
Delft Center for Systems and Control

Intent-Based Coordination of
Robotic Autonomous Systems
for Persistent Reconnaissance

M.A. Korthals Altes

M
as

te
ro

fS
cie

nc
e

Th
es

is

Intent-Based Coordination of Robotic
Autonomous Systems for Persistent

Reconnaissance

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

M.A. Korthals Altes

June 4, 2021

Supervisor: Prof.dr.ir. T. Keviczky

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis was supported by the Royal Dutch Army. Their cooperation is hereby
gratefully acknowledged.

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

The introduction of Robotic & Autonomous Systems (RAS) in modern combat seems in-
evitable, with clear advantages like reduced risk and extensification of personnel. To scope
this research, persistent reconnaissance with heterogeneous Unmanned Aerial Vehicles (UAVs)
is selected, being one of the more prominent applications. Despite continuous efforts develop-
ing advanced hardware and algorithms, real-world implementations are still lacking. The root
cause seems to be that state-of-the-art algorithms deal insufficiently with the high dynamics
and uncertainty in a military environment.

Currently, the military uses intent-based Command & Control (C2) to deal with precisely
these challenges, as they are inherently tied to combat. Therefore, a conversion of the
communicative principles of C2 towards a mathematical approach applicable to RAS seems
promising, of which intent-based coordination is the result. To be able to deal with the high
dynamics and uncertainty, three requirements are formulated. First, flexibility is needed to
revise the solution locally. Secondly, robustness against unreliable communications is neces-
sary, and thirdly, scalability is required to ensure the performance can also be maintained for
larger Areas of Interest (AOIs) and larger teams of UAVs.

The Single-Agent Reconnaissance Problem (SARP) and Multi-Agent Reconnaissance Prob-
lem (MARP) are formulated as a compact combination between the visitation frequency
and coverage level approach for persistent reconnaissance. Based on advancements made on
teamwork and organizations for Multi-Robot Systems (MRSs), a coordinative method is for-
mulated. This coordinative method partitions an AOI for the MARP into smaller disjoint
subsets, such that separate SARPs can be solved independently by each UAV. The key con-
tribution of this research is that this coordinative method functions based on intent, enabling
the required flexibility, robustness, and scalability. It does so by constructing a hierarchy
of supervisors that perform distributed cooperation on overlapping subsets. This distributed
problem is solved using the novel Complex Concurrent Bounding (CCB), which is an adjusted
version of Concurrent Forward-Bounding (ConcFB) for Distributed Constraint Optimization
Problems (DCOPs) with complex local problems. Additionally, a lower bound is generated to
benchmark the obtained solutions, based on the pricing step of branch & price, by applying
column generation to a reformulated version of the MARP.

Intent-based coordination shows flexibility against perturbations of the AOI. Especially when
changes are spread out, it is not necessary to revise the solution as a whole immediately.
Furthermore, if the cooperation is preemptively terminated due to failing communication,
robustness is observed against the resulting suboptimal subsets. Especially for higher levels
in the hierarchy, the suboptimal solutions can partially be corrected by lower levels. Lastly,
the method shows a sublinear growth in computation time for increasingly larger problem
instances. As such, intent-based coordination provides an exciting approach to maintain the
performance of RAS even in more challenging environments.

Master of Science Thesis M.A. Korthals Altes

ii

M.A. Korthals Altes Master of Science Thesis

Table of Contents

Preface xiii

1 Introduction 1
1-1 The complexity of military autonomy . 1
1-2 Problem statement . 2
1-3 Contributions . 2
1-4 Structure . 4

2 Persistent Reconnaissance State of the Art 5
2-1 Classification of reconnaissance . 5
2-2 Solution methods . 11
2-3 Towards distributed coordination . 12

3 Modelling Reconnaissance 15
3-1 Single-Agent Reconnaissance Problem . 15
3-2 Multi-Agent Reconnaissance Problem . 16
3-3 Risk evolution . 17

4 Benchmarking 19
4-1 Lower bound . 19

4-1-1 Reformulation . 20
4-1-2 Column generation . 21

4-2 Upper bound . 27
4-3 SARP solution . 27

5 Intent-Based Coordination 29
5-1 Solution structure . 29
5-2 Application of intent . 31
5-3 Clustering sectors . 32

5-3-1 Sector features . 33
5-3-2 Fuzzy C-Means algorithm . 33
5-3-3 Reducing cluster sparseness . 35

5-4 Task Allocation . 36

Master of Science Thesis M.A. Korthals Altes

iv Table of Contents

5-4-1 Valuing task properties . 36
5-4-2 Local formulation . 37

5-5 Distributed cooperation . 40
5-5-1 Concept of shared tasks . 40
5-5-2 Cooperative formulation . 41
5-5-3 Distributed Constraint Optimization Problems 42
5-5-4 Concurrent Forward Bounding . 44
5-5-5 Complex Concurrent Bounding . 47

5-6 Combining the components . 51

6 Performance Analysis 53
6-1 Experiment setup . 54

6-1-1 Scenario . 54
6-1-2 Default parameter values . 55

6-2 Component performance . 56
6-2-1 Benchmarks . 56
6-2-2 Task allocation . 58
6-2-3 Distributed cooperation . 61
6-2-4 Summary . 68

6-3 Combined performance . 70
6-3-1 Solution quality . 70
6-3-2 Flexibility . 73
6-3-3 Robustness . 77
6-3-4 Scalability . 80
6-3-5 Summary . 82

7 Conclusion 85

8 Discussion 87

A Parameter Evaluation 91

B Additional Experiments 99

C Task dependency proof 105

Bibliography 109

Glossary 117
List of Acronyms . 117
List of Symbols . 118

M.A. Korthals Altes Master of Science Thesis

List of Figures

1.1 An example of splitting the Area of Interest (AOI) of a Multi-Agent Reconnaissance
Problem (MARP) into smaller, disjoint Single-Agent Reconnaissance Problems
(SARPs) . 2

1.2 A general depiction of the solution approach. Instead of solving the MARP to
optimality, the AOI is partitioned into smaller subsets such that smaller SARPs
can be solved separately. A benchmarking method is used to compare the results. 3

2.1 An overview of the different Intelligence, Surveillance & Reconnaissance (ISR)
missions applied in a military context, along with the most important sources. . . 6

2.2 An example attack helicopter mission used in [78] to discuss teamwork for MRS. 14

5.1 A graphical display of the components of the solution method, and the different
links between them. 30

5.2 An example of strictly hierarchical coordination. Each supervisor partitions the
subsets further for its own subordinates. 31

5.3 By letting the subsets overlap, room for cooperation is added for peer supervisors.
The specific size and number of overlapping subsets represent the superior’s intent. 32

5.4 A cluster created with Fuzzy C-Means (FCM) with different values for the fuzzifier
m. With m = 1, the fuzzy clusters converge to hard clusters. For higher values of
m, more sectors are included in the clusters with a small degree. 34

5.5 An example of the interpolation method to create polygonal clusters without losing
low degrees, by capping the interpolated values at the nth percentile of the original
degree. 35

5.6 A schematic view of dependencies between tasks. If multiple tasks are selected,
the distance between them induces inefficiencies and a strain on the capacity. . . 38

5.7 Left: two supervisors are allocated to overlapping subsets. Center: The yellow
and green tasks are local, as they belong to only one subset. The orange and
turquoise clusters are located partially in the overlapping subsets, meaning they
are shared tasks. Right: The tasks are allocated to their respective peer supervisor
after cooperation. 40

5.8 In the left plot, figurative tasks are displayed as a grid. Three colored agents each
have local and overlapping shared tasks. At the right, a connectivity graph is
displayed indicating which agents have at least one overlapping task. 44

5.9 Example of the different domain sizes depending on the ordering of the agents. . 44
5.10 A DCOP decision tree, with objective values (bottom) and a solution (red line) [5]. 45
5.11 Example of disjoint Search Processes (SPs) in ConcFB [5]. 45

Master of Science Thesis M.A. Korthals Altes

vi List of Figures

5.12 An example expansion of the local search tree. The green nodes are relaxed, the
red pruned by optimality, the blue propagated and tested, and the grey are discarded. 48

5.13 Solution flow of the distributed hierarchical intent-based coordination. 51

6.1 The analysis structure with the corresponding objectives. 53
6.2 The Area of Interest (AOI) is displayed, with a mapping of the corresponding

terrain traversability M , and the priorities P provided by an operator. 54
6.3 An example of reducing the resolution to match a specific amount of sectors. . . 54
6.4 A runtime comparison between the exact solution and the priced lower bound for

different numbers of sectors and sensors. Pricing is inversely dependent on the
number sensors compared to the optimal approach and can handle significantly
larger instances, though the runtime remains exponentially dependent. 56

6.5 Left: a histogram of the performance of each lower bound, excluding the single-
agent case. Right: the average tightness of the priced lower bound with a 95%
confidence interval for each amount of sensors. Apart from the single-agent case,
the results are very consistent. 57

6.6 Left: the relative performance of the heuristics for different numbers of sectors and
sensors. Right: A plot with 2nd order polynomial fit of the performance sorted on
the average number of sectors, showing performance is dependent on the SARP
size, and not the total number of sectors. 58

6.7 Left: the relative performance of the heuristics for different numbers of sectors
and sensors. The gap is more volatile due to the lack of load balancing, leading to
more variation in SARP sizes. Right: A plot with 2nd order polynomial fit of the
performance sorted on the average SARP size N/P . The trend is hardly visible
compared to the actual task allocation. 58

6.8 The relative performance of the single task allocation problem compared to different
benchmarks. Based on these results, it is reasonable to expect a performance
decrease for an increasing number of sectors. 59

6.9 The extrapolated values for the optimal values (dashed) are compared with both
the optimal values (solid) and the task allocation solutions (dotted). These results
do not indicate large deviations between different sensor setups. 60

6.10 Left: the resulting number of clusters for each sensor setup. Center/right: The
processing time, based on the number of clusters and sensors. The addition of
more sensors has a larger impact. 60

6.11 Left: the relative performance of task allocation without post-processing, for dif-
ferent values of the fuzzifier m, compared to the case with post-processing. Right:
the same comparison, but for varying factors p increasing the clustering weights
for the sector coordinates. Based on these results, no significant benefit can be
observed. 61

6.12 A plot showing the absolute convergence time for different amount of sensors and
fuzziness on a logarithmic scale. More sectors and larger fuzziness result in slower
initial and tail convergence. 62

6.13 The relative convergence is measured as the absolute difference in optimality gap
between CCB and Gurobi. A positive difference indicates that CCB has a smaller
gap on average at that time. During the initial fraction of a second, CCB seems
to perform better. After that, it performs worse due to slow convergence. 63

6.14 A comparison of the difference in optimality gap of the first obtained result by
CCB and Gurobi (left), and the difference at the time both have a first result (right). 63

6.15 The relative convergence between CCB and ConcFB, which has no local tree,
uses separate UB requests and naive initialization of the Current Partial Assign-
ment (CPA). CCB clearly outperforms ConcFB, for which the effect is larger for
increasing complexity. 64

M.A. Korthals Altes Master of Science Thesis

List of Figures vii

6.16 Left: the relative convergence between CCB and partial ConcFB setups. Improper
initialization has a major effect, and UB requests only minor. Removing the local
tree is even slightly beneficial. Right: Percentage of cases in which a partial
ConcFB setup performed equal or better than the CCB result at the same time.
The larger the fuzziness, the larger the negative effect of improper initialization
and UB requests. The contrary is true for the local search tree. 65

6.17 Based on the connectivity, which describes the number of peers a supervisor shares
a task with, different orderings are tested. An ascending connectivity ordering
consistently outperforms any other ordering, where descending appears to be the
least effective. 66

6.18 The linear fit shows that a larger allocation gap leads on average to worse MARP
solutions, for which the effect increases with larger fuzziness, implying more shared
tasks. 66

6.19 Within the 5% optimality gap no clear trend is visible. The cumulative percentage
of best solutions for varying gaps shows that a significant amount of best solutions
is obtained in the 1-5% range. This suggests solving allocation to optimality is not
always crucial. 67

6.20 The relative performance of the worst-case allocation, which occurs when no coop-
eration is present. Multiple agents then perform any overlapping parts. Logically,
increasing fuzziness shows worse performance. 68

6.21 Different hierarchical structures, ranging from asymmetrical (first left), to sym-
metrical (second), uniform (third), and centralized (fourth). 70

6.22 Left: the relative performance of different group sizes. Center: the total run time
for different group sizes. Right: the resulting allocation gap after the time-out
limit has been reached. The results are in clear favor of a group size of 2. 71

6.23 Consistency of the results for a varying problem and group size. Smaller group
sizes are slightly more consistent, although all setups show large deviations. . . . 71

6.24 A plot showing the relative performance for different fuzziness and number of
sectors, for a hierarchy with groups of 2 and 16 agents. Based on these results, it
is best to keep the fuzziness as low as possible, around m = 1.15 72

6.25 The performance of the hierarchical approach compared to the other benchmarks.
The hierarchical approach shows consistent performance for an increasing number
of sectors. 73

6.26 An academic example map, consisting of four distinct planes, each being a combi-
nation of high and low risk or risk increase. 74

6.27 Metrics showing the effect of revising the solution at different hierarchy levels if the
academic example is flipped. Clearly, improvement is only achieved when starting
the revision at least on the third (second-highest) level. 74

6.28 A distribution of the average improvement obtained for each level. The upper two
levels (3 & 4), show consistently better results, but deviations remain large. . . . 75

6.29 A display of the difference if perturbations are performed on the original problem
for increasingly larger percentages κ. 75

6.30 The results for varying perturbations. At every level, a larger perturbation leads to
bigger improvements when revising the solution. Still, the best results are obtained
when revising at the highest two levels. 76

6.31 A display of the difference if perturbations are performed on the original problem
for increasingly larger percentages κ of concentrated changes. 76

6.32 The results for varying concentrated perturbations. Compared to the scattered
case, the lower two levels show slightly worse performance. 77

6.33 Left: suboptimal allocation for a complete echelon (a level). Right: suboptimal
allocation for all supervisors and agents succeeding a superior (a column). 78

Master of Science Thesis M.A. Korthals Altes

viii List of Figures

6.34 A distribution of the relative cost increase if the allocation is suboptimal at specific
levels. On average, lower levels show a larger decrease but a smaller worst-case
tail, implying that lower levels partially mitigate the negative effect of suboptimal
allocation at higher levels. 78

6.35 The metrics are split per level and optimality gap. The highest level is not influ-
enced, as no cooperation is present. The worst-case no cooperation has the largest
impact at the second-highest level. For suboptimal allocation the worst results are
obtained at the lowest level. 79

6.36 A distribution of the relative increase in cost for suboptimal allocation in a column.
Performance of suboptimal allocation is equal at all levels. The worst-case solution
compounds over multiple levels, generating longer tails for higher levels. 79

6.37 For the suboptimal columns, the average decrease in worst-case performance is sig-
nificantly larger, with almost 150% reduction. The suboptimal allocation, however,
seems constant over multiple levels. This shows robustness against communication
failures at higher levels. 80

6.38 Log-log plots showing the growth in computation time for the centralized and
hierarchical setup. In contrast to the centralized approach, the hierarchy shows
the desired linear increase in computation time. 81

6.39 Due to large deviations in computation time, the results for the centralized case
are displayed using a semi-log plot, while the hierarchy is shown on a regular scale.
The centralized case increases much for more than four sensors and varies more
greatly. The hierarchy is both fast and more consistent. 81

A.1 A comparison of the average number of other clusters that any cluster overlaps
with, for varying fuzzifiers m. In this case, all clusters overlap for m ≥ 1.2. . . . 92

A.2 Left: a comparison of the overlap for varying fuzziness for both the cleaned and
interpolated degree, which are cut-off and averaged over a range of threshold β.
Right: The combined effect of the fuzzifier and the threshold for the interpolated
degree. The higher the threshold, the lower the overlap. This effect increases for
larger fuzziness. 92

A.3 Varying cluster overlap based on scaling the clustering weights for the sector co-
ordinates by κ. Left: a plot comparing the relative increase in cluster overlap
compared to the cleaned degree. Right: an absolute comparison of the resulting
overlap after interpolation. 93

A.4 The average percentage of total clusters any cluster overlaps with (y-axis), com-
pared to the average cluster size as a percentage of the number of sectors N
(x-axis). 94

A.5 Left: the effect on the MARP cost by scaling the normalized capacity with nb.
Right: The effect on the MARP cost by scaling the overtime penalty e. 95

A.6 Left: the total cost depending on the deviation in the sensor properties. High
deviation results in much better performance. Right: the relative performance for
each scale with a 95% confidence interval. A low weight for sector coordinates
performs significantly worse. 96

A.7 A plot indicating the relation between scaling the risk or risk increase clustering
weights by κ, and a heterogeneity in velocity or flight time by the standard deviation
σh. Although some trend is visible, a clear correlation is not visible. Still, it is clear
that insufficient prioritization of coordinates (κ = 4), generates worse results. . . 96

B.1 The correlation between the number of sectors and clusters, and the total runtime
until convergence. Adding clusters has a greater effect than adding sectors, which
can be expected. 99

M.A. Korthals Altes Master of Science Thesis

List of Figures ix

B.2 Though the similarity is higher for small clusters, the low difference in feature devi-
ations with the random approach indicates small FCM clusters are of insignificant
value. 100

B.3 The relative performance for each number of sensors (left) and the combined results
(right) are shown with a 95% confidence interval. These results do not provide
evidence against the use of transformed fractional allocation from the column
generated lower bound. 101

B.4 Intermediate results within a hierarchy. A red arc color indicates a larger gap
between the task allocation and relaxed lower bound. A red node indicates a larger
gap between the task allocation and optimal solution. Possibly the gap with the
lower bound predicts the gap with the optimal solution. In this selected example,
it clearly does. 102

B.5 The correlation between the relative performance of task allocation to the lower
bound (x-axis), and the relative performance to the optimum (y-axis). 103

C.1 An example of 10 tasks with unequal sizes. Without weighing the task dependency
cost, task 1-4 and 7-10 combined would yield higher costs than 5 and 6 combined,
though the areas are equal. 106

Master of Science Thesis M.A. Korthals Altes

x List of Figures

M.A. Korthals Altes Master of Science Thesis

List of Tables

5.1 A figurative example of the access of three agents to ten tasks. 44

6.1 Default parameter values . 55

Master of Science Thesis M.A. Korthals Altes

xii List of Tables

M.A. Korthals Altes Master of Science Thesis

Preface
I have always been fascinated by how large groups of people can organize themselves to work
towards a common goal. Especially the massive military campaigns undertaken during World
War 2 are a true logistical and communicative feat. During my years at the Royal Dutch
Army, I have seen quite the opposite of this ability in Robotic & Autonomous Systems (RAS),
which are often very singular or impractical. This left me wondering: is it not possible that
we as humans have developed a way to organize and cooperate that is not yet available for
robotic systems? Of course, such a general question is hard to answer, and if an answer exists,
it comes in many forms. Nonetheless, I have made my attempt for one application with the
hope of making true robotic teamwork one step closer.

