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Abstract: In this paper, we applied a system identification algorithm and an adaptive controller
to a simple kite system model to simulate crosswind flight maneuvers for airborne wind energy
harvesting. The purpose of the system identification algorithm was to handle uncertainties related
to a fluctuating wind speed and shape deformations of the tethered membrane wing. Using a pole
placement controller, we determined the required locations of the closed-loop poles and enforced
them by adapting the control gains in real time. We compared the path-following performance of the
proposed approach with a classical proportional-integral-derivative (PID) controller using the same
system model. The capability of the system identification algorithm to recognize sudden changes in
the dynamic model or the wind conditions, and the ability of the controller to stabilize the system
in the presence of such changes were confirmed. Furthermore, the system identification algorithm
was used to determine the parameters of a kite with variable-length tether on the basis of data that
were recorded during a physical flight test of a 20 kW kite power system. The system identification
algorithm was executed in real time, and significant changes were observed in the parameters of the
dynamic model, which strongly affect the resulting response.

Keywords: airborne wind energy; kite power system; system identification; adaptive algorithms;
pole placement.

1. Introduction

Airborne wind energy (AWE) is an emerging renewable energy technology that uses flying
devices that are tethered to the ground [1–3]. Compared to horizontal axis wind turbines (HAWTs),
AWE systems have a number of distinct advantages in terms of costs, maintenance, operating altitude,
and capacity factor. However, as wind turbines have matured over decades of continuous research and
development, AWE technologies, which are at a comparatively early stage of development, are still
considered to be less reliable. For a HAWT, almost 30% of the power is generated by the tip of the rotor
blades, while the rest of the rotor functions mainly as a support structure for the crosswind motion
of the blades [1,2,4]. The rated power of the generator typically determines the installation. For the
same rated power, an AWE system generally gives a higher annual yield than a HAWT because it
can operate at a higher capacity factor. This higher capacity factor is a result of the more persistent
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and more steady wind at higher altitudes. However, an AWE system also needs more space than a
HAWT, which increases the costs of an installation. These land surface costs are still quite unknown
and responsible for the large differences in expected costs [5,6].

There are several different concepts and configurations of AWE systems [2,7]. A comparatively
simple one is the pumping kite power system illustrated in Figure 1. The kite consists of a flexible
membrane wing that is steered by a suspended kite control unit (KCU) and tethered to a drum on the
ground that is coupled to a generator. During the reel out of the tether, the kite is operated in crosswind
figure-of-eight maneuvers, as shown in Figure 2, to maximize the pulling force and thus generated
energy when pulling the tether from the drum. When reaching the maximal tether length, the kite is
depowered and retracted, using the generator as a motor and consuming a fraction of the formerly
generated energy. The change of the flight patterns between reel-out and reel-in phases results in a net
energy per pumping cycle [5,8]. The main objective of the control algorithm is to ensure the robust and
safe flight operation of the kite.

Wind

reel out

reel in

Kite powered

Kite depowered

generation

consumption

Electricity

Electricity

Tether

Tether

Figure 1. Working principle of the pumping kite power system of Delft University of Technology [5].

Figure 2. Composite photo of a crosswind figure-of-eight maneuver (∆t = 1 s) of a tube kite with 25 m2

wing surface area [9].
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Several mathematical models have been developed to describe the dynamic behavior of a kite
system [1,3,10,11]. Obvious shortcomings of these models are the numerous idealizations that limit the
achievable prediction quality for a flight trajectory in a real wind environment, which is characterized
by local changes in wind speed and direction occurring within seconds [12,13]. Another modeling
challenge is the aeroelastic response of the membrane wing because substantial deformations also
majorly affect the aerodynamic properties of the kite system [14–16].

Generally, in most control applications, the mathematical model can be based on either (1) a
system that has a fixed operating point and control parameters that are fixed due to the stability in the
model, or (2) a system that has a variable operating point, requiring that it is robust enough to sustain
the variation. The dynamic model representing a kite system is of the latter type, since the system
characteristics are time-varying due to the natural fluctuations of the wind environment. This has to
be considered in the design of the control algorithm for the kite system.

In recent years, research on kite control has considerably intensified [17–20]. The developed
models are typically based on state-space representations of a real AWE system, describing the
nonlinear dynamics of 4 up to 15 states. In [21], the optimal flight path is determined ahead of time
using nonlinear model predictive control (NMPC). However, this control method is computationally
expensive and with additional expenses for solving the nonlinear optimization problem [19,20]. For this
reason, we considered the method unsuitable for real-time control of AWE systems.

Several open-source software tools for AWE systems have been developed over the past
few years [11,22,23]. These tools are suitable for computational simulation of flight maneuvers,
virtual testing of flight-control algorithms, and optimizing flight paths in real time. One particular
aspect of modeling is the flexible tether that is deployed from the ground station and sweeping through
the wind field, while being exposed to a distributed aerodynamic load and gravity [24]. A common
assumption is that of a perfectly tensioned straight tether. While generally valid during the traction
phase, this assumption is not acceptable during the retraction, landing, and take-off phases. Because of
the low tension, tether sag has to be taken into account in the modeling [8,25].

The control approach proposed in [26] is interesting because it does not require any information
about the kite or the wind field. Although the approach allows for the high-precision tracking of
figure-of-eight maneuvers, this is only feasible for a short tether of constant length. The approach is
not suitable, however, for a long or variable-length tether [12]. The research challenges addressed in
this work can be summarized as follows:

• The kite is based on a flexible membrane wing, and its shape depends on the aerodynamic force
distribution during flight, the structural design, and the line suspension system;

• the relative flow velocity experienced by wing and tether varies along the flight path, and there is
yet no accurate way to assess this in real time; and

• an accurate estimation of the wind field is necessary to determine the aerodynamic force
distribution on tether and wing surface [4,5].

