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Abstract

This thesis investigates the implementation of modularity in the early-stage design process of custom
luxury yachts, specifically targeting the Feadship fleet between 75 and 110 meters. The research aims
to determine whether modular design methods can optimize efficiency and creativity while maintaining
the high degree of customization demanded by clients. To address this, the thesis introduces Modular
Function Deployment (MFD) as a structured framework for identifying and evaluating yacht systems
suitable for modularization.

Key insights from the study demonstrate that MFD, coupled with innovative tools such as the Area
Prediction tool and the Arrangement Generator tool, can enhance both design creativity and efficiency.
Contrary to concerns that modularity might restrict creativity, these tools offer designers a structured yet
flexible platform for exploring numerous configurations. This encourages the exploration of innovative
design arrangements that push the boundaries of conventional yacht architecture.

The study also focuses on evaluating how designers can benefit from modular principles. The Area
Prediction tool, based on the Random Forest regression model, predicts the surface areas of differ-
ent yacht modules. The Arrangement Generator tool allows designers to visualize potential layouts,
iterating through various combinations rapidly. These tools support designers in generating new, opti-
mized arrangements that maintain high levels of customization. A case study with Feadship designers
highlights the fact that modularity offers substantial benefits, although challenges remain in terms of
integrating these tools fully into the creative process.

Future research is suggested to explore whether yacht clients will accept modularity without perceiving
the designs as less bespoke, how designers can shift from traditional bespoke methods to modular
approaches, and how regulatory challenges may be navigated. But more important, the impact of the
ongoing energy transition on future yacht designs is considered significant, necessitating future updates
to the prediction tools as yacht specifications evolve.
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1
Introduction

The luxury yacht industry is characterized by a demand for highly customized and innovative designs
that respond to the unique preferences of demanding clients. However, the traditional design process
often involves long timelines and complex iterations, which can hinder the ability to quickly adapt to
customer feedback and emerging trends. In this context, the concept of modularity offers a promising
solution by enabling more efficient, flexible and innovative design processes.
Modularity in the early stage design of luxury yachts has the potential to revolutionize how these ves-
sels are conceptualized and developed. By dividing the yacht into distinct, self-contained modules,
designers can more rapidly iterate on designs, incorporate client feedback, and explore a wider variety
of configurations. This approach not only enhances the creative possibilities but also streamlines the
overall design workflow, reducing lead times and allowing for quicker adaptation to new technologies
and evolving client needs. Furthermore, modularity can significantly improve operational efficiency
and maintenance throughout the yacht’s lifecycle. Modular components and building facilitate eas-
ier updates, repairs, and upgrades, which are crucial for maintaining the vessel’s performance. This
adaptability is particularly valuable in an industry where innovation and technological advancements
are constant.
This research will focus specifically on the feasibility and benefits of implementing modularity during
the early stage design process of luxury yachts. It will examine the potential for modularity to enhance
design efficiency, creativity, and client satisfaction while identifying the limitations and challenges in-
herent in adopting this approach within the context of fully custom luxury yacht design. The study will
not cover the detailed engineering phase or the broader operational and economic impacts of modular-
ity beyond the design stage. Additionally, the investigation will be limited to the design practices and
workflows at Feadship, a leading shipyard in the luxury yacht industry, ensuring that the findings are
directly applicable to real-world scenarios within this specific context.

Feadship - De Voogt Naval Architects
This research is conducted in collaboration with De Voogt Naval Architects and Delft University of Tech-
nology. The project will be carried out within the design studio of De Voogt Naval Architects, which is
a part of Feadship.
Feadship is short for the First Export Association of Dutch SHIPbuilders. This organization was estab-
lished in 1949 following the aftermath ofWorldWar II, which severely affected the yacht building industry
in the Netherlands. With Europe facing financial constraints that limited the demand for pleasure boats,
Dutch yacht builders sought opportunities abroad. Six shipyards and De Voogt Naval Architects de-
cided to promote their top-notch products in the United States under the brand name Feadship. Today
there are three parties left in Feadship: Two of the original yards – Van Lent and De Vries – and De
Voogt Naval Architects as shown in figure 1.1.
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Figure 1.1: Company Structure [Feadship]

”Feadship designs more than just yachts. It crafts wants and desires, quirks and eccentricities. It cre-
ates the individual and unique, catering to the uncompromising and exacting. Transforming blank pages
and open minds into dreams realized in wood and steel. That task of building just yachts is left to the
others. Feadship builds Feadships” [Feadship, ]. As described by the marketing department of Fead-
ship, the building process of a Feadship differs from an ordinary yacht. In the design and production
process of Feadship, the client plays an active role at every step. It begins with a designer who listens
to the client’s ideas, visions, and dreams, and then transforms them into a Feadship yacht. De building
process of a Feadship starts each project again with a blank sheet of paper assuming that everything
is possible. Because each Feadship’s design is entirely customized according to the preferences of
its new owner, no two Feadships are alike, making each project innovative. Alongside the philosophy
of carte blanche design, craftsmanship is highly valued at Feadship. Feadship yachts are renowned
globally for their exceptional quality, with comfort and safety being the two main pillars of focus.

Relevance
This research addresses a gap in the scientific literature by exploring how modularity can be applied
to the early stage design of luxury yachts, a field traditionally dominated by bespoke approaches. By
adapting Modular Function Deployment (MFD) to this context, the study contributes new insights into
how modular principles can enhance creativity, efficiency, and adaptability in custom yacht design. It
offers a fresh perspective on balancing customization with standardization, advancing scientific under-
standing of modular design in complex, high-end products. Something that hasn’t been done within
existing literature, therefore giving a scientific research gap.
The study provides practical value for the luxury yacht industry, particularly for companies like Fead-
ship, by proposing methods to integrate modularity into the design process. This can reduce lead times,
streamline workflows, and improve design flexibility, addressing key industry challenges. The use of
modularity also facilitates easier maintenance, upgrades, and compliance with new regulations, en-
hancing the operational and long-term value of luxury yachts. The research offers actionable guidelines
that could lead to more efficient and adaptable design practices across the industry, while focussing
on the Feadship design process.

Problem statement, objective and research questions
The luxury yacht design process is highly customized and complex, often leading to lengthy timelines,
high costs, and limited flexibility to adapt to client feedback and technological advancements. Tradi-
tional design methods do not adequately address the need for efficiency and adaptability in the early
stages of yacht design, resulting in missed opportunities for innovation and client satisfaction. The
potential of modularity, a well-established approach in other industries, remains underutilized in luxury
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yacht design, leaving a gap in both the literature and industry practice.
The objective of this research is to investigate the feasibility and benefits of implementing modularity
in the early stage design process of luxury yachts. Specifically, it aims to develop a modular design
framework that enhances design efficiency, reduces lead times, and supports creative design while
maintaining the high level of customization required by clients. The study seeks to provide practical
guidelines and tools for integrating modular principles into yacht design, offering a pathway to more
innovative and efficient design practices in the luxury yacht industry.
To investigate this research objective, the following research question has been formulated:

How can a custom yacht company implement modularity to optimize design efficiency, and
creativity in the early stage design process while maintaining the high level of customization
required for a custom yacht?

To develop a well-substantiated answer to this research question, the following sub-questions have
been formulated:

1. How can a modular design method be implemented in the design process to identify the required
systems for luxury yachts, and evaluate which systems are suitable as a module?

2. What tool can predict the surface areas of modules based on design brief parameters, and how
do owner-specific requirements influence these predictions?

3. How can designers be supported in exploring innovative arrangements of modules during the
early stage design of luxury yachts?

Outline
This study explores how modularity can enhance the early stage design process of luxury yachts by
combining theoretical insights and practical applications. Beginning with a literature review on Modu-
larity, it examines the benefits and challenges of modular design. The research then focuses on Mod-
ular Function Deployment (MFD) and the implementing of MFD at Feadship, identifying key module
drivers and evaluating systems for modularization to balance efficiency with customization. A System
Area Prediction model is developed to estimate module sizes based on design brief parameters, dis-
tinguishing between standard influences and owner-specific needs. Additionally, a packing algorithm
is introduced to help designers explore innovative module arrangements, supporting creativity within
the modular framework. Ultimately, the investigated and developed methods will be applied to existing
design numbers and corresponding input parameters from their design briefs. The generated results
will be compared with the initial designs created by the De Voogt designer. Subsequently, the results
will be analyzed and discussed in collaboration with the Senior Designer and Senior Specialist.
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Modularity

2.1. Understanding Modularity
Definition and evolution
Modularity is a key architectural strategy which involves dividing systems into distinct, self-contained
units known as modules. Historically, this concept can be traced back to ancient civilizations with
examples such as the pyramids of Egypt and the aqueducts of Rome. The modern era of modularity in
architecture began with the Bauhaus movement, which emphasized the combination of standardization
and functional design.

Technical and Biological Perspectives
In the biological context, modularity refers to the arrangement of interconnected elements within or-
ganisms, highlighting patterns of diversity and similarity across species. Technically, modularity has
evolved from tangible products to intangible software systems, defining modules as self-contained units
that function independently and interface with other modules through standardized connections. Amod-
ule, in a technical design context, can be seen as a physical realization of a function [Pahl and Beitz, 1988].
This perspective emphasizes that each module not only serves a structural role but also carries out spe-
cific functions within the overall system.

Key terms
Modularity offers several benefits including resource efficiency, product variety, flexibility, and the ability
to work on components in parallel. Key terms include:

• Module: A self-contained functional unit with standarised interfaces, often considered a physical
realization of a function.

• Modularity: The cahracteristic of a system being composed of modules.
• Modularization: The process of dividing a system into modules.

2.2. Modularity in technical product design
Types of product design modularity
As shown in figure 2.1, [Ulrich, 1994] identifies five types of modularity in product design:

• Component sharing: Using common components across different products, such as motors in
various power tools.

• Component swapping: Exchanging specific components to customize the product while keep-
ing the base unchanged, like interchangeable lenses in sunglasses.

• Fabricate to fit: Tailoring products to specific dimensions, for example custom-made clothing.
• Busmodularity: Connecting different components via a standarized interface, such as electronic
components on a computer motherboard.

4



2.3. Application in ship design. 5

• Sectionalmodularity: Directly connectingmodules without a separate linking system, like LEGO
bricks.

As shown in figure 2.2, [Salvador et al., 2002] identifies six types of modularity by adding combinational
modularity , which involves diverse interfaces without a central body.

Figure 2.1: Types of Modularity [Ulrich, 1994]

Figure 2.2: Types of Modularity [Salvador et al., 2002]

2.3. Application in ship design.
Modularity enhances different stages of a vessel’s life cycle: design, construction, and operation. It
allows for rapid design iterations, increased creativity, and efficiency during construction. Modular
systems also facilitate easier maintenance and upgrades, enabling ships to adapt to new regulations
and technologies with minimal disruption[Erikstad, 2019].

Design phase contributions
Modularity can reduce lead time during the design phase, enabling quick reassessment and new solu-
tions. This leads to a wider variety of designs, increased creativity, and greater flexibility. However, it
can also restrict creativity by confining designers to specific modules and interfaces.

Construction phase contribution
Modularization significantly impacts the construction phase, increasing efficiency in shipyard facilities.
Standardizing modules and interfaces reduces engineering and installation time, further benefitting the
construction process.

Operation phase contributions
Modularization facilitates modifications driven by new regulations or technological advancements. It
simplifies component replacement, minimizing downtime and operational disruptions. The approach
also supports maintenance strategies based on component rotation, similar to aviation practices, en-
hancing reliability and lifespan.
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2.4. Methodical support for modular design
To use modularity as tool to support early stage of the design, the modules first have to be defined.
Research done by [Smit, 2019] shows different approaches for methodical support for modular design.

2.4.1. Methods to support modular design
According to [Stjepandić et al., 2015], it is important to articulate on physical assembled aspects, to
make modularity manageable and understandable. Therefore various methods to support modular de-
sign are developed. Themethods are stated by [Stjepandić et al., 2015], [Fuchs and Golenhofen, 2019]
and [Jiao et al., 2007]. These methods are listed by [Smit, 2019] as seen below:

• Axiomatic design [Suh and Suh, 2001]: Systematically analyzes the transformation of customer
needs into functional requirements.

• Function modeling or heuristic approach [Stone et al., 2000]: Defines modules within a prod-
uct’s architecture by clustering components or functions.

• Design Structure Matrix (DSM) [Malmström and Malmqvist, 1998]: Defines modules within a
product’s architecture by clustering components or functions.

• Modular FunctionDeployment (MFD) [Erixon and Ostgren, 1993][Erlandsson et al., 1992]: Iden-
tifies modules within a modular platform development project.

• Variant mode and effects analysis [Bergman et al., 2009]: Illustrates the effects of product vari-
ants and identifies opportunities for cost reduction.

• Five-step algorithm[Hölttä et al., 2003]: Groups and creates a dendrogram to identify common
modules across products.

To apply methodical support for modular design on fully custom luxury yachts, Research conducted
by [Smit, 2019] shows Modular Function Deployment to be the most suitable. Although other methods
could be benefitial for super yachts as well. The assumption that MFD is the most suitable is based
on the work of [Smit, 2019] and a limited research time frame. MFD is designed for modular platform
development projects. Although luxury yachts are fully custum they can still benefit from a modular
approach, expecially if there are certain components and features that can be seen as common el-
ements across different yacht models. These custom luxury yachts can be seen as platforms with
fabricate to fit modularity applyed to their modules. With the use of MFD the modular components can
be identified, giving the opportunity to gain efficiency from modularity while keeping fully customization.

2.4.2. Modular Function Deployment (MFD)
Modular Function Deployment (MFD) is a strategic methodology aimed at enhancing product devel-
opment by breaking down systems into modular components that meet customer demands. This ap-
proach focuses on improving flexibility, scalability, and alignment with business objectives, making it a
valuable tool for companies looking to boost product development, enhance customer satisfaction, and
gain a competitive market advantage[Lange and Imsdahl, 2013].

Key stakeholders
MFD considers several stakeholders throughout different lifecycle phases, addressing various areas
of responsibility and expertise. Following [Jiao et al., 2007] the three primary stakeholders are:

• Voice of Customer: Represents the sales and marketing departments, focusing on the quality
and cost of the module from the customer’s perspective.

• Voice of Engineer: Involves engineering, manufacturing, quality, supply chain, and aftermarket
departments to ensure that modules fit together cocrrectly and function as intended.

• Voice of business: Reflects the strategic intent of the business, involving shareholders or cor-
porate officers who decide on the crucial value disciplines for the product and overall business
success.

Modular Function Deployment promotes a definition of modularity that reflects all three voices by stat-
ing: A module is a functional building block with specified interfaces, driven by company-specific
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reasons.[Erixon, 1998]

Product Management Map (PMM)
To organise the Modular Function Deployment for a fully custom modular design method; information,
data and knowledge has to be gathered involving the design phase of a luxury yacht. This will be
illustrated in a collection of matrices known as the Product Management Map (PMM) shown in figure
2.3.

Figure 2.3: Product Management Map [Lange and Imsdahl, 2013]

The Product Management Map consist of the Quality Function Deployment (QFD), the Design Property
matrix (DPM), Module Indication Matrix (MIM) and at last the Interface Matrix. Figure 2.4 shows a road
map following the Modular Function Deployment consisting the stakeholders and the matrices of the
Product Management Map.

Figure 2.4: Modular Function Deployment roadmap [Lange and Imsdahl, 2013]

The Product Management Map starts with the Quality Function Deployment matrix. This matrix shows
the requirements of the stakeholders against the functions. The Design Property Matrix subsequently
shows these functions mapped to the systems. Therefore the DPM shows the solution domain with
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its system requirements. Next matrix is the Module Indication Matrix that shows the system and its
functions against the modularity drivers. The MIM maps each function carrier against a modularity
driver, it discuses and ranks these with a to be decided rating scale. Finally the module concepts
obtained from the MIM matrix are evaluated based on how the modules can be physically joined us-
ing module interfaces. This happens in the Interface matrix using the following physical interfaces
[Dobberfuhl and Lange, 2009]:

• Attachment interface: The physical connection that puts the peaces together and connects
them.

• Transfer interface: Provides the ability to transfer power and media between modules.
• Command & control interface: The communication between different modules.
• Spatial interface: Gives boundary’s between modules based on spatial location and the volume
a module can occupy.

Module drivers
In the early development of Modular Function Deployment, a research into companies who promoted
their product as modular was done by [Östgren, 1994]. The aim of this research was to find the reasons
of the choices made by product designers creating their modules. This resulted in twelve heuristics
named ”Module Drivers”. The aim of the module drivers is to cover the entire product lifecycle from
introduction to growth, maturing and decline[Lange and Imsdahl, 2013]. The module drivers give every
stakeholder a voice, also known as ”voices of X” and therefore gives them a way to show their particular
strategic intent. Figure 2.5 shows a example of module drivers and their voices, but because module
drivers are generic heuristics , a project team can introduce new and modified heuristics that apply to
their specific company.

Figure 2.5: Module drivers along a product lifecycle stream. [Lange and Imsdahl, 2013]
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Feadship Design Process

The aim of this chapter is to map out the design process that takes place at Studio de Voogt. By clearly
mapping the current design process, it can be investigated where the opportunities for enhancing the
design process can be found. The current Feadship design process is explored through a combination
of literature research and interviews in collaboration with Sr. Designer Ruud Bakker and Head of De-
sign Tanno Weeda.

3.1. Design workflow analysis
3.1.1. Interview Ruud Bakker (Sr. Designer)
Collaboration with Ruud Bakker (Feadship Sr. Designer) has been conducted to get a good under-
standing of the detailed workflow of the current design process. Aim of the interview is to get a clear
view of the design process, understand the workflow, and identify the specific steps throughout the
desing process.
To clarify the workflow of the design process, it will be followed chronologically. Subsequently, with the
information gathered from the interview, the various phases within the design process will be substan-
tiated and clarified. in figure 3.1 a flowchart is shown that visualises the design workflow.

Initial client interaction
The design process begins with the initial contact between the owner team and the shipyard. An
account manager is assigned to the intended new owner, and ideally, the designer is present at this
first meeting. The primary goal of this interaction is to gather all necessary information for the design
brief as shown in Appendix B. The initial conversation aims to gain a comprehensive understanding of
the client’s unique wishes and desires for their yacht, encapsulated by the main question: ”Why do you
want us to build a yacht for you?” The design brief captures these desires as accurately as possible.
During these initial conversations, the client’s family situation, business, culture, interests, lifestyle,
hobbies, and important values are considered to understand the intended use of the yacht. It is also
important to know if the yacht will be used privately, for business, or charters. Preferences for the style
and feeling of the yacht are discussed, and any previous experiences with yachts are considered. An
estimation of the yacht’s dimensions is made based on the client’s wishes and budget. Ensuring the
client feels comfortable and can convey their wishes is crucial, and these meetings often take place at
the client’s home or on their current yacht.

Initial sketch and layout creation
Following the initial contact, the designer begins by creating the first sketches of the layout, producing
a 2D block layout based on the client’s preferences. When the designer initiates these first sketches,
they start from a self-determined point. From this point, the designer, drawing on their experience, will
make numerous decisions regarding various design choices. The placement of each space within the

9
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arrangement is the result of numerous considerations, with each decision being carefully deliberated.
Sketches of the exterior and interior are also created to convey the overall aesthetic and atmosphere
of the yacht to the client. It is crucial to present these initial sketches to the client promptly to sustain
their interest, particularly given that many design firms may be competing for their attention.

Collaboration with naval architect and specialist
Together with the initial sketches and layouts, collaboration with the Naval Architect begins. The Naval
Architect ensures the yacht’s dimensions and draft are correct, along with its resistance, propulsion,
and stability. To verify that the designer’s plans meet all technical requirements and regulations, a
Specialist reviews and evaluates these designs. This collaboration ensures the technical feasibility
and regulatory compliance of the initial designs.

Feedback and iteration
After the initial designs are ready, they are presented to the owner by the account manager, and feed-
back is received. The designer adjusts the design based on this feedback, resulting in several iterations.
Throughout these iterations, the Naval Architect and the Specialist remain involved to ensure the tech-
nical feasibility of the design. This iterative process continues until the design and layout meet the
expectations of both the account manager and the owner.