I would like to thank my supervisor Prof. dr. ir. T. Keviczky for his assistance during
the writing of this thesis, and especially for his focus on making my research concrete and
mathematically sound. Furthermore, I want to thank Defensity College for enabling me to
work on this research.

Delft, University of Technology M.A. Korthals Altes
June 4, 2021

Master of Science Thesis M.A. Korthals Altes

xiv Preface

M.A. Korthals Altes Master of Science Thesis

“Never tell people how to do things. Tell them what to do, and they will surprise
you with their ingenuity.”
— General George S. Patton, U.S. Army

Chapter 1

Introduction

1-1 The complexity of military autonomy

The Royal Dutch Army pursues the continuous development of Robotic & Autonomous Sys-
tems (RAS) [1]. The advantages of such systems include reduced risk, extensification of
personnel, enhanced Situational Awareness (SA), and integration with a new Concept of
Operations (CONOPS).

Despite the significant investments by NATO partners in RAS and the advancements made on
autonomous systems in various civil industries, implementations in a combat environment are
still lacking. Though literature provides substantial propositions for advanced algorithms for
complex and intelligent behavior like swarming, experiments within a military environment
remain dedicated to validating the ruggedness, mechanical reliability, and other conventional
benchmarks for new systems. The root cause of this slow implementation seems to be the
gap between the scientific assumptions and the reality of combat. Subsequently, the proposed
algorithms cannot be effective, prohibiting their implementation to any further stage than
simulations or controlled experiments.

Specifically, a combat environment is highly dynamic and uncertain, which means that in-
formation is either unavailable, unreliable, or incomplete and needs to be processed quickly.
These findings originate from the crushing defeat of the Prussians against Napoleon at Jena
and Auerstedt (1806). Afterward, Gerhard von Scharnhorst (1755-1813) concluded that the
Prussians had falsely assumed that victory could be gained by mathematical principles. In-
stead, he deemed war inherently chaotic and unpredictable. As such, the iron Prussian disci-
pline left great opportunities unexploited, as there was no room for local initiative [2]. This
laid the groundwork for a more flexible approach to decision-making in a combat environment,
which gradually evolved into intent-based Command & Control (C2).

The essence is that through all levels in the command hierarchy, it is completely clear what
each respective commander’s intent encompasses. The result is that also local initiatives
contribute to the global mission objective, such that sudden advantages can be exploited
quickly without the need to justify actions up to the highest echelons. The question is if and
how this type of C2 can be converted to a mathematical approach for RAS.

Master of Science Thesis M.A. Korthals Altes

2 Introduction

1-2 Problem statement

There are many RAS capabilities, but one of the main applications is a network of (hetero-
geneous) Unmanned Aerial Vehicles (UAVs) performing persistent Intelligence, Surveillance
& Reconnaissance (ISR). Persistent reconnaissance means that an Area of Interest (AOI)
is continuously monitored for the presence of targets. Though much research is done on so-
lutions for various ISR missions, they are not explicitly designed for a demanding combat
environment. This environment can be defined by two main characteristics:

1. High dynamics, meaning that the situation can change suddenly and dramatically, such
that new solutions are required quickly.

2. High uncertainty, as communication links are time-varying, message delivery is asyn-
chronous and fallible, bandwidth is scarce, and Emission Control (EMCON) is generally
applied to reduce the possibility of jamming and triangulation.

Based on the challenges these present, the following research question is formulated:

Can a solution method be developed for persistent reconnaissance that produces consistently
good results in a highly dynamic environment with unreliable communication?

1-3 Contributions

Fundamentally, it is assumed that persistent reconnaissance can be performed by solving the
Multi-Agent Reconnaissance Problem (MARP) to optimality, which is not tractable given
the challenges of a military environment. To obtain a good solution nonetheless, this thesis
attempts to convert the principles of intent-based C2 to a mathematical approach, named
intent-based coordination. This coordinative method aims to split the MARP into smaller
Single-Agent Reconnaissance Problems (SARPs), which are solved separately. In Figure 1.1,
this difference between UAVs optimizing their paths jointly and individually in disjoint subsets
of the AOI is shown.

Figure 1.1: An example of splitting the Area of Interest (AOI) of a Multi-Agent Reconnaissance
Problem (MARP) into smaller, disjoint Single-Agent Reconnaissance Problems (SARPs)

M.A. Korthals Altes Master of Science Thesis

1-3 Contributions 3

The overarching structure is displayed in Figure 1.2. Given the AOI, intent-based coordination
creates subsets for multiple SARPs. The combined result should resemble the optimal solution
of the MARP, which can be assessed using specific benchmarking methods. Therefore, the
main contributions of this thesis can be listed as such:

• Highlighting the fundamental issues of using conventional solution approaches for vari-
ous types of reconnaissance missions in a realistic combat environment (Chapter 2).

• Formulating the SARP and MARP as compact models, combining both the frequency
and coverage level approach for persistent reconnaissance (Chapter 3).

• To generate tight lower bounds, a relaxed reformulation of the MARP is solved using col-
umn generation, which includes solving the Elementary Shortest Path Problem (ESPP)
frequently. Due to the MARP structure, a cycle distance must be included, next to
some other problem-specific adjustments to improve forward labeling [3] (Chapter 4).

• An interpretation of the conversion of intent-based C2 by describing a distributed,
hierarchical framework for intent-based coordination (Section 5-2).

• The implementation of Fuzzy C-Means (FCM) [4] with an added post-processing inter-
polation method for weighed clustering of relevant sector features to reduce the problem
complexity and accommodate sensor heterogeneity (Section 5-3).

• Formulating a task allocation problem that subdivides the clusters among agents, acting
as a top-down heuristic to create subsets. This allocation includes a measure of task
utility and a novel quadratic task dependency constraint to accommodate the limited
capacities (Section 5-4). The formulation is extended to a cooperative formulation
suitable for the distributed, hierarchical framework (Section 5-5-2).

• To solve the distributed cooperative formulation, the Concurrent Forward-Bounding
(ConcFB) [5] algorithm is adjusted to accommodate complex local problems, leading to
Complex Concurrent Bounding (CCB) (Section 5-5-5).

• A thorough analysis that includes the parameters and component performance and
specific quantitative assessments for a military environment. (Chapter 6).

H3: MARP

H5: Intent-based
coordination H3: SARPs

H4: BenchmarkingArea of
interest

Figure 1.2: A general depiction of the solution approach. Instead of solving the MARP to
optimality, the AOI is partitioned into smaller subsets such that smaller SARPs can be solved
separately. A benchmarking method is used to compare the results.

Master of Science Thesis M.A. Korthals Altes

4 Introduction

1-4 Structure

To clarify the structure of this thesis, a brief introduction of each chapter is provided, with
an emphasis on the contributions.

Chapter 2: Persistent Reconnaissance State of the Art A classification is made of the dif-
ferent kinds of ISR missions, clarifying their specific utility and central questions. The solution
methods of these problems are discussed in general, with an emphasis on cooperation. Fur-
thermore, the relation between coordination and teamwork for Multi-Robot Systems (MRSs)
is explained, providing an argument for its use.

Chapter 3: Modelling Reconnaissance A rigorous, compact mathematical formulation is
provided for the underlying persistent reconnaissance problem in the form of the SARP and
MARP. This novel formulation builds on the various approaches highlighted in Chapter 2,
and is kept compact and without a time horizon to allow more consistent analysis.

Chapter 4: Benchmarking This chapter includes both methods for generating upper and
lower bounds. The lower bound is the most thorough, as it builds on the more advanced
process of column generation during the pricing step of branch & price.

Chapter 5: Intent-Based Coordination The methodology of intent-based coordination is
explained, highlighting all components, including clustering, task allocation, and distributed
cooperation. Each of these components has novel contributions, of which the proposal of CCB
is the most prominent.

Chapter 6: Performance Analysis As this thesis consists of the complex interplay of many
components, the analysis is split into three parts. First, the effects of the main parameters
are quantified. Secondly, the performance of all separate components is analysed. Thirdly,
the results are presented for a military environment. Each part of the analysis includes a
summary of the main findings.

Chapter 7-8: Conclusion & Discussion Lastly, the overarching findings and a discussion
with extensive suggestions for future work are presented in Chapter 7 and Chapter 8, respec-
tively.

M.A. Korthals Altes Master of Science Thesis

Chapter 2

Persistent Reconnaissance
State of the Art

This chapter provides a classification of Intelligence, Surveillance & Reconnaissance (ISR).
Furthermore, an overview is given of the different solution approaches. Lastly, the short-
comings of these methods in a military environment will be explained. A broader analysis is
provided in the preceding literature review [6], on which this chapter is based.

2-1 Classification of reconnaissance

Persistent reconnaissance can be considered a type of ISR. The definition used here for
ISR is that an agent is physically moving in at least two dimensions to obtain information.
The type of required information and the method to obtain it define the precise mission
it is performing. The main missions identified are searching, tracking, targeting, coverage,
and persistent reconnaissance. This classification builds upon the work of Nigam [7], which
focuses mainly on the concept of persistency. It should be noted that this classification is not
exhaustive and that used definitions can vary throughout literature. For example, patrolling
is excluded as passing a perimeter is a one-dimensional problem. A complete overview of
relevant literature is displayed in Figure 2.1, split per mission type and subdivided by main
research direction. As the formulation for persistent reconnaissance formulated in Chapter 3
builds upon various elements from these mission types, each type is explained briefly using
a carefully constructed central research question and a concise mathematical formulation,
summarizing the work from an extensive literature review.

Searching

Given an area with specific targets and limited information. How can the position of these
targets be estimated to find them in a minimum amount of time?

This problem can be formulated as a discrete-time Partially Observable Markov Decision
Process (POMDP), using the tuple 〈S,A, T,R, ω,O, γ〉. The environment is in some state

Master of Science Thesis M.A. Korthals Altes

6 Persistent Reconnaissance State of the Art

Active Sensing

Searching Tracking Targeting Coverage Persistent Reconnaissance

Path
plan.

Target
prob.

Swar-
ming

State
est.

Persist.
service

Path
plan.

Target
alloc.

Static
coverage

Dynamic
coverage

Contin.

Visitation
freqency

Coverage
level

Optimal Path
plan.

Swar-
ming

[8]
[9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]
[18]

[12]
[19]
[20]
[21]

[22] [23]
[24]
[25]
[26]
[27]

[28]
[29]
[30]

[18]
[31]
[32]
[33]
[34]

[35]
[36]
[37]
[38]
[39]

[40]
[41]
[42]
[43]

[44]
[45]
[46]
[47]
[48]
[49]

[50]
[51]
[52]

[53]
[54]
[55]
[56]
[57]
[58]

[59]
[60]
[61]
[62]
[63]
[64]

Path
plan.

Utility
func.

Figure 2.1: An overview of the different ISR missions applied in a military context, along with
the most important sources.

s ∈ S, which includes the position of each agent and any relevant information used to
predict the position of targets. To find the target, the agent can take a repositioning ac-
tion a ∈ A. The environment then transitions to state s′ using the conditional transition
probabilities T (s′|s, a, o), depending on the performed action a and the observation o ∈ Ω,
which follows from the conditional observation probabilities O(o|s, a). The reward for ob-
serving a target is described as r ∈ R(o). The optimization goal is to maximize the expected
future discounted reward E

[∑∞
t=0 γ

trt
]
.

Generally, this POMDP can be solved with dynamic programming, which is computationally
intensive. Furthermore, the state and observation transition probabilities T and O need to be
defined, which is no trivial task. For instance, there is a difference between static, dynamic,
evasive, or cooperative targets [8]. As displayed in Figure 2.1, the main research directions are
planning an optimal path given the predicted locations of targets, improving the predictions
itself, and implementing swarming principles.

Tracking

Given noisy and incomplete states of moving targets, how can the agents’ trajectories be
planned to track the targets while collision avoidance is maintained?

As with searching, a discrete-time POMDP describes the problem well by using the tuple
〈S,A, T,R, ω,O, γ〉. The state s ∈ S now includes both the positions of agents and targets.
Therefore, the reward r ∈ R(s, a, o) is based on the probability of observing a target in a

M.A. Korthals Altes Master of Science Thesis

2-1 Classification of reconnaissance 7

specific position, given its current (or past) states. The reward r ∈ R(s, a, o) remains the
same, such that the expected future discounted reward E

[∑∞
t=0 γ

trt
]
needs to be maximized.

In addition, states can be penalized if collisions occur.

Especially the problem of multi-target tracking and obstacle avoidance in challenging en-
vironments like urban terrain are topics of continuous research. As Figure 2.1 shows, much
research is also dedicated to accurate state estimation, for which reviews by Selvaraj et al. [65]
and Liu et al. [66] provide more background. Furthermore, some papers combine searching
and tracking, which follows naturally from the combined mission of finding a target first and
tracking it afterward [12, 17]. Lastly, research is also dedicated to maintaining the ability to
track targets through continuous service, even if agents need to return due to fuel shortages.

Targeting

Given the positions of (heterogeneous) targets, which targets need to be visited by which agent,
and in what order?

This problem closely resembles the uncapacitated Heterogeneous Fleet Vehicle Routing Prob-
lem (HFVRP). Specifically, given i, j ∈ N targets and k ∈ P agents, a binary decision
variable xijk indicates if agent k services target j after target i. The cost associated with this
is given by cijk. The problem can then be formulated as:

min
xijk

∑
i∈N

∑
j∈N

∑
k∈P

xijkcijk (2.1)

s.t.
∑
k∈P

∑
i∈N

xijk =
∑
k∈P

∑
i∈N

xjik = 1 ∀j ∈ N (2.2)

∑
i∈N

xijk =
∑
i∈N

xjik ∀j ∈ N, k ∈ P (2.3)

Subtour elimination constraints ∀k ∈ P (2.4)

Equation (2.1) prescribes that the cost associated with servicing multiple (heterogeneous)
targets with a set of (heterogeneous) agents is minimized. Constraints (2.2) ensures that only
one agent services each target. Constraint (2.3) preserves the path continuity, and Constraints
(2.4) are left out for conciseness, but any existing set of subtour elimination constraints for
the Vehicle Routing Problem (VRP) can be applied.

As the HFVRP is NP-hard, the research is largely dedicated to formulating efficient algo-
rithms. Therefore, the research is mainly split between finding effective routes passing all
targets or allocating the targets to the best-suited agent.