As a result of this physical complexity, there is a crucial need for robust control to stabilize the
kite in real time. The above challenges were addressed as follows:

• We propose an algorithm that estimates the parameters of the kite’s dynamic model in real time
using system identification (SI) [27–30]. The employed SI algorithm is a noniterative technique
based on Plackett’s algorithm due to its ability to calculate the parameters of the system (dynamic
model) with high accuracy without singularity.

• We further propose an adaptive controller to improve the robustness of the system and stabilize
the kite in different wind conditions. Moreover, SI is considered as a part of the adaptive control
strategy, and the estimated parameters are used to obtain the control gains [30], which means that
these gains are updated in real time on the basis of changes in the dynamic model [28].
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• We present a comparison between adaptive and classical controllers to highlight the robustness of
the controller and the ability of adaptive control to stabilize the kite for different wind conditions
without any change in the SI and adaptive control algorithms.

• We applied the SI algorithm to experimental data of the 20 kW kite power system of Delft
University of Technology [5]. The algorithm was used to estimate the parameters of the system in
different operating phases, such as tether reel out and reel in, for two consecutive pumping cycles
while experiencing changes in wind speed and tether length.

The remainder of this paper is divided as follows. Section 2 outlines the components of the
mathematical model, and discusses it briefly on the basis of the concepts and implementations
described in [12,28]. The mathematical model includes a simplified kite system model, designed
as a single-input single-output (SISO) model relating the relative steering input (input) to the course
angle (output) of the kite, a flight path planner (FPP), and a flight path controller (FPC). In Section 3
the derivation and implementation of the SI algorithm is discussed in detail. Subsequently, Section 4
presents the adaptive controller based on the estimated parameters from the SI algorithm that is
used to stabilize the kite in real time. In Section 5, simulation results are presented for the classical
controller described in [12,13,28], and for the combination of adaptive controller and SI algorithm,
and compared for two different flight conditions. Finally, Section 6 summarizes the experimental
results using measurement data acquired during a physical flight test; then, these results are analyzed
using the SI algorithm derived in Section 3. Section 7 concludes this article.

2. Mathematical Model

The approach presented in this paper was derived for the 20 kW kite power system of Delft
University of Technology, as illustrated in Figures 1 and 2. The mathematical model was previously
formulated and demonstrated in [12,28]. The flight path planning (FPP) and flight path control (FPC)
approaches were both designed on the basis of this model. The presented simulation results were
obtained by a Simulink/MATLAB R© implementation.

2.1. Simplified Kite System Model

To describe the flight motion of the kite power system, we introduce the wind reference frame
(xw, yw, zw), the kite reference frame (xk, yk, zk), and the small earth reference frame (xSE, ySE, zSE),
as illustrated in Figure 3.

The wind reference frame is attached to the tether exit point O at the ground station and rotates
with the wind around its zw-axis, such that its xw-axis is always aligned with the instantaneous wind
direction. It is assumed that this rotation is slow compared to the flight dynamics of the kite, such
that any induced forces can be neglected. The body-fixed kite reference frame is attached to the center
of mass K of the kite, and accounts for wing, bridle line system, and the suspended kite control unit
(KCU). To obtain the co-ordinates of the kite in the small earth reference frame [31], its position is
radially projected onto the unit sphere around the tether exit point O. On the unit sphere, we define a
local tangential plane τ. The position of the kite in the small earth reference frame can be described
by the azimuth angle φ and the elevation angle β, which represent the latitude and longitude of the
position, respectively. The velocity vk of the kite can be decomposed into a radial component vk,r and
a tangential component vk,τ , which can be derived from the kite position as

vk,r = ṙ. (1)

vk,τ = r
√

φ̇2 cos2 β + β̇2. (2)

The course angle χ is defined as the angle between vk,τ and the upwards direction, represented
by the local xSE-axis [12,13]. The heading angle describes the orientation of the kite in the tangential
plane, and is defined as the angle between the xk-axis and the upwards direction. The course angle χ
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generally follows the heading angle ψ with a varying offset due to gravity. The angular velocity ω of
the kite with respect to the origin O is kinematically coupled to the tangential velocity of the kite

vk,τ = ω × r. (3)

vk,τ = rω. (4)

where r is the vector pointing from origin O to kite K. The relative flow velocity at the kite is computed
from the wind and kite velocity vectors as

va = vw − vk. (5)

To simplify the FPP and FPC implementations, we introduce the following assumptions that are
valid for the traction phase when the tether is generally fully tensioned:

• The tether is straight, and the tether length is identical to the radial position r of the kite K.
• The wing is attached to the tether with a bridle line system that constrains the roll and pitch of the

wing. Only the heading angle ψ remains as a degree of freedom to control the course of the kite.
• The difference between heading and course angles can be neglected. Both angles and their time

derivatives are assumed to be identical in this study.

χ

φ

β

xSE

xw yw

O

Pitch

zw

Yaw

Roll

ySE

zSE

r

τ

g

ψ

xk

yk

zk

vw

vk,τ

vk

vk,r

vk,τ

Z

Small earth

Kite

rSE = 1

K

Wing

Bridle line
system

KCU

ω

Figure 3. Reference frames to describe kite tethered flight, heading angle ψ, and course angle χ.

By decomposing the kite velocity into radial and tangential components, we essentially decouple
the flight control of the kite from the winch control. The kite is steered by actuation of the rear bridle
line system, which is quantified by the relative steering us that can vary between −1 and 1. Additional
inputs of the kite model are the magnitude of the apparent wind speed va, the initial elevation angle
β0, the angular speed ω, and the initial values for the course angle χ0 and the azimuth angle φ0.
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The outputs of this model are the course angle χ, its time derivative χ̇, and the position of the kite in
terms of elevation angle β and azimuth angle φ.

