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ABSTRACT

Test smells are poor design decisions implemented in test code,

which can have an impact on the effectiveness and maintainabil-

ity of unit tests. Even though test smell detection tools exist, how

to rank the severity of the detected smells is an open research

topic. In this work, we aim at investigating the severity rating

for four test smells and investigate their perceived impact on test

suite maintainability by the developers. To accomplish this, we

first analyzed some 1,500 open-source projects to elicit severity

thresholds for commonly found test smells. Then, we conducted a

study with developers to evaluate our thresholds. We found that

(1) current detection rules for certain test smells are considered

as too strict by the developers and (2) our newly defined sever-

ity thresholds are in line with the participants’ perception of how

test smells have an impact on the maintainability of a test suite.

Preprint [https://doi.org/10.5281/zenodo.3744281], data and mate-

rial [https://doi.org/10.5281/zenodo.3611111].
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1 INTRODUCTION

Violations of design principles (a.k.a., code smells) are not restricted

to production code, but are also found in (unit) test code [12, 19, 31].

Such test smells can lead to harder to maintain tests [6, 7, 29], just

as (production) code smells can increase maintenance effort [27].
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Developers tend to focus on production code quality, while test

code quality is often not prioritized [29]; moreover, once test smells

are introduced, they are hardly ever removed through refactor-

ing [30]. One could argue that the concept of test code quality

and test smells in particular is in need of further investigation. For

example, previous research has reported that developers do not al-

ways perceive test smells as problematic [30], but the actual reason

is unclear. One reasonable explanation is that current test smell

detection tools lack severity thresholds, which could make their

indications more actionable. Indeed, Alves et al. showed the im-

portance of determining severity thresholds for (production) code

smells to “adequately support subsequent decision-making” [2], by

successfully using their defined thresholds for software analysis,

benchmarking, and certification in industry [2]. In this study, we

investigate severity thresholds for test smells.

Particularly, our aim is to:

• Calibrate detection thresholds such that severity levels can

be assigned to a test smell instance, allowing developers to

focus on the higher severity smells.

• Improve the accessibility of automatic test smell detection

by integrating into existing developer tooling.

In their work, Alves et al. defined amethod to calibrate thresholds

for code quality metrics, which they named as ‘benchmark based

threshold derivation methodology’ [2]. Their approach consisted

of collecting data from existing software systems and using the

distributions of metric values to find appropriate thresholds [2,

4]. In our investigation, we take a similar approach. We collect

the (unit) test code of 1,489 Java projects from the Apache and

Eclipse ecosystems and apply the open-source test smells detection

tool tsDetect [23]; then, we use these systems as a benchmark to

derive the values for three severity thresholds: ‘Medium’, ‘High’,

‘Very high’. Following this approach, we found that four of nine

test smells we considered should have higher thresholds than what

previously reported in literature [7, 22, 29].

Subsequently, we move to our second goal: We integrate test

smell detection provided by tsDetect into a prototype (back-end)

extension of BetterCodeHub 1 (BCH), a web-based code quality

analysis tool provided by SIG. We engaged the existing users of

BCH to interact with the new test smell prototype and solicited

their feedback on instances of test smells within their own code

bases. A total of 31 developers, across 47 diverse projects, answered,

1https://bettercodehub.com
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providing data points on 301 detected test smells. These responses

allowed us to evaluate the developers’ perceptions of our newly pro-

posed thresholds. According to the developers, Empty Test, Sleepy

Test, and Mystery Guest have the highest priority as refactoring

candidates, while Empty Test, Ignored Test, and Conditional Test

Logic are considered the smells with the higher impact on code

maintainability. Furthermore, the ratings submitted by the users are

aligned with our thresholds, with a statistically significant differ-

ence and a strong Spearman’s coefficient, suggesting that the newly

defined thresholds can be used to prioritize test smells instances.

Our study makes the following contributions:

(1) Calibrated severity thresholds for test smell detectors

(2) A mechanism for rating the severity of certain test smells, al-

lowing tools to classify test smells into distinct categories based

on their severity. This enables developers to only focus on the

most critical test smells.

(3) An integration of an automatic test smell detector within a

GitHub-based code quality tool (BCH).

(4) An evaluation of developers’ perceptions of test smells within

their own code bases, by integrating our new thresholds into a

GitHub-based code quality tool (BCH), thus validating our test

smell severity levels.

2 RELATEDWORK

2.1 Test Smell Detection Tools

Van Rompaey et al. created a metrics-based test smell detection

tool for Java to detect General Fixtures and Eager Tests [32, 33].

Later Breugelmans and van Rompaey developed the TestQ tool,

which works with C, C++ and Java test code to detect the following

test smells: Assertion Roulette, Eager Test, Empty Test, For Testers

Only, General Fixture, Indented Test (the equivalent of Conditional

Test Logic), Indirect Test, Mystery Guest, Sensitive Equality and

Verbose Test [8].

Greiler et al. focused on identifying common problems with test

fixtures. They implemented a tool called TestHound, which works

on JVM bytecode level and can detect the following test smells:

General Fixture, Test Maverick, Dead Field, Lack of Cohesion of

Test Methods, Obscure In-Line Setup and Vague Header. In this tool,

they showed the code impacted by test smells to the developers

along with tips for how to refactor the test code [14]. This setup is

comparable to the one we implemented in BCH, as we also present

code instances impacted by test smells. They concluded that having

a tool to point out the problems with the test suite can help the

developers with refactoring.

Palomba et al. developed TASTE (Textual AnalySis for Test smEll

detection), which can detect General Fixtures, Eager Tests, and Lack

of Cohesion of Methods using Information Retrieval techniques,

thus bypassing the need to fully parse the test code. Their tool

shows a better precision and recall than the AST-based tools TestQ

and TestHound [22].

Satter et al. [25] created a tool for the detection of dead fields

in Java unit tests. They report a better detection accuracy than

TestHound.

