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Abstract 

In recent years, there has been a lot of focus on system identification using the vibration 

data instead of building the mathematical models based on domain knowledge. The Sparse 

Identification of Nonlinear Dynamical System (SINDy) is a method that has been a great tool 

to identify the nonlinear dynamics. Therefore, in this report, the nonlinear systems such as 

duffing oscillator, Single Degree of Freedom (SDoF) with friction is are identified using 

SINDy algorithm. An impact of noise in the measurement data is studied briefly. The 

components used in the process of identification are smooth finite difference based 

differentiator, Sequential Threshold Least Squares (STLSq) optimizer and custom candidate 

library. Further, a comparison is made between the numerical models and the models obtained 

from PySINDy. The Root Mean Squares Errors are calculated for all the cases. It is seen that 

SINDy is capable of identifying these nonlinearities with good accuracy. 
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1. Introduction 

The dynamic response of various engineering structures such as buildings, robots, wind 

turbines etc. depend on behaviour of friction present in the joints. The friction phenomenon 

can drastically reduce the amplitude of structural response due to dissipation of energy and thus 

reduce the performance efficiency of the system. The friction has positive impact when it 

comes to damping of system. The appropriate use of friction force can help in reducing the 

number of dampers used in the system hence decreasing the expenditure on a system. The 

presence of friction force makes the system nonlinear in nature. Prediction of response of such 

nonlinear system is difficult due to lack of a universal and predictive friction model, nonlinear 

nature of friction forces, the unrepeatable nature of the friction phenomenon [1]. 

To circumvent this problem the technique of system identification using available 

response data has gained a lot of attention in recent years. This is possible due to discovery of 

advanced machine learning algorithms that analyse the data and predict the dynamical system. 

Various data driven approaches are developed for identifying linear and nonlinear dynamical 

systems. However, the nonlinear system identification techniques cannot be generalised for all 

nonlinear systems which creates the need for development in this field.  

One of the many derived system identification techniques is System Identification of 

Nonlinear Dynamical systems (SINDy) introduced in [2], [3] In this report, SINDy is used to 

identify various systems such as Duffing oscillator without noise, duffing oscillator with noise, 

Single Degree of Freedom (SDoF) system with friction without noise and with noise, 

experimental SDoF system having friction contact. The effects of noise levels and complex 

friction nonlinearity on system identification of duffing oscillator and friction in robotic arm 

using PySINDy package are studied in reference [4], [5]. However, in this report, the friction 

nonlinearity is accounted using the Signum function which represents the nonlinearity in more 

realistic manner and a brief study is done with respect to the noise level. 

The duffing oscillator has cubic nonlinearity whereas the SDoF system with friction 

has friction itself as a nonlinearity. The study in this report focuses on the system identification 

of nonlinear systems using just the data of forcing and the response. This approach is useful to 

identify the system in real life scenarios where the response of system is known to a certain 

excitation. Many times, it is difficult to identify and quantify the type of nonlinearity present 
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in the structure. Hence using the SINDy algorithm proves to be an effective approach in system 

identification [6]. 
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2. Methodology 

This section focuses on the working principle of SINDy and its components. 

2.1. Formulation of SINDy 

Dynamical system can be written as: 

ௗ

ௗ௧
𝑥(𝑡) = 𝑓(𝑥(𝑡)). 

 

Equation 1 

Where, x(t) is the state vector denoting states of the system at time t and f(x(t)) denotes the 

characteristics of dynamical system such as stiffness, damping, friction force, external forcing 

on system. The data is collected at various time instants and can be written in following matrix 

representation [2]: 

𝑋 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑥்(𝑡ଵ)

𝑥்(𝑡ଶ)
..
.
.

𝑥்(𝑡௠)⎦
⎥
⎥
⎥
⎥
⎥
⎤

= ൦

𝑥ଵ(𝑡ଵ) 𝑥ଶ(𝑡ଵ) ⋯ 𝑥௡(𝑡ଵ)

𝑥ଵ(𝑡ଶ) 𝑥ଶ(𝑡ଶ) ⋯ 𝑥௡(𝑡ଶ)
⋮

𝑥ଵ(𝑡௠)
⋮

𝑥ଶ(𝑡௠)
⋱
⋯

⋮
𝑥௡(𝑡௠)

൪ ↓ 𝑡𝑖𝑚𝑒 

Equation 2 

𝑋̇ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑥்̇(𝑡ଵ)

𝑥்̇(𝑡ଶ)
..
.
.