To calculate the angular speed ω of the kite, we use the simplified kite system model that was
derived in [12]. In this model, which was also used in [28], it is assumed that the angular speed
ω is a function of only the elevation angle β. The angular speed is zero at the maximal value βmax

and increases linearly with decreasing elevation angle, until it reaches a specific value ωre f at βmin.
This behavior is described by the following correlation:

ω =
βmax − β

βmax − βmin
ωre f . (6)

Flight tests of the TU Delft Hydra kite [5,8] showed that the maximal elevation angle βmax = 73◦

was reached when the kite was statically positioned at a tether length of 300 m at an approximate
ground wind speed of 6 m/s. We further assume that the ωre f value is a linear function of the apparent
wind speed va, which can be expressed as

ωre f =
va

va,0
ωre f ,0. (7)

where ωre f ,0 denotes the angular speed that is reached at a specific apparent wind speed va,0. On the
basis of the flight test data, we determined an angular speed ωre f ,0 = 5 deg/s for an elevation angle
βmin = 22◦ and an apparent wind velocity va,re f = 20 m/s. Combining Equations (6) and (7), we can
calculate the angular speed ω of the kite as a function of the elevation angle β and the apparent wind
velocity va. Multiplying the angular speed of the kite with the radial co-ordinate r, we can calculate
the tangential speed vk,τ , as described by Equation (4).

We determine the course angle of the kite by integrating the turn rate law, which is an empirical
correlation between the rate of change ψ̇ of the heading angle (identical to the rate of change χ̇ of the
course angle), the apparent wind speed va, and the relative steering action us [12,26,28]:

ψ̇ = c1va(us − co) +
c2

va
sin χ cos β. (8)

The second term in Equation (8) quantifies the effect of gravity on the turn rate. In the next step,
we combine Equations (2) and (4) to eliminate vk,τ , and calculate the time derivatives of the azimuth
and elevation angles from the angular speed ω. These derivatives are integrated to determine the
angular position of the kite.

To summarize, the simplified kite model describes a single-input single-output (SISO) system.
The model is characterized by two position and two velocity state variables, (φ, β) and (ω, χ),
respectively, three steering parameters (c0, c1, c2), and one relative steering action us.

2.2. Flight Path Planner (FPP)

The purpose of the FPP is to design a suitable flight trajectory for a pumping cycle. The path
is constructed in the φ-β space as a sequence of connected line segments on the small earth.
As consequence, a finite state diagram can be used to describe the flight control of the kite. The states
of the high-level controller required for automated power production are explained in Figures 4 and 5.
For the remainder of this paper, our focus is on the figure-of-eight maneuvers during the traction phase.
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Figure 4. Flight-path planner (FPP) for the entire pumping cycle, including the four-step planner for
down-loop figure-of-eight maneuvers: first, turn left, then steer towards attractor point P3, then turn right,
and finally steer towards attractor point P4 [12].

The downloop flight maneuvers are (we distinguish between downloops and uploops depending
on the direction of flight during the turning maneuvers along the outer parts of the figure of eight.
While downloops lead to a more equalized power profile during the traction phase, uploops are
generally considered to be more safe) flight maneuvers are constructed in four steps, as shown in
Table 1 and Figure 6. The flight maneuver starts from the initial position of the kite with a left turn
(substate TURN_LEFT). During the turn, the set value χ̇set = χ̇R, computed from theturn rate law given
by Equation (8), is used. When reaching the switch condition χ > 300◦ − δχ, the turning maneuver is
stopped, and the kite starts flying to the right towards attractor point P3 (substate FLY_RIGHT). On this
segment of the figure of eight, the kite is steered by the PID controller, as described in Section 2.3.
A relatively large offset of δχ ≈ 112◦ is needed to compensate for the time delay δt ≈ 2 s between the
command to stop turning and the kite actually stopping to turn [12]. For clarity of illustration, we use
a value of δχ = 0 in Figures 4 and 7a, such that the circular-path segments with constant turn rate χ̇R
directly connect with the straight-path segments with constant course angle χ. When reaching the
switch condition φ < −φsw, the kite starts a right turn (substate TURN_RIGHT). During the turn, the
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set value χ̇set = χ̇R computed from the turn rate law is used. When reaching the switch condition
χ < 60◦ + δχ, the turning maneuver is stopped, and the kite starts flying to the left towards attractor
point P4 (substate FLY_LEFT). On this segment of the figure of eight, the kite is again steered by the
PID controller. When reaching the switch condition φ > φsw, a new figure-of-eight maneuver is started
with the kite entering a left turn (substate TURN_LEFT).

[φ < φ2]

At the end of the retraction phase the
kite is powered to improve the
controllabilty before flying the more
complex crosswind maneuvers.

In this state the kite is first
depowered and then retracted.
Eventually the kite is flying at a high
elevation angle on a short tether.

In the upper
transition phase
INT_UP the kite is
first turning right
towards zenith and
then steered towards
zenith until a high
elevation angle is
reached.

The entry condition for the automated
power production is a kite, that is
parking at a high elevation angle on a
short tether.

In the lower transition phase
INT_LOW the kite is first steered to
the right side, then makes a turn and
is then steered to the left.

POWER

DEPOWER

INT_UP INT_LOW

FIG_8

∞

∞∞

[(lt > lup ∨ z > zup) ∧ φ < −φ3]

[φ < φ2]

[lt < llow]
[ud < ud,ro + ∆ud + δud (ud,ri − ud,ro + ∆ud)]

In this state the kite is flying
figure-of-eight maneuvers
while reeling out the tether.
Following a left turn it is
flying towards a point on
the right side of the wind
window, after which it is
turning right to fly to the
right side.

Figure 5. Finite state diagram for the states of the high-level controller for fully automated
power production.

Table 1. Finite substates of the figure-of-eight flight path planner [28]. Set value PSE
k,set for position is

used only when the proportional-integral-derivative (PID) controller is active. Set value χ̇set for the
turn rate is used only when the PID is inactive.

