
Development and Testing of the CityJSON Energy Extension for Space Heating Demand Calculation

Özge Tufan 2022

Supervisors: Camilo León-Sánchez Ken Arroyo Ohori

Co-reader: Hugo Ledoux

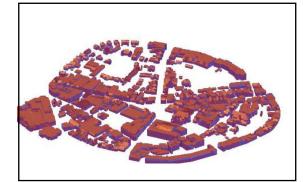
Content

7

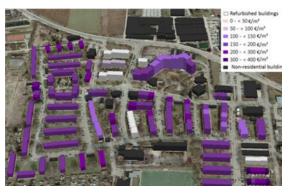
- Motivation & Research questions
- 2 Related work
- 3 Methodology
- 4 Study area
- 5 Implementation
- 6 Results & Analysis
 - Conclusions & Future work

1. Motivation & Research questions

1.1 Motivation


- Energy performance of buildings as a prevalent discussion
- Urban Energy Modelling with semantic 3D city models

Energy demand analysis


Agugiaro (2016)

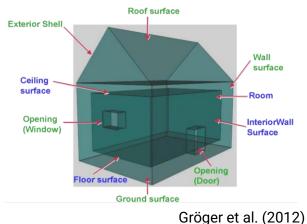
Solar irradiance analysis

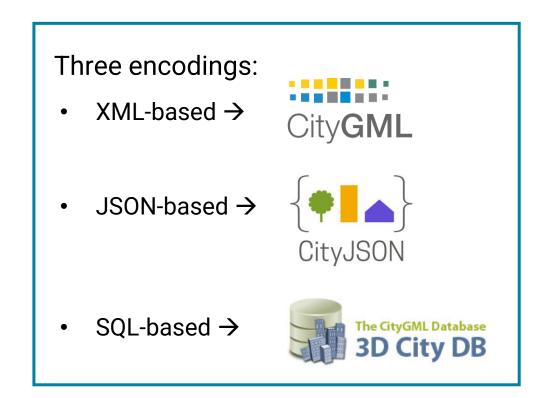
Leon-Sanchez et al. (2021)

Refurbishment measures

Nouvel et al. (2013)

1.1 Motivation


CityGML

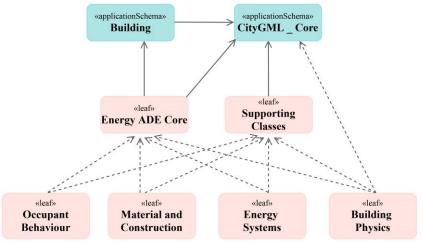

• Modelling City Objects

Geometry in five Levels of Detail (LoD)

Semantics

1.1 Motivation

CityGML


Application Domain Extensions (ADE) **Energy ADE:** stores energy-related data

Highly complex structure

Energy ADE KIT profile

CityJSON

- Less hierarchical structure
- Also has Extension mechanism

Benner (2018)

1.2 Research question

How can a **CityJSON Energy Extension** be used to support the calculation of **space heating demand** of buildings?

1.2 Sub-questions

How can different types of objects, other than CityObjects, be defined in a CityJSON Extension?

How should the CityJSON Energy Extension differ from the Energy ADE?

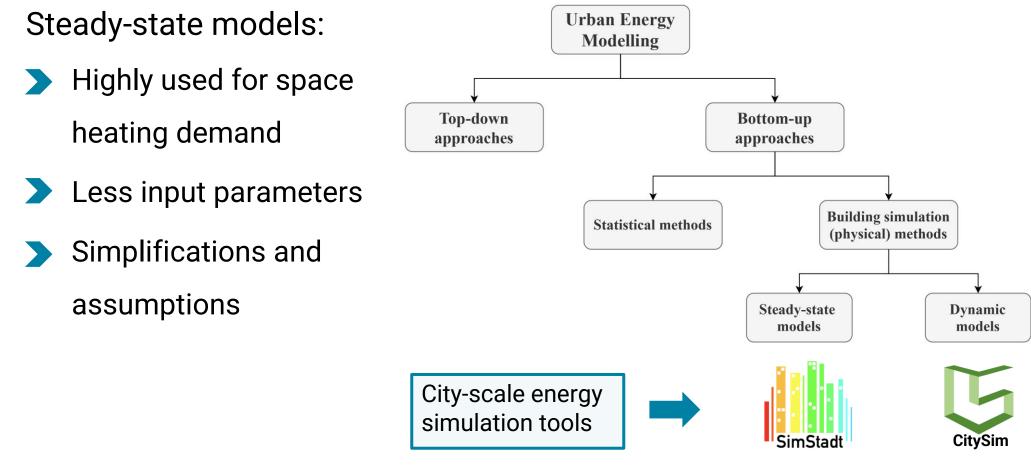
How can space heating demand calculation be used during the design phase to test and improve the CityJSON Energy Extension?