𝑥்̇(𝑡௠)⎦
⎥
⎥
⎥
⎥
⎥
⎤

= ൦

𝑥̇ଵ(𝑡ଵ) 𝑥̇ଶ(𝑡ଵ) ⋯ 𝑥̇௡(𝑡ଵ)

𝑥̇ଵ(𝑡ଶ) 𝑥̇ଶ(𝑡ଶ) ⋯ 𝑥̇௡(𝑡ଶ)
⋮

𝑥̇ଵ(𝑡௠)
⋮

𝑥̇ଶ(𝑡௠)
⋱
⋯

⋮
𝑥̇௡(𝑡௠)

൪ 

 

Equation 3 

Further, a candidate function library Θ(𝑋) having various linear, nonlinear functions is built. 

The candidate library includes user specified functions such as polynomial (with user specified 

maximum degree), trigonometric functions, exponential functions etc. 

Θ(𝑋) = [1 𝑋 𝑋௉ଶ 𝑋௉ଷ … sin (𝑋) cos (𝑋) …] 

 

Equation 4 

Where, the higher order polynomial terms are represented as XP2, XP3, etc, and the XP3 can be 

written as follows: 
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𝑋௉ଷ =

⎣
⎢
⎢
⎡

𝑥ଵ
ଷ(𝑡ଵ) 𝑥ଶ

ଷ(𝑡ଵ) ⋯ 𝑥௡
ଷ(𝑡ଵ)

𝑥ଵ
ଷ(𝑡ଶ) 𝑥ଶ

ଷ(𝑡ଶ) ⋯ 𝑥௡
ଷ(𝑡ଶ)

⋮
𝑥ଵ

ଷ(𝑡௠)
⋮

𝑥ଶ
ଷ(𝑡௠)

⋱
⋯

⋮
𝑥௡

ଷ(𝑡௠)⎦
⎥
⎥
⎤
 

 

Equation 5 

From a point of view of dynamical system, not always all the nonlinearities are active. 

Hence to add sparsity in the solution or reduce the unnecessary nonlinearities from the solution, 

a sparce matrix is chosen. This can be also called as selection matrix. It is denoted by Ξ =

[ξଵ ξଶ ξଷ . . ξ௡]. Hence the final equation in state space form becomes as follows: 

𝑋̇ = Θ(𝑋)Ξ Equation 6 

For solution of Ξ a regression analysis is done. This will be further discussed in section 

2.2.3 in more detail. An effort is made to obtain the equation of motion in the form of velocity 

which is elaborated in Appendix B. The sample schematic of the SINDy for Lorenz system is 

shown below for clear understanding: 

 

Figure 1: Schematic of SINDy algorithm for Lorenz system (Taken from [2]) 

In case of dynamical system with external loading (control), the external loading vector and its 

derivative is added to column of X and 𝑿̇ respectively. 
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2.2. PySINDy package 

For this report, the application of SINDy is done using PySINDy which is a sparce 

regression package in Python [7], [8]. The PySINDy package consists of components such as 

differentiators, candidate feature libraries, optimizers, integrators; the schematic of which is 

shown below:  



6 
 

                                                                PySINDy 

 

 

 

 

ௗ

ௗ௧
𝑥(𝑡) = 𝑓(𝑥(𝑡)). 

 

Figure 2: Components of PySINDy 

The components marked in green are used for the report. 
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Mixed Integer 
Optimized Sparse 

Regression (MIOSR)
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Squares (FROLS)

Fit the training data using 

RK45 integrator 
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2.2.1. Smooth finite difference 

The method first performs smoothening on the X data and then calculates finite 

differentiation to get 𝑿̇. The smoothening is done using Savitzky-Golay filter. In this method, 

the data is divided in small user specified segments and is fitted against a polynomial of user 

specified order by method of linear least squares. 

