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ABSTRACT
Reinforcement learning requires exploration, leading to repeated
execution of sub-optimal actions. Naïve exploration techniques
address this problem by changing gradually from exploration to
exploitation. This approach employs a wide search resulting in
exhaustive exploration and low sample-efficiency. More advanced
search methods explore optimistically based on an upper bound
estimate of expected rewards. These methods employ deep search,
aiming to reach states not previously visited. Another deep search
strategy is found in action-elimination methods, which aim to dis-
cover and eliminate sub-optimal actions. Despite the effectiveness
of advanced deep search strategies, some problems are better suited
to naïve exploration. We devise a new method, called Interval Q-
Learning, that finds a balance between wide and deep search. It
assigns a small probability to taking sub-optimal actions and com-
bines both greedy and optimistic exploration. This allows for fast
convergence to a near-optimal policy, and then exploration around
it. We demonstrate the performance of tabular and deep Q-network
versions of Interval Q-Learning, showing that it offers convergence
speed-up both in problems that favor wide exploration methods
and those that favor deep search strategies.

KEYWORDS
Reinforcement learning, Q-learning, deep learning, guided explo-
ration, action elimination

1 INTRODUCTION
Reinforcement learning methods require agents to repeatedly take
bad or irrelevant actions during learning. In simulated environ-
ments, the consequences of the exploration-exploitation trade-off
are navigated with relative ease; agents can explore freely and
exhaustively, eventually converging to the best possible solution.
In a real-life scenario, however, the consequences of taking bad
actions may be severe, with sub-optimal performance resulting in
real losses such as physical damage to a robot. In these situations,
exhaustively taking all possible actions is no longer suitable.

A naïve answer to the exploration-exploitation dilemma is the
common ϵ-greedy approach; one where the exploration goes wide,
trying numerous random actions hoping, by chance, to find the
best ones [35]. Some have argued that these “dithering” approaches
are not reliable in the general case and more strategic methods are
needed [26]. Examples of such advanced methods are, for example,
those that apply the notion of optimism to address the issue of

unnecessary exploration [15, 17, 34]. In these cases, agents explore
based on an optimistic estimate of the expected reward, with a
bonus applied to encourage exploring state-actions which have
not yet been visited. These methods go deep in their exploration,
persistently trying to reach states that are yet to be seen, rather
than searching for the best actions for the states they already en-
countered. Yet another deep approach to exploration is to maintain
both an upper and lower bound over the expected reward and elimi-
nate actions that are sub-optimal, however such ‘action elimination’
methods [9] can be slow in practice as many samples are needed to
confidently deem actions sub-optimal. Furthermore, the benefits of
exploration strategies can be tied to the specifics of the problem to
which they are applied [21, 28]. Our experiments reveal that some
problems favor naïve wide search strategies over more advanced
exploration methods. Exploration strategies which can address a
wide variety of problems are necessary in order to develop versatile
reinforcement learning solutions.

We present a novel method, Interval Q-Learning, that makes use
of bounded value functions, action elimination and optimistic explo-
ration to achieve fast convergence, exploring both wide and deep.
Interval Q-Learning directs exploration away from sub-optimal
actions, allowing it to converge to a good solution fast. Because
it refrains from eliminating actions completely, this exploration
around an initial good solution ultimately leads to the optimal.

In this paper, we briefly discuss literature regarding several ap-
proaches to exploration in learning algorithms. We then propose
our method of guided exploration, Interval Q-Learning, which com-
bines existing exploration approaches to achieve fast convergence.
We further include an Interval Q-Learning variant that integrates
with deep Q-networks (DQNs) [22], as deep learning techniques
are capable of solving problems requiring human-level control [23].
We demonstrate the effectiveness of our approach, comparing its
performance to other directed exploration methods for two differ-
ent types of benchmark problems that are best solved by either
wide or deep search. Interval Q-Learning is shown to effectively
reduce the number of sub-optimal actions it takes and converge
quickly to a good solution.