To what extent is it possible to map CityGML ADEs to CityJSON Extensions? Should the CityJSON schema be extended to make this process more straightforward?

2. Related work

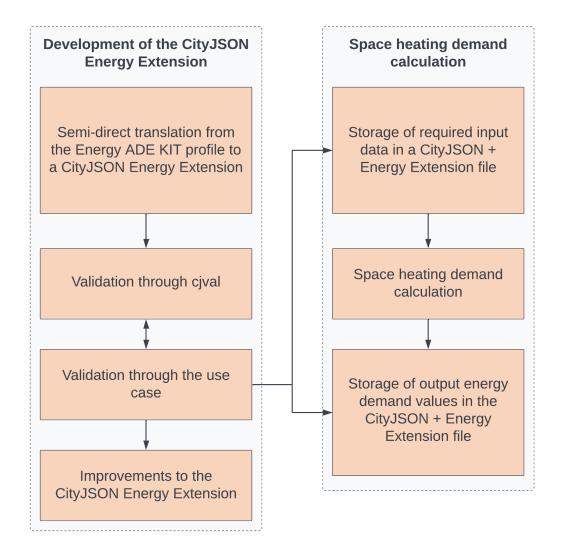
2.3 CityJSON Extensions

Extension mechanism:


- Creating new attributes
 Creating new City Objects
 Creating new root properties
- "type": "CityJSONExtension", "name": "Traffic", "description": "Extension to model the traffic", "uri": "https://someurl.org/traffic.ext.json", "version": "1.0", "versionCityJSON": "1.1", "extraAttributes": {}, "extraCityObjects": {}, "extraRootProperties": {}

Current CityJSON extensions:

- Support for 3D point clouds Nys et al. (2021)
- Topology in 3D city models Vitalis et al. (2019)
- Building permits Wu (2021)
- Mapping the CityGML Noise ADE CityJSON team



2.4 Space heating demand calculation

3. Methodology

3. Methodolody

ŤUDelft

3.1 Semi-direct translation

Energy ADE KIT profile \rightarrow CityJSON Energy Extension

Considered elements	CityJSON Extension mechanism		
New CityObjects	extraCityObjects		
 New attributes to existing CityObjects 	extraAttributes		
 New non-CityObjects 			
 Additional data types, enumerations, code lists 	?		
 Relations between CityObjects and non-CityObjects 			

3.2 Validation and improvements

Through the use case

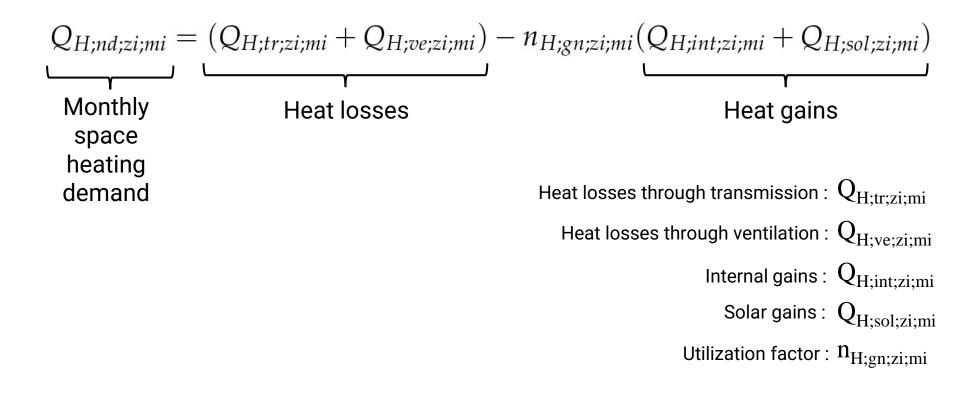
CityJSON + Energy Extension file

- Storage of input data
- Efficiency on data retrieval

Through cjval

Official validator of CityJSON, checks:

- JSON syntax
- CityJSON schemas
- Extension schemas


① Files are never uploaded, validation is done locally
O cjval v0.4.2 is used

The file is 100% valid!