3D design and detailed rendering
During the design process, the 2D layout drawings are converted into 3D designs, and detailed ren-
derings are produced. These renderings are shown to the client for further feedback. If the client is
satisfied with the 3D designs, the Layout Designer uses CAD programs to develop the design layout in
detail. This detailed development ultimately forms the contract general arrangement.

Final design development and contract signing
The detailed development culminates in the creation of the contract general arrangement, which is
signed during contract signing. Once the contract is signed, the design is handed over to the shipyard,
and detailed engineering can begin. This marks the transition from the design phase to the construction
phase, ensuring that the client’s vision is accurately realized in the final product.
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Figure 3.1: Design WorkFlow

3.1.2. Interview Tanno Weeda (Head of Design)
Collaboration with Tanno Weeda (Feadship Head of Design) has been conducted to understand the
aim of innovation within the Feadship design process. As Head of Design, Tanno Weeda is responsible
for the design studio and its development.

As clearly visible in the studio process from Figure 3.2, the first phase of yacht design in the design
studio, consists of the concept part and the technical concept design part. The execution of the concept
part is also known as the design process, which is shown in Figure 3.3. This figure shows that the design
process consists of a part called ”investigate” followed by a part called ”create,” and ultimately a part
called ”inspire.” In the first part, all the owner’s requirements are captured in the design brief. The create
phase is the creative phase that goes through multiple iterations. The goal is to perfectly translate all
the owner’s requirements into a design, minimizing the need for iterations. In the inspire phase, the final
design created in the create phase is visualized for the client. Within the scope of the research, it will
be investigated what gains can be achieved within the create part. Here, both time savings and gains in
creativity are considered very important. The entire process from the first conversations with the client
to the final design package is visualized in Figure 3.4. The timeline of the various processes is also
shown. From Figure 3.4, it is clear that within the studio, most gains can be achieved within the concept
design visualization part. However, this part lies outside the scope and is already under construction
within the design studio itself. For this research, the focus will be on achieving gains within the first
design and concept design sketch phases. Since these processes already take up a small part of the
design time, the focus will not be on saving time within these processes but on enhancing creativity
in the design process. The time savings that will still be made by applying modularity can then be
invested in the creative part of the design process. This will ensure that De Voogt can come up with
more creative and therefore more successful yacht designs.
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4
Implementation of Modular Design

method

This chapter discusses the implementation of Modular Function Deployment (MFD) in the design pro-
cess of a custom yacht. The primary objective of implementing MFD is to achieve higher design
efficiency. Additionally, the implementation aims to create more creative freedom within the design
process by avoiding a fixed starting point from the designer.

The implementation of MFD is divided into three distinct studies. The first study focuses on determining
the theoretical implementation of modularity. The goal is to identify, evaluate, and assess the modules
based on the standard requirements for a super yacht and MFD principles.

The second study aims to determine the surface areas of the different modules. The objective of this
study is to predict the surface area of each module using input parameters derived from the design
brief. Additionally, this study examines which modules exhibit significant variations in surface area
predictions, indicating that these modules are not determined by input parameters and thus should be
specified as owner-specific inputs in the design brief.

The third study investigates the feasibility of using a design tool, based on the implementation of mod-
ules, during the early-stage design phase of a super yacht. This tool supports designers by generating
potential yacht arrangements based on inputs from the design brief.

4.1. Theoretical MFD implementation
The implementation of Modular Function Deployment (MFD) in the design process at Feadship could
lead to improvements in efficiency, innovation, and client satisfaction. This section provides a detailed
step-by-step approach to integrating MFD into Feadship’s yacht design workflow, highlighting the ben-
efits at each stage. Subsequently, this section presents a gap analysis comparing the current design
method with the MFD-implemented design method. This comparison substantiates the advantages
that MFD implementation can offer to the design process. Additionally, a SWOT analysis is conducted
to illustrate the strengths, weaknesses, opportunities, and threats associated with the implementation
of MFD.

4.1.1. MFD implemented design workflow
Initial Client Interaction
The process begins with comprehensive client interactions to gather detailed requirements. Initial meet-
ings aim to understand the client’s needs, preferences, lifestyle, and intended use of the yacht. These
meetings often take place at the client’s home or on their current yacht to ensure comfort and clar-
ity. The outcome is a well-documented design brief that categorizes and prioritizes requirements into
standard and owner-specific. This initial step ensures a precise understanding of client needs, reduc-
ing miscommunication and rework, while also building strong client relationships by demonstrating a

14
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thorough understanding of their desires.

QFD Matrix Creation
Next, the client requirements together with the specific yacht functions are gathered and mapped using
the QFD (Quality Function Deployment) matrix. This matrix establishes relationships between require-
ments and functions, providing a structured approach to managing requirements. Organizing require-
ments and functions systematically ensures that all client needs are addressed, while also helping to
prioritize features based on their importance to the client, focusing on high-impact areas first.

DPM Matrix Development
The gathered information from the QFD matrix is used within the DPM (Design Property Matrix) matrix
to create the technical solutions. By identifying the technical solutions early, this stage saves time and
resources. Additionally, it facilitates the possibility to a modular design approach, allowing for easy
updates and modifications.

MIM Matrix Utilization
The MIM (Module Indication Matrix) is used to assess the added value of implementing systems as
modules. This matrix evaluates technical solutions against module drivers such as customizaion, adapt-
ability, and innovation potential. This helps identify which modules offer the highest value. Focusing
resources on modules that provide the greatest benefit optimizes the overall design and encourages
exploration of new modules that can offer competitive advantages.

Interface Matrix
With the interface matrix, the module concepts are evaluated based on the way they are joint together.
This way the connections between different modules can be determined and used for the module ar-
rangement.

Initial Sketch and Layout Creation
Using the modules from the MFD method, initial 2D block layouts and sketches are created. These lay-
outs integrate all standard and owner-specific requirements and include exterior and interior sketches
to visualize the design. The ability to quickly generate initial layouts speeds up the generation of new
arrangements. This can help clients by visualizing the yacht arrangement early, improving feedback
quality and client engagement.

Feedback and Iteration
The initial sketches and layouts are presented to the client for feedback. Collaborating with the Naval
Architect and Specialist ensures technical feasibility and regulatory compliance. The design is revised
iteratively based on feedback from all stakeholders. The modular approach ensures that all require-
ments are considered from the start, minimizing the number of iterations needed. Faster and more
precise iterations increase client satisfaction and confidence.

3D Design and Detailed Rendering
Once the 2D layouts are refined, they are converted into detailed 3D designs using CAD software. High-
quality renderings are created to present the final design to the client, ensuring the design adheres to
the modular structure. Detailed 3D renderings provide a clear and realistic representation of the final
product, allowing for early detection of potential issues and reducing costly changes later in the process.

Final Design Development
The detailed CAD drawings are finalized, ensuring all modules are clearly defined and integrated. The
contract general arrangement drawings are prepared, forming the basis for the construction phase.
This step ensures that all design details are thoroughly documented, facilitating smooth construction.
The modular design approach guarantees consistency and accuracy in the final design documents.

Contract Signing and Handover to Shipyard
The final design is presented to the client for approval and contract signing. Detailed design docu-
ments are handed over to the shipyard for detailed engineering, marking the transition from design to
construction. Detailed and well-documented design increases client confidence in the project, while
clear and detailed handover documents ensure a smooth transition from design to construction.
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4.1.2. Gap analysis
Initial Client Interaction
In Feadship’s current design process, the initial client interaction focuses on gathering comprehensive
information about the client’s wishes, lifestyle, and preferences to create a detailed design brief. This
meeting involves the client, an account manager, and ideally the designer. The MFD approach en-
hances this step by categorizing client requirements into standard and owner-specific needs from the
outset. The gap between the two processes lies in the structured categorization of requirements in the
MFD approach, which reduces miscommunication and rework. By adopting this systematic categoriza-
tion, Feadship could achieve a more precise understanding of client needs, ensuring all aspects are
considered early in the process.

Initial Sketch and Layout Creation
Feadship’s current process involves creating 2D block layouts and sketches quickly to maintain client
interest, based on the gathered requirements. The MFD process, on the other hand, uses modules
identified in the Design Property Matrix (DPM) to create these initial sketches, incorporating both stan-
dard and owner-specific requirements. The gap here is the use of modular design principles in MFD,
which streamlines the sketch creation process and enhances visualization for the client. Feadship could
benefit from integrating modular design elements to speed up the sketch and layout creation phase,
thus improving client engagement and feedback quality.

Collaboration with Naval Architect and Specialist
Currently, Feadship collaborates with a Naval Architect to ensure the yacht’s technical feasibility, and
a Specialist to review designs for regulatory compliance. In MFD, this collaboration is enhanced by us-
ing the Module Interface Matrix (MIM) to evaluate technical solutions against module drivers like cost
and feasibility. The gap between the processes is the structured approach to assessing technical solu-
tions in MFD, optimizing resources by focusing on high-value modules. Feadship could improve their
collaboration process by adopting the MIM, ensuring a more efficient and innovative design evaluation.

Feedback and Iteration
The current process involves iterative design presentations to the client, with adjustments based on
feedback, ensuring technical feasibility throughout. The MFD approach streamlines this by ensuring all
requirements are considered from the start through modular design, reducing the number of iterations
needed. However, the current process excels in its flexibility to adapt to unique client demands through
repeated feedback loops, which can sometimes better capture the nuanced preferences of the client.
The gap lies in balancing efficiency with the ability to refine and adapt designs thoroughly. Feadship
should look to maintain their high flexibility while integrating the efficiency gains from the MFD process,
potentially by establishing a hybrid feedback mechanism that leverages both detailed initial modular
planning and iterative refinement.

3D design and Detailed Rendering
Once 2D layouts are finalized, Feadship converts them into detailed 3D designs for client approval,
helping to visualize the final product and identify potential issues. The MFD approach maintains a
modular structure in 3D designs, ensuring consistency and early detection of issues. The gap is the
adherence to modular design in MFD, which reduces costly changes later. By adopting a modular
approach, Feadship could ensure a more streamlined and precise 3D design phase, reducing potential
issues and costs.

Final Design Development and Contract Signing
Feadship’s current process concludes with the creation of the contract general arrangement, leading to
detailed engineering and construction. In MFD, final CAD drawings are clearly defined and integrated
into the modular structure, ensuring thorough documentation. The gap is in the detailed and modular
documentation in MFD, facilitating a smoother transition to construction. Feadship could improve their
final design development by incorporating modular documentation, enhancing accuracy and reducing
potential issues during construction. However, Feadship’s current process may offer more detailed
bespoke solutions tailored precisely to individual client demands, which can sometimes bemore difficult
to achieve in a strictly modular framework. Ensuring that bespoke client preferences are not lost in the
modular approach is essential, and a balanced integration of detailed customization within modular
documentation could offer the best of both worlds.
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4.1.3. SWOT analysis
Strengths:

• Efficiency in Design Process: MFD streamlines the design process by enabling quicker gen-
eration of initial sketches and layouts through pre-defined modules. This leads to faster project
initiation and reduced time-to-market compared to the traditional design process.

• Reduced Rework and Miscommunication: By categorizing client requirements into standard
and owner-specific requirements in the early design process, MFD minimizes miscommunication
an reduces the need for rework.

• Optimized Recource Allocation: The structured approach of MFD, using tools like the Module
Interface Matrix (MIM), ensures that resources are focused on the most impactful areas. This
optimization helps in effectively managing time and budget constraints.

• EnhancedConsistency andAccuracy: Modular designs ensure uniformity and precision across
different projects. This consistency reduces the likelihood of errors and discrepancies, leading to
a smoother transition from design to construction.

• Improved Client Engagement: By providing clear and realistic visualizations early in the pro-
cess, MFD enhances client satisfaction. Clients can see how their requirements are systemat-
ically addressed, leading to more informed decision-making and higher confidence in the final
product.

• Streamlined Feedback Process: The modular approach facilitates easier and quicker iterations,
as changes can be made to individual modules without affecting the entire design. This leads to
a more efficient feedback and iteration cycle, reducing the overall design timeline.

Weaknesses:
• Potential Loss in Customization: The structured nature of MFD might limit the ability to cre-
ate highly bespoke designs tailored to individual client preferences, which is a key strength of
Feadship’s current process.

• Initial Implementation Costs: Integrating MFD requires significant investment in training, new
software, and possibly restructuring parts of the design workflow, resulting in higher initial costs
and resource allocation.

• Complexity in Transition: Shifting from the traditional design process to MFD can be com-
plex and time-consuming. This transition may disrupt existing workflows and require significant
changes in how design projects are managed.

• Learning Curve: Designers and engineers will need time to adapt to the new MFD approach,
which could temporarily affect productivity and efficiency as they become used to the new pro-
cesses and tools.

Opportunities
• Improved Design Flexibility: MFD allows for more flexible design iterations by enabling easy ad-
justments to specific modules without overhauling the entire design, this can be an improvement
over the current process that might require more extensive changes for adjustments.

• Enhanced Collaboration: The structured nature of MFD facilitates better collaboration among
different teams (designers, engineers, specialists) as modules provide clear interfaces and re-
sponsibilities, leading to smoother workflows and integration of various subsystems.

• Client Transparency: The modular approach provides a clear, organized framework that can be
more easily communicated to clients, helping them understand the design process and see how
their requirements are being systematically addressed. By applying modularity, multiple options
can be presented to the client more easily. This approach leads to the client becoming more
quickly and deeply involved in decision-making, rather than being confronted with a singular vision
from the designer, which would otherwise be justified solely through accompanying explanations.

• Future-proofing Designs: Modular designs can be more easily updated in the future, providing
clients with yachts that can adapt to new technologies or changing needs over time. This contrasts
with the current process where significant redesigns might be necessary for upgrades.
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Threats:
• Resistance to Change: Designers and stakeholders accustomed to the traditional design pro-
cess might resist the transition to MFD, affecting morale and productivity.

• Market Perception: Clients who value the highly bespoke and personalized designs offered by
Feadship’s current process may perceive modular designs as less unique, which could impact
Feadship’s reputation for luxury and customization.

• Technical Challenges: Ensuring that modular designs meet all technical and regulatory require-
ments can be challenging, particularly in the highly specialized field of yacht design.

• Competitor Response: Competitors may quickly adopt similar modular approaches, diminishing
the competitive advantage gained from MFD integration.

• Implementation Risks: Any issues or failures during the implementation phase could disrupt
ongoing projects, leading to delays and potential client dissatisfaction.

• Previous failures: Within De Voogt Naval Architects, several studies have been conducted prior
to this research regarding the application of modularity within Feadship. Thus far, there has been
little actual implementation following these various research efforts. The fact that none of these
attempts have resulted in a successful application of modularity indicates a risk of failure for new
research endeavors.

4.2. Module indication and evaluation
This section describes how the practical implementation of Modular Function Deployment (MFD) is car-
ried out through the Product Management Map (PMM) and the Interface Matrix. The primary objective
of applying MFD is to identify and evaluate potential modules during the early stage design phase of
a yacht. This involves analytically determining the relative weighting for modularity across all systems
and assessing the relative weighting of various modularity drivers. Additionally, the relationships be-
tween different systems are identified, which are then used to establish arrangement conditions for the
layout of a yacht.

4.2.1. Product Management Map
To visualize how the MFD method operates, the Product Management Map shown in figure 2.3 is uti-
lized. The PMM maps out the relationships between requirements, functions, systems, and module
drivers and analyzes the connections between the different systems. Using this method, it becomes
possible to illustrate how standard and owner requirements determine suitable modules for a custom
yacht. Relationships between various requirements, functions, systems, and module drivers are de-
picted. These relationships, together with the findings from the interface matrix, can be used to identify
suitable modules, their added value, and the interrelations between different modules within the layout
of a yacht. The PMM applied for the design process of Feadship is shown in Appendix C but will be
further discussed and clarified.

Quality Function Deployment
The QFD matrix applyed for the standard requirements of a luxury yacht shows the relations between
requirements and functions. To effectively translate the problem domain into the solution domain, the
standard requirements are systematically allocated to specific functions. Each technical solution is
exclusively aligned with a particular function to adhere to the principles of modularization[Smit, 2019].
The requirements were based on research into the De Voogt design brief as seen in Appendix B and the
examination of existing general arrangements. Based on this research, the standard requirements for a
superyacht are assumed with the help of known Feadship requirements. This is done by implementing
a literature study and subsequently substantiated by conducting a study of existing GAs. The standard
requirements are formulated as follows:

• Estended Stays Onboard: Provide facilities to ensure comfortable living for several consecutive
days.

• Convenient Meal Preparation: Offer the capability to prepare and enjoy high-quality meals on-
board.
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• Comfortable Sleeping Environment: Ensure a restful and private sleeping experience during
extended stays.

• Continuous Hygiene Maintenance: Provide onboard laundry capabilities for cleanliness during
long trips.

• Comfortable Living Conditions: Ensure comfortable living conditions by providing among oth-
ers climate control and air quality control.

• Safe Living Conditions at Sea: Provide stability and buoyancy to ensure safety in varying sea
conditions.

• Self-Reliance During Emergencies: Equip the yacht with systems for emergency protection
and response.

• Structural Safety: Ensure construction integrity for safety and long-term durability.
• Safe Navigation: Ensure safe and precise navigation for uninterrupted travel.
• Independence in Movement: Provide efficient propulsion and manoeuvring for autonomy at
sea.

• Secure Mooring: Equip the yacht for secure docking and anchoring in various conditions.
• Luxurious Accommodation: Offer luxurious, private accommodations for guests.
• Entertainment and Leisure: Provide recreational facilities for enjoyment and relaxation onboard.
• Crew Comfort and Efficiency: Ensure operational efficiency and living comfort for the crew.
• Long-Term Self-Sufficiency: Provide capabilities for extended operations without external sup-
port.

• Safety, Security and Compliance: Ensure the yacht meets safety standards and regulatory
requirements.

• Luxury Aesthetics, Craftsmanship & tailored Design: Offer high-quality, luxurious interior and
exterior design, and Allow for custom design to meet the owner’s personal preferences and needs.

Subsequently, the requirements can be translated into functions [Smit, 2019]. The functions determined
for the QFD matrix are:

• Meal Preparation and Dining
• Comfortable Sleeping
• Provide Laundry Facilities
• Provide Sanitary Facilities
• Climate Control and Air Quality
• Stability and Buoyancy
• Emergency Self-Protection
• Construction Integrity
• Safe Navigation
• Efficient Propulsion and Maneuvering
• Secure Docking and Anchoring
• Luxurious Accommodation
• Recreational Facilities
• Operational Efficiency for Crew
• Extended Operation Capabilities
• Safety and Regulatory Compliance
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By presenting the requirements and functions against each other, as shown in the QFD in figure 4.1,
and assigning scores, the connection between these different requirements and functions can be inves-
tigated. Based on strong connections, it can then be determined whether these connections together
can form a system.

Figure 4.1: QFD Matrix

The assessment of the connections is done through a point driven system. No circle indicates no
connection, a white circle indicates a weak connection, gray indicates an average connection, and black
indicates a strong connection. Notably, the QFD matrix logically shows that requirements translated
into functions have a strong connection with each other. Additionally, various clusters of points are
visible in the matrix, which were investigated to see if they could lead to potential systems. From the
QFD, it can be concluded that all requirements can be linked to existing functions. This is important
to ensure that, through the DPM, all requirements are captured by the systems. With help of the QFD
matrix and gathered knowledge from literature research assuptions can be made on suitable systems
for yacht design. These assumptions have been made together with knowledge from [Smit, 2019] and
Feadship specialists.

Design Property Matrix
The design property matrix, as shown in figure 4.2, is a framework in which functions are mapped
against the systems. This is done to ensure that the designated systems meet the specified require-
ments and effectively contribute to the functionality and performance of the final product. This allows
engineers to gain insight into which characteristics have a significant impact on specific requirements
and functions.

Upon studying the detailed DPM, it becomes apparent that all functions have strong relationships with at
least one system. This means that all functions, and thereby all standard requirements of the yacht, are
covered by the designated systems. It is important to conclude this because meeting all requirements
is crucial for a complete yacht design. Since all functions are covered by the systems, further work can
proceed with the designated systems, and the added modular value can be determined.
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Figure 4.2: Design Property Matrix

Systems
Based on the gathered information from the QFD matrix and the DPM matrix, the systems have been
identified. These systems are required to meet all the requirements that have been established as
standard requirements for a superyacht. The follwing systems are established:

• Power System

– Contains the complete engine room and associated technical rooms such as the switchboard
room.