2 RELATEDWORK
The first instance of exploration steered by uncertainty appeared in
a method for finite-state MDPs that guides action selection towards
the largest confidence interval of estimated rewards for each state-
action pair [15]. In addition to subsequent appearances in planning



literature (such as [2, 32]) this idea is present in reinforcement
learning. Rmax, for example, directs exploration towards parts of
the state-action space for which the transition function is not well
known [4]. Model-Based Interval Estimation (MBIE) methods [33],
as well as the KWIK framework [18] apply similar principles.

Another approach to guiding exploration is to identify sub-
optimal actions by maintaining upper and lower bounds on the
value of each state-action (the Q-value). Methods that use such
bounds to facilitate action elimination appeared in early dynamic
programming literature [20] and have shown up in solution tech-
niques for bandit problems [8, 9, 30], Markov decision processes
(MDPs) [16], and in more general models [7] since then. Updating
an upper bound further allows for exploration according to the no-
tion of optimism. This is applied in the popular Upper Confidence
Bound algorithm (UCB) [1] which effectively trades exploration
and exploitation by exploring according to the optimistic estimate
of expected reward. A Q-Learning variant of UCB [14], as well
as a few of its modifications [24, 36], was shown to be provably
sample efficient. Another recent method, Optimistic Pessimistically
Initialized Q-Learning (OPIQ) extends the principle of optimistic
exploration to the deep learning setting [29].

3 BACKGROUND
We use Markov decision processes (MDPs) to model a dynamic
environment in which an agent interacts by choosing and executing
actions. In an MDP, at each time step t , an agent observes the state
of the environment st ∈ S and chooses an action at ∈ A. The
environment transitions to a new state st+1 ∼ p( · |st ,at ), sampled
using a transition function p : X → ∆(S) (where X ≜ S × A
is the set of all state-action pairs, and ∆(·) denotes the set of all
distributions). The agent observes the next state st+1 and receives
a reward rt ∼ r ( · |st ,at ), where r : X → ∆(R). We denote the
expected reward of a state-action pair (s,a) as r (s,a) ≜ E[r ( · |s,a)].

Given the initial state s , each course of actions, known as policy π ,
has a valueVπ (s), equal to the sum of expected discounted rewards:

Vπ (s) ≜ Eπ ,s0=s

∞∑
t=0

γ t rt .

The goal is to find an optimal policy, that is, a policy π∗ with the
highest possible value Vπ ∗ (s) = V ∗(s) ≜ maxπ Vπ (s). This can be
done by computing the so-called optimal action values or optimal
Q-values Q∗(s,a) as the solution of

Q∗(s,a) = r (s,a) +γ
∑
s ′∈S

p(s ′ |s,a)V ∗(s ′) and V ∗(s) = max
a∈A

Q∗(s,a).

A policy πGreedy is called greedy with respect to Q-values, if for
each state it uses an action with the highest Q-value: πGreedy(s) ∈
arg maxa∈AQ(s,a). A policy that is greedy with respect to Q∗ is
known to be an optimal policy. Thus, a problem of finding an
optimal policy is reduced to a problem of finding optimal Q-values.

3.1 Tabular Q-Learning
In reinforcement learning (RL), the transition and reward func-
tions of a Markov decision process are not necessarily known. A
popular method for solving reinforcement learning problems is
Q-Learning [37]. Q-Learning is a model-free method, which means

that it does not try to estimate the reward and transition functions.
Instead, it maintains Q-values for each state-action pair; through
collected experiences in the environment, these values are updated
over time:

Qt+1(s,a) =
(
1 − αt (s,a)

)
Qt (s,a) + αt (s,a)Ut (rt , st+1), (1)

Ut (r , s ′) ≜ r + γ max
a∈A

Qt (s ′,a). (2)