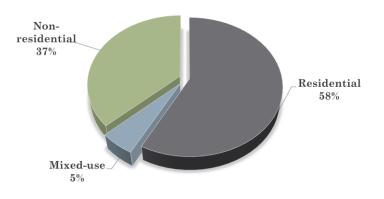
https://github.com/cityjson/cjval

3.3 Space heating demand calculation

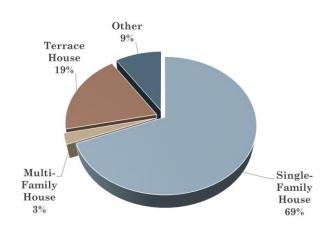
- Dutch standard NTA 8800
- Steady-state energy balance method:

4. Study area and datasets

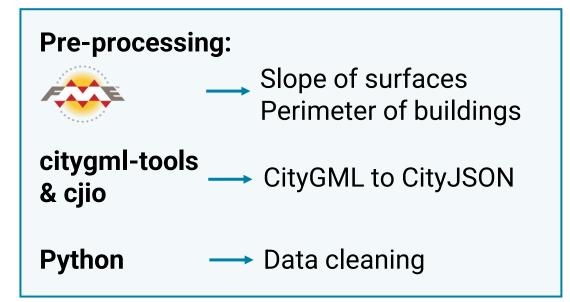
4.1 Study area


Rijssen-Holten, Netherlands

Rijssen-Holten


• 3318 buildings

Building usage


Building typologies

4.3 Datasets

3D city model of Rijssen-Holten

- In CityGML format
- Geometry in LoD0 & LoD2
- Semantics: WallSurface, RoofSurface, GroundSurface

Used attributes:

- Building class & function
- Building type
- Year of construction
- Roof "footprint" area
- Building volume
- # of storeys
- Adjacent buildings
- Surface inclination, direction & area

19

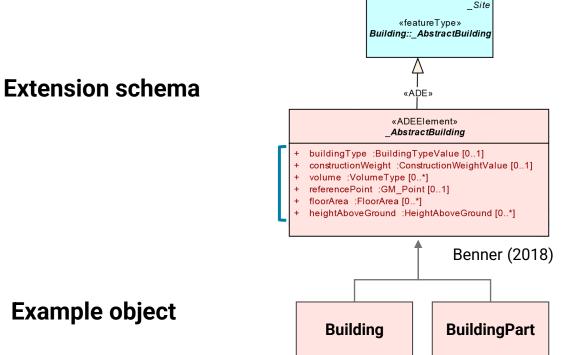
4.3 Datasets

ŤUDelft

Basisregistratie Adressen en Gebouwen (BAG)	TABULA building physics library				Meteorological Data Portal & NTA8800		
 Usable area Number of residential units 	 g-value 					 Outdoor air temperature Monthly solar 	
		SFH	TH	MFH	AB	radiation	
• • • • • • • • • • • • • • • • • • •	till 1964			AL		 Shading reduction factor 	
	1965-1974	RL XUM DI Go	R.A.E.Mol.dee	NLIMAD: Gan	N.I.A.B.IX Ger	Tactor	
Withermone	1975-1991	NL NLSHI 62 Gan	NLATING2.Gar	KLJARKOZGAN	KLALE DO		
	1992-2005	K.K.SPH.03.Ger	NL & THOSE	NLA MARK 23 Gan	K. K. K. B. D. Gor		
• • • • • •	2006-2014	M.R.SPH.04.Gen	NLATIKOAdee	NLA JOHN OA Ger		SFH = Single-family house TH = Terrace house	
Tuinstraat	2015-today	N.L.K.SHI GE Ger	N.A.TAGLee	RULIARIOS Gen	N.H.4.05 Ger	MFH = Multi-family house AB = Apartment block	
			https://we	ebtool.building	g-typology.eu	20	