2.2.2. Custom library 

The custom library uses user specified functions i.e., it applies the function on each 

input variable to, calculate the best fit state space equation. User can specify various functions 

such as 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑠𝑖𝑔𝑛 etc and correspondingly sin(X), cos(X), sign(X) will be used to fit 

Equation 6  

2.2.3. Sequential Threshold Least Squares (STLSq)  

ฮ𝑋̇ − Θ(𝑋)Ξฮ
ଶ

ଶ
+ 𝛼‖Ξ‖ଶ

ଶ  Equation 7 

The STLSq optimizer minimizes the Equation 7 by using least squares. The user can specify 

the threshold α or is kept 0.1 by default. The value of α also indicates the sparsity in the solution. 

The smaller the value, the lesser are the terms we get in the solution. 

3. Investigation of equations of motion using PySINDy 

The SINDy algorithm is use used for system identification of following systems: 

 Duffing oscillator without noise  

 Duffing oscillator with noise 

 Numerical friction model without noise  

 Numerical friction model with noise 

 Experimental friction model  

General approach of the systems above is given in the schematic below: 

Figure 3: Workflow for system identification using PySINDy 

 

System

System data 

(excitation 
and 

response to 
excitation)

Feeding the 
system data 
to PySINDy

Getting the 
system 

equations as 
an output in 
state space 

form
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The noise level is decided based on the maximum amplitude of clean x1 (without noise). 

The mean is always set to 0 and standard deviation is set to roughly such that 
௫భ ೎೗೐ೌ೙

௦௧௔௡ௗ௔௥ௗ ௗ௘௩௜௔௧௜௢௡
= 10ଶ. The noise is added because in reality, there will always be a small 

error in the measurements and hence an effort is made to check the suitability of PySINDy for 

real life experimental problems. 

3.1. Duffing oscillator without noise 

Duffing oscillator has cubic nonlinearity which is comparatively less complex than the 

friction nonlinearity as there is no sudden jump in the forcing. This forms a good base for 

verifying the suitability of SINDy algorithm for nonlinear systems [4]. A hypothetical duffing 

oscillator is represented by following equation of motion: 

𝑥̈ + 2𝜁𝑥̇ + 𝑥 + 𝛽𝑥ଷ = Γcos (𝜌𝜏) Equation 8 

Where, 

Linear damping coefficient (𝜁) = 0.1 

Cubic stiffness coefficient (𝛽) = 0.6 

Forcing amplitude (Γ) = 1 

Frequency of forcing (𝜌) = 1.2 

Hence the equation of motion can be written in state space form as: 

𝑥̇ଵ = 𝑥ଶ 

𝑥̇ଶ = 𝑢 − 𝑥ଵ − 0.6𝑥ଵ
ଷ − 0.2𝑥ଶ 

Equation 9 

The external forcing F and displacement x1 are the 2 inputs for PySINDy. The threshold 

parameter for STLSq optimizer is 0.15. This parameter should be chosen with great care as it 

indicates the sparsity of solution [9]. The output equation from PySINDy is as follows: 

 

𝑥ଵ̇ = 𝑥ଶ 

𝑥ଶ̇ = 1.077𝑢 − 1.051𝑥ଵ − 0.595𝑥ଵ
ଷ − 0.217𝑥ଶ 

Equation 10 

The testing inputs and output variables are shown below: 
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Figure 4: external forcing 

 

 

Figure 5: Comparison between PySINDy output and exact numerical system 
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3.2. Duffing oscillator with noise 

The suitability of PySINDy is checked for the noise. The gaussian distributed noise is 

added to the x1 state of mean and standard deviation of 0 and 0.01 m, respectively. The only 

change compared to previous method of duffing oscillator without noise is that now the 

segment length for smooth finite difference is 81 units. The output equation of motion of 

PySINDy is as follows: 

𝑥ଵ̇ = 0.978𝑥ଶ 

𝑥ଶ̇ = 1.019𝑢 − 1.127𝑥ଵ − 0.533𝑥ଵ
ଷ − 0.2𝑥ଶ 

Equation 11 

The testing inputs and output variables are shown below: 

 

Figure 6: External forcing 

 

Figure 7: Comparison between PySINDy output and exact numerical output 

Hence it is observed that SINDy algorithm works well even in case of noisy 

measurements which is also found in reference [4].  
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3.3. Numerical friction model without noise 

 