Bavota et al. studied the diffusion of test smells in open-source

and industrial projects [6]. To help with their research, they created

a test smell detection tool for Resource Optimism, Indirect Testing,

Test Run War, Mystery Guest, General Fixture, Eager Test, Lazy

Test, Assertion Roulette, For Testers Only, Test Code Duplication

and Sensitive Equality.

Zhang et al. focused on dependencies between tests by empiri-

cally investigating issue tracking systems. They developed a tool

which identifies dependencies between tests on a test suite level,

not on individual test case level). Their approach requires executing

the tests (dynamic analysis) [34].

Gambi et al. also looked into test dependency detection and

developed the tool PraDeT, which also requires running the tests

to find dependencies [13].

2.2 How Developers Perceive Test Smells

Tufano et al. asked 19 developers from various open-source projects

to look at test code samples which contained instances of test smells.

In the majority of the presented cases (82%), the developers did not

recognize any problems with the test code. The code presented was

created or maintained by the interviewed developers and thus the

developers saw or created the presented code before the interview

session. The authors highlight the need for having automated tools

that can detect test smells and present them to the developers. They

have also found out that the majority of test smells are created dur-

ing the initial test development and are not removed in subsequent

refactoring [30].

Palomba et al. investigated the developer’s perception of code

smells, using both the original authors and independent developers.

They asked the developers to identify the design problems (code

smells) and, if found, give them a severity rating. The severity rat-

ings were applied to the whole code smell category, and not to the

specific code smells instances. Furthermore, the research focused

only on production code smells and not test smells. They have then

split the observed code smells into 3 categories: Generally not Per-

ceived as Design or Implementation Problems, Generally Perceived

and Identified by Respondents, and Perception may Vary [21].

Both of these studies differ from ours in execution, as they pre-

sented developers test code sections without further context, and

outside of the developer’s usual work environments. In contrast,

our study asks developers to work within the normal work-flow of

their code quality tool (BCH) and within the context of their own

project.

Kummer studied whether developers recognize test smells using

a sample of 20 developers. The author concludes that test smells can

be refactored by the developers without them knowing that they

are specific instances of test smells and suggests that automated

test smell detection tools could help the developers further justify

their removal [15].

2.3 Test Smells and Code Quality

Spadini et al. studied the relationship between the presence of test

smells and software change and defect proneness. They analyzed

multiple releases of ten software products and their test cases,

investigating the following test smells: Mystery Guest, Resource

Optimism, Eager Test, Assertion Roulette, Indirect Testing and

Sensitive Equality. Between each release, they looked at how the

production code changed and how many fixes were reported by

the accompanying issue tracking systems and Git commits. Their
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main findings were that “tests affected by test smells are associated

with higher change- and defect-proneness than tests not affected by

smells” [29]. In our research, we investigate a wider variety of test

smells and use an existing code quality model to compare against,

however we do not investigate change- and defect proneness.

3 METHODOLOGY

Our overall research goal is to investigate severity thresholds for

test smells. The most common test smell detection tools work on a

binary scale of whether a given code is impacted by a test smell or

not without any additional data, thus ignoring commonly encoun-

tered situations in software development.

In our first research question, we seek to define new thresholds

for test smells, based on the ‘benchmark based threshold derivation

methodology’ [2] considering a large number of software systems.

RQ1. How can test smells be given a severity rating?

In our second research question, we aim to challenge our newly

defined thresholds with users, therefore we ask:

RQ2. What is the perception of developers on test smells in

their codebase?

3.1 Test Smells Tool Selection

We researched the available test smell detection tools, detailed

in Section 2.1. Given that most of the better validated tools only

support Java for the widest variety of test smells, we decided to

focus on test smell research in Java. We selected the open-source

tool tsDetect [23] for finding test smells in the codebase. The

tool works with Java JUnit projects and has support for JUnit 4

annotations, which can be extended to support JUnit 5, and has

precision and recall above 85% [23]. It also has a published accuracy

rating along with manually classified test smell data [23], providing

a test suite for the tool extension and testing. The main advantages

of tsDetect are that it is open-source, developed recently in 2018,

uses AST-based detection of test smells, and supports adding new

test smells and detection rules. Compared to other tools, the support

for JUnit along with using only AST information instead of text

search for pattern violations results in improved accuracy.

3.2 Test Smells Selection

tsDetect can detect multiple test smells. However, for this study

we restricted our analysis to the test smells depicted in Table 1. We

select these test smells because they do not require viewing the

full test source code to understand whether they are smelly or not.

Certain test smells, such as Lazy Test (multiple test methods invok-

ing the same method of the production object), require viewing

the entire test class code to evaluate, while in this research we are

focused on detecting test smells at method level. Based on testing

done on a selected dataset, tsDetect is highly reliable at detecting

instances of these test smells [23]. Previous studies [7, 24] report

the distributions of the smells we analyzed along with others we

did not select. The F-Score for tsDetect on the selected subset of

test smells is between 87% and 99% [23].

3.3 Preliminary Study

Before running the study in large scale, we perform a preliminary

study within SIG. In this phase, we test the integration of tsDetect

(without any modification) in BetterCodeHub.

During the pilots, the developers were asked to answer three

questions: (1) whether the test smell instance is valid in the project

context, (2) whether they classify the smell as "refactoring candi-

date" or as something which will take too much time and effort to fix

(technical debt), and (3) rate from 1 to 5 the importance of the test

smell instance on the project’s maintainability. After completing

the pilot, the developers were interviewed about their experience

and asked for additional feedback, so that we could implement them

before running the actual study. Four developers of SIG participated

in the pilot, and each of them was asked to evaluate parts of the

codebase written in Java they were actively working on as part of

their daily job while using our prototype for the evaluation.