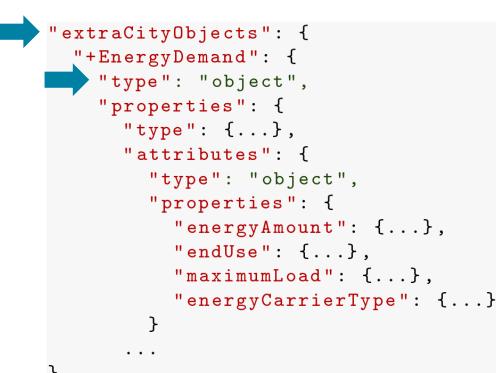
5. Implementation

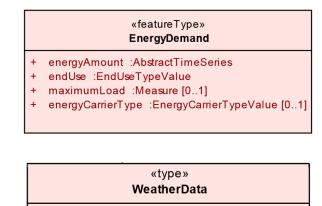
Creating new CityObjects



Creating new attributes

```
"extraAttributes": {
    "Building": {
        "+buildingType": {...},
        "+constructionWeight": {...},
        "+volume": {...},
        "+floorArea": {...},
        "+heightAboveGround": {...}
    }
}
```


```
"Build1": {
   "type": "Building",
   "geometry": [...],
   "attributes": {
      "+buildingType": "singleFamily",
      "+constructionWeight": "heavy",
   }
```

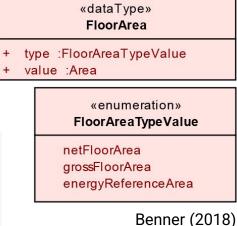


}

Creating new non-CityObjects

• Not in the Extension mechanism

- + weatherDataType :WeatherDataTypeValue
- values :AbstractTimeSeries
- position :GM_Point [0..1]



- + temporalExtent :TM_Period
- timeInterval :TM_IntervalLength
- + values :MeasureList

Benner (2018)

Creating new data types and enumerations

Extension schema

Relations: CityObjects	Relations: CityObjects and non-CityObjects		
 Parent - children relationship 	 Additional attributes 		
ThermalZone – UsageZone	Building (CO) – EnergyDemand (non-CO)		
<pre>"Zone1": { "type": "+ThermalZone", , "children": ["Usage1"] }, "Usage1": { "type": "+UsageZone", "attributes": { "usageZoneType":"residential" }, "parents": ["Zone1"],</pre>	<pre>"Build1": { "type": "Building", "geometry": [], "attributes": { "+buildingType": "singleFamily", "+energyDemand":["Demand1"] } </pre>		
}	ID of EnergyDemand object		

ŤUDelft

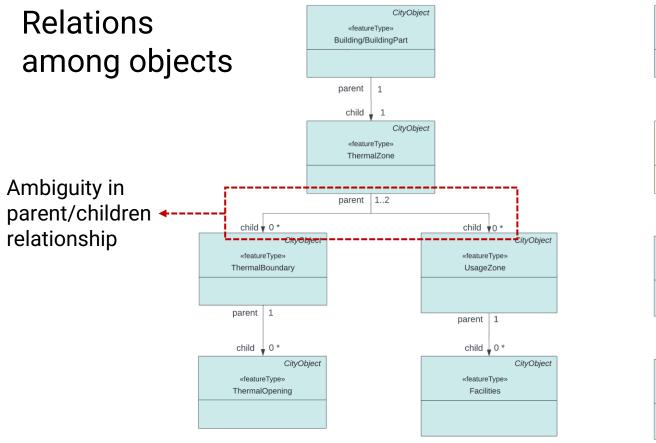
5.2 Validation through the use case

+ uValue

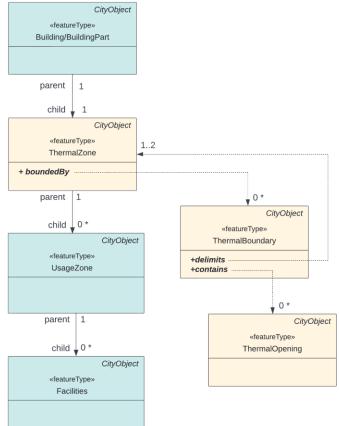
+ gValue

+ rValue

Storage of input data in a *CityJSON + Energy Extension* file

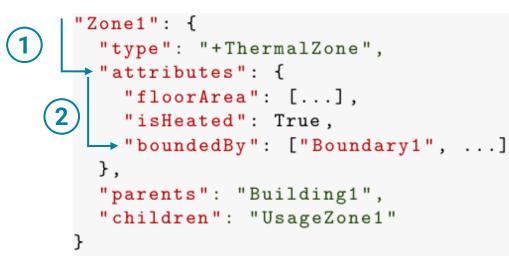

5.2 Validation through the use case

Space heating demand calculation


- Implemented in Python
- Assumptions and simplifications:
 - \rightarrow Only residential & mixed-use buildings
 - → Heating period: [October, March]
 - \rightarrow Constant value for indoor air temperature
 - \rightarrow Each building as single thermal zone
 - \rightarrow Window ratio instead of individual windows