For an appropriate choice of α , called the learning rate, the se-
quence {Qt }∞t=0 converges to Q∗ with probability 1 if the state-
action space X is finite |X| < ∞, and the rewards function r is
uniformly bounded rmin ≤ r ≤ rmax [13]. Usually, a learning agent
follows a policy π and only the values along the observed path are
updated, that is, αt (s,a) = 0 if s , st or a , at = π (st ). In this
case, each state-action pair needs to be visited infinitely often. One
example of a learning policy achieving this is an ϵ-greedy policy,
where the agent takes a random action with a probability of ϵ , or
the action with the highest Q-value in the current state otherwise.
As Q-values converge toQ∗, it is common to decrease ϵ to prioritize
exploitation over exploration.

3.2 Deep Q-Learning
In an MDP, each state-action pair has an associated Q-value that
can be used to find an optimal policy. In practice however, the
state space may be immensely large (including the continuous state
space case), and learning these values becomes computationally
infeasible. Therefore, approximate methods are used instead. One
such approximation is known as deep Q-network (DQN) [22].

In DQN, a deep neural network is used to approximate the Q-
value function. For each state, the neural network returnsQ-values
of the actionsQθ (s,a) ≈ Q∗(s,a), where θ is a vector of the weights
of the network. The network starts with random weights θ and is
trained based on the agent’s experiences so that the outputs of the
DQN Qθ (s,a) converge to the optimal Q-values Q∗(s,a).

One of the techniques used for effectively training DQNs is
employing an experience replay buffer [19, 23]. The agent’s experi-
ences e = (st ,at , rt , st+1) are stored in a buffer D. During learning,
a batch of experiencesB = {e1, . . . , e |B |} is sampled uniformly from
the experience replay buffer, ei ∼ U(D). For each experience in
the batch e = (s,a, r , s ′) ∈ B, target Q-values Uθ̂ are bootstrapped
similarly to the tabular version (2):

Uθ̂ (r , s ′) ≜ r + γ max
a′∈A

Qθ̂ (s ′,a′). (3)

The mean square error L(B|θ ) between the bootstrapped values
and the network’s outputs is used as a loss function in the DQN
training. It is given by

L(B|θ ) ≜ 1
|B| ·

∑
(s,a,r,s ′)∈B

(
Uθ̂ (r , s ′) −Qθ (s,a)

)2
,

Note that bootstrapping is done using previously obtained weights
θ̂ , which are updated periodically rather than at each step to im-
prove stability of learning.

4 INTERVAL Q-LEARNING
In this section we present a novel method called Interval Q-Learning
(IQ-Learning), which guides exploration by combining dithering,
optimistic exploration and action elimination techniques.
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4.1 Tabular Variant
We begin with the tabular version of IQ-Learning. Intuitively, IQ-
Learning uses intervals

[
Q−(s,a),Q+(s,a)] to represent possible

ranges of the optimal Q-values Q∗(s,a). It combines ideas from
Action-Elimination Q-Learning [9], Optimistic Q-Learning [10],
and Upper Confidence Bound Q-Learning [14] (although in the
latter two cases only the upper bound is used).

IQ-Learning uses two Q-value tables to store Q+ and Q−. The
tables are initialized with the upperV + and lowerV − value bounds
respectively:

Q−0 ← V − ≜ r−
1−γ and Q+0 ← V + ≜ r+

1−γ .

This initialization is chosen so that each interval [Q−0 (s,a),Q+0 (s,a)]
is the smallest interval to which the optimal Q-values belong,
Q∗(s,a) ∈ [Q−0 (s,a),Q+0 (s,a)], if no other information is given. Given
each observation, each table is updated independently, using the
regular Q-Learning update rule (1). If each state-action pair (s,a) is
visited infinitely often, both Q−(s,a) and Q+(s,a) will eventually
converge to Q∗(s,a).