The main result of this preliminary study is that many of the

test smell instances were rated as false positive or no-fix. The main

reason is that in many of these instances developers did not see a

design issue. For example, for the "Conditional Test Logic" smell

developers complained that having only one branch (e.g., if -else,

or a for) should not be considered as a high priority refactoring.

Similarly, developers did not agree on how "Eager Test" is calculated:

currently, a method suffers from this smell if it contains more than

one production call. However, developers agreed that almost all the

tests have at least two production calls, hence resulting in many

test methods rated as Eager Tests even though they are not.

On the other hand, in some cases developers acknowledged the

problem and were willing to refactor the test method. However,

since there is no distinction between having one production call or

10, these cases were mixed together with the false positives.

The main takeaway of this preliminary study is that test smells

presented to the developers should be prioritized. The prioritization

could help them focus only on the most severe test smell instances

first, before moving onto fixing the less severe ones. The current

implementation of test smell detection does not take into account

additional information about the test smells, such as what percent-

age of the test code it impacts or how severe it is. Presenting the

developers with test smells they perceive to be of low severity could

lead them being more likely to ignore them and also trust the tool

less. For these reasons, we need to determine a way to prioritize

test smells, by means of new severity thresholds.

3.4 RQ1: Defining Severity Thresholds

With RQ1 we aim at creating new severity ratings for each test

smell. Hence, we first define metrics for each test smell, based on

their definitions and characteristics as proposed by van Deursen et

al. [31] and Meszaros [19]. The metrics are shown in Table 2. Here

the metrics denote the value which will be collected for each test

method. Due to the binary nature of Empty Test and Ignored Test,

we excluded them from the calibration metrics, and all instances of

these smells are classified as the highest severity.

Once the metrics are defined, we need to give them a severity

rating. For this, we used the Benchmark-based threshold deriva-

tion proposed by Alves et al. [2] methodology, which follows three

core principles [11], which states that the method should (1) be
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Table 1: Subject test smells

Test smell Description Problem

‘Mystery Guest’ A test that uses external resources (e.g., file containing

test data) [31]

Lack of informationmakes it hard to understand.More-

over, using external resources introduces hidden de-

pendencies: if someone deletes such a resource, tests

start failing.

‘Resource Optimism’ A test that makes optimistic assumptions about the

state/existence of external resources [31]

It can cause non-deterministic behavior in test out-

comes. The situation where tests run fine at one time

and fail miserably the other time.

‘Eager Test’ A test that tries to verify too many functionalities,

which can lead to difficulty in understanding the test

code [31]

It is hard to read and understand, and therefore more

difficult to use as documentation. Moreover, it makes

tests more dependent on each other and harder to

maintain.

‘Assertion Roulette’ A test that has multiple assertion statements that do

not provide any description of why they failed [31]

When the test fails, investigating the reason can be

problematic as the assertion statement might not pro-

vide the reason why the test could have failed.

‘Conditional Test Logic’ A test that has control flow statements inside a test [19] tests can have multiple branch points and greater care

must be taken when analyzing whether the test is

correct.

‘General Fixture’ It occurs when the test setup method creates fixtures

(class fields used by the test cases) and a portion of the

tests use only a subset of the fixtures [31]

The presence of this smell can result in longer execu-

tion of tests, as tests that do not use all of the fixtures

still need to wait for the creation of all test fixtures.

‘Empty Test’ It occurs when a test method does not contain exe-

cutable statements

An empty test can be considered problematic andmore

dangerous than not having a test case at all since JUnit

will indicate that the test passes even if there are no

executable statements present in the method body.

‘Magic Number Test’ A test that contains so-called “magic numbers”, which

are numbers used in assertions without any expla-

nation where they come from and their value may

not be immediately clear from just looking at the test

code [17, 19]

The magic numbers should be replaced by a named

constant, where the name describes where the value

comes from or what it represents.

‘Sleepy Test’ A test which contains thread suspension calls [19] The use of this method call introduces additional delay

to the test execution.

‘Verbose Test’ A test that is too long and hard to understand [19] Too long tests prevent them from being used as doc-

umentation and they are harder to maintain due to

their complexity.

‘Ignore Test’ A test method or class that contains the @Ignore an-

notation

ignored test methods result in overhead since they

add unnecessary overhead with regards to compila-

tion time, and increases code complexity and compre-

hension.

Table 2: Metrics used for threshold derivation, by test smell

Test Smell Metric

Assertion Roulette # assertions without description

Conditional Test Logic # conditional statements

Eager Test # production method calls

General Fixture # unused fixtures

Magic Number Test # magic numbers

Mystery Guest # external files used

Resource Optimism # files not checked for existence

Sleepy Test # thread suspend calls

Verbose Test # statements

driven by measurement data from a representative set of systems

(data-driven), rather than expert opinion, (2) respect the statistical

properties of the metric (e.g., the metric scale and distribution),

(3) be resilient against outliers in metric values and system size

(robust), (4) be repeatable, transparent, and straightforward to carry

out (pragmatic). We chose this technique as it (i) does not assume

the normality of the metric values distribution, (ii) uses a weight

function (LOC), which emphasizes the metric variability, (iii) sep-

arates the thresholds into different risk categories. Furthermore,

this state-of-art benchmarking technique has been used in many

previous studies that needed to calculate thresholds for new met-

rics [1, 3, 5, 11, 29].

The Benchmark-based threshold derivation enables us to define

severity levels based on the representation of occurrences in the

benchmark dataset.

Dataset. To apply this technique and derive the thresholds, we

need a large and representative enough dataset. For this purpose,

we selected all the projects from the Apache Software Foundation2

and the Eclipse Foundation3, which contained Java code. A total

of 1,489 projects were selected. We use these projects because (1)

the source code is publicly available, and (2) systems have different

sizes and scopes. This will serve as our dataset. The dataset has a

total of 25,356,827 LOC (project average: 31,617, median: 6,650).

