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Abstract

Fibre-optic transceivers based on nonlinear Fourier transforms approximate the link by a lossless path-average model. We propose
a new method that identifies a suitable lossless model from time-domain input-output data when fibre parameters are unknown.
No special training signals are needed.

1 Introduction

In the past few years, novel fibre optical communication sys-
tems have been developed which explicitly take nonlinear
effects in optical fibres into account by embedding data in the
nonlinear Fourier spectrum [1–4], where the combined effect
of the Kerr nonlinearity and dispersion reduces to simple phase
shifts (similar to linear systems). These communication sys-
tems require that the fibre link can be approximated by a
lossless fibre model. The usual way to obtain this model is
by path-averaging [5, Ch. 9.2.2], [6], which will be described
later. However, path averaging requires knowledge about the
true fibre parameters throughout the whole link, which is often
not the case in practice [7–11]. In this paper, we provide a
novel method that identifies the parameters of a lossless fibre
model as required by nonlinear Fourier transform (NFT)-based
systems directly from input-output data. To the best of our
knowledge, this is the first such method.

The paper is structured as follows. In Sec. 2, the fibre mod-
els, path-averaging, and the nonlinear Fourier spectrum are
presented. In Sec. 3, our novel method to fit the lossless fibre
model to actual input-output data is presented. In Sec. 4, the
method is evaluated numerically. Sec. 5 concludes the paper.

2 Fiber models & nonlinear Fourier transform

An optical single-mode fibre with anomalous dispersion with
loss, amplification and noise can be modelled by the focusing
nonlinear Schrödinger equation (NLSE) [5, Ch. 5.3.1],

iq̂ẑ + βq̂t̂t̂ + 2γq̂|q̂|2 = −iαq̂, (1)

in which ẑ and t̂ respectively denote the position and retarded
time coordinate, q̂

(
t̂, ẑ
)

the complex field envelope, β the dis-
persion coefficient, γ the nonlinearity coefficient, α the loss
coefficient and i is the unit imaginary number. The subscripts
indicate partial derivatives. The total link of length L is divided
into n equidistant fibre spans of length Lspan = L/n, and –
assuming lumped amplification – at the end of each span the
signal is amplified with a factor eαLspan to compensate the

loss. We remark that the amplification scheme is not important
for our algorithm, and that our simulations will also contain
amplified spontaneous emission (ASE) noise.

In order to be able to apply NFTs, the optical fibre link
with loss is approximated by a lossless path-average model
[5, 6], which accounts for the loss by introducing a change of
coordinates q̂(t̂, ẑ) = e−αẑû

(
t̂, ẑ
)
. This results in

iûẑ + βût̂t̂ + 2γe−2αẑû|û|2 = 0. (2)

The varying nonlinearity coefficient is approximated by the
path average coefficient γ1 = L−1

span

∫Lspan

0
γe−2αẑ dẑ, result-

ing in a lossless NLSE with constant coefficients,

iûẑ + βût̂t̂ + 2γ1û|û|2 = 0. (3)

Next, consider the normalisation of the path-averaged NLSE
by scaling the time and space coordinates by

u = û, t = ctt̂ =
√
γ1/β t̂, z = cz ẑ = γ1ẑ, (4)

which finally results in the normalised NLSE

iuz + utt + 2u|u|2 = 0. (5)

The normalised NLSE can be solved explicitly by consid-
ering its nonlinear Fourier transform (NFT) [12, 13], which is
not possible in general for Equation 1. The NFT is found by
association with the following scattering problem,

d

dt
φ(t, λ) =

[
−iλ u(t)
u∗(t) iλ

]
φ(t, λ), (6)

φ(t, λ) =

[
e−iλt

0

]
+ o(1), t→ −∞. (7)

Under the condition that u→ 0 as t→ ±∞ sufficiently fast,
we can define scattering coefficients from φ = (φ1, φ2)

T ,

a(λ) := lim
t→∞

eiλtφ1(t, λ), b(λ) := lim
t→∞

e−iλtφ2(t, λ). (8)