The use of two Q-tables allows us to guide exploration from
actions that appear sub-optimal. To do so, we employ the following
observation:

Observation 1. If for all actions a it holds that

Q∗(s,a) ∈ [
Q−(s,a),Q+(s,a)] , (4)

and Q−(s,a′′) > Q+(s,a′) for two actions a′ and a′′, then action a′
is not optimal in state s .

This observation has been used before to identify sub-optimal
actions to guide exploration. For example, in AEQ-Learning, the
upper and lower Q-values Q+ and Q− are updated so that the
following condition holds at each time step:

P
[
Q−(s,a) ≤ Q∗(s,a) ≤ Q+(s,a) ∀(s,a)] ≥ 1 − δ . (5)

Therefore, permanent action elimination using Observation 1 elim-
inates the optimal action with probability at most δ . If δ is low
enough, the resulting policy is near-optimal.

Maintaining a high-probability bound comes at a cost of slow
convergence ofQ− andQ+ toQ∗. In practice, this means that AEQ-
Learning learns much slower than Q-Learning and catches up only
after it starts eliminating sub-optimal actions, resulting in low val-
ues in the early stages. To improve this, exploration should be
steered away from potentially bad actions as early as possible.

In IQ-Learning, this is achieved as follows. We use regular Q-
Learning update rules on both interval ends separately, without
requiring the probabilistic bounds (5) to hold at all time steps. As
the updates are stochastic, this may result in optimal values not
belonging to the intervals anymore. However, we know that both
Q−(s,a) and Q+(s,a) will eventually converge to Q∗(s,a) if all of
the actions remain visited, as in the case of Q-Learning. Thus, we
maintain convergence to optimality by assigning small probabilities
to candidate sub-optimal state-action pairs instead of completely
eliminating them. This is the key difference between IQ-Learning
and action-elimination methods.

Formally, IQ-Learning is presented in Algorithm 1, and its ex-
ploration policy which we call (ϵ, ζ )-greedy in Algorithm 2.

Algorithm 1: Interval Q-Learning (tabular version)
Data:MDP, learning rate α , exploration rate ϵ , true

exploration coefficient ζ
Result: near-optimal Q-table Q ≈ Q∗

1 Initialize Q-table Q+0 (s,a) ← V +,Q−0 (s,a) ← V −;
2 for episode t ← 0, 1, 2, . . . ,T − 1 do
3 observe current state st ;
4 take action at ← π(ϵ, ζ )-Greedy(st ,Q−t ,Q+t );
5 observe reward rt and next state st+1;
6 compute updatesU ±t ← rt + γ maxa∈AQ±t (st+1,a);
7 update Q-tables:

Q±t+1(st ,at ) ← (1 − αt )Q±t (st ,at ) + αtU ±t ;
8 update ϵ and ζ ;
9 return final Q-tables Q+t and Q−t

Algorithm 2: (ϵ, ζ )-Greedy Policy
Data: state s , Q-tables Q+ and Q−
Result: action a

1 with probability ϵ do exploration
2 with probability ζ do true exploration
3 use all actions C(s) ← A;
4 else do action elimination
5 find candidate actions

C(s) ← {a ∈ A | ∀a′ ∈ A, Q−(s,a′) ≤ Q+(s,a)}.
6 choose one of the candidate actions a ∈ C(s);
7 else do exploitation
8 find the best action a ∈ arg maxa′∈AQ+(s,a′);
9 return action a

We call this learning policy (ϵ, ζ )-greedy, where ϵ is the explo-
ration rate and ζ governs selection of potentially sub-optimal ac-
tions. With probability ζ , true unconstrained exploration (step 3
of Algorithm 2) happens and any action can be chosen; other-
wise actions that appear to be sub-optimal are eliminated first
(step 5). Once the candidate actions have been identified, explo-
ration happens (step 6). We use random exploration, as in the ϵ-
greedy case, but alternative strategies are possible. For example,
one can always explore the action with the largest interval length,
a ∈ arg maxa′∈A

(
Q+(s,a′) −Q−(s,a′)) .

