu4c_1 , coeff BC2c_1M, Du4c_1 ,
 
 coeff BC3c_1M, Aw1c_1 , coeff BC3c_1M, Bw1c_1 , coeff BC3c_1M, Cw1c_1 , coeff BC3c_1M, Dw1c_1 ,
      coeff BC3c_1M, Aw2c_1 , coeff BC3c_1M, Bw2c_1 , coeff BC3c_1M, Cw2c_1 , coeff BC3c_1M, Dw2c_1 ,
      coeff BC3c_1M, Aw3c_1 , coeff BC3c_1M, Bw3c_1 , coeff BC3c_1M, Cw3c_1 , coeff BC3c_1M, Dw3c_1 ,
      coeff BC3c_1M, Aw4c_1 , coeff BC3c_1M, Bw4c_1 , coeff BC3c_1M, Cw4c_1 , coeff BC3c_1M, Dw4c_1 ,
      coeff BC3c_1M, Au1c_1 , coeff BC3c_1M, Bu1c_1 , coeff BC3c_1M, Cu1c_1 , coeff BC3c_1M, Du1c_1 ,
      coeff BC3c_1M, Au2c_1 , coeff BC3c_1M, Bu2c_1 , coeff BC3c_1M, Cu2c_1 , coeff BC3c_1M, Du2c_1 ,
      coeff BC3c_1M, Au3c_1 , coeff BC3c_1M, Bu3c_1 , coeff BC3c_1M, Cu3c_1 , coeff BC3c_1M, Du3c_1 ,
      coeff BC3c_1M, Au4c_1 , coeff BC3c_1M, Bu4c_1 , coeff BC3c_1M, Cu4c_1 , coeff BC3c_1M, Du4c_1 ,
 
 coeff BC4c_1M, Aw1c_1 , coeff BC4c_1M, Bw1c_1 , coeff BC4c_1M, Cw1c_1 , coeff BC4c_1M, Dw1c_1 ,
      coeff BC4c_1M, Aw2c_1 , coeff BC4c_1M, Bw2c_1 , coeff BC4c_1M, Cw2c_1 , coeff BC4c_1M, Dw2c_1 ,
      coeff BC4c_1M, Aw3c_1 , coeff BC4c_1M, Bw3c_1 , coeff BC4c_1M, Cw3c_1 , coeff BC4c_1M, Dw3c_1 ,
      coeff BC4c_1M, Aw4c_1 , coeff BC4c_1M, Bw4c_1 , coeff BC4c_1M, Cw4c_1 , coeff BC4c_1M, Dw4c_1 ,
      coeff BC4c_1M, Au1c_1 , coeff BC4c_1M, Bu1c_1 , coeff BC4c_1M, Cu1c_1 , coeff BC4c_1M, Du1c_1 ,
      coeff BC4c_1M, Au2c_1 , coeff BC4c_1M, Bu2c_1 , coeff BC4c_1M, Cu2c_1 , coeff BC4c_1M, Du2c_1 ,
      coeff BC4c_1M, Au3c_1 , coeff BC4c_1M, Bu3c_1 , coeff BC4c_1M, Cu3c_1 , coeff BC4c_1M, Du3c_1 ,
      coeff BC4c_1M, Au4c_1 , coeff BC4c_1M, Bu4c_1 , coeff BC4c_1M, Cu4c_1 , coeff BC4c_1M, Du4c_1 ,
 
 coeff BC5c_1M, Aw1c_1 , coeff BC5c_1M, Bw1c_1 , coeff BC5c_1M, Cw1c_1 , coeff BC5c_1M, Dw1c_1 ,
      coeff BC5c_1M, Aw2c_1 , coeff BC5c_1M, Bw2c_1 , coeff BC5c_1M, Cw2c_1 , coeff BC5c_1M, Dw2c_1 ,
      coeff BC5c_1M, Aw3c_1 , coeff BC5c_1M, Bw3c_1 , coeff BC5c_1M, Cw3c_1 , coeff BC5c_1M, Dw3c_1 ,
      coeff BC5c_1M, Aw4c_1 , coeff BC5c_1M, Bw4c_1 , coeff BC5c_1M, Cw4c_1 , coeff BC5c_1M, Dw4c_1 ,
      coeff BC5c_1M, Au1c_1 , coeff BC5c_1M, Bu1c_1 , coeff BC5c_1M, Cu1c_1 , coeff BC5c_1M, Du1c_1 ,
      coeff BC5c_1M, Au2c_1 , coeff BC5c_1M, Bu2c_1 , coeff BC5c_1M, Cu2c_1 , coeff BC5c_1M, Du2c_1 ,
      coeff BC5c_1M, Au3c_1 , coeff BC5c_1M, Bu3c_1 , coeff BC5c_1M, Cu3c_1 , coeff BC5c_1M, Du3c_1 ,
      coeff BC5c_1M, Au4c_1 , coeff BC5c_1M, Bu4c_1 , coeff BC5c_1M, Cu4c_1 , coeff BC5c_1M, Du4c_1 ,
 
 coeff BC6c_1M, Aw1c_1 , coeff BC6c_1M, Bw1c_1 , coeff BC6c_1M, Cw1c_1 , coeff BC6c_1M, Dw1c_1 ,
      coeff BC6c_1M, Aw2c_1 , coeff BC6c_1M, Bw2c_1 , coeff BC6c_1M, Cw2c_1 , coeff BC6c_1M, Dw2c_1 ,
      coeff BC6c_1M, Aw3c_1 , coeff BC6c_1M, Bw3c_1 , coeff BC6c_1M, Cw3c_1 , coeff BC6c_1M, Dw3c_1 ,
      coeff BC6c_1M, Aw4c_1 , coeff BC6c_1M, Bw4c_1 , coeff BC6c_1M, Cw4c_1 , coeff BC6c_1M, Dw4c_1 ,
      coeff BC6c_1M, Au1c_1 , coeff BC6c_1M, Bu1c_1 , coeff BC6c_1M, Cu1c_1 , coeff BC6c_1M, Du1c_1 ,
      coeff BC6c_1M, Au2c_1 , coeff BC6c_1M, Bu2c_1 , coeff BC6c_1M, Cu2c_1 , coeff BC6c_1M, Du2c_1 ,
      coeff BC6c_1M, Au3c_1 , coeff BC6c_1M, Bu3c_1 , coeff BC6c_1M, Cu3c_1 , coeff BC6c_1M, Du3c_1 ,
      coeff BC6c_1M, Au4c_1 , coeff BC6c_1M, Bu4c_1 , coeff BC6c_1M, Cu4c_1 , coeff BC6c_1M, Du4c_1 ,
 
 coeff BC7c_1M, Aw1c_1 , coeff BC7c_1M, Bw1c_1 , coeff BC7c_1M, Cw1c_1 , coeff BC7c_1M, Dw1c_1 ,
      coeff BC7c_1M, Aw2c_1 , coeff BC7c_1M, Bw2c_1 , coeff BC7c_1M, Cw2c_1 , coeff BC7c_1M, Dw2c_1 ,
      coeff BC7c_1M, Aw3c_1 , coeff BC7c_1M, Bw3c_1 , coeff BC7c_1M, Cw3c_1 , coeff BC7c_1M, Dw3c_1 ,



      coeff BC7c_1M, Aw4c_1 , coeff BC7c_1M, Bw4c_1 , coeff BC7c_1M, Cw4c_1 , coeff BC7c_1M, Dw4c_1 ,
      coeff BC7c_1M, Au1c_1 , coeff BC7c_1M, Bu1c_1 , coeff BC7c_1M, Cu1c_1 , coeff BC7c_1M, Du1c_1 ,
      coeff BC7c_1M, Au2c_1 , coeff BC7c_1M, Bu2c_1 , coeff BC7c_1M, Cu2c_1 , coeff BC7c_1M, Du2c_1 ,
      coeff BC7c_1M, Au3c_1 , coeff BC7c_1M, Bu3c_1 , coeff BC7c_1M, Cu3c_1 , coeff BC7c_1M, Du3c_1 ,
      coeff BC7c_1M, Au4c_1 , coeff BC7c_1M, Bu4c_1 , coeff BC7c_1M, Cu4c_1 , coeff BC7c_1M, Du4c_1 ,
 
 coeff BC8c_1M, Aw1c_1 , coeff BC8c_1M, Bw1c_1 , coeff BC8c_1M, Cw1c_1 , coeff BC8c_1M, Dw1c_1 ,
      coeff BC8c_1M, Aw2c_1 , coeff BC8c_1M, Bw2c_1 , coeff BC8c_1M, Cw2c_1 , coeff BC8c_1M, Dw2c_1 ,
      coeff BC8c_1M, Aw3c_1 , coeff BC8c_1M, Bw3c_1 , coeff BC8c_1M, Cw3c_1 , coeff BC8c_1M, Dw3c_1 ,
      coeff BC8c_1M, Aw4c_1 , coeff BC8c_1M, Bw4c_1 , coeff BC8c_1M, Cw4c_1 , coeff BC8c_1M, Dw4c_1 ,
      coeff BC8c_1M, Au1c_1 , coeff BC8c_1M, Bu1c_1 , coeff BC8c_1M, Cu1c_1 , coeff BC8c_1M, Du1c_1 ,
      coeff BC8c_1M, Au2c_1 , coeff BC8c_1M, Bu2c_1 , coeff BC8c_1M, Cu2c_1 , coeff BC8c_1M, Du2c_1 ,
      coeff BC8c_1M, Au3c_1 , coeff BC8c_1M, Bu3c_1 , coeff BC8c_1M, Cu3c_1 , coeff BC8c_1M, Du3c_1 ,
      coeff BC8c_1M, Au4c_1 , coeff BC8c_1M, Bu4c_1 , coeff BC8c_1M, Cu4c_1 , coeff BC8c_1M, Du4c_1 ,
 
 coeff IC1c_1M, Aw1c_1 , coeff IC1c_1M, Bw1c_1 , coeff IC1c_1M, Cw1c_1 , coeff IC1c_1M, Dw1c_1 ,
      coeff IC1c_1M, Aw2c_1 , coeff IC1c_1M, Bw2c_1 , coeff IC1c_1M, Cw2c_1 , coeff IC1c_1M, Dw2c_1 ,
      coeff IC1c_1M, Aw3c_1 , coeff IC1c_1M, Bw3c_1 , coeff IC1c_1M, Cw3c_1 , coeff IC1c_1M, Dw3c_1 ,
      coeff IC1c_1M, Aw4c_1 , coeff IC1c_1M, Bw4c_1 , coeff IC1c_1M, Cw4c_1 , coeff IC1c_1M, Dw4c_1 ,
      coeff IC1c_1M, Au1c_1 , coeff IC1c_1M, Bu1c_1 , coeff IC1c_1M, Cu1c_1 , coeff IC1c_1M, Du1c_1 ,
      coeff IC1c_1M, Au2c_1 , coeff IC1c_1M, Bu2c_1 , coeff IC1c_1M, Cu2c_1 , coeff IC1c_1M, Du2c_1 ,
      coeff IC1c_1M, Au3c_1 , coeff IC1c_1M, Bu3c_1 , coeff IC1c_1M, Cu3c_1 , coeff IC1c_1M, Du3c_1 ,
      coeff IC1c_1M, Au4c_1 , coeff IC1c_1M, Bu4c_1 , coeff IC1c_1M, Cu4c_1 , coeff IC1c_1M, Du4c_1 ,
 
 coeff IC2c_1M, Aw1c_1 , coeff IC2c_1M, Bw1c_1 , coeff IC2c_1M, Cw1c_1 , coeff IC2c_1M, Dw1c_1 ,
      coeff IC2c_1M, Aw2c_1 , coeff IC2c_1M, Bw2c_1 , coeff IC2c_1M, Cw2c_1 , coeff IC2c_1M, Dw2c_1 ,
      coeff IC2c_1M, Aw3c_1 , coeff IC2c_1M, Bw3c_1 , coeff IC2c_1M, Cw3c_1 , coeff IC2c_1M, Dw3c_1 ,
      coeff IC2c_1M, Aw4c_1 , coeff IC2c_1M, Bw4c_1 , coeff IC2c_1M, Cw4c_1 , coeff IC2c_1M, Dw4c_1 ,
      coeff IC2c_1M, Au1c_1 , coeff IC2c_1M, Bu1c_1 , coeff IC2c_1M, Cu1c_1 , coeff IC2c_1M, Du1c_1 ,
      coeff IC2c_1M, Au2c_1 , coeff IC2c_1M, Bu2c_1 , coeff IC2c_1M, Cu2c_1 , coeff IC2c_1M, Du2c_1 ,
      coeff IC2c_1M, Au3c_1 , coeff IC2c_1M, Bu3c_1 , coeff IC2c_1M, Cu3c_1 , coeff IC2c_1M, Du3c_1 ,
      coeff IC2c_1M, Au4c_1 , coeff IC2c_1M, Bu4c_1 , coeff IC2c_1M, Cu4c_1 , coeff IC2c_1M, Du4c_1 ,
 
 coeff IC3c_1M, Aw1c_1 , coeff IC3c_1M, Bw1c_1 , coeff IC3c_1M, Cw1c_1 , coeff IC3c_1M, Dw1c_1 ,
      coeff IC3c_1M, Aw2c_1 , coeff IC3c_1M, Bw2c_1 , coeff IC3c_1M, Cw2c_1 , coeff IC3c_1M, Dw2c_1 ,
      coeff IC3c_1M, Aw3c_1 , coeff IC3c_1M, Bw3c_1 , coeff IC3c_1M, Cw3c_1 , coeff IC3c_1M, Dw3c_1 ,
      coeff IC3c_1M, Aw4c_1 , coeff IC3c_1M, Bw4c_1 , coeff IC3c_1M, Cw4c_1 , coeff IC3c_1M, Dw4c_1 ,
      coeff IC3c_1M, Au1c_1 , coeff IC3c_1M, Bu1c_1 , coeff IC3c_1M, Cu1c_1 , coeff IC3c_1M, Du1c_1 ,
      coeff IC3c_1M, Au2c_1 , coeff IC3c_1M, Bu2c_1 , coeff IC3c_1M, Cu2c_1 , coeff IC3c_1M, Du2c_1 ,
      coeff IC3c_1M, Au3c_1 , coeff IC3c_1M, Bu3c_1 , coeff IC3c_1M, Cu3c_1 , coeff IC3c_1M, Du3c_1 ,
      coeff IC3c_1M, Au4c_1 , coeff IC3c_1M, Bu4c_1 , coeff IC3c_1M, Cu4c_1 , coeff IC3c_1M, Du4c_1 ,
 
 coeff IC4c_1M, Aw1c_1 , coeff IC4c_1M, Bw1c_1 , coeff IC4c_1M, Cw1c_1 , coeff IC4c_1M, Dw1c_1 ,
      coeff IC4c_1M, Aw2c_1 , coeff IC4c_1M, Bw2c_1 , coeff IC4c_1M, Cw2c_1 , coeff IC4c_1M, Dw2c_1 ,
      coeff IC4c_1M, Aw3c_1 , coeff IC4c_1M, Bw3c_1 , coeff IC4c_1M, Cw3c_1 , coeff IC4c_1M, Dw3c_1 ,
      coeff IC4c_1M, Aw4c_1 , coeff IC4c_1M, Bw4c_1 , coeff IC4 c_1M, Cw4c_1 , coeff IC4c_1M, Dw4c_1 ,
      coeff IC4c_1M, Au1c_1 , coeff IC4c_1M, Bu1c_1 , coeff IC4c_1M, Cu1c_1 , coeff IC4c_1M, Du1c_1 ,
      coeff IC4c_1M, Au2c_1 , coeff IC4c_1M, Bu2c_1 , coeff IC4c_1M, Cu2c_1 , coeff IC4c_1M, Du2c_1 ,
      coeff IC4c_1M, Au3c_1 , coeff IC4c_1M, Bu3c_1 , coeff IC4c_1M, Cu3c_1 , coeff IC4c_1M, Du3c_1 ,
      coeff IC4c_1M, Au4c_1 , coeff IC4c_1M, Bu4c_1 , coeff IC4c_1M, Cu4c_1 , coeff IC4c_1M, Du4c_1 ,
 
 coeff IC5c_1M, Aw1c_1 , coeff IC5c_1M, Bw1c_1 , coeff IC5c_1M, Cw1c_1 , coeff IC5c_1M, Dw1c_1 ,



      coeff IC5c_1M, Aw2c_1 , coeff IC5c_1M, Bw2c_1 , coeff IC5c_1M, Cw2c_1 , coeff IC5c_1M, Dw2c_1 ,
      coeff IC5c_1M, Aw3c_1 , coeff IC5c_1M, Bw3c_1 , coeff IC5c_1M, Cw3c_1 , coeff IC5c_1M, Dw3c_1 ,
      coeff IC5c_1M, Aw4c_1 , coeff IC5c_1M, Bw4c_1 , coeff IC5c_1M, Cw4c_1 , coeff IC5c_1M, Dw4c_1 ,
      coeff IC5c_1M, Au1c_1 , coeff IC5c_1M, Bu1c_1 , coeff IC5c_1M, Cu1c_1 , coeff IC5c_1M, Du1c_1 ,
      coeff IC5c_1M, Au2c_1 , coeff IC5c_1M, Bu2c_1 , coeff IC5c_1M, Cu2c_1 , coeff IC5c_1M, Du2c_1 ,
      coeff IC5c_1M, Au3c_1 , coeff IC5c_1M, Bu3c_1 , coeff IC5c_1M, Cu3c_1 , coeff IC5c_1M, Du3c_1 ,
      coeff IC5c_1M, Au4c_1 , coeff IC5c_1M, Bu4c_1 , coeff IC5c_1M, Cu4c_1 , coeff IC5c_1M, Du4c_1 ,
 
 coeff IC6c_1M, Aw1c_1 , coeff IC6c_1M, Bw1c_1 , coeff IC6c_1M, Cw1c_1 , coeff IC6c_1M, Dw1c_1 ,
      coeff IC6c_1M, Aw2c_1 , coeff IC6c_1M, Bw2c_1 , coeff IC6c_1M, Cw2c_1 , coeff IC6c_1M, Dw2c_1 ,
      coeff IC6c_1M, Aw3c_1 , coeff IC6c_1M, Bw3c_1 , coeff IC6c_1M, Cw3c_1 , coeff IC6c_1M, Dw3c_1 ,
      coeff IC6c_1M, Aw4c_1 , coeff IC6 c_1M, Bw4c_1 , coeff IC6c_1M, Cw4c_1 , coeff IC6c_1M, Dw4c_1 ,
      coeff IC6c_1M, Au1c_1 , coeff IC6c_1M, Bu1c_1 , coeff IC6c_1M, Cu1c_1 , coeff IC6c_1M, Du1c_1 ,
      coeff IC6c_1M, Au2c_1 , coeff IC6c_1M, Bu2c_1 , coeff IC6c_1M, Cu2c_1 , coeff IC6c_1M, Du2c_1 ,
      coeff IC6c_1M, Au3c_1 , coeff IC6c_1M, Bu3c_1 , coeff IC6c_1M, Cu3c_1 , coeff IC6c_1M, Du3c_1 ,
      coeff IC6c_1M, Au4c_1 , coeff IC6c_1M, Bu4c_1 , coeff IC6c_1M, Cu4c_1 , coeff IC6c_1M, Du4c_1 ,
 
 coeff IC7c_1M, Aw1c_1 , coeff IC7c_1M, Bw1c_1 , coeff IC7c_1M, Cw1c_1 , coeff IC7c_1M, Dw1c_1 ,
      coeff IC7c_1M, Aw2c_1 , coeff IC7c_1M, Bw2c_1 , coeff IC7c_1M, Cw2c_1 , coeff IC7c_1M, Dw2c_1 ,
      coeff IC7c_1M, Aw3c_1 , coeff IC7c_1M, Bw3c_1 , coeff IC7c_1M, Cw3c_1 , coeff IC7c_1M, Dw3c_1 ,
      coeff IC7c_1M, Aw4c_1 , coeff IC7c_1M, Bw4c_1 , coeff IC7c_1M, Cw4c_1 , coeff IC7c_1M, Dw4c_1 ,
      coeff IC7c_1M, Au1c_1 , coeff IC7c_1M, Bu1c_1 , coeff IC7c_1M, Cu1c_1 , coeff IC7c_1M, Du1c_1 ,
      coeff IC7c_1M, Au2c_1 , coeff IC7c_1M, Bu2c_1 , coeff IC7c_1M, Cu2c_1 , coeff IC7c_1M, Du2c_1 ,
      coeff IC7c_1M, Au3c_1 , coeff IC7c_1M, Bu3c_1 , coeff IC7c_1M, Cu3c_1 , coeff IC7c_1M, Du3c_1 ,
      coeff IC7c_1M, Au4c_1 , coeff IC7c_1M, Bu4c_1 , coeff IC7c_1M, Cu4c_1 , coeff IC7c_1M, Du4c_1 ,
 
 coeff IC8c_1M, Aw1c_1 , coeff IC8c_1M, Bw1c_1 , coeff IC8c_1M, Cw1c_1 , coeff IC8c_1M, Dw1c_1 ,
      coeff IC8c_1M, Aw2c_1 , coeff IC8c_1M, Bw2c_1 , coeff IC8c_1M, Cw2c_1 , coeff IC8c_1M, Dw2c_1 ,
      coeff IC8c_1M, Aw3c_1 , coeff IC8c_1M, Bw3c_1 , coeff IC8c_1M, Cw3c_1 , coeff IC8c_1M, Dw3c_1 ,
      coeff IC8c_1M, Aw4c_1 , coeff IC8c_1M, Bw4c_1 , coeff IC8c_1M, Cw4c_1 , coeff IC8c_1M, Dw4c_1 ,
      coeff IC8c_1M, Au1c_1 , coeff IC8c_1M, Bu1c_1 , coeff IC8c_1M, Cu1c_1 , coeff IC8c_1M, Du1c_1 ,
      coeff IC8c_1M, Au2c_1 , coeff IC8c_1M, Bu2c_1 , coeff IC8c_1M, Cu2c_1 , coeff IC8c_1M, Du2c_1 ,
      coeff IC8c_1M, Au3c_1 , coeff IC8c_1M, Bu3c_1 , coeff IC8c_1M, Cu3c_1 , coeff IC8c_1M, Du3c_1 ,
      coeff IC8c_1M, Au4c_1 , coeff IC8c_1M, Bu4c_1 , coeff IC8c_1M, Cu4c_1 , coeff IC8c_1M, Du4c_1 ,
 
 coeff IC9c_1M, Aw1c_1 , coeff IC9c_1M, Bw1c_1 , coeff IC9c_1M, Cw1c_1 , coeff IC9c_1M, Dw1c_1 ,
      coeff IC9c_1M, Aw2c_1 , coeff IC9c_1M, Bw2c_1 , coeff IC9c_1M, Cw2c_1 , coeff IC9c_1M, Dw2c_1 ,
      coeff IC9c_1M, Aw3c_1 , coeff IC9c_1M, Bw3c_1 , coeff IC9c_1M, Cw3c_1 , coeff IC9c_1M, Dw3c_1 ,
      coeff IC9c_1M, Aw4c_1 , coeff IC9c_1M, Bw4c_1 , coeff IC9c_1M, Cw4c_1 , coeff IC9c_1M, Dw4c_1 ,
      coeff IC9c_1M, Au1c_1 , coeff IC9c_1M, Bu1c_1 , coeff IC9c_1M, Cu1c_1 , coeff IC9c_1M, Du1c_1 ,
      coeff IC9c_1M, Au2c_1 , coeff IC9c_1M, Bu2c_1 , coeff IC9c_1M, Cu2c_1 , coeff IC9c_1M, Du2c_1 ,
      coeff IC9c_1M, Au3c_1 , coeff IC9c_1M, Bu3c_1 , coeff IC9c_1M, Cu3c_1 , coeff IC9c_1M, Du3c_1 ,
      coeff IC9c_1M, Au4c_1 , coeff IC9c_1M, Bu4c_1 , coeff IC9c_1M, Cu4c_1 , coeff IC9c_1M, Du4c_1 ,
 
 coeff IC10c_1M, Aw1c_1 , coeff IC10c_1M, Bw1c_1 , coeff IC10c_1M, Cw1c_1 , coeff IC10c_1M, Dw1c_1 ,
      coeff IC10c_1M, Aw2c_1 , coeff IC10c_1M, Bw2c_1 , coeff IC10c_1M, Cw2c_1 , coeff IC10c_1M, Dw2c_1 ,
      coeff IC10c_1M, Aw3c_1 , coeff IC10c_1M, Bw3c_1 , coeff IC10c_1M, Cw3c_1 , coeff IC10c_1M, Dw3c_1 ,
      coeff IC10c_1M, Aw4c_1 , coeff IC10c_1M, Bw4c_1 , coeff IC10c_1M, Cw4c_1 , coeff IC10c_1M, Dw4c_1 ,
      coeff IC10c_1M, Au1c_1 , coeff IC10c_1M, Bu1c_1 , coeff IC10c_1M, Cu1c_1 , coeff IC10c_1M, Du1c_1 ,
      coeff IC10c_1M, Au2c_1 , coeff IC10c_1M, Bu2c_1 , coeff IC10c_1M, Cu2c_1 , coeff IC10c_1M, Du2c_1 ,
      coeff IC10c_1M, Au3c_1 , coeff IC10c_1M, Bu3c_1 , coeff IC10c_1M, Cu3c_1 , coeff IC10c_1M, Du3c_1 ,
      coeff IC10c_1M, Au4c_1 , coeff IC10c_1M, Bu4c_1 , coeff IC10c_1M, Cu4c_1 , coeff IC10c_1M, Du4c_1 ,



 
 coeff IC11c_1M, Aw1c_1 , coeff IC11c_1M, Bw1c_1 , coeff IC11c_1M, Cw1c_1 , coeff IC11c_1M, Dw1c_1 ,
      coeff IC11c_1M, Aw2c_1 , coeff IC11c_1M, Bw2c_1 , coeff IC11c_1M, Cw2c_1 , coeff IC11c_1M, Dw2c_1 ,
      coeff IC11c_1M, Aw3c_1 , coeff IC11c_1M, Bw3c_1 , coeff IC11c_1M, Cw3c_1 , coeff IC11c_1M, Dw3c_1 ,
      coeff IC11c_1M, Aw4c_1 , coeff IC11c_1M, Bw4c_1 , coeff IC11c_1M, Cw4c_1 , coeff IC11c_1M, Dw4c_1 ,
      coeff IC11c_1M, Au1c_1 , coeff IC11c_1M, Bu1c_1 , coeff IC11c_1M, Cu1c_1 , coeff IC11c_1M, Du1c_1 ,
      coeff IC11c_1M, Au2c_1 , coeff IC11c_1M, Bu2c_1 , coeff IC11c_1M, Cu2c_1 , coeff IC11c_1M, Du2c_1 ,
      coeff IC11c_1M, Au3c_1 , coeff IC11c_1M, Bu3c_1 , coeff IC11c_1M, Cu3c_1 , coeff IC11c_1M, Du3c_1 ,
      coeff IC11c_1M, Au4c_1 , coeff IC11c_1M, Bu4c_1 , coeff IC11c_1M, Cu4c_1 , coeff IC11c_1M, Du4c_1 ,
 
 coeff IC12c_1M, Aw1c_1 , coeff IC12c_1M, Bw1c_1 , coeff IC12c_1M, Cw1c_1 , coeff IC12c_1M, Dw1c_1 ,
      coeff IC12c_1M, Aw2c_1 , coeff IC12c_1M, Bw2c_1 , coeff IC12c_1M, Cw2c_1 , coeff IC12c_1M, Dw2c_1 ,
      coeff IC12c_1M, Aw3c_1 , coeff IC12c_1M, Bw3c_1 , coeff IC12c_1M, Cw3c_1 , coeff IC12c_1M, Dw3c_1 ,
      coeff IC12c_1M, Aw4c_1 , coeff IC12c_1M, Bw4c_1 , coeff IC12c_1M, Cw4c_1 , coeff IC12c_1M, Dw4c_1 ,
      coeff IC12c_1M, Au1c_1 , coeff IC12c_1M, Bu1c_1 , coeff IC12c_1M, Cu1c_1 , coeff IC12c_1M, Du1c_1 ,
      coeff IC12c_1M, Au2c_1 , coeff IC12c_1M, Bu2c_1 , coeff IC12c_1M, Cu2c_1 , coeff IC12c_1M, Du2c_1 ,
      coeff IC12c_1M, Au3c_1 , coeff IC12c_1M, Bu3c_1 , coeff IC12c_1M, Cu3c_1 , coeff IC12c_1M, Du3c_1 ,
      coeff IC12c_1M, Au4c_1 , coeff IC12c_1M, Bu4c_1 , coeff IC12c_1M, Cu4c_1 , coeff IC12c_1M, Du4c_1 ,
 
 coeff IC13c_1M, Aw1c_1 , coeff IC13c_1M, Bw1c_1 , coeff IC13c_1M, Cw1c_1 , coeff IC13c_1M, Dw1c_1 ,
      coeff IC13c_1M, Aw2c_1 , coeff IC13c_1M, Bw2c_1 , coeff IC13c_1M, Cw2c_1 , coeff IC13c_1M, Dw2c_1 ,
      coeff IC13c_1M, Aw3c_1 , coeff IC13c_1M, Bw3c_1 , coeff IC13c_1M, Cw3c_1 , coeff IC13c_1M, Dw3c_1 ,
      coeff IC13c_1M, Aw4c_1 , coeff IC13c_1M, Bw4c_1 , coeff IC13c_1M, Cw4c_1 , coeff IC13c_1M, Dw4c_1 ,
      coeff IC13c_1M, Au1c_1 , coeff IC13c_1M, Bu1c_1 , coeff IC13c_1M, Cu1c_1 , coeff IC13c_1M, Du1c_1 ,
      coeff IC13c_1M, Au2c_1 , coeff IC13c_1M, Bu2c_1 , coeff IC13c_1M, Cu2c_1 , coeff IC13c_1M, Du2c_1 ,
      coeff IC13c_1M, Au3c_1 , coeff IC13c_1M, Bu3c_1 , coeff IC13c_1M, Cu3c_1 , coeff IC13c_1M, Du3c_1 ,
      coeff IC13c_1M, Au4c_1 , coeff IC13c_1M, Bu4c_1 , coeff IC13c_1M, Cu4c_1 , coeff IC13c_1M, Du4c_1 ,
 