The nonlinear Fourier spectrum consists of a continuous spec-
trum and a discrete spectrum. The continuous spectrum con-
sists of the real line R and can be represented by the values of
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b(λ) for λ real. The discrete spectrum consists of eigenvalues,
defined as the zeros λj of a(λ) in the upper half of the complex
plane, and can again be specified by the values of b(λj). It is
also possible to use the values of b(λ)/a(λ) and b(λj)/ dadλ (λj)
instead. The spectra are invariant during propagation, while the
evolution of the a- and b-coefficient is trivial as long as (5) is
satisfied [12],

a(z, λ) = a(0, λ), b(z, λ) = b(0, λ)e4iλ
2z. (9)

3 Identification algorithm

In this section, a new method that identifies the parameters β
and γ1 of the lossless fibre model (4) is proposed. We consider
a scenario in which some rough initial estimates of these val-
ues are used to operate the NFT-based transceiver. We provide
the resulting input signals q̂(t̂, 0) and measured output signals
q̂(t̂, L) to the identification algorithm in real-world units. The
basic idea of the algorithm is to vary the parameters until the
NFT of the input matches that of the output – subject to (9)
– as good as possible. The algorithm first determines the con-
stant ct in (4) by matching the eigenvalues. Then, it determines
the constant cz using (9) in a second stage. Once ct and cz are
known, β and γ1 can be recovered with Eq. 4.

In this paper, we will only match the discrete spectra, even
though our approach can be extended to take the continuous
spectra into account as well. An implicit assumption there-
fore is that the fibre input has a non-empty discrete spectrum
around the optimal normalisation point. This is a reasonable
assumption e.g. in multi-soliton transmitters such as [14].

3.1 Stage 1: Finding ct by matching the eigenvalues λj

Remember that the discrete spectrum consists of the so-called
eigenvalues λj , which are identical for input and output under
ideal conditions due to the space invariancy in Eq. 9. Hence,
they are independent of the space scaling cz. Therefore, by
only varying the time scaling ct for the input and output signal
and matching their eigenvalues, the optimal time normalisation
may be determined. The effect of different time normalisations
ct on the input-output spectra is shown in Figure 1.
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Fig. 1: The matching for input and output eigenvalues, for a
single input-output signal normalised with a sub-optimal and
an optimal ct.

To quantify the error between an input and output spectrum
for a certain ct, first a matching problem is solved using the
Hungarian algorithm [15], which creates pairs of eigenvalues of
the input and output spectrum,

(
λinj , λ

out
j

)
, such that the sum of

the Euclidean distances in all pairs is minimised, see Figure 1.
The matching error for each pair is then defined as

Ej =


|λinj − λoutj |

max
k

(|λink |, |λoutk |)
, for j ≤ min (N in, Nout)

1, for j > min (N in, Nout)

(10)

It may occur that the number of input eigenvalues N in and
the number of output eigenvalues Nout are not equal, leav-
ing unmatched eigenvalues in the larger spectrum, (λinj ,−) or
(−, λoutj ), as is also the case for the bottom-right eigenvalue in
the sub-optimal matching in Figure 1. The matching error for
such ‘half-pairs’ is then set to 1. The total matching error is

E =

∑N

j=1
Ej

N
, N = max(N in, Nout). (11)

The error E is evaluated for different values of ct on a logarith-
mic grid. The minimum error point provides an estimate for ct.
This estimate is iteratively refined using finer grids.

3.2 Stage 2: Finding cz by matching the b(λj)

After the time scaling ct has been fixed, the space scaling cz
may be determined by comparing the b-coefficients at input
and output, bin(λj), bout(λj). The b-coefficients of the time-
normalised input and output signal are related according to
Eq. 9, which we use to find the normalised length czL,

|b(czL, λj)| = |b(0, λj)|ereal(4iλ2
j)czL

⇒ czL =
log |bout (λj)| − log |bin (λj)|

real
(
4iλ2

j

) . (12)

