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Abstract
Inductive Program Synthesis (IPS) has been im-
plemented by a two-stage search algorithm, Brute,
and consequently improved upon with a Large
Neighborhood Search (LNS) technique, in an al-
gorithm named Vlute. Unmotivated values and de-
sign choices within Vlute caused limitations on the
performance of IPS tasks. This research improves
upon several of these limitations through experi-
ments. Most significant improvements are found in
the robot-planning domain through the implemen-
tation of a stochastic accept method and a best im-
provement neighbor search.

1 Introduction
For a user wanting to produce a program, it is in general eas-
ier to define what a program is supposed to do than to de-
fine the program’s steps in detail. Program Synthesis con-
cerns the matter of automatically finding programs from sim-
ple instructions and user-specified constraints. Within pro-
gram synthesis there are several levels of detail in which the
constraints can be specified. Fewer specifications are sim-
pler to define yet risk a less efficient program [14]. Finding
that program through a set of input and output examples is
called Inductive Program Synthesis (IPS). It is considered to
be an important part of the Artificial Intelligence domain, as
many processes in many domains can be automated through
the involvement of program synthesis. Such domains include
Intelligent Tutoring Systems, embedded systems like digital
controllers in cars, and functions in Microsoft Excel for end-
users [6; 11; 15].

The search space of all programs to be explored in Pro-
gram Synthesis can be expressed as a search tree. This
search tree can take on enormous sizes and thus exploring
the entire search tree can take unrealistic amounts of time.
Search algorithms can reduce the amount of time needed to
traverse the search space, which is why search algorithms
play an important role in inductive program synthesis [29;
4]. Improvements on the search over the tree can be made by
using local search algorithms. Within these local search algo-
rithms there are many variables that can be altered in order to
make the algorithm more suited to each problem.

The Very Large Neighborhood Search (VLNS) is an ex-
ample of such a local search algorithm. In previous work a
two-stage IPS system, Brute, has been developed that invents
programs consisting of very few instructions, called tokens,
and guides the search through the tree by combining these
tokens into larger programs. Brute then analyzes a distance
measure of the output of the program to assess the correctness
of the program [1]. An adaptation in the algorithm of Brute,
Vlute, that uses a VLNS algorithm with a Variable-Depth In-
vent (VDI) stage [24], has shown to perform better than Brute
in some domains.

However, some gaps are left in the aforementioned
research. Meant here, is that a number of values are left to
be randomly selected and some important decisions remain
unmotivated. Other research gaps include determining the

usefulness of tokens and varying on the search depth incre-
ment. This leaves the question of whether the performance
of a VLNS algorithm with VDI could possibly be improved.
The aim of this research is thus to find improvements in
several aspects of the Vlute algorithm, through answering the
following research question:

”How can we improve on the Variable-Depth Invent
variation of the Very Large Neighborhood Search algo-
rithm for Inductive Program Synthesis?”

In order to more precisely answer this, the research
question can be divided into several sub-questions:

• What is the effect of a varying depth-increment on the
search algorithm?

• What is the effect of different weights for tokens on the
search algorithm?

• How can randomly-chosen values of variables be chosen
to improve on the current destroy and repair algorithms?

• What is the effect of pruning programs on the search
algorithm?

• What is the effect of applying a best improvement strat-
egy?

• How can we improve the acceptance strategy?
In order to answer these question this research paper will

adhere to the following structure: first, important concepts
of VLNS, Brute, and Vlute will be explained in background
and related work. Then the methodology will be explained,
where the practical contribution to the code will become clear.
After this the experimental setup and the domains will be laid
out. Then the results of the experiments will be discussed and
followed by the conclusion and discussion.

2 Background and Related Work
This section will introduce and go more into depth on relevant
related concepts to this research such as Brute, VLNS, and six
important components of Vlute.

2.1 Very Large Neighborhood Search
Very Large Neighborhood Search (VLNS) is a local search
algorithm that takes a solution and repeatedly explores so-
lutions that are similar to it in order to improve on the so-
lution [3; 26]. The exploration of the neighborhood with
similar solutions often follows some heuristic. ”The success
of search-based optimisation algorithms depends on appro-
priately balancing exploration and exploitation mechanisms
during the course of the search.” [27], which also applies to
VLNS. Leaning towards exploration can cause the algorithm
to take a long time to converge, and leaning towards exploita-
tion is prone to get stuck in local optima.