Static coverage

Given a set of agents, how can they be located to maximize the coverage of an area of interest
against minimal placement costs?

Though this question does not directly satisfy the definition of ISR, some applications re-
peatedly solve the static coverage problem to deal with a dynamic problem. The problem can

Master of Science Thesis M.A. Korthals Altes

8 Persistent Reconnaissance State of the Art

be solved by generating a Voronoi partition based on a probability density function defining
the area of interest [31]. Given a grid A ∈ R2 with sectors s ∈ A, the density function is
defined as φ(s). Degrading sensor performance of agent k ∈ P is based on the Euclidean
distance from the agent to point s ∈ A, described with f(||s − pk||). The resulting coverage
effectiveness is therefore defined by the closest agent, such that the points are partitioned in a
Voronoi diagram Vk = {s ∈ A | ||s− pk|| ≤ ||s− pk′ ||, ∀k′ 6= k ∈ P}. The goal is to find the
optimal placement of each agent pk, such that the following equation is minimized:

min
pk

∫
G
min
k∈P

f(||s− pk||)φ(s)ds (2.5)

The problem can be extended by minimizing the cost of moving to a specific position or the
cost of including an agent. Some rudimentary dynamics are implemented by including these
costs and repeatedly solving the static problem [40]. However, the core principle remains that
agents can only cover while static, such that only relocation is possible, and no coverage is
provided while on the move.

Dynamic coverage

Given a set of agents, how can their paths be planned to cover the complete area of interest
at minimal cost?

A simple version of this problem can be described using the Multiple Traveling Salesmen
Problem (MTSP). Given a set of sectors i, j ∈ N that needs to be visited by k ∈ P agents,
a binary decision variable xij is set to one if sector j is visited after sector i, with the source
sector named s. The associated costs are given described by cij , which usually represents
time. The formulation is then given as:

min
xij

∑
i∈N

∑
j∈N

xijcij (2.6)

s.t.
∑
i∈N

xij =
∑
i∈N

xji = 1 ∀j ∈ N (2.7)

∑
j∈N

xsj =
∑
i∈N

xis ≤ |P | (2.8)

Subtour elimination constraints (2.9)

The objective function (2.6) minimizes the total cost for all paths. Constraints (2.7) ensures
that each sector has one incoming and one departing arc. Constraint (2.8) ensures that no
more agents depart and return at the source sector than available. The subtour elimination
constraints (2.9) are left out for conciseness.

The important difference with static coverage is that the agents can cover the area on the
move and that the coverage should be achieved over time, in contrast to coverage at a specific
moment. Difficulties mainly arise when covering complex polygons, when agents have different
starting points, or when physical constraints like a turning radius are present. Generally, the
focus is not on heterogeneity but on an optimal path, which is a key difference with targeting.

M.A. Korthals Altes Master of Science Thesis

2-1 Classification of reconnaissance 9

Relevant surveys include those by Choset et al. [67], and Cabreira et al. [68]. As displayed
in Figure 2.1, research is mainly dedicated to optimally solving a variant of the formulated
MTSP or implementing computationally efficient continuous control.

Persistent reconnaissance by visitation frequency

Given a set of agents, how can their paths be planned to minimize the maximum uncertainty
in the area of interest over indefinite time?

An MTSP with adjusted subtour elimination constraints can describe this problem [44], such
that the total cycle time is included during optimization. A set of i, j ∈ N sectors and a set
of k ∈ P agents is given, with a binary decision variable xij if sector j is visited after i ∈ N .
Furthermore, the arrival time at sector i ∈ N is set to ui, and the time left to the arrival at
the source sector s ∈ N is set to vi. These values are used to construct the maximum cycle
time z. The formulation is then given as:

min
xij ,ui,vi,z

z (2.10)

s.t.
∑
i∈N

xij =
∑
i∈N

xji = 1 ∀j ∈ N (2.11)

∑
j∈N

xsj =
∑
i∈N

xis ≤ |P | (2.12)

ui + vi ≤ z ∀i ∈ N (2.13)
ui + cij ≤ uj +M(1− xij) ∀i, j ∈ N (2.14)
vj ≤ vi − cij +M(1− xij) ∀i, j ∈ N (2.15)
csi ≤ ui ≤M − cis ∀i ∈ N (2.16)
cis ≤ vi ≤M − csi ∀i ∈ N (2.17)

Equation (2.10) minimizes the maximum cycle time. Constraint (2.11) ensures that one
agent services each sector. Constraint (2.12) limits the number of available agents from the
source sector. The cycle time is constructed by Constraints (2.13), (2.14), and (2.15), using
the concept of big-M constraints, which is at least as large as the summation of the |N |
largest travel times. Constraints (2.16) and (2.17) define the continuous domains of the time
variables.

The key difference with dynamic coverage is that the goal is not to cover the area optimally
once but recurrently. In this formulation, the maximum uncertainty is represented by the
maximum intervisit time. Alternatively, prioritized locations can justify weighing the inter-
visit time as a measure of uncertainty. Nigam [7] extensively discusses the validity of this
formulation approach, as he states that persistency always requires the formulation of a re-
current problem without time horizons. Given it is a complex problem, most research is
dedicated to developing better models and solution methods, while some pursue the concept
of utility functions.

Master of Science Thesis M.A. Korthals Altes

10 Persistent Reconnaissance State of the Art

Persistent reconnaissance by coverage level

Given a set of agents, how can their paths be planned to maximize the coverage of an area of
interest within the planning horizon?
In contrast to the frequency approach, this problem can be formulated more clearly using a
discrete-time POMDP, using the tuple 〈S,A, T,R, ω,O, γ〉. The environment is in some state
s ∈ S, which describes the position of the agents and the coverage level of the area of interest.
The agent can take an action a ∈ A, after which the environment transitions to state s′
depending on the conditional transition probabilities T (s′|s, a, o). This transition can depend
on various kinds of information, like area priorities, the time passed, or the observation of
targets. Therefore it is also based on the observation o ∈ Ω, generated by the conditional
observation probabilities O(o|s, a). In this case, the reward r ∈ R(s) is dependent on the
state, as it represents the coverage level. The goal of persistent coverage then is to maximize
the expected future discounted reward E

[∑∞
t=0 γ

trt
]
.

Though closely related to searching, the difference lies in the persistent character. Increasing
the coverage level generates a deterministic reward for persistent coverage, as opposed to
searching where the reward is a maximization of the probability of finding the target. In con-
trast, the observations during persistent coverage only influence the state, as it can affect the
required coverage by transition probabilities T . An autonomous vacuum cleaner can there-
fore exemplify persistent coverage. Dust accumulates differently because of various causes,
such that the vacuum cleaner should reposition continuously based on the current state and
the expected future changes of dust levels. The principle difference with the approach from
Nigam [7], is that recurrence is not optimized for directly. However, this is not necessarily
worse because if the underlying model changes, a recurrent solution might become subop-
timal. Therefore the frequency approach optimally covers a fixed environment indefinitely,
while the coverage approach indefinitely adapts to a changing environment. As a solution
method, Figure 2.1 shows that the main directions are optimal path planning, or swarming
based on optimal control or simple behavior rules.

Summary

A first observation is that some models are better described using a POMDP, and others
using a Mixed Integer Linear Program (MILP). The difference lies in the dependence on the
transition probabilities that describe how an environment changes when performing specific
actions. Especially important is when the targets react to the taken actions or if the possible
actions are dependent on a particular state of the environment. For persistent reconnaissance,
targets are not assumed reactive, and any path is allowed. In this case, a MILP is a more
convenient approach, which can be solved using existing solvers.
Furthermore, there is a clear distinction between optimization problems over an indefinite
horizon for a static problem and those that are optimized over a limited horizon recurrently.
Based on the statements in Section 1-1, the assumption of a static problem cannot hold.
Possibly, it can be solved recurrently, as with static coverage. However, given the persistent
frequency approach is complex, this becomes computationally intractable quickly. On the
other side, a qualitative assessment of the performance is much more complicated for a fixed
time horizon, as it can only be performed during a time-extended simulation, and bounds are
hard to provide.

M.A. Korthals Altes Master of Science Thesis

2-2 Solution methods 11

2-2 Solution methods

Instead of discussing the quality of all different solution methods, the different approaches are
classified in general, and their suitability for a military environment is discussed. A distinction
is made between centralized and distributed approaches, where the latter is subdivided by
cooperation type.

Centralized algorithms

Solution methods consist of exact algorithms, heuristics, and meta-heuristics. The algorithm
choice depends on the problem, but a MILP is generally solved using branch & bound, branch
& price, or branch & cut methods. A POMDP can be solved well using dynamic programming.
Exact methods are not scalable due to the dependence on the underlying problem complexity.
Furthermore, though effective heuristics can be implemented for some problems, they are
very problem-specific and are not always available. Some examples are listed in this chapter
that are fast, but these are pattern-based and thus not sufficiently adaptive to deal with
a dynamic environment [42, 43]. Meta-heuristics are more broadly applicable [69], but often
benefit significantly from domain knowledge and suffer from tractability for increasingly larger
problems nonetheless.

Furthermore, as described in Section 1-2, only partial information through unreliable links is
available. This eliminates the centralized method as a feasible approach, as this requires all
information to be trustworthy and known in one place. In an unreliable network, such a task
is cumbersome, if not impossible. Even if this was successful, it cannot be trusted that the
solution would reach the actual system that needs to perform a task on time.

Distributed algorithms

Opposite to centralized is the distributed approach. Two types of distribution are distin-
guished. Firstly, distribution can exploit parallelism (like the ones arising from decomposi-
tion), to enhance performance and scalability. In practice, this often implies decentralization
of an algorithm, in which multiple non-cooperating computation sources are active in paral-
lel, and a central source performs synchronization. The second class arises from Multi-Agent
systems (MASs), specifically Multi-Robot Systems (MRSs). Here, the distribution is natu-
ral as information is present locally, and no central agent is available to compute the global
problem. This makes Distributed Constraint Optimization Problems (DCOPs) a suitable
framework for describing this type of MRS. Solution approaches in this category include
swarming algorithms, control, and utility functions.

Regardless of the type of algorithm, some form of cooperation is required to improve the
overall solution value, as the agents share a common goal. For this application, cooperation
can be categorized into three types:

• Passive: Each agent optimizes its problem individually, but agents communicate their
local context, such that collective behavior emerges from reacting to the state of others.
An example is using local optimization methods while sharing information [9].

Master of Science Thesis M.A. Korthals Altes

12 Persistent Reconnaissance State of the Art

• Implicit: Each agent optimizes its problem individually based on future moves of other
agents, which is communicated along with the local context. This includes optimization
[8] and utility functions [59], but consists mainly of swarming [16,17].

• Explicit: All agents cooperatively optimize the problem to obtain a globally optimal
solution by passing messages depending on the algorithm choice. This is generally solved
using (exact) optimization methods [29,34,57,58].

For all types of cooperation, communication is necessary to maintain performance. Therefore
the available solution methods cannot deal with the challenges defined in Section 1-2, as there
is no guaranteed robustness against communication failures.

2-3 Towards distributed coordination

This thesis aims to convert the principles of military intent-based Command & Control (C2),
to overcome the issues that arise from using contemporary methods, as discussed in Section
2-2. The question is, does literature provide similar approaches? Does intent-based C2
fall within any existing framework for similar applications? And can lessons be learned or
expected performance inferred?

First, the concept of coordination is clarified to ensure a valid link can be made with existing
approaches. Then methods are discussed that try to tackle similar challenges, and lastly, the
link to military intent-based C2 is made.

Terminology

In this thesis, coordination is defined as changing the parameters for agent behavior a-priori,
separate from cooperation. This does not imply that coordination cannot be enforced on-line.
However, it does mean that at any given moment agents cooperate, given the most recent set
of coordinated parameters. As an example, consider the player roles within a football team.
Players cooperate given their assigned roles, but after a mid-game player substitution, a coach
often changes the roles itself (= coordination). In theory, the coach can even be replaced by
a player voting system on the new roles. This exemplifies that coordination is not necessarily
tied to a central authority but merely sets the parameters for the cooperative problem.

It should be noted that there is no consensus in the literature on this terminology. Farinelli
et al. proposed a comparable taxonomy [70], in which cooperation is considered a broader
term indicating whether agents operate together to achieve a common goal. The exact imple-
mentation of cooperation is viewed as a type of coordination. Aware, not coordinated systems
correspond with passive cooperation. Weak coordination corresponds with implicit coopera-
tion, and strong coordination with explicit cooperation. Furthermore, it also differs from the
definition of Parker [71], in which coordinative interaction implies a network of agents that
are aware of each other but do not share the same common goal.

M.A. Korthals Altes Master of Science Thesis

2-3 Towards distributed coordination 13

The effect of organizations

One subject linked to mitigating the effects of a dynamic and unreliable environment is or-
ganizing MAS. For instance, Abbas et al. [72] analyse the merit of an organization-centered
versus an agent-centered MAS (corresponding to distributed cooperation). They state that
both the fully centralized or distributed method fall short for large, complex, and heteroge-
neous systems. These approaches are designed such that the global objective follows from
individual actions, but for increasingly complex systems, this inevitably leads to unpredictable
and uncertain outcomes. Instead, (dynamic) organizations should limit interactions, reduce
uncertainty, and manage high-level goals no single agent is aware of.

A complete overview of organizations for MAS is provided by Horling et al. [73]. For example,
they discuss the concept of holarchies, which are a form of hierarchies with varying autonomy
allowed for subordinates. In a holarchy, the chain of command generally goes up, but this
is no strict interpretation. Holarchies are suitable for heterogeneous capabilities and show
quick adaptation to dynamically changing conditions, but suffer from overall performance
unpredictability. Another organization discussed is the team, which consists of cooperating
non-selfish agents that pursue a shared objective. The main benefit is the explicit capability
to reason about the effects of interactions, such that unforeseen conditions can be dealt with.
The drawback is its increased communication. Other organizations include hierarchies, coali-
tions, congregations, societies, federations, markets, and matrix organizations, often deemed
restrictive or overly complex.

Concept of teamwork

As discussed by Horling et al. [73], the team requires special attention as it is designed
explicitly for MRSs in dynamic and unreliable environments. Though there are some key
differences with the problems considered in teamwork, the concepts are closely related.

In general, the problem requiring teamwork is composing a plan of successive tasks to reach
an objective. Therefore, it often draws from the well-known theories of Hierarchical Task
Networks (HTNs) [74], or STRIPS [75], which is extended to MA-STRIPS for a MAS [76].
The multi-agent case is reviewed by Torreño et al. as Multi-Agent planning (MAP) [77]. The
challenge for MAP is that some tasks are performed individually, but others jointly. Though
MAP compromises a more general form of planning, the concept of teamwork is applied to
MRSs. A typical application considered is RoboCup, but also military environments are
frequently analysed. An example of an attack helicopter mission used by Tambe [78] is
displayed in Figure 2.2.

Recently, Geihs [79] reviewed the current engineering challenges for teamwork and discussed
two main frameworks: ALICA and STEAM. STEAM is a joint intentions implementation
of the SharedPlans hierarchical decomposition [78]. A joint intention implies that a team
mutually believes they are committed to completing a team action. Individuals can only
desist if a new mutual belief is created that a joint task is completed, unattainable, or ir-
relevant [80]. The SharedPlans theory differs, as it describes how to achieve the common
goal instead of only fixing it. This is achieved by constructing a mutual belief in the recipe
before performing the separate individual or cooperative sub-tasks [81]. The core assumption
for STEAM is that the possibility of unexpected failures or opportunities requires a flexible

Master of Science Thesis M.A. Korthals Altes

14 Persistent Reconnaissance State of the Art

(a) Example attack mission

(b) A pilot’s task hierarchy

Figure 2.2: An example attack helicopter mission used in [78] to discuss teamwork for MRS.

approach. Inflexibility, which occurs with precomputed or slow implementations, can instead
lead to severe failures. Though flexible, Geihs states that the requirement for establishing
intentions makes it susceptible to communication failures. A comparable framework, called
ALICA, is made by Skubch [82], drawing heavily from STEAM. The core difference is that
an agent can start to act before a joint intention is established. Instead, estimations are used
to guide decisions, and conflicts are detected and resolved afterward. The common thread
through these approaches is that systems can continue without explicitly cooperating every
step. In general, they all work towards a common goal.

Classifying intent-based C2

To summarize, for MRSs in dynamic and unreliable environments, two main research di-
rections are found in the literature. First, organizing the network of agents should reduce
uncertainty, manage high-level goals and increase the reaction speed. Secondly, teamwork
is specifically designed to reason about the decisions of other systems, such that flexible re-
sponse to unforeseen events remains possible. By comparison, military intent-based C2 can
be considered a compound organization consisting of a top-down holarchy, combined with
teamwork within each group. As communication remains critical for teamwork, the combined
approach should reduce this drawback for larger networks. Following the given definition of
coordination, both the organization structure, the amount of autonomy allowed at each level
in the holarchy, and the implementation of teamwork can be considered coordination. All
these decisions are made prior and define how agents cooperate and make decisions locally.
Therefore, intent-based C2 can be classified as intent-based coordination for MRSs.