State Next State PSE
k,set χ̇set Switch Condition

Initial TURN_LEFT – χ̇R ALWAYS
TURN_LEFT FLY_RIGHT P3 from PID χ > 300◦ − δχ

FLY_RIGHT TURN_RIGHT – −χ̇R φ < −φsw
TURN_RIGHT FLY_LEFT P4 from PID χ < 60◦ + δχ

FLY_LEFT TURN_LEFT – χ̇R φ > φsw
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FLY_LEFT

FLY_RIGHT

TURN_LEFT TURN_RIGHT

FinalInitial

[χ > 300◦ − δχ] [φ < −φsw]

[χ < 60◦ + δχ][φ > φsw]

Figure 6. Finite substate diagram showing the substate and the transitional condition of the
figure-of-eight controller.

As illustrated in Figure 4, the geometry of the figure-of-eight flight path is defined by the angular
width w f ig and height h f ig, and the minimal attractor point distance δmin, which is defined as the arc
length on the unit sphere between the kite position and the current attractor point, at which the kite
stops flying towards this attractor point and starts to make a turn. If the aforementioned parameters
are specified, then P3, P4, χ̇R and φsw can be calculated by the FPP. The motion of the kite on the
planned trajectory is described by the tangential velocity of the kite vk,τ , defined by Equation (2),
and the turning radius, defined as

$ =
h f ig

2
. (9)

The rate of change χ̇R of the course angle required to fly a turn with radius R is calculated as

χ̇R =
vk,τ

R
=

ωr
R

. (10)

where the angular velocity ω of the kite with respect to the origin is given by Equation (6). The turning
radius $, as defined by Equation (9), is an arc length on the unit sphere, while the radius of curvature
R, as used in Equation (10), is a distance in Cartesian space. For practically relevant figure-of-eight
maneuvers with small turning radius, we can use the following approximation:

$ =
R
r

. (11)

The value of φc2 can be calculated from

φc2 =
w f ig

2
− $. (12)

Then, the switch values φsw and βsw of the azimuth and elevation angles can be calculated from
Equations (13) and (14) by combining the circle segment of the left turn with the tangent.
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Figure 7 illustrates the derivation of the following equations using simple geometrical relations:

φsw = φc2 −
$2

φc2
. (13)

βsw =

√
$2 − (φsw − φc2)

2 + βset. (14)

The slope of the line segment towards P4 can be calculated from

k =

√
φc2 − φsw

φsw
. (15)

Solving for the attractor points P3 and P4, we obtain

P3 =

(
−φsw − δmin

√
1

1 + k2 , βsw + δmink
√

1
1 + k2

)
. (16)

P4 =

(
φsw + δmin

√
1

1 + k2 , βsw + δmink
√

1
1 + k2

)
. (17)

2.3. Flight Path Control (FPC)

The FPC uses the attractor points P3 and P4 to guide the kite during the FLY_RIGHT and FLY_LEFT
substates of the figure-of-eight maneuver. The required course angle χset is calculated from the set
values of the elevation and azimuth angles using great circle navigation [32]

yk = sin(φset − φ) cos βset. (18)

xk = cos β sin βset − sin β cos βset cos(φset − φ). (19)

χset = atan2(−yk, xk). (20)

Since the kite model is designed as a SISO system, it has just one error signal that comes from
the difference between the actual course angle of the kite, determined by integration of Equation (8),
and the set value for the course angle, given by Equation (20). This error signal is fed into a PID
controller that uses the relative steering input us to align the tangential velocity of the kite with the
planned flight direction.

The kite is steered along the turns of the figure-of-eight maneuver using a feed-forward controller
with the set value χ̇set = χ̇R, computed from the turn rate law given by Equation (8), to fly a turn with
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radius R (or $ in φ-β space). This set value is used as input of a nonlinear-dynamic-inversion (NDI)
block to calculate the relative steering action us that is required to fly the respective turn. The functions
used by the NDI block are detailed in [12].

3. System Identification (SI) Using Plackett’s Algorithm

The aim of the SI algorithm is to estimate the system parameters during automatic flight using
sensor data. Therefore, it is required to update the parameters in real time by analyzing the history
of the control action us and the course angle χ [28]. There are several techniques for SI. In this paper,
we used Plackett’s algorithm [29,30] as a technique to update the dynamics of the system. This specific
algorithm has the advantage of rapidly acquiring the system parameters without iterations, has no
singularity, and the implementation on a microcontroller is simple and can be used for real-time
processing for flight tests.

The algorithm is based on the minimization of the mean square error (MSE) of the course angle χ,
as defined by

MSE =
1
k

k

∑
r=1

(Yr −Ym,r)
2. (21)

where k is total number of time steps in the discrete time process, Ym,r are the measured data for time
step r, and Yr the estimated value determined by the SI algorithm. The open-loop transfer function
(TF) of the kite was derived in [28] and was used as a case study. The control action us is denoted
as U(z−1), and the course angle χ is denoted as Y(z−1). The block diagram of the SI algorithm and
adaptive control system is illustrated in Figure 8.
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Figure 8. Block diagram of System Identification (SI) algorithm and adaptive control system.

The SI algorithm predicts the course angle χ and updates the coefficients a1, a2, b1 and b2 of the
open-loop TF. Following that, the adaptive control updates its gains to stabilize the kite, as described in
Section 4. The simulation results presented in Section 5 were calculated on the basis of the SI algorithm.
This required to get the values of the control action and kite course angle as input for the algorithm to
estimate the coefficients a1, a2, b1 and b2 for two different flight conditions. Finally, these simulation
results were compared with results of the simplified model using a PID controller.