 coeff IC14c_1M, Aw1c_1 , coeff IC14c_1M, Bw1c_1 , coeff IC14c_1M, Cw1c_1 , coeff IC14c_1M, Dw1c_1 ,
      coeff IC14c_1M, Aw2c_1 , coeff IC14c_1M, Bw2c_1 , coeff IC14c_1M, Cw2c_1 , coeff IC14c_1M, Dw2c_1 ,
      coeff IC14c_1M, Aw3c_1 , coeff IC14c_1M, Bw3c_1 , coeff IC14c_1M, Cw3c_1 , coeff IC14c_1M, Dw3c_1 ,
      coeff IC14c_1M, Aw4c_1 , coeff IC14c_1M, Bw4c_1 , coeff IC14 c_1M, Cw4c_1 , coeff IC14c_1M, Dw4c_1 ,
      coeff IC14c_1M, Au1c_1 , coeff IC14c_1M, Bu1c_1 , coeff IC14c_1M, Cu1c_1 , coeff IC14c_1M, Du1c_1 ,
      coeff IC14c_1M, Au2c_1 , coeff IC14c_1M, Bu2c_1 , coeff IC14c_1M, Cu2c_1 , coeff IC14c_1M, Du2c_1 ,
      coeff IC14c_1M, Au3c_1 , coeff IC14c_1M, Bu3c_1 , coeff IC14c_1M, Cu3c_1 , coeff IC14c_1M, Du3c_1 ,
      coeff IC14c_1M, Au4c_1 , coeff IC14c_1M, Bu4c_1 , coeff IC14c_1M, Cu4c_1 , coeff IC14c_1M, Du4c_1 ,
 
 coeff IC15c_1M, Aw1c_1 , coeff IC15c_1M, Bw1c_1 , coeff IC15c_1M, Cw1c_1 , coeff IC15c_1M, Dw1c_1 ,
      coeff IC15c_1M, Aw2c_1 , coeff IC15c_1M, Bw2c_1 , coeff IC15c_1M, Cw2c_1 , coeff IC15c_1M, Dw2c_1 ,
      coeff IC15c_1M, Aw3c_1 , coeff IC15c_1M, Bw3c_1 , coeff IC15c_1M, Cw3c_1 , coeff IC15c_1M, Dw3c_1 ,
      coeff IC15c_1M, Aw4c_1 , coeff IC15c_1M, Bw4c_1 , coeff IC15c_1M, Cw4c_1 , coeff IC15c_1M, Dw4c_1 ,
      coeff IC15c_1M, Au1c_1 , coeff IC15c_1M, Bu1c_1 , coeff IC15c_1M, Cu1c_1 , coeff IC15c_1M, Du1c_1 ,
      coeff IC15c_1M, Au2c_1 , coeff IC15c_1M, Bu2c_1 , coeff IC15c_1M, Cu2c_1 , coeff IC15c_1M, Du2c_1 ,
      coeff IC15c_1M, Au3c_1 , coeff IC15c_1M, Bu3c_1 , coeff IC15c_1M, Cu3c_1 , coeff IC15c_1M, Du3c_1 ,
      coeff IC15c_1M, Au4c_1 , coeff IC15c_1M, Bu4c_1 , coeff IC15c_1M, Cu4c_1 , coeff IC15c_1M, Du4c_1 ,
 
 coeff IC16c_1M, Aw1c_1 , coeff IC16c_1M, Bw1c_1 , coeff IC16c_1M, Cw1c_1 , coeff IC16c_1M, Dw1c_1 ,
      coeff IC16c_1M, Aw2c_1 , coeff IC16c_1M, Bw2c_1 , coeff IC16c_1M, Cw2c_1 , coeff IC16c_1M, Dw2c_1 ,
      coeff IC16c_1M, Aw3c_1 , coeff IC16c_1M, Bw3c_1 , coeff IC16c_1M, Cw3c_1 , coeff IC16c_1M, Dw3c_1 ,
      coeff IC16c_1M, Aw4c_1 , coeff IC16 c_1M, Bw4c_1 , coeff IC16c_1M, Cw4c_1 , coeff IC16c_1M, Dw4c_1 ,
      coeff IC16c_1M, Au1c_1 , coeff IC16c_1M, Bu1c_1 , coeff IC16c_1M, Cu1c_1 , coeff IC16c_1M, Du1c_1 ,
      coeff IC16c_1M, Au2c_1 , coeff IC16c_1M, Bu2c_1 , coeff IC16c_1M, Cu2c_1 , coeff IC16c_1M, Du2c_1 ,



      coeff IC16c_1M, Au3c_1 , coeff IC16c_1M, Bu3c_1 , coeff IC16c_1M, Cu3c_1 , coeff IC16c_1M, Du3c_1 ,
      coeff IC16c_1M, Au4c_1 , coeff IC16c_1M, Bu4c_1 , coeff IC16c_1M, Cu4c_1 , coeff IC16c_1M, Du4c_1 ,
 
 coeff IC17c_1M, Aw1c_1 , coeff IC17c_1M, Bw1c_1 , coeff IC17c_1M, Cw1c_1 , coeff IC17c_1M, Dw1c_1 ,
      coeff IC17c_1M, Aw2c_1 , coeff IC17c_1M, Bw2c_1 , coeff IC17c_1M, Cw2c_1 , coeff IC17c_1M, Dw2c_1 ,
      coeff IC17c_1M, Aw3c_1 , coeff IC17c_1M, Bw3c_1 , coeff IC17c_1M, Cw3c_1 , coeff IC17c_1M, Dw3c_1 ,
      coeff IC17c_1M, Aw4c_1 , coeff IC17c_1M, Bw4c_1 , coeff IC17c_1M, Cw4c_1 , coeff IC17c_1M, Dw4c_1 ,
      coeff IC17c_1M, Au1c_1 , coeff IC17c_1M, Bu1c_1 , coeff IC17c_1M, Cu1c_1 , coeff IC17c_1M, Du1c_1 ,
      coeff IC17c_1M, Au2c_1 , coeff IC17c_1M, Bu2c_1 , coeff IC17c_1M, Cu2c_1 , coeff IC17c_1M, Du2c_1 ,
      coeff IC17c_1M, Au3c_1 , coeff IC17c_1M, Bu3c_1 , coeff IC17c_1M, Cu3c_1 , coeff IC17c_1M, Du3c_1 ,
      coeff IC17c_1M, Au4c_1 , coeff IC17c_1M, Bu4c_1 , coeff IC17c_1M, Cu4c_1 , coeff IC17c_1M, Du4c_1 ,
 
 coeff IC18c_1M, Aw1c_1 , coeff IC18c_1M, Bw1c_1 , coeff IC18c_1M, Cw1c_1 , coeff IC18c_1M, Dw1c_1 ,
      coeff IC18c_1M, Aw2c_1 , coeff IC18c_1M, Bw2c_1 , coeff IC18c_1M, Cw2c_1 , coeff IC18c_1M, Dw2c_1 ,
      coeff IC18c_1M, Aw3c_1 , coeff IC18c_1M, Bw3c_1 , coeff IC18c_1M, Cw3c_1 , coeff IC18c_1M, Dw3c_1 ,
      coeff IC18c_1M, Aw4c_1 , coeff IC18c_1M, Bw4c_1 , coeff IC18c_1M, Cw4c_1 , coeff IC18c_1M, Dw4c_1 ,
      coeff IC18c_1M, Au1c_1 , coeff IC18c_1M, Bu1c_1 , coeff IC18c_1M, Cu1c_1 , coeff IC18c_1M, Du1c_1 ,
      coeff IC18c_1M, Au2c_1 , coeff IC18c_1M, Bu2c_1 , coeff IC18c_1M, Cu2c_1 , coeff IC18c_1M, Du2c_1 ,
      coeff IC18c_1M, Au3c_1 , coeff IC18c_1M, Bu3c_1 , coeff IC18c_1M, Cu3c_1 , coeff IC18c_1M, Du3c_1 ,
      coeff IC18c_1M, Au4c_1 , coeff IC18c_1M, Bu4c_1 , coeff IC18c_1M, Cu4c_1 , coeff IC18c_1M, Du4c_1 ,
 
 coeff IC19c_1M, Aw1c_1 , coeff IC19c_1M, Bw1c_1 , coeff IC19c_1M, Cw1c_1 , coeff IC19c_1M, Dw1c_1 ,
      coeff IC19c_1M, Aw2c_1 , coeff IC19c_1M, Bw2c_1 , coeff IC19c_1M, Cw2c_1 , coeff IC19c_1M, Dw2c_1 ,
      coeff IC19c_1M, Aw3c_1 , coeff IC19c_1M, Bw3c_1 , coeff IC19c_1M, Cw3c_1 , coeff IC19c_1M, Dw3c_1 ,
      coeff IC19c_1M, Aw4c_1 , coeff IC19c_1M, Bw4c_1 , coeff IC19c_1M, Cw4c_1 , coeff IC19c_1M, Dw4c_1 ,
      coeff IC19c_1M, Au1c_1 , coeff IC19c_1M, Bu1c_1 , coeff IC19c_1M, Cu1c_1 , coeff IC19c_1M, Du1c_1 ,
      coeff IC19c_1M, Au2c_1 , coeff IC19c_1M, Bu2c_1 , coeff IC19c_1M, Cu2c_1 , coeff IC19c_1M, Du2c_1 ,
      coeff IC19c_1M, Au3c_1 , coeff IC19c_1M, Bu3c_1 , coeff IC19c_1M, Cu3c_1 , coeff IC19c_1M, Du3c_1 ,
      coeff IC19c_1M, Au4c_1 , coeff IC19c_1M, Bu4c_1 , coeff IC19c_1M, Cu4c_1 , coeff IC19c_1M, Du4c_1 ,
 
 coeff IC20c_1M, Aw1c_1 , coeff IC20c_1M, Bw1c_1 , coeff IC20c_1M, Cw1c_1 , coeff IC20c_1M, Dw1c_1 ,
      coeff IC20c_1M, Aw2c_1 , coeff IC20c_1M, Bw2c_1 , coeff IC20c_1M, Cw2c_1 , coeff IC20c_1M, Dw2c_1 ,
      coeff IC20c_1M, Aw3c_1 , coeff IC20c_1M, Bw3c_1 , coeff IC20c_1M, Cw3c_1 , coeff IC20c_1M, Dw3c_1 ,
      coeff IC20c_1M, Aw4c_1 , coeff IC20c_1M, Bw4c_1 , coeff IC20c_1M, Cw4c_1 , coeff IC20c_1M, Dw4c_1 ,
      coeff IC20c_1M, Au1c_1 , coeff IC20c_1M, Bu1c_1 , coeff IC20c_1M, Cu1c_1 , coeff IC20c_1M, Du1c_1 ,
      coeff IC20c_1M, Au2c_1 , coeff IC20c_1M, Bu2c_1 , coeff IC20c_1M, Cu2c_1 , coeff IC20c_1M, Du2c_1 ,
      coeff IC20c_1M, Au3c_1 , coeff IC20c_1M, Bu3c_1 , coeff IC20c_1M, Cu3c_1 , coeff IC20c_1M, Du3c_1 ,
      coeff IC20c_1M, Au4c_1 , coeff IC20c_1M, Bu4c_1 , coeff IC20c_1M, Cu4c_1 , coeff IC20c_1M, Du4c_1 ,
 
 coeff IC21c_1M, Aw1c_1 , coeff IC21c_1M, Bw1c_1 , coeff IC21c_1M, Cw1c_1 , coeff IC21c_1M, Dw1c_1 ,
      coeff IC21c_1M, Aw2c_1 , coeff IC21c_1M, Bw2c_1 , coeff IC21c_1M, Cw2c_1 , coeff IC21c_1M, Dw2c_1 ,
      coeff IC21c_1M, Aw3c_1 , coeff IC21c_1M, Bw3c_1 , coeff IC21c_1M, Cw3c_1 , coeff IC21c_1M, Dw3c_1 ,
      coeff IC21c_1M, Aw4c_1 , coeff IC21c_1M, Bw4c_1 , coeff IC21c_1M, Cw4c_1 , coeff IC21c_1M, Dw4c_1 ,
      coeff IC21c_1M, Au1c_1 , coeff IC21c_1M, Bu1c_1 , coeff IC21c_1M, Cu1c_1 , coeff IC21c_1M, Du1c_1 ,
      coeff IC21c_1M, Au2c_1 , coeff IC21c_1M, Bu2c_1 , coeff IC21c_1M, Cu2c_1 , coeff IC21c_1M, Du2c_1 ,
      coeff IC21c_1M, Au3c_1 , coeff IC21c_1M, Bu3c_1 , coeff IC21c_1M, Cu3c_1 , coeff IC21c_1M, Du3c_1 ,
      coeff IC21c_1M, Au4c_1 , coeff IC21c_1M, Bu4c_1 , coeff IC21c_1M, Cu4c_1 , coeff IC21c_1M, Du4c_1 ,
 
 coeff IC22c_1M, Aw1c_1 , coeff IC22c_1M, Bw1c_1 , coeff IC22c_1M, Cw1c_1 , coeff IC22c_1M, Dw1c_1 ,
      coeff IC22c_1M, Aw2c_1 , coeff IC22c_1M, Bw2c_1 , coeff IC22c_1M, Cw2c_1 , coeff IC22c_1M, Dw2c_1 ,
      coeff IC22c_1M, Aw3c_1 , coeff IC22c_1M, Bw3c_1 , coeff IC22c_1M, Cw3c_1 , coeff IC22c_1M, Dw3c_1 ,
      coeff IC22c_1M, Aw4c_1 , coeff IC22c_1M, Bw4c_1 , coeff IC22c_1M, Cw4c_1 , coeff IC22c_1M, Dw4c_1 ,
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      coeff IC22c_1M, Au1c_1 , coeff IC22c_1M, Bu1c_1 , coeff IC22c_1M, Cu1c_1 , coeff IC22c_1M, Du1c_1 ,
      coeff IC22c_1M, Au2c_1 , coeff IC22c_1M, Bu2c_1 , coeff IC22c_1M, Cu2c_1 , coeff IC22c_1M, Du2c_1 ,
      coeff IC22c_1M, Au3c_1 , coeff IC22c_1M, Bu3c_1 , coeff IC22c_1M, Cu3c_1 , coeff IC22c_1M, Du3c_1 ,
      coeff IC22c_1M, Au4c_1 , coeff IC22c_1M, Bu4c_1 , coeff IC22c_1M, Cu4c_1 , coeff IC22c_1M, Du4c_1 ,
 
 coeff IC23c_1M, Aw1c_1 , coeff IC23c_1M, Bw1c_1 , coeff IC23c_1M, Cw1c_1 , coeff IC23c_1M, Dw1c_1 ,
      coeff IC23c_1M, Aw2c_1 , coeff IC23c_1M, Bw2c_1 , coeff IC23c_1M, Cw2c_1 , coeff IC23c_1M, Dw2c_1 ,
      coeff IC23c_1M, Aw3c_1 , coeff IC23c_1M, Bw3c_1 , coeff IC23c_1M, Cw3c_1 , coeff IC23c_1M, Dw3c_1 ,
      coeff IC23c_1M, Aw4c_1 , coeff IC23c_1M, Bw4c_1 , coeff IC23c_1M, Cw4c_1 , coeff IC23c_1M, Dw4c_1 ,
      coeff IC23c_1M, Au1c_1 , coeff IC23c_1M, Bu1c_1 , coeff IC23c_1M, Cu1c_1 , coeff IC23c_1M, Du1c_1 ,
      coeff IC23c_1M, Au2c_1 , coeff IC23c_1M, Bu2c_1 , coeff IC23c_1M, Cu2c_1 , coeff IC23c_1M, Du2c_1 ,
      coeff IC23c_1M, Au3c_1 , coeff IC23c_1M, Bu3c_1 , coeff IC23c_1M, Cu3c_1 , coeff IC23c_1M, Du3c_1 ,
      coeff IC23c_1M, Au4c_1 , coeff IC23c_1M, Bu4c_1 , coeff IC23c_1M, Cu4c_1 , coeff IC23c_1M, Du4c_1 ,
 
 coeff IC24c_1M, Aw1c_1 , coeff IC24c_1M, Bw1c_1 , coeff IC24c_1M, Cw1c_1 , coeff IC24c_1M, Dw1c_1 ,
      coeff IC24c_1M, Aw2c_1 , coeff IC24c_1M, Bw2c_1 , coeff IC24c_1M, Cw2c_1 , coeff IC24c_1M, Dw2c_1 ,
      coeff IC24c_1M, Aw3c_1 , coeff IC24c_1M, Bw3c_1 , coeff IC24c_1M, Cw3c_1 , coeff IC24c_1M, Dw3c_1 ,
      coeff IC24c_1M, Aw4c_1 , coeff IC24c_1M, Bw4c_1 , coeff IC24 c_1M, Cw4c_1 , coeff IC24c_1M, Dw4c_1 ,
      coeff IC24c_1M, Au1c_1 , coeff IC24c_1M, Bu1c_1 , coeff IC24c_1M, Cu1c_1 , coeff IC24c_1M, Du1c_1 ,
      coeff IC24c_1M, Au2c_1 , coeff IC24c_1M, Bu2c_1 , coeff IC24c_1M, Cu2c_1 , coeff IC24c_1M, Du2c_1 ,
      coeff IC24c_1M, Au3c_1 , coeff IC24c_1M, Bu3c_1 , coeff IC24c_1M, Cu3c_1 , coeff IC24c_1M, Du3c_1 ,
      coeff IC24c_1M, Au4c_1 , coeff IC24c_1M, Bu4c_1 , coeff IC24c_1M, Cu4c_1 , coeff IC24c_1M, Du4c_1
 ;

Mc_jd 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau1_j, 0, Betau1_j, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau3_j, 0, Betau3_j, 0, 0, 0, 0 , 

0, 0, 0, 0, cosh 2 Betaw2_j span , sinh 2 Betaw2_j span , cos 2 Betaw2_j span , sin 2 Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, Betaw2_j sinh 2 Betaw2_j span , Betaw2_j cosh 2 Betaw2_j span , KBetaw2_j sin 2 Betaw2_j span , Betaw2_j cos 2 Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, Kcosh 2 Betaw2_j span , Ksinh 2 Betaw2_j span , Kcos 2 Betaw2_j span , Ksin 2 Betaw2_j span , 0, 0, 0, 0, cosh 2 Betaw4_j span , sinh 2 Betaw4_j span , cos 2 Betaw4_j span , 

sin 2 Betaw4_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betaw4_j sinh 2 Betaw4_j span , Betaw4_j cosh 2 Betaw4_j span , KBetaw4_j sin 2 Betaw4_j span , Betaw4_j cos 2 Betaw4_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau1_j hw1 , sinh Betau1_j hw1 , cos Betau1_j hw1 , sin Betau1_j hw1 , Kcosh Betau2_j hw1 , Ksinh Betau2_j hw1 , Kcos Betau2_j hw1 , 
Ksin Betau2_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0 , 

1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau1_j hw1 , sinh Betau1_j hw1 , cos Betau1_j hw1 , sin Betau1_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau1_j sinh Betau1_j hw1 , Betau1_j cosh Betau1_j hw1 , KBetau1_j sin Betau1_j hw1 , Betau1_j cos Betau1_j hw1 , KBetau2_j sinh Betau2_j hw1 , 
KBetau2_j cosh Betau2_j hw1 , Betau2_j sin Betau2_j hw1 , KBetau2_j cos Betau2_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0 , 

0, Betaw1_j, 0, Betaw1_j, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau1_j sinh Betau1_j hw1 , Betau1_j cosh Betau1_j hw1 , KBetau1_j sin Betau1_j hw1 , Betau1_j cos Betau1_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

Betaw1_j2, 0, KBetaw1_j2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KBetau1_j2 cosh Betau1_j hw1 , KBetau1_j2 sinh Betau1_j hw1 , Betau1_j2 cos Betau1_j hw1 , Betau1_j2 sin Betau1_j hw1 , 

Betau2_j2 cosh Betau2_j hw1 , Betau2_j2 sinh Betau2_j hw1 , KBetau2_j2 cos Betau2_j hw1 , KBetau2_j2 sin Betau2_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0 , 

K1, 0, K1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, Betaw3_j, 0, Betaw3_j, 0, 0, 0, 0, 0, 0, 0, 0, Betau2_j sinh Betau2_j hw1Chw2 , Betau2_j cosh Betau2_j hw1Chw2 , KBetau2_j sin Betau2_j hw1Chw2 , 

Betau2_j cos Betau2_j hw1Chw2 , 0, 0, 0, 0, 0, 0, 0, 0 , 
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau2_j hw1Chw2 , sinh Betau2_j hw1Chw2 , cos Betau2_j hw1Chw2 , sin Betau2_j hw1Chw2 , 0, 0, 0, 0, Kcosh Betau4_j hw1
Chw2 , Ksinh Betau4_j hw1Chw2 , Kcos Betau4_j hw1Chw2 , Ksin Betau4_j hw1Chw2 , 

0, 0, 0, 0, 0, 0, 0, 0, Betaw3_j2, 0, KBetaw3_j2, 0, 0, 0, 0, 0, 0, 0, 0, 0, KBetau2_j2 cosh Betau2_j hw1Chw2 , KBetau2_j2 sinh Betau2_j hw1Chw2 , Betau2_j2 cos Betau2_j hw1Chw2 , 

Betau2_j2 sin Betau2_j hw1Chw2 , 0, 0, 0, 0, 0, 0, 0, 0 , 

cosh Betaw1_j span , sinh Betaw1_j span , cos Betaw1_j span , sin Betaw1_j span , Kcosh Betaw2_j span , Ksinh Betaw2_j span , Kcos Betaw2_j span , Ksin Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

cosh Betaw1_j span , sinh Betaw1_j span , cos Betaw1_j span , sin Betaw1_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau3_j hw1 , sinh Betau3_j hw1 , cos Betau3_j hw1 , sin Betau3_j hw1 , Kcosh Betau4_j hw1 , Ksinh Betau4_j hw1 , 
Kcos Betau4_j hw1 , Ksin Betau4_j hw1 , 

Betaw1_j sinh Betaw1_j span , Betaw1_j cosh Betaw1_j span , KBetaw1_j sin Betaw1_j span , Betaw1_j cos Betaw1_j span , KBetaw2_j sinh Betaw2_j span , KBetaw2_j cosh Betaw2_j span , 

Betaw2_j sin Betaw2_j span , KBetaw2_j cos Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau3_j sinh Betau3_j hw1 , Betau3_j cosh Betau3_j hw1 , KBetau3_j sin Betau3_j hw1 , Betau3_j cos Betau3_j hw1 , 
KBetau4_j sinh Betau4_j hw1 , KBetau4_j cosh Betau4_j hw1 , Betau4_j sin Betau4_j hw1 , KBetau4_j cos Betau4_j hw1 , 

Betaw1_j sinh Betaw1_j span , Betaw1_j cosh Betaw1_j span , KBetaw1_j sin Betaw1_j span , Betaw1_j cos Betaw1_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau3_j sinh Betau3_j hw1 , 

Betau3_j cosh Betau3_j hw1 , KBetau3_j sin Betau3_j hw1 , Betau3_j cos Betau3_j hw1 , 0, 0, 0, 0 , 

KBetaw1_j2 cosh Betaw1_j span , KBetaw1_j2 sinh Betaw1_j span , Betaw1_j2 cos Betaw1_j span , Betaw1_j2 sin Betaw1_j span , Betaw2_j2 cosh Betaw2_j span , Betaw2_j2 sinh Betaw2_j span , 

KBetaw2_j2 cos Betaw2_j span , KBetaw2_j2 sin Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KBetau3_j2 cosh Betau3_j hw1 , KBetau3_j2 sinh Betau3_j hw1 , Betau3_j2 cos Betau3_j hw1 , 

Betau3_j2 sin Betau3_j hw1 , Betau4_j2 cosh Betau4_j hw1 , Betau4_j2 sinh Betau4_j hw1 , KBetau4_j2 cos Betau4_j hw1 , KBetau4_j2 sin Betau4_j hw1 , 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau1_j hw1 , sinh Betau1_j hw1 , cos Betau1_j hw1 , sin Betau1_j hw1 , 0, 0, 0, 0, Kcosh Betau3_j hw1 , Ksinh Betau3_j hw1 , Kcos Betau3_j hw1 , 
Ksin Betau3_j hw1 , 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, cosh Betaw3_j span , sinh Betaw3_j span , cos Betaw3_j span , sin Betaw3_j span , Kcosh Betaw4_j span , Ksinh Betaw4_j span , Kcos Betaw4_j span , Ksin Betaw4_j span , 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

Kcosh Betaw1_j span , Ksinh Betaw1_j span , Kcos Betaw1_j span , Ksin Betaw1_j span , 0, 0, 0, 0, cosh Betaw3_j span , sinh Betaw3_j span , cos Betaw3_j span , sin Betaw3_j span , 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, Betaw3_j sinh Betaw3_j span , Betaw3_j cosh Betaw3_j span , KBetaw3_j sin Betaw3_j span , Betaw3_j cos Betaw3_j span , KBetaw4_j sinh Betaw4_j span , 
KBetaw4_j cosh Betaw4_j span , Betaw4_j sin Betaw4_j span , KBetaw4_j cos Betaw4_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, Betaw3_j sinh Betaw3_j span , Betaw3_j cosh Betaw3_j span , KBetaw3_j sin Betaw3_j span , Betaw3_j cos Betaw3_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

Betau4_j sinh Betau4_j hw1Chw2 , Betau4_j cosh Betau4_j hw1Chw2 , KBetau4_j sin Betau4_j hw1Chw2 , Betau4_j cos Betau4_j hw1Chw2 , 

0, 0, 0, 0, 0, 0, 0, 0, KBetaw3_j2 cosh Betaw3_j span , KBetaw3_j2 sinh Betaw3_j span , Betaw3_j2 cos Betaw3_j span , Betaw3_j2 sin Betaw3_j span , Betaw4_j2 cosh Betaw4_j span , 

Betaw4_j2 sinh Betaw4_j span , KBetaw4_j2 cos Betaw4_j span , KBetaw4_j2 sin Betaw4_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KBetau4_j2 cosh Betau4_j hw1Chw2 , KBetau4_j2 sinh Betau4_j hw1

Chw2 , Betau4_j2 cos Betau4_j hw1Chw2 , Betau4_j2 sin Betau4_j hw1Chw2 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau4_j hw1Chw2 , sinh Betau4_j hw1Chw2 , cos Betau4_j hw1Chw2 , sin Betau4_j hw1Chw2

with CodeGeneration :
Python Mc_j, resultname = "M_matrix_c_j" ;

M_matrix_c_j = numpy.mat([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau1_j,0,
Betau1_j,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,Betau3_j,0,Betau3_j,0,0,0,0],[0,0,0,0,math.cosh(2 * Betaw2_j * span),math.sinh(2 * Betaw2_j * span),math.cos(2 * Betaw2_j * span),math.sin
(2 * Betaw2_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,Betaw2_j * math.sinh(2 * Betaw2_j * span),Betaw2_j * math.cosh(2 
* Betaw2_j * span),-Betaw2_j * math.sin(2 * Betaw2_j * span),Betaw2_j * math.cos(2 * Betaw2_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],[0,0,0,0,-math.cosh(2 * Betaw2_j * span),-math.sinh(2 * Betaw2_j * span),-math.cos(2 * Betaw2_j * span),-math.sin(2 * Betaw2_j * span),0,
0,0,0,math.cosh(2 * Betaw4_j * span),math.sinh(2 * Betaw4_j * span),math.cos(2 * Betaw4_j * span),math.sin(2 * Betaw4_j * span),0,0,0,0,0,0,0,0,