M.A. Korthals Altes Master of Science Thesis

Chapter 3

Modelling Reconnaissance

In this chapter, the formulations are given for the Single- and Multi-Agent Reconnaissance
Problem. These formulations provide a compact model, combining both the frequency and
coverage level approach for persistent reconnaissance. The models are constructed to be
solved recursively and do not include a time horizon for qualitative assessment purposes.

3-1 Single-Agent Reconnaissance Problem

The Single-Agent Reconnaissance Problem (SARP) is formulated over an indefinite horizon,
which requires a recurrent path. A measure for risk increase is added to incorporate the
frequency approach of persistent reconnaissance. For the coverage approach, also the acute
risk values are included. This means it is worthwhile to visit specific sectors first, which might
increase the cycle distance.

The problem space can be defined as a complete graph G = (V, E), with vertices V consisting
of a set N of equally sized sectors and the source vertex s, and the undirected edges E describe
all paths. Each sector i ∈ N has a current risk rti at time t, and a risk increase ṙti . Though it
will be shown that the risk increase is not linear, it is fixed to the current value each time the
problem is solved. A weight ρ is used to balance the penalty on the risk increase and current
risk. The decision variable xij describes if vertex j is visited after vertex i ∈ V. The distance
traveled between vertices is given by cij , modelled as the Euclidean distance (2-norm). The
variable ui describes the distance traveled from the source s to vertex i, and vi describes the
distance traveled after vertex i back to the source vertex s. The variable z then represents
the cycle distance.

Objective function (3.1) minimizes the risk weighed by the distance after which it is visited,
combined with the risk increase weighed by the full cycle distance. Constraint (3.2) forces
the in- and outflow to be equal for each sector. Constraint (3.3) ensures that each sector is
visited exactly once. Constraint (3.4) and Constraint (3.5) describe the minimum distance
from the source and the minimum distance back to the source, respectively. These constraints
function as a big-M constraint, where in this case M = |N | · max (cij). Then, Constraint
(3.6) combines these to a minimum cycle distance. Lastly, Constraint (3.7) and (3.8) set the
domain of the decision variables. The complete formulation then becomes:

Master of Science Thesis M.A. Korthals Altes

16 Modelling Reconnaissance

min
xij ,ui,vi,z

J = ρ ·
∑
i∈N

rtiui + (1− ρ) ·
∑
i∈N

ṙtiz (3.1)

s.t.
∑
j 6=i∈V

xji =
∑
j 6=i∈V

xij ∀i ∈ N (3.2)

∑
j∈V

xij = 1 ∀i ∈ N (3.3)

ui + cij ≤ uj + |N | ·max (cij) · (1− xij) ∀i ∈ V, j ∈ N (3.4)
vj ≤ vi − cij + |N | ·max (cij) · (1− xij) ∀i ∈ N , j ∈ V (3.5)
ui + vi ≤ z ∀i ∈ N (3.6)
xij ∈ {0, 1} ∀i, j ∈ N (3.7)
ui, vi ≥ 0 ∀i ∈ N (3.8)

3-2 Multi-Agent Reconnaissance Problem

The Multi-Agent Reconnaissance Problem (MARP) is an extension of the SARP, which
closely resembles the extension of the Traveling Salesman Problem (TSP) towards the Vehicle
Routing Problem (VRP). The MARP aims to solve the problem for a set of agents P com-
bined. Each agent has a specific speed vk and flight time ek ∀k ∈ P, as the problem allows
heterogeneous agents. The decision variables are extended in the agent dimension to xijk,
uik, vik, and zk. Furthermore, the problem is now described as a multigraph G = (V, E),
with the vertices V including all sources sk ∀k ∈ P, and the edges being composed of subsets
belonging to each agent, such that E =

⋃
k∈P Ek. Then, all vertices connected to any edge

of agent k can be collected as Vk = {i | ∃{i, j} ∈ Ek ∀j ∈ V}. This edge-induced subgraph
Gk[Ek] is always complete. This implies not all agents have access to all sectors, but if it does,
an edge exists to reach it from any other included sector. A Boolean Aik indicates if ∃i ∈ Vk,
which is used to limit the decision variables. The complete formulation is then given as:

min
xijk,uik,vik,zk

J = ρ ·
∑
k∈P

mink∈P(vk)
vk

∑
i∈N

rtiuik + (1− ρ) ·
∑
k∈P

mink∈P(ek)
ek

∑
i∈N

ṙtizk (3.9)

s.t.
∑
j∈V

xijk ≤ Aik ∀i ∈ V, k ∈ P (3.10)

∑
j 6=i∈V

xjik =
∑
j 6=i∈V

xijk ∀i ∈ N , k ∈ P (3.11)

∑
k∈P

∑
j∈V

xijk = 1 ∀i ∈ N (3.12)

uik + cij ≤ ujk + |N | ·max (cij) · (1− xijk) ∀i ∈ V, j ∈ N , k ∈ P (3.13)
vjk ≤ vik − cij + |N | ·max (cij) · (1− xijk) ∀i ∈ N , j ∈ V, k ∈ P (3.14)
uik + vik ≤ zk ∀i ∈ N , k ∈ P (3.15)
xijk ∈ {0, 1} ∀i, j ∈ N , k ∈ P (3.16)
uik, vik ≥ 0 ∀i ∈ N , k ∈ P (3.17)

M.A. Korthals Altes Master of Science Thesis

3-3 Risk evolution 17

Objective (3.9) penalizes covering higher risk after larger distances, balanced with a penalty
on longer cycle distances for higher risk increase. The resulting penalty depends on the agents’
relative speed and flight time. As recharging is not explicitly accounted for, it is assumed that
agents with a longer flight time can better sustain the cycle distance. For acute risk, high
velocity is essential. Logically, a quicker agent can cover the same distance in a shorter time.
Constraint (3.10) is added to explicitly limit the sectors that each agent can visit. It follows
from the edge-induced subgraph Gk[Ek], which can be interpreted as the sectors allocated to
an agent. This notion is important, as it is used in the remainder of this thesis. Constraint
(3.11) forces the in- and outflow to be equal for each sector. Constraint (3.12) ensures that
each sector is visited exactly once by an agent. Constraint (3.13), (3.14), and (3.15) set the
distance to arrival, return and the complete cycle, respectively. Constraint (3.16) and (3.17)
define the variable domains.

3-3 Risk evolution

Both the SARP and MARP are based on covering risk and risk increase optimally. These
values are determined at any time instance t, based on predefined sector priorities Mi, dis-
persion of risk γti , agent presence uti ∀i ∈ N , and constants S and D. Combined, the model
for risk evolution can be described with a set of equations. First, the sector uncertainty δt+1

i

is calculated, which is defined within a [0, 1] interval:

δt+1
i = min{(δti + γti + S ·Mi − uti)+, 1} ∀i ∈ N (3.18)

The next uncertainty value is determined as the current uncertainty, possibly increased by
dispersion γti from neighboring sectors, the static increase S ·Pi and decreased by the presence
indicator uti = 1 if agents are in the sector. Dispersion from neighboring sectors is given as:

γti = D ·Mi · (δ̄i
t − δti)+ ∀i ∈ N (3.19)

Here, δ̄i
t represents the average uncertainty of the surrounding sectors, and Mi is the sector

traversability, which depends on the terrain. The constant D is used to tune the effect of
dispersion altogether. Finally, the sector risk at the next time instance is given as:

rt+1
i = Pi · δt+1

i ∀i ∈ N (3.20)

In this equation, the sector uncertainty leads to a specific value for risk depending on the
sector priority. The risk increase is then defined as the slope of this function, approximated
using the central difference theorem:

ṙt+1
i = rt+2

i − rti
2 = Pi

δt+2
i − δti

2 ∀i ∈ N (3.21)

On average, ṙti , will be much smaller than rti . To balance the risk and risk increase terms in
Objective (3.1) and (3.9), the risk increase term is chosen to be approximately D times larger.
This implies that ρ = D

D+1 and 1 − ρ = 1
D+1 . Based on practical experience, the constants

D = 0.01 and S = 0.1 are implemented.

Master of Science Thesis M.A. Korthals Altes

18 Modelling Reconnaissance

M.A. Korthals Altes Master of Science Thesis

Chapter 4

Benchmarking

As stated in Section 2-2, calculating the optimal solution to the Multi-Agent Reconnais-
sance Problem (MARP) is a time-consuming operation, justifying the development of intent-
based coordination for separate Single-Agent Reconnaissance Problems (SARPs). Therefore,
a method is needed to compare the obtained solutions to the optimal solution of the MARP.
In this chapter, methods are proposed to retrieve both lower and upper bounds.

4-1 Lower bound

Fundamentally, the optimal solution for the MARP can be interpreted as an allocation of
sectors to agents, which are ordered in a sequence for each agent separately. Theoretically,
the optimal solution can therefore be obtained by limiting the agent-specific vertices Vk ∀k ∈ P
prior to solving the MARP, such that it decomposes to independent SARPs. Therefore, the
lower bound is rooted in the central question:
How can the decrease in solution quality by limiting the accessibility of agents to a specific
subset of the sectors be assessed?
Again, the relation with the Vehicle Routing Problem (VRP) is evident. Given an optimal
allocation of destinies, the VRP decomposes in separate Traveling Salesman Problems (TSPs),
such that the optimal solution to the VRP will be obtained. This boils down to sensitivity
analysis for integer programming: given that an agent is allocated the optimal set of vertices
Vk, adding any new vertex would not change the solution, rendering it insensitive to any
additional allocations.
As Güzelsoy and Ralphs [83] summarized concisely, duality for a Mixed Integer Linear Pro-
gram (MILP) can be described using a value function, which returns the optimal solution
for any right-hand side. Finding such a function is at least as complex as solving the primal
problem, which brings no benefit. An alternative is generating weak dual functions, which
might still be used to analyse the effect of changing input data. As they point out, the most
promising approach is to generate these functions as a byproduct of primal solution methods
like branch & cut. However, the results are preliminary and more development is still nec-
essary. Nonetheless, it is already applied in branch & price for the linearized case, which is
known to produce tight lower bounds.

Master of Science Thesis M.A. Korthals Altes

20 Benchmarking

4-1-1 Reformulation

Branch & price functions by pricing the benefit of adding sectors to the subset of an agent
for a linearly relaxed case, after which branching is used to remove any fractional allocations
gradually. The pricing stage consists of repeatedly performing column generation and solving
the linearly relaxed, reformulated version of the original problem. This reformulation is based
on the set covering problem and answers the question: what sequences from r ∈ Ω, with Ω
being all existing sequences, need to be assigned to which agent k ∈ P to cover the sectors N
optimally? The reformulation of the MARP is written as:

min
xrk

∑
k∈P

∑
r∈Ω

Jrkxrk (4.1)

s.t.
∑
k∈P

∑
r∈Ω

airxrk = 1 ∀i ∈ N (4.2)

∑
r∈Ω

xrk ≤ 1 ∀k ∈ P (4.3)

xrk ∈ {0, 1} ∀r ∈ Ω, k ∈ P (4.4)

Objective (4.1) assigns the optimal sequence to each agent, based on the cost Jrk for agent
k ∈ P executing sequence r ∈ Ω. This value is easily calculated using the objective function
of the MARP. Constraint (4.2) ensures that each sector is visited once, represented by the
constant air describing if sector i ∈ N is included in sequence r ∈ Ω. Constraint (4.3) and
(4.4) limit the number of allocations per sensor to either zero or one. For column generation,
this problem is labeled the Master Problem (MP).
Composing the sheer amount of sequences in Ω becomes intractable quickly and prohibits
solving even a single relaxation of the problem. Therefore, this problem is changed to the
Restricted Master Problem (RMP), such that Ω ⇒ Ωr, where Ωr is the restricted set of
sequences. Theoretically, this limited set would only have to include the optimal set of |P|
sequences. However, these sequences are, of course, still unknown. The pricing procedure
can find those sequences for the relaxed RMP, in which Constraint (4.4) becomes xrk ≥ 0.
If pricing does not produce any new sequences for the relaxed RMP, it is optimal. If the
solution is integral, also no new sequences exist for the RMP. Then, it can be concluded that
Ωr includes the optimal sequences from Ω, which implies that the solution is also optimal for
the MP. Pricing the relaxed RMP is done by a column generation procedure, called the Sub
Problem (SP). Effectively, during this procedure, the sensitivity analysis is performed for the
linearized problem using duals. This translates to finding a sequence with a negative reduced
cost:

Ĵrk = Jrk −
∑
i∈N

airλi − λk < 0 ∀r ∈ Ω, k ∈ P (4.5)

Here, λi and λk are the duals obtained by solving the relaxed RMP, and Jrk is the objective
value of the sequence for sensor k ∈ P. If a sequence with negative reduced cost is found,
it is included in Ωr, and the procedure is repeated. If not, the solution to the relaxed RMP
is optimal. As a lower bound is pursued, a fractional solution is acceptable. Instead, if the
optimal solution is required, one can extend this pricing step with a branching scheme.

M.A. Korthals Altes Master of Science Thesis

4-1 Lower bound 21

The SP is an optimization problem itself, called the Elementary Shortest Path Problem
(ESPP). If no more negative reduced sequences exist, there are no more beneficial allocations
for any sensor, meaning:

min
r∈Ω, k∈P

{Ĵrk} ≥ 0 (4.6)

This gives rise to |P| separate SPs, as for each k ∈ P the ESPP is formulated as:

min
xij ,ui,vi,z

Ĵrk = ρ · mink∈P(vk)
vk

∑
i∈N

rtiui + (1− ρ) · mink∈P(ek)
ek

∑
i∈N

ṙtiz −
∑
i,j∈V

xijλi − λk (4.7)

s.t.
∑
j∈V

xij ≤ 1 ∀i ∈ N (4.8)

∑
j 6=i∈V

xji =
∑
j 6=i∈V

xij ∀i ∈ N (4.9)

ui + cij ≤ uj + |N | ·max (cij) · (1− xij) ∀i ∈ V, j ∈ N (4.10)
vj ≤ vi − cij + |N | ·max (cij) · (1− xij) ∀i ∈ N , j ∈ V (4.11)
ui + vi ≤ z ∀i ∈ N (4.12)
xij ∈ {0, 1} ∀i, j ∈ N (4.13)
ui, vi ≥ 0 ∀i ∈ N (4.14)

This SP is comparable to the SARP, with two important changes. First, the Objective (4.7)
is adjusted, including the relative speed and flight time, and the duals obtained from solving
the relaxed RMP. Furthermore, Constraint (4.8) now states that every sector can be visited
at most once instead of exactly once. This means that a sequence of any length can be formed
to achieve the negative reduced cost. The remainder of the constraints is not changed, with
Constraint (4.9) preserving the flow over each sector, and Constraints (4.10), (4.11), and
(4.12) setting the preceding, succeeding and cycle distance respectively. Constraint (4.13),
and (4.14) define the domain.

Though it is a complex problem to solve as it is NP-hard [84], the problem does not have
to be solved to optimality every time. Any solution that results in Ĵrk < 0 can directly be
added to Ωr . However, to ensure that the optimum for the relaxed RMP has been found, it
has to be solved to optimality at least once.

4-1-2 Column generation

As described in the previous section, column generation is the procedure applied to perform
pricing, such that the relaxed RMP can be solved to optimality. Columns are generated if
they lead to a negative reduced cost. To this end, the SP needs to be solved. Here, the
methods will be discussed to solve this problem. First, the heuristics are described, which are
used to obtain any negative reduced cost solution. Second, also the forward labeling method
is discussed, which is used to solve the SP to optimality.

Master of Science Thesis M.A. Korthals Altes

22 Benchmarking

Heuristics

Three heuristics are proposed to find sequences with negative reduced cost quickly: greedy,
insertion, and reshuffling. The heuristics are applied for each agent k ∈ P separately, with
the corresponding speed vk, flight time ek, and source sector sk ∈ N . The heuristics are
adaptions of the most commonly known variants, displayed concisely by Nilsson [85].

Greedy The first heuristic is the simplest. The idea is that a sequence of each possible
length is created by appending a current sequence greedily and saving the intermediate result
in a list. Upon termination, the best sequence is returned. It is added to the restricted set of
sequences Ωr for the RMP if it has a negative reduced cost. Otherwise, it is discarded. The
pseudo-code is displayed in Algorithm 1.