• Propulsion System

– Propulsion room contains only the bow thruster. This is because within the scope only elec-
tric thruster pod propulsion is considered which takes up negligible space within the ship.

• Mooring & Anchoring System

– System includes the mooring platform which is located in the bow of the yacht.
• HVAC System

– Contains all HVAC spaces within the ship.
• Extended Operations System

– Extended operations system consists of all stores for consumables as well as the provision-
ing bay. Dry, cold, freezer stores are included in this as well as stores for other supplies that
may run out over time. Tanks are not included in this as they are located in the tank deck
and therefore outside the scope.

• Wheelhouse System

– The wheelhouse system contains the bridge, captain’s office and captain’s cabin.
• Tender Garage & Toy Storage System

– The location which is equipped with hatches in which tenders and other water toys are stored
in combination with further storage spaces for toys.

• Beachclub System

– The entire open area located at the rear of the ship on the lower deck with opening hatches
which is designated as a beach club.

• Dining & Galley System
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– The combined system in which the main dining room and the adjacent galley are joined
together.

• Owner Accommodation System

– The enclosed area within the ship reserved for the owner. This includes the owner cabin,
bathrooms, offices and personal lounges.

• Guest Accomodation System

– guest accommodation includes all guest cabins and associated bathrooms as well as VIP
cabins with associated bathrooms and possible offices.

• Crew Accomodation System

– Spaces reserved as sleeping quarters for crew, officers, security and maids.
• Crew Operations System

– Spaces that are closed off from guests in which the crew can perform their duties as well
as spaces where the crew can be in their free time. This includes mess, pantry, crew hymn,
linen store, laundry and deck lockers.

• Safety & Compliance System

– Contains the spaces on board that are assigned tomandatory safety systems. These include
within the scope of the regulations the hi-fog system and the emergency generator.

Module drivers and MIM
In the Module Indication Matrix, the systems are mapped against the modularity drivers. The MIM
aims to identify and evaluate potential modules within a product design. The MIM helps in creating
a modular product structure that promotes flexibility, scalability, and efficiency throughout the entire
lifecycle of the yacht. For the situation of a custom luxury yacht, the standard modularity drivers
[Ericsson and Erixon, 1999] have been adjusted to appropriately assign stakeholders that cover the
entire product lifecycle of a luxury yacht. To quantify the impact of the modularity drivers on the tech-
nical solutions, a questionnaire was developed to support the decisions made in the MIM matrix. This
questionnaire was distributed as a survey and completed by specialists in the field within ”De Voogt
Naval Architects.” Despite the fact that the survey was conducted among a small number of special-
ists, it is assumed that their expertise is convincing enough to determine the influence of these module
drivers on the systems. This assumption is made due to the lack of access to multiple specialists within
the possibilities of the research. The module drivers specifically developed for application to custom
luxury yachts are shown below. These module drivers outline the reasons for a system to be modular.
All of these reasons have been formulated based on the stakeholders who influence a yacht through-
out its entire lifecycle. Additionally, the module drivers are accompanied by an explanation and the
corresponding question from the questionnaire that was presented to the specialists.

Voice of Customer Experience

1. Customization and Personalization

• Explanation: Prioritizes bespoke design and features tailored to the owner’s preferences and
lifestyle, ensuring a unique and personalized yacht experience.

• Question: To what extent is this part influenced by the need for custom design options? <strongly,
fairly, to some extent, not>

2. Luxurious Aesthetics

• Explanation: Focuses on high-end, brand-driven appearance and unique styling in both interior
and exterior design, reflecting the essence of luxury.

• Question: Is this part significantly influenced by trends and fashion in terms of form and/or color?
<strongly, fairly, to some extent, not>

Voice of Engineering Excellence

3. Advanced Technology Integration
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• Explanation: Incorporates the latest marine and luxury technologies to enhance performance,
safety, and convenience on board.

• Question: To what extent does this part need to integrate with cutting-edge technology?<strongly,
fairly, to some extent, not>

4. Modular Adaptability

• Explanation: Ensures the yacht can easily accommodate planned design changes and upgrades,
facilitating modifications and enhancements throughout its lifecycle.

• Question: How important is it for this part to be easily upgradable? <all, most, some, none>

Voice of Operational Efficiency

5. Efficient Production and Assembly

• Explanation: Streamlines the manufacturing process to maintain high standards of quality and
precision, ensuring timely delivery.

• Question: Are there significant advantages to separating this part into a module to streamline
production? <strong, medium, some, no>

6. Crew Efficiency and Welfare

• Explanation: Optimizes crew facilities and operations for efficiency and the well-being of the crew,
contributing to overall operational excellence.

• Question: Towhat extent doesmodularizing this part enhance crew operational efficiency? <greatly,
moderately, slightly, not at all>

Voice of Quality Assurance

7. Independent Testing and Quality Assurance

• Explanation: Ensures separate testing of critical systems and components to guarantee reliability
and safety before integration into the yacht.

• Question: Does separate testing of this part improve overall quality assurance? <greatly, moder-
ately, slightly, not at all>

8. Safety and Regulatory Compliance

• Explanation: Complies with all relevant maritime safety and environmental regulations, ensuring
safe operation and minimizing environmental impact.

• Question: Does this part need to be modular to comply with safety regulations?<strongly, fairly,
to some extent, not>

Voice of After-Market Support

9. Serviceability and Maintenance

• Explanation: Facilitates easy access and straightforward maintenance for crew and service
teams to maintain operational efficiency and luxury standards.

• Question: Will making this part modular significantly ease service and maintenance tasks? <all,
most, some, none>

10. Upgradability and Flexibility

• Explanation: Allows for easy upgrades and customization over time to meet evolving owner pref-
erences and technological advancements.

• Question: Can future upgrades be simplified if this part is modular? <all, most, some, none>

Voice of Sustainability

11. Sustainability and Environmental Compliance

• Explanation: Ensures the yacht meets or exceeds environmental regulations and standards, in-
cluding waste management and emissions controls, promoting eco-friendly practices.
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• Question: Does modularity in this part contribute to meet environmental standards and sustain-
ability goals? <strongly, fairly, to some extent, not>

12. Long-Term Durability

• Explanation: Focuses on the use of high-quality, durable materials and construction techniques
to ensure the yacht remains in excellent condition over its lifespan.

• Question: How much does modularity contribute to the long-term durability of this part? <greatly,
moderately, slightly, not at all>

Figure 4.3: Module Indication Matrix

The results of the questionnaire are gathered in the MIM matrix and shown in the table in figure 4.3. To
give a better visualisation of the results from the MIM, the outcomes are plotted in a table against the
percentual relative weight. The relative weight is a way to express the contribution of every individual
component as a percentage of the total. This will provide a clear overview of the answers from the
questionnaire survey collaborated with the specialist. The table shows the beneficial relevance of ev-
ery system for being modular. Table 4.4 shows the relative weighing of systems, therefore showing the
added value of being modular for every system. Table 4.5 shows the relative weighing of modularity
drivers, therefore showing the impact of every module driver for a yacht design.
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Figure 4.4: Relative weighing of systems

Figure 4.5: Relative weighing of modularity drivers

The results plotted in figure 4.4 illustrate the extent to which the systems benefit from modularity ad-
vantages. The data from figure 4.5 further indicates which of the module drivers have the greatest
impact on a yacht, in other words, which form of modularity provides the most benefit. Based on the
conducted research and the expertise of the specialists, following the relative weighing graphs, it can
be concluded that modularity adds value to a superyacht. This conclusion is supported by the finding
that all systems derive added value from modularity principles, as shown in figure 4.4 by the fact that
all systems are assigned a weight percentage. The Tender Garage system scores exceptionally high,
achieving points for every module driver except for sustainability and environmental compliance. This
indicates that the Tender Garage system would benefit from being approached as a module through-
out the entire lifecycle of the yacht. Another noteworthy result the crew accommodation system which
achieved the lowest score. Initially, it was expected that, due to its repetitive nature, simplicity, and con-
tinuity across different yachts, the crew accommodation system would be highly suitable as a module.
However, according to MFD principles, this turns out to be less true. MFD reveals that modularity is
not just about building in blocks; it encompasses much more throughout the entire lifecycle of a yacht.
From this, it can be stated that the visualized results of the MFD study provide a clear picture of the
added value of modularity over the yacht’s lifecycle. Subsequently, the relative weighting of modularity
drivers from Figure 4.5 is analyzed. This analysis identifies which module drivers have the greatest in-
fluence on the systems within a yacht. The figure shows that every module driver has some degree of
influence on the systems, meaning that modular principles can offer benefits for each driver throughout
the yacht’s lifecycle.
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In addition to the expected high scores for advanced technology integration, efficient production and
assembly, and upgradability, there is also a high score for customization and personalization. This
indicates that, according to MFD principles, customization and personalization can benefit from modu-
lar principles, despite the initial assumption that modularity might limit creativity in the design process.
Further research conducted in chapter 5 Determines whether applying modularity can indeed enhance
creativity within the yacht design process.

4.2.2. Interface matrix
The interface matrix shows the connections and interactions between different systems. Here, we
distinguish Attachment (A), which represents a physical connection that puts the pieces together or
connects them physically. Transfer (T) indicates when a transfer of energy occurs between systems.
Command & Control (C) determines how the state of a component is communicated or controlled by
other components. Spatial (S) determines the boundary between modules, spatial location, and vol-
ume of a component. Using the information from the interface matrix, the relationships between the
systems can be visualized. This information can be used to support the determination of the topological
relations of the modules within the layout of the yacht.

Figure 4.6: Interface Matrix

4.3. System Area Prediction tool
The modules identified through MFD research in section 4.2 are further analyzed in this section. This
analysis focuses on the minimum space requirements of these various modules within a yacht. The
study investigates whether the module areas are determined by standard input parameters from the
design brief or if they are influenced by the specific preferences of the owner. Input parameters are
defined based on the key characteristics of a yacht, which are established during the initial discussions
for the design brief (Appendix B). The research aims to determine whether the various modules are
primarily depended by these input parameters or if the owner’s preferences play a more significant role.

4.3.1. Module area calculation
To determine the minimum required surface area for each module, known data from the ”De Voogt
design database” is utilized. A dataset relevant to the scope of the research is compiled using informa-
tion from the database. All Feadship yard numbers within the 75-110 meter range are included in this
dataset. The 75-110 meter range was chosen for several reasons. Within Feadship, this range is iden-
tified as the company’s future-proof sweet spot, meaning that it is expected that most future designs
will fall within this range. Additionally, this range has been maintained because it typically consists of
four decks and a tank deck with standing height. For the vessels within this range, the following input
information has been collected:
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• Length
• Width
• Draught
• Nr. of Crew
• Nr. of Guests
• Design Speed
• Range

This data corresponds to the information typically known after the initial discussions in the design brief.

For all these ships, the surface areas are extracted from the Feadship design database and compiled
into an Excel file. Because of the confidential information from the Feadship database, the file isn’t
included in the Appendix. Within this file all areas corresponding to each of the 14 identified mod-
ule systems are gathered from the database. The Excel file processes this information, resulting in a
dataset that includes not only the input parameters for each yard number (yacht) but also the corre-
sponding surface area for each module within these ships.

From this point on, all calculations and figures will be based on a case study yacht. This case study
yacht is a far developed never build Feadship prospect with Design Number 3408 - Bulldog. The input
parameters for DN3408 are gathered from the De Voogt Design Database and are:

Length 88 [m]
Width 14,5 [m]
Draught 4 [m]
Nr. of Crew 17 [-]
Nr. of Guests 14 [-]
Design Speed 16 [kts]
Range 5000 [NM]

With the help of supporting AI tool, a Python script is generated that utilizesmachine learning techniques
to predict the surface area of each module based on the given design parameters. Two different mod-
els, Linear Regression and Random Forest, are employed to create as robust as possible predictions.
By employing the two different algorithms they can be compared to see which model provides more
accurate and reliable predictions for the areas of the modules. The dual approach helps to allow for a
comprehensive evaluation of the models strengths and weaknesses.
Linear Regression models the relationship between the input features and the target variables by fitting
a linear equation to the observed data. It assumes a linear relationship between the predictors and the
response. The simplicity of Linear Regression makes it easy to interpret and implement, and it often
serves as a baseline model in predictive modeling tasks [Myers et al., 2012].
Random Forest is an esemble learning method that builds multiple decision trees and merges their re-
sults to produce a accurate and stable prediction. Each tree is trained on a random subset of the data,
and the final prediction is obtained by averaging the predictions of all trees. Random Forest handles
non-linear relationships and interations between variables effectively, making it suitable for complex
datasets [Breiman, 2001].

4.3.2. Script Explanation
The script applies machine learning techniques to predict various ship system areas based on the
design parameters by using multi-output regression models. The process involves several key steps,
including data preprocessing, model training, evaluation, and sensitivity analysis. All steps are chosen
to optimize the accuracy and interpretability of the area predictions. The complete script with indeep
explanation can be found in Appendix D.
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Data loading and preprocessing
The Ship design data from the Feadship database is imported from the confidential Excel file and pre-
processed. Zeros are replaced by NaNs to handle missing values appropriately[Little and Rubin, 2019],
features and targets are converted to numeric types to ensure data integrity [James et al., 2013], and
missing values are imputed using the mean, maintaining dataset size and preventing bias
[Schafer and Graham, 2002].

Model training and evaluation
The dataset is split into training and testing sets using an 80/20 ratio. A random state is set to ensure
the split is reproducible, which is critical for scientific experiments to allow for verification of results
[Kuhn, 2013]. Two models are trained: a multi-output linear regression model and a multi-output ran-
dom forest regression model. Because of its simplicity and interpretability linear regression is cho-
sen. The linear regression is by training a MultiOutputRegressor on the data. For its robustness
and ability to handle non-linear relationships a RandomForestRegressor is trained on the data as well
[Breiman, 2001]. The models are evaluated using multiple metrics. MSE, MAE, MAPE, MSPE and R2

are used, providing a comprehensive performance assessment [Willmott and Matsuura, 2005].

Sensitivity analysis and visualization
Sensitivity analysis is conducted to assess the impact of disturbances in input features on the model
predictions. This analysis identifies which features most significantly affect the target outputs, providing
valuable insights into the relative importance of different design parameters[Saltelli, 2008]. Results are
visualized to compare feature importance across different ship system areas.

4.3.3. Optimal evaluation metric for high variation identification
By using linear regression or bootstrap sampling, predictions can be made regarding the areas of the
various modules. However, little can be concluded about these predictions initially, as their accuracy
is unknown. To assess this, evaluation metrics are employed. In this research case, predictions are
evaluated for their realism by scoring for high explanatory power. Additionally, substantial variability
in predictions is examined to identify which systems show significant deviations. Such deviations may
indicate the presence of owner-specific requirements, as these areas cannot be predicted solely based
on input parameters.

To identify the evaluation metric that best reflects the relative highest variation in yacht area predictions
and, therefore, non realistic predictive performance, it is crucial to assess the characteristics and suit-
ability of each metric in the context of regression analysis. The selection of an appropriate metric is
critical for identifying areas where input parameters fail to sufficiently predict target values. Below is a
detailed evaluation of the metrics used in the model performance assessment:

Mean Absolute Error (MAE)
Mean Absolute Error (MAE) measures the average magnitude of errors in predictions, without consid-
ering their direction, presenting the errors in the same units as the target variable. MAE is valued for
its interpretability as it represents the average absolute deviation from actual values. However, it does
not emphasize larger errors, thus limiting its sensitivity to variability in predictions. As a result, while
MAE is effective for assessing general prediction accuracy, it may not be the best metric for highlighting
areas with significant prediction variability[Hastie et al., 2009].

Mean Squared Error (MSE)
Mean Squared Error (MSE) calculates the average of the squared differences between predicted and
actual values, placing greater emphasis on larger errors. This property makes MSE particularly sensi-
tive to variability in predictions, as it magnifies larger deviations. However, MSE’s sensitivity to outliers
can sometimes skew results, potentially exaggerating variability if extreme values are not indicative of
typical model performance. Despite this, MSE remains a fundamental metric in regression analysis,
especially when the goal is to capture significant prediction errors[Bishop, 2006].

Mean Absolute Percentage Error (MAPE)
Mean Absolute Percentage Error (MAPE) expresses prediction errors as percentages of the actual
values, making it unitless and facilitating comparisons across different scales. MAPE is popular due
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to its straightforward interpretation. However, it can become unstable when actual values are close to
zero, leading to disproportionately high error percentages. This limitation can reduce MAPE’s reliabil-
ity when variability in predictions needs to be assessed, particularly when small prediction errors are
overemphasized[Hyndman, 2018].

Mean Squared Percentage Error (MSPE)
Mean Squared Percentage Error (MSPE) extends the concept of MAPE by squaring the percent-
age errors, thus enhancing sensitivity to larger proportional deviations. This metric is particularly ad-
vantageous for identifying predictions with significant variability relative to the actual values, as the
squaring operation disproportionately penalizes larger percentage errors. MSPE’s focus on propor-
tional deviations aligns well with scenarios where the relative accuracy of predictions is critical, mak-
ing it a robust tool for detecting areas where the predictive power of input parameters is inadequate
[Makridakis et al., 2008].

R-squared (R²)
R-squared (R²) measures the proportion of variance in the dependent variable that can be explained
by the independent variables, offering an indicator of the model’s overall explanatory power. However,
negative R² values, as observed in some areas, suggest that the model performs worse than a simple
mean prediction. While R² provides insight into the overall model fit, it may be less effective for compar-
ing prediction variability across different areas, particularly in cases where the metric yields negative
values[James et al., 2013].

Optimal metric
To effectively identify areas with the highest prediction variability, Mean Squared Percentage Error
(MSPE) is considered as the most suitable metric. MSPE’s sensitivity to relative deviations and its
propensity to penalize larger errors through squaring makes it especially adept at capturing significant
variations in predictive performance. Unlike MAPE, MSPE accounts for both the magnitude and pro-
portionality of errors, providing a comprehensive view of prediction reliability.

Empirical evaluation of the model indicates that areas with high MSPE values suggest substantial vari-
ability in predictions, highlighting a imperfection in the predictive capability of the input parameters for
these areas. Using MSPE enables a targeted approach to refining model accuracy by focusing efforts
on areas where prediction improvements are most needed. While metrics like MAE and MSE provide
insights into average error magnitudes and R² reflects overall explanatory power, MSPE excels in pin-
pointing areas with high relative prediction variability, making it the most suitable metric for identifying
the predictive limitations of input parameters in the current regression framework.

4.3.4. Optimal Regression method
To determine whether linear regression or random forest is the better regression method for the ap-
plication, it’s important to consider the performance metrics and the underlying characteristics of each
algorithm. In figure 4.7 and Appendix G the performancemetrics of both regression methods are shown.
In the comparison of linear regression and random forest for predicting ship system areas, random

forest proved to be the superior method due to its ability to handle complex, non-linear relationships
between input features and target variables. This prove can be concluded by observing and compar-
ing the performance metrics results from Appendix G. The fact that random forrest proves to be better
comes from the fact that linear regression relies on the assumption of linearity, which often does not
hold true in real-world datasets with intricate interactions, as seen in the ship system data. This lim-
itation was evident in the performance metrics, where linear regression frequently showed poor fits,
indicated by negative R² values and higher errors.

Random forest, on the other hand, outperformed linear regression across various metrics, including
mean squared error (MSE), mean absolute error (MAE), and R² scores. Its ensemble approach ef-
fectively models non-linear interactions and adapts to the complexities of the data, capturing patterns
that linear regression cannot. Furthermore, random forest’s robustness to overfitting, ability to handle
missing values, and adaptive response to feature perturbations further reinforce its suitability. These
characteristics make random forest the preferred regression method for modeling ship system areas,
where complex and non-linear dependencies are prevalent, providing more accurate and reliable pre-
dictions than linear regression.
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(a) MAE (b) MSE

(c) MAPE (d) MSPE

Figure 4.7: Evaluation Metrics

Figure 4.8: R2 Evaluation Metric
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4.3.5. Prediction Tool Evaluation
Upon loading the Prediction tool, both regression methods are executed and evaluated using specific
evaluation metrics. The tool generates the predicted areas alongside the bar charts from figure 4.7.
Analysis of these bar charts reveals significant outliers across all evaluation metrics. To assess the
overall explanatory power of both regression models, the R2 values are examined in Figure 4.8. This
figure shows many negative values, indicating that the models perform worse than a simple mean
prediction.