> > 

> > 
> > 

> > 

> > 

0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,Betaw4_j * math.sinh(2 * Betaw4_j * span),Betaw4_j * math.cosh(2 * Betaw4_j * span),-Betaw4_j * math.
sin(2 * Betaw4_j * span),Betaw4_j * math.cos(2 * Betaw4_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh
(Betau1_j * hw1),math.sinh(Betau1_j * hw1),math.cos(Betau1_j * hw1),math.sin(Betau1_j * hw1),-math.cosh(Betau2_j * hw1),-math.sinh(Betau2_j * 
hw1),-math.cos(Betau2_j * hw1),-math.sin(Betau2_j * hw1),0,0,0,0,0,0,0,0],[1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau1_j * hw1),math.sinh(Betau1_j * hw1),math.cos(Betau1_j * hw1),math.sin(Betau1_j * hw1),0,0,0,0,0,0,0,
0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau1_j * math.sinh(Betau1_j * hw1),Betau1_j * math.cosh(Betau1_j * hw1),-Betau1_j * math.sin
(Betau1_j * hw1),Betau1_j * math.cos(Betau1_j * hw1),-Betau2_j * math.sinh(Betau2_j * hw1),-Betau2_j * math.cosh(Betau2_j * hw1),Betau2_j * math.
sin(Betau2_j * hw1),-Betau2_j * math.cos(Betau2_j * hw1),0,0,0,0,0,0,0,0],[0,Betaw1_j,0,Betaw1_j,0,0,0,0,0,0,0,0,0,0,0,0,Betau1_j * math.sinh
(Betau1_j * hw1),Betau1_j * math.cosh(Betau1_j * hw1),-Betau1_j * math.sin(Betau1_j * hw1),Betau1_j * math.cos(Betau1_j * hw1),0,0,0,0,0,0,0,0,0,
0,0,0],[Betaw1_j ** 2,0,-Betaw1_j ** 2,0,0,0,0,0,0,0,0,0,0,0,0,0,-Betau1_j ** 2 * math.cosh(Betau1_j * hw1),-Betau1_j ** 2 * math.sinh(Betau1_j *
hw1),Betau1_j ** 2 * math.cos(Betau1_j * hw1),Betau1_j ** 2 * math.sin(Betau1_j * hw1),Betau2_j ** 2 * math.cosh(Betau2_j * hw1),Betau2_j ** 2 * 
math.sinh(Betau2_j * hw1),-Betau2_j ** 2 * math.cos(Betau2_j * hw1),-Betau2_j ** 2 * math.sin(Betau2_j * hw1),0,0,0,0,0,0,0,0],[-1,0,-1,0,0,0,0,
0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,Betaw3_j,0,Betaw3_j,0,0,0,0,0,0,0,0,Betau2_j * math.sinh(Betau2_j * (hw1 + 
hw2)),Betau2_j * math.cosh(Betau2_j * (hw1 + hw2)),-Betau2_j * math.sin(Betau2_j * (hw1 + hw2)),Betau2_j * math.cos(Betau2_j * (hw1 + hw2)),0,0,
0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau2_j * (hw1 + hw2)),math.sinh(Betau2_j * (hw1 + hw2)),math.cos(Betau2_j * 
(hw1 + hw2)),math.sin(Betau2_j * (hw1 + hw2)),0,0,0,0,-math.cosh(Betau4_j * (hw1 + hw2)),-math.sinh(Betau4_j * (hw1 + hw2)),-math.cos(Betau4_j * 
(hw1 + hw2)),-math.sin(Betau4_j * (hw1 + hw2))],[0,0,0,0,0,0,0,0,Betaw3_j ** 2,0,-Betaw3_j ** 2,0,0,0,0,0,0,0,0,0,-Betau2_j ** 2 * math.cosh
(Betau2_j * (hw1 + hw2)),-Betau2_j ** 2 * math.sinh(Betau2_j * (hw1 + hw2)),Betau2_j ** 2 * math.cos(Betau2_j * (hw1 + hw2)),Betau2_j ** 2 * 
math.sin(Betau2_j * (hw1 + hw2)),0,0,0,0,0,0,0,0],[math.cosh(Betaw1_j * span),math.sinh(Betaw1_j * span),math.cos(Betaw1_j * span),math.sin
(Betaw1_j * span),-math.cosh(Betaw2_j * span),-math.sinh(Betaw2_j * span),-math.cos(Betaw2_j * span),-math.sin(Betaw2_j * span),0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[math.cosh(Betaw1_j * span),math.sinh(Betaw1_j * span),math.cos(Betaw1_j * span),math.sin(Betaw1_j * span),0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau3_j * hw1),math.sinh
(Betau3_j * hw1),math.cos(Betau3_j * hw1),math.sin(Betau3_j * hw1),-math.cosh(Betau4_j * hw1),-math.sinh(Betau4_j * hw1),-math.cos(Betau4_j * 
hw1),-math.sin(Betau4_j * hw1)],[Betaw1_j * math.sinh(Betaw1_j * span),Betaw1_j * math.cosh(Betaw1_j * span),-Betaw1_j * math.sin(Betaw1_j * 
span),Betaw1_j * math.cos(Betaw1_j * span),-Betaw2_j * math.sinh(Betaw2_j * span),-Betaw2_j * math.cosh(Betaw2_j * span),Betaw2_j * math.sin
(Betaw2_j * span),-Betaw2_j * math.cos(Betaw2_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,Betau3_j * math.sinh(Betau3_j * hw1),Betau3_j * math.cosh(Betau3_j * hw1),-Betau3_j * math.sin(Betau3_j * hw1),Betau3_j * math.cos
(Betau3_j * hw1),-Betau4_j * math.sinh(Betau4_j * hw1),-Betau4_j * math.cosh(Betau4_j * hw1),Betau4_j * math.sin(Betau4_j * hw1),-Betau4_j * 
math.cos(Betau4_j * hw1)],[Betaw1_j * math.sinh(Betaw1_j * span),Betaw1_j * math.cosh(Betaw1_j * span),-Betaw1_j * math.sin(Betaw1_j * span),
Betaw1_j * math.cos(Betaw1_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau3_j * math.sinh(Betau3_j * hw1),Betau3_j * math.cosh(Betau3_j *
hw1),-Betau3_j * math.sin(Betau3_j * hw1),Betau3_j * math.cos(Betau3_j * hw1),0,0,0,0],[-Betaw1_j ** 2 * math.cosh(Betaw1_j * span),-Betaw1_j ** 
2 * math.sinh(Betaw1_j * span),Betaw1_j ** 2 * math.cos(Betaw1_j * span),Betaw1_j ** 2 * math.sin(Betaw1_j * span),Betaw2_j ** 2 * math.cosh
(Betaw2_j * span),Betaw2_j ** 2 * math.sinh(Betaw2_j * span),-Betaw2_j ** 2 * math.cos(Betaw2_j * span),-Betaw2_j ** 2 * math.sin(Betaw2_j * 
span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-Betau3_j ** 2 * math.cosh(Betau3_j * hw1),-Betau3_j ** 2 * math.sinh(Betau3_j * hw1),Betau3_j ** 2 * math.
cos(Betau3_j * hw1),Betau3_j ** 2 * math.sin(Betau3_j * hw1),Betau4_j ** 2 * math.cosh(Betau4_j * hw1),Betau4_j ** 2 * math.sinh(Betau4_j * hw1),
-Betau4_j ** 2 * math.cos(Betau4_j * hw1),-Betau4_j ** 2 * math.sin(Betau4_j * hw1)],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau1_j * hw1),
math.sinh(Betau1_j * hw1),math.cos(Betau1_j * hw1),math.sin(Betau1_j * hw1),0,0,0,0,-math.cosh(Betau3_j * hw1),-math.sinh(Betau3_j * hw1),-math.
cos(Betau3_j * hw1),-math.sin(Betau3_j * hw1),0,0,0,0],[0,0,0,0,0,0,0,0,math.cosh(Betaw3_j * span),math.sinh(Betaw3_j * span),math.cos(Betaw3_j *
span),math.sin(Betaw3_j * span),-math.cosh(Betaw4_j * span),-math.sinh(Betaw4_j * span),-math.cos(Betaw4_j * span),-math.sin(Betaw4_j * span),0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[-math.cosh(Betaw1_j * span),-math.sinh(Betaw1_j * span),-math.cos(Betaw1_j * span),-math.sin(Betaw1_j * span),0,
0,0,0,math.cosh(Betaw3_j * span),math.sinh(Betaw3_j * span),math.cos(Betaw3_j * span),math.sin(Betaw3_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0],[0,0,0,0,0,0,0,0,Betaw3_j * math.sinh(Betaw3_j * span),Betaw3_j * math.cosh(Betaw3_j * span),-Betaw3_j * math.sin(Betaw3_j * span),
Betaw3_j * math.cos(Betaw3_j * span),-Betaw4_j * math.sinh(Betaw4_j * span),-Betaw4_j * math.cosh(Betaw4_j * span),Betaw4_j * math.sin(Betaw4_j *
span),-Betaw4_j * math.cos(Betaw4_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,Betaw3_j * math.sinh(Betaw3_j * span),Betaw3_j * 
math.cosh(Betaw3_j * span),-Betaw3_j * math.sin(Betaw3_j * span),Betaw3_j * math.cos(Betaw3_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau4_j * 
math.sinh(Betau4_j * (hw1 + hw2)),Betau4_j * math.cosh(Betau4_j * (hw1 + hw2)),-Betau4_j * math.sin(Betau4_j * (hw1 + hw2)),Betau4_j * math.cos
(Betau4_j * (hw1 + hw2))],[0,0,0,0,0,0,0,0,-Betaw3_j ** 2 * math.cosh(Betaw3_j * span),-Betaw3_j ** 2 * math.sinh(Betaw3_j * span),Betaw3_j ** 2 
* math.cos(Betaw3_j * span),Betaw3_j ** 2 * math.sin(Betaw3_j * span),Betaw4_j ** 2 * math.cosh(Betaw4_j * span),Betaw4_j ** 2 * math.sinh
(Betaw4_j * span),-Betaw4_j ** 2 * math.cos(Betaw4_j * span),-Betaw4_j ** 2 * math.sin(Betaw4_j * span),0,0,0,0,0,0,0,0,0,0,0,0,-Betau4_j ** 2 * 
math.cosh(Betau4_j * (hw1 + hw2)),-Betau4_j ** 2 * math.sinh(Betau4_j * (hw1 + hw2)),Betau4_j ** 2 * math.cos(Betau4_j * (hw1 + hw2)),Betau4_j **
2 * math.sin(Betau4_j * (hw1 + hw2))],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau4_j * (hw1 + hw2)),math.sinh
(Betau4_j * (hw1 + hw2)),math.cos(Betau4_j * (hw1 + hw2)),math.sin(Betau4_j * (hw1 + hw2))]])

# Wz1c_j=1,Wz1s_j=1,Wz2c_j=1,Wz2s_j=1, Wzc_j=1,PHIyc_j=1,Omega_j=1,rhoA_w1=1,rhoA_w2=1,rhoA_w3=1,rhoA_w4=1,rhoA_u1=1,rhoA_u2=1,rhoA_u3=1,rhoA_u4=1, EI_w1=1, EI_w2=1, EI_w3=1, 
EI_w4=1, EI_u1=1, EI_u2=1, EI_u3=1, EI_u4=1,Betaw1_1=1,Betaw2_1=1,Betaw3_1=1,Betaw4_1=1,Betau1_1=1,Betau2_1=1,Betau3_1=1,Betau4_1=1,span=1, hw1=1,hw2=1,scg3=1,scg1=1,scg2=1,

Mc_j_compd evalf subs Wz1c_j = 1, Wz1s_j = 1, Wz2c_j = 1, Wz2s_j = 1, Wzc_j = 1, PHIyc_j = 1, Omega_j = 1, rhoA_w1 = 1, rhoA_w2 = 1, rhoA_w3 = 1, rhoA_w4 = 1, rhoA_u1 = 1, rhoA_u2 = 1, rhoA_u3 = 1,
rhoA_u4 = 1, EI_w1 = 1, EI_w2 = 1, EI_w3 = 1, EI_w4 = 1, EI_u1 = 1, EI_u2 = 1, EI_u3 = 1, EI_u4 = 1, Betaw1_j = 1, Betaw2_j = 1, Betaw3_j = 1, Betaw4_j = 1, Betau1_j = 1, Betau2_j = 1, Betau3_j = 1, Betau4_j



> > 

> > 

> > 

> > 

> > 

= 1, span = 1, hw1 = 1, hw2 = 1, scg3 = 1, scg1 = 1, scg2 = 1, Mc_j :

#Mc_j_inversedLinearAlgebra MatrixInverse Mc_j :
#Python Mc_j_inverse, resultname = "M_matrix_c_j_inverse" :

Fc_jd Vector
 0,
 0,
 0,
 0,
 Wzc_jCPHIyc_j$scg3,
 0,
 0,
 0,
 0,
 Wzc_jCPHIyc_j$scg1,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 Wzc_jCPHIyc_j$scg2,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0
 ;



> > 
> > 

> > 
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> > 

Fc_jd

0

0

0

0

PHIyc_j scg3CWzc_j

0

0

0

0

PHIyc_j scg1CWzc_j

0

0

0

0

0

0

0

0

0

PHIyc_j scg2CWzc_j

0

0

0

0

0

0

0

0

0

0

0

0

Python Fc_j, resultname = "F_vector_c_j" ;
F_vector_c_j = numpy.mat([0,0,0,0,PHIyc_j * scg3 + Wzc_j,0,0,0,0,PHIyc_j * scg1 + Wzc_j,0,0,0,0,0,0,0,0,0,PHIyc_j * scg2 + Wzc_j,0,0,0,0,0,0,0,0,
0,0,0,0])

#test_vectordvector
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> > Coeff_vectord subs Wz1c_j = 1, Wz1s_j = 1, Wz2c_j = 1, Wz2s_j = 1, Wzc_j = 1, PHIyc_j = 1, Omega_j = 1, rhoA_w1 = 1, rhoA_w2 = 1, rhoA_w3 = 1, rhoA_w4 = 1, rhoA_u1 = 1, rhoA_u2 = 1, rhoA_u3 = 1, rhoA_u4
= 1, EI_w1 = 1, EI_w2 = 1, EI_w3 = 1, EI_w4 = 1, EI_u1 = 1, EI_u2 = 1, EI_u3 = 1, EI_u4 = 1, Betaw1_1 = 1, Betaw2_1 = 1, Betaw3_1 = 1, Betaw4_1 = 1, Betau1_1 = 1, Betau2_1 = 1, Betau3_1 = 1, Betau4_1 = 1,
span = 1, hw1 = 1, hw2 = 1, scg3 = 1, scg1 = 1, scg2 = 1, LinearAlgebra Multiply LinearAlgebra MatrixInverse Mc_j_comp , Fc_j ;



(62(62Coeff_vectord

K1.25341537869434 108

1.24369631453323 108

1.25341539869432 108

K2.43259255756979 107

5.29954427902908 108

K5.70206925838154 108

K2.33824851587322 108

K2.53347375645275 107

4.44100572232361 108

K6.46316269494225 108

K4.44100570232353 108

3.73414209676882 108

K7.16431054673820 108

7.70847318623734 108

3.16101493914547 108

3.42493490584903 107

1.00401792243676 108

K3.01683032249632 108

K1.00401792243676 108

3.01683032249632 108

K6.73305632094109 108

8.20877503985481 108

5.24355627216568 108

K2.48424364907938 108

K7.42686594258785 107

2.23159306980653 108

7.42686594258790 107

K2.23159306980653 108

K2.04881039429607 107

K1.33066280844345 107

K7.42799867752457 107

1.03849581709403 108
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Aw1c_1_compd Coeff_vector 1 ; Bw1c_1_compd Coeff_vector 2 ; Cw1c_1_compd Coeff_vector 3 ; Dw1c_1_compdCoeff_vector 4 ;
Aw1c_1_compdK1.25341537869434 108

Bw1c_1_compd 1.24369631453323 108

Cw1c_1_compd 1.25341539869432 108

Dw1c_1_compdK2.43259255756979 107

W1c_1_compd subs Aw1c_1 = Aw1c_1_comp, Bw1c_1 = Bw1c_1_comp, Cw1c_1 = Cw1c_1_comp, Dw1c_1 = Dw1c_1_comp, Betaw1_j = 1, W1c_1 ;
W1c_1_compdK1.25341537869434 108 cosh x C1.24369631453323 108 sinh x C1.25341539869432 108 cos x K2.43259255756979 107 sin x

with plots :
plotW1c_1_compd plot W1c_1_comp, x = 0 ..1 : display plotW1c_1_comp ;

x
0 0.2 0.4 0.6 0.8 1

0

5.#106

1.#107

1.5#107

2.#107

Wz1c_jd 1 : Wz1s_jd 1 : Wz2c_jd 1 : Wz2s_jd 1 : Omega_jd 10 : Omega_1dOmega_j :
Wzc_jd 1 : PHIyc_jd 1 : scg3d 1 : scg1d 1 : scg2d 1 :
rhoA_w1d 1 : rhoA_w2d 1 : rhoA_w3d 1 : rhoA_w4d 1 : rhoA_u1d 1 : rhoA_u2d 1 : rhoA_u3d 1 : rhoA_u4d 1 :
EI_w1d 1 : EI_w2d 1 : EI_w3d 1 : EI_w4d 1 : EI_u1d 1 : EI_u2d 1 : EI_u3d 1 : EI_u4d 1 :

Betaw1_jd
rhoA_w1

EI_w1
$Omega_j2

1
4

: Betaw2_jd
rhoA_w2
EI_w2

$Omega_j2

1
4

: Betaw3_jd
rhoA_w3
EI_w3

$Omega_j2

1
4

: Betaw4_jd
rhoA_w4
EI_w4

$Omega_j2

1
4

:

Betau1_jd
rhoA_u1
EI_u1

$Omega_j2

1
4

: Betau2_jd
rhoA_u2

EI_u2
$Omega_j2

1
4

: Betau3_jd
rhoA_u3
EI_u3

$Omega_j2

1
4

: Betau4_jd
rhoA_u4

EI_u4
$Omega_j2

1
4

:

spand 1 : hw1d 1 : hw2d 1 :
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wz1;
cos 10 t

plotWz1_1_compd plot wz1, t = 0 ..1 : display plotWz1_1_comp ;

t
0.2 0.4 0.6 0.8 1

K0.5

0

0.5

1

wz2;
cos 10 t

plotWz2_1_compd plot wz2, t = 0 ..1 : display plotWz2_1_comp ;
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(69(69

> > 

(70(70

(71(71

t
0.2 0.4 0.6 0.8 1

K0.5

0

0.5

1

EOMw1c_1;

KW1
2
 Aw1c_1 cosh 1001 4 x CBw1c_1 sinh 1001 4 x CCw1c_1 cos 1001 4 x CDw1c_1 sin 1001 4 x = 0

W1c_1;
Aw1c_1 cosh 1001 4 x CBw1c_1 sinh 1001 4 x CCw1c_1 cos 1001 4 x CDw1c_1 sin 1001 4 x

EOMw1s_1;

KW1
2
 Aw1s_1 cosh 1001 4 x CBw1s_1 sinh 1001 4 x CCw1s_1 cos 1001 4 x CDw1s_1 sin 1001 4 x = 0

W1s_1;
Aw1s_1 cosh 1001 4 x CBw1s_1 sinh 1001 4 x CCw1s_1 cos 1001 4 x CDw1s_1 sin 1001 4 x

EOMw2c_1;

KW1
2
 Aw2c_1 cosh 1001 4 x CBw2c_1 sinh 1001 4 x CCw2c_1 cos 1001 4 x CDw2c_1 sin 1001 4 x = 0

W2c_1;
Aw2c_1 cosh 1001 4 x CBw2c_1 sinh 1001 4 x CCw2c_1 cos 1001 4 x CDw2c_1 sin 1001 4 x

EOMw2s_1;

KW1
2
 Aw2s_1 cosh 1001 4 x CBw2s_1 sinh 1001 4 x CCw2s_1 cos 1001 4 x CDw2s_1 sin 1001 4 x = 0

W2s_1;
Aw2s_1 cosh 1001 4 x CBw2s_1 sinh 1001 4 x CCw2s_1 cos 1001 4 x CDw2s_1 sin 1001 4 x
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S. Appendix: Maple sheet for determining dynamic EB-beams response 𝐌𝐨𝐝𝐞𝐥𝝋 
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(10(10

> > 

(1(1

(4(4
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> > 
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(12(12
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> > 

> > 

> > 
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(2(2

> > 

> > 

(9(9

(15(15

(14(14
> > 

> > 

> > 

> > 

> > 
(6(6

> > 

restart;

Model_phi (rotational excitation at bottom of frame only)
Excitation

phiyd PHIyc_j$cos Omega_j$t CPHIys_j$sin Omega_j$t ;
phiyd PHIyc_j cos Omega_j t CPHIys_j sin Omega_j t

Steady-State solutions of every element in the Model
w1dW1c_1$cos Omega_j$t CW1s_1$sin Omega_j$t ;

w1dW1c_1 cos Omega_j t CW1s_1 sin Omega_j t

w2dW2c_1$cos Omega_j$t CW2s_1$sin Omega_j$t ;
w2dW2c_1 cos Omega_j t CW2s_1 sin Omega_j t

w3dW3c_1$cos Omega_j$t CW3s_1$sin Omega_j$t ;
w3dW3c_1 cos Omega_j t CW3s_1 sin Omega_j t

w4dW4c_1$cos Omega_j$t CW4s_1$sin Omega_j$t ;
w4dW4c_1 cos Omega_j t CW4s_1 sin Omega_j t

u1dU1 c_1$cos Omega_j$t CU1 s_1$sin Omega_j$t ;
u1dU1 c_1 cos Omega_j t CU1 s_1 sin Omega_j t

u2dU2 c_1$cos Omega_j$t CU2 s_1$sin Omega_j$t ;
u2dU2 c_1 cos Omega_j t CU2 s_1 sin Omega_j t

u3dU3 c_1$cos Omega_j$t CU3 s_1$sin Omega_j$t ;
u3dU3 c_1 cos Omega_j t CU3 s_1 sin Omega_j t

u4dU4 c_1$cos Omega_j$t CU4 s_1$sin Omega_j$t ;
u4dU4 c_1 cos Omega_j t CU4 s_1 sin Omega_j t

Substituting the steady-state solutions into the EOM of every element and gathering for the cos(Omega_1)- (c_1) and sin(Omega_1)- (s_1) terms gives the following EOM's and corresponding general solutions:

EOMw1c_1dKrhoA_w1$W1
2
$W1c_1CEI_w1$diff W1c_1, x$4 = 0 :

W1c_1d Aw1c_1$cosh Betaw1_j$x CBw1c_1$sinh Betaw1_j$x CCw1c_1$cos Betaw1_j$x CDw1c_1$sin Betaw1_j$x ;
W1c_1d Aw1c_1 cosh Betaw1_j x CBw1c_1 sinh Betaw1_j x CCw1c_1 cos Betaw1_j x CDw1c_1 sin Betaw1_j x

EOMw1s_1dKrhoA_w1$W1
2
$W1s_1CEI_w1$diff W1s_1, x$4 = 0 :

W1s_1d Aw1s_1$cosh Betaw1_j$x CBw1s_1$sinh Betaw1_j$x CCw1s_1$cos Betaw1_j$x CDw1s_1$sin Betaw1_j$x ;
W1s_1d Aw1s_1 cosh Betaw1_j x CBw1s_1 sinh Betaw1_j x CCw1s_1 cos Betaw1_j x CDw1s_1 sin Betaw1_j x

EOMw2c_1dKrhoA_w2$W1
2
$W2c_1CEI_w2$diff W2c_1, x$4 = 0 :

W2c_1d Aw2c_1$cosh Betaw2_j$x CBw2c_1$sinh Betaw2_j$x CCw2c_1$cos Betaw2_j$x CDw2c_1$sin Betaw2_j$x ;
W2c_1d Aw2c_1 cosh Betaw2_j x CBw2c_1 sinh Betaw2_j x CCw2c_1 cos Betaw2_j x CDw2c_1 sin Betaw2_j x

EOMw2s_1dKrhoA_w2$W1
2
$W2s_1CEI_w2$diff W2s_1, x$4 = 0 :

W2s_1d Aw2s_1$cosh Betaw2_j$x CBw2s_1$sinh Betaw2_j$x CCw2s_1$cos Betaw2_j$x CDw2s_1$sin Betaw2_j$x ;
W2s_1d Aw2s_1 cosh Betaw2_j x CBw2s_1 sinh Betaw2_j x CCw2s_1 cos Betaw2_j x CDw2s_1 sin Betaw2_j x

EOMw3c_1dKrhoA_w3$W1
2
$W3c_1CEI_w3$diff W3c_1, x$4 = 0 :

W3c_1d Aw3c_1$cosh Betaw3_j$x CBw3c_1$sinh Betaw3_j$x CCw3c_1$cos Betaw3_j$x CDw3c_1$sin Betaw3_j$x ;
W3c_1d Aw3c_1 cosh Betaw3_j x CBw3c_1 sinh Betaw3_j x CCw3c_1 cos Betaw3_j x CDw3c_1 sin Betaw3_j x

EOMw3s_1dKrhoA_w3$W1
2
$W3s_1CEI_w3$diff W3s_1, x$4 = 0 :

W3s_1d Aw3s_1$cosh Betaw3_j$x CBw3s_1$sinh Betaw3_j$x CCw3s_1$cos Betaw3_j$x CDw3s_1$sin Betaw3_j$x ;
W3s_1d Aw3s_1 cosh Betaw3_j x CBw3s_1 sinh Betaw3_j x CCw3s_1 cos Betaw3_j x CDw3s_1 sin Betaw3_j x
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(18(18

> > 

> > 

EOMw4c_1dKrhoA_w4$W1
2
$W4c_1CEI_w4$diff W4c_1, x$4 = 0 :

W4c_1d Aw4c_1$cosh Betaw4_j$x CBw4c_1$sinh Betaw4_j$x CCw4c_1$cos Betaw4_j$x CDw4c_1$sin Betaw4_j$x ;
W4c_1d Aw4c_1 cosh Betaw4_j x CBw4c_1 sinh Betaw4_j x CCw4c_1 cos Betaw4_j x CDw4c_1 sin Betaw4_j x

EOMw4s_1dKrhoA_w4$W1
2
$W4s_1CEI_w4$diff W4s_1, x$4 = 0 :

W4s_1d Aw4s_1$cosh Betaw4_j$x CBw4s_1$sinh Betaw4_j$x CCw4s_1$cos Betaw4_j$x CDw4s_1$sin Betaw4_j$x ;
W4s_1d Aw4s_1 cosh Betaw4_j x CBw4s_1 sinh Betaw4_j x CCw4s_1 cos Betaw4_j x CDw4s_1 sin Betaw4_j x

EOMu1c_1dKrhoA_u1$W1
2
$U1 c_1CEI_u1$diff U1c_1, z$4 = 0 :

U1c_1d Au1c_1$cosh Betau1_j$z CBu1c_1$sinh Betau1_j$z CCu1c_1$cos Betau1_j$z CDu1c_1$sin Betau1_j$z ;
U1c_1d Au1c_1 cosh Betau1_j z CBu1c_1 sinh Betau1_j z CCu1c_1 cos Betau1_j z CDu1c_1 sin Betau1_j z

EOMu1s_1dKrhoA_u1$W1
2
$U1 s_1CEI_u1$diff U1s_1, z$4 = 0 :

U1s_1d Au1s_1$cosh Betau1_j$z CBu1s_1$sinh Betau1_j$z CCu1s_1$cos Betau1_j$z CDu1s_1$sin Betau1_j$z ;
U1s_1d Au1s_1 cosh Betau1_j z CBu1s_1 sinh Betau1_j z CCu1s_1 cos Betau1_j z CDu1s_1 sin Betau1_j z

EOMu2c_1dKrhoA_u2$W1
2
$U2 c_1CEI_u2$diff U2c_1, z$4 = 0 :

U2c_1d Au2c_1$cosh Betau2_j$z CBu2c_1$sinh Betau2_j$z CCu2c_1$cos Betau2_j$z CDu2c_1$sin Betau2_j$z ;
U2c_1d Au2c_1 cosh Betau2_j z CBu2c_1 sinh Betau2_j z CCu2c_1 cos Betau2_j z CDu2c_1 sin Betau2_j z

EOMu2s_1dKrhoA_u2$W1
2
$U2 s_1CEI_u2$diff U2s_1, z$4 = 0 :

U2s_1d Au2s_1$cosh Betau2_j$z CBu2s_1$sinh Betau2_j$z CCu2s_1$cos Betau2_j$z CDu2s_1$sin Betau2_j$z ;
U2s_1d Au2s_1 cosh Betau2_j z CBu2s_1 sinh Betau2_j z CCu2s_1 cos Betau2_j z CDu2s_1 sin Betau2_j z

EOMu3c_1dKrhoA_u3$W1
2
$U3 c_1CEI_u3$diff U3c_1, z$4 = 0 :

U3c_1d Au3c_1$cosh Betau3_j$z CBu3c_1$sinh Betau3_j$z CCu3c_1$cos Betau3_j$z CDu3c_1$sin Betau3_j$z ;
U3c_1d Au3c_1 cosh Betau3_j z CBu3c_1 sinh Betau3_j z CCu3c_1 cos Betau3_j z CDu3c_1 sin Betau3_j z

EOMu3s_1dKrhoA_u3$W1
2
$U3 s_1CEI_u3$diff U3s_1, z$4 = 0 :

U3s_1d Au3s_1$cosh Betau3_j$z CBu3s_1$sinh Betau3_j$z CCu3s_1$cos Betau3_j$z CDu3s_1$sin Betau3_j$z ;
U3s_1d Au3s_1 cosh Betau3_j z CBu3s_1 sinh Betau3_j z CCu3s_1 cos Betau3_j z CDu3s_1 sin Betau3_j z

EOMu4c_1dKrhoA_u4$W1
2
$U4 c_1CEI_u4$diff U4c_1, z$4 = 0 :

U4c_1d Au4c_1$cosh Betau4_j$z CBu4c_1$sinh Betau4_j$z CCu4c_1$cos Betau4_j$z CDu4c_1$sin Betau4_j$z ;
U4c_1d Au4c_1 cosh Betau4_j z CBu4c_1 sinh Betau4_j z CCu4c_1 cos Betau4_j z CDu4c_1 sin Betau4_j z

EOMu4s_1dKrhoA_u4$W1
2
$U4 s_1CEI_u4$diff U4s_1, z$4 = 0 :

U4s_1d Au4s_1$cosh Betau4_j$z CBu4s_1$sinh Betau4_j$z CCu4s_1$cos Betau4_j$z CDu4s_1$sin Betau4_j$z ;
U4s_1d Au4s_1 cosh Betau4_j z CBu4s_1 sinh Betau4_j z CCu4s_1 cos Betau4_j z CDu4s_1 sin Betau4_j z

Substitute the general solutions into the IC's and BC's (4*8 EB-elements = 32 needed IC's + BC's) and gather for the cos(Omega_1) terms
BC @ x = 0, z = 0 [2 BC's]

BC1c_1Md simplify subs z = 0, U1c_1 : BC1c_1d BC1c_1M = 0;
BC1c_1d Au1c_1CCu1c_1 = 0

BC2c_1Md simplify subs z = 0, diff U1c_1, z KPHIyc_j : BC2c_1d BC2c_1M = 0;
BC2c_1d Betau1_j Bu1c_1CDu1c_1 KPHIyc_j = 0

BC @ x = span, z = 0 [2 BC's]
BC3c_1Md simplify subs z = 0, U3c_1 : BC3c_1d BC3c_1M = 0;

BC3c_1d Au3c_1CCu3c_1 = 0

BC4c_1Md simplify subs z = 0, diff U3c_1, z KPHIyc_j : BC4c_1d BC4c_1M = 0;
BC4c_1d Betau3_j Bu3c_1CDu3c_1 KPHIyc_j = 0
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> > 
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BC @ x = 2*span, z = hw1 [2 BC's]
BC5c_1Md simplify subs x = 2$span, W2c_1 : BC5c_1d BC5c_1M = 0;

BC5c_1d Aw2c_1 cosh 2 Betaw2_j span CBw2c_1 sinh 2 Betaw2_j span CCw2c_1 cos 2 Betaw2_j span CDw2c_1 sin 2 Betaw2_j span = 0

BC6c_1Md simplify subs x = 2$span, diff W2c_1, x CPHIyc_j : BC6c_1d BC6c_1M = 0;
BC6c_1d Betaw2_j Aw2c_1 sinh 2 Betaw2_j span CBw2c_1 cosh 2 Betaw2_j span KCw2c_1 sin 2 Betaw2_j span CDw2c_1 cos 2 Betaw2_j span CPHIyc_j = 0

BC @ x = 2*span, z = hw1+hw2 [2 BC's]
BC7c_1Md simplify subs x = 2$span, W4c_1 : BC7c_1d BC7c_1M = 0;

BC7c_1d Aw4c_1 cosh 2 Betaw4_j span CBw4c_1 sinh 2 Betaw4_j span CCw4c_1 cos 2 Betaw4_j span CDw4c_1 sin 2 Betaw4_j span = 0