2https://www.apache.org/
3https://www.eclipse.org/
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Thresholds calculation.After the first step of selecting the projects,

we follow the Benchmark-based threshold derivation methodol-

ogy [2], consisting of the following 6 steps:

(1) Metrics extraction: for each test method in the systems, we

extract test smell metric information (see Table 2) and LOC to

be used as weight.

(2) Weight ratio calculation: for each method, we compute the

weight percentage within its system, i.e., we divide the method

weight by the sum of all weights of the same system.

(3) Entity aggregation: we aggregate the weights of all methods

(4) System aggregation: we normalize the weights for the num-

ber of systems and then aggregate the weight for all systems.

(5) Weight ratio aggregation: we order the metric values in as-

cending order.

(6) Thresholds Derivation: we find the 70-80-90 percentiles to

determine the thresholds.

After repeating this procedure for each test smell, we obtain 3

thresholds per smell for which we have defined a metric and weight.

For instance, to represent 90% of the overall code for the Eager Test

metric, the derived threshold is 39. In other words, we can say that

90% of the test methods (weighted by LOC and system size) have

less than 39 production calls. This threshold is meaningful, since

not only it means that it represents 90% of the code of a benchmark

of systems, but it also can be used to identify 10% of the worst

code [2]. To notice that the old threshold for this specific smell was

the value one. We chose the percentile ranges of 70, 80, and 90 for

each test smell, as this represents the increasingly worse portion of

the codebase by volume [2, 4, 29] and thus represents the severity.

The thresholds allow the classification of test smells in a codebase

into 4 distinct categories: test smell not found or below threshold

(percentile intervals [0,70)), medium severity test smell for long

term refactoring (percentile intervals [70,80)), high severity test

smell for short term refactoring (percentile intervals [80,90)) and

very high severity test smell for immediate refactoring (percentile

intervals [90,100]).

3.5 RQ2: Developers’ perceptions

To study the perception of developers on test smells found in their

codebase, based on our thresholds, we modified BCH to present

found test smells to the developers who could then provide their

insights. By using the developer’s repositories, we avoid the prob-

lem of developers seeing the code without knowing the project’s

context. Furthermore, we perform an analysis of test smells that

were not considered for removal by the developers.

User Interface Design. Following the results of the new thresh-

olds derived in RQ1, we modify BCH to integrate the test smells

detector with the new thresholds. The front-end was also modified

to show the analysis results along with our survey to gather devel-

oper feedback for each found test smell. This allows the developers

who use BCH to access the results as part of their regular workflow,

whether as a one-off analysis or continuous monitoring during pull

requests or on a per commit level. Figure 1 shows an example of

how the result was presented to the user.

Clicking on the test smell instance brings the users to the screen

in Figure 2, where they can see the source code of the problematic

code along with the survey. The users also had the ability to submit

a GitHub issue to their repository with a description of the test smell

and how it could be removed. The top displays a short explanation

of what the test smell is and why it is harmful with a link to a more

detailed page containing examples and explanations.

Figure 1: BCH view of test smell guidelines and violations.

Figure 2: BCH details on a found test smell with the corre-

sponding survey form.

Questions’ Design. The questions asked to users about each found

test smell are the following:

SQ1 Please rate the impact of this test smell instance on the test

suite maintainability. Options: Don’t know, False Positive, Very

Low, Low, Medium, High, Very High.
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SQ2 What action will you take with this test smell? Options: Mark

for refactoring as soon as possible; Mark as technical debt for

later refactoring; Ignore as won’t fix / false positive.

SQ3 Estimated effort to refactor in person-hours. Options: numeric

value (optional)

SQ4 Additional remarks. Options: free text (optional)

To avoid duplication, the questions (Figure 2) are only displayed

if the user has not submitted a rating for the specific smell instance.

Attracting Participants.We sent an email to all the BCH users

(N ≈ 13, 000) to invite them to test these new changes on a ded-

icated research server. The email also contained a brief text and

video guideline on how to use these new features. A total of 31

users responded, providing feedback on more than 300 test smell

instances, which have been all analyzed.

4 RESULTS

In this section we present our results by research question.

4.1 RQ1: Severity Thresholds

We analyzed a corpus of 1,489 projects to determine the severity

thresholds for 9 test smells (Empty Test and Ignore Test are ex-

cluded from this calibration since they are binary by default). The

calibration results are shown in Table 3.

As an example, Assertion Roulette has medium, high and very

high severity set to 3, 5 and 10 respectively. These numbers repre-

sent the metric value (see Table 2): in the case of Assertion Roulette,

it represents the number of assertions without descriptions. This

means that if a method has a test smell value below 3, it should be

considered not smelly (or in other words, it belongs to the best 70%

of the corpus); if it has a test smell value between 5 and 10 it should

be considered as high severity (it belongs to the worst 20% methods

of the corpus); above a value of 10 it should be considered as very

high severity, since it belongs to the worst 10% of the corpus.

As we can notice, 5 test smells have severity equals to 0: this

means that the metric by which the smell is measured is so rare

that even by considering the 90th percentile we obtain a severity

value of 0. Hence, for these cases, any test having a metric value

higher than 1 results in a classification of very high severity. The

distribution of the metrics across the observed projects for each

test smell can be found in the replication package [28].

Table 3: Severity thresholds calculated from the benchmark

Test Smell
Severity Threshold

Medium High Very High

Assertion Roulette 3 5 10

Eager Test 4 7 39

Verbose Test 13 19 30

Conditional Test Logic 0 1 2

Magic Number Test 0 0 1

General Fixture 0 0 0

Mystery Guest 0 0 0

Resource Optimism 0 0 0

Sleepy Test 0 0 0

Previous studies have empirically investigated to what extent test

smells are spread in software systems, by analyzing the distribution

of test smells in source code [7, 10]. However, since our derived

thresholds are higher, the diffusion of test smells would decrease.