The poor performance can be attributed to two main factors: errors in the prediction script or limita-
tions in the dataset. The first step is to explore potential improvements to the script. A more complex
predictive model could potentially yield better results if the issue lies within the prediction model itself.
Research suggests that hyperparameter tuning through cross-validation is a viable approach to en-
hancing the script. Furthermore, bootstrap sampling is a method that may achieve better results in
cases involving smaller datasets. A detailed explanation of the functioning of both methods can be
found in Appendix F.

Bootstrap Sampling
Bootstrap sampling is a statistical method used to estimate the accuracy of predictive models by re-
sampling with replacement from the original dataset. This technique generates multiple simulated
samples (bootstrap samples), each the same size as the original dataset but containing repeated in-
stances without generating new input. By fitting the model on these samples and evaluating its perfor-
mance on the remaining data, the variability and reliability of the model’s predictions can be accessed.
This approach helps in reducing variance and bias in model estimates, ultimately improving prediction
accuracy[Efron and Tibshirani, 1994].

Cross-Validation
Cross-validation is a robust technique for assessing the predictive performance of statistical models by
partitioning the data into complementary subsets. One commonly used form is k-fold cross-validation,
where the data is split into k subsets, and the model is trained k times, each time using k-1 subsets
for training and the remaining subset for validation. This process is repeated such that each subset
serves as the validation set once. Cross-validation helps in detecting overfitting, enhancing the general-
izability of the model, and ensuring that the performance metrics are a reliable reflection of the model’s
predictive power[Stone, 1974].

Performance improvement
To evaluate the potential added value of a more complex system, the prediction model was enhanced
with both bootstrap sampling and cross-validation, and the performance was compared with the current
model. As shown in Figure 4.9, both enhancements lead to an improvement in prediction accuracy ac-
cording to the evaluation metrics. These improvements were tested independently before investigating
their combined application.
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Figure 4.9: Performance Comparison

To integrate both cross-validation and bootstrap sampling into the script, an advanced evaluation frame-
work based on the work of [Efron and Tibshirani, 1997] was developed where bootstrap sampling is
conducted within each fold of the cross-validation, Appendix F shows a detailed explanation of the
method. This approach involves resampling the training data within each fold, training the models on
these bootstrap samples, and then averaging the predictions. This method enhances the robustness
and stability of the models’ performance evaluations. A flowchart shown in figure 4.10 shows the visu-
alisation of the conduction of bootstrap sampling within each fold of the cross-validation. This flowchart
shows the method applied to the area prediction script.
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Figure 4.10: Flowchart Optimized Regression Model

The original script used a single train-test split. In the updated script, cross-validation (KFold) is in-
troduced to provide a more reliable estimate of model performance. Cross-validation splits the data
into multiple folds and evaluates the model across these folds, reducing the variance in performance
metrics and better simulating how the models will perform on unseen data. Bootstrap sampling was
added to further improve the robustness of the model evaluations. For each fold in the cross-validation,
bootstrap resampling was performed to create multiple training datasets, and the models were trained
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on these resampled datasets. The predictions from each bootstrap sample were averaged to pro-
duce more stable and reliable performance metrics. For combining Cross-Validation and Bootstrap
Sampling the bootstrap_cross_val_predict function was introduced, which combines cross-validation
and bootstrap sampling by resampling the training data within each fold of the cross-validation. This
approach leverages the strengths of both techniques, ensuring that the performance metrics are not
overly influenced by any single split or specific sample of the data. A detailed explanation of the script
improvements can be found in Appendix E.

4.3.6. Prediction tool results
To determine whether the updated script, which utilizes cross-validation and bootstrap sampling, pro-
duces more reliable results, the R² evaluation metrics of the original method and the complex updated
method are compared. These R² evaluation metrics can be found in Figure 4.8 and Figure 4.11. A com-
parison of both bar charts reveals that the improvements in the updated script are clearly visible. In the
original script, only four systems display a positive R² value, indicating a more reliable prediction than
a simple mean prediction. In contrast, the updated script shows nine systems with positive R² values.
This demonstrates that the incorporation of cross-validation and bootstrap sampling leads to a script
with more reliable predictions. However, five systems still have negative R² values, indicating unreliable
results. To further investigate this, additional evaluation metrics are examined and compared.

Figure 4.11: R2 Updated Evaluation Metric

When comparing the other evaluation metrics, it becomes apparent that several systems still exhibit de-
viations. This is expected, as the overall explanatory power has increased due to improved R² values,
but this does not necessarily mean that the prediction reliability has become more accurate. As sub-
stantiated earlier in Section 4.3.4, the random forest prediction model is used as the primary predictive
model. A comparison of the prediction models for random forest reveals no significant changes be-
tween the MAE and MAPE scores. However, when comparing the MSE and MSPE scores, the MSPE
for Safety & Compliance and Beachclub in the new system show higher MSPE scores. Since it has
been established in Section 4.3.3 that MSPE is the most suitable metric for evaluating the predictions,
this will be further investigated.
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(a) Updated MAE (b) Updated MSE

(c) Updated MAPE (d) Updated MSPE

Figure 4.12: Updated Evaluation Metrics

When examining the R² and MSPE evaluation metrics, it is noticeable that in Figure 4.11, where the
R² score is negative and thus indicates an unreliable prediction, the corresponding MSPE bar chart in
Figure 4.12 also shows large percentage errors. This is observed in the systems Safety & Compliance,
Beachclub, Dining & Galley, and Owner Accommodation. This implies that for these systems, a realistic
and valid prediction of the area cannot be made. The Propulsion system has a positive R² value but
also shows a significant MSPE deviation; here, a deviation is considered significant if the MSPE is
greater than 30%. Section 4.2 explores whether this assumption is realistic. From these results, it can
be concluded that the model cannot provide valid area predictions for the systems Safety & Compliance,
Beachclub, Dining & Galley, Owner Accommodation, and Propulsion. All other systems show a positive
R² value and an MSPE value below 30%, suggesting that the areas of these systems can be predicted
using the prediction model.

Area Results
The predicted areas obtained using the random forest prediction model are shown in Table 4.1. These
predictions were made based on the input parameters of the case study yacht DN3408. The predicted
areas will be used in the subsequent research.
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System Valid prediction [Y/N] Area [m2]
Power Y 285.35
Propulsion N 44.69
Mooring & Anchoring Y 61.98
HVAC Y 113.48
Extended Operations Y 67.52
Safety & Compliance N 24.41
Wheelhouse Y 73.78
Crew Operations Y 191.34
Crew Accomodation Y 113.94
Tender Garage Y 127.49
Beachclub N 86.21
Dining & Galley N 61.15
Owner Accomodation N 178.18
Guest Accomodation Y 183.21

Table 4.1: Predicted system area’s

4.3.7. Defining the owner specific requirements input areas
To investigate whether systems that, according to the prediction tool, cannot be realistically predicted
and are therefore considered owner-specific requirements, are also perceived as owner-specific re-
quirements in reality, the expertise of Sr. Designer Ruud Bakker was utilized. The results of this
inquiry will help substantiate whether the assumption that a prediction with a MSPE deviation of up
to 30% is realistic can be considered valid. For this purpose, the 14 systems were presented and ex-
plained to the Sr. Designer, together with the input parameters. The question of which systems, in his
experience, are predominantly determined by the input parameters and which systems are significantly
influenced by owner-specific requirements is asked. This question is asked in a interview conducted
with Sr. Designer Ruud Bakker. In the interview, the designer evaluates the different systems to deter-
mine whether they depend on input parameters or are owner-specific. According to the designer, the
Tender Garage, Beach Club, Dining & Galley, Owner Accommodation, and Guest Accommodation sys-
tems are considered owner-specific. These systems can then be compared with the systems classified
as owner-specific based on the assumption that all systems with an MSPE (Mean Squared Percentage
Error) > 30% reflect owner-specific requirements. These results are presented in Table 4.2.

System: MSPE: Owner specific MSPE >30% Owner specific MSPE >10% Owner Specific following Designer:
Power 9.7 N N N
Propulsion 27.2 N Y N
Mooring & Anchoring 9.31 N N N
HVAC 8.3 N N N
Extended Operations 22.7 N Y N
Safety & Compliance 360.2 Y Y N
Wheelhouse 3.1 N N N
Crew Operations 5.6 N N N
Crew Accomodation 2.8 N N N
Tender Garage 16.1 N Y Y
Beachclub 100.5 Y Y Y
Dining & Galley 141.3 Y Y Y
Owner Accommodation 108.3 Y Y Y
Guest Accommodation 11.2 N Y Y

Table 4.2: Systems owner specific requirements by MSPE and designer

When comparing the systems with an MSPE > 30% to those identified as owner-specific by the de-
signer, it becomes evident that there is alignment for the Beach Club, Dining & Galley, and Owner Ac-
commodation systems. However, the Tender Garage and Guest Accommodation, which the designer
also classifies as owner-specific, score relatively high but do not exceed the 30% threshold. Interest-
ingly, the Safety & Compliance system shows the highest MSPE score, though the designer does not
consider it owner-specific. Senior Designer B. Jongepier offers an explanation for this discrepancy.
Because the propulsion system, which also has a high MSPE score of 27% and a negative R2 score, is
closely related to the Safety & Compliance system. This can be explained by the fact that, according to
the database, the propulsion system only accounts for the bow thruster area, while the main propulsion
is located at the stern and does not occupy internal space. The Safety & Compliance system, on the
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Figure 4.13: Sensitivity Analysis Extended Operations

other hand, includes the emergency generator and the Hi-Fog equipment. According to the specialist,
the Hi-Fog room is often located in the bow thruster room, which reduces the space allocated to Safety
& Compliance and increases the space for the propulsion system. As a result, both systems deviate
significantly, leading to negative R2 values and high MSPE scores. Based on this conclusion, it can be
assumed that the high MSPE and negative R2 values are not due to owner-specific requirements but
can be explained by a data deficiency. Predicted values without added margins will be used, with the
caveat that these may deviate from reality.

When examining the systems classified as owner-specific by the designer but with an MSPE < 30%,
it is notable that both score above 10%, which is relatively high compared to other systems. Only the
Extended Operations System also scores above 10%, with a score of 22.7%, even though the designer
did not label it as owner-specific. Upon further investigation, it becomes clear that the Sensitivity Analy-
sis (see Figure 4.13) for Extended Operations shows that this system, in the case of the random forest
model, depends on length, width, and the number of guests. Range is not considered a determining
factor for the Extended Operations system, which may explain the relatively high MSPE score for this
system. Upon reviewing the database in Appendix ??, it is evident that nearly all ships exhibit a range
of 5000-6000 NM. In reality, these ships are likely classified based on specific ranges and periods of
autonomous operation rather than purely on range. This explains why this system does not depend
on standard parameters but could still be classified as owner-specific. Based on this assumption, it
can be concluded that systems with an MSPE > 10% can be identified as reflecting owner-specific
requirements. This conclusion can be further validated using the expertise of the Senior Designer and
Senior Specialist, as well as the Sensitivity Analysis. In the arrangement generation tool, the predicted
surface areas will be used to determine the space allocated to each module within the arrangement. By
adding margins within the arrangement generation tool, it will be possible to assess whether systems
with owner-specific requirements occupy more or less space than the predicted values, based on the
owner’s requirements for the ship.

4.4. Modular Arrangement Generator Tool
To investigate whether the modules can lead to innovative arrangements under certain input param-
eter conditions, a final study is conducted. In this study, a tool is developed to support the designer
in the initial creative phase of the design process. The purpose of the design tool is to generate inno-
vative yacht layouts based on the area output from the system area prediction tool from section 4.3.
In addition to the areas, the tool utilizes known input parameters and arrangement conditions for the
systems. A packing algorithm is employed, which uses the input and variables to generate various
yacht arrangements. These yacht arrangements are simplified 2D representations of the side view of
the yacht. The generated arrangements will ultimately be compared with the general arrangement of
the prospect used for the input parameters (Appendix J). With the assistance of Sr. Designer R. Bakker
and Sr. Specialist B. Jongepier, these results will be analyzed and discussed.



4.4. Modular Arrangement Generator Tool 38

Figure 4.14: Arrangement Conditions

4.4.1. Arrangement conditions
To determine the appropriate arrangement conditions for the application of the investigated method, re-
search on similar studies was conducted. Previous research by [Nam et al., 2010] successfully demon-
strates a similar application of ship layout based on arrangement conditions. In the study, the loca-
tion of various modules in the ship is determined based on preference for deck height (y-direction)
and longitudinal position (x-direction). Since it is expected that considering only deck height and
longitudinal position will not result in reliable layouts, further research was conducted. Research by
[Helvacioglu and Insel, 2005] indicates that not only the location of different modules but also the dis-
tance from one module to another is significant. This relationship between different modules is referred
to as topological relations and is also included as an arrangement condition in determining the yacht
layout. Because of the limited timeframe and simple nature of the research it can be assumed that
for a effective functioning of the packing tool, the arrangement conditions are determined by height
preference, length preference, and topological relations. The placement of the modules depends on
their vertical position, horizontal position, and distance from other modules. To further specify these
properties for each module, a unique classification system has been developed. Each system is indi-
vidually assessed based on height preference, length preference, close to system, and far from system,
with each preference rated on a scale from 1 to 3 to determine the weight of the property. Each sys-
tem has a single vertical and a single horizontal preference but can have multiple topological relations
(close to and far from), each with its own score. Figure 4.14 presents the arrangement conditions of
the various systems. Appendix K displays the complete set of arrangement conditions. The scores of
the arrangement conditions were determined through a literature review, the MIM matrix, and confirma-
tions from Sr. Specialist B. Jongepier. Because of the experience of the Sr. specialist it is assumed
these arrangement conditions meet the scope of the research.

4.4.2. Packing Algorithm
The objective of the packing algorithm is to generate a number of arrangements that are both innovative
and optimized. As such, the packing algorithm can serve as a support tool for the designer during the
early phase of yacht design. A side view (xz-plane) of the yacht was chosen to keep the packing
algorithm simple and feasible. This choice is justified by the fact that most systems extend across the
full width of the yacht, making the addition of a top view (xy-plane) less relevant. This was assumption
is supported by a comprehensive study of General Arrangements (GA’s) of existing yachts.

Packing algorithms are computational methods designed to optimize the arrangement of objects within
a defined space, aiming to minimize wasted space or maximize utilization. These algorithms are widely
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applied in logistics, manufacturing, and other fields where efficient space utilization is critical, such
as bin packing, container loading, and resource allocation problems. The effectiveness of a packing
algorithm is often evaluated based on its packing score, which measures how efficiently the space is
used.

Three packing algorithms
In this study, various packing methods were applied and tested on the research case. To determine
which packing approach is most suitable for the research case, an investigation was conducted to iden-
tify which packing approach achieves the highest packing score. The packing approaches selected
for this study include the greedy approach, heuristic approach, and simulated annealing. These three
approaches are commonly chosen for packing problems due to their distinct advantages in balancing
solution quality, computational efficiency, and ease of implementation.
The greedy approach is a simple, straightforward method that places each item in the first available
space where it fits, typically following a pre-determined order such as by size or arrival sequence. The
algorithm makes decisions based solely on local optima, without considering the global implications of
those choices. While this approach is computationally efficient and easy to implement, it often yields
suboptimal solutions due to its lack of foresight and inability to revise earlier decisions once made
[Coffman Jr et al., 1984].
Heuristic approaches, on the other hand, are chosen because they provide a balanced trade-off be-
tween solution quality and computational effort. Heuristics incorporate problem-specific knowledge
or rules, which enable them to efficiently navigate the search space and find near-optimal solutions.
This makes them especially valuable in scenarios where exact methods are impractical due to time
constraints or the complexity of the problem. Heuristics are adaptable and can be tailored to spe-
cific problem characteristics, enhancing their effectiveness across a wide range of packing scenarios
[Wäscher et al., 2007].
Simulated annealing is included in the selection due to its powerful optimization capabilities, particu-
larly in escaping local optima. Its iterative process and the probabilistic acceptance of worse solutions
provide a robust mechanism for exploring a wider solution space, making it well-suited for complex and
high-dimensional packing problems. Despite being more computationally intensive, simulated anneal-
ing’s ability to eventually converge to high-quality solutions makes it an appealing choice when the goal
is to achieve as close to optimality as possible[Kirkpatrick et al., 1983].
Upon comparing these approaches, based on their packing scores, it was found that the heuristic ap-
proach achieved the highest performing packing score, outperforming both the greedy approach and
simulated annealing (Appendix G.1). This outcome was unexpected, as simulated annealing, with its
complex and thorough search mechanism, was anticipated to perform best. However, the heuristic ap-
proach proved to be more effective in this specific application, likely due to its tailored adaptability and
efficient exploration of the solution space. This emphasizes that the best algorithmic strategy depends
on the particular characteristics of the problem, as increased complexity does not always equate to
superior performance.

Input
The input for the packing algorithm consists of the predicted top view xy-plane areas from the area
prediction tool. These surface areas are used in combination with the known input parameters, length
and width, and are supplemented with the fixed deck height. From the predicted top view areas, the
surface area in the sideview xz-plane is calculated by dividing them by the width and multiplying them
by the deck height. Additionally, it is specified whether the systems consist of a single unit or can be
divided into multiple units. The arrangement conditions (figure I) are subsequently imported via Excel.

Packing algorith variables
As described in Section 4.2, there are system areas that cannot be predicted using the prediction tool
and input parameters. Consequently, these systems are considered owner-specific. Therefore, the
design brief must account for the owner’s preferences regarding these areas. To incorporate this into
the packing tool, a margin has been implemented. For each owner-specific system, it can be specified
whether the owner desires a relatively large or small space. This allows the arrangement tool to also
approximate the owner-specific areas.

Additionally, the arrangement tool includes an optimization function. This function generates arrange-
ments based on the input from the design brief, but for a yacht with a 10% reduced length. In other
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words, it examines whether all modules calculated for a yacht of a certain length can also fit into a
yacht that is 90% of that length. This allows for exploring the potential of arrangements with optimized
lengths and the corresponding innovative layouts.

4.4.3. Packing script
The packing script optimizes the arrangement of yacht systems using a heuristic packing approach
based on user preferences extracted from the Excel file (Appendix I). It involves several key steps,
including data loading and preprocessing, feasibility checks, dynamic scoring, heuristic packing, ar-
rangement generation, and visualization. The script iteratively adjusts and scores the placement of
systems based on height, length, and proximity preferences to maximize the total arrangement score.
A comparative analysis is performed for different ship configurations, including an optimized length sce-
nario. The flowchart in figure 4.15 shows the different steps and loops within the packing script. The
flowchart shows the script without the optimized length scenario. The optimized length scenario looks
the same but with 90% of the original length for arrangement space. The complete script with detailed
explanations can be found in Appendix D.

Data Loading and Preprocesssing
The script reads system placement preferences from an Excel file, extracting height and length pref-
erences along with proximity constraints to other systems. These preferences are organized into a
structured dictionary for use in subsequent calculations.

Feasibility Checks and Area Adjustments
The system areas are adjusted based on predefined margins, and lengths are calculated by dividing
the adjusted areas by the ship’s width. Feasibility checks ensure that the total system length does
not exceed the available deck space on the yacht, considering the ship’s length, width, and number of
decks.

Dynamic Scoring and Placement
Each systems placement is scored dynamically based on height and length preferences, as well as
proximity to other systems. The scoring function incorporates user-defined weights and adjusts scores
to prioritize systems that meet the desired configurations, enhancing the overall arrangement score.

Heuristic Packing and Arrangement Generation
A heuristic packing algorithm generatesmultiple system arrangements by iteratively evaluating potential
placements and selecting the highest-scoring configurations. The script accommodates separable
systems by dividing them into smaller blocks, optimizing their distribution across the yacht’s decks.

Visualisation and Comparative Analysis
Arrangements are visualized in a 2D layout, illustrating system placements across the yacht’s decks.
The script also generates length-optimized configurations by reducing the ship’s length, comparing the
performance of these configurations against the original ones based on total and average scores.