Several variations of this algorithm exist, in which the size
or structure of the neighborhood is changed throughout the
algorithm [26]. Changing neighborhood sizes and structures
allows the algorithm to be applied to different problems. An-
other use is that changing neighborhoods can be employed to
avoid large sizes of neighborhoods, as VLNS can be prone



to explodingly increasing sizes of neighborhoods: ”Learning
large programs could be difficult since the size of the neigh-
borhood grows as the size of the sequence grows since there
are more ways to destroy the sequence.” [24].

2.2 Brute
Brute is a two stage IPS system. In the first stage, the in-
vent stage, several tokens are invented. These are categorized
as transition tokens that change a given state, control tokens
that determine the flow of a program (i.e. if and loop), and
boolean tokens that always return true or false when applied
to a state. The search stage follows the invent stage. Here
the tokens that were found in the invent stage are combined
to create a more complex program, of which the cost is then
calculated. Brute repeatedly goes through this process, sav-
ing best-found programs until time runs out or a program is
found that matches all the user specified constraints and ex-
amples [1].

2.3 Vlute
Vlute is an adaptation on Brute, where both the invent stage
and the search stage are different. In the invent stage Vlute
uses a Variable-Depth Invent (VDI) stage, where tokens of
different complexities are invented. In Brute each search it-
eration uses the same tokens as the invent stage is static. In
Vlute, just as in Brute, several of the simplest tokens are com-
bined to form a little more complex tokens. These more com-
plex tokens are limited to some depth, that determines the
number of transition tokens and control tokens that the new
more complex tokens consist of. The difference lies in that, in
Vlute, the depth of the invented tokens can increase when the
search stage yields no acceptable results, thus being a vari-
able invent stage. The maximum depth in the invent limited
to three depth levels in order to avoid an explosion of the
number of tokens.

In the search stage these tokens are combined, but the dif-
ference of this with Brute is that Vlute uses a VLNS algo-
rithm to explore the new possibly created programs through
destroy and repair methods. Vlute takes the current solution
and destroys it by taking some random index I in the program
and removing N random tokens from the program at that in-
dex. Then the tokens that were invented by the VDI stage can
be inserted back into the program in the repair method of the
search stage [24].

There are some components of Vlute that are interesting
and will be highlighted in sections 2.3.1-2.3.6.

2.3.1 Ni increment
The complexity, or depth, of tokens determines the balance
between exploration and exploitation in the algorithm. The
depth of the invented tokens, N, is determined by some set
variable, which can change over iterations when no good so-
lutions are found. When this variable should change is deter-
mined by the variable Ni where i is the number of iterations
in which no better solution has been found. Throughout each
run this i remains constant, meaning that after each i itera-
tions N is increased. In Vlute VDI has only shown to im-
prove results in a single domain. However, options to vary
this i within experiments have not yet been explored.

2.3.2 Token weights
The types of tokens that are invented determine the flow of the
program. Weights of the tokens determine the probability of
that token being invented. The weights of the tokens were un-
motivated in Vlute, and thus the only assumption can be that
they were (semi-)random. However, since they are applied
to a relatively uncommon approach of program synthesis re-
search on which values might perform well is not yet avail-
able, which might explain the choice for this randomness.
Some research exists on the synthesis of loop-free programs,
so with the weight for loop-tokens set to 0. Applications
include optimizing the core of computationally intensive
loops, bitvector algorithms, and geometry constructions [12;
15].

2.3.3 Degree of destruction
A large degree of destruction results in more exploration,
while a small degree of destruction result in more exploita-
tion. The randomness of the destroy method in Vlute raises
some questions. “The most important choice when imple-
menting the destroy method is the degree of destruction.”
[26]. In Vlute a random N is picked, bound by some
maximum value (the length of the program or N max, cor-
responding to the number of tokens that are removed from
the current solution. These removed tokens are sequential
and start from some random index I. N and I thus deter-
mine the size and shape of the neighborhood that we ex-
plore in that iteration. Randomness in the destroy method
of VLNS has actually been used in previous researches, as
well as other methods such as increasing, decreasing, and
examplesize-dependent degrees of destruction [22; 28; 23;
19]. However, many research papers describe program syn-
thesis in the domain of a Travelling Salesman Problem or
some other routing problem, so the question of which destroy
method works best in the domains used in this paper remains
unanswered.