BC8c_1Md simplify subs x = 2$span, diff W4c_1, x CPHIyc_j : BC8c_1d BC8c_1M = 0;
BC8c_1d Betaw4_j Aw4c_1 sinh 2 Betaw4_j span CBw4c_1 cosh 2 Betaw4_j span KCw4c_1 sin 2 Betaw4_j span CDw4c_1 cos 2 Betaw4_j span CPHIyc_j = 0

IC @ x = 0, z = hw1 [6 IC's]
IC1c_1Md simplify subs z = hw1, U1c_1 Ksimplify subs z = hw1, U2c_1 : IC1c_1d IC1c_1M = 0;

IC1c_1d Au1c_1 cosh Betau1_j hw1 CBu1c_1 sinh Betau1_j hw1 CCu1c_1 cos Betau1_j hw1 CDu1c_1 sin Betau1_j hw1 KAu2c_1 cosh Betau2_j hw1 KBu2c_1 sinh Betau2_j hw1
KCu2c_1 cos Betau2_j hw1 KDu2c_1 sin Betau2_j hw1 = 0

IC2c_1Md simplify subs x = 0, W1c_1 : IC2c_1d IC2c_1M = 0;
IC2c_1d Aw1c_1CCw1c_1 = 0

IC3c_1Md simplify subs z = hw1, diff U1c_1, z Ksimplify subs z = hw1, diff U2c_1, z : IC3c_1d IC3c_1M = 0;
IC3c_1d Betau1_j Au1c_1 sinh Betau1_j hw1 CBu1c_1 cosh Betau1_j hw1 KCu1c_1 sin Betau1_j hw1 CDu1c_1 cos Betau1_j hw1 KBetau2_j Au2c_1 sinh Betau2_j hw1

CBu2c_1 cosh Betau2_j hw1 KCu2c_1 sin Betau2_j hw1 CDu2c_1 cos Betau2_j hw1 = 0

IC4c_1Md simplify subs z = hw1, diff U1c_1, z Csimplify subs x = 0, diff W1c_1, x : IC4c_1d IC4c_1M = 0;
IC4c_1d Betau1_j Au1c_1 sinh Betau1_j hw1 CBu1c_1 cosh Betau1_j hw1 KCu1c_1 sin Betau1_j hw1 CDu1c_1 cos Betau1_j hw1 CBetaw1_j Bw1c_1CDw1c_1 = 0

IC5c_1Md simplify subs z = hw1, U1c_1 Ksimplify subs z = hw1, U3c_1 : IC5c_1d IC5c_1M = 0;
IC5c_1d Au1c_1 cosh Betau1_j hw1 CBu1c_1 sinh Betau1_j hw1 CCu1c_1 cos Betau1_j hw1 CDu1c_1 sin Betau1_j hw1 KAu3c_1 cosh Betau3_j hw1 KBu3c_1 sinh Betau3_j hw1

KCu3c_1 cos Betau3_j hw1 KDu3c_1 sin Betau3_j hw1 = 0

IC6c_1MdKsimplify subs z = hw1, diff U1c_1, z$2 Csimplify subs z = hw1, diff U2c_1, z$2 Csimplify subs x = 0, diff W1c_1, x$2 : IC6c_1d IC6c_1M = 0;
IC6c_1dKBetau1_j2 Au1c_1 cosh Betau1_j hw1 CBu1c_1 sinh Betau1_j hw1 KCu1c_1 cos Betau1_j hw1 KDu1c_1 sin Betau1_j hw1 CBetau2_j2 Au2c_1 cosh Betau2_j hw1

CBu2c_1 sinh Betau2_j hw1 KCu2c_1 cos Betau2_j hw1 KDu2c_1 sin Betau2_j hw1 CBetaw1_j2 Aw1c_1KCw1c_1 = 0

IC @ x = 0, z = hw1+hw2 [6 IC's]
IC7c_1Md simplify subs x = 0, W3c_1 : IC7c_1d IC7c_1M = 0;

IC7c_1d Aw3c_1CCw3c_1 = 0

IC8c_1Md simplify subs z = hw1Chw2, diff U2c_1, z Csimplify subs x = 0, diff W3c_1, x : IC8c_1d IC8c_1M = 0;
IC8c_1d Betau2_j Au2c_1 sinh Betau2_j hw1Chw2 CBu2c_1 cosh Betau2_j hw1Chw2 KCu2c_1 sin Betau2_j hw1Chw2 CDu2c_1 cos Betau2_j hw1Chw2 CBetaw3_j Bw3c_1

CDw3c_1 = 0

IC9c_1Md simplify subs z = hw1Chw2, U2c_1 Ksimplify subs z = hw1Chw2, U4c_1 : IC9c_1d IC9c_1M = 0;
IC9c_1d Au2c_1 cosh Betau2_j hw1Chw2 CBu2c_1 sinh Betau2_j hw1Chw2 CCu2c_1 cos Betau2_j hw1Chw2 CDu2c_1 sin Betau2_j hw1Chw2 KAu4c_1 cosh Betau4_j hw1Chw2

KBu4c_1 sinh Betau4_j hw1Chw2 KCu4c_1 cos Betau4_j hw1Chw2 KDu4c_1 sin Betau4_j hw1Chw2 = 0

IC10c_1MdKsimplify subs z = hw1Chw2, diff U2c_1, z$2 Csimplify subs x = 0, diff W3c_1, x$2 : IC10c_1d IC10c_1M = 0;
IC10c_1dKBetau2_j2 Au2c_1 cosh Betau2_j hw1Chw2 CBu2c_1 sinh Betau2_j hw1Chw2 KCu2c_1 cos Betau2_j hw1Chw2 KDu2c_1 sin Betau2_j hw1Chw2 CBetaw3_j2 Aw3c_1

KCw3c_1 = 0

IC @ x = span, z = hw1 [8 IC's]
IC11c_1Md simplify subs x = span, W1c_1 Ksimplify subs x = span, W2c_1 : IC11c_1d IC11c_1M = 0;

IC11c_1d Aw1c_1 cosh Betaw1_j span CBw1c_1 sinh Betaw1_j span CCw1c_1 cos Betaw1_j span CDw1c_1 sin Betaw1_j span KAw2c_1 cosh Betaw2_j span KBw2c_1 sinh Betaw2_j span
KCw2c_1 cos Betaw2_j span KDw2c_1 sin Betaw2_j span = 0

IC12c_1Md simplify subs x = span, W1c_1 : IC12c_1d IC12c_1M = 0;
IC12c_1d Aw1c_1 cosh Betaw1_j span CBw1c_1 sinh Betaw1_j span CCw1c_1 cos Betaw1_j span CDw1c_1 sin Betaw1_j span = 0

IC13c_1Md simplify subs z = hw1, U3c_1 Ksimplify subs z = hw1, U4c_1 : IC13c_1d IC13c_1M = 0;
IC13c_1d Au3c_1 cosh Betau3_j hw1 CBu3c_1 sinh Betau3_j hw1 CCu3c_1 cos Betau3_j hw1 CDu3c_1 sin Betau3_j hw1 KAu4c_1 cosh Betau4_j hw1 KBu4c_1 sinh Betau4_j hw1
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KCu4c_1 cos Betau4_j hw1 KDu4c_1 sin Betau4_j hw1 = 0

IC14c_1Md simplify subs x = span, diff W1c_1, x Ksimplify subs x = span, diff W2c_1, x : IC14c_1d IC14c_1M = 0;
IC14c_1d Betaw1_j Aw1c_1 sinh Betaw1_j span CBw1c_1 cosh Betaw1_j span KCw1c_1 sin Betaw1_j span CDw1c_1 cos Betaw1_j span KBetaw2_j Aw2c_1 sinh Betaw2_j span

CBw2c_1 cosh Betaw2_j span KCw2c_1 sin Betaw2_j span CDw2c_1 cos Betaw2_j span = 0

IC15c_1Md simplify subs z = hw1, diff U3c_1, z Ksimplify subs z = hw1, diff U4c_1, z : IC15c_1d IC15c_1M = 0;
IC15c_1d Betau3_j Au3c_1 sinh Betau3_j hw1 CBu3c_1 cosh Betau3_j hw1 KCu3c_1 sin Betau3_j hw1 CDu3c_1 cos Betau3_j hw1 KBetau4_j Au4c_1 sinh Betau4_j hw1

CBu4c_1 cosh Betau4_j hw1 KCu4c_1 sin Betau4_j hw1 CDu4c_1 cos Betau4_j hw1 = 0

IC16c_1Md simplify subs x = span, diff W1c_1, x Csimplify subs z = hw1, diff U3c_1, z : IC16c_1d IC16c_1M = 0;
IC16c_1d Betaw1_j Aw1c_1 sinh Betaw1_j span CBw1c_1 cosh Betaw1_j span KCw1c_1 sin Betaw1_j span CDw1c_1 cos Betaw1_j span CBetau3_j Au3c_1 sinh Betau3_j hw1

CBu3c_1 cosh Betau3_j hw1 KCu3c_1 sin Betau3_j hw1 CDu3c_1 cos Betau3_j hw1 = 0

IC17c_1MdKsimplify subs x = span, diff W1c_1, x$2 Csimplify subs z = hw1, diff U4c_1, z$2 Csimplify subs x = span, diff W2c_1, x$2 Ksimplify subs z = hw1, diff U3c_1, z$2 : IC17c_1d
IC17c_1M = 0;

IC17c_1dKBetaw1_j2 Aw1c_1 cosh Betaw1_j span CBw1c_1 sinh Betaw1_j span KCw1c_1 cos Betaw1_j span KDw1c_1 sin Betaw1_j span CBetau4_j2 Au4c_1 cosh Betau4_j hw1

CBu4c_1 sinh Betau4_j hw1 KCu4c_1 cos Betau4_j hw1 KDu4c_1 sin Betau4_j hw1 CBetaw2_j2 Aw2c_1 cosh Betaw2_j span CBw2c_1 sinh Betaw2_j span KCw2c_1 cos Betaw2_j span

KDw2c_1 sin Betaw2_j span KBetau3_j2 Au3c_1 cosh Betau3_j hw1 CBu3c_1 sinh Betau3_j hw1 KCu3c_1 cos Betau3_j hw1 KDu3c_1 sin Betau3_j hw1 = 0

IC18c_1Md simplify subs z = hw1, U3c_1 : IC18c_1d IC18c_1M = 0;
IC18c_1d Au3c_1 cosh Betau3_j hw1 CBu3c_1 sinh Betau3_j hw1 CCu3c_1 cos Betau3_j hw1 CDu3c_1 sin Betau3_j hw1 = 0

IC @ x = span, z = hw1+hw2 [6 IC's]
IC19c_1Md simplify subs x = span, W3c_1 Ksimplify subs x = span, W4c_1 : IC19c_1d IC19c_1M = 0;

IC19c_1d Aw3c_1 cosh Betaw3_j span CBw3c_1 sinh Betaw3_j span CCw3c_1 cos Betaw3_j span CDw3c_1 sin Betaw3_j span KAw4c_1 cosh Betaw4_j span KBw4c_1 sinh Betaw4_j span
KCw4c_1 cos Betaw4_j span KDw4c_1 sin Betaw4_j span = 0

IC20c_1Md simplify subs x = span, W3c_1 : IC20c_1d IC20c_1M = 0;
IC20c_1d Aw3c_1 cosh Betaw3_j span CBw3c_1 sinh Betaw3_j span CCw3c_1 cos Betaw3_j span CDw3c_1 sin Betaw3_j span = 0

IC21c_1Md simplify subs x = span, diff W3c_1, x Ksimplify subs x = span, diff W4c_1, x : IC21c_1d IC21c_1M = 0;
IC21c_1d Betaw3_j Aw3c_1 sinh Betaw3_j span CBw3c_1 cosh Betaw3_j span KCw3c_1 sin Betaw3_j span CDw3c_1 cos Betaw3_j span KBetaw4_j Aw4c_1 sinh Betaw4_j span

CBw4c_1 cosh Betaw4_j span KCw4c_1 sin Betaw4_j span CDw4c_1 cos Betaw4_j span = 0

IC22c_1Md simplify subs x = span, diff W3c_1, x Csimplify subs z = hw1Chw2, diff U4c_1, z : IC22c_1d IC22c_1M = 0;
IC22c_1d Betaw3_j Aw3c_1 sinh Betaw3_j span CBw3c_1 cosh Betaw3_j span KCw3c_1 sin Betaw3_j span CDw3c_1 cos Betaw3_j span CBetau4_j Au4c_1 sinh Betau4_j hw1Chw2

CBu4c_1 cosh Betau4_j hw1Chw2 KCu4c_1 sin Betau4_j hw1Chw2 CDu4c_1 cos Betau4_j hw1Chw2 = 0

IC23c_1MdKsimplify subs x = span, diff W3c_1, x$2 Ksimplify subs z = hw1Chw2, diff U4c_1, z$2 Csimplify subs x = span, diff W4c_1, x$2 : IC23c_1d IC23c_1M = 0;
IC23c_1dKBetaw3_j2 Aw3c_1 cosh Betaw3_j span CBw3c_1 sinh Betaw3_j span KCw3c_1 cos Betaw3_j span KDw3c_1 sin Betaw3_j span KBetau4_j2 Au4c_1 cosh Betau4_j hw1Chw2

CBu4c_1 sinh Betau4_j hw1Chw2 KCu4c_1 cos Betau4_j hw1Chw2 KDu4c_1 sin Betau4_j hw1Chw2 CBetaw4_j2 Aw4c_1 cosh Betaw4_j span CBw4c_1 sinh Betaw4_j span
KCw4c_1 cos Betaw4_j span KDw4c_1 sin Betaw4_j span = 0

IC24c_1Md simplify subs z = hw1Chw2, U4c_1 : IC24c_1d IC24c_1M = 0;
IC24c_1d Au4c_1 cosh Betau4_j hw1Chw2 CBu4c_1 sinh Betau4_j hw1Chw2 CCu4c_1 cos Betau4_j hw1Chw2 CDu4c_1 sin Betau4_j hw1Chw2 = 0

interface rtablesize = 35 ;
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Coefficient matrix
Mc_jdMatrix
 coeff BC1c_1M, Aw1c_1 , coeff BC1c_1M, Bw1c_1 , coeff BC1c_1M, Cw1c_1 , coeff BC1c_1M, Dw1c_1 ,
      coeff BC1c_1M, Aw2c_1 , coeff BC1c_1M, Bw2c_1 , coeff BC1c_1M, Cw2c_1 , coeff BC1c_1M, Dw2c_1 ,
      coeff BC1c_1M, Aw3c_1 , coeff BC1c_1M, Bw3c_1 , coeff BC1c_1M, Cw3c_1 , coeff BC1c_1M, Dw3c_1 ,
      coeff BC1c_1M, Aw4c_1 , coeff BC1c_1M, Bw4c_1 , coeff BC1c_1M, Cw4c_1 , coeff BC1c_1M, Dw4c_1 ,
      coeff BC1c_1M, Au1c_1 , coeff BC1c_1M, Bu1c_1 , coeff BC1c_1M, Cu1c_1 , coeff BC1c_1M, Du1c_1 ,



      coeff BC1c_1M, Au2c_1 , coeff BC1c_1M, Bu2c_1 , coeff BC1c_1M, Cu2c_1 , coeff BC1c_1M, Du2c_1 ,
      coeff BC1c_1M, Au3c_1 , coeff BC1c_1M, Bu3c_1 , coeff BC1c_1M, Cu3c_1 , coeff BC1c_1M, Du3c_1 ,
      coeff BC1c_1M, Au4c_1 , coeff BC1c_1M, Bu4c_1 , coeff BC1c_1M, Cu4c_1 , coeff BC1c_1M, Du4c_1 ,
 
 coeff BC2c_1M, Aw1c_1 , coeff BC2c_1M, Bw1c_1 , coeff BC2c_1M, Cw1c_1 , coeff BC2c_1M, Dw1c_1 ,
      coeff BC2c_1M, Aw2c_1 , coeff BC2c_1M, Bw2c_1 , coeff BC2c_1M, Cw2c_1 , coeff BC2c_1M, Dw2c_1 ,
      coeff BC2c_1M, Aw3c_1 , coeff BC2c_1M, Bw3c_1 , coeff BC2c_1M, Cw3c_1 , coeff BC2c_1M, Dw3c_1 ,
      coeff BC2c_1M, Aw4c_1 , coeff BC2c_1M, Bw4c_1 , coeff BC2c_1M, Cw4c_1 , coeff BC2c_1M, Dw4c_1 ,
      coeff BC2c_1M, Au1c_1 , coeff BC2c_1M, Bu1c_1 , coeff BC2c_1M, Cu1c_1 , coeff BC2c_1M, Du1c_1 ,
      coeff BC2c_1M, Au2c_1 , coeff BC2c_1M, Bu2c_1 , coeff BC2c_1M, Cu2c_1 , coeff BC2c_1M, Du2c_1 ,
      coeff BC2c_1M, Au3c_1 , coeff BC2c_1M, Bu3c_1 , coeff BC2c_1M, Cu3c_1 , coeff BC2c_1M, Du3c_1 ,
      coeff BC2c_1M, Au4c_1 , coeff BC2c_1M, Bu4c_1 , coeff BC2c_1M, Cu4c_1 , coeff BC2c_1M, Du4c_1 ,
 
 coeff BC3c_1M, Aw1c_1 , coeff BC3c_1M, Bw1c_1 , coeff BC3c_1M, Cw1c_1 , coeff BC3c_1M, Dw1c_1 ,
      coeff BC3c_1M, Aw2c_1 , coeff BC3c_1M, Bw2c_1 , coeff BC3c_1M, Cw2c_1 , coeff BC3c_1M, Dw2c_1 ,
      coeff BC3c_1M, Aw3c_1 , coeff BC3c_1M, Bw3c_1 , coeff BC3c_1M, Cw3c_1 , coeff BC3c_1M, Dw3c_1 ,
      coeff BC3c_1M, Aw4c_1 , coeff BC3c_1M, Bw4c_1 , coeff BC3c_1M, Cw4c_1 , coeff BC3c_1M, Dw4c_1 ,
      coeff BC3c_1M, Au1c_1 , coeff BC3c_1M, Bu1c_1 , coeff BC3c_1M, Cu1c_1 , coeff BC3c_1M, Du1c_1 ,
      coeff BC3c_1M, Au2c_1 , coeff BC3c_1M, Bu2c_1 , coeff BC3c_1M, Cu2c_1 , coeff BC3c_1M, Du2c_1 ,
      coeff BC3c_1M, Au3c_1 , coeff BC3c_1M, Bu3c_1 , coeff BC3c_1M, Cu3c_1 , coeff BC3c_1M, Du3c_1 ,
      coeff BC3c_1M, Au4c_1 , coeff BC3c_1M, Bu4c_1 , coeff BC3c_1M, Cu4c_1 , coeff BC3c_1M, Du4c_1 ,
 
 coeff BC4c_1M, Aw1c_1 , coeff BC4c_1M, Bw1c_1 , coeff BC4c_1M, Cw1c_1 , coeff BC4c_1M, Dw1c_1 ,
      coeff BC4c_1M, Aw2c_1 , coeff BC4c_1M, Bw2c_1 , coeff BC4c_1M, Cw2c_1 , coeff BC4c_1M, Dw2c_1 ,
      coeff BC4c_1M, Aw3c_1 , coeff BC4c_1M, Bw3c_1 , coeff BC4c_1M, Cw3c_1 , coeff BC4c_1M, Dw3c_1 ,
      coeff BC4c_1M, Aw4c_1 , coeff BC4c_1M, Bw4c_1 , coeff BC4c_1M, Cw4c_1 , coeff BC4c_1M, Dw4c_1 ,
      coeff BC4c_1M, Au1c_1 , coeff BC4c_1M, Bu1c_1 , coeff BC4c_1M, Cu1c_1 , coeff BC4c_1M, Du1c_1 ,
      coeff BC4c_1M, Au2c_1 , coeff BC4c_1M, Bu2c_1 , coeff BC4c_1M, Cu2c_1 , coeff BC4c_1M, Du2c_1 ,
      coeff BC4c_1M, Au3c_1 , coeff BC4c_1M, Bu3c_1 , coeff BC4c_1M, Cu3c_1 , coeff BC4c_1M, Du3c_1 ,
      coeff BC4c_1M, Au4c_1 , coeff BC4c_1M, Bu4c_1 , coeff BC4c_1M, Cu4c_1 , coeff BC4c_1M, Du4c_1 ,
 
 coeff BC5c_1M, Aw1c_1 , coeff BC5c_1M, Bw1c_1 , coeff BC5c_1M, Cw1c_1 , coeff BC5c_1M, Dw1c_1 ,
      coeff BC5c_1M, Aw2c_1 , coeff BC5c_1M, Bw2c_1 , coeff BC5c_1M, Cw2c_1 , coeff BC5c_1M, Dw2c_1 ,
      coeff BC5c_1M, Aw3c_1 , coeff BC5c_1M, Bw3c_1 , coeff BC5c_1M, Cw3c_1 , coeff BC5c_1M, Dw3c_1 ,
      coeff BC5c_1M, Aw4c_1 , coeff BC5c_1M, Bw4c_1 , coeff BC5c_1M, Cw4c_1 , coeff BC5c_1M, Dw4c_1 ,
      coeff BC5c_1M, Au1c_1 , coeff BC5c_1M, Bu1c_1 , coeff BC5c_1M, Cu1c_1 , coeff BC5c_1M, Du1c_1 ,
      coeff BC5c_1M, Au2c_1 , coeff BC5c_1M, Bu2c_1 , coeff BC5c_1M, Cu2c_1 , coeff BC5c_1M, Du2c_1 ,
      coeff BC5c_1M, Au3c_1 , coeff BC5c_1M, Bu3c_1 , coeff BC5c_1M, Cu3c_1 , coeff BC5c_1M, Du3c_1 ,
      coeff BC5c_1M, Au4c_1 , coeff BC5c_1M, Bu4c_1 , coeff BC5c_1M, Cu4c_1 , coeff BC5c_1M, Du4c_1 ,
 
 coeff BC6c_1M, Aw1c_1 , coeff BC6c_1M, Bw1c_1 , coeff BC6c_1M, Cw1c_1 , coeff BC6c_1M, Dw1c_1 ,
      coeff BC6c_1M, Aw2c_1 , coeff BC6c_1M, Bw2c_1 , coeff BC6c_1M, Cw2c_1 , coeff BC6c_1M, Dw2c_1 ,
      coeff BC6c_1M, Aw3c_1 , coeff BC6c_1M, Bw3c_1 , coeff BC6c_1M, Cw3c_1 , coeff BC6c_1M, Dw3c_1 ,
      coeff BC6c_1M, Aw4c_1 , coeff BC6c_1M, Bw4c_1 , coeff BC6c_1M, Cw4c_1 , coeff BC6c_1M, Dw4c_1 ,
      coeff BC6c_1M, Au1c_1 , coeff BC6c_1M, Bu1c_1 , coeff BC6c_1M, Cu1c_1 , coeff BC6c_1M, Du1c_1 ,
      coeff BC6c_1M, Au2c_1 , coeff BC6c_1M, Bu2c_1 , coeff BC6c_1M, Cu2c_1 , coeff BC6c_1M, Du2c_1 ,
      coeff BC6c_1M, Au3c_1 , coeff BC6c_1M, Bu3c_1 , coeff BC6c_1M, Cu3c_1 , coeff BC6c_1M, Du3c_1 ,
      coeff BC6c_1M, Au4c_1 , coeff BC6c_1M, Bu4c_1 , coeff BC6c_1M, Cu4c_1 , coeff BC6c_1M, Du4c_1 ,
 
 coeff BC7c_1M, Aw1c_1 , coeff BC7c_1M, Bw1c_1 , coeff BC7c_1M, Cw1c_1 , coeff BC7c_1M, Dw1c_1 ,
      coeff BC7c_1M, Aw2c_1 , coeff BC7c_1M, Bw2c_1 , coeff BC7c_1M, Cw2c_1 , coeff BC7c_1M, Dw2c_1 ,
      coeff BC7c_1M, Aw3c_1 , coeff BC7c_1M, Bw3c_1 , coeff BC7c_1M, Cw3c_1 , coeff BC7c_1M, Dw3c_1 ,



      coeff BC7c_1M, Aw4c_1 , coeff BC7c_1M, Bw4c_1 , coeff BC7c_1M, Cw4c_1 , coeff BC7c_1M, Dw4c_1 ,
      coeff BC7c_1M, Au1c_1 , coeff BC7c_1M, Bu1c_1 , coeff BC7c_1M, Cu1c_1 , coeff BC7c_1M, Du1c_1 ,
      coeff BC7c_1M, Au2c_1 , coeff BC7c_1M, Bu2c_1 , coeff BC7c_1M, Cu2c_1 , coeff BC7c_1M, Du2c_1 ,
      coeff BC7c_1M, Au3c_1 , coeff BC7c_1M, Bu3c_1 , coeff BC7c_1M, Cu3c_1 , coeff BC7c_1M, Du3c_1 ,
      coeff BC7c_1M, Au4c_1 , coeff BC7c_1M, Bu4c_1 , coeff BC7c_1M, Cu4c_1 , coeff BC7c_1M, Du4c_1 ,
 
 coeff BC8c_1M, Aw1c_1 , coeff BC8c_1M, Bw1c_1 , coeff BC8c_1M, Cw1c_1 , coeff BC8c_1M, Dw1c_1 ,
      coeff BC8c_1M, Aw2c_1 , coeff BC8c_1M, Bw2c_1 , coeff BC8c_1M, Cw2c_1 , coeff BC8c_1M, Dw2c_1 ,
      coeff BC8c_1M, Aw3c_1 , coeff BC8c_1M, Bw3c_1 , coeff BC8c_1M, Cw3c_1 , coeff BC8c_1M, Dw3c_1 ,
      coeff BC8c_1M, Aw4c_1 , coeff BC8c_1M, Bw4c_1 , coeff BC8c_1M, Cw4c_1 , coeff BC8c_1M, Dw4c_1 ,
      coeff BC8c_1M, Au1c_1 , coeff BC8c_1M, Bu1c_1 , coeff BC8c_1M, Cu1c_1 , coeff BC8c_1M, Du1c_1 ,
      coeff BC8c_1M, Au2c_1 , coeff BC8c_1M, Bu2c_1 , coeff BC8c_1M, Cu2c_1 , coeff BC8c_1M, Du2c_1 ,
      coeff BC8c_1M, Au3c_1 , coeff BC8c_1M, Bu3c_1 , coeff BC8c_1M, Cu3c_1 , coeff BC8c_1M, Du3c_1 ,
      coeff BC8c_1M, Au4c_1 , coeff BC8c_1M, Bu4c_1 , coeff BC8c_1M, Cu4c_1 , coeff BC8c_1M, Du4c_1 ,
 
 coeff IC1c_1M, Aw1c_1 , coeff IC1c_1M, Bw1c_1 , coeff IC1c_1M, Cw1c_1 , coeff IC1c_1M, Dw1c_1 ,
      coeff IC1c_1M, Aw2c_1 , coeff IC1c_1M, Bw2c_1 , coeff IC1c_1M, Cw2c_1 , coeff IC1c_1M, Dw2c_1 ,
      coeff IC1c_1M, Aw3c_1 , coeff IC1c_1M, Bw3c_1 , coeff IC1c_1M, Cw3c_1 , coeff IC1c_1M, Dw3c_1 ,
      coeff IC1c_1M, Aw4c_1 , coeff IC1c_1M, Bw4c_1 , coeff IC1c_1M, Cw4c_1 , coeff IC1c_1M, Dw4c_1 ,
      coeff IC1c_1M, Au1c_1 , coeff IC1c_1M, Bu1c_1 , coeff IC1c_1M, Cu1c_1 , coeff IC1c_1M, Du1c_1 ,
      coeff IC1c_1M, Au2c_1 , coeff IC1c_1M, Bu2c_1 , coeff IC1c_1M, Cu2c_1 , coeff IC1c_1M, Du2c_1 ,
      coeff IC1c_1M, Au3c_1 , coeff IC1c_1M, Bu3c_1 , coeff IC1c_1M, Cu3c_1 , coeff IC1c_1M, Du3c_1 ,
      coeff IC1c_1M, Au4c_1 , coeff IC1c_1M, Bu4c_1 , coeff IC1c_1M, Cu4c_1 , coeff IC1c_1M, Du4c_1 ,
 
 coeff IC2c_1M, Aw1c_1 , coeff IC2c_1M, Bw1c_1 , coeff IC2c_1M, Cw1c_1 , coeff IC2c_1M, Dw1c_1 ,
      coeff IC2c_1M, Aw2c_1 , coeff IC2c_1M, Bw2c_1 , coeff IC2c_1M, Cw2c_1 , coeff IC2c_1M, Dw2c_1 ,
      coeff IC2c_1M, Aw3c_1 , coeff IC2c_1M, Bw3c_1 , coeff IC2c_1M, Cw3c_1 , coeff IC2c_1M, Dw3c_1 ,
      coeff IC2c_1M, Aw4c_1 , coeff IC2c_1M, Bw4c_1 , coeff IC2c_1M, Cw4c_1 , coeff IC2c_1M, Dw4c_1 ,
      coeff IC2c_1M, Au1c_1 , coeff IC2c_1M, Bu1c_1 , coeff IC2c_1M, Cu1c_1 , coeff IC2c_1M, Du1c_1 ,
      coeff IC2c_1M, Au2c_1 , coeff IC2c_1M, Bu2c_1 , coeff IC2c_1M, Cu2c_1 , coeff IC2c_1M, Du2c_1 ,
      coeff IC2c_1M, Au3c_1 , coeff IC2c_1M, Bu3c_1 , coeff IC2c_1M, Cu3c_1 , coeff IC2c_1M, Du3c_1 ,
      coeff IC2c_1M, Au4c_1 , coeff IC2c_1M, Bu4c_1 , coeff IC2c_1M, Cu4c_1 , coeff IC2c_1M, Du4c_1 ,
 