Algorithm 1: Greedy sequence for agent k ∈ P and sectors i ∈ N
1 sequence← sk
2 sequence_list← ∅

3 while sectors unvisited do
4 foreach unvisited sector do
5 Collect potential reduced cost if sector is appended to the sequence
6 sequence.add(min cost(sector))
7 sequence_list.add(sequence)

8 best_sequence← min cost(sequence_list)
9 return best_sequence

Insertion In the second heuristic, more possibilities are considered. Instead of only adding
sectors at the end of the current sequence, it is possible to insert the new sector in any
position. In Algorithm 2, the adjusted pseudo-code is shown.

Algorithm 2: Insertion sequence for agent k ∈ P and sectors i ∈ N
1 sequence← sk
2 sequence_list← ∅

3 while sectors unvisited do
4 foreach unvisited sector do
5 foreach position in sequence do
6 Collect potential reduced cost if sector is inserted at position in the sequence
7 new_sequence(sector)← sequence ∪min cost(position)
8 sequence← min cost(new_sequence)
9 sequence_list.add(sequence)

10 best_sequence← min cost(sequence_list)
11 return best_sequence

M.A. Korthals Altes Master of Science Thesis

4-1 Lower bound 23

Reshuffling As an extra addition to the insertion heuristic, the reshuffling heuristic also
allows reordering a sequence after a new sector has been inserted. The idea is that iteratively
an edge {i, j} ∈ E between two sectors i, j ∈ N is selected that seems profitable to add.
Then, the set of all selected edges are connected to form a sequence. Therefore, each time a
new sequence is added, it grows in length and can be shuffled in order. The functioning is
displayed in Algorithm 3.

Algorithm 3: Reshuffling sequence for agent k ∈ P, sectors i ∈ N and edges {i, j} ∈ E
1 edge_list← ∅
2 sequence_list← ∅

3 while edges available do
4 foreach available edge do
5 Calculate approximated added reduced cost Ĵijk

6 if Any added negative reduced cost edge found then
7 Save minimum cost edge {i, j} = {out, in} /* process edge */
8 Remove all edges to j
9 Remove all edges from i

10 Remove the reverse edge {j, i}.
11 edge_list.add(edge)

12 Connect sector j if edges {i, j}, {j, j′} ∀i, j′ ∈ V included /* build sequence */
13 if no source edge {sk, j} ∀j ∈ V included then
14 Add min cost source edge to sector i of any included edge {i, j}
15 while unconnected edges do
16 Add min cost edge {i, j} for any included edges {i′, i}, {j, j′} ∀i′, j′ ∈ V
17 sequence← connected edges
18 Calculate actual reduced cost of sequence
19 else
20 Break search
21 sequence_list.add(sequence)

22 best_sequence← min cost(sequence_list)
23 return best_sequence

Algorithm 3 builds upon the concept of approximated added reduced cost. This approxima-
tion aims to find beneficial edges, by making the following calculation:

Ĵijk = ρ · mink∈P(vk)
vk

∑
i∈N

rj ûj + (1− ρ) · mink∈P(ek)
ek

∑
i∈N

ṙiẑ− λj ∀i, j ∈ V, k ∈ P (4.15)

This approximation includes the duals, and a lower bound on the distance ûj = csk,j + cij
and cycle distance ẑ = ûj + cj,sj . If Ĵijk ≥ 0, including the edge {i, j} will never lower the
actual reduced cost. Conversely, Ĵijk < 0 provides no guarantee that adding it will improve
the solution, but it does give some indication on which edges provide greater benefits, which
should lead to a sensible solution.

Master of Science Thesis M.A. Korthals Altes

24 Benchmarking

Forward labeling

If the heuristics are unable to find a solution to the SP with negative reduced cost, an exact
method is needed to ensure no more sequences with negative reduced cost exist.

Background The Shortest Path Problem (SPP) can be solved to optimality using dynamic
programming, for which Desrocher proposed a label correction algorithm [86]. Feillet et al. [3]
adjusted this for the ESPP, such that it does not allow cycles. This is important, as the SP
regularly has negative cost edges. In general, this algorithm functions by extending labels
successively while applying dominance rules to remove labels guaranteed to be suboptimal.
This exhaustive method terminates when no label can be extended anymore, returning the
optimal solution. Righini et al. propose two improvements over this algorithm [87]. First, they
introduce bi-directional labeling. Secondly, they include bounding to discard unpromising
states and stop the extension of non-dominated labels to allow efficient joints of labels. It is
shown that bi-directional labeling has a significant advantage over mono-directional forward
labeling. In addition, Righini et al. [88] compare this method to the decremental state-space
relaxation, which is found to perform better, especially when the constraints of the SP are
less tight. They indicate that there is a trade-off to be made between computation time
and lower bound tightness, which is in large dependent on whether a form of exact or relaxed
pricing is implemented. This trade-off is further examined in the survey by Pugliese et al. [89].
Lastly, pricing for the Multi-Depot Heterogeneous Vehicle Routing Problem (MDHVRP) is
discussed by Bettinelli et al. [90]. They propose an aggregated label in which the cost structure
is included for multiple depots. The heterogeneous application considered here draws from
this implementation and is built using the clear overview provided by Feillet [91].

Concept During forward labeling, a label L =
〈
i,W,Uk, dk, ck, czk, ĉk, ĉlb

〉
is created with

i ∈ V being the current vertex, dk the cumulative sequence distance for each agent to the
current vertex, W is a set consisting of all vertices not yet visited, Uk the linearly ordered
set describing the sequence for each agent thus far, and ck, czk and ĉk describe the cost, cycle
cost, and reduced cost for each agent k ∈ P, respectively. The variable ĉlb is a lower bound
on the reduced cost obtained by extending the label. During each iteration, the label with
the minimum lower bound ĉlb is selected. By pursuing this label, a best-first strategy is
implemented. The complete pseudo-code is provided in Algorithm 4. In line 14, it shows the
search is broken off as soon as the first sequence with negative reduced cost has been found.
If this line is removed, the algorithm will always continue to optimality.
When a label L is extended to L′, it is checked first if it is beneficial, by calculating if the
dual step cost ĉstepj < 0. This cost represents the added reduced cost that is obtained when
making the extension. As the subgraph Gk[Ek] is known to be complete (see Section 3-2) and
the triangle inequality holds as the Euclidean distance is used, an extension that increases
the reduced cost can never be part of an optimal negative reduced cost sequence. First, the
step cost from sector L〈i〉 to sector L′〈j〉 is calculated as follows:

cstepL〈j〉,k = ρ · mink∈P(vk)
vk

rj · L′〈dk〉+ L′〈czk〉 − L〈czk〉 ∀j ∈ V, k ∈ P (4.16)

Then, the dual step cost to sector j is given as:

ĉstepL〈j〉,k = cstepL〈j〉,k − λj ∀j ∈ V, k ∈ P (4.17)

M.A. Korthals Altes Master of Science Thesis

4-1 Lower bound 25

Essentially, this describes the change in the Objective value (4.7) from the SP (see Section
4-1-1). This added cost uses the difference in cycle cost czk after extension to L′.

Algorithm 4: Forward labeling for agent k ∈ P and sectors i ∈ V
1 Initialize labels with label L at current sector i
2 best_sequence← ∅
3 ĉbest = 0

4 while labels do
5 Select min(ĉlb) as current label L;

foreach sector j ∈ W of current label L do
6 Extend L to new label L′ to sector j at t, with W and czk
7 Calculate dual step cost ĉstepj

8 if j is a sink or ĉstepj < 0 then /* Check if beneficial step */
9 Extend new label L′ with Uk, ck, ĉk, and ĉlb

10 else
11 Discard new label L′

12 if j is a sink and any ĉk < ĉbest then /* Check if sequence found */
13 best_sequence← min cost(uk)
14 Break search
15 else
16 Discard new label L′

17 if j is not a sink and ĉlb < ĉbest then /* Check if beneficial label */
18 if agent dominated by other label then (partially) discard new label L′
19 if agent dominates other labels then (partially) discard other labels
20 else
21 Discard new label L′
22 Discard current label L

23 return best_sequence

Extension As visible in Algorithm 4, the extension of the label is split into two parts, at
lines 6 and 9. It is possible to do this at once, but this leads to unnecessary computations as
labels can be discarded already based on the dual step cost. Nonetheless, all extensions are
described here at once. For a new label L′ =

〈
j,W,Uk, dk, ck, czk, ĉk, ĉlb

〉
, the extension can be

described using the following formulas:

W = L〈W〉 \ L′〈j〉 (4.18)

dk =
®
csk,L′〈j〉 if L′〈i〉 6∈ N
L〈dk〉+ cL〈i〉,L′〈j〉 otherwise

∀k ∈ P (4.19)

Uk = L〈Uk〉 ∪ {L′〈j〉, L′〈dk〉} ∀k ∈ P (4.20)

Master of Science Thesis M.A. Korthals Altes

26 Benchmarking

czk = (1− ρ) · mink∈P(ek)
ek

· (L′〈dk〉+ cL′〈j〉,sk
) ·

∑
i 6∈V,∈N

ṙi ∀k ∈ P (4.21)

ck =
{
∞ if L′〈j〉 6∈ Vk
L〈c〉+ cstepL′〈j〉 otherwise

∀k ∈ P (4.22)

ĉk =
{
−λk if L′〈i〉 6∈ N
L〈ĉ〉+ ĉstepL′〈j〉 otherwise

∀k ∈ P (4.23)

ĉlb = min
k∈P

¶
min
Ä
0, ĉstepL′′〈j′′〉,k

ä©
(4.24)

Dominance In Algorithm 4, dominance rules are applied in lines 18 and 19. Those are
critical in reducing the state space and speeding up the algorithm. Furthermore, bounding
is implemented to discard a solution preemptively. First, labels are removed immediately if
the dual step cost ĉstepj ≥ 0 or if the lower bound ĉlb ≥ ĉbest, as it can not improve the best
solution anymore.

If these criteria did not disqualify a label, dominance rules are applied to check both if any
label dominates the new label or if the new label dominates any other label. The difficulty is
that, in this case, the labels can also be partially dominated, as they contain different costs
of multiple agents. For an agent k ∈ P, the label L1 is considered to dominate label L2 if the
following holds true:

1. L1〈i〉 = L2〈i〉

2. L1〈W〉 ⊇ L2〈W〉

3. L1〈dk〉 ≤ L2〈dk〉

4. L1〈ĉ〉 ≤ L2〈ĉ〉

Criterion 1 checks if the labels have the same current sector. Criterion 2 states that any
expansion from 2 is also allowed for 1. Criterion 3 verifies that the distance of label 1 is the
same size or smaller than that of label 2. The last criterion ensures that the negative reduced
cost of label 1 is equal or smaller. Combined, label 1 is guaranteed to produce the same
solution or better for agent k ∈ P, meaning its values do not have to be extended in L2. If
the label cannot be extended anymore for any agent, it is removed completely.

Summary Initially, the heuristics are used to generate sequences. If unsuccessful, forward
labeling is used, which can continue to optimality to ensure no sequences exist anymore.
This implies the relaxed RMP is optimal. Performing forward labeling is computationally
intensive, as the SP is NP-hard. Some main improvements are known but not implemented
yet. The main directions are extending forward labeling to a bi-directional algorithm, which
is expected to perform much better [87]. Furthermore, the concept of decremental state-space
relaxation can improve the solution quality even more [88]. Additionally, relaxations can be
applied by, for example, relaxing criterion 1 [90] or by removing sectors that are not expected
to be included in the solution [89], which can improve the speed at the cost of less tight lower
bounds.

M.A. Korthals Altes Master of Science Thesis

4-2 Upper bound 27

4-2 Upper bound

Any feasible solution for the MARP can be considered an upper bound. Generally, a trivial
method is used to generate a feasible solution, such that the proposed method can be compared
to this ‘naive’ approach. Obviously, the trivial method should be outperformed to justify
the use of a more comprehensive approach. For this problem, a feasible solution consists
of allocating sectors to agents and finding a sequence for each agent visiting the allocated
sectors. A trivial solution needs to be generated only for the allocation into separate SARPs,
such that a direct comparison with the subsets from intent-based coordination is provided.

Trivial clustering

To create n trivial clusters from N sectors, n random sectors are selected as cluster centroids.
Sequentially, a random neighboring sector is added to each cluster, which implies it is adjacent
to at least one sector in the cluster. If all remaining sectors are not neighbors to any cluster, a
random sector is selected and added to the closest cluster. As such, clusters are not necessarily
completely connected. It is trivial as opposed to random, as it is reasonable to believe that it
is more efficient to cover close or connected sectors than a cluster that is completely scattered.

Trivial Allocation

Instead of focusing on adjacency, the allocation is concerned with the capacity of the agents
involved in the MARP, but no heterogeneity is taken into account. In each iteration, a random
cluster is chosen. Then, this cluster is added to the agent with the lowest number of total
sectors allocated, balancing the workload between the agents in general.

4-3 SARP solution

Both intent-based coordination and the trivial allocation generate subsets for separate SARPs.
These methods can only be compared if the resulting SARPs are solved in an equal manner. It
can be solved to optimality using existing solvers, but this is not tractable for larger problem
instances. Instead, heuristics can be used comparable to those for a TSP, which are concisely
discussed by Nilsson [85]. Finding the most efficient heuristics is a topic of research in itself,
which is out of scope for this thesis. Therefore, it is chosen to modify the heuristics used for
the ESPP in Section 4-1-2.

Greedy & Insertion heuristic

Algorithms 1 and 2 are easily modified by requiring that all sectors are visited and that the
actual instead of the reduced cost is used. This simplifies the heuristic, as no list of sequences
is built. Instead, one sequence is expanded such that the final result is immediately accepted
as the solution. Due to the simplicity of the adjustments, they are not displayed separately.

Master of Science Thesis M.A. Korthals Altes

28 Benchmarking

Reshuffling heuristic

Furthermore, the reshuffling heuristic is modified. Again, no list of sequences is necessary as
all sectors need to be visited. Therefore, this algorithm is adjusted such that all low-cost edges
are selected first, after which the edges are connected greedily to create a single sequence.
The resulting heuristic is displayed as Algorithm 5.

Algorithm 5: Reshuffling sequence for agent k ∈ P, sectors i ∈ V and edges {i, j} ∈ E
1 edge_list← ∅

2 while edges available do
3 foreach available edge do
4 Calculate approximated added cost Jijk
5 Save minimum cost edge {i, j} = {out, in} /* process edge */
6 Remove all edges to j
7 Remove all edges from i
8 Remove the reverse edge {j, i}.
9 edge_list.add(edge)

10 Connect sector j if edges {i, j}, {j, j′} ∀i, j′ ∈ V included /* build sequence */
11 while unconnected edges do
12 Add min cost edge {i, j} for any included edges {i′, i}, {j, j′} ∀i′, j′ ∈ V
13 sequence← connected edges
14 Calculate actual cost of sequence

15 return sequence

A solution to the SARP is then found by performing all three heuristics and selecting the
minimum cost sequence produced by any of the heuristics. This solution is an upper bound
to the optimal solution, which should prove to be sufficiently consistent to allow comparison
between the trivial and coordinated allocation of sectors to the subsets of the agents.

M.A. Korthals Altes Master of Science Thesis

Chapter 5

Intent-Based Coordination

It is assumed that persistent reconnaissance is performed well if the Multi-Agent Reconnais-
sance Problem (MARP) from Chapter 3 is solved to optimality. As stated in Chapter 4,
the optimal MARP solution consists of each agent covering the optimal set of sectors in an
optimal sequence. The intent-based coordination put forward here is based on this concept
by attempting to allocate the optimal set of sectors during a coordinative process and leaving
the optimal sequence as the solution to each respective Single-Agent Reconnaissance Prob-
lem (SARP). The challenge is to design the coordinative method such that it can deal with
a dynamic and uncertain environment.

5-1 Solution structure

Requirements

Based on the analysis in Chapter 2, three requirements are deducted for a suitable solution
method:

1. It needs to be flexible, meaning that the solution method can adjust the behavior of
agents locally without revising the solution for the network as a whole.

2. It needs to be robust against limited and unreliable communication, meaning that
reduced cooperation does not prohibit the generation of solutions, or impact the solution
quality beyond acceptable levels.

3. It needs to be scalable in the number of agents and sectors, meaning that large problem
instances will not lead to an intractable increase in computation time, maintaining any
achieved flexibility and robustness.

Combined, intent-based coordination is designed to allocate sectors as closely as possible to
each agent’s optimal set of sectors while conforming to the three requirements outlined here.
In Chapter 4, methods for lower and upper bounds have been presented, providing insight
into how well this allocation is performed.