In exploitation (step 8 of Algorithm 2), the (ϵ, ζ )-greedy policy
has access to twoQ-tablesQ+ andQ−. To determine the best action,
either one or a combination of both, such as the interval middle
Q̄(s,a) = 0.5

(
Q+(s,a)+Q−(s,a)) , can be used. Experiments suggest

that the upper bound Q+ works the best, conforming with the
well-known principle of optimism in the face of uncertainty. This
optimistic approach is especially beneficial in problems where deep
exploration is required; the agent believes that undiscovered states
give the largest possible reward and thus it keeps exploring new
states instead of learning about the already visited ones.

Finally, the exploration rates are updated (step 8 of Algorithm 1).
We use exponentially decaying exploration rate ϵ

ϵt = max{ϵ0 · tηϵ , ϵm}, (6)
3



where ϵ0 is the initial exploration rate, ηϵ is the exploration rate
decay, and ϵm is the minimum exploration rate. To ensure that
each action remains chosen infinitely often, we use a constant true
exploration rate ζ . Other choices of ϵ and ζ may be suitable as well.

4.2 Deep Learning Variant
A deep learning variant of IQ-Learning is based onDeep Q-Learning
described in Section 3.2. In Deep Q-Learning, a neural network (also
known as a deep Q-network, DQN) takes a state s as an input and
outputs Q-values of each action, Qθ (s,a). In IQ-Learning, it must
output two values for each action instead, Q+θ (s,a) and Q−θ (s,a)
with a restriction Q−θ (s,a) ≤ Q+θ (s,a), which poses new challenges.

In the tabular setting, we initialize the Q-table with Q±0 ← V ±
so that the optimal Q-values Q∗ satisfy the requirement (4) and
the unvisited state-action pairs do not affect action selection. In
the deep setting, the initial outputs of the DQN may already break
this constraint due to random initialization. In order to maintain an
upper and lower bound on Q-values of unvisited state-action pairs,
we augment the network outputwith a special bonusυ introduced in
OPIQ [29]. This bonus term is referred to as bonus for optimism [24],
and the augmented Q-values are computed as follows:

Q̄±θ (s,a) ≜ Q±θ (s,a) ± υ
(
#(s,a)), where υ(t) ≜ C · (t + 1)−M , (7)

whereC ≥ V △ ≜ V +−V − andM ≥ 1 are constants, and #(s,a) is the
visitation function. This choice of C guarantees that for unvisited
states (i.e., when #(s,a) = 0) the following holds even if the DQN
outputs do not satisfy Q−θ (s,a) ≤ Q+θ (s,a):

Q̄−θ (s,a) = Q−θ (s,a) −C/1M ≤ V + −V △ = V −, and

Q̄+θ (s,a) = Q+θ (s,a) +C/1M ≥ V − +V △ = V +.
As the states get visited and the DQN-based approximation im-
proves, the bonus for optimism approaches zero withM governing
the speed of decay.

In deep learning, and in general when a function approxima-
tor is involved, the visitation function #(s,a) is not available and
thus is also approximated, usually by using pseudo-counts. Sev-
eral techniques exist in the literature for calculating these pseudo-
counts [3, 5, 6]; we use a simple count weighed according to the
L1-distance between the current state-action and all state-action
pairs in the replay buffer [31] D:

#(s,a) =
∑

(s ′,a′,r,s ′′)∈D
max

{
1 − ∥s − s ′∥, 0}.

Another challenge is that, in the tabular setting our choice of
initialization and the monotonicity of the updates guarantee that
the Q-values satisfy Q−t (s,a) ≤ Q+t (s,a) at each step t ; however,
in the deep setting, as Q±θ (s,a) converge to optimal values Q∗(s,a)
and the bonus for optimism vanishes, it becomes harder to satisfy
the constraint Q−θ (s,a) ≤ Q+θ (s,a). To overcome this problem, we
parameterize the value intervals not with their ends Q−θ (s,a) and
Q+θ (s,a), but with the middle Qθ (s,a) and the scale ∆Qθ (s,a):

Qθ (s,a) =
Q+θ (s,a) +Q−θ (s,a)

2 , ∆Qθ (s,a) =
Q+θ (s,a) −Q−θ (s,a)

V △
.