As a first step to understand the test smells diffusion in open

source projects using the new derived thresholds, we re-run the

test smell analysis on our corpus of 1,489 projects using the new

aforementioned thresholds. In Figure 3 we present the result. As

we might expect since the new thresholds are stricter, we obtain

from 8% to 30% less test smells instances than when using the old

thresholds. To notice that the diffusion of the old thresholds are in

line with what previous studies found [7]: "Assertion Roulette" is

present in ≈ 50% of the test classes and "Eager Test" in 30% of them.

However, by applying the new thresholds we obtain that "Assertion

Roulette" is present in ≈ 30% of the classes and "Eager Test" in

≈ 15% of them. As for "Conditional Test Logic" and "Verbose Test"

we could not find previous literature on their diffusion, however

from the figure we can see that their occurrence is much lower

when using the new thresholds.

In Table 4 we present the result for every test smell. Given that

we defined new thresholds for only four smells, the numbers for

the others are identical. Since out of the scope of this paper, we

did not further investigate the test smells diffusion on OSS systems.

New research should be carried on this topic, for example by inves-

tigating the co-occurrence of the smells, similar to what previous

studies did with the old thresholds [7].
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Figure 3: Diffusion of test smells across OSS systems: new

thresholds vs old thresholds (N=1,489)

Thresholds’ evaluation. After identifying the new thresholds,

we want to determine if they are also aligned with the developer’s

perception of how much impact these instances have on the test

suite maintainability. To this aim, we modify tsDetect to incor-

porate the defined thresholds and plug it in BCH. Using a survey

(explained in Section 3.5), we ask the developers their perception

of the shown test smell severity by using a Likert Scale [16]. Then

we triangulated our severity score to the users’ perception of sever-

ity employing the Spearman’s rank correlation coefficient. We use

the Spearman’s rank correlation test, as we could not make any
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Table 4: Test smells’ distribution across systems (N=1,489)

Test Smell
Old Thresholds Derived Thresholds

Impacted Not impacted Impacted Not impacted

Assertion Roulette 56,177 (50.9%) 54,278 (49.1%) 34,156 (30.9%) 76,299 (69.1%)

Cond. Test Logic 29,077 (26.3%) 81,378 (73.7%) 20,095 (18.2%) 90,360 (81.8%)

Empty Test 1,280 (1.2%) 109,175 (98.8%) 1,280 (1.2%) 109,175 (98.8%)

General Fixture 8,829 (8.0%) 101,626 (92.0%) 8,829 (8.0%) 101,626 (92.0%)

Mystery Guest 6,071 (5.5%) 104,384 (94.5%) 6,071 (5.5%) 104,384 (94.5%)

Sleepy Test 4,500 (4.1%) 105,955 (95.9%) 4,500 (4.1%) 105,955 (95.9%)

Eager Test 29,333 (26.6%) 81,122 (73.4%) 14,284 (12.9%) 96,171 (87.1%)

Ignored Test 3,105 (2.8%) 107,350 (97.2%) 3,105 (2.8%) 107,350 (97.2%)

Resource Optimism 7,345 (6.6%) 103,110 (93.4%) 7,345 (6.6%) 103,110 (93.4%)

Magic Num. Test 18,920 (17.1%) 91,535 (82.9%) 18,920 (17.1%) 91,535 (82.9%)

Verbose Test 70,461 (63.8%) 39,994 (36.2%) 36,080 (32.7%) 74,375 (67.3%)

assumptions about the distribution of our data, thus ruling out the

use of Pearson’s test [9].

In Table 5 we show the results: all the four test smells for which

we defined non-binary severity thresholds have a statistically signif-

icant difference between our proposed severity and user-perceived

maintainability impact. Furthermore, Verbose Test and Conditional

Test Logic showed a high statistically significant relationship (p <
0.001) and a strong Spearman’s coefficient (0.6 ≤ rs ≤ 0.79), while

Eager Test and Assertion Roulette showed a lower statistically sig-

nificant relationship (p < 0.05) and a weaker Spearman’s coefficient
(0.2 ≤ rs ≤ 0.39).

Table 5: Spearman’s rank correlation between test smell

severities as set by our thresholds and rated by users. Sta-

tistically significant results are in bold.

Test Smell Responses p rs

Eager Test 42 0.027 0.342

Conditional Test Logic 36 <0.001 0.753

Verbose Test 51 <0.001 0.679

Assertion Roulette 47 0.016 0.350

Figure 4 shows the distribution of the user-submitted impact rat-

ings for each test smell severity category. As previously discussed,

we can notice that for Verbose Test and Conditional Test Logic, the

ratings submitted by the users are aligned with our thresholds, and

the relationship is strong. For Eager Test and Assertion Roulette

the difference is less visible instead, though statistically significant.

Across the four smells, the threshold that aligns better with devel-

opers’ perceptions is ‘Very High’, thus suggesting that it is the most

appropriate to be used with practitioners.

4.2 RQ2: Developers’ Perceptions

In this RQ, we want to investigate developers’ overall perception

on test smells found in their codebase: to this aim, we asked them

to indicate for each test smell instance whether they would classify

it as a valid instance to remove, how much priority they would give

to the refactoring, and how long it would take according to them.