In Section 6, the SI algorithm was implemented in a different way. It utilizes the relative steering
action and course angle measured during a physical flight test of the TU Delft V3 kite to identify
the coefficients of the open loop TF. Neither the simplified model presented in Section 2 nor any
controller algorithms were used in this process. The open-loop TF for the kite in z-form [33] can be
approximated as

G(z−1) =
Y(z−1)

U(z−1)
=

B(z−1)

A(z−1)
. (22)
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where A(z−1) and B(z−1) are considered as second-order polynomial equations in z-form:

A(z−1) = 1 + a1z−1 + a2z−2. (23)

B(z−1) = b1z−1 + b2z−2. (24)

The coefficients a1, a2, b1 and b2 vary with time because of the change in the system dynamics.
The kite is also exposed to a time-varying apparent wind speed that is not available in real time during
flight. Substituting Equations (23) and (24) into Equation (22), we obtain

Y
U
(z−1) = G(z−1) =

b1z−1 + b2z−2

1 + a1z−1 + a2z−2 . (25)

Which can be rewritten in difference form as

Yk = −a1Yk−1 − a2Yk−2 + b1Uk−1 + b2Uk−2. (26)

or reformulated as a matrix expression

Yk = X>k−1θk−1. (27)

where

Xk−1 = [Yk−1, Yk−2, Uk−1, Uk−2]
> . (28)

θk−1 = [−a1, − a2, b1, b2]
> . (29)

From Equation (21), the MSE can be written as

MSE =
1
k

k

∑
r=1

(
X>r−1θr−1 −Ym,r

)2
. (30)

The objective of the SI algorithm is to obtain the values of the coefficient matrix θ that minimize
the MSE. From the derivation, these values can be calculated as

θk = Pk

k

∑
r=1

Xr−1Ym,r. (31)

where Pk−1 is a square matrix, such that

Pk−1 =

[
k

∑
r=1

(Xr−1X>r−1)

]−1

. (32)

From Equation (32), we obtain

P−1
k = P−1

k−1 +
(

Xk−1X>k−1

)
, (33)

Such that Equation (31) can now be rewritten as

θk = Pk

[
Xk−1Ym,k +

k−1

∑
r=1

(Xr−1Ym,r)

]
. (34)

From Equations (34) and (31), we find

θk = PkXk−1Ym,k + PkP−1
k−1θk−1. (35)
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Equation (33) can be rewritten as

P−1
k−1 = P−1

k −
(

Xk−1X>k−1

)
. (36)

Substituting Equation (36) into Equation (35), we obtain

θk = θk−1 + PkXk−1

(
Ym,k − X>k−1θk−1

)
. (37)

In Equation (37), the term Pk is unknown; thus, we can apply the Lemma formula [34] to
Equation (36) to arrive at

Pk = Pk−1 −
Pk−1Xk−1X>k−1Pk−1

1 + X>k−1Pk−1Xk
. (38)

Finally, we substitute Equation (38) into Equation (37) to obtain

θk = θk−1 −
Pk−1Xk−1

1 + X>k Pk−1Xk−1

(
X>k−1θk−1 −Ym,k

)
. (39)

Thus, the unknown coefficients a1, a2, b1 and b2 have to be calculated in every time step as
θk = [−a1,k −a2,k b1,k b2,k]

> to update the estimated course angle χ given in Equation (26).
The following calculation steps are required to obtain these parameters. First, the matrix Pk−1 is
initialized with large positive numbers on the leading diagonal and zeroes on the off-diagonal elements.
The matrix θk−1 must be populated with initial parameters close to the model. Then, the simulation
results of the SI algorithm are obtained with the following steps:

1. Xk is updated every sample time by system outputs and inputs as defined before.
2. Calculate θk and Pk from Equations (39) and (38), respectively.
3. Update θk−1 and Pk−1 with θk and Pk, respectively.
4. Repeat the loop for each time step.

4. Robust Pole-Placement Controller

The aim of this section is to design an adaptive control algorithm to stabilize the simplified
kite model of Section 2. The control gains are updated with the SI algorithm described in the
previous section, which makes the controller more robust compared to the classical control technique
implemented in [12]. Moreover, the controller can simply be implemented on a microcontroller and
installed in the KCU for autonomous operation of the kite. The closed-loop TF of the system in z-form
is defined as

TF(z−1) =
G(z−1)Gc(z−1)

1 + G(z−1)Gc(z−1)
. (40)

where G(z−1) is the open-loop TF of the system given by Equation (22), and Gc(z−1) is the controller
TF, as defined by

Gc(z−1) =
S(z−1)

R(z−1)
. (41)

Substituting Equation (22) in Equation (40), we obtain

TF(z−1) =
B(z−1)S(z−1)

A(z−1)R(z−1) + B(z−1)S(z−1)
. (42)
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The next step is to calculate the controller functions S(z−1) and R(z−1), and their order [35].
We assume that these functions can be expressed as polynomials of order n:

R(z−1) = 1 + r1z−1 + r2z−2 + .... + rnz−n. (43)

S(z−1) = s1 + s2z−1 + ..... + snz−n. (44)

The orders ns and nr of S(z−1) and R(z−1) can be calculated from Equations (45) and (46). They are
related to the orders na and nb of the open-loop TF, as follows.

ns = nb − 1. (45)

nr = na − 1. (46)

Using the SI algorithm discussed in Section 3, we can rewrite Equations (43) and (44) as

R(z−1) = 1 + r1z−1. (47)

S(z−1) = s1 + s2z−1. (48)

Then, the characteristic equation of the closed-loop TF can be rewritten as

A(z−1)R(z−1) + B(z−1)S(z−1)

=
(

1 + a1z−1 + a2z−2
) (

1 + r1z−1
)
+
(

b1z−1 + b2z−2
) (

s1 + s2z−1
)
= 0. (49)

Equation (49) is the characteristic equation of the closed-loop TF. By solving this equation, we are
able to tune the system behavior, i.e. the time constant and steady-state error. The orders of the
controller polynomials are calculated from the order of the open-loop TF. The required characteristics
of our system is to place the poles of the closed-loop TF at certain positions so as to achieve system
stability and robustness. We introduce the following equation:

A(z−1)R(z−1) + B(z−1)S(z−1) = Am(z−1)Ao(z−1). (50)

where Am(z−1) is a polynomial function that contains the controller characteristics, and Ao(z−1) is the
polynomial function that is responsible for stabilizing the order of the equation. The controller
parameters r1, s1 and s2 can be determined by comparing the coefficients of the same order in
Equation (50). In our design, the poles of the closed-loop TF in the z-form are 0.974653, 0.8431642,
and 0.741046.

