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Abstract 
This paper details the development of a decision-making model that evaluates the multiple 
repair levels that a composite structure can undergo, each with its inherent achievable 
survivability and consequence to operations in terms of availability, costs, and scheduling. 
The goal of this model is to provide the maintainer an integrated approach to all feasible 
repair solutions within the operational and structural integrity constraints, applicable to any 
given damage levels found during monitoring. At its core, the model incorporates various 
stochastic processes to model different types of repairable behavior: the non-homogeneous 
Poisson process and the renewal process. A case study on the carbon-fiber reinforced 
polymer flaps of a Boeing 777 has been performed to verify and validate the proposed 
decision-making model. With the case study providing the means for application of the model 
in an operational context, a standardized decision making process was delivered that is 
adaptable to any given failure scenario and implementable in practice. 

 
1 INTRODUCTION 

Next generation civil aircraft such as the Boeing 787 and Airbus A350 include more 
composite materials in their designs as compared to earlier-generation aircraft; approximately 
50% of the aircraft by weight and, as a first, including primary load-bearing structures such 
as the fuselage. Such large-scale adoption of composites for civil transport aircraft design, , is 
relatively novel. In comparison, aviation has relied on the use of metals for over seventy-plus 
years, which includes a vast accrued experience in operating, monitoring, repairing and/or 
replacing metallic structures [1]. The shift to composite components  presents a significant 
challenge for maintenance repair organizations, as relatively limited historical failure data 
and operational experience with failure behavior is available with respect to composite 
structures. However, an opportunity can be seized in the maintenance decision-making 
process after damage detection. This can be in regards to the type and time of repair 
performed by an inspector, based on the usage and the damage level of the structure of 
interest. 

This paper proposes a novel decision-making model to support the post-damage 
maintenance decision process. In the development of the proposed decision-making model, 
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two main questions are explored: (1) how can decision factors be used to identify all possible 
maintenance scenarios with their own inherent repair options, and (2) how can the cost-
benefit of available repair options be evaluated with respect to the survivability of the 
structure? The first step in answering the research questions is to identify the critical decision 
making factors that lead to possible maintenance actions. The use of deterministic Boolean 
decision trees results in a list of maintenance scenarios, each with their own possible repair 
options and times when they can be applied. Survivability of a structure is calculated using 
Poisson processes as they are fit to be applied on repairable systems [2]. Two processes are 
used: Non-Homogenous Poisson Process for minimal repairs and Renewal Process for 
permanent repairs or as-good-as-new assumption. Meanwhile costs are treated on a case by 
case basis because it is highly dependent on which maintenance scenario is being analyzed. 
The model is applied in a case study that was performed on an outboard flap of a Boeing 777. 
This particular structure bears similarity to the Boeing 787 outboard flap which is also 
carbon-fiber reinforced plastics (CFRP). 

The purpose of the model in the realm of structural health monitoring is to provide the 
maintainer with a decision support tool, which can assist in selection of a repair type which 
achieves highest survivability for the lowest cost per flight cycle. To facilitate this form of 
decision support, a novel metric has been developed for the model: the relative survivability-
cost (S-C) ratio. The relative S-C ratio informs the maintainers which of the repair options 
will be most cost-effective at different future monitoring points in time. Based on the inputs 
for costs from the maintainer and the calculated survivability, for each option the relative 
survivability-cost ratios are computed for both short term and long term monitoring. 

The methodology behind the survivability calculations and how it is combined with the 
decision making process is detailed in section 2. The consecutive section shows an example 
of the model application from the case study on Boeing 777. Then the final conclusions of 
the model development are presented in section 4. 

2 METHODOLOGY 
Two main areas have been researched for the purposes of building the proposed model: 

Poisson processes and decision making. One of the main metrics being used to evaluate 
repair decisions is inherent structural survivability. In order to quantify and forecast the 
survivability degradation, Poisson processes are implemented into the overall decision 
support model. This section will also explain how deterministic decision trees are used to 
identify maintenance scenarios. Due to confidentiality the actual decision tree developed for 
the case study is omitted, but a representative example is given.  