2.3.4 Best improvement strategy
There are several strategies to determine what the next so-
lution should be to explore from. Brute and Vlute use
a first-improvement strategy, which accepts a new solu-
tion directly when it improves on the previous solution [24;
1]. Applying a best-improvement strategy will allow for bet-
ter improvements, as it explores a neighborhood and picks
the best neighbor to continue the search with. However, as
stated in an earlier paragraph, the size of a neighborhood can
be quite large. This means that a best-improvement strategy
could take a long time to conclude [20]. To avoid these long
computation times a middle ground can be found, in which
a set number of neighbors within the neighborhood, and not
the entire neighborhood, is explored.

2.3.5 Pruning
As mentioned in [24] pruning tokens has not been employed
in the original implementation of Vlute, but could possibly
improve the performance of the algorithm. Pruning programs
has been employed in local search algorithms in many dif-
ferent variants [21]. One such variant is pruning on observa-
tional equivalence. Observational equivalence is when multi-



ple solutions have the same output state for the each test case
[7; 13].

2.3.6 Stochasticity
Stochasticity can help avoid algorithms getting stuck in local
optima by occasionally accepting a worse solution than the
current one and thus apply exploration. This stochasticity has
often been used to combined with local search techniques [5;
25; 2]. Set by an initial temperature and a cooling factor, an
algorithm with a stochastic acceptance method is more likely
to accept a worse solution in the beginning of the experiment
and when the worse solution is only a little worse than the
current solution. This means that if Vlute were to use this
stochastic accept method, it would favour exploration at the
start of the run, and exploitation towards the end of the end of
the run.

3 Methodology
This section will describe the methods in which the five of
the six aspects of Vlute discussed in 2.3.1-2.3.6 are changed
or implemented. The exception are the token weights, which
are left out as they are easily changed in the existing code and
thus require no extra implementation or explanation.

3.1 Ni increment
In order to adjust Ni throughout a run, the original algorithm
of Vlute is changed to that of algorithm 1, in which the added
code is seen in red. When the number of iterations without
improving on the best solution has passed the current Ni, we
do not only increase the search depth as Vlute does, but also
replace Ni by Ni + x. Thus x=0 corresponds to the original
implementation of Vlute. i is of course bound by 0 and some
i max.

Algorithm 1 Vlute with changing Ni

input : Ni
output: solution
repeat

new program = repair(destroy(current program))
cost = cost(new program)
if cost = 0 then

return new program
if cost < current cost then

current program = new program
i = 0

else
i = i + 1

if i > Ni then
Increase search depth

i = 0
Ni = Ni + x

until timeout;
return program

3.2 Degree of destruction
Destroying and repairing the found solutions is, as described
in previous sections, currently implemented through a ran-
dom method. This strategy will be changed through a passed

parameter, that can be set as ”random” (by default, as in
Vlute), ”increasing”, or ”decreasing”. In the increasing and
decreasing strategies the degree of destruction and reparation
is proportional to the number of iterations that have passed
since the last improvement (i), and the number of iterations
needed to increase the search depth (Ni). This method can be
seen in algorithm 2.

Algorithm 2 Destroy and repair strategies
input : Program, i, Ni, strategy
output: n
mn = min(NMax, program length)

n = random(0, mn+1)
if strategy = increasing then

n = max(0, mn*i/Ni)
else

if strategy = decreasing then
n = max(0, mn - mn*i/Ni)

return n

3.3 Best improvement strategy
For the best improvement strategy we iterate over the destroy
and repair methods k times. For each iteration the cost of the
new neighbor is saved. If the cost improvement is better than
any improvement found thus far, we replace the best-found
neighbor with the new neighbor. After k iterations he search
algorithm resumes with the resulting best neighbor.