Master of Science Thesis M.A. Korthals Altes

30 Intent-Based Coordination

Components

The proposed solution method consists of multiple components. The links between them are
displayed in Figure 5.1, to explain their functionality clearly. The baseline problem that needs
to be solved is the Multi-Agent Reconnaissance Problem (MARP), shown in red. Instead of
solving the MARP, intent-based coordination (light blue) allocates the sectors such that each
agent can solve the SARP independently (dark green). Intent-based coordination consists of
a distributed hierarchical structure of supervisors. Each supervisor allocates an area to either
a subordinate supervisor or to the actual agents. It does so using two sequential processes.
First, it clusters the sectors within its own allocated subset (orange). Then, it allocates them
to its subordinates (purple). The distributed part of this coordinative process comes forth
in the cooperation between peer supervisors (light green). Instead of solving the allocation
separately, cooperation is allowed to improve the final allocation. Lastly, the separately
obtained solutions for the SARPs are assessed using a benchmarking method (dark blue) to
measure the quality compared to the (unknown) optimal solution of the MARP.

Clustering Allocation

Supervisor

Clustering Allocation

Supervisor

Clustering Allocation

Supervisor

Agent

Distributed cooperation

Intent-based coordination

Multi-Agent Reconnaissance

Single-Agent
Reconnaissance

Benchmarking

Agent Agent Agent

Ch5.2

Ch5.4

Ch5.3

Ch5.5

Ch3.2

Ch4

Ch3.1

Figure 5.1: A graphical display of the components of the solution method, and the different links
between them.

M.A. Korthals Altes Master of Science Thesis

5-2 Application of intent 31

5-2 Application of intent

General concept

As outlined in the overview of the components, the coordination consists of a distributed
hierarchical structure of supervisors, which all perform sequential clustering and allocation
while cooperating with peer supervisors to improve the allocation. Intent, however, is not a
specific component. Instead, it is a principle used in designing the clustering and (distributed)
allocation methods.

As the military deals with the same highly dynamic and uncertain environment, the concept
of intent is taken from the contemporary intent-based Command & Control (C2), which is
developed to deal with these challenges specifically. The requirements for this form of C2 are
equal to those described in Section 5-1. Flexibility is needed, as it is not always possible to
wait for approval from higher echelons in the chain of command. Furthermore, scalability
is mandatory as the process of command has to remain functional for larger combat groups.
Lastly, the continuity of operations should be robust against unreliable communication.

Intent-based C2 revolves around the idea that a commander must have the freedom to act
on local information at any level in the chain of command without explicit approval from
its superior. The vital part of making this type of command work is a clear intent, which
implies that commanders can make decisions locally that are still in line with the global
objectives. This approach is opposite to rigid, micro-managed command, which resembles the
centralized approach to solving the MARP. Therefore, intent outlines the overall objective
and constraints but leaves the exact implementation to the subordinates.

This type of C2 can be mimicked by distributed, hierarchical intent-based coordination. Dis-
tributed in the sense that at each level peer supervisors cooperate towards a common objective,
and hierarchical as a shared superior sets their constraints.

Though a hierarchy suggests a strictly top-down approach, it is important to understand that
when information changes, the bottom levels of the hierarchy react first. This makes it a type
of holarchy [73]. The intent is refined at higher levels in the hierarchy only for larger and
more general changes.

1

3

76

2

54

1

321

2

3
1

76

4 5

Figure 5.2: An example of strictly hierarchical coordination. Each supervisor partitions the
subsets further for its own subordinates.

Master of Science Thesis M.A. Korthals Altes

32 Intent-Based Coordination

Quantifying intent

Before intent can be implemented in coordination, the principle needs to be made exact. For
persistent reconnaissance, coordination means allocating the optimal set of sectors to each
agent. This means that the total area to be searched is partitioned into increasingly smaller
subsets in the hierarchy of supervisors. The objective of this partitioning step is equal for
all supervisors, namely to allocate the right subsets to their subordinates. Based on this
objective, an example of strictly hierarchical coordination is displayed in Figure 5.2.

Figure 5.3: By letting the subsets overlap, room for cooperation is added for peer supervisors.
The specific size and number of overlapping subsets represent the superior’s intent.

As there is no variation in the objective, the intent is represented by the partitioning con-
straints. In this case, local room for refinement means that the subspace allocated to each
supervisor is not final but fixed only to a certain degree. Through distributed cooperation,
supervisors can then adjust their allocations. An example is displayed in Figure 5.3. The left
case depicts a strictly hierarchical subset allocation, corresponding with Figure 5.2. The right
case implements the definition of intent, such that the subsets overlap to indicate room for
freedom. Effectively, a superior indicates within which bounds any subsequent partitioning
can take place but leaves the exact implementation to its subordinates. The overlapping
region then represents the area in which peer supervisors can cooperate distributedly. Intent
is thus quantified by how much overlap is generated between the subsets of subordinates.

5-3 Clustering sectors

The clustering objective is to group sectors for more efficient allocation, with a minimal
impact on the resulting solution quality. Furthermore, as clustering measures the resemblance
between sectors, it can be used to implement intent. This implies that clustering should:

• Include a measure of partial overlap, such that intent can be modelled.

• Anticipate the capabilities of the available heterogeneous agents.

• Return connected polygonal clusters, allowing for efficient coverage.

The first objective can be realized by utilizing existing properties of the Fuzzy C-Means (FCM)
clustering algorithm [4]. The second and third objectives are new contributions. In the
following sections, the sector features will be outlined used to accommodate the heterogeneity,
and the algorithm will be described. This consists of the implementation of FCM, and the
new post-processing method to obtain more efficient connected clusters.

M.A. Korthals Altes Master of Science Thesis

5-3 Clustering sectors 33

5-3-1 Sector features

The clustering process aims at making all sectors within each cluster as similar as possible
while making sectors from different clusters a dissimilar as possible. The (dis)similarity is
measured between two weighed feature vectors, in which the feature vector consists of values
for each of the sector’s features. For all sectors i ∈ N these can be summarized as:

• Position, given as {yi, xi} coordinates.

• Risk, given as ri ∈ [0, Pi].

• Risk increase, given as ṙi ∈ [0, 1
2Pi].

For comparison, the features are normalized and collected in the feature vector:

Xi =
ï

yi
maxi∈N (yi, xi)

,
xi

maxi∈N (yi, xi)
,

ri
maxi∈N (Pi)

,
2 · ṙi

maxi∈N (Pi)

ò
(5.1)

The (dis)similarity is defined as the Euclidean distance between two weighed feature vectors,
in which the weights w can be used to create clusters with a different emphasis:

d(Xi, Xj) = ||w · (Xi −Xj)||2 ∀ i, j ∈ N (5.2)

The weights w should enable capability-based clustering for heterogeneous agents. This im-
plies that clusters can be created that are tailored to specific agents during allocation. The
central assumption is that agent capabilities correspond with sector features, such that if
agents differ more in certain capabilities, that feature must be weighed more heavily. There-
fore, a direct link must be formulated between capabilities and features to allow capability-
based clustering. The relations follow from the MARP (see Section 3-2), in which the agent
capabilities are tied to the objective value. For the mentioned capabilities this means:

• Speed: The higher the speed vk, the better agent k ∈ P can cover high risk sectors
at longer distances. Therefore, the larger the speed difference between the available
systems, the more emphasis is need on risk ri ∀i ∈ N .

• Flight Time: The higher the flight time ek, the better the agent can cover high-risk
increase over longer cycle distances. For larger differences in flight time, an emphasis is
needed on the risk increase ṙi ∀i ∈ N .

5-3-2 Fuzzy C-Means algorithm

The FCM algorithm [4] is selected to perform the initial clustering for three reasons. First,
it is a relatively straightforward clustering method comparable to k-means. This makes
the results understandable and consistent. Secondly, in contrast to hard clustering, fuzzy
clustering returns a continuous degree representing the certainty of a sector belonging to a
cluster, which can be used directly to describe intent. Thirdly, the fuzzy degree shows more
gradual growth or decay in degree if features change. This means that instead of sectors

Master of Science Thesis M.A. Korthals Altes

34 Intent-Based Coordination

20 40 60 80 100

Longitude

20

40

60

80

L
a

ti
tu

d
e

(a) m = 1.0

20 40 60 80 100

Longitude

20

40

60

80

L
a

ti
tu

d
e

(b) m = 1.5

20 40 60 80 100

Longitude

20

40

60

80

L
a

ti
tu

d
e

(c) m = 2.0

Figure 5.4: A cluster created with FCM with different values for the fuzzifier m. With m = 1,
the fuzzy clusters converge to hard clusters. For higher values of m, more sectors are included in
the clusters with a small degree.

‘flipping’ to other clusters, the degree changes slowly. Lastly, c-means has a parameter called
the fuzzifier m ≥ 1, which is used to set the amount of fuzziness easily. This effect is shown
in Figure 5.4. This value can be tuned to generate different amounts of cluster overlap, such
that the amount of cooperation between supervisors is changed accordingly.

FCM can formally be described as an optimization problem. Given a set of clustersM with
centroid Cj ∀j ∈M, and a set of sectors N with a feature vector Xi ∀i ∈ N the optimization
problem is formulated as follows:

min
Cj ,uij

∑
i∈N

∑
j∈M

umij ||Xi − cj ||2 (5.3)

s.t.
∑
j∈M

uij = 1 ∀i ∈ N (5.4)

Cj =
∑
i∈N u

m
ij ·Xi∑

i∈N u
m
ij

∀j ∈M (5.5)

uij = 1∑
k∈M

Ä ||Xi−Cj ||
||Xi−Ck||

ä 2
m−1

∀i ∈ N , ∀j ∈M (5.6)

Objective function (5.3) minimizes the Euclidean distance to each cluster, weighed by the
degree uij , which describes the membership of sector i ∈ N to cluster j ∈ M. Constraint
(5.4) dictates that the total degree of a sector is always 100%. Constraint (5.5) calculates the
centroid for each cluster based on the degree of each sector. Constraint (5.6) sets the degree
based on the Euclidean distances.

A solution is found iteratively by setting the fuzzifier m and defining a fixed amount of clus-
tersM. Then, the algorithm is initialized with initial centroids Cj . Iteratively, Constraints
(5.6) and (5.5) are calculated until the improvement of the objective function (5.3) falls below
a given threshold ε.

M.A. Korthals Altes Master of Science Thesis

5-3 Clustering sectors 35

Original degree

20 40 60 80 100

Longitude

20

40

60

80

L
a
ti
tu

d
e

Interpolated degree

20 40 60 80 100

Longitude

20

40

60

80

L
a
ti
tu

d
e

Degree > 0

20 40 60 80 100

Longitude

20

40

60

80

L
a
ti
tu

d
e

Degree > 0

20 40 60 80 100

Longitude

20

40

60

80

L
a
ti
tu

d
e

Figure 5.5: An example of the interpolation method to create polygonal clusters without losing
low degrees, by capping the interpolated values at the nth percentile of the original degree.

5-3-3 Reducing cluster sparseness

FCM tends to make the clusters sparse, meaning that a cluster does not necessarily consist
of connected sectors but physically scattered sectors. This effect becomes greater when the
fuzzifier is set lower, as is also visible in Figure 5.4. As sparse clusters are assumed inefficient in
practice, a post-processing method is proposed in which the initial clusters are interconnected
to create connected, polygonal clusters. The approach consists of multiple steps:

1. Using FCM, calculate the degree uij of sector i ∈ N belonging to cluster j ∈M.

2. Retrieve the sectors with significant degrees, such that uij ≥ β (i.e. β = 3%).

3. Each sector with uij ≥ β and all sectors that are on the edges of the convex hull are
collected as i′ ∈ N . The remaining sectors are identified as î ∈ N .

4. The included degree ui′j is interpolated for all sectors to create ûij , where ûi′j = ui′j .
Then, ûîj is the interpolated degree for the remaining sectors.

5. Get the degree γ at nth percentile of uij (i.e. n = 20%).

6. Limit the interpolated degree ûîj to γ, such that ûîj = min{ûîj , γ}. By doing this,
‘valleys’ of low degree are not interpolated to the high degree of its surrounding.

7. The degrees are normalized by ûij = ûij/
∑
j ûij , such that

∑
j ûij = 1 ∀i ∈ N .

Master of Science Thesis M.A. Korthals Altes

36 Intent-Based Coordination

The result of these steps can be seen in Figure 5.5, where it is shown that the values are
interpolated within the polygonal surrounding the sectors with a significant degree originally,
but not so much that its low degree information is lost. Caution must be taken, as this effect
changes with varying fuzziness.

5-4 Task Allocation

The objective of task allocation is to allocate the clusters such that each agent receives its
optimal set of sectors as best as possible, as formulated in Section 3-2. Of course, this result
is limited by the clustering quality. During task allocation, the objective of the MARP is
not taken into account explicitly. Instead, the task allocation is a heuristical approach by
valuing clusters for each agent and including capacity. The main contribution consists of
implicitly linking the properties of the obtained clusters to the MARP objective and creating
a corresponding mathematical formulation accordingly. The two main objectives taken into
account are defined as:

1. Maximize the utility of agents taking up specific tasks, such that agents get allocated
sectors in which they can eliminate risk more efficiently than others.

2. Minimize inefficiencies resulting from the allocation of more tasks than the capacity.
Though some agents might be better at performing certain tasks, allocating too many
tasks will eventually decrease performance.

5-4-1 Valuing task properties

Task properties

For each cluster j ∈ M representing a task, some generic properties can be calculated for
comparison, with ûij indicating the interpolated fuzzy degree of sector i ∈ N belonging to
cluster j ∈M, and As the standard sector area:

Centre of mass: Fj =
ß
ȳj =

∑
i∈N (ûij · yi)∑

i∈N ûij
, x̄j =

∑
i∈N (ûij · xi)∑

i∈N ûij

™
(5.7)

Total cluster area: Aj =
∑
i∈N

ûij ·As (5.8)

Total risk: Rj =
∑
i∈N

ûij · ri (5.9)

Average risk increase: Ṙj =
∑
i∈N (ûij · ṙi)∑

i∈N ûij
(5.10)

Task utility

The available capabilities for each agent are speed and flight time. The task utility for a
specific agent is defined as a linear score for the suitability of the agents’ capabilities matched

M.A. Korthals Altes Master of Science Thesis

5-4 Task Allocation 37

with the corresponding task properties. This means that long flight time agents score well
on high-risk-increase tasks, and that fast agents score well on high-risk tasks. l1jk indicates
the gain in quick elimination of risk by assigning agent k ∈ P to task j ∈ M. The score l2jk
indicates the gain of putting long flight time agents on clusters with high risk increase. The
scores are then calculated as follows:

l1jk = vk ·Rj∑
j∈Mmaxk∈P(vk ·Rj)

∀j ∈M, k ∈ P (5.11)

l2jk = ek · Ṙj∑
j∈Mmaxk∈P(ek · Ṙj)

∀j ∈M, k ∈ P (5.12)

Using these scores, the utility ajk of agent k ∈ P taking task j ∈M is calculated as:

ajk = 1
2(l1jk + l2jk) ∀j ∈M, k ∈ P (5.13)

Given this derivation, the total attainable utility is bounded by the range [0, 1], and equals
1 if the maximum scoring agent is selected for each task. However, this is only the case if
the same agent achieves the maximum score for both measures. If the measures conflict,
allocating the maximum score of both measures is not possible at the same time.

Capacity

Capacity b̂k ∈ [0, 1] is defined as a fraction of the total area an agent k ∈ P can service
effectively. The task area Ai ∀i ∈ M is implemented as a fraction of the total area too,
such that Afi = Ai/

∑
i∈MAi. It is important to note that the capacity is a relative measure

dependent on the area size, type, and the number of agents. Furthermore, the metric task
dependency Df

ij is introduced, which indicates an approximated area that needs to be covered
by combining tasks, as displayed in Figure 5.6. The normalized dependency between task i
and j is given as:

Df
ij = AiAj ||Fi − Fj ||22∑

i,j∈MAiAj ||Fi − Fj ||22
∀i, j ∈M (5.14)

A proof of the necessity of weighing by area size is included in Appendix C. Given Df
k ∈ [0, 1]

and Afk ∈ [0, 1] represent the sum of all included dependencies and task areas respectively,
the capacity can be constrained for each agent k ∈ P using the following formula:

1
2D

f
k + 1

2A
f
k ≤ b̂k (5.15)

5-4-2 Local formulation

The Mixed Integer Linear Program (MILP) formulation proposed here applies to the problem
of a single supervisor allocating tasks to its subordinates. Effectively this makes it the local,
non-cooperative problem of each supervisor.

Master of Science Thesis M.A. Korthals Altes

38 Intent-Based Coordination

Grid
Task 1 Task 2

Task 3

Figure 5.6: A schematic view of dependencies between tasks. If multiple tasks are selected, the
distance between them induces inefficiencies and a strain on the capacity.