The sampling time used during the simulation was ∆t = 0.02 s. Thus, the chosen poles can be
rewritten as

Am(z−1)Ao(z−1) = (1− 2.558863z−1 + 2.1688783z−2 − 0.6089858z−3). (51)

The characteristic equation of our model is a third-order polynomial. We applied Jury’s stability
test [36], which is similar to the Routh–Hurwitz stability criterion used for continuous-time systems,
and found that all roots were located inside the unit circle, which is a condition for stability.
Although Jury’s stability test can be applied to characteristic equations of any order, its complexity
increases for higher-order systems.

Finally, we have three unknowns, s1, s2, and r1. By substituting Equation (51) into Equation (50),
we obtaine three equations that we combine into a Sylvester matrix [37], as defined by the
following equation:
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 1 b1 0
a1 b2 b1

a2 0 b2




r1

s1

s2

 =


− 2.558864− a1

− a2 + 2.16888

− 0.6089866

 . (52)

The controller parameters r1, s1 and s2 are dependent on the parameters of the SI algorithm. In the
following section, we show that the robust pole placement controller and SI algorithm increase the
flight dynamic stability of the kite when exposed to sudden changes of the apparent wind speed.

5. Simulation Results

In this section, we present simulation results using the model and algorithms described in
Sections 2–4. We compared the results of a classical (PID) controller implemented in [12] with the
adaptive control demonstrated in Section 4 to show the capability of the adaptive control to increase
the stability of the kite flight. Both controllers use the simplified kite model derived in Section 2.
We investigated the flight dynamic responses of the kite for the two wind speed signals shown in
Figures 9 and 10. Flight condition I is discussed in Section 5.1, while flight condition II, which is
characterized by a much higher frequency, is discussed in Section 5.2.
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Figure 9. Time history for wind speed during flight condition I.
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Figure 10. Time history for wind speed during flight condition II.

5.1. Flight Condition I

Flight condition I is based on the wind speed signal illustrated in Figure 9. The fluctuations affect
the flight dynamics of the kite, as described by the model presented in Section 2. The SI algorithm
derived in Section 3 generates the values of the coefficients a1, a2, b1 and b2, shown in Figures 11 and 12.
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The resulting figure-of-eight trajectory is illustrated in Figure 13, calculated using the simple model
and the classical controller presented in Section 2.
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Figure 11. Time history of TF coefficients a1 and a2.
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Figure 12. Time history of TF coefficients b1 and b2.
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Figure 13. Trajectory computed on the basis of the classical flight controller for flight time of 70 s.

The figure-of-eight trajectory illustrated in Figure 14 was calculated on the basis of the SI algorithm
and adaptive controller described in Sections 3 and 4. The controller parameters are updated in real
time, accounting for varying parameters r1, s1 and s2, as shown in Figures 15 and 16, which are, in turn,
updated from the varying TF coefficients a1, a2, b1 and b2.
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Figure 14. Trajectory computed on the basis of the SI algorithm and adaptive controller for flight time
of 70 s.
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Figure 15. Time history of controller parameter r1 for flight condition I.
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Figure 16. Time history of controller parameters s1 and s2 for flight condition I.

Figure 17 shows a very close fit between the measured course angle from the model and the
estimated value from the SI algorithm. This accuracy was achieved for a sampling time of ∆t = 0.02 s,
which is very short for this type of application.
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Figure 17. Time history of measured and estimated values of course angle.

To assess the tracking performance of the different control approaches, we used the deviation
between the computed and the planned flight paths. From the several options to quantify this deviation,
in this study we chose the elevation angle. The difference in elevation angle is a suitable measure to
quantify the operational stability of the kite because if this difference increases too much, the wing can
experience aerodynamic stall. Therefore, the designed control parameters have to be carefully chosen
to keep the deviation of the elevation angle below a certain limit.

Figure 13 indicates that the deviation between simulated and desired paths depends on the
position along the path. The error increases after performing the turning maneuver. The maximal
deviation over the total simulation time was ∆β = 5◦ (20%). Using the SI algorithm with the adaptive
controller, the maximal deviation was ∆β = 2.5◦ (12.5%), as depicted in Figure 14. This was acceptable
for maintaining a stable flight.

5.2. Flight Condition II

Flight condition II is based on the wind speed signal illustrated in Figure 10, which is characterized
by fluctuations at much higher frequency compared to flight condition I. For this reason, flight condition
II is much more demanding for the controller, which we can see from the values of the TF coefficients
a1, a2, b1 and b2, displayed in Figures 18 and 19.
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Figure 18. Time history of TF coefficients a1 and a2.
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Figure 19. Time history of TF coefficients b1 and b2.

The order of the coefficients b1 and b2 in Figures 12 and 19 is different because the different
frequencies of the wind speed fluctuations affected the flight dynamic model of the kite, which was
then detected by the SI algorithm.

The computed trajectories are illustrated in Figures 20 and 21. Figure 20 shows that the
figure-of-eight motion of the kite progressively drops towards lower elevation angles, while Figure 21
shows that the figure-of-eight motion stays in the vicinity of the set value βset = 24◦. From this we
conclude that the classical flight controller is not able to maintain a stable flight operation for flight
condition II, while the combination of the SI algorithm and adaptive controller is.