Algorithm 3 Best-improvement algorithm
input : k
output: best neighbor
best neighbor = current sol best neighbor cost = current cost
repeat

destroy and repair old solution
if cost is lower than best neighbor then

set best neighbor
until k times;
return best neighbor

3.4 Pruning
The pruning will get a separate method, shown in algorithm
4, which will take a dictionary of equivalence classes, a pro-
gram, and a certain test case. This method is inspired by a log
with thus far explored solutions, as employed in [21]. The
algorithm for pruning counts the number of times that a cost
has been found for that test case, and computes a probability
of pruning it. Higher counts result in a higher probability of
being pruned. This probability, based on the count, can also
be adapted to prune fewer or more programs. This allows the
algorithm to be adapted when it appears to prune too much or
too little.

3.5 Stochasticity
The stochastic acceptance method was already present, but
unused in the original research. Algorithm 5 shows the im-
plementation of the algorithm, which takes a temperature, a



Algorithm 4 Pruning
input : eq classes, input state, cost
output: boolean
if cost in eq classes then

count = eq classes.get(input state).get(cost)
else

eq classes.get(input state)[cost] = 1
count = 1

if random(0,1) > 1
count then

return True
else

return False

cooling factor, and the cost of both the current program and
the neighbor. The probability of a program being accepted is
determined by the difference in costs and the temperature at
that iteration. The algorithm thus has a higher probability of
accepting a new program with a cost close to the current cost
than one with a much worse cost. The algorithm also is less
likely to accept poor solutions as the experiment progresses,
as the temperature lowers each iteration.

Algorithm 5 Stochastic accept method
input : temp, cool fac, curr cost, n cost
output: boolean
cost diff = n cost - curr cost

prob = exp(−cost difftemp)
temp = temp * cool fac
if random(0,1) ¡ prob then

return True
else

return False

4 Experimental Setup
This chapter describes the experimental setup, consisting of
the values chosen for variables, the domains on which the
algorithms are tested, and the hardware environment the ex-
periments are run in.

4.1 Variable values
The Ni increment value in the experiments is set at 100 and
500. This allows Ni to reach values not yet covered in the
original research of Vlute, and is therefore most probable to
provide new insights. The values for the token weights are
originally set as 1 for wloop and 0 for wif. In the experiments
I will use two other weight sets: the first being the inverted
weights, so 0 for wloop and 1 for wif, and the other being both
weights set to 1. This allows analysis on the separate and
combined influence of the tokens.

The values used for the degree of destruction are inspired
by the current implementation of Vlute, which varies the de-
gree of destruction between 0 and the length of the program
or some NMax. The increasing and decreasing strategies will
thus vary between the same values. The only variable in
pruning would be the probability with which an observation-
ally equivalent program is pruned. This has to be negatively

proportional to the number of observationally equivalent pro-
grams that have been encountered, resulting in a value of 1

count
as seen in algorithm 4.

The values chosen for the size of the neighborhood in the
best improvement tactic are 10 and 100, and were chosen
such that they are much larger than the original size 1. The
values chosen for the stochastic acceptance method were cho-
sen through some simple experiments. The initial tempera-
ture value in the original code for Vlute was 0.1, however this
resulted in acceptance probabilities as small as 10-5 which ac-
cepted very few worse programs. Some testing showed that
an initial temperature of 1.0 resulted in probabilities through-
out a run of roughly 0.3 to 0.1, which would likely produce a
more discernible effect of the stochastic method. The cool-
ing factor, set at either 0.997 or 0.993, having been cho-
sen because the simulated annealing technique this stochastic
method is based on has shown to require slow cooling [16;
17].

For the remaining parameters I have chosen to use the same
values as used in the original experiments for Vlute. This al-
lows easy comparison of the results. These are the following
settings:

• The depth levels are [(1, 1),(2, 1),(2, 2)], where the first
number in each tuple is the number of transition tokens
and the second is the number of control tokens.

• The maximum degree of destruction, Nmax , is set at 3
• The weight for transition tokens, wtrans is set at 1.
• Experiments are done with Ni chosen from {1000, 3000,

5000, 10000, 15000, 30000}

4.2 Domains
The domains used to experiment on are the as used in the
original research on Vlute [24].

4.2.1 Robot-planning
This domain concerns a robot and a ball in a grid-world of
size nxn. The goal is to reach an output state with the robot
and the ball in a certain cell of the grid. To reach this goal
the robot can move and pick up the ball through the fol-
lowing transition tokens: MoveUp, MoveRight, MoveDown,
MoveLeft, GrabBall, and DropBall. The boolean tokens in
this domain are AtTop, AtRight, AtBottom, AtLeft. These to-
kens can be combined through if and loop tokens. An exam-
ple of this domain is shown in figure 1. The test cases for this
domain are generated for n ∈ 2, 4, 6, 8, 10. For each n there
are 110 test cases [1].