2.1 Poisson Process 

Non-Homogenous Poisson Process (NHPP) 
Non-Homogenous Poisson Process (NHPP) is a Poisson process characterized by a non-

constant intensity function λ(t), satisfying the following three conditions: 
1. 0N =  

2. For any , ( , ] ( ( ) )
b

a

a b N a b POI t dtλ< ∫   

3. The process has the independent increments property, i.e., for any non-overlapping 
intervals ( , ), ( , )t t t s s s+ ∆ + ∆ , ( , )t t tN +∆∆  and ( , )s s sN +∆∆  are independent 
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 Where,  
 λ  Intensity function  
 t , s Time or Flight Cycles  
 N  Number of failures in an interval  

Equation 1 gives a particular form of the intensity function, known as the power law 
process or the Weibull intensity function [2].  
 

( )
1tt

ββλ
θ θ

−
 =  
 

 (1) 

   
 Where,  
 β  Weibull shape parameter  
 θ  Weibull scale parameter  

The Weibull intensity function is flexible in its ability to demonstrate various skews and 
spreads in the data with the shape and scale parameter. This flexibility allows the NHPP to 
represent structural life models for a wide variety of components. NHPP also adopts an as-
bad-as-old repair philosophy, which means that any repair done assumes that the 
survivability of structure has not been changed and will not improve the lifetime [2]. Rather 
as-bad-as-old type repairs only corrects the current fault so that it continues to function but 
also the survival probability continues to degrade at after the repair. NHPP can assume to be 
an independently and identically distributed (iid) model, and in fact homogeneous Poisson 
process (HPP) is just a special case of NHPP where the intensity function happens to be 
constant [2]. Probability of failure occurrence is characterized by Equation 2. 
 ( ) ( )( )

( )
!

Nt te t t
P N

N

λ λ
=  (2) 

Renewal Process (RP) 
Renewal Process is an as-good-as-new repair process, where the intensity function is also 

assumed to be non-constant. RP is preferred over HPP because of its ability to illustrate 
deteriorating and improving systems [2]. Once again the Weibull distribution is used to 
characterize the process. First the expected and variance of time-to-failure must be calculated 
as shown by Equation 3. 
 11η θ

β
 

= Γ + 
 

 (3) 

   
 2

2 2 2 11 1σ θ
β β

     
 = Γ + − Γ +    
      

  

   
 Where,  
 η  Expected Time or Flight Cycles to failure  
 2σ  Variance of Time or Flight Cycles to failure  
 Γ  Gamma operator  

To calculate the probability of failure occurrence using the renewal process is shown by 
Equation 4 [2]. 
 ( ) ( )( ) ( )lim

t
P N t a t y

→∞
< = Φ  (4) 
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( ) 3

t ta t yσ
η η

= +   

   
 Where,  
 Φ  Cumulative distribution function of Normal   
 a  Expected failures in an interval  
 y  Normal distribution test value for probability of failure  
 t  Time or Flight Cycles, since as-good-as-new state  

2.2 Sequential maintenance events survivability 
In section 2.1 the cumulative distribution functions of Poisson processes are detailed but 

they are valid for only one type of repair event. There are maintenance options for the 
considered component in this study (the B777 outboard flap) that are characterized by 
multiple types of repair events. In such cases, sequential event survivability needs to be 
calculated. 

 
Figure 1: Multiple repair event maintenance scenario 

Take for example a maintenance scenario shown in Figure 1. A damage is found and 
undergoes the first repair event at t1, a temporary repair which is assumed to be minimal 
repair and hence follows NHPP during the temporary phase. A certain amount of time later 
the temporary repair is followed up with a permanent repair at t2. The second repair event 
renews the structure to as-good-as-new, and the survivability past t2 is demonstrated by 
renewal process for the permanent phase. 

Let’s denote temporary phase and permanent phase as phase event A and phase event B 
respectively. Phase event A is for the time interval of t1 < t < t2, whereas phase event B is for 
t > t2. These two phase events are assumed to be independent, meaning that the survivability 
in phase A doesn’t affect phase B survivability [3]. In this scenario P(A)  is the survivability 
of during phase A which is simply Equation 3 from NHPP for t = t2. Then let’s explore the 
probability of surviving till t = x, which means surviving both phase events. The probability 
of surviving just phase event B, P(B) is given by Equation 5 following the renewal process 
where N(t) is actually N(x – t2) because a new process has begun with repair event 2 at t2. 
Now that P(A) and P(B) have been established, the probability of surviving two independent 
phase events is given by conventional statistical methods where [3]: 

( ) ( ) ( )P A B P A P B∩ =  (5) 

Equation 5 is what is referred to as sequential event survivability. Using this equation, the 
probability of surviving multiple sequence of independent repair events and phases can be 
quantified. 
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2.3 Survivability-cost (S-C) ratio 
To be able to quantify the cost-effectiveness of a repair option the survivability-cost ratio 

is used as a metric. Let’s denote S as the sequential survivability of the structure, whether it 
be associated with a single repair event or multiple, and cost for a repair option is denoted as 
C. Then the S-C ratio denoted as Rsc is simply calculated using Equation 6. 