(8)
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Figure 1: Non-linear approximator used in IQ-Learning.

The denominator in (8) is chosen so that the largest possible interval
[V −,V +] has the scale of 1, and the smallest one (when Q−θ (s,a) =
Q+θ (s,a)) has the scale of 0.

Using this interval representation, we split the output layer of
the DQN into two. The first one outputs |A| unconstrained values
Qθ (s,a) in the exact same way as the regular DQN does. The second
one outputs |A| values between 0 and 1; these values are interpreted
as ∆Qθ (s,a). We use a layer with the sigmoidal activation function
to guarantee that the outputs are in the desired interval. Given the
DQN output, the intervals are then computed as

Q±θ (s,a) = Qθ (s,a) ± V △
2 · ∆Qθ (s,a). (9)

The resulting approximator is visualized in Figure 1.
For network training, we first bootstrap Q-values

U ±
θ̂
(r , s ′) ≜ r + γ max

a′∈A

{
Q±
θ̂
(s ′,a′) ± υb

(
#(s ′,a′))} (10)

similarly to regular DQN bootstrapping (3). We add a bonus for op-
timism υb(t) ≜ Cb · (t +1)−M to maintain optimism in learning [29].
Then we compute target DQN outputsUθ̂ (r , s ′) and ∆Uθ̂ (r , s ′) sim-
ilarly to equation (8). Finally, the training is done by performing a
gradient descent with mean squared error loss function L(B|θ ):

L(B|θ ) = 1
|B| ·

∑
e ∈B

(LQ (e |θ ) + L∆Q (e |θ )
)
, (11)

where the losses for outputs Qθ (s,a) and ∆Qθ (s,a) are defined as

LQ (s,a, r , s ′ |θ ) ≜
(
Uθ̂ (r , s ′) − Qθ (s,a)

)2 and

L∆Q (s,a, r , s ′ |θ ) ≜
(
∆Uθ̂ (r , s ′) − ∆Qθ (s,a)

)2
.

Summarizing the aforementioned modifications, a deep learning
variant of IQ-Learning is presented in Algorithm 3.

5 EMPIRICAL RESULTS
We conducted experiments in two different environments to inves-
tigate the performance of Interval Q-Learning over other action
elimination and bounded value function methods. We chose the
experiments to play to the strengths of different competing meth-
ods, and to test both tabular and deep versions of IQ-Learning. In
particular, Q-Learning with our choice of the learning rate performs
exceptionally well in the first experiment known as the automobile
replacement problem, while UCB-learning lags behind. The second
experiment is a slight modification of a well-known problem called

4



Algorithm 3: Interval Q-Learning (deep version)
Data: MDP, exploration rate ϵ , true exploration coefficient ζ
Result: DQN Qθ such that Qθ ≈ Q∗

1 Initialize weights θ randomly and θ̂ ← θ ;
2 for episode t ← 0, 1, 2, . . . ,T − 1 do
3 observe current state st ;
4 use the DQN to find Qθ (st ,a) and ∆Qθ (st ,a) for all

actions a ∈ A;
5 find the augmented Q-values Q̄±θ (st ,a) using (9) and (7);
6 take action at ← π(ϵ, ζ )-Greedy(st , Q̄−θ , Q̄+θ );
7 observe reward rt and next state st+1;
8 store the experience (st ,at , rt , st+1) in the buffer D;
9 sample a batch B from the buffer D;

10 for experience e = (s,a, r , s ′) ∈ B do
11 bootstrap target Q-valuesU ±

θ̂
(r , s ′) using (10);

12 compute target DQN outputsUθ̂ ← 1
2 (U +θ̂ +U

−
θ̂
)

and ∆Uθ̂ ← 1
V △ (U +θ̂ −U

−
θ̂
);

13 perform a gradient descent with MSE-loss given by (11);
14 update ϵ and ζ ;
15 every N steps, update θ̂ ← θ ;
16 return final DQN

the randomized chain. It is a weak spot of Q-Learning, as it requires
deep exploration instead, but is not hard for optimistic methods
to solve. In these experiments we show that IQ-Learning is able to
combine the strengths of both methods and performs well in both
problems.