Let xik be a binary variable indicating if task i ∈M is performed by subordinate k ∈ P (either
supervisors or agents). Then the constant aik indicates the utility of subordinate k performing
task i. The matrix Df

ij gives a normalized, weighted squared distance (dependency) between
the centers of mass from task i to task j. The constant b̂k indicates the normalized capacity,
meaning the fraction of the area the agent can service effectively. The constant Afi indicates
the fraction of the task area compared to the grid area. Then, the variable βk indicates the
overused capacity for each subordinate, with e the inefficiency penalty. The formulation then
follows as:

max
xik,βk

∑
k∈P

(∑
i∈M

aikxik − e · βk

)
(5.16)

s.t. 1
2

∑
i∈M

(∑
j∈M

xikD
f
ijxjk +Afi xik

)
− βk ≤ b̂k ∀k ∈ P (5.17)

∑
k∈P

xik = 1 ∀i ∈M (5.18)

xik ∈ {0, 1} ∀i ∈M, ∀k ∈ P (5.19)
βk ≥ 0 ∀k ∈ P (5.20)

Objective function (5.16) maximizes the utility of tasks allocated, by selecting the appropriate
subordinate and preventing penalties for overused subordinate capacity. Constraint (5.17) sets
the approximated fraction of the area that has to be serviced by a subordinate and relates
it to its capacity. If all tasks are serviced by one subordinate, the first two terms add up
to one. Constraint (5.18) ensures that all tasks are performed by exactly one subordinate.
Constraint (5.19) and (5.20) set the domain for the decision variables.

After the allocation is performed, the allocated subsets are represented by the resulting degree
uik, stating the total degree with which sector i ∈ N belongs to agent k ∈ P. This is calculated
using the interpolated degree ûij of each cluster:

uik =
∑
j∈M

ûijxjk ∀i ∈ N , k ∈ P (5.21)

M.A. Korthals Altes Master of Science Thesis

5-4 Task Allocation 39

The resulting problem can be classified as a Mixed Integer Quadratically Constrained Program
(MIQCP), which is a very difficult problem, as both the non-convex integer variables and non-
convex quadratic constraints are combined [92, 93]. If linearly relaxed, the problem reduces
to a Quadratically Constrained Linear Program (QCLP), which can be solved efficiently
by interior-point methods using Semidefinite Programming (SDP), if matrix Df is positive
semidefinite. By definition Df ≥ 0 and symmetrical, such that xTDfx ≥ 0 does not hold
for any nonzero vector x. This proves it is not positive semidefinite. However, in the case of
binary decision variables, this can be enforced relatively easily using that diagonal dominance
Dii ≥

∑
i 6=j Dij ∀i ∈ N is a sufficient condition for positive semidefiniteness. Hence, as

x2
i = xi holds for binary variables, Df can be convexified as follows:

xTDfx = xT D̂fx− d̂x (5.22)

Then, the values of D̂ and d̂ are chosen to enforce diagonal dominance:

D̂f
ij = Df

ij ∀i 6= j ∈ N (5.23)

D̂f
ii =

∑
j∈N

Df
ij ∀i ∈ N (5.24)

d̂fi =
∑
j∈N

Df
ij ∀i ∈ N (5.25)

It should be noted that for d̂ any value can be chosen that makes Df positive definite, even
if not necessarily diagonally dominant. Even more so, the selection of d̂ is not trivial and
has a significant impact on performance [94]. A much more efficient reformulation is, for
example, achieved by applying the Quadratic Convex Reformulation (QCR) [95]. However,
these more advanced methods are out of scope for this thesis, and preference is given for the
more straight forward implementation of linearization.

The quadratic constraint can be eliminated by linearizing, using – as Mallach [96] noted –
‘the standard linearization technique’, which was gradually developed by Fortet [97], Hammer
and Rudeanu [98], and Glover and Woolsey [99,100]. This linearization replaces the quadratic
binary variable by a combined, continuous variable, using the following reformulation:

∑
i∈N

(∑
j∈N

Dijxijk +Ajxik

)
− βk = b̂k ∀k ∈ P (5.26)

xijk ≤ xik ∀i, j ∈ N , ∀k ∈ P (5.27)
xjik ≤ xik ∀i, j ∈ N , ∀k ∈ P (5.28)
xik + xjk − 1 ≤ xijk ∀i, j ∈ N , ∀k ∈ P (5.29)
xijk ≥ 0 ∀i, j ∈ N , ∀k ∈ P (5.30)

These constraints can replace constraint (5.17), as the equality xijk = xik · xjk is implicitly
enforced, though this linearization does not necessarily improve performance. More com-
pact and novel linearizations have been developed, reducing the amount of constraints and
variables, tightening the linear relaxation of the problem [96,101,102].

Master of Science Thesis M.A. Korthals Altes

40 Intent-Based Coordination

5-5 Distributed cooperation

Though each supervisor can partition its subset locally for its subordinates, the addition of
overlapping subsets (intent) requires cooperation. Cooperation enables flexibility, as solutions
can be altered within the freedom provided by a shared supervisor without its explicit ap-
proval. The approach is distributed to provide robust anytime properties, such that instead
of having a single bottleneck, the solution improves gradually over time. Therefore, it is not
the explicit goal to create a more efficient method compared to the centralized approach.

The main contribution for distributed cooperation is the integration of a complex local prob-
lem into Concurrent Forward-Bounding (ConcFB) [5], creating the new Complex Concurrent
Bounding (CCB) algorithm. This involves compiling the local problem and sharing these over
all concurrent Search Processes (SPs), removing the concept of Upper Bound (UB) requests,
and adding a local search tree.

5-5-1 Concept of shared tasks

Before any cooperation can be performed, it needs to be defined on which tasks can be
cooperated. This directly follows from the intent of the shared superior of a group of peer
supervisors. An example is given in Figure 5.7. The left picture displays how two supervisors
(red and blue) are allocated overlapping subsets. Both supervisors perform clustering for their
subset. The consequence is that some clusters are partially located in the overlapping sections
with the other supervisor’s subset. This is displayed in the center image. The red supervisor
has created the yellow and orange clusters, and the blue supervisor the green and turquoise
clusters. Both the red and turquoise clusters are partially located in the subset of the other
supervisor. This means they both belong to the shared tasks. The right image displays that
both shared tasks are allocated to their respective peer supervisor after cooperation, which are
now in their final, deconflicted subset. An important observation here is that the supervisors
now have a subset outside the original overlapping parts.

Figure 5.7: Left: two supervisors are allocated to overlapping subsets. Center: The yellow and
green tasks are local, as they belong to only one subset. The orange and turquoise clusters are
located partially in the overlapping subsets, meaning they are shared tasks. Right: The tasks are
allocated to their respective peer supervisor after cooperation.

M.A. Korthals Altes Master of Science Thesis

5-5 Distributed cooperation 41

5-5-2 Cooperative formulation

The cooperative problem can be formalized by extending the local formulation from Section
5-4-2 to include the local and shared tasks. The problem is described for a group of q ∈ C peer
supervisors, sharing the same superior q0. The subordinates of each supervisor are defined
as k ∈ Pq ∀q ∈ C, with P =

⋃
q∈C Pq. Furthermore, each supervisor is allocated a subset

prior by the superior, described by the degree uiq of sector i ∈ N belonging to supervisor
q ∈ C. Note that C = Pq0 , as the set of subordinates for the superior is simply the current
group of supervisors. This also implies that uiq = uik ∀k ∈ Pq0 = q ∈ C. Each supervisor
clusters locally, generating a set Mq of the clusters it created. Combined, the set of all
clusters is M =

⋃
q∈CMq. Furthermore, each supervisor discounts the interpolated degrees

ûij ∀j ∈Mq, using the subset uiq it has been allocated prior:

ũij = ûij · uiq ∀i ∈ N , j ∈Mq (5.31)

The task properties formulated using Equation (5.7) - (5.10) are then changed to use the
discounted degree instead of the interpolated degree directly. This ensures that throughout
each level of the hierarchy, the total degree of each sector remains equal to 1.

Then, the formulation for a group of supervisors C, which cooperatively need to allocateM
tasks to P subordinates, is given as:

max
xik,βk

∑
q∈C

∑
k∈Pq

(∑
i∈M

aikxik − e · βk

)
(5.32)

s.t. Eq. (5.17) ∀k ∈ Pq, q ∈ C (5.33)∑
q∈Li

∑
k∈Pq

xik = 1 ∀i ∈M (5.34)

Eq. (5.19), (5.20) ∀i ∈M, k ∈ Pq, q ∈ C (5.35)

Constraint (5.34) can then be split into two constraints to separate the local and shared tasks.
To do so, for each task j ∈ M a set Lj is defined, which includes all supervisors q ∈ C that
are allowed to perform the task:

Lj = {q ∈ C :
∑
i∈N

ũij · uiq > 0} ∀j ∈M (5.36)

Effectively, this states that a supervisor has access to a cluster if any sector in the cluster
also has a positive degree in the subset of this supervisor. Note that the supervisor who has
created a cluster always has access, implying that ∃j ∈Mq ⇒ ∃q ∈ Lj . However, potentially
also others can have access, as displayed in 5.7. Combined, the local task set consists of all
tasks that are accessible only by the supervisor that created it:

Ml
q = {j ∈Mq : |Lj | = 1} q ∈ C (5.37)

Subsequently, all tasks that belong to multiple supervisors are collected in the shared task
setMs. The reformulation of Constraint (5.34) is then given as:

Master of Science Thesis M.A. Korthals Altes

42 Intent-Based Coordination

∑
k∈Pq

xik = 1 ∀i ∈Ml
q, q ∈ C (5.38)

∑
q∈Li

∑
k∈Pq

xik = 1 ∀i ∈Ms (5.39)

Using this formulation, the difference is made visible between the separate local tasks of each
supervisor q ∈ C, and the set of shared tasks Ms. Though the sets are separated, they are
not independent. Nonetheless, during cooperation only the assignments of the tasks in the
shared setMs have to be communicated, as the tasks in the local sets can be solved by each
supervisor locally.

5-5-3 Distributed Constraint Optimization Problems

The cooperative formulation can be solved using the Distributed Constraint Optimization
Problem (DCOP) paradigm. This section will explain the general concept, with special at-
tention to why this formulation can be classified as one with a complex local problem.

DCOPs originate from Distributed Artificial Intelligence (DAI) and describe a problem in
which agents must distributedly cooperate to decide on a local variable while subjected to
a set of constraints, such that the global cost is minimized. Local variables often represent
physical behavior, more commonly known as a Multi-Robot System (MRS). Fioretto et
al. [103] provide a detailed survey on the use of DCOPs for Multi-Agent systems (MASs).
In line with their definition, a DCOP is defined as a tuple S = 〈P,X,D, F, α〉, with P the
set of agents, X the set of variables, D the set of domains for X, F the set of cost functions
where each function f ∈ F is coupled with a variable x ∈ X, and α is a function that assigns
control of variables to agents, such that α : X 7→ A. The global cost function is then defined
as Fg(X) =

∑
f∈F f(x). The goal of the DCOP algorithm is then to find a solution that

minimizes the global cost.

A full classification of the properties of DCOP algorithms is also provided by Fioretto et al.
[103]. The desired properties can be summarized as asynchronous, any-time, fully distributed,
and exact. It needs to be exact as the complete solution approach of intent-based coordination
consists of many components. As such, introducing potentially unreliable results by an inexact
method is undesirable, at least for the scope of this thesis. The other properties all increase the
robustness against communication failures. Apart from these properties, it is also generally
assumed that each agent controls only one variable. In this application, this is not true, which
requires some adjustments for existing algorithms.

Towards a complex problem

In the cooperative formulation, each DCOP agent represents a supervisor, which controls the
full assignment of all its local tasks to its subordinates and can cooperate on the assignment
of multiple shared tasks. Effectively, each agent still needs to generate an optimal solution
given the assignment of shared variables. Yokoo [104] defined this as a complex local problem,
and Burke and Brown [105] summarize two general methods for dealing with this complexity.

M.A. Korthals Altes Master of Science Thesis

5-5 Distributed cooperation 43

The first solution is compilation, which produces a new variable for each agent, for which
the domain is the set of all local solutions. The second solution is decomposition, in which a
unique artificial agent manages each local variable.

With large complex problems, decomposition would lead to highly constrained, dense prob-
lems, which generally reduces parallelism and efficiency [104], as additional computational
and communication overhead is introduced. Compilation, on the other hand, can become
intractable quickly. In general, it cannot be expected that enumerating the solutions to any
NP-hard problem is viable. Recognizing this, Burke et al. [106] proposed an improved com-
pilation method. They state that for complex local problems, only some shared variables are
constrained by other agents. This means that all local solutions with equal assignment for the
shared variables are fully interchangeable. Even using this form of compilation, the domain
of each agent can still become very large quickly. In fact, the size of the compiled domain Dq

of any supervisor q ∈ C grows exponentially on the total number of tasks the supervisor can
perform from the shared set:

|Dq| = 2(
∑
i∈Ms [∃q ∈ Li]) ∀q ∈ C (5.40)

Nonetheless, compilation of the variable domain is chosen, as Burke and Brown [105] show that
solving a local problem centrally enables more efficient exploitation of the problem structure,
especially for larger local problems. However, they emphasize a need for techniques that
efficiently handle large domain sizes to counter the inevitable increase in domain size.

Literature also provides some case studies for complex local problems, summarized also by
[103]. Davin and Modi [107] apply basic compilation to ADOPT, which is not any-time.
Khanna et al. [108] propose an algorithm specifically for dynamic problems. Portway and
Durfee [109] develop adjustments for inexact algorithms, and Grinshpoun [110] implements
clustering of variables in pseudo-trees during decomposition to lower communication overhead.
Fioretto et al. [111] propose a more general framework to decompose a multi-variable DCOP
in a global and multiple local problems, for which existing DCOP algorithms can be used.
Their description resembles the improved compilation by Burke et al. [106], as external and
interface variables both describe the shared tasks. From these works, it can be concluded
that the improvement compilation method is a promising approach.

Defining the compiled domain

The compiled variable of an agent consists of all unique combinations of shared tasks it can
assign. To illustrate this, consider the possible allocations of the tasks displayed in Figure 5.8
and Table 5.1, where three agents have (partial) access to 9 tasks. In this example, task 1 to
3 belong to the shared set, and task 4 to 9 belong to different local sets. As each task can
be selected by a Boolean, the domain for agent A is given as 23 = 8 compiled assignments,
representing all unique combinations. For agent B this is 22 = 4, and 21 = 2 for agent C.
However, when an agent decides on a possible assignment, the domain might not be completely
available. The actual number of possible assignments depends on decisions already made by
other agents, as constraint (5.34) dictates that all tasks are satisfied by one agent only.

The actual available domain, minus the unavailable assignments, is therefore dependent on
the ordering of the agents. In Figure 5.9, an example is shown. In the left image, the ordering

Master of Science Thesis M.A. Korthals Altes

44 Intent-Based Coordination

4
1 2

3

5 6
8
7

9
7
8

(a) Tasks

A

B C

(b) Connectivity

Figure 5.8: In the left plot, figurative tasks are displayed as a grid. Three colored agents each
have local and overlapping shared tasks. At the right, a connectivity graph is displayed indicating
which agents have at least one overlapping task.

Table 5.1: A figurative example of the access of three agents to ten tasks.

Tasks Shared Local
Agents 1 2 3 4 5 6 7 8 9

A 8 8 8 8

B 8 8 8 8

C 8 8 8 8

A⇒ B ⇒ C is displayed. Agent A can make eight combinations. After that, agents 2 and 3
have nothing to cooperate about. Depending on the chosen assignment of A, they are forced
to assign the remaining tasks. In the right image, the ordering C ⇒ B ⇒ A is displayed.
After agent C decides whether to assign task 3, agent B still has four unique combinations
to make, independent of the chosen assignment. The last agent always has a domain of size
one independent of the ordering, as it has to allocate all remaining shared tasks. It can be
expected that the chosen ordering affects the runtime, for which two options are outlined
based on the connectivity graph, which is displayed in Figure 5.8. The left ordering from
Figure 5.9 corresponds to ordering the agents on descending connectivity, meaning the first
agent has a shared task with the most other agents. The right case corresponds to descending
connectivity. The precise effect and best choice are yet to be determined.

A

B B B B B B B B

C C C C C C C C

C

B

A A A A

B

A A A A

A

Figure 5.9: Example of the different domain sizes depending on the ordering of the agents.

5-5-4 Concurrent Forward Bounding

From the discussed algorithms by Fioretto et al. [103], ConcFB [5] is a suitable candidate as
it has the desired properties, and shows improved performance over, for example, AFB [112]

M.A. Korthals Altes Master of Science Thesis

5-5 Distributed cooperation 45

and BnB-adopt [113]. Furthermore, it shows high concurrency and active workload balancing,
which is useful when the computational effort is either costly or slow. Therefore, this algorithm
is chosen as starting point to solve the cooperative formulation described in Section 5-5-2.