 coeff IC3c_1M, Aw1c_1 , coeff IC3c_1M, Bw1c_1 , coeff IC3c_1M, Cw1c_1 , coeff IC3c_1M, Dw1c_1 ,
      coeff IC3c_1M, Aw2c_1 , coeff IC3c_1M, Bw2c_1 , coeff IC3c_1M, Cw2c_1 , coeff IC3c_1M, Dw2c_1 ,
      coeff IC3c_1M, Aw3c_1 , coeff IC3c_1M, Bw3c_1 , coeff IC3c_1M, Cw3c_1 , coeff IC3c_1M, Dw3c_1 ,
      coeff IC3c_1M, Aw4c_1 , coeff IC3c_1M, Bw4c_1 , coeff IC3c_1M, Cw4c_1 , coeff IC3c_1M, Dw4c_1 ,
      coeff IC3c_1M, Au1c_1 , coeff IC3c_1M, Bu1c_1 , coeff IC3c_1M, Cu1c_1 , coeff IC3c_1M, Du1c_1 ,
      coeff IC3c_1M, Au2c_1 , coeff IC3c_1M, Bu2c_1 , coeff IC3c_1M, Cu2c_1 , coeff IC3c_1M, Du2c_1 ,
      coeff IC3c_1M, Au3c_1 , coeff IC3c_1M, Bu3c_1 , coeff IC3c_1M, Cu3c_1 , coeff IC3c_1M, Du3c_1 ,
      coeff IC3c_1M, Au4c_1 , coeff IC3c_1M, Bu4c_1 , coeff IC3c_1M, Cu4c_1 , coeff IC3c_1M, Du4c_1 ,
 
 coeff IC4c_1M, Aw1c_1 , coeff IC4c_1M, Bw1c_1 , coeff IC4c_1M, Cw1c_1 , coeff IC4c_1M, Dw1c_1 ,
      coeff IC4c_1M, Aw2c_1 , coeff IC4c_1M, Bw2c_1 , coeff IC4c_1M, Cw2c_1 , coeff IC4c_1M, Dw2c_1 ,
      coeff IC4c_1M, Aw3c_1 , coeff IC4c_1M, Bw3c_1 , coeff IC4c_1M, Cw3c_1 , coeff IC4c_1M, Dw3c_1 ,
      coeff IC4c_1M, Aw4c_1 , coeff IC4c_1M, Bw4c_1 , coeff IC4 c_1M, Cw4c_1 , coeff IC4c_1M, Dw4c_1 ,
      coeff IC4c_1M, Au1c_1 , coeff IC4c_1M, Bu1c_1 , coeff IC4c_1M, Cu1c_1 , coeff IC4c_1M, Du1c_1 ,
      coeff IC4c_1M, Au2c_1 , coeff IC4c_1M, Bu2c_1 , coeff IC4c_1M, Cu2c_1 , coeff IC4c_1M, Du2c_1 ,
      coeff IC4c_1M, Au3c_1 , coeff IC4c_1M, Bu3c_1 , coeff IC4c_1M, Cu3c_1 , coeff IC4c_1M, Du3c_1 ,
      coeff IC4c_1M, Au4c_1 , coeff IC4c_1M, Bu4c_1 , coeff IC4c_1M, Cu4c_1 , coeff IC4c_1M, Du4c_1 ,
 
 coeff IC5c_1M, Aw1c_1 , coeff IC5c_1M, Bw1c_1 , coeff IC5c_1M, Cw1c_1 , coeff IC5c_1M, Dw1c_1 ,



      coeff IC5c_1M, Aw2c_1 , coeff IC5c_1M, Bw2c_1 , coeff IC5c_1M, Cw2c_1 , coeff IC5c_1M, Dw2c_1 ,
      coeff IC5c_1M, Aw3c_1 , coeff IC5c_1M, Bw3c_1 , coeff IC5c_1M, Cw3c_1 , coeff IC5c_1M, Dw3c_1 ,
      coeff IC5c_1M, Aw4c_1 , coeff IC5c_1M, Bw4c_1 , coeff IC5c_1M, Cw4c_1 , coeff IC5c_1M, Dw4c_1 ,
      coeff IC5c_1M, Au1c_1 , coeff IC5c_1M, Bu1c_1 , coeff IC5c_1M, Cu1c_1 , coeff IC5c_1M, Du1c_1 ,
      coeff IC5c_1M, Au2c_1 , coeff IC5c_1M, Bu2c_1 , coeff IC5c_1M, Cu2c_1 , coeff IC5c_1M, Du2c_1 ,
      coeff IC5c_1M, Au3c_1 , coeff IC5c_1M, Bu3c_1 , coeff IC5c_1M, Cu3c_1 , coeff IC5c_1M, Du3c_1 ,
      coeff IC5c_1M, Au4c_1 , coeff IC5c_1M, Bu4c_1 , coeff IC5c_1M, Cu4c_1 , coeff IC5c_1M, Du4c_1 ,
 
 coeff IC6c_1M, Aw1c_1 , coeff IC6c_1M, Bw1c_1 , coeff IC6c_1M, Cw1c_1 , coeff IC6c_1M, Dw1c_1 ,
      coeff IC6c_1M, Aw2c_1 , coeff IC6c_1M, Bw2c_1 , coeff IC6c_1M, Cw2c_1 , coeff IC6c_1M, Dw2c_1 ,
      coeff IC6c_1M, Aw3c_1 , coeff IC6c_1M, Bw3c_1 , coeff IC6c_1M, Cw3c_1 , coeff IC6c_1M, Dw3c_1 ,
      coeff IC6c_1M, Aw4c_1 , coeff IC6 c_1M, Bw4c_1 , coeff IC6c_1M, Cw4c_1 , coeff IC6c_1M, Dw4c_1 ,
      coeff IC6c_1M, Au1c_1 , coeff IC6c_1M, Bu1c_1 , coeff IC6c_1M, Cu1c_1 , coeff IC6c_1M, Du1c_1 ,
      coeff IC6c_1M, Au2c_1 , coeff IC6c_1M, Bu2c_1 , coeff IC6c_1M, Cu2c_1 , coeff IC6c_1M, Du2c_1 ,
      coeff IC6c_1M, Au3c_1 , coeff IC6c_1M, Bu3c_1 , coeff IC6c_1M, Cu3c_1 , coeff IC6c_1M, Du3c_1 ,
      coeff IC6c_1M, Au4c_1 , coeff IC6c_1M, Bu4c_1 , coeff IC6c_1M, Cu4c_1 , coeff IC6c_1M, Du4c_1 ,
 
 coeff IC7c_1M, Aw1c_1 , coeff IC7c_1M, Bw1c_1 , coeff IC7c_1M, Cw1c_1 , coeff IC7c_1M, Dw1c_1 ,
      coeff IC7c_1M, Aw2c_1 , coeff IC7c_1M, Bw2c_1 , coeff IC7c_1M, Cw2c_1 , coeff IC7c_1M, Dw2c_1 ,
      coeff IC7c_1M, Aw3c_1 , coeff IC7c_1M, Bw3c_1 , coeff IC7c_1M, Cw3c_1 , coeff IC7c_1M, Dw3c_1 ,
      coeff IC7c_1M, Aw4c_1 , coeff IC7c_1M, Bw4c_1 , coeff IC7c_1M, Cw4c_1 , coeff IC7c_1M, Dw4c_1 ,
      coeff IC7c_1M, Au1c_1 , coeff IC7c_1M, Bu1c_1 , coeff IC7c_1M, Cu1c_1 , coeff IC7c_1M, Du1c_1 ,
      coeff IC7c_1M, Au2c_1 , coeff IC7c_1M, Bu2c_1 , coeff IC7c_1M, Cu2c_1 , coeff IC7c_1M, Du2c_1 ,
      coeff IC7c_1M, Au3c_1 , coeff IC7c_1M, Bu3c_1 , coeff IC7c_1M, Cu3c_1 , coeff IC7c_1M, Du3c_1 ,
      coeff IC7c_1M, Au4c_1 , coeff IC7c_1M, Bu4c_1 , coeff IC7c_1M, Cu4c_1 , coeff IC7c_1M, Du4c_1 ,
 
 coeff IC8c_1M, Aw1c_1 , coeff IC8c_1M, Bw1c_1 , coeff IC8c_1M, Cw1c_1 , coeff IC8c_1M, Dw1c_1 ,
      coeff IC8c_1M, Aw2c_1 , coeff IC8c_1M, Bw2c_1 , coeff IC8c_1M, Cw2c_1 , coeff IC8c_1M, Dw2c_1 ,
      coeff IC8c_1M, Aw3c_1 , coeff IC8c_1M, Bw3c_1 , coeff IC8c_1M, Cw3c_1 , coeff IC8c_1M, Dw3c_1 ,
      coeff IC8c_1M, Aw4c_1 , coeff IC8c_1M, Bw4c_1 , coeff IC8c_1M, Cw4c_1 , coeff IC8c_1M, Dw4c_1 ,
      coeff IC8c_1M, Au1c_1 , coeff IC8c_1M, Bu1c_1 , coeff IC8c_1M, Cu1c_1 , coeff IC8c_1M, Du1c_1 ,
      coeff IC8c_1M, Au2c_1 , coeff IC8c_1M, Bu2c_1 , coeff IC8c_1M, Cu2c_1 , coeff IC8c_1M, Du2c_1 ,
      coeff IC8c_1M, Au3c_1 , coeff IC8c_1M, Bu3c_1 , coeff IC8c_1M, Cu3c_1 , coeff IC8c_1M, Du3c_1 ,
      coeff IC8c_1M, Au4c_1 , coeff IC8c_1M, Bu4c_1 , coeff IC8c_1M, Cu4c_1 , coeff IC8c_1M, Du4c_1 ,
 
 coeff IC9c_1M, Aw1c_1 , coeff IC9c_1M, Bw1c_1 , coeff IC9c_1M, Cw1c_1 , coeff IC9c_1M, Dw1c_1 ,
      coeff IC9c_1M, Aw2c_1 , coeff IC9c_1M, Bw2c_1 , coeff IC9c_1M, Cw2c_1 , coeff IC9c_1M, Dw2c_1 ,
      coeff IC9c_1M, Aw3c_1 , coeff IC9c_1M, Bw3c_1 , coeff IC9c_1M, Cw3c_1 , coeff IC9c_1M, Dw3c_1 ,
      coeff IC9c_1M, Aw4c_1 , coeff IC9c_1M, Bw4c_1 , coeff IC9c_1M, Cw4c_1 , coeff IC9c_1M, Dw4c_1 ,
      coeff IC9c_1M, Au1c_1 , coeff IC9c_1M, Bu1c_1 , coeff IC9c_1M, Cu1c_1 , coeff IC9c_1M, Du1c_1 ,
      coeff IC9c_1M, Au2c_1 , coeff IC9c_1M, Bu2c_1 , coeff IC9c_1M, Cu2c_1 , coeff IC9c_1M, Du2c_1 ,
      coeff IC9c_1M, Au3c_1 , coeff IC9c_1M, Bu3c_1 , coeff IC9c_1M, Cu3c_1 , coeff IC9c_1M, Du3c_1 ,
      coeff IC9c_1M, Au4c_1 , coeff IC9c_1M, Bu4c_1 , coeff IC9c_1M, Cu4c_1 , coeff IC9c_1M, Du4c_1 ,
 
 coeff IC10c_1M, Aw1c_1 , coeff IC10c_1M, Bw1c_1 , coeff IC10c_1M, Cw1c_1 , coeff IC10c_1M, Dw1c_1 ,
      coeff IC10c_1M, Aw2c_1 , coeff IC10c_1M, Bw2c_1 , coeff IC10c_1M, Cw2c_1 , coeff IC10c_1M, Dw2c_1 ,
      coeff IC10c_1M, Aw3c_1 , coeff IC10c_1M, Bw3c_1 , coeff IC10c_1M, Cw3c_1 , coeff IC10c_1M, Dw3c_1 ,
      coeff IC10c_1M, Aw4c_1 , coeff IC10c_1M, Bw4c_1 , coeff IC10c_1M, Cw4c_1 , coeff IC10c_1M, Dw4c_1 ,
      coeff IC10c_1M, Au1c_1 , coeff IC10c_1M, Bu1c_1 , coeff IC10c_1M, Cu1c_1 , coeff IC10c_1M, Du1c_1 ,
      coeff IC10c_1M, Au2c_1 , coeff IC10c_1M, Bu2c_1 , coeff IC10c_1M, Cu2c_1 , coeff IC10c_1M, Du2c_1 ,
      coeff IC10c_1M, Au3c_1 , coeff IC10c_1M, Bu3c_1 , coeff IC10c_1M, Cu3c_1 , coeff IC10c_1M, Du3c_1 ,
      coeff IC10c_1M, Au4c_1 , coeff IC10c_1M, Bu4c_1 , coeff IC10c_1M, Cu4c_1 , coeff IC10c_1M, Du4c_1 ,



 
 coeff IC11c_1M, Aw1c_1 , coeff IC11c_1M, Bw1c_1 , coeff IC11c_1M, Cw1c_1 , coeff IC11c_1M, Dw1c_1 ,
      coeff IC11c_1M, Aw2c_1 , coeff IC11c_1M, Bw2c_1 , coeff IC11c_1M, Cw2c_1 , coeff IC11c_1M, Dw2c_1 ,
      coeff IC11c_1M, Aw3c_1 , coeff IC11c_1M, Bw3c_1 , coeff IC11c_1M, Cw3c_1 , coeff IC11c_1M, Dw3c_1 ,
      coeff IC11c_1M, Aw4c_1 , coeff IC11c_1M, Bw4c_1 , coeff IC11c_1M, Cw4c_1 , coeff IC11c_1M, Dw4c_1 ,
      coeff IC11c_1M, Au1c_1 , coeff IC11c_1M, Bu1c_1 , coeff IC11c_1M, Cu1c_1 , coeff IC11c_1M, Du1c_1 ,
      coeff IC11c_1M, Au2c_1 , coeff IC11c_1M, Bu2c_1 , coeff IC11c_1M, Cu2c_1 , coeff IC11c_1M, Du2c_1 ,
      coeff IC11c_1M, Au3c_1 , coeff IC11c_1M, Bu3c_1 , coeff IC11c_1M, Cu3c_1 , coeff IC11c_1M, Du3c_1 ,
      coeff IC11c_1M, Au4c_1 , coeff IC11c_1M, Bu4c_1 , coeff IC11c_1M, Cu4c_1 , coeff IC11c_1M, Du4c_1 ,
 
 coeff IC12c_1M, Aw1c_1 , coeff IC12c_1M, Bw1c_1 , coeff IC12c_1M, Cw1c_1 , coeff IC12c_1M, Dw1c_1 ,
      coeff IC12c_1M, Aw2c_1 , coeff IC12c_1M, Bw2c_1 , coeff IC12c_1M, Cw2c_1 , coeff IC12c_1M, Dw2c_1 ,
      coeff IC12c_1M, Aw3c_1 , coeff IC12c_1M, Bw3c_1 , coeff IC12c_1M, Cw3c_1 , coeff IC12c_1M, Dw3c_1 ,
      coeff IC12c_1M, Aw4c_1 , coeff IC12c_1M, Bw4c_1 , coeff IC12c_1M, Cw4c_1 , coeff IC12c_1M, Dw4c_1 ,
      coeff IC12c_1M, Au1c_1 , coeff IC12c_1M, Bu1c_1 , coeff IC12c_1M, Cu1c_1 , coeff IC12c_1M, Du1c_1 ,
      coeff IC12c_1M, Au2c_1 , coeff IC12c_1M, Bu2c_1 , coeff IC12c_1M, Cu2c_1 , coeff IC12c_1M, Du2c_1 ,
      coeff IC12c_1M, Au3c_1 , coeff IC12c_1M, Bu3c_1 , coeff IC12c_1M, Cu3c_1 , coeff IC12c_1M, Du3c_1 ,
      coeff IC12c_1M, Au4c_1 , coeff IC12c_1M, Bu4c_1 , coeff IC12c_1M, Cu4c_1 , coeff IC12c_1M, Du4c_1 ,
 
 coeff IC13c_1M, Aw1c_1 , coeff IC13c_1M, Bw1c_1 , coeff IC13c_1M, Cw1c_1 , coeff IC13c_1M, Dw1c_1 ,
      coeff IC13c_1M, Aw2c_1 , coeff IC13c_1M, Bw2c_1 , coeff IC13c_1M, Cw2c_1 , coeff IC13c_1M, Dw2c_1 ,
      coeff IC13c_1M, Aw3c_1 , coeff IC13c_1M, Bw3c_1 , coeff IC13c_1M, Cw3c_1 , coeff IC13c_1M, Dw3c_1 ,
      coeff IC13c_1M, Aw4c_1 , coeff IC13c_1M, Bw4c_1 , coeff IC13c_1M, Cw4c_1 , coeff IC13c_1M, Dw4c_1 ,
      coeff IC13c_1M, Au1c_1 , coeff IC13c_1M, Bu1c_1 , coeff IC13c_1M, Cu1c_1 , coeff IC13c_1M, Du1c_1 ,
      coeff IC13c_1M, Au2c_1 , coeff IC13c_1M, Bu2c_1 , coeff IC13c_1M, Cu2c_1 , coeff IC13c_1M, Du2c_1 ,
      coeff IC13c_1M, Au3c_1 , coeff IC13c_1M, Bu3c_1 , coeff IC13c_1M, Cu3c_1 , coeff IC13c_1M, Du3c_1 ,
      coeff IC13c_1M, Au4c_1 , coeff IC13c_1M, Bu4c_1 , coeff IC13c_1M, Cu4c_1 , coeff IC13c_1M, Du4c_1 ,
 
 coeff IC14c_1M, Aw1c_1 , coeff IC14c_1M, Bw1c_1 , coeff IC14c_1M, Cw1c_1 , coeff IC14c_1M, Dw1c_1 ,
      coeff IC14c_1M, Aw2c_1 , coeff IC14c_1M, Bw2c_1 , coeff IC14c_1M, Cw2c_1 , coeff IC14c_1M, Dw2c_1 ,
      coeff IC14c_1M, Aw3c_1 , coeff IC14c_1M, Bw3c_1 , coeff IC14c_1M, Cw3c_1 , coeff IC14c_1M, Dw3c_1 ,
      coeff IC14c_1M, Aw4c_1 , coeff IC14c_1M, Bw4c_1 , coeff IC14 c_1M, Cw4c_1 , coeff IC14c_1M, Dw4c_1 ,
      coeff IC14c_1M, Au1c_1 , coeff IC14c_1M, Bu1c_1 , coeff IC14c_1M, Cu1c_1 , coeff IC14c_1M, Du1c_1 ,
      coeff IC14c_1M, Au2c_1 , coeff IC14c_1M, Bu2c_1 , coeff IC14c_1M, Cu2c_1 , coeff IC14c_1M, Du2c_1 ,
      coeff IC14c_1M, Au3c_1 , coeff IC14c_1M, Bu3c_1 , coeff IC14c_1M, Cu3c_1 , coeff IC14c_1M, Du3c_1 ,
      coeff IC14c_1M, Au4c_1 , coeff IC14c_1M, Bu4c_1 , coeff IC14c_1M, Cu4c_1 , coeff IC14c_1M, Du4c_1 ,
 
 coeff IC15c_1M, Aw1c_1 , coeff IC15c_1M, Bw1c_1 , coeff IC15c_1M, Cw1c_1 , coeff IC15c_1M, Dw1c_1 ,
      coeff IC15c_1M, Aw2c_1 , coeff IC15c_1M, Bw2c_1 , coeff IC15c_1M, Cw2c_1 , coeff IC15c_1M, Dw2c_1 ,
      coeff IC15c_1M, Aw3c_1 , coeff IC15c_1M, Bw3c_1 , coeff IC15c_1M, Cw3c_1 , coeff IC15c_1M, Dw3c_1 ,
      coeff IC15c_1M, Aw4c_1 , coeff IC15c_1M, Bw4c_1 , coeff IC15c_1M, Cw4c_1 , coeff IC15c_1M, Dw4c_1 ,
      coeff IC15c_1M, Au1c_1 , coeff IC15c_1M, Bu1c_1 , coeff IC15c_1M, Cu1c_1 , coeff IC15c_1M, Du1c_1 ,
      coeff IC15c_1M, Au2c_1 , coeff IC15c_1M, Bu2c_1 , coeff IC15c_1M, Cu2c_1 , coeff IC15c_1M, Du2c_1 ,
      coeff IC15c_1M, Au3c_1 , coeff IC15c_1M, Bu3c_1 , coeff IC15c_1M, Cu3c_1 , coeff IC15c_1M, Du3c_1 ,
      coeff IC15c_1M, Au4c_1 , coeff IC15c_1M, Bu4c_1 , coeff IC15c_1M, Cu4c_1 , coeff IC15c_1M, Du4c_1 ,
 
 coeff IC16c_1M, Aw1c_1 , coeff IC16c_1M, Bw1c_1 , coeff IC16c_1M, Cw1c_1 , coeff IC16c_1M, Dw1c_1 ,
      coeff IC16c_1M, Aw2c_1 , coeff IC16c_1M, Bw2c_1 , coeff IC16c_1M, Cw2c_1 , coeff IC16c_1M, Dw2c_1 ,
      coeff IC16c_1M, Aw3c_1 , coeff IC16c_1M, Bw3c_1 , coeff IC16c_1M, Cw3c_1 , coeff IC16c_1M, Dw3c_1 ,
      coeff IC16c_1M, Aw4c_1 , coeff IC16 c_1M, Bw4c_1 , coeff IC16c_1M, Cw4c_1 , coeff IC16c_1M, Dw4c_1 ,
      coeff IC16c_1M, Au1c_1 , coeff IC16c_1M, Bu1c_1 , coeff IC16c_1M, Cu1c_1 , coeff IC16c_1M, Du1c_1 ,
      coeff IC16c_1M, Au2c_1 , coeff IC16c_1M, Bu2c_1 , coeff IC16c_1M, Cu2c_1 , coeff IC16c_1M, Du2c_1 ,



      coeff IC16c_1M, Au3c_1 , coeff IC16c_1M, Bu3c_1 , coeff IC16c_1M, Cu3c_1 , coeff IC16c_1M, Du3c_1 ,
      coeff IC16c_1M, Au4c_1 , coeff IC16c_1M, Bu4c_1 , coeff IC16c_1M, Cu4c_1 , coeff IC16c_1M, Du4c_1 ,
 
 coeff IC17c_1M, Aw1c_1 , coeff IC17c_1M, Bw1c_1 , coeff IC17c_1M, Cw1c_1 , coeff IC17c_1M, Dw1c_1 ,
      coeff IC17c_1M, Aw2c_1 , coeff IC17c_1M, Bw2c_1 , coeff IC17c_1M, Cw2c_1 , coeff IC17c_1M, Dw2c_1 ,
      coeff IC17c_1M, Aw3c_1 , coeff IC17c_1M, Bw3c_1 , coeff IC17c_1M, Cw3c_1 , coeff IC17c_1M, Dw3c_1 ,
      coeff IC17c_1M, Aw4c_1 , coeff IC17c_1M, Bw4c_1 , coeff IC17c_1M, Cw4c_1 , coeff IC17c_1M, Dw4c_1 ,
      coeff IC17c_1M, Au1c_1 , coeff IC17c_1M, Bu1c_1 , coeff IC17c_1M, Cu1c_1 , coeff IC17c_1M, Du1c_1 ,
      coeff IC17c_1M, Au2c_1 , coeff IC17c_1M, Bu2c_1 , coeff IC17c_1M, Cu2c_1 , coeff IC17c_1M, Du2c_1 ,
      coeff IC17c_1M, Au3c_1 , coeff IC17c_1M, Bu3c_1 , coeff IC17c_1M, Cu3c_1 , coeff IC17c_1M, Du3c_1 ,
      coeff IC17c_1M, Au4c_1 , coeff IC17c_1M, Bu4c_1 , coeff IC17c_1M, Cu4c_1 , coeff IC17c_1M, Du4c_1 ,
 
 coeff IC18c_1M, Aw1c_1 , coeff IC18c_1M, Bw1c_1 , coeff IC18c_1M, Cw1c_1 , coeff IC18c_1M, Dw1c_1 ,
      coeff IC18c_1M, Aw2c_1 , coeff IC18c_1M, Bw2c_1 , coeff IC18c_1M, Cw2c_1 , coeff IC18c_1M, Dw2c_1 ,
      coeff IC18c_1M, Aw3c_1 , coeff IC18c_1M, Bw3c_1 , coeff IC18c_1M, Cw3c_1 , coeff IC18c_1M, Dw3c_1 ,
      coeff IC18c_1M, Aw4c_1 , coeff IC18c_1M, Bw4c_1 , coeff IC18c_1M, Cw4c_1 , coeff IC18c_1M, Dw4c_1 ,
      coeff IC18c_1M, Au1c_1 , coeff IC18c_1M, Bu1c_1 , coeff IC18c_1M, Cu1c_1 , coeff IC18c_1M, Du1c_1 ,
      coeff IC18c_1M, Au2c_1 , coeff IC18c_1M, Bu2c_1 , coeff IC18c_1M, Cu2c_1 , coeff IC18c_1M, Du2c_1 ,
      coeff IC18c_1M, Au3c_1 , coeff IC18c_1M, Bu3c_1 , coeff IC18c_1M, Cu3c_1 , coeff IC18c_1M, Du3c_1 ,
      coeff IC18c_1M, Au4c_1 , coeff IC18c_1M, Bu4c_1 , coeff IC18c_1M, Cu4c_1 , coeff IC18c_1M, Du4c_1 ,
 
 coeff IC19c_1M, Aw1c_1 , coeff IC19c_1M, Bw1c_1 , coeff IC19c_1M, Cw1c_1 , coeff IC19c_1M, Dw1c_1 ,
      coeff IC19c_1M, Aw2c_1 , coeff IC19c_1M, Bw2c_1 , coeff IC19c_1M, Cw2c_1 , coeff IC19c_1M, Dw2c_1 ,
      coeff IC19c_1M, Aw3c_1 , coeff IC19c_1M, Bw3c_1 , coeff IC19c_1M, Cw3c_1 , coeff IC19c_1M, Dw3c_1 ,
      coeff IC19c_1M, Aw4c_1 , coeff IC19c_1M, Bw4c_1 , coeff IC19c_1M, Cw4c_1 , coeff IC19c_1M, Dw4c_1 ,
      coeff IC19c_1M, Au1c_1 , coeff IC19c_1M, Bu1c_1 , coeff IC19c_1M, Cu1c_1 , coeff IC19c_1M, Du1c_1 ,
      coeff IC19c_1M, Au2c_1 , coeff IC19c_1M, Bu2c_1 , coeff IC19c_1M, Cu2c_1 , coeff IC19c_1M, Du2c_1 ,
      coeff IC19c_1M, Au3c_1 , coeff IC19c_1M, Bu3c_1 , coeff IC19c_1M, Cu3c_1 , coeff IC19c_1M, Du3c_1 ,
      coeff IC19c_1M, Au4c_1 , coeff IC19c_1M, Bu4c_1 , coeff IC19c_1M, Cu4c_1 , coeff IC19c_1M, Du4c_1 ,
 
 coeff IC20c_1M, Aw1c_1 , coeff IC20c_1M, Bw1c_1 , coeff IC20c_1M, Cw1c_1 , coeff IC20c_1M, Dw1c_1 ,
      coeff IC20c_1M, Aw2c_1 , coeff IC20c_1M, Bw2c_1 , coeff IC20c_1M, Cw2c_1 , coeff IC20c_1M, Dw2c_1 ,
      coeff IC20c_1M, Aw3c_1 , coeff IC20c_1M, Bw3c_1 , coeff IC20c_1M, Cw3c_1 , coeff IC20c_1M, Dw3c_1 ,
      coeff IC20c_1M, Aw4c_1 , coeff IC20c_1M, Bw4c_1 , coeff IC20c_1M, Cw4c_1 , coeff IC20c_1M, Dw4c_1 ,
      coeff IC20c_1M, Au1c_1 , coeff IC20c_1M, Bu1c_1 , coeff IC20c_1M, Cu1c_1 , coeff IC20c_1M, Du1c_1 ,
      coeff IC20c_1M, Au2c_1 , coeff IC20c_1M, Bu2c_1 , coeff IC20c_1M, Cu2c_1 , coeff IC20c_1M, Du2c_1 ,
      coeff IC20c_1M, Au3c_1 , coeff IC20c_1M, Bu3c_1 , coeff IC20c_1M, Cu3c_1 , coeff IC20c_1M, Du3c_1 ,
      coeff IC20c_1M, Au4c_1 , coeff IC20c_1M, Bu4c_1 , coeff IC20c_1M, Cu4c_1 , coeff IC20c_1M, Du4c_1 ,
 
 coeff IC21c_1M, Aw1c_1 , coeff IC21c_1M, Bw1c_1 , coeff IC21c_1M, Cw1c_1 , coeff IC21c_1M, Dw1c_1 ,
      coeff IC21c_1M, Aw2c_1 , coeff IC21c_1M, Bw2c_1 , coeff IC21c_1M, Cw2c_1 , coeff IC21c_1M, Dw2c_1 ,
      coeff IC21c_1M, Aw3c_1 , coeff IC21c_1M, Bw3c_1 , coeff IC21c_1M, Cw3c_1 , coeff IC21c_1M, Dw3c_1 ,
      coeff IC21c_1M, Aw4c_1 , coeff IC21c_1M, Bw4c_1 , coeff IC21c_1M, Cw4c_1 , coeff IC21c_1M, Dw4c_1 ,
      coeff IC21c_1M, Au1c_1 , coeff IC21c_1M, Bu1c_1 , coeff IC21c_1M, Cu1c_1 , coeff IC21c_1M, Du1c_1 ,
      coeff IC21c_1M, Au2c_1 , coeff IC21c_1M, Bu2c_1 , coeff IC21c_1M, Cu2c_1 , coeff IC21c_1M, Du2c_1 ,
      coeff IC21c_1M, Au3c_1 , coeff IC21c_1M, Bu3c_1 , coeff IC21c_1M, Cu3c_1 , coeff IC21c_1M, Du3c_1 ,
      coeff IC21c_1M, Au4c_1 , coeff IC21c_1M, Bu4c_1 , coeff IC21c_1M, Cu4c_1 , coeff IC21c_1M, Du4c_1 ,
 
 coeff IC22c_1M, Aw1c_1 , coeff IC22c_1M, Bw1c_1 , coeff IC22c_1M, Cw1c_1 , coeff IC22c_1M, Dw1c_1 ,
      coeff IC22c_1M, Aw2c_1 , coeff IC22c_1M, Bw2c_1 , coeff IC22c_1M, Cw2c_1 , coeff IC22c_1M, Dw2c_1 ,
      coeff IC22c_1M, Aw3c_1 , coeff IC22c_1M, Bw3c_1 , coeff IC22c_1M, Cw3c_1 , coeff IC22c_1M, Dw3c_1 ,
      coeff IC22c_1M, Aw4c_1 , coeff IC22c_1M, Bw4c_1 , coeff IC22c_1M, Cw4c_1 , coeff IC22c_1M, Dw4c_1 ,
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      coeff IC22c_1M, Au1c_1 , coeff IC22c_1M, Bu1c_1 , coeff IC22c_1M, Cu1c_1 , coeff IC22c_1M, Du1c_1 ,
      coeff IC22c_1M, Au2c_1 , coeff IC22c_1M, Bu2c_1 , coeff IC22c_1M, Cu2c_1 , coeff IC22c_1M, Du2c_1 ,
      coeff IC22c_1M, Au3c_1 , coeff IC22c_1M, Bu3c_1 , coeff IC22c_1M, Cu3c_1 , coeff IC22c_1M, Du3c_1 ,
      coeff IC22c_1M, Au4c_1 , coeff IC22c_1M, Bu4c_1 , coeff IC22c_1M, Cu4c_1 , coeff IC22c_1M, Du4c_1 ,
 
 coeff IC23c_1M, Aw1c_1 , coeff IC23c_1M, Bw1c_1 , coeff IC23c_1M, Cw1c_1 , coeff IC23c_1M, Dw1c_1 ,
      coeff IC23c_1M, Aw2c_1 , coeff IC23c_1M, Bw2c_1 , coeff IC23c_1M, Cw2c_1 , coeff IC23c_1M, Dw2c_1 ,
      coeff IC23c_1M, Aw3c_1 , coeff IC23c_1M, Bw3c_1 , coeff IC23c_1M, Cw3c_1 , coeff IC23c_1M, Dw3c_1 ,
      coeff IC23c_1M, Aw4c_1 , coeff IC23c_1M, Bw4c_1 , coeff IC23c_1M, Cw4c_1 , coeff IC23c_1M, Dw4c_1 ,
      coeff IC23c_1M, Au1c_1 , coeff IC23c_1M, Bu1c_1 , coeff IC23c_1M, Cu1c_1 , coeff IC23c_1M, Du1c_1 ,
      coeff IC23c_1M, Au2c_1 , coeff IC23c_1M, Bu2c_1 , coeff IC23c_1M, Cu2c_1 , coeff IC23c_1M, Du2c_1 ,
      coeff IC23c_1M, Au3c_1 , coeff IC23c_1M, Bu3c_1 , coeff IC23c_1M, Cu3c_1 , coeff IC23c_1M, Du3c_1 ,
      coeff IC23c_1M, Au4c_1 , coeff IC23c_1M, Bu4c_1 , coeff IC23c_1M, Cu4c_1 , coeff IC23c_1M, Du4c_1 ,
 
 coeff IC24c_1M, Aw1c_1 , coeff IC24c_1M, Bw1c_1 , coeff IC24c_1M, Cw1c_1 , coeff IC24c_1M, Dw1c_1 ,
      coeff IC24c_1M, Aw2c_1 , coeff IC24c_1M, Bw2c_1 , coeff IC24c_1M, Cw2c_1 , coeff IC24c_1M, Dw2c_1 ,
      coeff IC24c_1M, Aw3c_1 , coeff IC24c_1M, Bw3c_1 , coeff IC24c_1M, Cw3c_1 , coeff IC24c_1M, Dw3c_1 ,
      coeff IC24c_1M, Aw4c_1 , coeff IC24c_1M, Bw4c_1 , coeff IC24 c_1M, Cw4c_1 , coeff IC24c_1M, Dw4c_1 ,
      coeff IC24c_1M, Au1c_1 , coeff IC24c_1M, Bu1c_1 , coeff IC24c_1M, Cu1c_1 , coeff IC24c_1M, Du1c_1 ,
      coeff IC24c_1M, Au2c_1 , coeff IC24c_1M, Bu2c_1 , coeff IC24c_1M, Cu2c_1 , coeff IC24c_1M, Du2c_1 ,
      coeff IC24c_1M, Au3c_1 , coeff IC24c_1M, Bu3c_1 , coeff IC24c_1M, Cu3c_1 , coeff IC24c_1M, Du3c_1 ,
      coeff IC24c_1M, Au4c_1 , coeff IC24c_1M, Bu4c_1 , coeff IC24c_1M, Cu4c_1 , coeff IC24c_1M, Du4c_1
 ;