Figure 1: Robot-planning domain visualisation [24]



4.2.2 Real-world string-transformations
Real-world string-transformation takes an input string and
a pointer, and has the pointer move and change charac-
ters in such a way that the output string is reached. The
transition tokens are MoveRight, MoveLeft, MakeUppercase,
MakeLowercase, and DropCharacter, and the boolean tokens
are AtEnd, AtStart, IsUppercase, IsLowercase, IsLetter, Is-
Number, IsSpace. An example of an input string and an out-
put string is shown in figure 2. For testing there are 327 real-
world strings to be transformed to output strings, where each
string has 10 in/output examples. These examples are divided
in n ∈ 1, 2, ..., 9 training samples and 10n test samples. Each
test case, consisting of training and test samples, is repeated
10 times with different train samples.

Figure 2: String-transformation domain visualisation [24]

4.2.3 Drawing ASCII-art
This domain takes a grid of wxh blank pixels and a pointer,
and has to execute the task of colouring the right pixels. An
example with an input grid and an output grid can be seen in
figure 3. The transition tokens in this domain are MoveUp,
MoveRight, MoveDown, MoveLeft, and Draw. The boolean
tokens are AtTop, AtRight, AtBottom and AtLeft. The ASCII
characters that are to drawn are generated from strings of
length n ∈ 1, 2, 3, 4, 5, for each of which a 100 tasks are
generated [1]. The characters are selected through a uniform
random distribution and translated to pixel art with text2art.
The width, w, and height, h, for each character are 4 and 6,
respectively [24].

Figure 3: ASCII-art domain visualisation [24]

4.3 Experimental environment
The experiments are run on the TU Delft DHPC supercom-
puter [9], with one node per experiment and using 32 of the

48 available cores per node. The number of variants of the
algorithm ran per experiment varies from 2 to 16. The more
lightweight experiments were ran sequentially on the same
node, while heavier experiments were ran with fewer variants
sequentially.

5 Results and discussion
This section will discuss the results of the adapted compo-
nents described in previous sections for each of the domains.
Because the hardware setup of this research differs somewhat
from the setup used in the previous research on Vlute, results
are compared not directly to that of [24], but rather the same
base algorithms for Vlute and Brute are run on the hardware
described in this research.

5.1 Ni increment
Having Ni increment with 100 or 500 each time Ni is reached
does not seem to improve or deteriorate the performance of
Vlute much in any of the three domains. The accuracy and
the execution time both stay roughly the same regardless of
whether Ni is increased or not. Further insight into Vlute pro-
vides an explanation into the minor effect of incrementing Ni;
Even though higher values for Ni in Vlute perform better than
lower values, and incrementing Ni should thus improve the
performance of Vlute, the number of times that Ni is reached
before finding a better solution is very low. As a result Ni is
not often increased.

5.2 Token weights
Setting the weights wif and wloop both to 1 has none to a
slight negative effect of Vlute in the three domains. The
robot-planning domain shows worse execution time, as seen
in Figure 4. This weight assignment as no effect on accu-
racy in the robot-planning domain. The string-transformation
domain shows no decrease or increase in execution time and
accuracy. The ASCII-art domain also shows no improvement
in either execution time or accuracy, and even an overall small
decrease in performance.

Setting the weights wif and wloop to 1 and 0, respectively,
has different effects throughout all three domains. The ac-
curacy of Vlute in the robot-planning domain is not affected,
but the execution time is slightly lower. The ASCII-art do-
main shows some slight improvement in both accuracy and
execution time. Another observation is that this assignment
of weights to tokens causes slightly more of a spread in the
performance of Vlute with different values for Ni. This is no-
ticeable in both the robot-planning and the ASCII-art domain.
However, the difference spread is relatively small, possibly
because of the limited range of Ni values, so not much can be
concluded from this.