Figure 8: Single degree of freedom system with friction 

The considered model is single degree of freedom with Coulomb friction as 

nonlinearity. The considered motion is continuous due to less friction force acting at the 

contact. The equation of motion of single degree of freedom with Coulomb friction is as 

follows: 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 + 𝐹௙ . 𝑆𝑔𝑛(𝑥̇) = 𝑘𝑢 + 𝑐𝑢̇ Equation 12 

𝑥 = 𝑥ଵ 

∴ ൤
𝑥̇ଵ

𝑥̇ଶ
൨ = ൥

0 1

−
𝑘

𝑚
−

𝑐

𝑚

൩ ቂ
𝑥ଵ

𝑥ଶ
ቃ + ൥

0

−
𝐹௙𝑆𝑔𝑛(𝑥̇)

𝑚

൩ + ൥
0

𝑘𝑢 + 𝑐𝑢̇

𝑚

൩ 

Equation 13 

Where, k, c, m, Ff, u are the stiffness, damping coefficient, mass, magnitude of friction force 

and base excitation, respectively. The actual equation of motion considering the values of all 

the parameter is  

൤
𝑥̇ଵ

𝑥̇ଶ
൨ = ቂ

0 1
−358.706 −0.0658

ቃ ቂ
𝑥ଵ

𝑥ଶ
ቃ + ൤

0
−0.0856𝑆𝑔𝑛(𝑥̇)൨ + ቂ

0
358.706𝑢 + 0.0658𝑢̇

ቃ 

 

Equation 14 

Due to considerable nonlinearity, PySINDy is not able to calculate the equation with great 

accuracy. To circumvent this issue, a group of data is given as input to PySINDy. The u with 

driving frequencies 2.013 Hz, 2.583 Hz, 4.611 Hz, 5.242 Hz and corresponding x1 are taken as 

inputs for PySINDy. The output equation of motion of PySINDy is as follows: 

൤
𝑥̇ଵ

𝑥̇ଶ
൨ = ቂ

0 1
−358.849 −0.088

ቃ ቂ
𝑥ଵ

𝑥ଶ
ቃ + ൤

0
−0.085𝑆𝑔𝑛(𝑥̇)൨ + ቂ

0
358.425𝑢 + 0.08𝑢̇

ቃ 
Equation 15 

The following are the testing input variables u (driving frequency 5.843 Hz), x1and 

corresponding PySINDy output: 
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Figure 9: Base excitation 

            

Figure 10:Comparison between PySINDy output and exact numerical output 
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3.4. Numerical friction model with noise 

Noise is added to the state x1 of model in section 3.3. The magnitude of the noise added 

is 0.00001 m. The segment length used for smooth finite difference is 31 units. The following 

are the testing input variables u (driving frequency 5.843 Hz), x1and corresponding PySINDy 

output: 

 

           
Figure 11: Base excitation 

 

Figure 12: Comparison between PySINDy output and exact numerical output 
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൤
𝑥̇ଵ

𝑥̇ଶ
൨ = ቂ

0 0.999
−356.888 −0.233

ቃ ቂ
𝑥ଵ

𝑥ଶ
ቃ + ൤

0
−0.076𝑆𝑔𝑛(𝑥ଶ)൨ + ቂ

0
353.568𝑢 + 0.213𝑢̇

ቃ

+ ൤
0

−0.004𝑆𝑔𝑛(𝑥ଵ) + 0.001𝑆𝑔𝑛(𝑢)
൨ 

Equation 16 

It can be observed that there is a deviation in the coefficient compared to the actual 

numerical Equation 14. This deviation in coefficients is compensated by the additional terms 

as shown in above Equation 16 
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3.5. Experimental friction model 

A single degree of freedom system is analysed in laboratory described in Figure 13. 

The base is excited using a rotor. 