Mc_jd 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau1_j, 0, Betau1_j, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau3_j, 0, Betau3_j, 0, 0, 0, 0 , 

0, 0, 0, 0, cosh 2 Betaw2_j span , sinh 2 Betaw2_j span , cos 2 Betaw2_j span , sin 2 Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, Betaw2_j sinh 2 Betaw2_j span , Betaw2_j cosh 2 Betaw2_j span , KBetaw2_j sin 2 Betaw2_j span , Betaw2_j cos 2 Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh 2 Betaw4_j span , sinh 2 Betaw4_j span , cos 2 Betaw4_j span , sin 2 Betaw4_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betaw4_j sinh 2 Betaw4_j span , Betaw4_j cosh 2 Betaw4_j span , KBetaw4_j sin 2 Betaw4_j span , Betaw4_j cos 2 Betaw4_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau1_j hw1 , sinh Betau1_j hw1 , cos Betau1_j hw1 , sin Betau1_j hw1 , Kcosh Betau2_j hw1 , Ksinh Betau2_j hw1 , Kcos Betau2_j hw1 , 
Ksin Betau2_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0 , 

1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau1_j sinh Betau1_j hw1 , Betau1_j cosh Betau1_j hw1 , KBetau1_j sin Betau1_j hw1 , Betau1_j cos Betau1_j hw1 , KBetau2_j sinh Betau2_j hw1 , 
KBetau2_j cosh Betau2_j hw1 , Betau2_j sin Betau2_j hw1 , KBetau2_j cos Betau2_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0 , 

0, Betaw1_j, 0, Betaw1_j, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau1_j sinh Betau1_j hw1 , Betau1_j cosh Betau1_j hw1 , KBetau1_j sin Betau1_j hw1 , Betau1_j cos Betau1_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau1_j hw1 , sinh Betau1_j hw1 , cos Betau1_j hw1 , sin Betau1_j hw1 , 0, 0, 0, 0, Kcosh Betau3_j hw1 , Ksinh Betau3_j hw1 , Kcos Betau3_j hw1 , 
Ksin Betau3_j hw1 , 0, 0, 0, 0 , 

Betaw1_j2, 0, KBetaw1_j2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KBetau1_j2 cosh Betau1_j hw1 , KBetau1_j2 sinh Betau1_j hw1 , Betau1_j2 cos Betau1_j hw1 , Betau1_j2 sin Betau1_j hw1 , 

Betau2_j2 cosh Betau2_j hw1 , Betau2_j2 sinh Betau2_j hw1 , KBetau2_j2 cos Betau2_j hw1 , KBetau2_j2 sin Betau2_j hw1 , 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, Betaw3_j, 0, Betaw3_j, 0, 0, 0, 0, 0, 0, 0, 0, Betau2_j sinh Betau2_j hw1Chw2 , Betau2_j cosh Betau2_j hw1Chw2 , KBetau2_j sin Betau2_j hw1Chw2 , 

Betau2_j cos Betau2_j hw1Chw2 , 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau2_j hw1Chw2 , sinh Betau2_j hw1Chw2 , cos Betau2_j hw1Chw2 , sin Betau2_j hw1Chw2 , 0, 0, 0, 0, Kcosh Betau4_j hw1
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Chw2 , Ksinh Betau4_j hw1Chw2 , Kcos Betau4_j hw1Chw2 , Ksin Betau4_j hw1Chw2 , 

0, 0, 0, 0, 0, 0, 0, 0, Betaw3_j2, 0, KBetaw3_j2, 0, 0, 0, 0, 0, 0, 0, 0, 0, KBetau2_j2 cosh Betau2_j hw1Chw2 , KBetau2_j2 sinh Betau2_j hw1Chw2 , Betau2_j2 cos Betau2_j hw1Chw2 , 

Betau2_j2 sin Betau2_j hw1Chw2 , 0, 0, 0, 0, 0, 0, 0, 0 , 

cosh Betaw1_j span , sinh Betaw1_j span , cos Betaw1_j span , sin Betaw1_j span , Kcosh Betaw2_j span , Ksinh Betaw2_j span , Kcos Betaw2_j span , Ksin Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

cosh Betaw1_j span , sinh Betaw1_j span , cos Betaw1_j span , sin Betaw1_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau3_j hw1 , sinh Betau3_j hw1 , cos Betau3_j hw1 , sin Betau3_j hw1 , Kcosh Betau4_j hw1 , Ksinh Betau4_j hw1 , 
Kcos Betau4_j hw1 , Ksin Betau4_j hw1 , 

Betaw1_j sinh Betaw1_j span , Betaw1_j cosh Betaw1_j span , KBetaw1_j sin Betaw1_j span , Betaw1_j cos Betaw1_j span , KBetaw2_j sinh Betaw2_j span , KBetaw2_j cosh Betaw2_j span , 

Betaw2_j sin Betaw2_j span , KBetaw2_j cos Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau3_j sinh Betau3_j hw1 , Betau3_j cosh Betau3_j hw1 , KBetau3_j sin Betau3_j hw1 , Betau3_j cos Betau3_j hw1 , 
KBetau4_j sinh Betau4_j hw1 , KBetau4_j cosh Betau4_j hw1 , Betau4_j sin Betau4_j hw1 , KBetau4_j cos Betau4_j hw1 , 

Betaw1_j sinh Betaw1_j span , Betaw1_j cosh Betaw1_j span , KBetaw1_j sin Betaw1_j span , Betaw1_j cos Betaw1_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Betau3_j sinh Betau3_j hw1 , 

Betau3_j cosh Betau3_j hw1 , KBetau3_j sin Betau3_j hw1 , Betau3_j cos Betau3_j hw1 , 0, 0, 0, 0 , 

KBetaw1_j2 cosh Betaw1_j span , KBetaw1_j2 sinh Betaw1_j span , Betaw1_j2 cos Betaw1_j span , Betaw1_j2 sin Betaw1_j span , Betaw2_j2 cosh Betaw2_j span , Betaw2_j2 sinh Betaw2_j span , 

KBetaw2_j2 cos Betaw2_j span , KBetaw2_j2 sin Betaw2_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KBetau3_j2 cosh Betau3_j hw1 , KBetau3_j2 sinh Betau3_j hw1 , Betau3_j2 cos Betau3_j hw1 , 

Betau3_j2 sin Betau3_j hw1 , Betau4_j2 cosh Betau4_j hw1 , Betau4_j2 sinh Betau4_j hw1 , KBetau4_j2 cos Betau4_j hw1 , KBetau4_j2 sin Betau4_j hw1 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau3_j hw1 , sinh Betau3_j hw1 , cos Betau3_j hw1 , sin Betau3_j hw1 , 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, cosh Betaw3_j span , sinh Betaw3_j span , cos Betaw3_j span , sin Betaw3_j span , Kcosh Betaw4_j span , Ksinh Betaw4_j span , Kcos Betaw4_j span , Ksin Betaw4_j span , 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, cosh Betaw3_j span , sinh Betaw3_j span , cos Betaw3_j span , sin Betaw3_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, Betaw3_j sinh Betaw3_j span , Betaw3_j cosh Betaw3_j span , KBetaw3_j sin Betaw3_j span , Betaw3_j cos Betaw3_j span , KBetaw4_j sinh Betaw4_j span , 
KBetaw4_j cosh Betaw4_j span , Betaw4_j sin Betaw4_j span , KBetaw4_j cos Betaw4_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 0, Betaw3_j sinh Betaw3_j span , Betaw3_j cosh Betaw3_j span , KBetaw3_j sin Betaw3_j span , Betaw3_j cos Betaw3_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

Betau4_j sinh Betau4_j hw1Chw2 , Betau4_j cosh Betau4_j hw1Chw2 , KBetau4_j sin Betau4_j hw1Chw2 , Betau4_j cos Betau4_j hw1Chw2 , 

0, 0, 0, 0, 0, 0, 0, 0, KBetaw3_j2 cosh Betaw3_j span , KBetaw3_j2 sinh Betaw3_j span , Betaw3_j2 cos Betaw3_j span , Betaw3_j2 sin Betaw3_j span , Betaw4_j2 cosh Betaw4_j span , 

Betaw4_j2 sinh Betaw4_j span , KBetaw4_j2 cos Betaw4_j span , KBetaw4_j2 sin Betaw4_j span , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, KBetau4_j2 cosh Betau4_j hw1Chw2 , KBetau4_j2 sinh Betau4_j hw1

Chw2 , Betau4_j2 cos Betau4_j hw1Chw2 , Betau4_j2 sin Betau4_j hw1Chw2 , 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, cosh Betau4_j hw1Chw2 , sinh Betau4_j hw1Chw2 , cos Betau4_j hw1Chw2 , sin Betau4_j hw1Chw2

with CodeGeneration :
Python Mc_j, resultname = "M_matrix_c_j" ;

M_matrix_c_j = numpy.mat([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau1_j,0,
Betau1_j,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,Betau3_j,0,Betau3_j,0,0,0,0],[0,0,0,0,math.cosh(2 * Betaw2_j * span),math.sinh(2 * Betaw2_j * span),math.cos(2 * Betaw2_j * span),math.sin
(2 * Betaw2_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,Betaw2_j * math.sinh(2 * Betaw2_j * span),Betaw2_j * math.cosh(2 
* Betaw2_j * span),-Betaw2_j * math.sin(2 * Betaw2_j * span),Betaw2_j * math.cos(2 * Betaw2_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(2 * Betaw4_j * span),math.sinh(2 * Betaw4_j * span),math.cos(2 * Betaw4_j * span),math.sin(2 * Betaw4_j
* span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,Betaw4_j * math.sinh(2 * Betaw4_j * span),Betaw4_j * math.cosh(2 * Betaw4_j * 
span),-Betaw4_j * math.sin(2 * Betaw4_j * span),Betaw4_j * math.cos(2 * Betaw4_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,math.cosh(Betau1_j * hw1),math.sinh(Betau1_j * hw1),math.cos(Betau1_j * hw1),math.sin(Betau1_j * hw1),-math.cosh(Betau2_j * hw1),-math.
sinh(Betau2_j * hw1),-math.cos(Betau2_j * hw1),-math.sin(Betau2_j * hw1),0,0,0,0,0,0,0,0],[1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau1_j * math.sinh(Betau1_j * hw1),Betau1_j * math.cosh(Betau1_j * hw1),-Betau1_j * math.sin
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(Betau1_j * hw1),Betau1_j * math.cos(Betau1_j * hw1),-Betau2_j * math.sinh(Betau2_j * hw1),-Betau2_j * math.cosh(Betau2_j * hw1),Betau2_j * math.
sin(Betau2_j * hw1),-Betau2_j * math.cos(Betau2_j * hw1),0,0,0,0,0,0,0,0],[0,Betaw1_j,0,Betaw1_j,0,0,0,0,0,0,0,0,0,0,0,0,Betau1_j * math.sinh
(Betau1_j * hw1),Betau1_j * math.cosh(Betau1_j * hw1),-Betau1_j * math.sin(Betau1_j * hw1),Betau1_j * math.cos(Betau1_j * hw1),0,0,0,0,0,0,0,0,0,
0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau1_j * hw1),math.sinh(Betau1_j * hw1),math.cos(Betau1_j * hw1),math.sin(Betau1_j * hw1),0,
0,0,0,-math.cosh(Betau3_j * hw1),-math.sinh(Betau3_j * hw1),-math.cos(Betau3_j * hw1),-math.sin(Betau3_j * hw1),0,0,0,0],[Betaw1_j ** 2,0,-
Betaw1_j ** 2,0,0,0,0,0,0,0,0,0,0,0,0,0,-Betau1_j ** 2 * math.cosh(Betau1_j * hw1),-Betau1_j ** 2 * math.sinh(Betau1_j * hw1),Betau1_j ** 2 * 
math.cos(Betau1_j * hw1),Betau1_j ** 2 * math.sin(Betau1_j * hw1),Betau2_j ** 2 * math.cosh(Betau2_j * hw1),Betau2_j ** 2 * math.sinh(Betau2_j * 
hw1),-Betau2_j ** 2 * math.cos(Betau2_j * hw1),-Betau2_j ** 2 * math.sin(Betau2_j * hw1),0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,Betaw3_j,0,Betaw3_j,0,0,0,0,0,0,0,0,Betau2_j * math.sinh(Betau2_j * (hw1 + hw2)),Betau2_j * math.
cosh(Betau2_j * (hw1 + hw2)),-Betau2_j * math.sin(Betau2_j * (hw1 + hw2)),Betau2_j * math.cos(Betau2_j * (hw1 + hw2)),0,0,0,0,0,0,0,0],[0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau2_j * (hw1 + hw2)),math.sinh(Betau2_j * (hw1 + hw2)),math.cos(Betau2_j * (hw1 + hw2)),math.sin
(Betau2_j * (hw1 + hw2)),0,0,0,0,-math.cosh(Betau4_j * (hw1 + hw2)),-math.sinh(Betau4_j * (hw1 + hw2)),-math.cos(Betau4_j * (hw1 + hw2)),-math.
sin(Betau4_j * (hw1 + hw2))],[0,0,0,0,0,0,0,0,Betaw3_j ** 2,0,-Betaw3_j ** 2,0,0,0,0,0,0,0,0,0,-Betau2_j ** 2 * math.cosh(Betau2_j * (hw1 + hw2)
),-Betau2_j ** 2 * math.sinh(Betau2_j * (hw1 + hw2)),Betau2_j ** 2 * math.cos(Betau2_j * (hw1 + hw2)),Betau2_j ** 2 * math.sin(Betau2_j * (hw1 + 
hw2)),0,0,0,0,0,0,0,0],[math.cosh(Betaw1_j * span),math.sinh(Betaw1_j * span),math.cos(Betaw1_j * span),math.sin(Betaw1_j * span),-math.cosh
(Betaw2_j * span),-math.sinh(Betaw2_j * span),-math.cos(Betaw2_j * span),-math.sin(Betaw2_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0],[math.cosh(Betaw1_j * span),math.sinh(Betaw1_j * span),math.cos(Betaw1_j * span),math.sin(Betaw1_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau3_j * hw1),math.sinh(Betau3_j * hw1),math.cos(Betau3_j *
hw1),math.sin(Betau3_j * hw1),-math.cosh(Betau4_j * hw1),-math.sinh(Betau4_j * hw1),-math.cos(Betau4_j * hw1),-math.sin(Betau4_j * hw1)],
[Betaw1_j * math.sinh(Betaw1_j * span),Betaw1_j * math.cosh(Betaw1_j * span),-Betaw1_j * math.sin(Betaw1_j * span),Betaw1_j * math.cos(Betaw1_j *
span),-Betaw2_j * math.sinh(Betaw2_j * span),-Betaw2_j * math.cosh(Betaw2_j * span),Betaw2_j * math.sin(Betaw2_j * span),-Betaw2_j * math.cos
(Betaw2_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau3_j * math.sinh(Betau3_j
* hw1),Betau3_j * math.cosh(Betau3_j * hw1),-Betau3_j * math.sin(Betau3_j * hw1),Betau3_j * math.cos(Betau3_j * hw1),-Betau4_j * math.sinh
(Betau4_j * hw1),-Betau4_j * math.cosh(Betau4_j * hw1),Betau4_j * math.sin(Betau4_j * hw1),-Betau4_j * math.cos(Betau4_j * hw1)],[Betaw1_j * 
math.sinh(Betaw1_j * span),Betaw1_j * math.cosh(Betaw1_j * span),-Betaw1_j * math.sin(Betaw1_j * span),Betaw1_j * math.cos(Betaw1_j * span),0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau3_j * math.sinh(Betau3_j * hw1),Betau3_j * math.cosh(Betau3_j * hw1),-Betau3_j * math.sin(Betau3_j * 
hw1),Betau3_j * math.cos(Betau3_j * hw1),0,0,0,0],[-Betaw1_j ** 2 * math.cosh(Betaw1_j * span),-Betaw1_j ** 2 * math.sinh(Betaw1_j * span),
Betaw1_j ** 2 * math.cos(Betaw1_j * span),Betaw1_j ** 2 * math.sin(Betaw1_j * span),Betaw2_j ** 2 * math.cosh(Betaw2_j * span),Betaw2_j ** 2 * 
math.sinh(Betaw2_j * span),-Betaw2_j ** 2 * math.cos(Betaw2_j * span),-Betaw2_j ** 2 * math.sin(Betaw2_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-Betau3_j ** 2 * math.cosh(Betau3_j * hw1),-Betau3_j ** 2 * math.sinh(Betau3_j * hw1),Betau3_j ** 2 * math.cos(Betau3_j * hw1),Betau3_j ** 2 * 
math.sin(Betau3_j * hw1),Betau4_j ** 2 * math.cosh(Betau4_j * hw1),Betau4_j ** 2 * math.sinh(Betau4_j * hw1),-Betau4_j ** 2 * math.cos(Betau4_j *
hw1),-Betau4_j ** 2 * math.sin(Betau4_j * hw1)],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,math.cosh(Betau3_j * hw1),math.sinh(Betau3_j * 
hw1),math.cos(Betau3_j * hw1),math.sin(Betau3_j * hw1),0,0,0,0],[0,0,0,0,0,0,0,0,math.cosh(Betaw3_j * span),math.sinh(Betaw3_j * span),math.cos
(Betaw3_j * span),math.sin(Betaw3_j * span),-math.cosh(Betaw4_j * span),-math.sinh(Betaw4_j * span),-math.cos(Betaw4_j * span),-math.sin(Betaw4_j
* span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,math.cosh(Betaw3_j * span),math.sinh(Betaw3_j * span),math.cos(Betaw3_j * span),math.
sin(Betaw3_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,Betaw3_j * math.sinh(Betaw3_j * span),Betaw3_j * math.cosh
(Betaw3_j * span),-Betaw3_j * math.sin(Betaw3_j * span),Betaw3_j * math.cos(Betaw3_j * span),-Betaw4_j * math.sinh(Betaw4_j * span),-Betaw4_j * 
math.cosh(Betaw4_j * span),Betaw4_j * math.sin(Betaw4_j * span),-Betaw4_j * math.cos(Betaw4_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,
0,0,0,0,Betaw3_j * math.sinh(Betaw3_j * span),Betaw3_j * math.cosh(Betaw3_j * span),-Betaw3_j * math.sin(Betaw3_j * span),Betaw3_j * math.cos
(Betaw3_j * span),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,Betau4_j * math.sinh(Betau4_j * (hw1 + hw2)),Betau4_j * math.cosh(Betau4_j * (hw1 + hw2)),-
Betau4_j * math.sin(Betau4_j * (hw1 + hw2)),Betau4_j * math.cos(Betau4_j * (hw1 + hw2))],[0,0,0,0,0,0,0,0,-Betaw3_j ** 2 * math.cosh(Betaw3_j * 
span),-Betaw3_j ** 2 * math.sinh(Betaw3_j * span),Betaw3_j ** 2 * math.cos(Betaw3_j * span),Betaw3_j ** 2 * math.sin(Betaw3_j * span),Betaw4_j **
2 * math.cosh(Betaw4_j * span),Betaw4_j ** 2 * math.sinh(Betaw4_j * span),-Betaw4_j ** 2 * math.cos(Betaw4_j * span),-Betaw4_j ** 2 * math.sin
(Betaw4_j * span),0,0,0,0,0,0,0,0,0,0,0,0,-Betau4_j ** 2 * math.cosh(Betau4_j * (hw1 + hw2)),-Betau4_j ** 2 * math.sinh(Betau4_j * (hw1 + hw2)),
Betau4_j ** 2 * math.cos(Betau4_j * (hw1 + hw2)),Betau4_j ** 2 * math.sin(Betau4_j * (hw1 + hw2))],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,math.cosh(Betau4_j * (hw1 + hw2)),math.sinh(Betau4_j * (hw1 + hw2)),math.cos(Betau4_j * (hw1 + hw2)),math.sin(Betau4_j * (hw1 + hw2))
]])

# PHIyc_j=1,PHIys_j=1, Omega_j=1,rhoA_w1=1,rhoA_w2=1,rhoA_w3=1,rhoA_w4=1,rhoA_u1=1,rhoA_u2=1,rhoA_u3=1,rhoA_u4=1, EI_w1=1, EI_w2=1, EI_w3=1, EI_w4=1, EI_u1=1, EI_u2=1, EI_u3=1, 
EI_u4=1,Betaw1_1=1,Betaw2_1=1,Betaw3_1=1,Betaw4_1=1,Betau1_1=1,Betau2_1=1,Betau3_1=1,Betau4_1=1,span=1, hw1=1,hw2=1,

Mc_j_compd evalf subs PHIyc_j = 1, PHIys_j = 1, Omega_j = 1, rhoA_w1 = 1, rhoA_w2 = 1, rhoA_w3 = 1, rhoA_w4 = 1, rhoA_u1 = 1, rhoA_u2 = 1, rhoA_u3 = 1, rhoA_u4 = 1, EI_w1 = 1, EI_w2 = 1, EI_w3 = 1,
 EI_w4 = 1, EI_u1 = 1, EI_u2 = 1, EI_u3 = 1, EI_u4 = 1, Betaw1_j = 1, Betaw2_j = 1, Betaw3_j = 1, Betaw4_j = 1, Betau1_j = 1, Betau2_j = 1, Betau3_j = 1, Betau4_j = 1, span = 1, hw1 = 1, hw2 = 1, Mc_j :

#Mc_j_inversedLinearAlgebra MatrixInverse Mc_j :
#Python Mc_j_inverse, resultname = "M_matrix_c_j_inverse" :



> > Fc_jd Vector
 0,
 PHIyc_j,
 0,
 PHIyc_j,
 0,
 KPHIyc_j,
 0,
 KPHIyc_j,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0,
 0
 ;



> > 

> > 

> > 

(60(60

> > 

> > 

Fc_jd

0

PHIyc_j

0

PHIyc_j

0

KPHIyc_j

0

KPHIyc_j

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Python Fc_j, resultname = "F_vector_c_j" ;
F_vector_c_j = numpy.mat([0,PHIyc_j,0,PHIyc_j,0,-PHIyc_j,0,-PHIyc_j,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])

#test_vectordvector

Coeff_vectord subs PHIyc_j = 1, PHIys_j = 1, Omega_j = 1, rhoA_w1 = 1, rhoA_w2 = 1, rhoA_w3 = 1, rhoA_w4 = 1, rhoA_u1 = 1, rhoA_u2 = 1, rhoA_u3 = 1, rhoA_u4 = 1, EI_w1 = 1, EI_w2 = 1, EI_w3 = 1, EI_w4



> > 

(62(62

> > 

(61(61

= 1, EI_u1 = 1, EI_u2 = 1, EI_u3 = 1, EI_u4 = 1, Betaw1_j = 1, Betaw2_j = 1, Betaw3_j = 1, Betaw4_j = 1, Betau1_j = 1, Betau2_j = 1, Betau3_j = 1, Betau4_j = 1, span = 1, hw1 = 1, hw2 = 1,
LinearAlgebra Multiply LinearAlgebra MatrixInverse Mc_j_comp , Fc_j ;

Coeff_vectord

K7.11157989501953

10.7497632503510

7.11158007383347

K6.53830409049988

14.3062858581543

K15.7462692260742

K7.14500904083252

0.344332665205002

13.0511498451233

K17.3814001083374

K13.0511491298676

8.72190523147583

K25.0665607452393

26.6171300411224

10.2269580364227

2.22657164186239

2.23130059242249

K9.22592681646347

K2.23130068182945

10.2259268164635

K13.9389300346375

18.0575294494629

13.3620028495789

K8.23778378963470

K3.28647398948669

7.35364580154419

3.28647339344025

K6.35364580154419

12.2327308654785

K14.6499977111816

K8.90472364425659

3.74564635753632

Aw1c_1_compd Coeff_vector 1 ; Bw1c_1_compd Coeff_vector 2 ; Cw1c_1_compd Coeff_vector 3 ; Dw1c_1_compdCoeff_vector 4 ;
Aw1c_1_compdK7.11157989501953
Bw1c_1_compd 10.7497632503510
Cw1c_1_compd 7.11158007383347

Dw1c_1_compdK6.53830409049988



> > 

> > 

> > 

> > 

> > 

> > 

> > 
> > 

(63(63

> > 

(64(64
> > 

> > 

> > 

> > 

W1c_1_compd subs Aw1c_1 = Aw1c_1_comp, Bw1c_1 = Bw1c_1_comp, Cw1c_1 = Cw1c_1_comp, Dw1c_1 = Dw1c_1_comp, Betaw1_j = 1, W1c_1 ;
W1c_1_compdK7.11157989501953 cosh x C10.7497632503510 sinh x C7.11158007383347 cos x K6.53830409049988 sin x

with plots :
plotW1c_1_compd plot W1c_1_comp, x = 0 ..1 : display plotW1c_1_comp ;

x
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PHIyc_jd 1 : PHIys_jd 1 : Omega_jd 10 : Omega_1dOmega_j :
rhoA_w1d 1 : rhoA_w2d 1 : rhoA_w3d 1 : rhoA_w4d 1 : rhoA_u1d 1 : rhoA_u2d 1 : rhoA_u3d 1 : rhoA_u4d 1 :
EI_w1d 1 : EI_w2d 1 : EI_w3d 1 : EI_w4d 1 : EI_u1d 1 : EI_u2d 1 : EI_u3d 1 : EI_u4d 1 :

Betaw1_jd
rhoA_w1

EI_w1
$Omega_j2

1
4

: Betaw2_jd
rhoA_w2
EI_w2

$Omega_j2

1
4

: Betaw3_jd
rhoA_w3
EI_w3

$Omega_j2

1
4

: Betaw4_jd
rhoA_w4
EI_w4

$Omega_j2

1
4

:

Betau1_jd
rhoA_u1
EI_u1

$Omega_j2

1
4

: Betau2_jd
rhoA_u2

EI_u2
$Omega_j2

1
4

: Betau3_jd
rhoA_u3
EI_u3

$Omega_j2

1
4

: Betau4_jd
rhoA_u4

EI_u4
$Omega_j2

1
4

:

spand 1 : hw1d 1 : hw2d 1 :

phiy;
cos 10 t Csin 10 t

plotPHIy_1_compd plot phiy, t = 0 ..1 : display plotPHIy_1_comp ;



(69(69

(73(73

(68(68
> > 

(71(71

> > 

> > 

(67(67

> > 

> > 

(72(72

(70(70

> > 

> > 

(66(66

> > 

> > 

(65(65

> > 

t
0.2 0.4 0.6 0.8 1

K1

K0.5

0

0.5

1

EOMw1c_1;

KW1
2
 Aw1c_1 cosh 1001 4 x CBw1c_1 sinh 1001 4 x CCw1c_1 cos 1001 4 x CDw1c_1 sin 1001 4 x = 0

W1c_1;
Aw1c_1 cosh 1001 4 x CBw1c_1 sinh 1001 4 x CCw1c_1 cos 1001 4 x CDw1c_1 sin 1001 4 x

EOMw1s_1;

KW1
2
 Aw1s_1 cosh 1001 4 x CBw1s_1 sinh 1001 4 x CCw1s_1 cos 1001 4 x CDw1s_1 sin 1001 4 x = 0

W1s_1;
Aw1s_1 cosh 1001 4 x CBw1s_1 sinh 1001 4 x CCw1s_1 cos 1001 4 x CDw1s_1 sin 1001 4 x

EOMw2c_1;

KW1
2
 Aw2c_1 cosh 1001 4 x CBw2c_1 sinh 1001 4 x CCw2c_1 cos 1001 4 x CDw2c_1 sin 1001 4 x = 0

W2c_1;
Aw2c_1 cosh 1001 4 x CBw2c_1 sinh 1001 4 x CCw2c_1 cos 1001 4 x CDw2c_1 sin 1001 4 x

EOMw2s_1;

KW1
2
 Aw2s_1 cosh 1001 4 x CBw2s_1 sinh 1001 4 x CCw2s_1 cos 1001 4 x CDw2s_1 sin 1001 4 x = 0

W2s_1;
Aw2s_1 cosh 1001 4 x CBw2s_1 sinh 1001 4 x CCw2s_1 cos 1001 4 x CDw2s_1 sin 1001 4 x

EOMw3c_1;

KW1
2
 Aw3c_1 cosh 1001 4 x CBw3c_1 sinh 1001 4 x CCw3c_1 cos 1001 4 x CDw3c_1 sin 1001 4 x = 0
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T. Appendix: Iterations of structural parameters to compute structural response 

1. Reference case 
The input parameters are as in the input-Excel file on the following pages. An additional mass 
has been considered to take into account the weight of the façade which is assumed to have a 
weight equal to 1 kN/m2 façade area. The middle of the structure is located at 30 m from the 
middle of the road. The soil is assumed to be soft.  
 