Refactoring evaluation. In Table 6 we show the percentage of

actions the surveyed users indicated to take for each test smell

instance identified in the BCH analysis report. We got a total of

301 responses. In Table 7 we show the impact ratings for test smell

(a) Eager Test (b) Verbose Test

(c) Assertion Roulette (d) Conditional Test Logic

Figure 4: Test smell severity vs. user rated impact values

Table 6: Actions taken by users, by identified test smell

Test Smell Responses Immediate Refactor Long-term Refactor No Action

Empty Test 14 71.43% 21.43% 7.14%

Sleepy Test 13 61.54% 23.08% 15.38%

Mystery Guest 10 60.00% 10.00% 30.00%

Resource Optimism 12 58.33% 16.67% 25.00%

Cond. Test Logic 39 53.85% 33.33% 12.82%

Verbose Test 54 48.15% 40.74% 11.11%

Magic Number Test 23 47.83% 34.78% 17.39%

Assertion Roulette 55 29.09% 50.91% 20.00%

Eager Test 51 21.57% 50.98% 27.45%

Ignored Test 10 20.00% 50.00% 30.00%

General Fixture 20 20.00% 40.00% 40.00%

Table 7: Impact ratings on test suite maintainability

Test Smell Responses Very Low Low Medium High Very High

Assertion Roulette 47 17.0% 27.7% 38.3% 14.9% 2.1%

Conditional Test Logic 36 2.8% 25.0% 30.6% 22.2% 19.4%

Eager Test 42 31.0% 26.2% 21.4% 16.7% 4.8%

Empty Test 13 0.0% 15.4% 7.7% 46.2% 30.8%

General Fixture 13 23.1% 30.8% 38.5% 7.7% 0.0%

Ignored Test 8 12.5% 12.5% 12.5% 37.5% 25.0%

Magic Number Test 20 15.0% 20.0% 30.0% 30.0% 5.0%

Mystery Guest 8 0.0% 12.5% 37.5% 50.0% 0.0%

Resource Optimism 10 10.0% 0.0% 20.0% 60.0% 10.0%

Sleepy Test 11 0.0% 9.1% 18.2% 63.6% 9.1%

Verbose Test 51 13.7% 23.5% 23.5% 27.5% 11.8%

instances which were rated as either short or long term refactoring

candidates (no action excluded).

Smell evaluation.We now discuss the finding for each test smell

separately, taking into account the optional additional remarks field

(SQ4) of the survey, where the user could add remarks regarding

their perception of the smell.
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Assertion Roulette: Assertion Roulette is rated as having a low

to medium impact on test suite severity and considered primarily

as long term technical debt. One reason to mark assertion roulette

as a no action item is that the test method name accurately reflects

the reason for the test to fail and thus no further comments in the

assertions are required. In some instances, the purpose of a block

of assertions was described in a comment, which would require

looking at the source code and line number to see why the test

failed.

Conditional Test LogicConditional Test Logicwas primarily rated

as a short-term refactoring candidate having medium to high im-

pact. Of the 39 reported cases, 24 times it was reported as imme-

diate refactoring, 13 as long-term refactoring and 2 times as no

actions. In the comments, some developers stated that they use

conditions to avoid running the test in a specific configuration

(e.g., on Windows, or using a specific version of the library, etc.),

and in this case is difficult to avoid an if-else condition.

Eager Test: Eager Test is considered to have a low impact on test

suite maintainability and is considered primarily as technical debt

which can be addressed later or will not be addressed at all. Of the

51 reported cases, 26 times (50.98%) was reported as long-term

refactoring, and 14 times was reported as no action/false positive.

Only in 11 cases was considered as immediate refactoring.

Among the "no action" feedback, a repetitive comment is that

getters and setters should be left out from the analysis. In this case,

by getters and setters we not only mean the Java encapsulation

pattern (i.e., getters and setters of class members), but all the

methods that retrieve (e.g., get) or set a variable in the production

class. Listing 1 exemplifies a common won’t fix Eager Test pattern.

1 @Test
2 p u b l i c vo id t e s t F o oAc t i o n ( ) {
3 Foo foo = new Foo ( . . . ) ;
4 foo . s e t P r op1 ( . . . ) ; / / 1 s t p r oduc t i on method c a l l
5 foo . s e t P r op2 ( . . . ) ; / / 2nd c a l l
6 i n t r e s u l t = foo . a c t i o n ( ) ; / / 3 rd c a l l
7 a s s e r t E q u a l s ( r e s u l t , e x p e c t e dR e s u l t ) ;
8 a s s e r t E q u a l s ( f oo . ge tP rop1 ( ) , . . . ) ; / / 4 th c a l l
9 a s s e r t E q u a l s ( f oo . ge tP rop2 ( ) , . . . ) ; / / 5 th c a l l
10 }

Listing 1: Example of a test case containing an Eager Test

Empty Test Empty test is considered as an immediate refactoring

candidate and rated as having a high to very high impact on test

suite maintainability. In this case, almost all the developers agreed

that the test should be immediately removed, since it does not

contain any assert statement.

General Fixture General Fixture is considered among the sam-

pled developers as having a low to medium impact on the test

suite maintainability and not considered as an issue to remove.

In most of the cases, the tests used all or a different combination

of the test fixture variables – on class level, all of the test fixtures

were used.

Ignored Test Ignored Tests are considered to have a high impact

on test suite maintainability and considered for long-term re-

moval. Ignored tests are often accompanied by a bug ID inside

the ignore statement (e.g., @Ignore("PROJECTCODE-123")). De-
velopers consider that these tests should not count as a test smell

instance if they are properly documented in the bug tracking

system. The source of the bug might not be in the test but rather

in the production code.

Magic Number Test Magic Number Test is considered low to

medium severity and rated primarily as a short-term refactor-

ing candidate. Tests exhibiting the Magic Number Test which

were marked for refactoring were accompanied by comments

from the developers, such as where the numbers come from and

how they could be replaced with named constants (e.g., HTTP

status codes). In instances marked as will not fix, the magic num-

bers were the results of a calculation performed inside the tested

function. In these cases, the developers do not see the problem of

not naming the constants, as the value according to them should

be clear from the test context.

Mystery Guest Mystery Guest is rated as having medium to high

impact on test suite maintainability and is considered to be primar-

ily a candidate for immediate refactoring. Unless the developer

wants to test the reading/writing of a file to the file system, a

more appropriate approach would be to create a data structure

that holds the necessary information.