4.4. Modular Arrangement Generator Tool 41

Figure 4.15: Flowchart Packing Algorithm Arrangement Tool

4.4.4. Module Arrangement visualisation results
To generate arrangements based on a specific design brief, the information from the design brief is
first analyzed. This information, in combination with the area prediction tool, is used to gather the
input for the packing algorithm. For this process, the length, width, and height of the yacht’s decks
are required, along with the areas obtained from the prediction tool and the preferences outlined in the
Excel file. When the packing algorithm is executed within Spyder (Python 3.11), the desired results are
visualized as plots. In the IPython console, the scores for each arrangement are displayed, including
both the total score of the arrangements and the score per system. This approach allows for the
identification of which system might be responsible for arrangements with significantly higher or lower
scores. Figure 4.16 illustrates the highest-scoring arrangement for the case study yacht DN3408, along
with the highest-scoring arrangement optimized for length. Margins for owner-specific systems were
set to zero in this case due to the lack of access to the initial design brief. In addition to the visualized
arrangements, Figure 4.17 presents the arrangement scores from the IPython console for both standard
and length optimized arrangement. In Chapter 5, the results from the Arrangement tool are discussed
and analyzed in collaboration with Senior Designer Ruud Bakker and Senior Specialist Bram Jongepier.
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(a) Arrangement 5 (b) Arrangement 8 length optimized

Figure 4.16: Arrangement visualisation

(a) Arrangement 5 (b) Arrangement 8 length optimized

Figure 4.17: Arrangement scores

4.4.5. Analyzing packing tool
Upon analyzing the packing tool, several notable irregularities have surfaced that are difficult to explain.
In-depth investigation has indicated that these are the result of errors within the method. When exam-
ining the scores for the extended operations and tender garage in figure 4.17 for both the standard and
optimized lengths, it is noticeable that these consistently receive a score of 0. Investigation into the
preferences of these systems in the Excel file from Appendix I reveals that these are systems without
preferences. However, a system without preferences should not be rated with a score of 0, as this
suggests an extremely poor performance. Instead, a system without preferences should be evaluated
based on its placement relative to other systems that do have preferences.

Research into this discrepancy has shown that the current system operates according to the following
scoring mechanism:

• A system’s placement is awarded points if it matches its height preference, with the weight defined
by the score in the Excel file.

• Points are awarded if the system is closer to its preferred position, with the score adjusted ac-
cording to the preference weight.

• Points are awarded based on how well this proximity requirement is met, with adjustments based
on the proximity weight in the preferences.

It appears that the Tender Garage and Extended Operations systems lack preferences in the Excel file,
and therefore do not receive any score. This is problematic because, even without explicit preferences,
these systems should still receive a score based on their overall arrangement if they are placed logically
within the ship. Research into this issue shows that the portion of the code responsible for calculating
the score relies entirely on preferences. If a system has no preferences defined (such as Tender Garage
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or Extended Operations), it ends up with a score of zero, as there are no height preferences, length
preferences, or proximity systems specified. Consequently, the dynamic score calculation returns zero,
which is why systems without preferences always score zero.

To address this issue, it is suggested to introduce a baseline scoring system that assigns a reasonable
score to any system, even if no specific preferences are provided. Systems should still receive a score
based on general factors, such as whether they fit well within the available space and whether they are
placed in logical areas of the ship. Plan for resolving the issues:

• Add Baseline Scoring: Introduce a default score for systems without preferences.
• Revise Dynamic Score Calculation: Modify the dynamic_score_placement function to assign
baseline scores for systems with no specific preferences.

• Prevent Over-Emphasis on Number of Preferences: Ensure that systems with numerous pref-
erences do not score disproportionately high, as the score should reflect how suitable the place-
ment is rather than the number of preferences satisfied.

Script Adaptions
In the updated script, two key adjustments have been made to improve the scoring system for ship
system placements. First, baseline scoring was introduced in the dynamic_score_placement function
to ensure that systems without specific preferences are still evaluated fairly. A baseline score is now
calculated based on how well the system fits within the available space on the ship. If the system fits
well, it is rewarded, while systems that exceed the space are penalized. This ensures that even sys-
tems without preferences are judged based on their spatial efficiency. Second, the script addresses the
issue of systems with numerous preferences receiving disproportionately high scores. In the updated
dynamic_score_placement function, the score is now normalized by the number of active preferences.
By dividing the total score by the preference count, the script ensures that systems with many prefer-
ences don’t overshadow others, allowing the score to better reflect how suitable a placement is rather
than just how many preferences are satisfied.

Results
When the results of the improved script from figure 4.18 are compared with the results from the original
script from figure 4.16, conclusions can be drawn. The updated arrangements generally show more
logical layouts. This can be explained by the fact that the scores are less dependent on the number
of preferences due to the normalization applied. When the scores from figure 4.19 are compared with
those from the original script, this becomes clear. In the original script from figure 4.17, there are scores
with values of 0 and notably high scores for owner, guest, and crew accommodations. These can be
explained by the requirement for a large distance from the power system. When this is compared
with the scores from the improved script, it is noticeable that the 0 values have disappeared, and the
inexplicably high scores are no longer present. From this, it can be concluded that the issues identified
in the original script are no longer present. This confirms that the improvements to the script have been
successfully implemented in the new version.
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(a) Updated Arrangement (b) Updated Arrangement length optimized

Figure 4.18: Updated Arrangements

(a) Updated Arrangement Score (b) Updated Arrangement Score length optimized

Figure 4.19: Updated Arrangement scores
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Case Study - Interview, Results &

Discussion

The aim of this case study is to evaluate the functionality and effectiveness of the arrangement gen-
erator. With the assistance of Senior Designer Ruud Bakker and Senior Specialist Bram Jongepier,
the arrangement generator will be analyzed and assessed using the presentation from Appendix J,
comparisons with prospects from Appendix K, and a live demonstration of the arrangement generator.
Given the combined 60 years of experience Bram and Ruud have in the designing and engineering of
super yachts, it is assumed that strong conclusions can be drawn from this process. Based on several
questions addressed during the interview, conclusions will be made regarding the performance of the
arrangement generator. The interview will follow an open conversation format, where the presentation
and live operation of the generator will be reviewed. The objective of the interview is to answer the
following questions:

• What do the designer and specialist think about the working of the Arrangement Generator?
• Do the designer and specialist think the Arrangement Generator can be a tool to support the
creative part of the design phase?

• Do the designer and specialist think the Arrangement Generator can be a tool to make quicker
iterations in early phase design phase?

• What are the limitations of the Arrangement Generator
• What future adjustments can be made to improve the Arrangement Generator?
• In what areas performs the designer better than the arrangement generator?
• In what areas performs the arrangement generator better than the designer?

For the interview, the research was first explained using the presentation in Appendix J. This starts with
an explanation of the development of modular systems based on the requirements outlined in Section
4.2. Subsequently, the functioning of the area prediction tool from Section 4.3 and the arrangement
generator from Section 4.4 were explained. During this interview, results and arrangements were gen-
erated using the original packing tool, as shown in section 4.4.3. Since the improved version of the
packing tool primarily focuses on detailed refinements rather than changes to its functionality or out-
comes, it is assumed that this will not affect the results and conclusions drawn from the interview.To
provide a comprehensive view of the arrangement generator’s performance, three prospects (unbuilt
yachts with highly developed designs) were analyzed in the case study. These three yachts are DN3408
- Bulldog, DN3524 and DN3554 - Komodo, with their corresponding input parameters shown in table
5.1. Komodo is particularly interesting to observe, as three detailed General Arrangements (GA’s) are
available for it. For area calculation and arrangement generation to compare Komodo the input from
the studio and azure design is used.
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Design Number 3408 - Bulldog 3524 3554 - Komodo - Studio 3554 - Komodo - Azure 3554 - Komodo - RWD
Length [m] 88 83 77,7 77,7 89,3
Width [m] 14,5 13,5 13,5 13,5 13,6
Draught [m] 4 3,85 3,85 3,85 4,05
Nr. of Crew [-] 17 30 23 23 30
Nr. of Guests [-] 14 18 14 14 16
Design Speed [kts] 16 17 17 17 -
Range [NM] 5000 5500 5500 5500 -

Table 5.1: Input parameters case study yachts

Figure 5.1: Comparison generation tool and Bulldog design

For all designs, the generated arrangements with the highest arrangement scores were collected and
displayed alongside the general arrangements (GA’s) created by the designer. This information was
presented to the designer and specialist, as shown in figure 5.1 and Appendix K. A live demonstration
of the arrangement generator was then given, after which the results were analyzed and compared
with the designer’s GA’s. The pre-established questions mentioned above were answered during the
interview based on the reactions and comments from the designer and specialist. Further conclusions
and discussion points from the interview will also be presented, followed by a summarizing conclusion
regarding the performance of the arrangement generator.

What do the designer and specialist think about the working of the arrangement generator?
For this question, the initial impressions of the designer and specialist regarding the arrangement gener-
ator are evaluated. The first impression is that the system shows potential but is challenging to interpret
and understand in terms of its functionality. The specialist sees it as a tool that generates a wide array
of starting points for a design, offering the possibility to explore creative and innovative new layouts.
The designer adds that, in combination with the area prediction tool, the arrangement generator offers
the potential for a very rapid initial cost analysis. This quick cost analysis is possible because the
prediction tool and arrangement generator can swiftly estimate the amount of luxury space within the
yacht, which in turn allows for a cost estimate. Such a rapid cost estimate could benefit the account
manager while simultaneously saving the designer time.

Both the designer and the specialist further note that the arrangement tool only makes decisions based
on the position within the ship and relative to other systems, whereas a designer considers countless
factors when creating a design.

Does the designer think the arrangement generator can be a tool to support the creative part of
the design phase?
When this question is posed to the designer, he expresses the expectation that the arrangement gener-
ator can help push the designer out of their comfort zone. Due to years of experience, fixed patterns and
routines have developed in the designer’s approach. By utilizing the arrangement generator, starting
points outside of familiar designs are generated, which can then be considered for further exploration.

The designer also highlights that the current design process often does not sufficiently take the infor-
mation from the design brief into account. Frequently, the design process begins without thoroughly
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analyzing the design brief, leading to the possibility that the owner’s preferences may be overlooked.
By analyzing the design brief and integrating its information into the arrangement generator, designs
may emerge that the designer might not have otherwise considered.

Do the designer and specialist think the arrangement generator can be a tool to make quicker
iterations in early stage design phase?
In response to the question of whether the arrangement generator can be used to enable faster itera-
tions during the early phase of the design stage, the answer is no. The process of going through the
design spiral is already well-established within the company, so it is not the area where time savings
can be achieved. However, the arrangement generator does make it easier to generate new starting
points, which can lead to the discovery of unique designs. Normally, finding a new and innovative
design is a time-consuming process, but the arrangement generator can accelerate this.

Thus, the arrangement tool does not directly lead to faster iterations of the design spiral, but it facilitates
the quicker discovery of new starting points for the design spiral. Ultimately, the arrangement generator
can contribute to a faster generation of creativity within the design process.

What are the limitations of the arrangement generator?
The limitations of the arrangement generator primarily lie in its highly simplified functionality. Firstly, the
designer points out that the arrangement generator is limited to four decks, with no option to remove
a deck for optimization. Additionally, the specialist notes that in the length-optimized arrangement, the
upper two decks of the ship become overly crowded. This makes the ship appear visually top-heavy
and affects its weight distribution.

A general limitation of the arrangement generator is that it does not account for the weight distribution
within the generated arrangements. Moreover, staircases and corridors are not generated by the tool,
even though they have a significant impact on the layout of a yacht. The separation between crew and
guest areas, as well as the connecting elements between different decks, such as the placement of the
main staircase, greatly influence the overall arrangement of the yacht. However, these factors are not
considered in the arrangement generator.

Another point of concern is that the arrangement generator is based on a dataset of yachts ranging be-
tween 70m and 110m in length. While the generator functions appropriately within this range, it will not
produce useful results outside of it. This is due to the dataset not accounting for system spaces outside
these lengths, and the arrangement generator itself does not consider critical regulatory boundaries.
The most significant boundary is the 500GT limit, where, for example, fire insulation and the emergency
generator, which occupy space within the design, are less critical. Additional important boundaries that
are not considered include the 3000GT and 85m thresholds.

Making the arrangement generator applicable to all length categories, to cover the entire fleet, will
require considerable effort.

What future adjustments can be made to improve the Arrangement Generator?
In addition to addressing the aforementioned limitations of the arrangement generator, the designer
and specialist have identified several other potential areas for improvement. Both agree that the user
interface could be made easier, clearer, and more efficient. While they acknowledge that the current
version of the arrangement generator primarily serves to demonstrate its functionality, they believe that
an improved interface would enhance this demonstration.

Furthermore, the specialist highlights the current functioning of the arrangement generator, which pro-
duces graphical designs based on numerical data. A future improvement could involve enabling the
generator to create graphical designs using graphical input in addition to numerical input. This would
allow the generator to produce higher-quality graphical arrangements as output.

In what areas performs the designer better than the arrangement generator?
When examining the areas where the designer outperforms the arrangement generator, the numerous
considerations involved in yacht design become apparent. While the designer takes countless factors
into account throughout the design process to achieve an optimal result, the arrangement generator
only considers the placement of elements within the ship and their distance relative to other systems.
The designer is familiar with all the unspoken conventions and unwritten rules of yacht design, which
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are based on experience and knowledge that cannot be replicated by the arrangement generator. Ac-
cording to both the designer and the specialist, this indicates that the arrangement generator will always
serve as a supportive tool and can never fully replace the designer.

In what areas performs the arrangement generator better than the designer?
The answer to the question of which areas the arrangement generator outperforms the designer pri-
marily revolves around the generation of random designs. The arrangement generator analyzes the
parameters for each design iteration and produces new arrangements, achieving a quantity of random
designs that is unattainable for a designer. In a very short period, the generator can create an enormous
number of innovative designs, something a designer would not be able to conceive or execute within
the same timeframe. As a result, the arrangement generator enables the creation of a significantly
higher level of innovative and creative arrangements.

Moreover, the arrangement generator ensures that the input parameters from the design brief are
thoroughly analyzed and applied, a process that is currently less rigorously performed by designers.

Concluding:
The conclusion drawn with the designer and specialist is that the arrangement generator succeeds
in generating basic early-stage design phase arrangements. However, the possibility that a more ad-
vanced tool could replace a designer in the early-stage design phase seems unrealistic. Although the
tool can be further developed, it appears impossible for such a tool to learn and incorporate all the
considerations a designer makes into a design. Nevertheless, the arrangement generator is viewed
as a potentially powerful supportive tool. With further development, the tool could increasingly support
the designer more easily and effectively.

The tool assists the designer by quickly generating multiple options, pushing the designer out of their
comfort zone and enabling the rapid analysis of a wide range of possible innovative and creative de-
signs. Additionally, the supportive tool could function as a tool for quickly analyzing the amount of
luxury space present in a design. Therefore in the future, the tool could also assist in cost estimation,
providing an account manager with a rapid price indication.

For further research, the tool could be studied more in-depth by making the tool generate arrangements
until a design comparable to the GA is produced. By analyzing which systems score the highest in
generated arrangement, it would be possible to determine which systems need to score high for a
realistic and ”logical” design from the designer’s perspective. This could then be implemented in the
arrangement generator through a toggle, allowing users to choose between a more creative or a more
realistic design. This is supported by the observation that the generated design most similar to the
actual design of Bulldog had the highest arrangement score. This suggests that a highly creative
design often results in an illogical and lower-scoring design, while a conservative design similar to the
designer’s arrangement scores higher.

Additionally, it is proposed to present the arrangement tool to younger, less experienced designers for
further research. Young designers, having less established design patterns, may benefit more from
such a supportive tool. They could be more easily inspired by the arrangement tool, given their greater
flexibility in design approaches. Furthermore, younger designers are more accustomed to working with
supportive tools, and it is expected that they would be more open to adopting the arrangement tool.
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Conclusion

This research aimed to answer the question of whether the application of modularity can enhance de-
sign efficiency and creativity within the design process of custom-built luxury yachts. Themain research
question was formulated as follows:

How can a custom yacht company implement modularity to optimize design efficiency and cre-
ativity in the early-stage design process, while maintaining the high level of customization re-
quired for a custom yacht?

To investigate this main question, several sub-questions were developed, each introducing a new sub-
study. These sub-questions are:

1. How can a modular design method be implemented in the design process to identify the required
systems for luxury yachts, and evaluate which systems are suitable as a module?

2. What tool can predict the surface areas of modules based on design brief parameters, and how
do owner-specific requirements influence these predictions?

3. How can designers be supported in exploring innovative arrangements of modules during the
early stage design of luxury yachts?

The conclusions drawn from the sub-studies contribute to answering the main research question and
support the final conclusion of the study.

To answer the question, ”How can a modular design method be implemented in the design pro-
cess to identify the required systems for luxury yachts, and evaluate which systems are suitable
as a module?”, research was conducted on the functionality and applicability of Modular Function De-
ployment (MFD). In this study, MFD was applied to translate the requirements of a yacht into systems.
Subsequently, using module drivers, an analysis was performed to determine which of these systems
would be suitable as modules.

By analyzing the systems and modularity drivers, it became evident that all systems can benefit from
modular principles to varying degrees, with some systems, such as the Tender Garage system, showing
particularly highmodular potential. Using theMIMmatrix from theMFDmethod, it can be confirmed that
the designated systems will provide added value as modules throughout the lifecycle of the yacht. This
leads to the conclusion that these systems will function optimally as modules for the design process in
the early stages of yacht development. On the other hand, the crew accommodation system, which was
initially expected to score highly due to its simplicity and repetitive nature, scored lower. This outcome
demonstrates that modularity is not just about constructing in blocks but involves considering the entire
lifecycle of the yacht.
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The study also revealed that modularity can enhance customization and personalization, contrary to
initial assumptions that it might limit design creativity. This indicates that modular principles can not only
streamline production and assembly but also encourage innovation and improve client satisfaction.

Further research is conducted to find an answer to the next subquestion: ”What tool can predict
the surface areas of modules based on design brief parameters, and how do owner-specific
requirements influence these predictions?” The results of this analysis reveal that certain systems,
such as the Beach Club, Dining & Galley, and Owner Accommodation, are consistently identified as
owner-specific by both the predictive model and the designer’s expertise. These systems exhibit high
MSPE values (>30%), confirming their owner-specific nature. However, some systems, like the Tender
Garage and Guest Accommodation, which were flagged by the designer as owner-specific, did not
exceed the 30% MSPE threshold, indicating that while they are still influenced by owner preferences,
their surface areas can be moderately predicted based on input parameters.

Additionally, theR2 metric played a critical role in evaluating prediction accuracy. Systems with negative
R2 values, such as Safety & Compliance, indicate predictions that are worse than a simple mean
prediction. This suggests that the inaccuracies are more likely due to data deficiencies or misalignment
between the model and real-world conditions, rather than reflecting owner-specific requirements. For
example, the high MSPE and negativeR2 values observed for the propulsion and Safety & Compliance
systems underscore the complexity of these systems, where input parameters alone fail to capture
the actual variations in space allocation. Due to this study, it can be assumed that modules with an
MSPE >30% are strongly influenced by owner-specific requirements, while systems with lower but still
significant MSPE values (10-30%) may also exhibit owner-specific characteristics. The R2 analysis
further highlights the limitations of the predictive model for certain systems, where prediction accuracy
can be hindered by insufficient data or system complexity.

To complement the research and answer the main question, the final sub-study addresses the sub-
question: ”How can designers be supported in exploring innovative arrangements of modules
during the early stage design of luxury yachts?”. The evaluation of the arrangement generator tool
reveals its potential as a supportive tool for early-stage yacht design, particularly in fostering creative
exploration by generating unconventional layout options. It encourages designers to move beyond
established patterns, offering rapid ideation during the conceptual phase. However, the tool does not
directly accelerate the iterative design process, it does facilitate a quicker discovery of new starting
points. Current limitations include handling only up to four decks, neglecting spatial elements such
as staircases and weight distribution, and being constrained to yachts within a specific length range
(70-110 meters).