5.3 Limitations & improvements

Semi-direct translation


Final CityJSON Energy Extension

5.3 Limitations & improvements

Storage of relations among objects

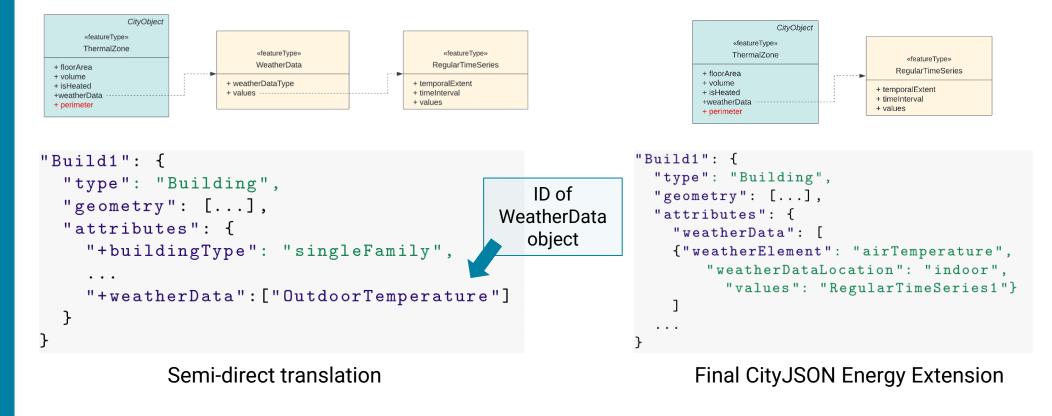
With attributes

Semi-direct translation

With properties

```
"Zone1": {
   "type": "+ThermalZone",
   "attributes": {
     "floorArea": [...],
     "isHeated": True
   },
   "parents": "Building1",
   "children": "UsageZone1",
   "boundedBy": ["Boundary1", ...]
}
```

Final CityJSON Energy Extension



5.3 Limitations & improvements

Deep hierarchical structures – WeatherData object

Stored as extra object

Stored as subschema

6. Results & Analysis

6.1 Energy ADE KIT profile vs. CityJSON Energy Extension

Energy ADE KIT profile	CityJSON Energy Extension	Impact
• Limited support for the use case	• Full support for the use case	+
• Deep hierarchical structure	 Deep hierarchies are removed 	+
 Clear distinction between the storage of CityObjects and non- CityObjects 	 No distinction between the storage of CityObjects and non- CityObjects 	-
Uses inheritance	• No inheritance	No significant impact

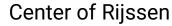
6.2 Comparison on file size

- Only **25.2 MB** increase in CityJSON file size
- No comparison between Energy ADE and CityJSON Energy Extension
- Higher efficiency of CityJSON over CityGML

	3DCM in CityGML	3DCM in CityJSON	CityJSON + Energy Extension (only input data)	CityJSON + Energy Extension (output file)
# of objects	3318	3318	106848	108732
File size	165 MB	40.6 MB	63.7 MB	65.8 MB

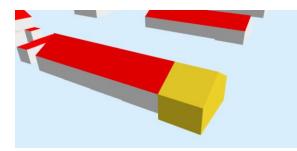
6.2 Comparison on file size

- Only **25.2 MB** increase in CityJSON file size
- No comparison between Energy ADE and CityJSON Energy Extension
- Higher efficiency of CityJSON over CityGML

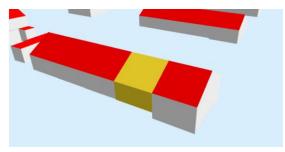

	3DCM in CityGML	3DCM in CityJSON	CityJSON + Energy Extension (only input data)	CityJSON + Energy Extension (output file)
# of objects	3318	3318	106848	108732
File size	165 MB	40.6 MB	63.7 MB	65.8 MB

6.3 Results of the space heating demand calculation

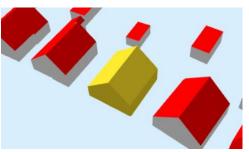
- Calculated for 1884 buildings out of the total of 3318
- Space heating demand in January:


Delft

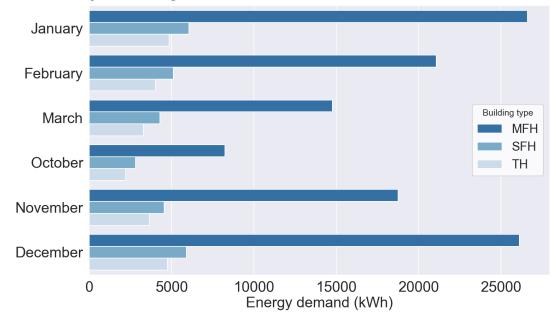
Residential area in Rijssen


Impact of building position

Building position	Year	Building type	Building class	Usable area (m²)	Building volume (m ³)	Energy demand - January (kWh/m ³)	
Corner	1974	TH	Residential	94	377.67	10.45	
Middle	1974	TH	Residential	92	308.52	8.48	
Stand-alone	1985	SFH	Residential	183	703.13	6.22	
Corner	1981	SFH	Residential	127	495.885	5.84	

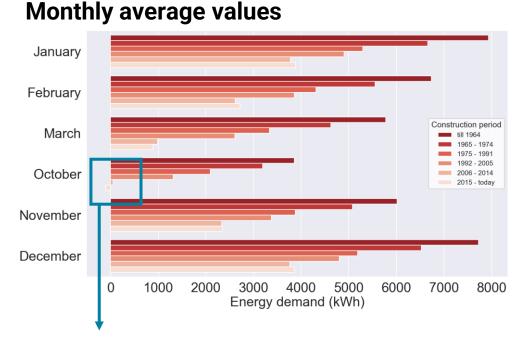

Corner building

Middle building

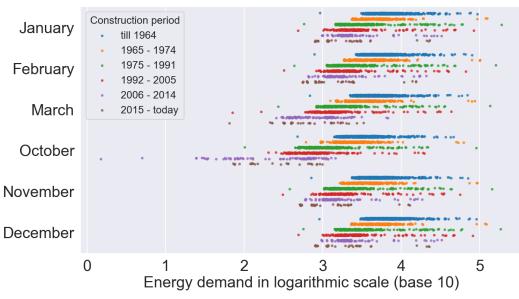

Stand-alone building

Energy demand based on building typology

Monthly average values



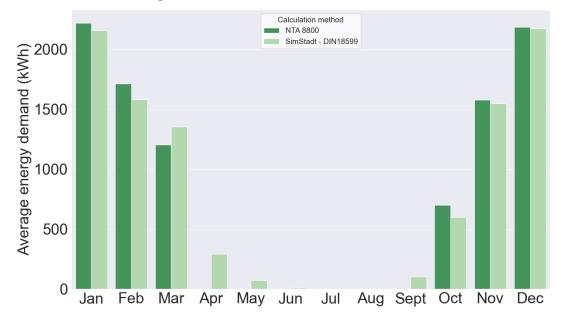
Building type	Average building volume (<i>m</i> ³)			
Multi Family House	7694.98			
Single Family House	592.35			
Terrace House	537.21			



MFH = Multi-family house SFH = Single-family house TH = Terrace house

Energy demand based on construction periods

Overall distribution



Negative average value!

Comparison with SimStadt values

- Dutch standard vs. German regulations
- Both use steady-state energy balance method
- Negative values → not found in SimStadt

Difference in monthly averages for a 10building subset

Negative values

- 32 buildings with negative energy demand values
- 1401 buildings with negative solar gains values

Possible reasons: → Used window ratio data

 \rightarrow Solar gains calculation

10-building subset with negative energy demand

ID	Year	Class	Туре	Monthly space heating demand (kWh)						
				Jan	Feb	Mar	Apr - Sep	Oct	Nov	Dec
11	2006	Mix.	MFH	4926.104	3164.618	493.2403	0	-480.732	2951.648	4907.25
12	2008	Mix.	MFH	9307.493	6201.38	1204.335	0	-1136.18	5344.322	9260.464
13	2011	Res.	TH	1756.013	1158.104	386.3949	0	-29.8774	1066.519	1750.983
14	2010	Res.	TH	1786.082	1181.133	257.1867	0	-98.3848	1081.698	1797.701
15	2009	Res.	TH	1161.864	742.2068	300.3615	0	-18.9162	694.6194	1144.829
16	2010	Mix.	MFH	26330.35	17157.38	3156.998	0	-4463.61	14623.96	26365.8
17	2012	Res.	MFH	7946.015	4610.537	-851.415	0	-2420.32	4212.729	8107.341
18	2012	Mix.	MFH	28914.34	17449.27	1529.095	0	-5327.15	16200.62	28993.83
19	2014	Mix.	MFH	19637.98	10367.67	-5014.41	0	-11479.8	8306.489	19928.46
20	2013	Mix.	MFH	32795.87	20979.23	2316.002	0	-5191.17	18565.13	32985.15