Assuming that the real fibre length L is known, this rela-
tion immediately provides a method for determining cz. Three
aspect need to be further considered. First, each input-output
eigenvalue pair contains two eigenvalues, whereas the above
formula requires a consensus on the value. Our method takes
the average of the input and output eigenvalue for each pair,
λj =

(
λinj + λoutj

)
/2. Half pairs are discarded due to the lack

of one b. Second, each eigenvalue pair will individually yield
an estimate for cz, and therefore only a single eigenvalue pair
is required for an estimate. In case more pairs are present, our
method takes the average of all estimates of cz. Third, when
an eigenvalue is purely imaginary or has a small real part,
real(λj)� |λj |, the denominator in Equation 12 may become
close to zero, yielding unstable estimations for cz. This can
be overcome by discarding these estimates when they do not
correspond with the other estimates.

After cz has been determined from the moduli of the b-
coefficients, the phases may then be compared to determine
the reliability of the estimation. Once cz and ct have been
determined, β and γ1 may be recovered from Equation 4.
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4 Results

In this section, we first validate the method for a lossless, noise-
less optical fibre. Second, we identify an optimal lossless fibre
model for a non-ideal fibre optical communication system.

4.1 Baseline: Identification of an ideal fibre model

For a first validation of the proposed method, a loss- and
noiseless optical fibre link is considered. The link has length
L = 360 km, divided into n = 10 fibre spans of Lspan = 36
km each, and parameters β = 5.75 · 10−27s2m−1 and γ = 1.6 ·
10−3(Wm)−1, which corresponds to space and time normal-
isation constants ct = 5.275 · 10−27 and cz = 1.6 · 10−3. We
used the software NFDMLab [16] for generating and propa-
gating input signals with 7 discrete eigenvalues with the same
parameters as in [14]. The algorithm proposed in this paper
was applied to first identify the normalisation constant ct. The
matching error of Eq. 11 is shown in Fig. 2, the minimum value
appears at the expected ct. The sudden jumps are due to the
appearance of an eigenvalue in one spectrum, but not in the
other. The algorithm recovered the fibre parameters β and γ up
to 4 digits, validating the method.

10
11

10
12

10
-5

10
0

Fig. 2: The matching error between input and output spectrum.

4.2 Identification in a link with lumped amplification

We consider the same setup as above, but with an addi-
tional loss term α = 4.6052 · 10−4 m−1 that is compensated
by EDFA amplifiers with 6 dB noise figures [5, Ch. 7.2.3]
after each span. The transceiver initially uses the incorrect
parameters β = 5 · 10−27 and γ1 = 1 · 10−3 for the normalisa-
tion. According to the path average model discussed in Sec. 2,
the system should instead be approximated using γ1 = 0.465 ·
10−3 and β as in the previous subsection. Fig. 4a depicts the
constellation diagram for the initial configuration. By apply-
ing our proposed algorithm, better normalisation constants ct
and cz are identified. Fig. 3 shows the β and γ1 parameters
that correspond to the identified normalisation constants from
30 different signals. The average of these values were used to
determine new normalisation constants. Fig. 4b shows the con-
stellation diagram after the normalisation constants have been

updated. A significant improvement can be observed. The error
vector magnitude (EVM) improved from approximately 32 dB
to −11 dB. The latter is similar to the EVM achieved by the
path average model with fully known parameters.
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Fig. 3: Identified β and γ from 30 noiseless transmissions and
30 transmission with 6 dB ASE-noise.
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Fig. 4: Symbol transmission for two models. The sent sym-
bols all lie at locations (±

√
2

2
± i
√
2
2
), the dots are the received

symbols.

5 Conclusion

We have presented a method to directly identify a lossless fibre
model for nonlinear Fourier transform based communication
by matching the discrete nonlinear Fourier spectra of input
and output signals. The only requirement on the signals is that
their discrete spectra are non-empty. Using signals generated
with incorrect fibre parameter estimates and their transmitted
outputs, the method identified a lossless fibre model which
improved the error vector magnitude in the transmitted sym-
bols from 32 dB to -11 dB, which is similar to the best path
average model for the fully known system.
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