The string-transformation domain however shows a much
worse performance in both the execution time and the accu-
racy of Vlute, as seen in Figure 5. A possible explanation of
the difference in performance in the string-transformation do-
main is that string-transformations might often be ’cuts’ out
of a string, meaning that it loops until a certain starting char-
acter has been found, and then loops again until a stopping
character has been found. This would result in a domain that
heavily depends on loop tokens.



(a) Execution time (b) Legend

Figure 4: Performance of Vlute with wif=1 in the robot-planning
domain

(a) Accuracy (b) Execution time

(c) Legend

Figure 5: Performance of Vlute with wloop=0 in the string-
transformation domain

5.3 Degree of destruction

Having the degree of destruction in Vlute increase or decrease
throughout the iterations does not improve performance in
any domain. Both the increasing and decreasing destroy and
repair strategies seem to perform worse in execution time and
accuracy than Vlute in the robot-planning domain. The ex-
ecution time and accuracy for the increasing strategy how-
ever approach the performance of a random-destroy strategy
Vlute for higher Ni’s. Both the ASCII-art and the string-
transformation domains show a much worse execution time
for both the increase and decrease strategy. The accuracy in
both domains can be seen in Figure 6. An explanation for
this performance of increasing and decreasing degrees of de-
struction could be that the exploration and exploitation are
not performed properly. An increasing degree of destruction
could take too long in the beginning of the algorithm to de-
stroy enough to explore the search space. A decreasing de-
gree of destruction could take too long in the end of the al-
gorithm to destroy little enough to exploit the search space.
A random degree of destruction might just be the correct bal-
ance for this.

5.4 Best improvement
The best improvement strategy for searching through a neigh-
borhood seems most promising in performance through-
out the domains. In the robot-planning and the string-
transformation domains the execution time is more than
halved for Vlute with Ni-value 1000 while receding nothing
in accuracy. Noticeable in both domains is that Vlute with
a best improvement strategy improves a lot on regular Vlute,
but stays somewhat consistent with a growing Ni, as seen in
Figure 7. This fading improvement suggests that the value
chosen for the number of neighbors to explore should grow
with Ni. The ASCII-art domain also shows some improve-
ment, although not as much as the other domains, in both
execution time and accuracy, with its performance having the
same interesting relation to Ni as the robot-planning domain.

5.5 Pruning
Pruning by itself does not seem to improve the performance
of Vlute in any of the three domains. This can mostly be at-
tributed to the way Vlute was implemented; Because the cost
of a program is determined by its output state and the de-
sired output state, any solution with the same output state has
the same cost. As Vlute would only accepts neighbors with
a strictly better cost, no observationally equivalent solutions
will be explored by the algorithm and pruning on it becomes
somewhat useless. Then again, logically, allowing worse so-
lutions to explored, with the only goal being to prune them
later in the algorithm does not seem like a useful strategy.

However, pruning in combination with a best improve-
ment tactic that does not discriminate between worse or better
neighbors sounds useful. Pruning an observationally equiv-
alent program and only counting those steps in which the
neighbor was not pruned could make the steps more meaning-
ful. This combination however did not yield any significant
improvements in the experiments, which could be explained
by that pruning still remains relatively rare, thus preventing
any real improvement.

5.6 Stochasticity
Accepting non-improving solutions by means of a stochas-
tic accept function significantly improved the performance of
Vlute in the robot-planning domain. It roughly halves the ex-
ecution time, as seen in figure 8a, while receding no perfor-
mance in accuracy. Stochastic accept methods combined with
high values for Ni even approach the performance of Brute in
this domain. In the ASCII-art domain stochasticity results
in nearly the same improvement. These results could be ex-
plained by the nature of the accept method, which performs
exploration first and exploitation second.

Interestingly, the string-transformation domain shows a
strong decrease in performance. Both the execution time
and accuracy are much worse for a stochastic Vlute than
for a deterministic Vlute. The results for the robot-planning
and the string-transformation domain are shown in Figure
8. A possible cause of the poor performance in the string-
transformation domain compared to the other two domains is
the length of the resulting programs. In general, domains that
require large programs as solutions benefit from stochastic
program synthesis [30]. Further analysis of all three domains
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Figure 6: Accuracy of Vlute with increasing and decreasing degrees of destruction in the string-transformation and ASCII-art domain

(a) string-transformation domain (b) robot-planning domain (c) Legend

Figure 7: Execution time of Vlute with best improvement tactic in the robot-planning and string-transformation domains

shows that program synthesis the string-transformation do-
main results in the smallest programs out of all domains, thus
explaining why it benefits least from this adaptation on Vlute.
This theory, however, contradicts the performance difference
in the robot-planning and ASCII-art domain. That is to say,
the ASCII-art domain results in the longest programs, indi-
cating that its performance should be improved most of all
three domains, which is not the case.