While the current arrangement generator serves as a valuable supportive tool in yacht design, certain
parts are missing therefore limiting the working of the tool. Improvements to the user interface, the
integration of graphical input capabilities, and the flexibility to toggle between creative and practical
designs will significantly increase its utility. Although the generator is not a replacement for professional
design expertise, with future advancements, it holds the potential to become an indispensable aid in
both the creative and logistical processes of yacht design, expanding its applicability and versatility.

Based on the three sub-questions, a conclusive answer can be provided to the main research question:
”How can a custom yacht company implement modularity to optimize design efficiency and
creativity in the early-stage design process, while maintaining the high level of customization
required for a custom yacht?”
The implementation of modularity in the design process of luxury yachts is feasible through the com-
prehensive application of Modular Function Deployment (MFD) in the early stage of the design phase.
MFD is supported by the Area Prediction tool and the Arrangement Generation tool. Through the
use of these supportive tools, it is demonstrated that, contrary to initial assumptions, modularity does
not necessarily limit creativity. In fact, it offers the possibility to enhance creativity by encouraging in-
novative arrangements and offering designers a structured yet flexible framework to explore multiple
configurations, pushing boundaries in the early stages of design.



7
Discussion and Recommendations

To complete the study within the given timeframe, assumptions and simplifications were made through-
out the research. These assumptions are explained in this chapter, along with corresponding recom-
mendations. The assumptions were made across the three sub-studies and will therefore be discussed
in detail.

Modular Function Deployment (MFD)
The decision to apply a modular design method was made based on extensive literature research,
which determined that MFD would be the most suitable approach. However, no practical research was
conducted to compare different methods. The assumption that literature indicates MFD as the most
appropriate method for this case might be challenged in practice, where other methods may prove
more effective. For example methods like DSM, Function modelling and Axiomatic design as shown
in section2.4.1. Further research into the practical application of these modular design methods is
recommended to verify whether MFD can be proved to be the most suitable approach in practice.

For the analysis of the impact of the module drivers on different systems, the expertise of a single
specialist was used due to time constraints. Although the specialist has over 30 years of experience,
and thus his expertise is trusted, future research involving multiple specialists could provide stronger
validation of the questionnaire results.

Area Prediction Tool
For predicting the surface areas, a simple random forest regression method was used, supported by
cross-validation and bootstrap sampling. While the study shows that more complex predictive mecha-
nisms might yield small improvements, it cannot be ruled out that a more advanced model could result
in more reliable predictions. Since the nature of the research is to prove the method and not to perform
it in detail, this assumption can be made. Future research should focus on identifying the best-fitting
regression model for area predictions using the database to improve accuracy.

The dataset used for predictions consists of 25 yachts ranging from 70 to 100 meters in length. For
realistic predictions over such a large range, a much larger dataset is required. Additionally, the study
revealed that the dataset sometimes contained incorrect or missing values. Although efforts were
made to improve the dataset, expanding the database with additional prospects or ship data from other
shipyards could enhance the research. However, the use of ship data from other shipyards is strongly
discouraged due to the different construction methods and quality standards. Furthermore, the current
model expects accurate predictions from a dataset with a wide length range, future research could
create separate datasets for smaller length ranges to improve accuracy.

The areas are predicted based on eight input parameters. Although these were identified as the most
important parameters from the design brief, further research could study a wider range of design briefs
to identify additional parameters that could enhance the dataset and improve the prediction tool’s ac-
curacy.
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Evaluation metrics are used to determine which systems are owner-specific based on the prediction
tool, and the results are compared with a designer’s expertise. While this study relies on the experience
of a single designer with over 30 years of expertise, future research involving multiple designers could
lead to stronger conclusions regarding owner-specific systems.

Arrangement Generator
The arrangement generator is based on input from the prediction tool and specific arrangement condi-
tions. These conditions were established through literature review and findings from MFD, and were
finalized with the input of a specialist. Future research could incorporate the expertise of designers in
addition to the specialist. Currently, the arrangement conditions are limited to spatial location within the
yacht and relative positioning to other systems. To better reflect a designer’s expertise, future research
could consider more design factors in the arrangement conditions. Collaboration with designers would
help identify which additional conditions are important and their relative significance in yacht design.

The heuristic approach was chosen for generating arrangements after testing it against two other meth-
ods: greedy approach and simulated annealing. While these are commonly used methods, further
research could explore potentially better methods for packing algorithms.

Additionally, the heuristic approach was implemented in a significantly simplified version, the reason
being the ability to quickly generate arrangements. This assumption wasmade in the research because
evaluating the results, the functionality of the tool, and investigating its potential applications were
deemed more important than obtaining highly accurate results from the tool. Now this has been proven
in the conclusion, follow-up research could focus on improving the Packing Tool. Beyond exploring a
more optimal method for applying packing to this case, the current packing tool and method could also
be optimized by adding more complexity

The packing approach currently has many constraints, making it a relatively simple model. This as-
sumption is made due to the limited time available for the research and the goal of proving the method’s
functionality rather than delivering a fully functional tool. One limitation is that the packing tool assumes
uniform ship width across the entire length, leading to errors at the bow and stern, where ships typi-
cally taper. Additionally, the arrangement tool works in a 2D side view, assuming uniform width and
that systems occupy the full width, which is not realistic. Future research could develop a 3D tool that
accounts for varying widths and more accurate system placement.

The surface areas used in the arrangement generator come from the area prediction tool, but some
systems with owner-specific areas are based on unrealistic predictions. While these areas are used
in the arrangement generator, margins are added for owner-specific systems to reflect the owner’s re-
quirements. However, the predicted areas still include values with negative R2 scores, indicating lower
accuracy than a mean prediction. This assumption is made due to lack of owner specific information,
resources and time. Future research could replace these areas with mean predictions or explore better
methods to handle owner-specific system areas.

The conclusions about the arrangement generator’s functionality are based on the assumption that a
analysis conducted by a Senior Specialist and a Senior Designer is substantiated enough. Despite
their combined 60 years of experience, a broader evaluation involving multiple specialists and design-
ers could yield different insights. It is recommended that future research present the arrangement
generator to a wider group of designers and specialists. Young designers, in particular, may offer fresh
perspectives and could be more open to new tools. Additionally, the conclusions were drawn based
on an outdated version of the packing tool, which contains errors. However, it has been assumed that
these errors will not affect the final conclusions of the sub-study or the overall research. This assump-
tion can be made because the update within the tool is on a certain level of detail, where conclusions
from specialist and designer are made on overall working of the tool. Nonetheless, follow-up research
using the most recent version of the packing tool will ensure that these errors are fully excluded.

Concluding Recommendations
The conclusion of the research indicates that the implementation of modularity in the design process
of luxury yachts is feasible through the comprehensive application of Modular Function Deployment
(MFD) in the early-stage design phase. MFD is supported by the Area Prediction tool and the Arrange-
ment Generator tool. These tools demonstrate that, contrary to initial assumptions, modularity does
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not limit creativity. Instead, it can enhance creativity by encouraging innovative arrangements and pro-
viding designers with a structured yet flexible framework to explore multiple configurations, pushing
boundaries in the early stages of design.

Further research should investigate whether the implementation of modularity can successfully address
practical challenges. This includes studying whether clients can accept modularity without perceiving
the designs as less bespoke. Additionally, research should explore whether designers and stakehold-
ers can shift from traditional bespoke methods to modular design approaches without resistance. An-
other critical area for research is the potential conflict between modular design methods and maritime
regulations. The transition to modular design could also impact Feadship’s brand image, which should
be thoroughly explored to find solutions to mitigate any negative effects. Lastly, research should focus
on how investments in training, tools, and workflow adjustments can ensure a seamless transition to a
modular design process.

When these studies are completed, a definitive conclusion can be drawn on whether modularity can
optimize design efficiency and creativity within the yacht design process.

A important note that should be made here is that the research has focused on the current design
process of yachts, specifically the existing Feadship fleet between 75 and 110 meters. However, the
energy transition will require future yachts to meet different requirements and possess different charac-
teristics compared to the current database. It is expected that yachts will evolve alongside this transition
and will therefore need to comply with new standards.

Since the research, including the prediction tool and the subsequent arrangement generator, is based
on the existing Feadship fleet, it cannot be guaranteed that these outcomes will remain relevant for
the new generation of yachts that will be designed and built in the upcoming years. While this does
not undermine the validity of the method, the reliability of the generator tool for future yachts cannot
be assured. Further research will need to be conducted into the evolving set of requirements and
properties for yachts as anticipated in the future.
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BRIEFING 
Design Number:  

Project Naam:  

Account manager:  

Designer DV  

1 Persoonlijk 
• Naam, nationaliteit, leeftijd 

• Familie situatie 

• Business 

• Cultuur, interesses, lifestyle 

• Kunst / Hobbies / auto’s  

• Belangrijke waarden - ecologie, innovatie, comfort etc. 

• Hoe bij Feadship gekomen 

• Huidige/vorige jachten / gecharterde jachten 

• Overig – formeel/informeel 

2 Programma van eisen 

2A Hoofd afmetingen 
• Exterior/, Interior designer 

• Lengte, breedte, max. diepgang 

• Snelheid / range / motoren 

• Regelgeving, tonnage eis 

2B Gebruik 

• Privé / Zakelijk / Charter 

• Welke ruimtes en waar 
o Gasten hutten, aantal gasten 
o Eigenaars hut, kantoor 
o Luxe ruimtes 
o Tenders (type/lokatie), helicopter, toys 
o Buiten ruimtes, jacuzzi, zwembad 
o Crew, aantal / lokatie 
o Etc.  – lift 

• Lange / korte reizen / vaargebied 

• Veel weinig gasten, kinderen 

• Nadruk op buiten / binnen ruimtes, zon / schaduw, privacy 

2C Vorm stijl 
• Klassiek / modern.. 

• Referentie jachten 

• Wat juist niet 

3 Budget / Proces / presentatie 

3a   Budget 
• Laag/hoog budget 

3b Proces 
• Betrokkenen tijdens proces en taken / bevoegdheden 

• Makelaar, Owners rep, Captain 

3c Laatste contact 
• Datum 

• Wat is gepresenteerd 

• Aanwezigen 

3d Volgende contact 
• Datum 

• Wat wordt gepresenteerd 
o Ontwerp voorstellen 
o Plan (block layout / ingevuld) 
o Profiel 
o 3D rendering / print model 

• Aanwezigen 

 



C
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Continuous Hygiene Maintenance ● ● ○ ● ○ ○
Comfortable Living Conditions ○ ○ ◉ ○ ● ◉ ◉

Safe Living Conditions on Sea ● ● ● ◉ ●
Self-reliance During Emergencies ● ◉ ◉

Structural Safety ● ●
Safe Navigation ◉ ● ● ◉

Independence in Movement ◉ ● ● ◉ ○
Secure Mooring ○ ● ● ● ◉
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◉ ● ◉ ◉ ○ ○ Power System ○ ● ○ ◉ ○ ◉ ○ ◉ ◉ ○ ○
● ● ◉ Propulsion System ○ ● ◉ ○ ○ ○ ○ ● ○ ○

○ ● ○ ◉ ○ Mooring & Anchoring System ○ ○ ○ ◉ ○
◉ ● ○ ● ● ◉ ○ ○ HVAC System ○ ◉ ○ ◉ ○ ○ ◉ ○
◉ ◉ ○ ◉ ○ ◉ ● ○ Extended Operations System ◉ ○ ○ ◉

◉ ○ ○ ● ● ● ◉ ◉ Wheelhouse System ◉ ○ ○ ○ ○ ◉ ◉ ◉ ○ ○ ○ ◉

● ◉ Tender Garage & Toy Storage System ● ○ ◉ ○ ● ○ ○ ○ ○ ◉ ◉

○ ○ ◉ ● ○ Beachclub system ● ● ○ ○ ○
● ○ ◉ ◉ ◉ ◉ ◉ Dining & Galley System ◉ ○ ○ ○ ○ ○
○ ● ◉ ● ◉ ● Owner Accommodation System ◉ ◉ ○ ○ ○ ○

● ◉ ● ◉ ● Guest Accommodation system ◉ ◉ ○ ○
● ◉ ● ◉ ◉ ○ ○ Crew Accommodation System ○ ○ ○

◉ ● ◉ ● ○ ● ○ ◉ Crew Operations System ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
● ◉ ○ ○ ● ● ● ○ ◉ ○ ○ ● Safety and Compliance System ◉ ○ ◉ ● ○ ○



D
Regression prediction model script

This study applies machine learning techniques to analyze ship data, with a focus on predictive model-
ing of the yachts module areas based on the design parameters. The methodology involves the use of
Linear Regression and Random Forest models to predict all areas simultaneously. The methodology
builds on established principles of multi-output regression, which has beenwidely applied in complex en-
gineering contexts requiring the simultaneous prediction ofmultiple interrelated outcomes[Tsoumakas and Katakis, 2007].

Methodology
Data loading and preprocessing
Data import and preprocessing
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.multioutput import MultiOutputRegressor
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.impute import SimpleImputer
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import warnings
import matplotlib.pyplot as plt

warnings.filterwarnings("ignore", message="X does not have valid feature names, but")

The analysis begins with importing the necessary libraries for data manipulation, model training, and
evaluation. The pandas library is utilized for data manipulation, while numpy is employed for numerical
operations. Machine learning models and evaluation metrics are sourced from the scikit-learn library,
a well-established library for machine learning in Python [Pedregosa et al., 2011]. Warnings related to
feature names are suppressed to ensure cleaner output during model training and prediction.

Definition of system names
system_names = [
"Power System", "Propulsion System", "Mooring & Anchoring System",
"HVAC System", "Extended Operations System", "Safety and Compliance System",
"Wheelhouse System", "Crew Operations System", "Crew Accommodation System",
"Tender Garage System", "Beachclub System", "Dining & Galley System",
"Owner Accommodation System", "Guest Accommodation System"

]
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The list of system names corresponds to the target variables, providing descriptive labels for the various
ship systems under analysis.

Data Loading
filepath = r"C:\Users\jaap.marcus\OneDrive - De Voogt Naval Architects\Graduation Jaap Marcus\Onderzoek\Excel onderzoek schepen\Machine_learning_Ship_Data_Analysis.xlsx"
df = pd.read_excel(filepath, sheet_name='Ship Data')

Data are loaded from the Excel file, the Excel file contains the information on ship design parameters
and system areas. This data is collected from the Feadship Design Database.

Handling of Missing Values
df.replace(0, np.nan, inplace=True)

Zeros in the dataset are replaced with NaN values, assuming that zero represents missing data rather
than true values. This is a standard perprocessing step in machine learning to handle incomplete data
[Little and Rubin, 2019].

Data conversion and feature selection
Ensuring numeric data
feature_columns = ['Length', 'Width', 'Draught', 'Nr. of Crew', 'Nr. of Guests', 'Design Speed', 'Range']
target_columns = ['Area 1', 'Area 2', 'Area 3', 'Area 4', 'Area 5', 'Area 6', 'Area 7',

'Area 8', 'Area 9', 'Area 10', 'Area 11', 'Area 12', 'Area 13', 'Area 14']

for col in feature_columns + target_columns:
df[col] = pd.to_numeric(df[col], errors='coerce')

To ensure all feature and target columns are suitable for analysis, the script convertgs them to numeric
types, coercing errors into NaN values. This step is crucial for maintaining the integrity of the dataset,
as non-numeric data can lead to errors during model training[James et al., 2013].

Separation of features and targets
X = df[feature_columns]
y = df[target_columns]

The dataset is split into features (x) and targets (y). Features consist of ship design parameters, while
targets are the areas associated with the different ship systems.

Imputation of missing values
Imputation
imputer_X = SimpleImputer(strategy='mean')
imputer_y = SimpleImputer(strategy='mean')

X = pd.DataFrame(imputer_X.fit_transform(X), columns=X.columns)
y = pd.DataFrame(imputer_y.fit_transform(y), columns=y.columns)

Missing values in both the feature and target datasets are imputed using the mean strategy Imputation
is a widely accepted technique for handling missing data, which helps prevent bias and maintains
dataset size, ensuring robust model training[Schafer and Graham, 2002].

Data splitting
Train-Test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
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The dataset is split into training and testing sets using an 80/20 ratio. A random state is set to en-
sure the split is reproducible, which is critical for scientific experiments to allow for verification of
results[Kuhn, 2013].

Model training
Training of models
lr_model = MultiOutputRegressor(LinearRegression())
lr_model.fit(X_train, y_train)

rf_model = MultiOutputRegressor(RandomForestRegressor(random_state=42))
rf_model.fit(X_train, y_train)

Two models are trained: a multi-output linear regression model and a multi-output random forest re-
gression model. Because of its simplicity and interpretability linear regression is chosen. The linear
regression is by training a MultiOutputRegressor on the data. For its robustness and ability to handle
non-linear relationships a RandomForestRegressor is trained on the data as well.

Model prediction and evaluation metrics
Model predictions
lr_y_pred = lr_model.predict(X_test)
rf_y_pred = rf_model.predict(X_test)

Both models are used to predict the target variables on the test set, allowing for performance evaluation
against the true values.

Evaulation metrics
def mean_absolute_percentage_error(y_true, y_pred):

return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

def mean_squared_percentage_error(y_true, y_pred):
return np.mean(((y_true - y_pred) / y_true) ** 2) * 100

The models are evaluated using multiple metrics, Mean Squared Error (MSE), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), Mean Squared Percentage Error (MSPE) and R2

score.

Performance evaluation
lr_mse_scores = []
rf_mse_scores = []
lr_mae_scores = []
rf_mae_scores = []
lr_mape_scores = []
rf_mape_scores = []
lr_mspe_scores = []
rf_mspe_scores = []
lr_r2_scores = []
rf_r2_scores = []

print("Model Performance Evaluation:")
for i in range(y.shape[1]):

area_name = f'Area {i+1} - {system_names[i]}'
lr_mse = mean_squared_error(y_test.iloc[:, i], lr_y_pred[:, i])
lr_mae = mean_absolute_error(y_test.iloc[:, i], lr_y_pred[:, i])
lr_mape = mean_absolute_percentage_error(y_test.iloc[:, i], lr_y_pred[:, i])
lr_mspe = mean_squared_percentage_error(y_test.iloc[:, i], lr_y_pred[:, i])
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lr_r2 = r2_score(y_test.iloc[:, i], lr_y_pred[:, i])
lr_mse_scores.append(lr_mse)
lr_mae_scores.append(lr_mae)
lr_mape_scores.append(lr_mape)
lr_mspe_scores.append(lr_mspe)
lr_r2_scores.append(lr_r2)
print(f'Linear Regression - {area_name} - MSE: {lr_mse}, MAE: {lr_mae}, MAPE: {lr_mape}, MSPE: {lr_mspe}, R^2: {lr_r2}')

rf_mse = mean_squared_error(y_test.iloc[:, i], rf_y_pred[:, i])
rf_mae = mean_absolute_error(y_test.iloc[:, i], rf_y_pred[:, i])
rf_mape = mean_absolute_percentage_error(y_test.iloc[:, i], rf_y_pred[:, i])
rf_mspe = mean_squared_percentage_error(y_test.iloc[:, i], rf_y_pred[:, i])
rf_r2 = r2_score(y_test.iloc[:, i], rf_y_pred[:, i])
rf_mse_scores.append(rf_mse)
rf_mae_scores.append(rf_mae)
rf_mape_scores.append(rf_mape)
rf_mspe_scores.append(rf_mspe)
rf_r2_scores.append(rf_r2)
print(f'Random Forest - {area_name} - MSE: {rf_mse}, MAE: {rf_mae}, MAPE: {rf_mape}, MSPE: {rf_mspe}, R^2: {rf_r2}')

The evaluation results highlight the strengths and weaknesses of each model for predicting different
ship system areas, providing insights into model suitability based on system complexity and data char-
acteristics.

Sensitivity analysis
Sensitivity analysis
def sensitivity_analysis(model, original_data, feature_names, target_names, perturbation_scale=0.01):

sensitivity_results = {target: [] for target in target_names}
original_predictions = model.predict(original_data)

for i, feature in enumerate(feature_names):
perturbation = original_data[0, i] * perturbation_scale
if np.isnan(perturbation) or perturbation == 0:

perturbation = perturbation_scale * np.nanstd(original_data[:, i])

perturbed_data = original_data.copy()
perturbed_data[0, i] += perturbation

perturbed_predictions = model.predict(perturbed_data)

for j, target in enumerate(target_names):
sensitivity = np.abs((perturbed_predictions[0, j] - original_predictions[0, j]) / original_predictions[0, j]) * 100
sensitivity_results[target].append(sensitivity)

return sensitivity_results

Sensitivity analysis is conducted to assess the impact of disturbances in input features on the model
predictions. This analysis identifies which features most significantly affect the target outputs, providing
valuable insights into the relative importance of different design parameters[Saltelli, 2008].