Resource Optimism Resource Optimism is considered to be pri-

marily a short-term refactoring candidate of high severity. The

refactoring for this test smell can be done by adding file existence

checks for each resource used.

Sleepy Test Sleepy Test is primarily perceived as having a high

impact on test suite maintainability and is considered for immedi-

ate refactoring. The presence of thread sleep calls indicates that

the test is not a good unit test and negatively impacts the test suite

maintainability, since it might introduce flakiness. The removal

of this test smell could require rewriting the entire test.

Verbose Test Verbose Test is split between immediate and long

term refactoring. It is rated as having an overall medium to high

impact on test suite maintainability. In the feedback, the devel-

opers pointed out that the tests exhibiting Verbose Test smell

can be either split into multiple smaller tests or refactored to use

methods to decrease the test size.

Analysis of ‘will not fix’ reports To gain more insights on why
developers reported test smells as ‘will not fix’, we examine
all of the instances which had their source code accessible in a

public repository (29 out of 60 ratings). We performed an open

card sorting method [20] with two inspectors. This method allows

creating mental models and allowing the definition of taxonomies

from input data [20].

The two inspectors were the first two authors of this paper, each

with over four years of Java development experience.We applied the

open card sorting method by first independently grouping the test

smell instances and then comparing the results with a discussion

about the classification and group differences. After we have agreed

on a unified view on the classification, we move to the next test

smell. The inspectors had at their disposal the source code of the

test and the comments provided by the developer.

Based on the open card sorting methodology, we have identified

the following four categories of will not fix test smells.

False Positive. These instances are true false positives – they

show the limitations of our current tooling and approach. Here

the fix would require modifying tsDetect or creating a new tool.
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The issue could not be fixed by setting better thresholds. There

were a total of 7 false positives (24%).

Dismissed, Hard to fix. In this category, developers either do not

see the problem with the test or changing the test to remove the

smell instance would require a significant amount of effort to fix.

The fix in some instances would require rewriting the production

class under test, or even the related classes to support better

testability. In these cases, the test smell points to larger problems

of the codebase, not just related to the test design itself. There

were a total of 11 instances (38%).

Dismissed, Easy Fix. Test smells in this category can be easily

removed by refactoring them. However, developers either do not

acknowledge them as a problem or are unwilling to refactor it

to remove the test smell instance. In all identified cases in this

category, the readability and maintainability of the test would be

significantly improved if the test was refactored to follow the best

practices. From the developer’s point of view, these might be only

perceived to be marginal gains and they concentrate their efforts

elsewhere. There were 9 instances (31%) in this category.

Acknowledged problem, won’t fix. Test smell instances in this

category are acknowledged by the developers as possibly prob-

lematic, but in the domain context, they are perceived to be an

acceptable trade-off between maintainability and ease of writ-

ing. The two instances of this category were Assertion Roulette

smells. Here the developers consider “simple” assertions to be

self-documenting. For example, in case of failing ‘assertEquals(
HttpStatus.BAD_REQUEST, ...);’ is easy to understand, even
without documentation.

5 DISCUSSION AND FUTUREWORK

In this section we discuss our results, their implications, and future

research directions.

Severity Rating of Test Smells. Our approach of defining test

smell severity shows promising results when applied to certain test

smells, as pointed out by the developers agreeing with our rating.

On the other hand, for some test smells our approach does not

work, as they are very rare, and an alternative classification would

have to be used to define their severity.

We defined new severity thresholds for Assertion Roulette, Con-

ditional Test Logic, Eager Test, and Verbose Test. These test smells

had their respective metrics distributed across the selected bench-

mark project’s codebase. On the contrary, several of our proposed

thresholds had zero-valued thresholds up to or including the very

high severity, which presents problems as we can not make any

distinction between the severity levels. A possible approach to intro-

duce granularity for the test smells where the thresholds are zeros

would be to investigate the top 10 percentile of the worst projects,

and extend the scale to there. Then set the high and very high

thresholds based on the values of applying the original method-

ology on only this filtered sample size again. This would ensure

that the medium risk threshold is at zero following the original

methodology, and would introduce more fine-grained values for

the high and very high thresholds.

Since out of the scope of this paper, we treated the smells with

zero thresholds as critical (very high) severity, because present in

less than 10% of the benchmark corpus. However, in certain test

smells such as Sleepy Test, the usage of even one thread sleep call

versus multiple calls can be considered to be irrelevant, as even one

such call makes the test dependent on the timing and can introduce

multi-threading faults and flakiness.

Two test smells were excluded from the calibration: "Ignored

Test" and "Empty Test". For these test smells, no conventional met-

ric exists; hence an alternative should be proposed. For example,

"Ignored Test" smell can be classified based on whether the@Ignore

annotation contains a bug tracking issue identifier or description

for the failing test. Developers can then focus on tests that are

ignored without a description to investigate the root cause of the

failure.

Classification of Empty Test could involve looking at whether

the test is empty and does not contain any commented code. If it

contains commented code, this could indicate that the test should

have an @Ignore annotation instead, since it is masking an uncov-
ered issue. In the latter case, these tests could be considered to be

of high severity and the developers should investigate why the test

code was commented out.

Developers’ perception. By using the new derived thresholds we

lowered the number of false positives the tool detects. However, as

we saw from our RQ2, developers in some cases still do not perceive

the smell as an actual problem and mark it as no-fix. The reason

for this could be that the thresholds are still set too low, and most

of the found instances are perceived as not problematic. This result

is in line with previous studies [30], where the authors showed

that often developers do not perceive test smells as actual problems.

More recently, De Bleser et al. [10] studied developers’ perception

on test smells of Scala projects. The authors found that General

Fixture and Mystery Guest are the test smells that are perceived as

the most problematic. While we can confirm this result for Mystery

Guest, the developers that participated in our study rated General

Fixture as having a low impact on test suite maintainability.