Solar gains calculation

 $Q_{H;sol;wi,k,mi} = g_{gl;wi,k;H;mi} \cdot A_{wi,k} \cdot (1 - F_{fr;wi,k}) \cdot F_{sh;obst;wi,k;mi} \cdot I_{sol;wi,k;mi} \cdot 0.001 \cdot t_{mi} - Q_{sky;wi,k;mi}$ Extra heat flow due to

the radiation to the sky

7. Conclusions & Future work

7.1 Conclusions

Main research question

How can a **CityJSON Energy Extension** be used to support the calculation of **space heating demand** of buildings?

7.1 Conclusions

Defining different types of objects (other than CityObjects):

- Possible with the **extraCityObjects** property
- Negative impact on the simplicity and understandability of the Extension
- Limits the possibilities of creating **complex Extensions**

- Differences with the Energy ADE:
 - Less hierarchical structure & more efficient storage
 - Providing **full support** for the use case

7.1 Conclusions

Use of space heating demand calculation:

- Validating the Extension in terms of storage of data
- Achieving less hierarchy and more efficiency

- Mapping CityGML ADEs to CityJSON Extensions:
 - Direct mapping depends on used objects
 - Support is needed to define non-CityObjects

7.2 Contributions & Limitations

Contributions

- Popularity of CityJSON over CityGML
- Development of new CityJSON Extensions
- Development/improvement of CityJSON tools

Limitations

- Definition of new objects in the Extension schema
- Input data for the space heating demand calculation
- Results of the space heating demand calculation

7.3 Future work

- Further development of the CityJSON Energy Extension
 - \rightarrow Testing with other use cases
 - \rightarrow Incorporating the full Energy ADE
- Additional methods for validation and comparison
 - \rightarrow Conversion between the Energy ADE and CityJSON Energy Extension
 - \rightarrow Further analysis on file size: Energy ADE vs. CityJSON Energy Extension

Thank you for your attention!

References

Agugiaro, G. (2016). Energy planning tools and CityGML-based 3D virtual city models: experiences from Trento (Italy). Applied Geomatics, 8(1):41–56.

Benner, J. (2018). CityGML Energy ADE V. 1.0 Specification. http://www.citygmlwiki.org/images/3/38/Energy_ADE_specification_2018_03_25.pdf.

Biljecki, F., Ledoux, H., and Stoter, J. (2016). An improved LOD specification for 3D building models. Computers, Environment and Urban Systems, 59:25–37.

Gröger, G., Kolbe, T. H., Nagel, C., and Hafele, K.-H. (2012). OGC City Geography Markup Language (CityGML) Encoding Standard. <u>https://portal.ogc.org/files/?artifact_id=47842</u>.

Kaden, R. and Kolbe, T. H. (2014). Simulation-based total energy demand estimation of buildings using semantic 3D city models. International Journal of 3-D Information Modeling (IJ3DIM), 3(2):35–53.

Leon-Sanchez, C., Giannelli, D., Agugiaro, G., and Stoter, J. (2021). Testing the New 3D BAG Dataset for Energy Demand Estimation of Residential Buildings. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-4/W1-2021:69–76.

Nouvel, R., Schulte, C., Eicker, U., Pietruschka, D. and Coors. V. (2013). CityGML-based 3D City Model for Energy Diagnostics and Urban Energy Policy Support.

References

Nys, G.-A., Kharroubi, A., Poux, F., and Billen, R. (2021). An Extension of CityJSON to Support Point Clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42:301– 306.

Vitalis, S., Arroyo Ohori, K., and Stoter, J. (2019). Incorporating Topological Representation in 3D City Models. ISPRS International Journal of Geo-Information, 8(8).

Royal Netherlands Standardization Institute (2022). NTA 8800:2022 Energy performance of buildings - Determination method. https://www.nen.nl/nta-8800-2022-nl-290717.

Swan, L. G. and Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8):1819–1835.

Wu, J. (2021). Automatic building permits checks by means of 3D city models. Master's thesis, Delft University of Technology.