Results
Visualization of sensitivity analysis
def plot_sensitivity_analysis(lr_sensitivity, rf_sensitivity, feature_names, target_names):

area_labels = [f'Area {i+1} - {system_names[i].replace(" System", "")}' for i in range(len(target_names))]
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for target, area_name in zip(target_names, area_labels):
lr_values = lr_sensitivity[target]
rf_values = rf_sensitivity[target]

x = np.arange(len(feature_names)) # the label locations
width = 0.35 # the width of the bars

fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, lr_values, width, label='Linear Regression')
rects2 = ax.bar(x + width/2, rf_values, width, label='Random Forest')

ax.set_xlabel('Features')
ax.set_ylabel('Sensitivity (%)')
ax.set_title(f'Sensitivity Analysis for {area_name}')
ax.set_xticks(x)
ax.set_xticklabels(feature_names, rotation=45, ha="right")
ax.legend()

fig.tight_layout()
plt.show()

The results of the sensitivity analysis are visualized, comparing the sensitivity of each feature across
the Linear Regression and Random Forest models. This analysis helps identify which features the
models rely on most heavily, indicating areas where design parameters exert significant influence over
system area predictions.

Visualization of evaluation metrics
def plot_metric_scores(lr_scores, rf_scores, target_names, metric_name, ylabel):

area_labels = [f'Area {i+1} - {system_names[i].replace(" System", "")}' for i in range(len(target_names))]

x = np.arange(len(target_names)) # the label locations
width = 0.35 # the width of the bars

fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, lr_scores, width, label='Linear Regression')
rects2 = ax.bar(x + width/2, rf_scores, width, label='Random Forest')

ax.set_xlabel('Target Areas')
ax.set_ylabel(ylabel)
ax.set_title(f'{metric_name} Scores for Each Area')
ax.set_xticks(x)
ax.set_xticklabels(area_labels, rotation=45, ha="right")
ax.legend()

fig.tight_layout()
plt.show()

The evaluation metrics are plotted for each area, providing a visual comparison of model performance
across the different ship systems.



E
Enhanced Regression Prediction

Model Script

This enhanced script builds upon the initial machine learning methodology by incorporating cross-
validation and bootstrap sampling techniques to improve the robustness and reliability of the predictive
models. The enhanced approach uses Linear Regression and Random Forest models, evaluated us-
ing combined cross-validation and bootstrap sampling strategies, to predict ship system areas based
on design parameters. The improvements are grounded in advanced statistical methods that enhance
the generalizability of the model results[Efron and Tibshirani, 1997].

Methodology Enhancements
Cross-Validation and Bootstrap Integration
Cross-Validation Setup
from sklearn.model_selection import KFold

# Define cross-validation strategy
kf = KFold(n_splits=5, shuffle=True, random_state=42)

Instead of using a single train-test split, the enhanced script employs K-Fold Cross-Validation with 5
folds, shuffling the data to ensure that the model evaluations are robust and less dependent on a single
data split. This technique reduces the risk of overfitting and provides a more reliable estimate of the
model’s performance on unseen data.

Bootstrap Sampling Within Cross-Validation
from sklearn.utils import resample

def bootstrap_cross_val_predict(model, X, y, cv, n_bootstrap=100):
bootstrap_predictions = np.zeros((len(X), y.shape[1]))

for train_idx, test_idx in cv.split(X):
X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]

# Bootstrap sampling
fold_predictions = []
for _ in range(n_bootstrap):

X_resampled, y_resampled = resample(X_train, y_train)
model.fit(X_resampled, y_resampled)
fold_predictions.append(model.predict(X_test))

67



68

# Average predictions over bootstrap samples
mean_fold_predictions = np.mean(fold_predictions, axis=0)
bootstrap_predictions[test_idx] = mean_fold_predictions

return bootstrap_predictions

Bootstrap sampling is integrated within each fold of the cross-validation process, where the training
data is resampled multiple times to create diverse datasets for model training. The predictions from
these bootstrap samples are averaged, which helps in stabilizing the model’s performance metrics
and reduces variance[Efron and Tibshirani, 1997]. This method combines the strengths of both cross-
validation and bootstrap, making the model evaluation more robust.

Implementation of Cross-Validation with Bootstrap Sampling
# Create models
lr_model = MultiOutputRegressor(LinearRegression())
rf_model = MultiOutputRegressor(RandomForestRegressor(random_state=42))

# Use bootstrap sampling within cross-validation for predictions
lr_y_pred_cv_bootstrap = bootstrap_cross_val_predict(lr_model, X, y, kf, n_bootstrap=100)
rf_y_pred_cv_bootstrap = bootstrap_cross_val_predict(rf_model, X, y, kf, n_bootstrap=100)

Both Linear Regression and Random Forest models are evaluated using the combined cross-validation
and bootstrap sampling approach. By applying this method, the models benefit from reduced sensitivity
to random variations in the data, leading to more reliable performance metrics that better reflect the
models’ expected real-world performance.

Enhanced Performance Evaluation
Calculation of Evaluation Metrics
# Evaluate both models for each area and store results
lr_mse_scores = []
rf_mse_scores = []
lr_mae_scores = []
rf_mae_scores = []
lr_mape_scores = []
rf_mape_scores = []
lr_mspe_scores = []
rf_mspe_scores = []
lr_r2_scores = []
rf_r2_scores = []

print("Model Performance Evaluation with Cross-Validation and Bootstrap Sampling:")
for i in range(y.shape[1]):

area_name = f'Area {i+1} - {system_names[i]}'

# Linear Regression metrics
lr_mse = mean_squared_error(y.iloc[:, i], lr_y_pred_cv_bootstrap[:, i])
lr_mae = mean_absolute_error(y.iloc[:, i], lr_y_pred_cv_bootstrap[:, i])
lr_mape = mean_absolute_percentage_error(y.iloc[:, i], lr_y_pred_cv_bootstrap[:, i])
lr_mspe = mean_squared_percentage_error(y.iloc[:, i], lr_y_pred_cv_bootstrap[:, i])
lr_r2 = r2_score(y.iloc[:, i], lr_y_pred_cv_bootstrap[:, i])
lr_mse_scores.append(lr_mse)
lr_mae_scores.append(lr_mae)
lr_mape_scores.append(lr_mape)
lr_mspe_scores.append(lr_mspe)
lr_r2_scores.append(lr_r2)
print(f'Linear Regression with Cross-Validation and Bootstrap -
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{area_name} - MSE: {lr_mse}, MAE: {lr_mae}, MAPE: {lr_mape}, MSPE:
{lr_mspe}, R^2: {lr_r2}')

# Random Forest metrics
rf_mse = mean_squared_error(y.iloc[:, i], rf_y_pred_cv_bootstrap[:, i])
rf_mae = mean_absolute_error(y.iloc[:, i], rf_y_pred_cv_bootstrap[:, i])
rf_mape = mean_absolute_percentage_error(y.iloc[:, i], rf_y_pred_cv_bootstrap[:, i])
rf_mspe = mean_squared_percentage_error(y.iloc[:, i], rf_y_pred_cv_bootstrap[:, i])
rf_r2 = r2_score(y.iloc[:, i], rf_y_pred_cv_bootstrap[:, i])
rf_mse_scores.append(rf_mse)
rf_mae_scores.append(rf_mae)
rf_mape_scores.append(rf_mape)
rf_mspe_scores.append(rf_mspe)
rf_r2_scores.append(rf_r2)
print(f'Random Forest with Cross-Validation and Bootstrap - {area_name}
- MSE: {rf_mse}, MAE: {rf_mae}, MAPE: {rf_mape}, MSPE: {rf_mspe}, R^2:
{rf_r2}')

The evaluationmetrics are calculated using the predictions obtained from the combined cross-validation
and bootstrap approach. This enhanced evaluation method provides a comprehensive view of each
model’s performance across different areas, accounting for variability and increasing the reliability of
the results.

Prediction and Sensitivity Analysis
Model Training for Final Predictions
# Train the models on the full dataset before predicting new data
lr_model.fit(X, y)
rf_model.fit(X, y)

lr_predicted_areas = lr_model.predict(new_ship_data)
rf_predicted_areas = rf_model.predict(new_ship_data)

After completing cross-validation with bootstrap sampling, the models are retrained on the full dataset
to make final predictions for new data. This step ensures that the models have the benefit of learning
from the entire available dataset, optimizing their performance for real-world predictions.

Enhanced Sensitivity Analysis
# Perform sensitivity analysis for Linear Regression and Random Forest
lr_sensitivity = sensitivity_analysis(lr_model, new_ship_data, feature_columns, target_columns)
rf_sensitivity = sensitivity_analysis(rf_model, new_ship_data, feature_columns, target_columns)

The sensitivity analysis remains a key component of the enhanced script, allowing for the evaluation of
how perturbations in input features affect model predictions. This analysis continues to provide valuable
insights into the importance of various design parameters, now based on more robustly evaluated
models.

Results and Visualization
Visualization of Sensitivity and Performance Metrics
# Plotting the sensitivity analysis results
plot_sensitivity_analysis(lr_sensitivity, rf_sensitivity, feature_columns, target_columns)

# Plotting the MSE, MAE, MAPE, MSPE, and R² scores
plot_metric_scores(lr_mse_scores, rf_mse_scores, target_columns, 'MSE', 'MSE')
plot_metric_scores(lr_mae_scores, rf_mae_scores, target_columns, 'MAE', 'MAE')
plot_metric_scores(lr_mape_scores, rf_mape_scores, target_columns, 'MAPE', 'MAPE (%)')
plot_metric_scores(lr_mspe_scores, rf_mspe_scores, target_columns, 'MSPE', 'MSPE (%)')
plot_metric_scores(lr_r2_scores, rf_r2_scores, target_columns, 'R²', 'R²')
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The enhanced script continues to provide detailed visualizations of both sensitivity analysis and model
performance metrics. By integrating cross-validation and bootstrap sampling, these visualizations
are now based on more stable and generalizable evaluation metrics, providing clearer guidance for
decision-making based on the models’ predictions.



F
Bootstrap Sampling &

Cross-Validation

Bootstrap Sampling
Bootstrap Sampling is a resampling technique where data is randomly sampled with replacement from
the original dataset to create a new dataset of the same size. It was introduced by Bradley Efron in
1979 as a way to estimate the sampling distribution of a statistic without needing to assume anything
about the population distribution.
Bootstrap Sampling can be used to estimate uncertainty because it allows to estimate the variability of
a models performance by repeatedly training it on different resampled versions of the data set. It cna
also create multiple different datasets from a single dataset, even when the dataset is small. This way
it helps to handle small datasets. Also Bootstrap Sampling can help to make more stable predictions
by averaging predictions over many bootstrapped samples and reducing the effect of outliers or noise
in the data. [Davison and Hinkley, 1997]

Working of Bootstrap Sampling
1. Assume you have a dataset Z = {x1, x2, ..., xn} of size n, where each xi is an observation (a row

in the dataset).
2. Create a new dataset Z∗ of size n by randomly sampling with replacement from the original

dataset Z. This means:

• Each data point from the original dataset has an equal probability of being selected
• Because of sampling with replacement, the same data point (row) can appear multiple times
in the resampled dataset.

For example, ifZ = {x1, x2, x3, x4}, a possible bootstrapped sample could beZ∗ = {x2, x2, x4, x1}
3. The process of resampling is repeated multiple times, creating multiple bootstrapped datasets

Z∗1, Z∗2, ..., Z∗B , where B is the number of bootstrap iterations.

Each bootstrapped dataset Z∗b can be used to train a new model, and the predictions from all
models can be aggregated.

4. The training of the machine learning model on each of the dataset will have a different model for
each dataset since each Z∗b is slightly different from the original Z.

5. After training the model on all bootstrapped samples, aggregating the predictions forms the final
prediction. The bootstrap process begins with a statistic that has the interest (â∗). A large number
(B) of bootstrap samples are independently drawn. Each bootstrap sample is used to compute
this statistic {â∗1, â∗2, ..., â∗B}. All these bootstrapped data sets can be used to compute the
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standard error of this desired statistic following:

ŜEB =

√∑B
b=1(â

∗ − a∗B

)

2

(B − 1 (F.1)

Thus, ŜEB serves as an estimate of the standard error of â estimated from the original dataset.

Figure F.1: Bootstrap Sampling

Cross-Validation
Cross-Validation is a technique for assessing the generalization performance of a model. It involves
splitting the dataset into multiple subsets (folds), training the model on some subsets, and testing it on
the remaining subsets. The key advantage is that every data point gets to be used for both training
and testing, but never at the same time. most common used type of cross-validation is k-fold cross-
validation where the dataset is split into k equal-sized folds. The model is trained on k-1 folds and
tested on the remaining fold.
Cross-validation provides a more accurate estimate of how well the model will perform on unseen data.
It reduces overfitting to a particular train-test split by ensuring that the model is tested on different
subsets of the data. Also cross-validation makes better use of limited data by ensuring that each point
is used for both training and testing.

Working of Cross-Validation
1. Assume the original dataset is D = {x1, x2, ..., xn}, where n is the number of observations. This

is the full dataset from which the cross-validation splits will be performed.
2. The dataset is randomly divided into K subsets, also called folds. Each fold contains n

K observa-
tions.

3. The model is trained on K-1 folds of the data and tested on the remaining 1 fold. This process is
repeated k times, each time using a different fold as the test set and the remaining K-1 folds as
the training set.

4. Once al n iterations are complete, the performance scores from all iterations are averaged. This
average gives a more robust estimate of the model’s perfromance on unseen data, as the model
has been tested on all parts of the dataset.

5. After cross-validation is complete, the model can be retrained on the entire dataset to produce a
final model for deployment or further analysis. This final model benefits from using all available
data for training.
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Hybrid Cross-Validation & Bootstrap Sampling approach
In the prediction script, bootstrap sampling is applied within each fold of a K-fold Cross-Validation. This
hybrid approach is designed to enhance model evaluation and make predictions more robust.

Working of Hybrid Cross-validation & Bootstrap Sampling
1. First the dataset is devided into training and testing sets using K-fold Cross-Validation.

for train_idx, test_idx in cv.split(X):
X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]

2. Once the training set for a fold is defined (x_train, y_train), bootstrap sampling is applied to this
training set to create multiple resampled versions of it.

for _ in range(n_bootstrap):
X_resampled, y_resampled = resample(X_train, y_train)
model.fit(X_resampled, y_resampled) fold_predictions.append(model.predict(X_test))

3. Once predictions have beenmade for all 50 bootstrap samples, the script averages the predictions
for the test set to get a single robust prediction for each test point in that fold.

mean_fold_predictions = np.mean(fold_predictions, axis=0)
bootstrap_predictions[test_idx] = mean_fold_predictions

4. The cross-validation process is repeated for all folds. Each fold is used once as the test set, while
bootstrap sampling is applied within the remaining k-1 folds to generate robust predictions. Once
all folds are processed, the bootstrap_predictions array contains the final averaged predictions
for the entire dataset, obtained through cross-validation with bootstrap resampling.

Each training set is modified through bootstrap sampling, which means the model is trained on slightly
different versions of the training data during each bootstrap iteration. Some data points may be sam-
pled multiple times, while others may not be included in certain bootstrap samples. The test set for
each fold is never modified by bootstrap sampling. So the same test set is used for all 50 bootstrap
iterations within that fold, allowing the model to be evaluated consistently across resampled versions
of the training data.

By averaging predictions from multiple bootstrap samples, the final prediction becomes less sensitive
to small fluctuations in the training data. This reduces the variance in the model’s predictions and
makes them more stable and reliable. The model is trained on slightly different versions of the training
set in each bootstrap iteration, making it less likely to overfit to specific data points. This leads to a
more robust model that generalizes better to unseen data. Instead of relying on a single model trained
on one version of the training data, the final prediction is based on an ensemble of models trained on
different bootstrapped training sets. This approach improves accuracy and robustness of predictions.



G
Performance metrics

Figure G.1: Performance metrics initial regression methods
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Figure G.2: Performance metrics bootstrap and cross-validation regression methods



H
Heuristic Packing Algorithm Script

This chapter provides a detailed explanation of the script developed to generate the arrangement of
yacht systems using a heuristic packing approach. The script incorporates user preferences, spatial
constraints, and dynamic scoring to generate and evaluate multiple arrangements, ensuring that yacht
systems are placed in an optimal manner based on various design considerations.

Methodology
Data Loading and Preprocessing
Loading Preferences from Excel
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import random
import logging

# Suppress detailed INFO logs
logging.basicConfig(level=logging.CRITICAL, format='%(levelname)s:%(message)s')

# Function to read preferences from Excel
def read_preferences_from_excel(filepath):

df = pd.read_excel(filepath, sheet_name=0)
preferences = {

'height_preference': [], # High, Low, or None
'length_preference': [], # Bow or Stern
'close_to_systems': [],
'far_from_systems': []

}
for i in range(len(df)):

# Extract height preference
height_pref = df.iloc[i]['Height preference:']
height_score = df.iloc[i]['Height score:']
if height_pref == 'High':

preferences['height_preference'].append(('High', height_score))
elif height_pref == 'Low':

preferences['height_preference'].append(('Low', height_score))
else:

preferences['height_preference'].append((None, 0)) # No preference

# Extract length preference
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length_pref = df.iloc[i]['Length preference:']
length_score = df.iloc[i]['Length score:']
if length_pref == 'Bow':

preferences['length_preference'].append(('Bow', length_score))
elif length_pref == 'Stern':

preferences['length_preference'].append(('Stern', length_score))
else:

preferences['length_preference'].append((None, 0)) # No preference

# Extract close to systems preferences
close_systems = {}
for j in range(1, 7):

close_system = df.iloc[i][f'Close to System {j}:']
close_score = df.iloc[i][f'Close to Score {j}:']
if pd.notna(close_system) and close_system != '-':

system_index = df[df['System'] == close_system].index[0]
close_systems[system_index] = close_score

preferences['close_to_systems'].append(close_systems)

# Extract far from systems preferences
far_systems = {}
for j in range(1, 7):

far_system = df.iloc[i][f'Far from System {j}:']
far_score = df.iloc[i][f'Far from Score {j}:']
if pd.notna(far_system) and far_system != '-':

system_index = df[df['System'] == far_system].index[0]
far_systems[system_index] = far_score

preferences['far_from_systems'].append(far_systems)

return preferences

The script begins by importing necessary libraries for data manipulation, visualization, and random-
ization. It reads system placement preferences from an Excel file, which includes height preferences,
length preferences, and proximity constraints. The extracted preferences are stored in a dictionary
format, enabling structured access during subsequent computations.

Configuration Setup
Defining the Configuration Dictionary
# Define the configuration dictionary
config = {

'ship': {
'length': 88,
'width': 14.5,
'deck_height': 3,
'decks': ['Lower Deck', 'Main Deck', 'Bridge Deck', 'Owner Deck']

},
'systems': {

'areas': [260.11441804, 31.58688445, 51.94374071, 82.46643338, 66.50703283,
17.44829461, 82.75784908, 239.68814354, 242.86259685, 127.18351904,

147.55150076, 47.90980946, 204.32898304, 248.2602 ],
'names': [

"Power System", "Propulsion System", "Mooring & Anchoring System", "HVAC System",
"Extended Operations System",
"Safety and Compliance System", "Wheelhouse System", "Crew Operations System",
"Crew Accommodation System",
"Tender Garage System", "Beachclub System", "Dining & Galley System",
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"Owner Accommodation System", "Guest Accommodation System"
],
'separable': [False, False, False, True, True, True, False, False, False,
False, False, False, False, False],
'num_blocks': [1, 1, 1, 6, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1],
'preferences': {}, # This will be populated after reading the Excel file
'margins': [0, 5, 10, 0, 15, 0, 5, 20, 0, 10, 5, 0, 15, 10]

}
}
# Load preferences from Excel file
file_path = r"C:\Users\jaap.marcus\OneDrive - De Voogt Naval Architects\Graduation Jaap
Marcus\Onderzoek\Packing Tool\System_Scoring_Interface_Final_V9.xlsx"
preferences = read_preferences_from_excel(file_path)
config['systems']['preferences'] = preferences

The configuration dictionary defines the yacht’s parameters, including its length, width, deck height,
and deck names. It also specifies system attributes, such as their areas, names, separability (whether
systems can be split into multiple blocks), and individual margins. The preferences extracted from the
Excel file are integrated into this configuration to guide the arrangement process.