( ) ( )
( )SC

S tR t
C t

=  
(6) 

Though this parameter can be used to compare the cost-effectiveness of different repair 
options in a scenario, it would be more user-friendly to have a non-dimensional parameter. 
The proposed non-dimensional parameter is the relative survivability cost ratio. This 
parameter would be evaluated at the times the maintainer can inspect the structure, most 
likely at one or multiple planned monitoring maintenance slots. Let’s assume that the 
maintainer is considering three maintenance slots and there are three repair options in this 
scenario. The model first calculates the S-C ratio for the earliest slot for all repair options. 
The repair option with the highest S-C ratio at that slot is selected to be the benchmark 
against which all other S-C ratios at all other slots are compared. Equation 7 shows the 
relative S-C ratio for a given repair option r at a given maintenance slot m. The 
benchmarking S-C ratio is maximum ratio of any repair option at the first maintenance slot 

1max SCrR . 
 

1

Re
max

SCrm
SCrm

SCr

Rl
R

=  (7) 

   
 Where,  
 Re SCrml  Relative S-C ratio  
 r  Repair option  
 m  Maintenance slot  

This is a non-dimensional scale from 0 to 1 where the comparative cost-effectiveness of 
different repair options are quantified using their respective sequential event survivability and 
cost. In this scale 1 is the most cost-effective and the lower the value, the less cost-effective 
the option is. 

2.4 Deterministic scenario tree 

 
Figure 2: Generic Boolean decision tree[4] 

Given that a fault has occurred a maintainer has to understand the current scenario and 
how that affects his or her options to correct for the fault. There can be multiple decision 
factors that affect the possible decisions the maintainer can choose. The combination of how 
these decision factors are set leads to a certain maintenance scenario. The higher the number 
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of factors and the links between them, the higher the permutations of possible scenarios. To 
be able to understand the complexity of maintenance scenarios that can occur as a result of 
decision factors, a decision tree approach has been adopted. 

There is literature on how on decision tree complexity can be reduced through a learning 
algorithm such as the study by Freund et al [5]. Although the concern for the proposed model 
is not reducing complexity of the decision but rather to use decision trees to identify all 
possible scenarios. This is where the work by Aitkenhead [4] was found to be most 
applicable. Their work delved into combining decision tree paradigm with evolutionary 
concepts in order to identify new classification or categories. This can range from identifying 
which car best suits your criteria, to identifying the type of glass based on chemical 
composition. A generic example of which is depicted in Figure 2. For the purposes of the 
proposed model, this form of decision tree classification is used to identify different 
maintenance scenarios. Five decision factors are considered and prioritized (high to low) as 
follows: 

1. Station: Is the aircraft currently stationed at home base airport? Yes or No 
2. Temporary repair limit: Does the severity of the damage exceed the upper limits of 

a temporary repair? Yes or No 
3. Aircraft swap availability: Is there an another aircraft available to be swapped in for 

avoiding flight cancellation? Yes or No 
4. Spare flap availability: Is there a spare flap available for installation? Yes or No 
5. Lease flap availability: Is there a flap available for loan? Yes or No 

As can be seen, all five decision factors are deterministic Boolean conditions. This is 
intentional. Decision tree models that use probabilistic conditions for the decision factors 
exist and used as demonstrated by Buhrman et al [6] and Ehrenfeucht et al [7]. However, 
typical applications of such probabilistic decision trees tend to be for forecasting or 
simulation purposes. In the proposed model the conditions are already known at the moment 
of damage, so there is no need for probabilistic decision trees. 

3 CASE STUDY 
In this section an example of a maintenance scenario model output from the Boeing 777 

outboard flap case study is illustrated and discussed. Firstly the scenario itself is described to 
place the model outputs into context. The changes in instantaneous survivability of the 
different options are shown, which is then followed by how sequential event survivability is 
affected by multiple repair events. While it is possible to plot and analyze the S-C ratio at 
every flight cycle after the initial damage, it is of more interest to the end-user what he/she 
can expect the cost benefit will be at different inspections times. This is visualized in the 
form of relative S-C ratio at short term, medium term, and long term inspection. 