The computational results are given after the input parameters. The iterations made from this 
reference case only show the relevant results that are influenced by the change in 
parameter(s).  
  



Input file for computing structural dynamic response

Date: 5-9-2019  |  Author: Gerwin Schut

Input file for Python Description Parameters Unit Explanation           ← do not change this line

Author:

Date:

Project: Building in Amsterdam

Description Parameters Unit Explanation

do not change the descriptions in this column ↓

Script 0:  0.3DoFBuildingDesignParameters
Figures to explain several input parameters of Python scripts 0, 1 and 2

Python input requirements

Gerwin Schut

5-9-2019



Input file for computing structural dynamic response

Date: 5-9-2019  |  Author: Gerwin Schut

FLOORS for 3DoF system

     Floor 1 FloorProperties1

properties of floor.

Make sure that the text 'FloorProperties' + (the number of the wall), e.g. 'FloorProperties1' is 

present in the 'descriptions' column in case this floor has to be included in the computation. 

Otherwise delete the text 'FloorProperties'.

dFloor1 = 1 m Thickness of floor

MaterialFloor1 = Concrete - Material name for the floor

RhoFloor1 = 2500 kg/m3 density of floor material 

EFloor1 = 30000000000 N/m2 Young's modulus of floor material 

vFloor1 = 0.2 - Poisson's ratio of floor material. Should be smaller than 0.5

     Floor 2 FloorProperties2 properties of floor.

dFloor2 = 0.6 m Thickness of floor

MaterialFloor2 = Concrete - Material name for the floor

RhoFloor2 = 2500 kg/m3 density of floor material 

EFloor2 = 30000000000 N/m2 Young's modulus of floor material 

vFloor2 = 0.2 - Poisson's ratio of floor material. Should be smaller than 0.5

     Floor 3 FloorProperties3 properties of floor.

dFloor3 = 0.4 m Thickness of floor

MaterialFloor3 = Concrete - Material name for the floor

RhoFloor3 = 2500 kg/m3 density of floor material 

EFloor3 = 30000000000 N/m2 Young's modulus of floor material 

vFloor3 = 0.2 - Poisson's ratio of floor material. Should be smaller than 0.5

     Floor 4 FloorProperties4 properties of floor.

dFloor4 = 0.4 m Thickness of floor

MaterialFloor4 = Concrete - Material name for the floor

RhoFloor4 = 2500 kg/m3 density of floor material 

EFloor4 = 30000000000 N/m2 Young's modulus of floor material 

vFloor4 = 0.2 - Poisson's ratio of floor material. Should be smaller than 0.5

     Floor 5 FloorProperties5 properties of floor.

dFloor5 = 0.5 m Thickness of floor

MaterialFloor5 = Concrete - Material name for the floor

RhoFloor5 = 2000 kg/m3 density of floor material 

EFloor5 = 30000000000 N/m2 Young's modulus of floor material 
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Date: 5-9-2019  |  Author: Gerwin Schut

vFloor5 = 0.2 - Poisson's ratio of floor material. Should be smaller than 0.5

     Floor 6 FloorProperties6 properties of floor.

dFloor6 = 0.5 m Thickness of floor

MaterialFloor6 = Concrete - Material name for the floor

RhoFloor6 = 2000 kg/m3 density of floor material 

EFloor6 = 30000000000 N/m2 Young's modulus of floor material 

vFloor6 = 0.2 - Poisson's ratio of floor material. Should be smaller than 0.5

     Floor 7 FloorProperties7 properties of floor.

dFloor7 = 0.5 m Thickness of floor

MaterialFloor7 = Concrete - Material name for the floor

RhoFloor7 = 2000 kg/m3 density of floor material 

EFloor7 = 30000000000 N/m2 Young's modulus of floor material 

vFloor7 = 0.2 - Poisson's ratio of floor material. Should be smaller than 0.5

     Floor 8 FloorProperties8 properties of floor.

dFloor8 = 0.4 m Thickness of floor

MaterialFloor8 = Concrete - Material name for the floor

RhoFloor8 = 2000 kg/m3 density of floor material 

EFloor8 = 30000000000 N/m2 Young's modulus of floor material 

vFloor8 = 0.2 - Poisson's ratio of floor material. Should be smaller than 0.5

FREE STOREY HEIGHTS for 3DoF system Note: the number of free storey heights is equal to the number of floors - 1

FreeStoreyHeight1_2 = 3.9 m Free storey height between floor 1 and 2

FreeStoreyHeight2_3 = 4.1 m Free storey height between floor 2 and 3

FreeStoreyHeight3_4 = 4.1 m Free storey height between floor 3 and 4

FreeStoreyHeight4_5 = 3.8 m Free storey height between floor 3 and 4

FreeStoreyHeight5_6 = 3.8 m Free storey height between floor 3 and 4

FreeStoreyHeight6_7 = 3.8 m Free storey height between floor 3 and 4

FreeStoreyHeight7_8 = 3.9 m Free storey height between floor 3 and 4

FLOORSPANS

NrOfFloorSpansX = 3 - number of floor spans in-plane (in the x-z-plane)

FloorSpanLengthX = 6.6 m length of floor spans in-plane (equal for all floor spans). Span in between the walls

NrOfFloorSpansY = 7 - number of floor spans out-of-plane (in the y-z-plane)
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FloorSpanLengthY = 6.6 m length of floor spans out-of-plane (equal for all floor spans). Span in between the walls

WALLS

WallProperties

properties of wall.

Make sure that the text 'WallProperties' + (the number of the wall), e.g. 'WallProperties1' is present 

in the 'descriptions' column in case this wall has to be included in the computation. Otherwise 

delete the text 'WallProperties'.

tWallX = 0.6 m Thickness of wall in-plane (in the x-z-plane)

tWallY = 0.6 m Thickness of wall out-of-plane (in the y-z-plane)

MaterialWall = Concrete - Material name for the wall

RhoWall = 2500 kg/m3 density of wall material 

Ewall = 30000000000 N/m2 Young's modulus of wall material 

vWall = 0.2 - Poisson's ratio of wall material. Should be smaller than 0.5

LstructX = 22.2 m total length of structure (in-plane) in x-direction

LstructY = 51 m total depth of structure (out-of-plane) in y-direction

HstructZ = 29.4 m total height of structure in z-direction

AdditionalMass = 12.93 kg/m3

additional mass that needs to be taken into account for the total mass of the building and the mass 

moment inertia of the building which acts as resistance against vibrations (impedance). Divide the 

total mass to be added by the total volume of the structure (LstructX x LstructY x HstructZ)

Continue on next page with script 1
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Script 1: 1.ScriptToCompute3DoFExcitation
Structure for 3DoF system

pos_StartStructure = 18.9 m distance along the x-axis from the middle of the road to the start of the building

pos_EndStructure = 41.1 m distance along the x-axis from the middle of the road to the end of the building

DstructZ = 5.5 m depth of structure (e.g. box or slab) without pile foundation

Excitation 3DoF system

Exc_factor = 0 -

0: the excitation is not factorized

1: the excitation is factorized according to EV5.2 by factorizing the frequency domain and copmuting 

the time domain from there

tmin_exc = -0.1 s start time-instant for the excitation input (preferably Excitation(tmin_exc) = 0)

tmax_exc = 1.5 s end time-instant for the excitation input (preferably Excitation(tmax_exc) = 0)

tstep_exc = 0.02 s time step for the excitation input (should be sufficiently small for reliable excitation input)

t_nr_exc = 81 nr of time instants considered to compute the excitation in the time domain

Continue on next page with script 2
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Script 2: 2.ImpedancesAnd3DoFStructuralResponse
Soil approximation for impedances 3DoF system

G_HS = 7500000 N/m2 shear modulus of soil approximation as homogeneous HalfSpace

rho_HS = 2000 kg/m3 material mass density of soil approximation as homogeneous HalfSpace

v_HS = 0.48 - Poisson's ratio of soil approximation as homogeneous HalfSpace

Beta_HS = 0.02 - damping ratio of soil approximation as homogeneous HalfSpace

in case of piles only Esoil0 = 50000000 N/m2 Young's modulus of soil material at the pile head (top of the pile, underneath the foundation slab)

in case of piles only rho_L = 2000 kg/m3 material mass density of soil approximation at pile-length of the foundation pile (pile tip)

in case of piles only v_L = 0.25 - Poisson's ratio of soil approximation at pile-length of foundation pile (pile tip)

in case of piles only Cs_L = 200 m/s shear wave speed of soil approximation at pile-length of the foundation pile (pile tip)

in case of piles only Cs_Lm = 100 m/s shear wave speed of soil approximation at mid-length of the foundation pile

in case of piles only Cs_H = 400 m/s

shear wave speed of soil approximation at twice the pile-length of the foundation pile (pile tip + pile 

length)

in case of piles only Beta_L = 0.01 - damping ratio of soil approximation at pile-length of the foundation pile (pile tip)

in case of piles only HsoilZ = 36 m depth of H (which is taken as twice the pile length)

Structure for 3DoF system

DstructZeff = 5.5 m effective depth of structural wall-soil interface

AbReducingFactor = 1 -

reducing factor for contact area Ab between bottom of structure and soil to take into account loss 

of contact due to e.g. rocking of the structure. 

AwReducingFactor = 1 -

reducing factor for contact area Aw between structural walls and soil to take into account loss of 

contact due to e.g. rocking of the structure. 

presence_piles = 1

0: no foundation piles are included

1: the foundation piles are included as specified below:

in case of piles only Dpile = 0.7 m diameter of a single foundation pile

in case of piles only LpileZ = 18 m length of a single foundation pile (underneath bottom of foundation slab to pile tip)

in case of piles only nrPilesX = 9 - nr of foundation piles on the same axis parallel to the x-axis (symmetrically divided)

in case of piles only nrPilesY = 26 - nr of foundation piles on the same axis parallel to the y-axis (symmetrically divided)

in case of piles only Ptot = 234 - total nr of foundation piles (minimum amount is 4)

in case of piles only Spiles = 2.1 m axis-to-axis distance foundation piles

ìn case of piles only Epile = 30000000000 N/m2 Young's Modulus of foundation pile material (e.g. concrete)
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Computational options 3DoF system

freq_step_str = 0.25 Hz

frequency step used to compute the 3DoF soil impedances and the 3DoF structural response and 

the EB-beam flexible frame structural response in the frequency domain. Also: freq_min_str = 

freq_step_str/2

freq_nr_str = 81 - nr of frequencies considered to compute the freq_max_str

freq_max_str = 20.125 Hz

maximum frequency considered for computing the 3DoF soil impedances and the 3DoF structural 

response and the EB-beam flexible frame structural response in the frequency domain.

tmin_resp = -0.12 s minimum time instant to consider for the computation of the structural response

tstep_resp = 0.02 s time step to consider for the computation of the structural response

t_nr_resp = 137 nr of time instants to consider for the computation of the structural response

tmax_resp = 2.6 s maximum time instant to consider for the computation of the structural response

freq_plot_forcings = 7 Hz specific frequency for which the frequency dependent forcings are plotted (compressed springs)

Plotting parameters 3DoF system

plot_3DoF_velocities_time = 1

0: do not plot the 3DoF response velocities in the time domain

1: plot the 3DoF response velocities in the time domain

plot_3DoF_velocities_freq = 1

0: do not plot the 3DoF response velocities in the frequency domain

1: plot the 3DoF response velocities in the frequency domain

plot_3DoF_RMSvelocities_freq = 1

0: do not plot the 3DoF response RMS velocities in the frequency domain

1: plot the 3DoF response RMS velocities in the frequency domain

Excitation 3DoF system (in case a simpler excitation is wanted than the stored excitation lists in the folder 'SoilResponses')

overwrite_exc_3DoF = 0 -

0: the excitation will be taken from the excitation.csv-files, computed by script 1.

1: the excitation will not be taken from the excitation.csv-files. Instead a more simple excitation can 

be constructed with the parameters specified below this parameter.

     Harmonic excitation term 1

Freq_3DoF_exc1 = 5 Hz The frequency of the harmonic excitation: U(t) = Aucj*cos(Freq_excj*t) + Ausj*sin(Freq_excj*t)

Au1cj_3DoF_exc1 = 0.00001 m Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)
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Au1sj_3DoF_exc1 = 0.00001 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Au3cj_3DoF_exc1 = 0.00001 m Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

Au3sj_3DoF_exc1 = 0.00001 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

AuPHIcj_3DoF_exc1 = 0.00001 rad Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

AuPHIsj_3DoF_exc1 = 0.00001 rad Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Av1cj_3DoF_exc1 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the cosine term of the velocities (v)

Av1sj_3DoF_exc1 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the sine term of the velocities (v)

Av3cj_3DoF_exc1 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the cosine term of the velocities (v)

Av3sj_3DoF_exc1 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the sine term of the velocities (v)

AvPHIcj_3DoF_exc1 = 0.0001 rad/s Amplitude of the harmonic excitation correcponding to the cosine term of the velocities (v)

AvPHIsj_3DoF_exc1 = 0.0001 rad/s Amplitude of the harmonic excitation correcponding to the sine term of the velocities (v)

     Harmonic excitation term 2

Freq_3DoF_exc2 = 10 Hz The frequency of the harmonic excitation: U(t) = Aucj*cos(Freq_excj*t) + Ausj*sin(Freq_excj*t)

Au1cj_3DoF_exc2 = 0.00001 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Au1sj_3DoF_exc2 = 0.00001 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Au3cj_3DoF_exc2 = 0.00001 m Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

Au3sj_3DoF_exc2 = 0.00001 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)
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AuPHIcj_3DoF_exc2 = 0.00001 rad Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

AuPHIsj_3DoF_exc2 = 0.00001 rad Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Av1cj_3DoF_exc2 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the cosine term of the velocities (v)

Av1sj_3DoF_exc2 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the sine term of the velocities (v)

Av3cj_3DoF_exc2 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the cosine term of the velocities (v)

Av3sj_3DoF_exc2 = 0.0001 m/s Amplitude of the harmonic excitation correcponding to the sine term of the velocities (v)

AvPHIcj_3DoF_exc2 = 0.0001 rad/s Amplitude of the harmonic excitation correcponding to the cosine term of the velocities (v)

AvPHIsj_3DoF_exc2 = 0.0001 rad/s Amplitude of the harmonic excitation correcponding to the sine term of the velocities (v)

     Insert additional excitation terms here

Continue on next page with script 3
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Script 3: 3.EB-beam frame matrix_allExcitations
Figures to explain several input parameters of Python script 3

EB-beam frame additional (or more detailed / free to pick) properties. Otherwise refer input cell to structural properties of script 0

Structure for EB-beam frame

EB_span = 10.18233765 m length (span) of all EB-beam floor elements

EB_hw1 = 4.5 m length (storey height) of the EB-beam wall elements u1 and u3

EB_hw2 = 4.5 m length (storey height) of the EB-beam wall elements u2 and u4

wj_width = 1 m width of the EB-beam floor elements (factorized out in the computation)

w1_height = 0.5 m floor height or thickness of EB-beam floor element w1

w2_height = 0.5 m floor height or thickness of EB-beam floor element w2

w3_height = 0.4 m floor height or thickness of EB-beam floor element w3

w4_height = 0.4 m floor height or thickness of EB-beam floor element w4

uj_width = 1 m width of the EB-beam wall elements (factorized out in the computation)

u1_height = 0.55 m wall height or thickness of EB-beam wall element u1

u2_height = 0.55 m wall height or thickness of EB-beam wall element u2

u3_height = 0.3 m wall height or thickness of EB-beam wall element u3

u4_height = 0.3 m wall height or thickness of EB-beam wall element u4

rho_structure = 4000 kg/m3 material mass density of the EB-beam frame structure

E_mod_structure = 19000000000 N/m2 Young's Modulus of the EB-beam frame structure
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Computation of EB-beam frame

freq_step_str_EB = 0.25 Hz

freq_nr_str_EB = 81 -

freq_max_str_EB = 20.125 Hz

tmin_resp_EB = -0.14

tstep_resp_EB = 0.02 s

t_nr_resp_EB = 138

tmax_resp_EB = 2.6 s

Plotting parameters EB-beam frame

plot_displaced_frames_UxWzPHIy = 0

0: do not plot the displaced EB-beam frame due to the excitations Ux, Wz and PHIy for a particular 

time instant

1: plot the displaced EB-beam frame due to the excitations Ux, Wz and PHIy for the time instants 

specified below:

plot_displaced_frame_tot = 0

0: do not plot the displaced EB-beam frame due to all excitation types for a particular time instant

1: plot the displaced EB-beam frame due to all excitation types for the time instants specified below:

time_instant_frame_plot_1 = 0.5 s time instant at which the results of the EB-beam frame are computed and plotted

time_instant_frame_plot_2 = 0.1 s time instant at which the results of the EB-beam frame are computed and plotted

plot_max_defl_factor = 0.1

factor multiplied with min(hw,hw2,span) to obtain a limit displacement in the EB-beam frame plots. 

This limit is used to obtain a scalingfactor for plotting the displaced EB-beam frames. Advised is to 

keep this value equal to 0.1

applying_scaling_factor = 0 -

0: no scalingfactor will be applied to the plots of the deformed EB-beam frame

1: the scalingfactor for the plots will be determined by the script (computational heavy)

2: the scaling factor will be chosen from the specified factors below:

apply_ScalingFactorUx = 600 -

Scaling factor applied when '2' is chosen above (for the response due to excitation Ux only), refers 

to plot_displaced_frames_UxWzPHIy

apply_ScalingFactorWz = 600 -

Scaling factor applied when '2' is chosen above (for the response due to excitation Wz only), refers 

to plot_displaced_frames_UxWzPHIy
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apply_ScalingFactorPHIy = 600 -

Scaling factor applied when '2' is chosen above (for the response due to excitation PHIy only), refers 

to plot_displaced_frames_UxWzPHIy

apply_ScalingFactor = 600 -

Scaling factor applied when '2' is chosen above (for the response due to all excitations), refers to 

plot_displaced_frames_tot

Plotting parameters EB-beam element w1

plot_w1_displ_time 0

0: do not plot the displaced beam element w1 along the length of the element for a particular time 

instant

1: plot the displaced beam element w1 along the length of the element for a the particular time 

instants specified below:

time_instant_w1_displ_plot_1 = 0 s time instant at which the displacements of the EB-beam element w1 are computed and plotted

time_instant_w1_displ_plot_2 = 0.1 s time instant at which the displacements of the EB-beam element w1 are computed and plotted

plot_w1_displ_coord 0

0: do not plot the displaced beam element w1 over the time domain of the forcing for a particular x-

coordinate along the element

1: plot the displaced beam element w1 over the time domain of the forcing for a particular x-

coordinate along the element as specified below:

x_coord_w1_displ_plot_1 = 5.091168825 m x-coordinate at which the displacements of the EB-beam element w1 are computed and plotted

x_coord_w1_displ_plot_2 = 2.545584412 m x-coordinate at which the displacements of the EB-beam element w1 are computed and plotted

plotting velocities of w1 in the space-time domain

plot_w1_veloc_time 0

0: do not plot the velocities of the beam element w1 along the length of the element for a particular 

time instant

1: plot the velocities of the beam element w1 along the length of the element for a the particular 

time instants specified below:

time_instant_w1_veloc_plot_1 = 0 s time instant at which the velocities of the EB-beam element w1 are computed and plotted

time_instant_w1_veloc_plot_2 = 0.1 s time instant at which the velocities of the EB-beam element w1 are computed and plotted

1300273914
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plot_w1_veloc_coord 1

0: do not plot the velocities of the beam element w1 over the time domain of the forcing for a 

particular x-coordinate along the element

1: plot the velocities of the beam element w1 over the time domain of the forcing for a particular x-

coordinate along the element as specified below:

x_coord_w1_veloc_plot_1 = 5.091168825 m x-coordinate at which the velocities of the EB-beam element w1 are computed and plotted

x_coord_w1_veloc_plot_2 = 2.545584412 m x-coordinate at which the velocities of the EB-beam element w1 are computed and plotted

plotting velocities of w1 in the space-frequency domain

plot_w1_velocFreq_coord = 1

0: do not plot the velocities of the beam element w1 over the specified calculation-frequency 

domain for a particular x-coordinate along the element

1: plot the velocities of the beam element w1 over the specified calculation-frequency domain for a 

particular x-coordinate along the element as specified below:

x_coord_w1_velocFreq_plot_1 = 5.091168825 m position in floor w1 to compute the frequency response spectrum

x_coord_w1_velocFreq_plot_1 = 2.545584412 m position in floor w1 to compute the frequency response spectrum

plotting RMS-velocities of w1 in the space-frequency domain

plot_w1_RMSvelocFreq_coord = 1

0: do not plot the velocities of the beam element w1 over the specified calculation-frequency 

domain for a particular x-coordinate along the element

1: plot the velocities of the beam element w1 over the specified calculation-frequency domain for a 

particular x-coordinate along the element as specified below:

x_coord_w1_RMSvelocFreq_plot_1 = 5.091168825 m position in floor w1 to compute the frequency response spectrum

Excitation EB-beam frame (in case a simpler excitation is wanted than the stored excitation lists in the csv-files '3DoF_Building_Response')

overwrite_exc_EB = 0 -

0: the excitation will be taken from the excitation.csv-files. 

1: the excitation will not be taken from the excitation.csv-files. Instead a more simple excitation can 

be constructed with the parameters specified below this parameter.

     Harmonic excitation term 1

Freq_EB_exc1 = 30 Hz The frequency of the harmonic excitation: U(t) = Aucj*cos(Freq_excj*t) + Ausj*sin(Freq_excj*t)

Ax1cj_EB_exc1 = 0.0003 m Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)
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Ax1sj_EB_exc1 = 0.0003 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Ax2cj_EB_exc1 = 0.0003 m Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

Ax2sj_EB_exc1 = 0.0003 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Ax3cj_EB_exc1 = 0.00002 rad Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

Ax3sj_EB_exc1 = 0.00002 rad Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

     Harmonic excitation term 2

Freq_EB_exc2 = 8 Hz The frequency of the harmonic excitation: U(t) = Aucj*cos(Freq_excj*t) + Ausj*sin(Freq_excj*t)

Ax1cj_EB_exc2 = 0.0003 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Ax1sj_EB_exc2 = 0.0003 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Ax2cj_EB_exc2 = 0.0003 m Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

Ax2sj_EB_exc2 = 0.0003 m Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

Ax3cj_EB_exc2 = 0.00002 rad Amplitude of the harmonic excitation correcponding to the cosine term of the displacements (u)

Ax3sj_EB_exc2 = 0.00002 rad Amplitude of the harmonic excitation correcponding to the sine term of the displacements (u)

     Insert additional excitation terms here

End of input parameters
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Results: 
 

Title: Building in Amsterdam ‘Reference’ 
Date: 2019-9-6 
 

 
Computational parameters 3DoF and EB-beam frame 

𝑡𝑠𝑡𝑒𝑝_𝑒𝑥𝑐  =  0.02 𝑠 𝑡𝑛𝑟_𝑒𝑥𝑐  =  81 𝑡𝑚𝑎𝑥_𝑒𝑥𝑐  =  1.5 𝑠 

𝑓𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑝 =  0.25 𝐻𝑧 𝑓𝑛𝑟_𝑟𝑒𝑠𝑝  =  81 𝑓𝑚𝑎𝑥_𝑟𝑒𝑠𝑝  =  20.125 𝐻𝑧 

𝑡𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑝  =  0.02 𝑠 𝑡𝑛𝑟_𝑟𝑒𝑠𝑝  =  137 𝑡𝑚𝑎𝑥_𝑟𝑒𝑠𝑝  =  2.6 𝑠 

3DoF system: 

𝑀𝑏  =  12348747 𝑘𝑔 𝐽𝐶𝐺  =  1869944533 𝑘𝑔𝑚
2 𝑧𝐶𝐺  =  13.26 𝑚 

Excitation (frequency dependent forces): 

   
𝑝𝑒𝑎𝑘 =  4.5 𝑘𝑁 𝑝𝑒𝑎𝑘 =  120 𝑘𝑁 𝑝𝑒𝑎𝑘 =  1800 𝑘𝑁𝑚 

Response (frequency domain displacements): 

   

Response (time domain displacements): 

 
𝑝𝑒𝑎𝑘 =  −2.0 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.5 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.2 ∙ 10−6 𝑟𝑎𝑑 

Response (time domain velocities): 

 
𝑝𝑒𝑎𝑘 =  8.0 ∙ 10−5 𝑚/𝑠 𝑝𝑒𝑎𝑘 =  2.0 ∙ 10−5 𝑚/𝑠 𝑝𝑒𝑎𝑘 =  0.5 ∙ 10−5 𝑟𝑎𝑑/𝑠 
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Eigenfrequencies ( range of 𝑓 = 𝜔 2𝜋⁄  for which det[−𝜔2𝑴+𝑲(𝜔)] = 0 ): 

1.775 ≤ 𝑓𝑛 ≤ 1.825 1.925 ≤ 𝑓𝑛 ≤ 1.975 8.275 ≤ 𝑓𝑛 ≤ 8.325 

  
Stiffness impedance terms: 

   
𝑝𝑒𝑎𝑘 =  1.55 ∙ 1010 𝑁/𝑚 𝑝𝑒𝑎𝑘 =  0.25 ∙ 1010 𝑁/𝑚 𝑝𝑒𝑎𝑘 =  63 ∙ 1010 𝑁𝑚/𝑟𝑎𝑑 

Total (hysteric and radiation) damping impedance terms: 

   
𝑝𝑒𝑎𝑘 =  0.12 ∙ 1010 𝑁𝑠/𝑚 𝑝𝑒𝑎𝑘 =  7.0 ∙ 1010 𝑁𝑠/𝑚 𝑝𝑒𝑎𝑘 =  300 ∙ 1010 𝑁𝑚𝑠/𝑟𝑎𝑑 

Response (frequency domain RMS velocities) 

 
𝑝𝑒𝑎𝑘 = 15 𝜇𝑚/𝑠 𝑝𝑒𝑎𝑘 =  3 𝜇𝑚/𝑠 𝑝𝑒𝑎𝑘 = 1 𝜇𝑚/𝑠 
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EB-beam frame element w1: 

  
𝑝𝑒𝑎𝑘 = 1 ∙ 10−4  𝑚/𝑠 𝑝𝑒𝑎𝑘 = 18.5 𝜇𝑚/𝑠 

Script 0 & 1 

𝑡𝑐𝑜𝑚𝑝  =  1 𝑚𝑖𝑛𝑠   

Script 2  

𝑣(𝑡): 𝑡𝑐𝑜𝑚𝑝  =  40 𝑚𝑖𝑛𝑠  𝑣(𝑓) + 𝑣𝑅𝑀𝑆(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  +8 𝑚𝑖𝑛𝑠 

Script 3  

𝑣(𝑡): 𝑡𝑐𝑜𝑚𝑝  =  1 𝑚𝑖𝑛𝑠 𝑣(𝑓): 𝑡𝑐𝑜𝑚𝑝  

=  +140 𝑚𝑖𝑛𝑠 

𝑣𝑅𝑀𝑆(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  +152 𝑚𝑖𝑛𝑠 

Total comp. time for time domain only: 1 + 40 + 1 = 𝟒𝟐 𝒎𝒊𝒏𝒔 = 𝑅𝐸𝐹  

Total comp. time incl. freq. domain RMS: 1 + 48 + 1 + 140 + 152 = 342 𝑚𝑖𝑛𝑠 = 𝑅𝐸𝐹   
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2. Iteration: greater global building mass (42 - 342 mins) 

Changed input: 
3DoF system: 

𝑀𝑏  =  24697495 𝑘𝑔   

Results: 
Title: Building in Amsterdam ‘Greater global building mass’ 
Date: 2019-9-6 
 

 
3DoF system: 

𝑀𝑏  =  24697495 𝑘𝑔 𝐽𝐶𝐺  =  2972255 𝑘𝑔𝑚
2 𝑧𝐶𝐺  =  0.55 𝑚 

Response (frequency domain displacements): 

   

Response (time domain displacements): 

 
𝑝𝑒𝑎𝑘 =  −2.0 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.5 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.2 ∙ 10−6 𝑟𝑎𝑑 

Observed eigenfrequencies in range of 0.375 Hz ≤ 𝑓(= 𝜔 2𝜋⁄ ) ≤ 20.125 Hz for which 
det[−𝜔2𝑴+𝑲(𝜔)] = 0: 

7.325 ≤ 𝑓𝑛 ≤ 7.375 
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EB-beam frame element w1: 

  
𝑝𝑒𝑎𝑘 = 0.95 ∙ 10−4  𝑚/𝑠 𝑝𝑒𝑎𝑘 = 16 𝜇𝑚/𝑠 
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3. Iteration: small rigid block (42 - 342 mins) 

Changed input: 
3DoF system: 

 1 rigid floor / slab only. 