Feasibility Checks and Area Adjustments
Adjusting Areas and Calculating System Lengths
def adjust_areas(areas, margins):

return [area * (1 + margin / 100) for area, margin in zip(areas, margins)]

def calculate_lengths(areas, width):
return [area / width for area in areas]

The script adjusts system areas using predefined margins to account for spatial tolerances. It then
calculates system lengths by dividing these adjusted areas by the ship’s width. These lengths represent
the linear space required by each system along the yacht’s length.

Feasibility Function
def check_feasibility(system_lengths, ship_length, num_decks, deck_height, ship_width):

total_system_length = sum(system_lengths)
total_available_length = ship_length * num_decks

if total_system_length > total_available_length:
raise ValueError("Configuration not feasible: Total system length exceeds
available ship space.")

A feasibility check is performed to ensure that the total length of all systems does not exceed the
available space across the yacht’s decks. This function compares the sum of system lengths with the
total available length, defined as the product of the ship’s length and the number of decks. If the total
system length exceeds the available space, the configuration is deemed infeasible, and an error is
raised.

Dynamic Scoring and Placement
Dynamic Scoring Function
ef dynamic_score_placement(system_idx, x, z, current_positions, preferences, deck_height,
ship_length, decks):

score = 0
deck_idx = int(z // deck_height)
if deck_idx >= len(decks):

return -1 # Out of bounds

# Height preference score
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height_pref, height_weight = preferences["height_preference"][system_idx]
if height_pref == 'High' and deck_idx >= 2: # Bridge or Owner deck

score += height_weight * 100 # Increased weight for height preference

elif height_pref == 'Low' and deck_idx < 2: # Lower or Main deck
score += height_weight * 100 # Increased weight for height preference

# Length preference score
length_pref, length_weight = preferences["length_preference"][system_idx]
if length_pref == 'Stern':

score += (3 / (x + 1)) * length_weight * 100 # Stern preference
elif length_pref == 'Bow':

score += (3 / (ship_length - x + 1)) * length_weight * 100
# Bow preference

# Close to systems score
close_to_systems = preferences["close_to_systems"][system_idx]
for close_system_idx, close_score in close_to_systems.items():

for placed_idx, placed_x, placed_z, placed_length in current_positions:
if placed_idx == close_system_idx:

distance = abs(placed_x - x) + abs(placed_z - z)
score += close_score / (distance + 1) * 20 # Adjusted weight
for close to systems

# Far from systems score
far_from_systems = preferences["far_from_systems"][system_idx]
for far_system_idx, far_score in far_from_systems.items():

for placed_idx, placed_x, placed_z, placed_length in current_positions:
if placed_idx == far_system_idx:

distance = abs(placed_x - x) + abs(placed_z - z)
score += far_score * (distance + 1) * 20 # Adjusted weight for
far from systems

return score

The dynamic_score_placement function evaluates the placement of each system based on height,
length, and proximity preferences. Height Preferences: Systems are scored higher if placed on pre-
ferred decks (e.g., upper decks for ”High” preference). Length Preferences: Scores are adjusted based
on proximity to the bow or stern, as preferred. Proximity Preferences: Additional scores are added or
subtracted based on whether systems are placed near or far from specified systems. The scoring
incorporates user-defined weights, allowing customization of the importance of each preference, and
adjusts placements to enhance the total score of the arrangement.

Heuristic Packing and Arrangement Generation
Heuristic Packing Algorithm
def heuristic_packing(length, width, heights, system_lengths, preferences, separable,
num_blocks, decks, system_names):

current_positions = []

for idx in range(len(system_lengths)):
best_position = None
best_score = float('-inf')

# Handle separable systems by dividing them into multiple blocks
if separable[idx]:

block_length = system_lengths[idx] / num_blocks[idx]
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for block in range(num_blocks[idx]):
for deck in decks:

deck_idx = decks.index(deck)
z = deck_idx * heights
for x in np.linspace(0, length - block_length, num=100):
# Evaluate positions in small steps

if not check_overlap(x, z, block_length, current_positions,
heights, length):

# Introduce a small random factor to create variations
in the arrangements
score = dynamic_score_placement(idx, x, z, current_positions,
preferences, heights, length, decks) + random.uniform(-10, 10)

if score > best_score:
best_position = (idx, x, z, block_length)
best_score = score

if best_position:
current_positions.append(best_position)

else:
for deck in decks:

deck_idx = decks.index(deck)
z = deck_idx * heights
for x in np.linspace(0, length - system_lengths[idx], num=100):
# Evaluate positions in small steps

if not check_overlap(x, z, system_lengths[idx], current_positions,
heights, length):

# Introduce a small random factor to create variations in the
arrangements
score = dynamic_score_placement(idx, x, z, current_positions,
preferences, heights, length, decks) + random.uniform(-10, 10)
if score > best_score:

best_position = (idx, x, z, system_lengths[idx])
best_score = score

if best_position:
current_positions.append(best_position)

total_score = sum(dynamic_score_placement(idx, x, z, current_positions, preferences,
heights, length, decks)

for idx, x, z, _ in current_positions)
return current_positions, total_score

The heuristic packing algorithm generates feasible arrangements by iteratively evaluating potential
placements and selecting the configurations with the highest scores. For separable systems, the func-
tion divides them into smaller blocks and optimizes their distribution across decks. A random factor is
introduced to the scores to create variability and avoid uniform arrangements.

Generate Arrangements
def generate_arrangements(num_arrangements, length, width, heights, system_lengths,
preferences, separable, num_blocks, decks, system_names):

all_arrangements = []
all_scores = []

for _ in range(num_arrangements):
arrangement, score = heuristic_packing(length, width, heights, system_lengths,
preferences, separable, num_blocks, decks, system_names)
all_arrangements.append(arrangement)
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all_scores.append(score)

return all_arrangements, all_scores

This function generates multiple arrangements using the heuristic packing approach, storing each ar-
rangement and its corresponding score for comparative analysis. It repeats the arrangement generation
process for a specified number of iterations, allowing for a diverse set of configurations.

Visualization and Comparative Analysis
Visualization Function
dedef visualize_packing(ship_length, deck_height, packed_positions, system_names,
system_areas, arrangement_index):

plt.figure(figsize=(15, 10))
colors = plt.cm.get_cmap("tab20", len(system_areas))
legend_labels = []

for system_idx, x, z, length in packed_positions:
plt.fill_between([x, x + length], [z, z], [z + deck_height, z + deck_height],

color=colors(system_idx), edgecolor='black', label=f'System
{system_idx + 1} - {system_names[system_idx]}' if system_idx
not in legend_labels else "")

if system_idx not in legend_labels:
legend_labels.append(system_idx)

plt.xlim(0, ship_length)
plt.ylim(0, deck_height * len(config['ship']['decks']))
plt.xlabel("X (Length of the ship)")
plt.ylabel("Z (Height from bottom to top deck)")
plt.title(f"2D Packing of Ship Systems in XZ-plane (Arrangement {arrangement_index + 1})")
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=2, fontsize='small')
plt.show()

The visualize_packing function creates 2D visualizations of the generated arrangements, displaying the
system placements across the yacht’s decks. The visual representation aids in assessing the spatial
distribution of systems and verifying the feasibility of the arrangements.

Main Execution and Comparative Analysis
if __name__ == "__main__":

# Check feasibility before attempting to place systems
adjusted_areas = adjust_areas(config['systems']['areas'], config['systems']['margins']
system_lengths = calculate_lengths(adjusted_areas, config['ship']['width']
check_feasibility(system_lengths, config['ship']['length'], len(config['ship']['decks']),
config['ship']['deck_height'], config['ship']['width'])

# Generate arrangements with the original ship length
num_arrangements = 5 # Number of arrangements to generate
all_arrangements, all_scores = generate_arrangements(

num_arrangements, config['ship']['length'], config['ship']['width'], config['ship']
['deck_height'],
system_lengths, config['systems']['preferences'], config['systems']['separable'],
config['systems']['num_blocks'], config['ship']['decks'], config['systems']['names']

)

total_scores = []



82

for i, (arrangement, score) in enumerate(zip(all_arrangements, all_scores)):
print(f"\nArrangement {i + 1}:")
total_score = 0
for system_idx, x, z, length in arrangement:

system_score = dynamic_score_placement(system_idx, x, z, arrangement, config['systems']['preferences'], config['ship']['deck_height'], config['ship']
['length'], config['ship']['decks'])
total_score += system_score
system_name = config['systems']['names'][system_idx]
print(f" System '{system_name}' placed at (X: {x:.2f}, Z: {z:.2f}) with
length {length:.2f} -> Score: {system_score:.2f}")

total_scores.append(total_score)
print(f" Total Score for Arrangement {i + 1}: {total_score:.2f}")
visualize_packing(config['ship']['length'], config['ship']['deck_height'],
arrangement, config['systems']['names'], adjusted_areas, i)

# Calculate and display the average score
average_score = sum(total_scores) / len(total_scores)
print(f"\nAverage Score of All Arrangements: {average_score:.2f}")

In the main execution block, the script adjusts system areas, calculates lengths, and performs feasi-
bility checks before generating arrangements. It then compares the total and average scores of the
generated configurations. The script also evaluates optimized configurations using 90% of the original
ship length, providing insights into how reduced space impacts system arrangement quality.

Optimized Configurations
# Generate arrangements with 90% of the original ship length
optimized_length = config['ship']['length'] * 0.9
logging.info(f"Generating additional arrangements with 90% of the original ship length:
{optimized_length} meters.")

# Check feasibility for the optimized length
check_feasibility(system_lengths, optimized_length, len(config['ship']['decks']),
config['ship']['deck_height'], config['ship']['width'])

# Generate arrangements with the optimized ship length
optimized_arrangements, optimized_scores = generate_arrangements(

num_arrangements, optimized_length, config['ship']['width'], config['ship']
['deck_height'],
system_lengths, config['systems']['preferences'], config['systems']['separable'],
config['systems']['num_blocks'], config['ship']['decks'], config['systems']['names']

)

optimized_total_scores = []

for i, (arrangement, score) in enumerate(zip(optimized_arrangements, optimized_scores)):
print(f"\nOptimized Arrangement {i + 1}:")
total_score = 0
for system_idx, x, z, length in arrangement:

system_score = dynamic_score_placement(system_idx, x, z, arrangement,
config['systems']['preferences'], config['ship']['deck_height'], optimized_length,
config['ship']['decks'])
total_score += system_score
system_name = config['systems']['names'][system_idx]
print(f" System '{system_name}' placed at (X: {x:.2f}, Z: {z:.2f}) with length
{length:.2f} -> Score: {system_score:.2f}")

optimized_total_scores.append(total_score)



83

print(f" Total Score for Optimized Arrangement {i + 1}: {total_score:.2f}")
visualize_packing(optimized_length, config['ship']['deck_height'], arrangement,
config['systems']['names'], adjusted_areas, i + num_arrangements)

# Calculate and display the average score for optimized arrangements
optimized_average_score = sum(optimized_total_scores) / len(optimized_total_scores)
print(f"\nAverage Score of All Optimized Arrangements: {optimized_average_score:.2f}")

Optimized arrangements are generated by reducing the ship’s length to 90% of its original size, allowing
the script to evaluate howwell the systems can still be placed efficiently under spatial constraints. These
optimized configurations are scored and compared with the original ones to determine their feasibility
and overall effectiveness.
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System Height preference: Height score: Length preference: Length score: Close to System 1:

Power System Low 9 - 0 -

Propulsion System Low 9 Bow 9 -

Mooring & Anchoring System Low 6 Bow 9 -

HVAC System - 0 - 0 Owner Accommodation System
Extended Operations System - 0 - 0 Dining & Galley System

Safety and Compliance System High 3 - 0 -

Wheelhouse System High 9 Bow 9 -

Crew Operations System Low 6 - 0 -

Crew Accommodation System Low 6 Bow 9 -

Tender Garage & Toy Storage System - 0 - 0 -

Beachclub system Low 9 Stern 9 -

Dining & Galley System High 3 - 0 -

Owner Accommodation System High 9 Bow 6 -

Guest Accommodation system High 6 - 0 -



Close to Score 1: Reasoning: Far from System 1: Far from Score 1: Reasoning:

0
T connection transfers via electricity cables so no need for 
physical connection to be close to a certain system. Owner Accommodation System9

Because of noise 
generation from power 
system

0
Bowthruster has to be under waterline at the bow of the 
ship. - 0

0 Mooring has to be on the main deck in the bow of the ship. - 0

9
Research done in General arrangements and due to 
interview with Sr. Specialist B. Jongepier. - 0

0 To get resources to the galley - 0

0

No preferences but safety and compliance system has to 
be re-evaluated because it contains the high-fog system 
and the emergency generator. Hi-fog system is mostly 
close to engine system but no regulations and emergency 
generator has to be above the waterline but this has to be 
checked with Sr. specialist B. Jongepier. - 0

0

Bridge has to be at least at the owner deck and preferable 
as high as possible. This is because the command center is 
left outside the scope for this research and therefore the 
captain needs a plain view on the sea and it's surrounding. - 0

0

No preferences for the crew operation system, but because 
no preferences it is expected to find the crew operations 
on the lower deck. - 0

0
No preferences and therefore expected to find the crew 
operations on the lower deck. Power System 6

Noise regulations, check 
with sr. Specialist 
B.Jongepier. 

0
Tender garage needs to be above the waterline and there 
are no further preferences. - 0

0

Beachclub has to be on the lower deck located as close to 
the stern as possible. Otherwise it would be to far from the 
water or to close to the bow and thereby causing 
difficulties with the ship bow structure. - 0

0
No regulatory or preferences standard requirements for 
the dining&galley system - 0

0

Owner accommodation positioned on owner or bridge 
deck as high as possible and preferably facing the bow of 
the ship. Custom requirement of the client could be facing 
the stern of the ship. Power System 9

Because of noise 
generation from the 
power system

0

Guest accommodation system has to be placed on the 
main deck or highter because of the need for big windows. 
Lower deck can't supply big enough windows. This is 
concluded due to the fact that there aren't any vessels 
found with guest accommodation on the lower deck. This 
has to be checked with Sr. Specialist B. Jongepier. Power System 9



Close to System 2: Close to Score 2:Reasoning: Far from System 2: Far from Score 2:Reasoning: Close to System 3: Close to Score 3:Reasoning:

Guest Accommodation system9 Because of noice generation of power system 

Wheelhouse System 9 Guest Accommodation system9
Crew Operations System0 To get resources to the crew in operation. 



Far from System 3: Far from Score 3:Reasoning: Close to System 4: Close to Score 4: Reasoning: Far from System 4:Far from Score 4:Reasoning:

Crew Accommodation System3 Noise regulations, check with Bram 

Crew Accommodation System9



Close to System 5: Close to Score 5:Reasoning: Far from System 5:Far from Score 5:Reasoning: Close to System 6:Close to Score 6:

Dining & Galley System6 Propulsion System6



Reasoning: Far from System 6:Far from Score 6: Reasoning:

From Interface Matrix it is shown that there is a 
Attachment physical connection between Propulsion 
system and HVAC, Also same score and reason for crew 
operations, luxury space and beachclub system.
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Modular Arrangement 
Generator Tool

A tool to support the designer in the early stage of the design phase. 

Capturing all customer requirements and transforms them into modular systems.

Predicting the required area for these modular systems. 

And generating optimized arrangement based on these modular systems



Purpose

• Supporting the designer during the early stage design phase
• Faster Design Iterations

• Exploring the design phase

• Improve creativity

• Supporting the designer

• Doing This by generating Innovative 2D yacht layouts

• Layouts are based on design brief input & corresponding area



Modular systems from requirements

• From standard yacht requirements, following Modular systems are formed:
• Power System
• Propulsion System
• Mooring & Anchoring System
• Extended Operations System
• Safety & Compliance System
• Wheelhouse System
• Crew Operations System
• Crew Accomodation System
• Tender Garage System
• Beachclub System
• Dining & Galley System
• Owner Accomodation System
• Guests Accomodation System



Area prediction

• Predicting the modular system area’s using a python regression model

• By predicting the areas from parameters, the required space for the
modules can be determined by using design brief and the known
Feadship database.

• Input based on Design Brief
• Lenth, Width, Draught, Nr. of Crew, Nr. of Guests, Design Speed, Range

• Prediction of the required area’s of all systems
• Based on input parameters and Feadship Database 



Valid Area Prediction, or Error??

• Some area’s show big a big error in evaluation metrics. 

• Possibly these area’s are not depending just on the input parameters. 

• These Area’s are more depending on “Owner Specific Requirements”

• Are these “Owner Specific Area’s” also seen as owner specific by the
designer?
• Propulsion, Safety & Compliance, Beachclub, Dining & Galley, Owner Accomodation

Question: 

What are owner specific systems in a yacht design following the Desginer, 
and does this correspond with the predictec owner specific area’s? 



Predicted Area’s DN3408

Input parameters DN3408 
from Design Brief:



Arrangement Generation tool 
• Generating Arrangements based on a Packing Algorithm

• Doing this by using the predicted Modular system area’s

• Packing based on input, arrangement conditions & variables

• Output is 2D Side View of yacht arrangement

• This 2D yacht arrangement visualisation can be analysed



Input Arrangement Generator

• Length, width, deck height

• Predicted System Area’s

• System separable or not

• Margin
• If owner specific area

• % of bigger or smaller then mean

• Preferences
• Preferences of every system in terms of placement

• Height preff, length preff, close to & far from other system preference



Preferences

• Are captured in a Excell file and loaded in Packing tool 



Margin

• As stated in the Area prediction tool there are systems with owner
specific area’s

• This means area’s do not depend on input parameters but on 
preferences of the specific owner. 

• Therefore these area’s have the possibility to add a margin to
• With this margin the mean area can be increased of decreased with a certain

percentage



Visualisation

• The arrangement tool generates 5 arrangements based on input and
preferences

• The arrangement tool also generates 5 arrangements based on input 
but generates a 10% shorter yacht
• This is to see if the requirements could possibly also fit in a shorter yacht.

• All arrangements are generated and shown
• Arrangements also come with arrangement scores

• These scores show how much the arrangement applyes to its input and preferences

• Scores for total arrangement and seperated systems are shown
• This way it can be checked which system is the reason for a low or a high score. 



Visualisation DN3408

• Example visualisation of arrangement for input from DN3408

• These arrangements can be compared with final GA from designer

• In the meeting Thursday 19-09 new arrangements can be generated
live to discuss. 

• In the meeting Thursday 19-09 DN3442 arrangements are generated 
as well. 

    System Colors in arrangements:



Visualisation DN3408

• 2D side view xz-plane

• Visualisation shows 4 decks
• Lower, Main, Bridge, Owner

• X-axis shows Length all over

• Y-Axis shows height of decks 

• 2 upper decks are only
available from 1/4L – 3/4L

• Close your eyes and visualize a 
yacht from the building 
blocks…



Visualisation DN3408





Visualisation DN3408 Optimized length
• These are the visualisations with input of DN3408 but with 10% 

length optimization. 





Questions:

• What do you think about the working of the Arrangement Generator?
• Do you think the Arrangement Generator can be a tool to support the

creative part of the design phase?
• Do you think the Arrangement Generator can be a tool to make quicker

iterations in early phase design space?
• What are the limitations of the Arrangement Generator?
• What future adjustments can me made to improve the Arrangement 

Generator?
• In what areas performs the designer better than the arrangement 

generator?
• In what areas performs the arrangement generator better than the 

designer?



Questions for me?

• You can always reach me on jaap.marcus@devoogt.feadship.nl

• Thank you very much in advance and see you on Thursday!

• Thursday September 19

• 09:00 @ Pi
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Arrangement Tool Results



DN3408 - Bulldog

• Highest Score:







DN3524

• Highest score:



DN3524





DN3554 - Komodo

• Three Designs and a Generated Design
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