3.2 Scenario definition 
4. Decision factor Priority Setting 

Station 1 Home base 
Temporary repair upper limits exceeded 2 No 

Aircraft swap availability 3 Yes 
Spare flap availability 4 No 
Lease flap availability 5 No 

Table 1: Decision factor settings to define the scenario 

The decision factors settings are shown in Table 1. The last two factors being set to ‘No’ 
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immediately discards the possibility of installing a spare flap or a flap on loan. As the aircraft 
is currently stationed at home base which has all the facilities for a permanent repair, that 
becomes a confirmed option. A permanent repair would require that the aircraft be grounded 
for long period of time, prompting a cancellation of a scheduled flight. Luckily decision 
factor 3 states that there happens to be an aircraft available to swap in for the planned flight. 
Costs of swapping an aircraft is lower than cancellation, hence it would be preferable for the 
permanent repair option [8,9]. 

On top of the permanent repair, decision factor 2 indicates that temporary repair is still 
feasible for the damage. The feasibility of temporary repairs is dictated by structural repair 
manuals provided by original aircraft manufacturers. The manuals state the damage 
dimension limits (for delamination, dents, nicks, etc.) for which temporary or permanent 
repair must be applied. These temporary repairs tend to take short time to apply, so if this 
option were to cause any airline operation disruption, it would be in the form of a delay. 
Disruption costs for all options are accounted for in the repair costs [8]. Though temporary 
repair is feasible, regulations stipulate that temporary repair must be followed up by a 
permanent repair within 400 flight cycles (FC). In this particular case the maintainer has 
identified that there is a reserve slot for maintenance available in 20FC and an A-Check in 
185FC. So if the temporary repair is applied it must either be followed up by a permanent 
repair at the reserve slot or at the A-Check. As a result of the scenario settings, the decision 
making model outputs three repair options: 

Option Repair event 1 Repair event 2 
(1) Temporary → Permanent Immediate Temp Perm at reserve slot (20 FC) 
(2) Temporary → Permanent Immediate Temp Perm at A-Check (185 FC) 

(3) Permanent Immediate Perm - 

Table 2: Possible repair options for this scenario 

3.2 Instantaneous and sequential event survivability 

 
Figure 3: Instantaneous survivability of the structure for each repair option 

Figure 3 shows the instantaneous survivability of the structures for the three different 
options. It should be noted that the moment right before the initial repair, the survivability of 
the structure is at 0.56 due to its previous use. The temporary repairs is assumed to be as-bad-
as-old repair action, therefore the survivability continues to degrade from 0.56 using NHPP. 
Then when a permanent repair is applied at either reserve slot or A-Check, the survivability 
goes up to the value of 1 because of the as-good-as-new assumption and follows the renewal 
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process trend to plot rest of the survivability till C-Check at 1085FC. C-Check is another 
major maintenance check and is executed in long intervals. 

Permanent repair on the other hand has only one repair event immediately after the initial 
damage. Hence its survivability starts at the value of 1 and continues to degrade as dictated 
by the renewal process. 

Unlike permanent repair, the temporary options are characterized by two repair events. 
The first repair event is a temporary repair, followed by a temporary phase. After this phase 
the second repair event occurs which is a permanent repair, followed by permanent phase. If 
the maintainer wants to know the probability of surviving temporary phase and a certain 
amount of flight cycles into permanent phase, surviving both phases, then the corresponding 
sequential event survivability has to be used. This is plotted for all three options in Figure 4. 

 
Figure 4: Sequential event survivability of the structure for each repair option 

The instantaneous and sequential event survivability are both the same for permanent 
option because there is only one event and one phase. Similarly for the first phase of the 
temporary repair options, the instantaneous and sequential event survivability is same. After 
the second repair event, the sequential survivability stagnates (at .54 for option 1 and 0.47 for 
option 2) because permanent repair has been applied. These sequential survivability values 
are then used for the survivability cost ratios and compared for short term and long term 
monitoring points. 

3.3 Relative Survivability-Cost ratios 
While the S-C ratio for every flight cycle trend can be plotted, the end-user is more 

interested in the cost-effectiveness of the flap, with this component surviving till maintenance 
inspections where the structure can actually be inspected and monitored. That is where the 
relative S-C ratio as given in Figure 5 is most illustrative. To clarify terminology in Figure 5: 
surviving until reserve slot will be designated as short term,  until A-Check as medium term, 
until C-Check as long term.  