 Dimensions: LstructX = 8.1 m, LstructY = 20 m, HstrcutZ = 0.8 m 

 Dpile = 0.47 m, LpileZ = 18 m, nrPilesX = 4, nrPilesY = 8, Spiles = 2.6 m 

EB-beam frame: 

 Span = 3.68 m, w1_height = 0.8 m, w3_height = 0.01 m, EB_hw1 = 0.2 m 

Results: 
Title: Building in Amsterdam ‘Small rigid block’ 
Date: 2019-9-6 
 

 
3DoF system: 

𝑀𝑏  =  324084 𝑘𝑔 𝐽𝐶𝐺  =  1793899 𝑘𝑔𝑚
2 𝑧𝐶𝐺  =  0.4 𝑚 

Response (frequency domain displacements): 

   
Response (time domain displacements): 

 
𝑝𝑒𝑎𝑘 =  −0.80 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  1.2 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.85 ∙ 10−6 𝑟𝑎𝑑 

Observed eigenfrequencies in range of 0.375 Hz ≤ 𝑓(= 𝜔 2𝜋⁄ ) ≤ 20.125 Hz for which 
det[−𝜔2𝑴+𝑲(𝜔)] = 0: 

5.825 ≤ 𝑓𝑛 ≤ 5.875 8.975 ≤ 𝑓𝑛 ≤ 9.025 11.925 ≤ 𝑓𝑛 ≤ 11.975 
EB-beam frame element w1: 

  
𝑝𝑒𝑎𝑘 = −1.2 ∙ 10−4  𝑚/𝑠 𝑝𝑒𝑎𝑘 = 14.2 𝜇𝑚/𝑠 
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4. Iteration: greater G value for (stiffer) soil impedances (42 - 342 mins) 

Changed input: 
3DoF system: 

 G_HS = 37.5 x 10-6 N/m2, rho_HS = 2000 kg/m3, v_HS = 0.48, Beta_HS = 0.02,  

 Esoil0 = 250 x 106 N/m2, Cs_L = 447 m/s. Cs_Lm = 224 m/s, Cs_H = 895 m/s 

Results: 
Title: Building in Amsterdam ‘Increased stiffness soil 
impedance’ 
Date: 2019-9-6 
 

 
3DoF system: 

Response (frequency domain displacements): 

   
Response (time domain displacements): 

 
𝑝𝑒𝑎𝑘 =  −2.2 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.5 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.2 ∙ 10−6 𝑟𝑎𝑑 

Observed eigenfrequencies in range of 0.375 Hz ≤ 𝑓(= 𝜔 2𝜋⁄ ) ≤ 20.125 Hz for which 
det[−𝜔2𝑴+𝑲(𝜔)] = 0: 

2.825 ≤ 𝑓𝑛 ≤ 2.875 3.575 ≤ 𝑓𝑛 ≤ 3.625 11.825 ≤ 𝑓𝑛 ≤ 11.875 
Stiffness impedance terms: 

   
𝑝𝑒𝑎𝑘 =  3.9 ∙ 1010 𝑁/𝑚 𝑝𝑒𝑎𝑘 =  0.8 ∙ 1010 𝑁/𝑚 𝑝𝑒𝑎𝑘 =  180 ∙ 1010 𝑁𝑚/𝑟𝑎𝑑 
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EB-beam frame element w1: 

  
𝑝𝑒𝑎𝑘 = 1.0 ∙ 10−4  𝑚/𝑠 𝑝𝑒𝑎𝑘 = 20 𝜇𝑚/𝑠 
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5. Iteration: smaller pile length and raised sand layer (42 - 342 mins) 

Changed input: 
3DoF system: 

 LpileZ = 6 m 

Results: 
Title: Building in Amsterdam ‘Increased stiffness pile 
foundation’ 
Date: 2019-9-6 
 

 
3DoF system: 

Response (frequency domain displacements): 

   
Response (time domain displacements): 

 
𝑝𝑒𝑎𝑘 =  −2.2 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.5 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.2 ∙ 10−6 𝑟𝑎𝑑 

Observed eigenfrequencies in range of 0.375 Hz ≤ 𝑓(= 𝜔 2𝜋⁄ ) ≤ 20.125 Hz for which 
det[−𝜔2𝑴+𝑲(𝜔)] = 0: 

5.475 ≤ 𝑓𝑛 ≤ 5.525 10.925 ≤ 𝑓𝑛 ≤ 10.975 20.125 ≤ 𝑓𝑛 
Stiffness impedance terms: 

  
 

𝑝𝑒𝑎𝑘 =  1.55 ∙ 1010 𝑁/𝑚 𝑝𝑒𝑎𝑘 =  22.0 ∙ 1010 𝑁/𝑚 𝑝𝑒𝑎𝑘 =  650 ∙ 1010 𝑁𝑚/𝑟𝑎𝑑 
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EB-beam frame element w1: 

  
𝑝𝑒𝑎𝑘 = 1.0 ∙ 10−4  𝑚/𝑠 𝑝𝑒𝑎𝑘 = 19.5 𝜇𝑚/𝑠 
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6. Iteration: stiffer equivalent local EB-beam floor (42 - 342 mins) 

Changed input: 
EB-beam frame element w1: 

 span = 10.18 m, w1_height = w2_height = 0.5 m 

 rho_structure = 4000 kg/m3, Emod = 30 x 109 N/m2 

Results: 
Title: Building in Amsterdam ‘Stiffer equivalent local EB-beam 
floor’ 
Date: 2019-9-6 
 

 
EB-beam frame element w1: 

  
𝑝𝑒𝑎𝑘 = 0.75 ∙ 10−4  𝑚/𝑠 𝑝𝑒𝑎𝑘 = 17.5 𝜇𝑚/𝑠 
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7. Iteration: more coordinates along local EB-beam floor (42 - 950 mins) 

Changed input: 
EB-beam frame element w1: 

 4 more point coordinates along length of beam (5 coordinates in total) 

 (1 4⁄ , 1 3⁄ , 1 2⁄ , 2 3⁄ , 3 4⁄ )∙ 𝑠𝑝𝑎𝑛 

Results: 
Title: Building in Amsterdam ‘More coordinates local EB-beam 
floor’ 
Date: 2019-9-6 
 

 
EB-beam frame element w1: 

  
𝑝𝑒𝑎𝑘 = 11.0 𝜇𝑚/𝑠 𝑝𝑒𝑎𝑘 = 10.0 𝜇𝑚/𝑠 

  
𝑝𝑒𝑎𝑘 = 18.5 𝜇𝑚/𝑠 𝑝𝑒𝑎𝑘 = 26.0 𝜇𝑚/𝑠 

 

 

𝑝𝑒𝑎𝑘 = 27.0 𝜇𝑚/𝑠  
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8. Iteration: reference optimized computational time 1 (24 - 118 mins) 

Changed input: 
Computational parameters 3DoF and EB-beam frame 

𝑡𝑠𝑡𝑒𝑝_𝑒𝑥𝑐  =  0.02 𝑠 𝑡𝑛𝑟_𝑒𝑥𝑐  =  81 𝑡𝑚𝑎𝑥_𝑒𝑥𝑐  =  1.5 𝑠 

𝑓𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑝 =  0.25 𝐻𝑧 𝑓𝑛𝑟_𝑟𝑒𝑠𝑝  =  41 𝑓𝑚𝑎𝑥_𝑟𝑒𝑠𝑝  =  10.125 𝐻𝑧 

𝑡𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑝  =  0.02 𝑠 𝑡𝑛𝑟_𝑟𝑒𝑠𝑝  =  137 𝑡𝑚𝑎𝑥_𝑟𝑒𝑠𝑝  =  2.6 𝑠 

Results: 
Title: Building in Amsterdam ‘Iteration: reference optimized 
computational time 1’ 
Date: 2019-9-6 
 

 
3DoF system: 

Response (time domain displacements): 

 
𝑝𝑒𝑎𝑘 =  −2.0 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.5 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.2 ∙ 10−6 𝑟𝑎𝑑 

EB-beam frame element w1: 

  
𝑝𝑒𝑎𝑘 = 0.75 ∙ 10−4  𝑚/𝑠 𝑝𝑒𝑎𝑘 = 18.5 𝜇𝑚/𝑠 

 

Script 0 & 1 

𝑡𝑐𝑜𝑚𝑝  =  1 𝑚𝑖𝑛𝑠   

Script 2  

𝑣(𝑡): 𝑡𝑐𝑜𝑚𝑝  =  22 𝑚𝑖𝑛𝑠  𝑣(𝑓) + 𝑣𝑅𝑀𝑆(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  +4 𝑚𝑖𝑛𝑠 

Script 3  

𝑣(𝑡): 𝑡𝑐𝑜𝑚𝑝  =  1 𝑚𝑖𝑛𝑠 𝑣(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  +36 𝑚𝑖𝑛𝑠 𝑣𝑅𝑀𝑆(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  +58 𝑚𝑖𝑛𝑠 

Total comp. time for time domain only: 1 + 22 + 1 = 𝟐𝟒 𝒎𝒊𝒏𝒔 =
24

42
= 0.55 ∙ 𝑅𝐸𝐹  

Underestimation of EB-beam floor in time domain = 0.75/1 = 0.75  

Total comp. time incl. freq. domain RMS: 1 + 22 + 1 + 36 + 58 = 118 𝑚𝑖𝑛𝑠 =
118

342
= 0.35 ∙ 𝑅𝐸𝐹   

Underestimation of EB-beam floor in freq. domain RMS = 18.5/18.5 = 1 
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9. Iteration: reference optimized computational time 2 (13 - 49 mins) 

Changed input: 
Computational parameters 3DoF and EB-beam frame 

𝑡𝑠𝑡𝑒𝑝_𝑒𝑥𝑐  =  0.04 𝑠 𝑡𝑛𝑟_𝑒𝑥𝑐  =  41 𝑡𝑚𝑎𝑥_𝑒𝑥𝑐  =  1.5 𝑠 

𝑓𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑝 =  0.25 𝐻𝑧 𝑓𝑛𝑟_𝑟𝑒𝑠𝑝  =  41 𝑓𝑚𝑎𝑥_𝑟𝑒𝑠𝑝  =  10.125 𝐻𝑧 

𝑡𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑝  =  0.04 𝑠 𝑡𝑛𝑟_𝑟𝑒𝑠𝑝  =  69 𝑡𝑚𝑎𝑥_𝑟𝑒𝑠𝑝  =  2.6 𝑠 

Results: 
Title: Building in Amsterdam ‘Iteration: reference optimized 
computational time 2’ 
Date: 2019-9-6 
 

 
3DoF system: 

Response (time domain displacements): 

 
𝑝𝑒𝑎𝑘 =  −2.2 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.51 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.2 ∙ 10−6 𝑟𝑎𝑑 

EB-beam frame element w1: 

  
𝑝𝑒𝑎𝑘 = 0.61 ∙ 10−4  𝑚/𝑠 𝑝𝑒𝑎𝑘 = 18.0 𝜇𝑚/𝑠 

 

Script 0 & 1 

𝑡𝑐𝑜𝑚𝑝  =  1 𝑚𝑖𝑛𝑠   

Script 2  

𝑣(𝑡) + 𝑣(𝑓) + 𝑣𝑅𝑀𝑆(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  11 𝑚𝑖𝑛𝑠 

Script 3  

𝑣(𝑡): 𝑡𝑐𝑜𝑚𝑝  =  1 𝑚𝑖𝑛𝑠 𝑣(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  +17 𝑚𝑖𝑛𝑠 𝑣𝑅𝑀𝑆(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  +19 𝑚𝑖𝑛𝑠 

Total comp. time for time domain only: 1 + 11 + 1 = 𝟏𝟑 𝒎𝒊𝒏𝒔 =
13

42
= 0.3 ∙ 𝑅𝐸𝐹  

Underestimation of EB-beam floor in time domain = 0.61/1 = 0.61  

Total comp. time incl. freq. domain RMS: 1 + 11 + 1 + 17 + 19 = 49 𝑚𝑖𝑛𝑠 =
49

342
= 0.14 ∙ 𝑅𝐸𝐹   

Underestimation of EB-beam floor in freq. domain RMS = 18.0/18.5 = 0.97 
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10. Iteration: reference optimized computational time 2, variant 2 (8 - 25 mins) 

Changed input: 
Computational parameters 3DoF and EB-beam frame 

𝑡𝑠𝑡𝑒𝑝_𝑒𝑥𝑐  =  0.05 𝑠 𝑡𝑛𝑟_𝑒𝑥𝑐  =  33 𝑡𝑚𝑎𝑥_𝑒𝑥𝑐  =  1.5 𝑠 

𝑓𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑝 =  0.375 𝐻𝑧 𝑓𝑛𝑟_𝑟𝑒𝑠𝑝  =  28 𝑓𝑚𝑎𝑥_𝑟𝑒𝑠𝑝  =  10.3125 𝐻𝑧 

𝑡𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑝  =  0.05 𝑠 𝑡𝑛𝑟_𝑟𝑒𝑠𝑝  =  37 𝑡𝑚𝑎𝑥_𝑟𝑒𝑠𝑝  =  1.65 𝑠 

Results: 
Title: Building in Amsterdam ‘Iteration: reference optimized 
computational time 2, variant 2’ 
Date: 2019-9-6 
 

 
3DoF system: 

Response (time domain displacements): 

 
𝑝𝑒𝑎𝑘 =  2.5 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.5 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.2 ∙ 10−6 𝑟𝑎𝑑 

EB-beam frame element w1: 

  
𝑝𝑒𝑎𝑘 = 3.5 ∙ 10−4  𝑚/𝑠 𝑝𝑒𝑎𝑘 = 12.0 𝜇𝑚/𝑠 

 

Script 0 & 1 

𝑡𝑐𝑜𝑚𝑝  =  1 𝑚𝑖𝑛𝑠   

Script 2  

𝑣(𝑡) + 𝑣(𝑓) + 𝑣𝑅𝑀𝑆(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  6 𝑚𝑖𝑛𝑠 

Script 3  

𝑣(𝑡): 𝑡𝑐𝑜𝑚𝑝  =  1 𝑚𝑖𝑛𝑠 𝑣(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  +5 𝑚𝑖𝑛𝑠 𝑣𝑅𝑀𝑆(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  +12 𝑚𝑖𝑛𝑠 

Total comp. time for time domain only: 1 + 6 + 1 = 𝟖 𝒎𝒊𝒏𝒔 =
8

42
= 0.2 ∙ 𝑅𝐸𝐹  

Overestimation of EB-beam floor in time domain = 3.5/1 = 3.5  

Total comp. time incl. freq. domain RMS: 1 + 6 + 1 + 5 + 12 = 25 𝑚𝑖𝑛𝑠 =
25

342
= 0.07 ∙ 𝑅𝐸𝐹   

Underestimation of EB-beam floor in freq. domain RMS = 12.0/18.5 = 0.65 
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11. Iteration: reference optimized computational time 3 (8 - 24 mins) 

Changed input: 
Computational parameters 3DoF and EB-beam frame 

𝑡𝑠𝑡𝑒𝑝_𝑒𝑥𝑐  =  0.04 𝑠 𝑡𝑛𝑟_𝑒𝑥𝑐  =  41 𝑡𝑚𝑎𝑥_𝑒𝑥𝑐  =  1.5 𝑠 

𝑓𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑝 =  0.5 𝐻𝑧 𝑓𝑛𝑟_𝑟𝑒𝑠𝑝  = 21 𝑓𝑚𝑎𝑥_𝑟𝑒𝑠𝑝  =  10.25 𝐻𝑧 

𝑡𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑝  =  0.04 𝑠 𝑡𝑛𝑟_𝑟𝑒𝑠𝑝  =  53 𝑡𝑚𝑎𝑥_𝑟𝑒𝑠𝑝  =  1.94 𝑠 

Results: 
Title: Building in Amsterdam ‘Iteration: reference optimized 
computational time 3’ 
Date: 2019-9-6 
 

 
3DoF system: 

Response (time domain displacements): 

 
𝑝𝑒𝑎𝑘 =  −2.2 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.7 ∙ 10−6 𝑚 𝑝𝑒𝑎𝑘 =  −0.2 ∙ 10−6 𝑟𝑎𝑑 

EB-beam frame element w1: 

  
𝑝𝑒𝑎𝑘 = 1.2 ∙ 10−4  𝑚/𝑠 𝑝𝑒𝑎𝑘 = 62.0 𝜇𝑚/𝑠 

 

Script 0 & 1 

𝑡𝑐𝑜𝑚𝑝  =  1 𝑚𝑖𝑛𝑠   

Script 2  

𝑣(𝑡) + 𝑣(𝑓) + 𝑣𝑅𝑀𝑆(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  6 𝑚𝑖𝑛𝑠 

Script 3  

𝑣(𝑡): 𝑡𝑐𝑜𝑚𝑝  =  1 𝑚𝑖𝑛𝑠 𝑣(𝑓) + 𝑣𝑅𝑀𝑆(𝑓): 𝑡𝑐𝑜𝑚𝑝  =  +16 𝑚𝑖𝑛𝑠 

Total comp. time for time domain only: 1 + 6 + 1 = 𝟖 𝒎𝒊𝒏𝒔 =
8

42
= 0.2 ∙ 𝑅𝐸𝐹  

Overestimation of EB-beam floor in time domain = 1.2/1 = 1.2  

Total comp. time incl. freq. domain RMS: 1 + 6 + 1 + 16 = 24 𝑚𝑖𝑛𝑠 =
24

342
= 0.07 ∙ 𝑅𝐸𝐹   

Overestimation of EB-beam floor in freq. domain RMS = 62.0/18.5 = 3.4 
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U. Appendix: User manual of EDDABuSGS 
 
EDDABuSGS stands for ‘Early Design Dynamic Analysis of Building Structures by Gerwin Schut’ 
 
A brief manual is included in this appendix to guide the user of the EDDABuSGS-tool through 
the steps to take for computing the dynamic structural response. EDDABuSGS uses the 
programming software ‘Python’.  
The images shown in this manual are partly derived from the computer at Pieters 
Bouwtechniek, which is set-up in the Dutch language and in Windows, because this is the 
environment for which the tool has been developed.  
 
Downloading Python  
1. Go to the website ‘https://www.anaconda.com/distribution/’ 
2. Select your operating system (e.g. Windows, default selection is macOS) 

 
3. Download the graphical installer for Python 3.7 (64 bit version) or a later version if 

available 

 
4. Run the installation program and choose the default options 

Set-up the Python working directory (after installing Python on the pc): 
1. Create a folder called ‘Python_work’ (or any other desired name) at any desired location in 

the pc-environment (e.g. at the C-disk of the pc) 
2. Type ‘Jupyter’ in the search option of windows 
3. Right-click on ‘Jupyter Notebook’ 
4. Left-click on ‘copy to’ 
5. Left-click on ‘desktop’ (a short-cut to ‘Jupyter Notebook’ has been created on the desktop 

of this pc).  
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6. Right-click on the short-cut icon 
7. Left-click on ‘properties’ 
8. Go to the tab ‘short-cuts’ 
9. In the third cell (‘Doel’), change “%USERPROFILE%/” into the directory-path created at 1. 

(e.g. “C:/Python_work/”) 
 

 
Now every time the user opens Python by the just created Jupyter Notebook short-cut, the 
correct Python environment is opened. This environment is opened in a webbrowser. In this 
particular manual, the Python Notebook is opened in the webbrowser Google Chrome (but it 
might also be e.g. Internet Explorer). 
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Using the tool after set-up 
In windows explorer:  
1. Copy the folder ‘EDDABuS_start’ and rename it any desired name (e.g. 

‘2019Sep9ProjectName_subject’) 
The folder should at least contain the four IPYNB-files, one excel-file ‘InputFileXLS’ and a 
folder with saved soil responses (e.g. ‘SoilResponsesStartVUams’). Note that any desired 
soil excitation can be implemented in the tool by adding more subfolders with pre-
computed soil responses (e.g. ‘SoilResponsesStartArbitraryLocationByArbitrarySource’).  

 
2. Copy the folder with the desired saved soil responses and rename it to ‘SoilResponses’ 
3. Open the excel file ‘InputFileXLS’ and fill in all parameters (additional explanation of the 

parameters is given in the next section) 
 
In the Jupyter Notebook environment:  
4. Open the created folder ‘2019Sep9ProjectName_subject’ through the Python Notebook 

environment (after left-clicking the short-cut icon ‘Jupyter Notebook’ at the desktop of the 
pc) 

 
5. Here, again the four IPYNB-files and at least one excel file are visible. Check whether you 

have created the folder with the name ‘SoilResponses’. In this environment only the 
IPYNB-files are important (these are the four Python scripts) 

 
Running the 1st script: Script 0 
6. Open (left-click) script ‘0.3DoFBuildingDesignParameters.ipynb’. The notebook will be 

opened in a new tab of the webbrowser. This notebook contains the script for computing 
the global 3DoF structural properties.  

7. Left-click the ‘run’ icon in the tool-bar and left-click ‘Restart and Run All Cells’ (this icon 
will run the entire script again): 
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8. Wait for the text ‘computation of sheet complete’ to appear at the bottom-line of the script 

 
9. A new Excel-file ‘3DoFBuildingProperties’ has been created. This file will be used by the 

other scripts. 
 
Running the 2nd script: Script 1 
10. Open (left-click) script ‘1.ScriptToCompute3DoFExcitation.ipynb’. The notebook will be 

opened in a new tab of the webbrowser. This notebook contains the script for computing 
the global 3DoF excitation.  

11. Left-click the ‘run’ icon in the tool-bar and left-click ‘Restart and Run All Cells’ (this icon 
will run the entire script again) 

12. Wait for the text ‘computation of sheet complete’ to appear at the bottom-line of the script 
13. Two new Excel-files ‘excitation_displacements_td’ and ‘excitation_velocities_tv’ have been 

created. These files will be used by the next script. 
 
Running the 3rd script: Script 2 
14. Open (left-click) script ‘2.ImpedancesAnd3DoFStructuralResponse.ipynb’. The notebook 

will be opened in a new tab of the webbrowser. This notebook contains the script for 
computing the global 3DoF structural response.  

15. Left-click the ‘run’ icon in the tool-bar and left-click ‘Restart and Run All Cells’ (this icon 
will run the entire script again) 
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16. The script first computes the 3DoF structural response in the time domain and puts these 
results in two new Excel-files: ‘3DoF_Building_Response_TIME’ and 
‘3DoF_Building_Response_FourierExp’. These files are used by the next script. Once these 
two new Excel-files have been created, the user can continue by running script ‘3.EB-beam 
frame matrix_allExcitations.ipynb’ (step number 17).  
However, script ‘2.ImpedancesAnd3DoFStructuralResponse.ipynb’ continues running to 
also compute the 3DoF structural response in the frequency domain, but these results are 
not needed for running script ‘3.EB-beam frame matrix_allExcitations.ipynb’. Script 
‘2.ImpedancesAnd3DoFStructuralResponse.ipynb’ has finished computing once the text 
‘computation of sheet completed’ appears. 
After the computation of the script has been completed all figures of interest for the global 
3DoF structural response can be found throughout the script (from cell 44 onwards). All 
plotted time- and frequency instants are only to make clear at which stage the 
computation is. This gives the user the ability to estimate the computational time 
remaining.  

 
Running the 4th script: Script 3 
17. Open (left-click) script ‘3.EB-beam frame matrix_allExcitations.ipynb’. The notebook will 

be opened in a new tab of the webbrowser. This notebook contains the script for 
computing the local (flexible) structural EB-beam floor response.  

18. Left-click the ‘run’ icon in the tool-bar and left-click ‘Restart and Run All Cells’ (this icon 
will run the entire script again) 

 
19. After the text ‘computation of sheet completed’ has appeared, all figures of interest for the 

local structural EB-beam floor response can be found throughout the script (from cell 20 
onwards, depending on the chosen plotting-options in the Excel-file ‘InputFileXLS’). All 
plotted time- and frequency instants are only to make clear at which stage the 
computation is. This gives the user the ability to estimate the computational time 
remaining. 

 
Optimize the computational time of iterations 
Note that computing the local EB-beam floor response in the time domain is completed 
relatively quick (approximately 1 to 2 minutes). However, the structural response in the 
frequency domain takes (much) longer, depending on the computational parameters given in 
the Excel-file ‘InputFileXLS’. In the situation where the user wants to make a lot of iterations in 
a short amount of time, looking at the time domain response is sufficient for getting insight 
into what influence changing a particular parameter has on the structural vibrations.  
The same principle holds for computing the global 3DoF response, where the time domain 
already gives sufficient insight into what the influence of changing a particular parameter is on 
the structural vibrations.  

Additional explanation Excel-file ‘InputFileXLS’ 
The input-excel-file ‘InputFileXLS’ has been set-up such that first the parameters that concern 
script 0 need to be filled in (indicated by the light-blue colour). Then the parameters of script 1 
(light-orange colour), script 2 (light-green colour) and eventually script 3 (light-purple colour) 
need to be filled in.  
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Input parameters script 0 (light-blue ||||| colour). 
Here the structural properties of the global 3DoF system need to be given (floors, walls, spans, 
heights, etc.). An additional mass can be given that needs to be taken into account in the 
computation of the structural response (e.g. the mass of the façade). 
Note that the structural properties of the local EB-beam frame (script 3) does not necessarily 
need to have the same properties as given in script 0.  
 
Input parameters script 1 (light-orange ||||| colour). 
Here the parameters are given concerning the excitation on the 3DoF system. The position of 
the structure determines which csv-files from the folder ‘SoilResponses’ are used to compute 
the excitation. The time-input parameters indicate at which time-range the soil response needs 
to be considered as non-zero. This time range should become clear after running the script 
first for a broad time range. Then the user can see at which time instants the excitation is 
approximately zero. The user can then adjust the time instants in ‘InputFileXLS’ and can then 
re-run script 1.  
 
Input parameters script 2 (light-green ||||| colour). 
Here the parameters are given for the impedance terms of the 3DoF system (soil and pile 
foundation). The dynamic soil parameters need to become clear from measurements and 
experiments at the particular site of the project.  
 
Computational input parameters 
The input parameters for the frequency instants determine the frequency range that needs to 
be considered for computing the structural response, but also determine the maximum time-
range that can be considered: 𝑡𝑚𝑎𝑥 = 1/(𝑓𝑠𝑡𝑒𝑝). After this 𝑡𝑚𝑎𝑥 the structural response is 

repeated in opposite sign. This is due to the numerical solution method (concerning the 
Fourier expansion). Thus, 𝑓𝑠𝑡𝑒𝑝 should be small enough to make sure that the structural 

response has damped out before 𝑡𝑚𝑎𝑥 has been reached.  
The input parameters for the time instants determine the time range that needs to be 
considered for computing the structural response, but also determine the maximum 
frequency-range that can be considered: 𝑓𝑚𝑎𝑥 = 1/(2 ∙ 𝑡𝑠𝑡𝑒𝑝). After this 𝑓𝑚𝑎𝑥 the structural 

response in the frequency domain is mirrored. This is due to the numerical solution method 
(concerning the Fourier expansion). Thus, 𝑡𝑠𝑡𝑒𝑝 should be small enough to make sure that the 

structural response in the frequency domain considers all frequencies of interest before 
reaching 𝑓𝑚𝑎𝑥. 
The computational parameters can be optimized (fastest computation) after first a rigorous 
computation has been performed. From the rigorous computation, the user can see what the 
dominant frequency range is that needs to be considered for computing the structural 
response. Also, the maximum time that needs to be considered can be obtained from the 
rigorous computation. This is the time at which the structural response has either damped out 
(global 3DoF system) or has reached its steady-state vibration (local EB-beam floor). Appendix 
T ‘Appendix: Iterations of structural parameters to compute structural response’ shows that for 
the computation of the reference case of ‘Building in Amsterdam’ in this thesis, the following 
computational parameters can be considered as optimized: 
 

Computational parameters 3DoF and EB-beam frame 

𝑡𝑠𝑡𝑒𝑝_𝑒𝑥𝑐  =  0.02 𝑠 𝑡𝑛𝑟_𝑒𝑥𝑐  =  81 𝑡𝑚𝑎𝑥_𝑒𝑥𝑐  =  1.5 𝑠 

𝑓𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑝 =  0.25 𝐻𝑧 𝑓𝑛𝑟_𝑟𝑒𝑠𝑝  =  41 𝑓𝑚𝑎𝑥_𝑟𝑒𝑠𝑝  =  10.125 𝐻𝑧 

𝑡𝑠𝑡𝑒𝑝_𝑟𝑒𝑠𝑝  =  0.02 𝑠 𝑡𝑛𝑟_𝑟𝑒𝑠𝑝  =  137 𝑡𝑚𝑎𝑥_𝑟𝑒𝑠𝑝  =  2.6 𝑠 

Computational time: (𝑣(𝑡)) – (𝑣(𝑡) + 𝑣𝑅𝑀𝑆(𝑓)) = (24) mins – (118)  mins  
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Overwriting the excitation on the 3DoF system 
The excitation is computed from the saved soil responses (csv-files) in the folder 
‘SoilResponses’. However, in case the user desires to consider a different kind of excitation, or a 
more simple excitation, then the tool gives the option to overwrite the excitation. The new 
excitation should be given in the form of a Fourier expansion (thus a summation of sines and 
cosines with particular radial frequencies and amplitudes).  
 
Input parameters script 3 (light-purple ||||| colour). 
Here the parameters are given for the local flexible EB-beam frame. The structural properties 
given here can be similar to- or different from the structural properties given for scripts 0 to 2.  
The computational input parameters for this script have the same meaning as in script 2, but 
now for the computation of the structural response of the local EB-beam frame. It is advised to 
use the same time- and frequency input parameters as in script 2.  
Also, for script 3 the option is given to overwrite the excitation to the local EB-beam frame. 
Similar to script 2, this can be done by giving a new excitation in the form of a Fourier 
expansion.  
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