 

Figure 13: Experimental set up of SDoF system 

The base excitation and displacement of mass is given as input to PySINDy in the same 

way as in section 3.3. the equation of motion of this system is given as follows: 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 + 𝐹௙ . 𝑆𝑔𝑛(𝑥̇) = 𝑘𝑢 + 𝑐𝑢̇ Equation 17 

∴ ൤
𝑥̇ଵ

𝑥̇ଶ
൨ = ൥

0 1

−
𝑘

𝑚
−

𝑐

𝑚

൩ ቂ
𝑥ଵ

𝑥ଶ
ቃ + ൥

0

−
𝐹௙𝑆𝑔𝑛(𝑥ଶ)

𝑚

൩ + ൥
0

𝑘𝑢 + 𝑐𝑢̇

𝑚

൩ 
Equation 18 

For the system parameters such as friction coefficient and damping, a free vibration 

analysis is performed on the experimental setup and the values are calculated using linear 

decrement curve and exponential logarithmic decrement curve, respectively. After considering 

all the system parameters, the equation of motion can be written as: 

൤
𝑥̇ଵ

𝑥̇ଶ
൨ = ቂ

0 1
−358.706 −0.0658

ቃ ቂ
𝑥ଵ

𝑥ଶ
ቃ + ൤

0
−0.0856𝑆𝑔𝑛(𝑥ଶ)൨ + ቂ

0
358.706𝑢 + 0.0658𝑢̇

ቃ Equation 19 

The u with driving frequencies 2.013 Hz, 2.583 Hz, 4.611 Hz, 5.242 Hz and corresponding x1 

are taken as inputs for PySINDy. The output equation of motion of PySINDy is as follows: 
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൤
𝑥̇ଵ

𝑥̇ଶ
൨

= ቂ
0 1

−359.896 −0.176
ቃ ቂ

𝑥ଵ

𝑥ଶ
ቃ + ൤

0
−0.068𝑆𝑔𝑛(𝑥ଶ)൨

+ ൤
0

357.466𝑢 + 0.8𝑢̇ − 0.068𝑆𝑔𝑛(𝑥ଵ) − 0.068𝑆𝑔𝑛(𝑥ଶ) + 0.023𝑆𝑔𝑛(𝑢) − 0.034𝑆𝑔𝑛(𝑢̇)
൨ 

 

Equation 20 

The following are the testing input variables u (driving frequency 5.843 Hz), x1and 

corresponding PySINDy output: 

 

Figure 14: Base excitation 

 

Figure 15: Comparison between PySINDy output and exact numerical output (only steady states are 
compared as we don’t have the experimental data for transient response) 
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The deviation in equation is because the x1 input had only steady state part and no 

transient part due to unavailability of data.  

4. Quantification of error in equation of motion calculated by 

PySINDy 

The absolute error at each time instant is defined E as ට൫𝑥ଵ,௔௖௧௨௔௟ − 𝑥ଵ,௉௬ௌூே஽௬൯
ଶ
 while 

the total error is given by Root Mean Square Error (RMSE) as ට∑ ൫௫భ,ೌ೎೟ೠೌ೗,೔ି௫భ,ು೤ೄ಺ಿವ೤,೔൯
మ೔స೙

೔సభ

௡
. 

The Table 1 gives the RMSE of each dynamical system discussed in section 3. The plots of E 

are shown in Appendix A for reference. 

Table 1: Root Mean Square Error (RMSE) of different systems 

Case RMSE (m) 

Duffing oscillator without noise 0.0024 

Duffing oscillator with noise 0.0017 

Numerical friction model without noise  1.42 x10-6 

Numerical friction model with noise 5.01 x 10-6 

Experimental friction model  8.933 x 10-5 

Hence it can be observed that PySINDy gives fairly accurate solution with low RMSE- 

value. 
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5. Concluding remarks and future work 

PySINDy works very well if the input data has no noise in it. The inclusion of noise 

can be dealt by changing the threshold of sparsity specified in the objective function of 

optimizer. It is also observed that the length of segments in smooth finite difference played a 

key role in simulation. This is because, the velocities are not given as the direct input to the 

PySINDy (in this case) rather velocities are calculated using numerical differentiation of 

displacement data. Hence if the displacement data has a considerable amount of noise and the 

segment length is small, then there would not be accurate smoothening of displacement data 

and hence the velocities calculated will have high fluctuations than ideal case. 