5.1 Tabular Q-Learning
In tabular RL, we test the performance of IQ-Learning on the auto-
mobile replacement problem. This problem was originally proposed
by Howard [12] and is used as a benchmark of sample efficiency of
learning methods [9, 24, 27].

In this problem, an agent operates an automobile. The state of
the automobile degrades randomly over time and ranges from 1
(new) to 40 (broken). At each time step the agent observes the state
of the automobile and must choose either to continue driving it, or
to replace it with another one. In the latter case, the replacement
automobile does not have to be a new one and can be in any of
the 40 states. The full problem specification, including the rewards
and transition probabilities can be found in the original paper [12].
With 40 states and 41 actions, this problem is well-connected but
has too many possible policies, making exploration that goes wide
more efficient than deep exploration.

We compare IQ-Learning with ϵ-greedy Q-Learning [37], Ac-
tion Elimination Q-Learning (AEQ) [9], and infinite-horizon UCB-
learning (∞-UCB) [36]. We conduct T trials, each lasting for K
episodes of H time steps. All methods are initialized with Q0 = 0.
This initialization is optimistic, because almost all of the rewards
in this problem are negative, thus the optimal values are as well.
For IQ-Learning, we use Q+0 = 0 and Q−0 = V −. We use an explo-
ration rate given by (6) and a learning rate αt = (h + 1)/(h + tω )

Problem size Exploration Learning Optimism
|S| 40 ϵ0 1 h 320 C1 4
T 10 ϵm 0.01 ω 0.8 c22 4
H 1000 ηϵ 0.99 γ 0.95 ε1,2 0.05
K 10000 ζ 0.05 δ1,2 0.05
1 Used in AEQ; see [9] for details.
2 Used in∞-UCB; see [36] for details.

Table 1: Parameters of tabular learning methods.

−300

−150

0 2000 4000
episode

to
ta
lr
ew

ar
d
(×
10
00
$)

IQ AEQ Q UCB
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suggested in [24] for episodic learning. Note that in finite-horizon
models h = H , but each state-time combination is modeled sepa-
rately. Instead, we use an infinite-horizon discounted model with
states having the same values at different time steps; details on
how to compute this extra parameter h in this case can be found
in [36]. This and other hyper-parameters used by the algorithms
are presented in Table 1.

The results of this experiment are presented in Figure 2. IQ-
Learning is able to identify a near-optimal solution faster than its
competitors. It then continues to explore around the found solution,
slowly improving its policy. Q-Learning achieves comparable per-
formance in this experiment, but does learn marginally slower than
IQ. Action Elimination Q-Learning takes longer to exhaustively ex-
plore its options; once a good solution is found it starts exploiting it
and converges quickly.∞-UCB improves its performance gradually,
but is much slower that Q-Learning.

5.2 Deep Q-Learning
We compare the performance of IQ-Learning and other deep learn-
ing algorithms on a modification of the chain problem used by
several authors to test exploration strategies in deep RL [25, 29]. A
similar modification can be found in [11].

The problem is presented in Figure 3. The environment consists
of multiple states arranged in a chain, and each episode starts in
the second state from the left. In each state the agent can go left
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Figure 3: Modified chain. Unlabeled actions yield no reward.