To explain why flight condition II leads to an unstable flight operation we look at the differences
of the two control approaches used in the simulation. The classical flight controller is based on a PID
controller with constant gains. While this is suitable for flight condition I, it was not able to cope with
the dynamic reaction of the model to the more rapidly fluctuating wind speed of flight condition II.
In contrast to the classical controller, the combination of the SI algorithm and adaptive controller
was able to manage this dynamic reaction because the TF coefficients a1, a2, b1 and b2 and controller
parameters r1, s1 and s2 are updated in real time, as shown in Figures 18, 19, 22 and 23, respectively.
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Figure 20. Trajectory computed on the basis of classical flight controller for flight time of 70 s.
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Figure 21. Trajectory computed on the basis of the SI algorithm and adaptive controller for flight time
of 70 s.
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Figure 22. Time history of controller parameter r1 for flight condition II.
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Figure 23. Time history of controller parameters s1 and s2 for flight condition II.

Figure 24 shows again a very close fit between measured and estimated course angle,
which demonstrates the performance of the SI algorithm for a strongly fluctuating wind speed.
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Figure 24. Time history of measured and estimated course angles.

As indicated by Figure 20, the deviation of the computed elevation angle from the planned
elevation angle increases steadily along the trajectory until it reaches its maximum ∆β = 13◦ (65%)
with the last turn. This maximal deviation is three times the maximal deviation for flight condition I
(see Figure 13). Figure 21 shows a maximal deviation of 2.5◦ (12.5%), which is almost the same as for
flight condition I (see Figure 14).

6. Experimental Results

In this section, we apply the SI algorithm to data that were recorded during a flight test of the
20 kW kite power system of Delft University of Technology. The objective was to derive a mathematical
model of the kite power system directly from measurement data, omitting the use of an underlying
system model with many simplifying assumptions. As a result, we implicitly considered the effects
of the fluctuating wind velocity (magnitude and direction) and deforming wing due to a varying
aerodynamic load distribution and actuation of the bridle line system. In Section 6.1, we describe the
configuration of the kite power system during the selected flight test. In Section 6.2, we use the SI
algorithm to derive a mathematical model of the kite power system.

6.1. System Configuration

The flight test was performed by the research group on 25 October 2012 [38], using the TU Delft
V3 kite that is illustrated in Figure 3 and in more detail in Figure 25.

This specific kite has a total wing surface area of 25 m2, and is a customized and scaled-up
derivative of the Hydra kite, which is a commercially available surf kite with a total wing surface
area of 14 m2. The TU Delft V3 kite consists of a flexible membrane wing, a bridle line system, and a
small remote-controlled cable robot, the KCU. The wing is designed as a leading edge inflatable (LEI)
tube kite, using an inflated tubular frame to collect the distributed aerodynamic load acting on the
canopy and transmit this load to the bridle lines. The front bridle lines directly attach to the tether,
transmitting the major part of the forces, while the KCU connects the two branches of the rear bridle
lines to the tether. The integrated steering and depower winches can adjust the lengths of the steering
and depower tapes to steer the wing and to adapt its angle-of-attack, respectively. The angle-of-attack
is decreased during the reel-in phase to minimize the energy required to retract the kite. There are
two software algorithms to control the system: the first algorithm is for maintaining figure-of-eight
maneuvers during the reel-out phase while the second algorithm is for the reel-in phase. A detailed
description of the different functional components of the kite power system is given in [5,8,39].
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Figure 25. TU Delft V3 kite in front (left) and side view (right) [38]. KCU is displayed without the
exterior foam shell and the attached small wind turbine for supplying onboard power.

6.2. System Identification

The results presented in this section are based on two consecutive pumping cycles that start 2615 s
after kite launch at 15:13:41 (hh:mm:ss) [38]. Each pumping cycle consists of 110 s of tether reel-out,
followed by 70 s of tether reel-in. The flight motion of the kite is affected by a variety of parameters,
such as tether force, reeling speed, KCU steering actuation, and the dynamics of the drum-generator
module on the ground. Therefore, the SI algorithm described in Section 3 was used to directly
determine the SI parameters of the kite system using experimental measurements. We determined the
course angle from the recorded flight data by using the attitude sensors and relative steering action us.
These data were sufficient for the SI algorithm to derive the TF coefficients a1, a2, b1 and b2 in real time.

The recorded flight path of the kite for the two consecutive pumping cycles is illustrated in
Figures 26 and 27. The kite starts at an altitude of 240 m and subsequently dives down to the minimal
altitude of 115 m to start a first sequence of figure-of-eight maneuvers around an average elevation
angle of 25◦. During these maneuvers, the azimuth angle varies between −20◦ and 20◦, the tether reels
out and the altitude progressively increases. After around 100 s, the figure-of-eight maneuvers are
discontinued and the tether is reeled in. In this phase, the kite passes through a maximal azimuth
angle of 64◦, a maximal elevation angle of 74◦, and climbes to the maximal altitude of 315 m before
again diving down to around 115 m to start a second sequence of figure-of-eight maneuvers. Flying
to large azimuth and elevation angles is a second technique to depower the kite, and it was used in
this specific test flight in addition to reducing the angle of attack of the wing. Towards the end of the
second reel-in phase, the kite reaches the maximal elevation angle of almost 60◦ at a constant azimuth
angle of −30◦, climbing to the maximal altitude of 365 m.
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Figure 26. Recorded kite altitude for two pumping cycles. The origin of the time scale in this and
subsequent time-history diagrams is not synchronized with the launch event.

-40 -20 0 20 40 60
Azimuth (degree)

20

30

40

50

60

70

80

E
le

v
a

ti
o

n
 (

d
e

g
re

e
)

Figure 27. Recorded azimuth and elevation angles for two pumping cycles.