So let’s assume that the maintainer wants to know what is the most cost-effective option to 
make the structure last in the short term. Looking at Figure 5, the relative S-C ratio is the 
same value at 1 for both temporary options. This means that the most cost-effective action, is 
making sure the structure lasts for the short term using just temporary repair, which in this 
case cost 2,800€. The initial cost of permanent is so high (35,500€) that it is just not rational 
to spend the amount to make the structure last only 20FC. Hence the permanent option is 
heavily penalized as a short term option with a relative S-C ratio of 0.14. 
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Now consider that the maintainer is interested in making sure the structure lasts in the 
medium term 185FC. Then checking Figure 5 it can be seen that option 1 has drastically 
reduced relative S-C ratio at 0.08, and the cause for this is twofold. First is the cost increase 
that occurred for this option at the reserve slot. The temporary repair is followed up by a 
permanent repair, bringing the total cost of this option from 2800€ to 32,800€, hence 
lowering the S-C ratio. The second reason is because the sequential event survivability has 
continued to decay at temporary phase and after repair event 2 (permanent repair) at 20FC. In 
fact the continued decay of the survivability for longer periods of flight cycles is what 
reduced the relative S-C ratios of all three options. Option 3 with permanent only, has 
reduced relative S-C ratio from 0.14 to 0.12 purely because of reduced survivability. So in 
the end, if the maintainer wants to ensure the structure survives till medium term at 185FC, 
then they would chose option 2 to run temporary phase out till A-Check and not incur the 
additional cost of an earlier permanent repair. 

 
Figure 5: Relative survivability-cost ratios at different monitoring points in time 

Lastly, the maintainer may also want to choose an option that is most cost-effective for the 
long term, looking ahead towards C-Check, which in this scenario will occur at 1085FC. In 
this case looking back at Figure 5, option 2 has also fallen in relative S-C ratio much like 
option 1 at medium term because of the cost of a follow-up permanent repair. Both temporary 
option 1 and 2 now have had a total costs of 32,800€. Yet option 3, immediate permanent 
repair, with the higher total cost of 35,500€ is indicated as the most cost-effective option for 
the long term. This a consequence of the fact that option 3 never had a temporary phase 
dragging down the sequential event survivability. In other words option 3 never took the risk 
of lower survivability that comes with minimal repair. So under the given scenario, option 3 
is the preferred long-term solution, despite higher total cost. Naturally, under different 
scenarios (e.g. where no aircraft swap is available), different outputs may be expected. 

4 CONCLUSIONS 
In maintenance, it is common that every damage is a unique scenario influenced by a vast 

array of decision factors. Each scenario may come with multiple repair options, which is then 
followed by a maintainer making the most cost-effective repair decision based on his/her 
criteria. The challenge however, is that the cost-effectiveness is of a repair option may not 
always be readily apparent. It can change depending on if the maintainer looks in the short 
term or long term. Hence to facilitate this decision making process, a decision support tool is 
developed to assist in selection of a repair type which is most cost-effective. The term cost-
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effectiveness is defined as achieving highest survivability for the lowest cost per flight cycle. 
Before repair options can be evaluated, a deterministic Boolean decision tree is used to 

identify all possible maintenance scenarios. The decision factors are prioritized in the 
decision tree and based on their individual Boolean setting the maintenance scenario is 
known. The maintainer is then presented with all possible repair options. Following from the 
identification of the repair options, each of these are evaluated for the survivability using 
Poisson process, specifically Non-Homogenous Poisson Process (NHPP) for minimal repair 
and Renewal Process (RP) for as-good-as-new repairs. Survivability of an option with 
multiple repair events is also taking into consideration using sequential event survivability. 
At the core of the proposed decision support tool is a metric that has been designated as 
relative survivability-cost (S-C) ratio. These ratios are calculated for each repair option at 
different monitoring points in time both in the short term and long term. The relative S-C 
ratios quantifies the cost-effectiveness of each options at a point in time, allowing for the 
maintainer to quantitatively compare the options. 

To verify the applicability of such a model a case was conducted on Boeing 777 outboard 
flap, made of carbon-fiber reinforced plastics (CFRP). The intention is to expand the 
applicability of the decision support tool to aircraft with heavier use of composite materials 
such as the Boeing 787 and Airbus A350. In order to do so, more verification and validation 
tests have to be applied on wider array of structures. This would lead to a more integrated 
support tool for the whole aircraft that accounts for damages and monitoring of all structures. 
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