Problem size Exploration Learning Optimism
|S| 8 ϵ0 1 |D| 4096 C 2
T 50 ϵm 0.001 |B| 32 Cb 0.01
H 16 ηϵ 0.995 N 4 M 10
K 120 ζ 0.01 γ 0.95 β1 1
1 Intrinsic motivation, used in OPIQ; see [29] for details.

Table 2: Parameters of deep learning methods.

or right. An attempt to go left in the leftmost state does not affect
the position, but yields a reward of 0.001; similarly, going right
in the rightmost state gives a reward of 1. We add another action,
depicted in dotted lines. This action resets the agent’s position to
the starting state and gives a reward of −1.

The actions are randomly permuted for each state. The agent
cannot infer which action is the best for a particular state by consid-
ering the experiences with other states; instead, each state-action
pair has to be experienced. As a result, finding an optimal strat-
egy requires thorough exploration. At the same time, our addition
of a negative-reward action makes exploration prohibitive. There-
fore, an efficient algorithm for this problem must achieve a good
exploration-exploitation balance and be capable of deep exploration,
being persistent in trying to reach undiscovered states.

Instead of observing a state directly, the agent sees a vector of
|S| binary features ϕ known as the thermometer encoding ϕ(s) =
[I{x ≤ s}], where x ∈ S. This state encoding is known to improve
performance of deep learning methods [25, 29].

We compare IQ-Learningwith ϵ-greedy DQN [23] andOPIQ [29],
which are deep learning extensions of Q-Learning and UCB respec-
tively. All methods use neural networks with two hidden layers of
32 neurons each and rectified linear unit activations. The output lay-
ers use the same activation function, except for the second output
layer of IQ-Learning, which uses a sigmoidal activation function to
output values ∆Qθ between 0 and 1 as described in Section 4.2.

As in the tabular variant, we conduct T trials of K episodes and
H time steps each. The number of steps H is chosen so that the
maximum total reward is equal to 10. These and other parameters
are given in Table 2. The results are presented in Figure 4.

Our experiments show that IQ-Learning outperforms both DQN
and OPIQ, and its behavior is a combination of that seen in the other
two methods. OPIQ can easily identify the reset actions and avoid
them, quickly escaping the negative reward zone. DQN on the other
hand, improves its performance slowly and steadily. IQ-Learning
is able to do both. Due to their exploration strategies, IQ-Learning
and OPIQ achieve substantially better performance than DQN.

−5

0

10

0 60 120
episode

to
ta
lr
ew

ar
d

IQ DQN OPIQ

Figure 4: Chain solved by deep learning methods, average
of 7 trials. Lines and notches represent means and 95%-
confidence intervals on means respectively.

6 CONCLUSION AND FUTUREWORK
In this paper, we proposed Interval Q-Learning, a novel reinforce-
ment learning algorithm that achieves fast convergence to a near-
optimal policy. It does so by combining the strengths of both ran-
dom and optimistic exploration styles. In experiments, we showed
that Interval Q-Learning is able to perform well in two different
types of problems: those where wide, “dithering” exploration is
required, such as the automobile replacement problem, and those
where deep exploration is more beneficial, such as the randomized
chain. These problems present very different challenges, and in
both cases Interval Q-Learning performs on par with or better than
the best alternative method which is less versatile in its exploration
strategy. Interval Q-Learning finds a near-optimal solution fast us-
ing random exploration, then does a more focused search around it
based on the principle of optimism in the face of uncertainty. While
doing so, it actively reduces the disastrous actions it takes. Versatile
approaches such as Interval Q-Learning are especially important in
solving real-life problems where the consequences of bad actions
are more substantial and random exploration should be limited.

Future work includes several directions. Applications on more
complex problems will help to better understand strengths and
weaknesses of Interval Q-Learning. Further, improvements can
be done by investigating different versions of its sub-procedures
and ablations. For example, another pseudo-counter function can
be used, and learning can use a procedure other than experience
replay. Finally, derivation of theoretical guarantees of worst-case
and average-case performance of Interval Q-Learning remains an
open question.
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