6 Conclusions and Future Work
The inductive program synthesis (IPS) system Vlute has
shown in previous work to improve upon another IPS system,
Brute, in the program synthesis task of string-transformations
through the use of a Very Large Neighborhood Search
(VLNS) with a Variable Depth Invent (VDI) stage. It has
not shown any improvement in robot-planning or draw-
ing ASCII-art. This research in turn improved upon Vlute
through various tactics. Some improvement tactics even
approach Brute’s performance where Vlute could not. Of
these tactics using a best improvement strategy for explor-
ing neighbors improved the most on Vlute, by halving execu-
tion time while receding no accuracy. Including a stochastic
accept method and exploring only loop-free programs also
showed improvement in both execution time and accuracy in
the robot-planning and ASCII-art domain. Overall most im-
provement was found in the robot-planning domain, and the
worst deterioration was found in the string-transformation do-

main. My experiments thus show that, even though Vlute is
an inventive way of improving on Brute, there are still tactics
to explore that could decrease execution time and increase
accuracy.

For future research, the parameters of each of the described
tactics could be explored in further detail. Possibly linking
the value of Ni to parameters in the best-improvement tactic,
or any other, could lead to interesting results.

Also, while pruning on observational equivalence might
lead to more interesting results with more suited search al-
gorithms, other types of pruning might still be applicable to
Vlute. Here, pruning algorithms that take into account the
length of the program or the types of tokens might be more
useful. Further interesting research could be conducted on
the role of loop-free programs in the execution time of Vlute.
The relation between the spread of the Vlute algorithms with
different Ni values and the weight of the if -token might also
yield interesting results.

7 Responsible Research
7.1 Data usage
The data has been received from the supervisor of the project,
and has been used by [1] and [24]. However, the data has not
been checked for bias or correctness because of time con-
straints on this project. The data for the robot-planning do-
main and the ASCII-art domain were generated randomly,
so the test cases for these domains can be considered to be
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Figure 8: Performance of Vlute with stochastic accept method in the robot-planning and string-transformation domains

mostly unbiased. The real-world string transformations, how-
ever, were taken from and used in previous research, where
part of the data seems to originate from online Microsoft
Excel user forums, and other data was handcrafted [8; 18;
10]. The re-use of the data throughout previous research sug-
gests some reliability, but cannot ensure it.

The ethical aspect of the data can be categorized as not
at risk of being manipulated with malicious intent. This is
because there is no privacy sensitive data stored. Further-
more, the stored data has also not been published along this
research, and is therefore not easy to access unless someone
is authorized to do so.

7.2 Reproducibility

Reproducibility of the research is subject to the hardware on
which the code is run. The hardware setup can be reproduced
with relatively high certainty, as the TU Delft supercomputer
(DHPC) provides an unchanging environment for the exper-
iments to be run in. A cause for different results in some of
the experiments however can be the stochasticity of some of
the experiments. The simulated annealing acceptance strat-
egy that replaces a deterministic strategy in some experiments
may have different outcomes in several runs.

Another flaw in the reproducibility of the research is the
code itself. As the code has not been produced in a release
form, meaning that no definitively ’correct’ version has been
made, it is hard for a random user to find the exact configura-
tions in which the code was run for the experiments. In gen-
eral structure and implementation the released code conforms
to the setup used for the experiments, however variables used
in the experiments have to be changed by the user in order re-
produce the experiments. This is subject to human error, and
allows for mistakes in reproductions.

7.3 Credibility

The credibility of the results can be questioned, as the do-
mains on which the experiments are tested are limited. How-
ever, since the goal of the research was to improve upon
Vlute, no option for the expansion of the domains or addi-
tional domains was possible. So, as far as possible, the results
are credible.
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