The recorded ground wind speed during the two selected pumping cycles is shown in Figure 28,
the recorded relative steering action us in Figure 29, and the recorded measured course angle in
Figure 30. From these, we calculated the TF coefficients a1, a2, b1 and b2, displayed in Figures 31 and 32.
The time-history diagrams reveal strong variations of the coefficients at 1990, 2110, and 2280 s.
These variations coincide with the transitions between reel-in and reel-out phases, and demonstrate
the capability of the SI algorithm to adjust to the system dynamics even when rapidly changing
operating modes.
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Figure 28. Recorded ground wind speed for two pumping cycles.
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Figure 29. Recorded relative steering action us for two pumping cycles.
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Figure 30. Measured and estimated course angle for two pumping cycles.
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Figure 31. Calculated TF coefficients a1 and a2 for two pumping cycles.
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Figure 32. Calculated TF coefficients b1 and b2 for two pumping cycles.

The open-loop TF of the TU Delft V3 kite was obtained from Equation (25) using the calculated
values of the TF coefficients displayed in Figures 31 and 32. The resulting correlation between
relative steering action us and course angle χ of the kite can be used for the planning and control
of autonomous flight operation. The correlation was also used in Figure 30 to estimate the course
angle using the recorded relative steering action us, displayed in Figure 29. The close fit between
measured and estimated course angle indicates the capability of the chosen SI algorithm to identify
system parameters without any singularity in a very short sampling time.

The recorded tether force measured at the ground is shown in Figure 33. One can clearly
distinguish the reel-out phases with an average tether force of 3000 N and the reel-in phases with an
average tether force of 700 N. The strong oscillations during the reel-out phase are induced by the
figure-of-eight motion, because the tether force is proportional to cos β cos φ [40], and the wind speed
fluctuations at the kite position [13].
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Figure 33. Recorded tether force for two pumping cycles.

7. Conclusions

In this paper, we studied the flight control of a tethered flexible-membrane kite used for airborne
wind energy harvesting in pumping cycles. Specifically, we investigated the figure-of-eight maneuvers
of the kite during the energy-generating reel-out phase. Following the development of a simplified kite
system model and a flight path planning algorithm, we compared a classical PID controller using fixed
gains with an adaptive controller that uses a system identification algorithm to adjust the controller
parameters in real time. The performance of the two different control approaches was assessed on
the basis of two flight conditions that were characterized by different fluctuation frequencies of wind
speed. We found that the classical control was not able to cope with rapidly fluctuating wind speed.
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On the other hand, the combination of adaptive control and SI algorithm was more robust, and was
able to handle more severely fluctuating wind speed and varying flight dynamic behavior of the kite.
The enhanced stability was a result of the real-time tuning of the control gains at every integration
time step to the varying SI parameters. Then, the SI algorithm was successfully applied to recorded
measurement data of a test flight of a 20 kW kite power system, equipped with a kite of 25 m2 wing
surface area. Despite the uncertainty of the wind velocity in magnitude and direction, and the dynamic
response of the deformable membrane wing, it was possible to successfully derive the SI parameters of
the system for different operating phases, such as reel-in and reel-out. The results suggest that the
combination of adaptive controller and SI algorithm is well-suited for robust path control of a tethered
membrane kite flying in a fluctuating wind field, and transitioning through different operating phases.
As a next step for this research, we aim to implement the adaptive controller with the experimental
hardware to demonstrate its performance in a flight-test campaign.
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Nomenclature

Latin Symbol
A denominator polynomial of open-loop TF -
a1, a2, b1, b2 coefficients of the open-loop TF -
B numerator polynomial of open-loop TF -
s1, s2, r1 adaptive control parameters -
c2 gravity-sensitivity coefficient of turn rate law rad.m/s2

c1 steering-sensitivity coefficient of turn rate law rad/m
c0 steering offset of turn rate law -
G(z−1) open-loop TF of model in z-domain -
Gc(z−1) closed-loop TF of model in z-domain -
h f ig angular height of figure-of-eight maneuver rad
lt tether length m
P3, P4 angular reference positions for FPP rad
nr order of R-polynomial -
R numerator polynomial of control TF -
r radial coordinate of kite m
ns order of S-polynomial -
S denominator polynomial of control TF -
U(z−1) system input defined as us in z-domain -
u′d relative depower action -
us relative steering action -
vw,re f horizontal wind velocity at reference height m/s
xk , yk , zk body-fixed kite reference frame -
xSE , ySE , zSE small earth reference frame -
xw , yw , zw wind reference frame -
Y(z−1) estimated course angle obtained from system identification in z-domain rad
ym measured course angle obtained from sensor rad
z−1 backward shift operator in z-domain -

http://www.kitepower.nl
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Greek Symbol
β kite elevation angle rad
βsw elevation angle to switch flight mode rad
χ kite course angle
χ̇ rate of change of course angle rad/s
χ̇R rate of change of course angle to fly a turn with radius R rad/s
χset set value for course angle rad
δmin minimal angular attractor point distance rad
w f ig angular width of figure-of-eight maneuver rad
ωre f reference value of angular speed rad/s
φ kite azimuth angle rad
φc2 azimuth angle at point C2 rad
φset set value of azimuth angle rad
φsw azimuth angle to switch flight mode rad
ψ kite heading angle rad
ψ̇ kite turn rate rad/s
$ turn radius of kite point K trajectory rad

Vectors and Matrices
ω angular velocity of kite point K with respect to origin O rad/s
PSE

k,set kite position in angular co-ordinates(φ, β) rad
Pk covariance matrix of estimated error -
θ last vector estimated using least-squares estimation algorithm -
va apparent wind speed m/s
vk kite velocity m/s
vk,r radial kite velocity component m/s
vk,τ tangential kite velocity component m/s
X data of old measurement of course angle and control action -
Ym measured course angle obtained from sensor rad

Abbreviation
AWE Airborne Wind Energy
FPC Flight Path Control
FPP Flight Path Planner
HAWT Horizontal Axis Wind Turbines
KCU Kite Control Unit
LEI Leading Edge Inflatable
MSE Mean Square Error
NDI Nonlinear Dynamic Inversion
NMPC Nonlinear Model Predictive Control
PID Proportional-Integral-Derivative
SI System Identification
SISO Single-Input Single-Output
TF Transfer Function
TU Delft Delft University of Technology
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