It is not possible to get the equation of motion by blindly applying the SINDy algorithm 

to the data available. This is because the type of terms required in the output are specified by 

the user which indirectly means that the user should have some knowledge of physics 

associated with the experimental or numerical system. PySINDy gives equation of motion even 

when the terms specified in candidate function library are incorrect. This is due to the fact that 

SINDy algorithm tries to overfit the data using the specified incorrect terms and the solution 

fits the training data however fails for testing data. In case of very noisy measurements, 

velocimeters are recommended 

The availability of transient response is important due to fact that there can be more 

combinations of terms which will fit the steady state response compared to the terms that will 

fit transient as well as steady state response. Also, more information about system parameters 

is hidden in the transient response while the steady state follows the forcing.  

The transient response needs to be collected for experimental system and an effort 

should be made to use SINDy algorithm to identify the experimental system more accurately. 

The motion observed in the case of friction is continuous motion due to small magnitude of 

friction force. With increase in friction force, a stick slip phenomenon will take place which 

will be more complex in nature. The complexity will be due to the fact that in case of stick slip 

motion, there is point where the velocity is zero and the stiffness force is opposed by static 

friction force. This static friction force has a certain value which is not incorporated while 

calculating the continuous motion. Hence to include this sticking phenomenon, we will have 

to add additional constraints in PySINDy model by specifying some extra variable. This effect 

needs to be taken into account for future work. The effect of more contact points generating 
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the friction force can be studied for future work. The suitability of SINDy algorithm for multi 

degree of freedom system needs to be checked.  
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6. Appendix 

6.1. Appendix A 

The graphs for E corresponding to the different systems are as follows: 

Table 2: Absolute error (m) in calculated PySINDy model 

Case 
𝐸 = ට൫𝑥ଵ,௔௖௧௨௔௟ − 𝑥ଵ,௉௬ௌூே஽௬൯

ଶ
  

Duffing oscillator without noise 

 

Duffing oscillator with noise 
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Numerical friction model 

without noise  

 

Numerical friction model with 

noise 

 

Experimental friction model  
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6.2. Appendix B 

Initially an attempt was made to find the equation of motion in form of 𝑋̇ = 𝑓(𝑋) where 

𝑋̇ is velocity of the single degree of freedom. However, the following derivation shows that we 

need to specify integral terms in PySINDy to get the correct solution. From state space form 

we get: 

൤
𝑥̇ଵ

𝑥̇ଶ
൨ = ൥

0 1

−
𝑘

𝑚
−

𝑐

𝑚

൩ ቂ
𝑥ଵ

𝑥ଶ
ቃ + ൥

0

−
𝐹௙𝑆𝑔𝑛(𝑥̇)

𝑚
= 𝐹௙

൩ + ൥
0

𝑘𝑢 + 𝑐𝑢̇

𝑚

= 𝐹௚൩ 

We can write 𝑥̇ = 𝑥̇ଵ = 𝑥ଶ and 

𝑥ଶ = න −
𝑘

𝑚
𝑥ଵ𝑑𝑡

௧

଴

− න
𝑐

𝑚

௧

଴

𝑥ଶ𝑑𝑡 + 𝑠𝑜𝑚𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑜𝑟𝑐𝑖𝑛𝑔 

𝑥ଶ = න −
𝑘

𝑚
𝑥ଵ𝑑𝑡

௧

଴

− න
𝑐

𝑚

௧

଴

𝑥̇ଵ𝑑𝑡 + 𝑠𝑜𝑚𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑜𝑟𝑐𝑖𝑛𝑔 

𝑥ଶ = 𝑥̇ = න −
𝑘

𝑚
𝑥ଵ𝑑𝑡

௧

଴

−
𝑐

𝑚
𝑥ଵ + 𝑠𝑜𝑚𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑜𝑟𝑐𝑖𝑛𝑔 

As PySINDy cannot support integral terms in candidate function library, this approach was not 

adopted further. 
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6.3. Appendix C: Meeting overview  

Following are the overviews of the meeting 

Meeting on 13th October 2022 

 The candidate library chosen needs to be changed and recommendation to have 

consultation with members of DVU group 

Meeting on 25th October 2022 

 Discussion of results using the approach specified in Appendix B 

 The obtained result can not be compared with the state space form i.e., the 

expression of velocity obtained in Appendix B is different than what was 

obtained from PySINDy 

 Recommendation to use PySINDy such that we get equations in state space 

form 

 Try using PySINDy on duffing oscillator with and without noise, numerical 

model of friction with and without noise 
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