However, when analyzing the cases in which the developers

rated an instance as a no-fix (Section 4.2), we saw that in few cases

the tool had false positive (e.g., getters and setters should not be

counted as method calls), but in the majority of the cases they

dismissed the test smell instance as they were unwilling to refactor

the test (even if it was an easy fix). Even though by fixing the

smell the readability and maintainability would be significantly

improved, these might be only perceived to be marginal gains, and

they concentrate their efforts elsewhere. In this case, increasing the

thresholds would not change their perception.

Test Smell Triage. Test smells density, defined as the number of

test smells in a test class, is too low level to be used as direct metrics

to present to developers. It can be incorporated into another higher

level metric to measure test code quality.

For example, a possible approach would be to look into test

smell co-occurrence, combined with our proposed severity levels,

to rank individual unit tests, test files, or test modules as ones that

need more attention than the others. A test file impacted by several

different instances of high severity test smells might need more

attention than a file impacted by only one test smell type of low

severity. This would give better actionability to the developers, as

they would then have an indicator where to direct their attention.

This approach would require investigating whether a combination
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of several test smells of different severity levels is worse than, for

example, one very high severity test smell.

New or Improved Test Smell Detection Tool. We have identi-

fied several limitations in how tsDetect identifies test smells and

that the current definition of certain test smells does not match

the developer’s perception or common practices. This mismatch

between the developer’s perception of what is vs. is not a test smell

cannot be fixed by setting thresholds alone. In the case of Assertion

Roulette, the developers consider good test naming to be sufficient

to document the assertions. Incorporating or creating a test naming

model, such as the one proposed byMeester [18] for rating howwell

a method is named, could be used to determine if a test is named

correctly and thus the assertions do not need an additional expla-

nation. Currently, no tool also considers block comments above a

series of assertions as a description, while developers consider this

to be enough to describe what the assertions are for.

For Ignored Test, further research could be investigating whether

it is possible to classify the description in the @Ignore annotation
to determine if it contains a bug tracking issue identifier or a de-

scription for why it is failing. The impact of Eager Test detection

excluding getters and setters could be investigated to see if this

detection method would improve the probability that flagged Eager

Tests are given bigger priority by the developers. All of the above

could be further explored and then integrated into a new test smell

detection tool, which would detect a smaller subset of test smells;

however, the smells detected would be more likely to be perceived

by the developers as problematic and an issue to remove.

6 THREATS TO VALIDITY

Construct validity. Threats to construct validity concern our re-

search instruments. We used the tool tsDetect to detect test smells

and classify them according to our defined thresholds. For the sub-

set of test smells we observed, the tool was reported to have an

F-score surpassing 87% for each test smell as determined by a com-

prehensive review of multiple projects [23].

Internal validity. Threats to internal validity concern factors that

could affect the variables and the relations being investigated. All

of the contacted developers for this experiment were users of BCH,

who have used it at least once in the past. The developers using a

code quality tool might have more knowledge about code quality

than developers who have never used such tools and thus their

opinion might be different than those of developers who do not

use BCH or any other quality control tool. Furthermore, developers

that use code quality tools might care more of code quality (hence

rating a test smell as high impact) than developers that do not use

code quality tools.

External validity. Threats to external validity concern the general-

ization of results. We are aware that derivation of metrics thresholds

from a benchmark dataset introduces dependency on the dataset

and its representativeness. Further investigation needs to be done

to determine the degree of sensitivity of this approach with respect

to different benchmark datasets, precomputed metrics, and differ-

ent metric extraction tools. However, to mitigate this issue, we

used a big corpus of 1,489 OSS systems of different scopes, size and

characteristics, to strengthen the generalizability of our findings.

For the second part of the study, we modified BCH by including a

test smell detector and asked developers to rate their code. We have

received responses from 31 developers, who evaluated 47 distinct

projects. In comparison to other experiments in software engineer-

ing, our sample size is above the median (30 respondents) [26].

We only analyzed Java source code for test smells. The thresholds

we defined would have to be defined per language, as the occur-

rence of test smells might be different across various languages

and unit testing frameworks. The methodology for the test smell

calibration should nonetheless generalize to other languages if they

are supported by a test smell detection tool, which can also provide

metrics in addition to detection.

7 CONCLUSION

In this paper, we investigated the classification of test smells based

on their severity. To do this, we define metrics for each test smell

and then apply the benchmark-based threshold derivation on a

sample of open-source projects. The result of this process allows

us to give test smells a severity rating, from low to very high,

which we verified with a sample of developers using their test

source code to see if they agree with the rating classification. For

four test smells (Assertion Roulette, Eager Test, Verbose Test and

Conditional Test Logic), we defined non-binary severity thresholds

and have a statistically significant difference between our proposed

severity and user-perceived maintainability impact. Furthermore,

Verbose Test and Conditional Test Logic showed a high statistically

significant relationship and a strong Spearman coefficient.

We conducted a study of developer perception on selected test

smells in their codebase using amodified version of BCH that allows

for the detection of test smells with the new derived thresholds.

We asked the developers to indicate for each test smell instance

whether they would classify it as a valid instance to remove, how

much priority they would give to the refactoring, and how long it

would take according to them. Among the main results, we saw

that Empty Test and Sleepy Test are considered the smells with

the highest priority in refactoring, follows by Mystery Guest and

Resource Optimism. The smells with the lowest priorities instead

were General Fixture, Ignored Test, and Eager Test.

Furthermore, we analyzed test smells the developers marked

as won’t fix, trying to discover the reasons behind it, indicating

how test smell detection tools could be improved to match the

developer’s views on what is a test smell. This information can also

be used to enhance the proposed test smell severity ratings.

Furthermore, we have shown that test smell detection can be

successfully integrated into a code quality tool to inform developers

on test issues and help make tests more maintainable.
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