To explain the algorithm, consider a DCOP with four agents {a1, . . . , a4}, where a1 has a
domain of four values, and all others a domain of two values. A complete ordering of the
agents is made, after which a search tree can be constructed, as depicted in Figure 5.10. First,
agent a1 assigns a value and saves it as the Current Partial Assignment (CPA), then a2 adds
its assignment, and so forth. The values at the bottom of the tree represent solution values,
and the red line is an example assignment.

Figure 5.10: A DCOP decision tree, with objective values (bottom) and a solution (red line) [5].

By extending the CPA, a solution is obtained by a4, after which a new CPA can be created
by a1. To speed up this slow and exhaustive search, Synchronous Forward Bounding (SFB)
can be used. This process ensures that each time an agent receives the CPA, it requests an
upper bound from all subsequent agents in the ordering and uses these results to compare
the current branch to the best-known solution. If insufficient, the CPA is passed back to the
preceding agent, which can assign another variable, or pass it back to its parent too. SFB is
a synchronous process, as it only continues upon receiving all the requested upper bounds.

Figure 5.11: Example of disjoint SPs in ConcFB [5].

ConcFB introduces concurrency by spawning multiple disjoint Search Processes (SPs), which
all perform SFB. This is depicted in Figure 5.11. In this case, agent a1 initiates an SP for

Master of Science Thesis M.A. Korthals Altes

46 Intent-Based Coordination

each assignment, after which the SFB process is executed in parallel. The concurrency of the
independent SPs makes the complete algorithm asynchronous. As can be seen, SPs can be
initiated by different agents, like the splitting of SP 4 into 5 and 6 by agent a2. This is called
dynamic splitting. Furthermore, the ordering within each SP need not be equal, which allows
for load balancing by shuffling the order heuristically or randomly. The first agent of each
SP, however, cannot be reordered.

The algorithm consists of an overhead part dictating the workload balancing and dynamic
splitting and a fundamental part dictating the steps within each SP. The algorithm is started
by initiating the first agent with an empty CPA. Thereafter, propagating the CPA triggers
the SP of the next agent. This SP utilizes SFB, as described in Algorithm 6. Possibly, the
last agent finds a new best solution, which is then immediately shared over all concurrent
SPs. If an agent depletes its domain, it sends a backtrack message to request a new CPA.
As the first agent cannot do this, the algorithm terminates if the domain of the first agent is
empty. For a more in-depth explanation, see [5].

Algorithm 6: Synchronous Forward Bounding (SFB)
1 CPA← parent(CPA)

2 while domain not empty do
3 CPA.add(assignment)

4 if has child then
5 request(child_UBs)
6 await(child_UBs)
7 if CPA.cost + child_UBs > best_cost then
8 propagate(CPA)
9 await(backtrack)

10 else
11 if CPA.cost > best_cost then
12 best_cost← CPA.cost
13 best_CPA← CPA

14 backtrack(CPA)

15 return best_CPA

The functioning of the algorithm shows three main deficiencies. First, each subsequent agent
independently sends its UB, which is less tight than a combined UB. Secondly, all the domain
variables have to be explored, which can become intractable for the compiled domain as it
grows exponentially on the number of shared tasks. Thirdly, no specific search strategy can
be implemented, as there is no way of indicating which variables of the compiled domain are
worthwhile checking first. This is in contrast to, for instance, the centralized branch & bound,
in which relaxations play an important role in choosing the next branch to check. To address
these deficiencies, Complex Concurrent Bounding (CCB) is proposed.

M.A. Korthals Altes Master of Science Thesis

5-5 Distributed cooperation 47

5-5-5 Complex Concurrent Bounding

In this section, the contributions leading to CCB are highlighted first. Then, an example
is provided explaining the complete functionality of the local tree. Thereafter, the entire
algorithm will be described in detail.

Contributions

Four adjustments are proposed for ConcFB. First, each DCOP agent now includes a local
branch & bound tree, which allows for relaxing and pruning the compiled variable domain
locally. Secondly, the UB requests are replaced by a local relaxation to retrieve tighter bounds
at the loss of privacy guarantees. Thirdly, the relaxations are used to implement a best-first
strategy to explore the compiled domains. Lastly, the lower bounds are shared over all SPs
and the assignment of local tasks for each compiled solution.

Local search tree As shown in Equation (5.40), the compiled domain Dq of agent q ∈ C
grows exponentially on the number of accessible shared tasks. With ConcFB, the complete
domain has to be searched before a branch is pruned. As solving the local problem is a complex
endeavor, the performance of ConcFB becomes questionable for increasingly larger numbers
of shared tasks. Therefore, a local search tree is added such that the complete domain can
be pruned before it is fully searched. Similar to branch-and-bound, each branch represents
a binary choice on including a specific shared task. Lower bounds are then retrieved as the
best known feasible solution, and upper bounds by relaxing the underlying problem. If the
relaxations are sufficiently tight, branches can be pruned for which the UB ≤ LB, possibly
significantly improving performance.

To summarize, the local search tree consists of two main components:

• An Upper Bound (UB) for each branch by relaxing the cooperative formulation for all
remaining agents in the complete ordering.

• A Lower Bound (LB) for each branch, by passing a feasible integer assignment to the
next agent in the ordering and awaiting a broadcast for the corresponding solution. This
is a key difference with branch-and-bound, where a lower bound can often be obtained
by a heuristical transformation of the relaxed solution.

Removing UB requests To increase the tightness during relaxation, also the separate UB
requests are addressed. In this application, a UB request would be replied by relaxing the
local formulation from Section 5-4-2 linearly, and changing Constraint (5.18) to an inequality:∑

k∈P
xik ≤ 1 ∀i ∈M (5.41)

As each supervisor cannot know if any peer supervisor will perform the shared task it has
access to, it cannot be forced to include it. Otherwise, capacity violation might occur for
multiple agents performing the same task, invalidating it as an upper bound. Instead, it
performs only the tasks that maximize the objective of the relaxed problem.

Master of Science Thesis M.A. Korthals Altes

48 Intent-Based Coordination

As in this DCOP application no privacy of information is required, a supervisor can simply
relax the cooperative formulation from Section 5-5-2 directly, without consulting any succeed-
ing agent. Then, Constraint (5.34) remains an equality, ensuring that the relaxed cooperative
problem is at least as tight as the aggregated UB requests.

Best-first strategy By utilizing the local search tree and central relaxations, an opportunity
is created to implement a best-first strategy. Given the performed relaxations, one could argue
that passing an integer solution that succeeds the relaxed branch with the highest upper bound
gives a higher probability of generating good solutions. This does not follow from ConcFB,
as UB requests only indicate the performance of actual integer assignments, such that many
requests would need to be sent first before an indication can be given which assignment is
the most promising. In contrast, the local search tree generates objective values for distinct
branches immediately.

Sharing compiled variables Any compiled local solution to a unique assignment of the shared
variables is equal over all possible SPs that a supervisor participates in. Therefore, in addition
to sharing any LB over all SPs, also the compiled variables are. However, the only difference
is that the LB is useful for all supervisors in C, and that the compiled variable domain Dq

of supervisor q ∈ C is only used by the supervisor q itself. This implies the compiled domain
does not have to be communicated.

Example local tree

To illustrate the concept of a local tree, consider the example with the complete ordering
A⇒ B ⇒ C, corresponding to the left image in Figure 5.9 and Table 5.1. The expansion of
the local search tree of agent A is displayed in Figure 5.12.

0

2

3 4

5 6

X = [0.6, 0.3, 0]
UB = 7

X = [1, 1, 0]
LB = 2

X1 = 0 X1 = 1

1

X2 = 0 X2 = 1

X3 = 0 X3 = 1

0

2

3 4

5 6X = [1, 1, 0]
LB = 3

X1 = 0 X1 = 1

1

X2 = 0 X2 = 1

X3 = 0 X3 = 1

X = [1, 0.1, 0]
UB = 6

X = [0, 0.8, 0]
UB = 3

0

2

3 4

5 6

1

X = [1, 1, 1]
LB = 1

0

2

3 4

5 6X = [1, 1, 0]
LB = 3

X1 = 0 X1 = 1

1

X2 = 0 X2 = 1

X3 = 0 X3 = 1

X = [1, 1, 0]
UB = 3

0

2

3 4

5 6

1

X = [1, 1, 1]
LB = 1

X = [1, 0, 0.2]
UB = 4

Figure 5.12: An example expansion of the local search tree. The green nodes are relaxed, the
red pruned by optimality, the blue propagated and tested, and the grey are discarded.

M.A. Korthals Altes Master of Science Thesis

5-5 Distributed cooperation 49

For this example, it is assumed a globally known best solution (retrieved by a figurative
parallel SP) is given as LB = 5. The steps of Figure 5.12 are then described as:

1. First, the cooperative problem is relaxed by agent A, with the resulting allocation vector
x = [0.6, 0.3, 0] and a corresponding UB of 7. This fractional allocation is rounded up-
wards to x = [1, 1, 0] to create a feasible assignment, such that the tree can immediately
be expanded to the leaf node corresponding with that assignment. Each leaf node of
the local search tree corresponds with a compiled value in the variable domain, which
can be propagated to the next agent. It then awaits a backtrack message from agent B,
requesting a new CPA.

2. Upon receiving the backtrack message, the next round of relaxation is triggered in which
the highest branches that are not relaxed yet are selected. In this case, nodes 1 and
2 are being relaxed. Node 1 is immediately pruned as the UB ≤ LB. A new CPA is
created by rounding up the fractional solution or by selecting any feasible assignment
with the least needed changes, if the rounded assignment is already propagated. In this
case, the compiled assignment of leaf node 6 is propagated.

3. Again, after the arrival of a new backtrack message, it performs a relaxation on the
highest branches (node 3 and 4). Node 3 is immediately pruned due to optimality,
and node 4 is pruned without relaxation, as all subsequent leaves have been explored
already. The local search process is then terminated, as all branches have been pruned.

In comparison, for this search process four relaxations have been performed, while in the
original ConcFB all eight leaves would have been relaxed. However, it should be noted that
in the worst-case outcome

∑log2(|Dq |)
n=0 2n relaxations have to be performed for CCB, while

without the local tree (as with ConcFB) a fewer |Dq| relaxations are needed. In the limit,
this means that at most twice as many relaxations are performed by adding the local search
tree, instead of relaxing the complete domain:

lim
|Dq |⇒∞

∑log2(|Dq |)
n=0 2n

|Dq|
= 2|Dq| − 1

|Dq|
= 2− 1

|Dq|
= 2 (5.42)

However, with ConcFB the worst-case outcome of |Dq| relaxations is always needed to ensure
optimality, as the complete domain is explored. Furthermore, CCB should find a solution
quicker due to a best-first strategy and decreased message complexity.

Complete algorithm

When the cooperative formulation needs to be solved using CCB, some steps are taken prior.
First, each supervisor q ∈ C performs clustering on its assigned subset and broadcasts the
result. Then, all supervisors compose their local and shared task setMl

q andMs. A complete
ordering is made by ascending connectivity (see Figure 5.8). Then, the first agent spawns
multiple SPs. An SP remains active, constantly relaxing the local tree. It only stops when
it is pruned by a parent, indicating the CPA is already found to be suboptimal earlier in
the ordering. Continuing the search would then be fruitless. To request a new CPA, a cut
message is sent to the parent, comparable to the backtrack message from SFB (see Algorithm

Master of Science Thesis M.A. Korthals Altes

50 Intent-Based Coordination

6). An agent reinitializes the tree if a new CPA is received. Lastly, if a new best solution is
found it is shared over all SPs, as is any compiled solution of a full assignment (including the
local tasks). Then, the pseudo-code from Algorithm 7 describes the SP for any agent.

Algorithm 7: Search Process (SP) in Complex Concurrent Bounding (CCB)
1 while not pruned do
2 if new CPA received then
3 Initialize local search tree
4 Relax first node as UB
5 Create integer shared task assignment
6 else if domain not empty then
7 Relax max UB branch
8 Set new UB
9 if cut received from child then

10 Remove current assignment from domain
11 Create integer shared task assignment

12 if CPA.cost + UB > best_cost and domain is not empty then
13 if shared task assignment not yet compiled then
14 Solve local problem and save full assignment and cost
15 else
16 Retrieve full assignment and cost from compiler
17 CPA.add(assignment)

18 if CPA updated then
19 if has child then
20 propagate(CPA)
21 else if CPA.cost > best_cost then
22 best_cost← CPA.cost
23 best_CPA← CPA

24 else
25 cut(CPA)
26 prune(CPA)

27 return best_CPA

The first agent in the ordering creates new SPs by splitting an existing SP on the highest open
branch. In the example of Figure 5.12, the tree can be split at node 1 and 2, creating two
SPs. For a third SP the local tree starting at node 2 can be split further at node 3 and 4, and
so forth. In such a small example this has no merit, but it illustrates the splitting in disjoint
parts of domain. Furthermore, for every SP the remaining agent order is changed. Netzer
et al. [5] propose more advanced dynamic reordering to balance the workload, but for this
implementation a random unused reordering is selected. As the root agent is already fixed,
this would mean that an SP can be created with the ordering C ⇒ B ⇒ A and C ⇒ A⇒ B
for the example in Figure 5.8.

M.A. Korthals Altes Master of Science Thesis

5-6 Combining the components 51

5-6 Combining the components

At the beginning of this chapter, the solution structure is outlined in Section 5-1 using Figure
5.1. As the approach to each component in this structure has been clarified, the solution flow
can now be described. To do so, each component is linked to a specific step in the solution
process in Figure 5.13. The input of the algorithm always consists of mission information,
which contains an Area of Interest (AOI), sector priorities P , and terrain traversability M .
The heterogeneous agents and hierarchy are assumed to be known by each supervisor.

When a supervisor is triggered to create or revise its subordinate subsets, it performs the steps
as outlined in the structure. First, clustering is done locally. Using the discounted degrees,
the shared and local task sets are then retrieved, and distributed cooperation is performed
using CCB to allocate the tasks to the subordinates. Upon (preemptive) termination, the
resulting subsets are sent to the subordinates.

The crucial part of this solution process is that the revision of subsets is triggered both by
initializing and changing the information. However, when the information is initialized only
the root supervisor is triggered, such that the creation of subsets occurs sequentially through
each layer of the hierarchy. When information is changed, all levels in the hierarchy are
triggered simultaneously. This means that initially, they will revise the subsets within the
overlap provided by their respective supervisor, but that they revise the solution again when
new subsets are received. This allows the lowest levels to react quickly in a holarchic manner,
though over time the sequential top-down revision of the subsets will also be completed.

Information initialized Activate root
supervisor with AOI

Information changed

Receive subset from
superior

Send subsets to
subordinates

Perform clustering
locally

Retrieve:
- Discounted degree
- Shared task set
- Local task sets

Perform distributed
cooperation

Agent or
supervisor?

Supervisor Agent Transform degree to
hard subset

Solve SARP

Activate root
supervisor

Perform clustering
locally

Figure 5.13: Solution flow of the distributed hierarchical intent-based coordination.

At the lowest level, the remaining overlap between the agents’ subsets is not cooperatively
deconflicted. Instead, the final degrees are transformed to hard subsets by assigning each
sector to the agent with the globally largest allocated degree to that sector. In reality, this
would require additional communication, which is not included here. Using these hard subsets,
disjoint SARPs can be solved and executed by the agents.

Master of Science Thesis M.A. Korthals Altes

52 Intent-Based Coordination

Combined, this method should allow for sufficient flexibility, as solutions can be revised im-
mediately. Furthermore, the method should demonstrate robustness against communication
failures as this revision is possible without consulting the superior. Even more so, if cooper-
ation of superiors is suboptimal due to preemptive termination by communication problems,
the same degree of freedom can be used to mitigate these effects locally. Lastly, the approach
is expected to be a scalable approach due to the natural parallelization of the computations
in the hierarchy and the restricted problem size of task allocation using clustering.

M.A. Korthals Altes Master of Science Thesis

Chapter 6

Performance Analysis

Fundamentally, it is argued that persistent reconnaissance is performed well using the Multi-
Agent Reconnaissance Problem (MARP). To find a solution in a military environment, intent-
based coordination is proposed to partition the Area of Interest (AOI) into disjoint subsets,
such that multiple Single-Agent Reconnaissance Problem (SARP) can be solved indepen-
dently, using for instance a heuristical approximation (Section 4-3).

There are three available benchmarks to assess if the solutions of the combined SARPs ap-
proximate the optimal MARP solution: 1) the actual optimal MARP solution, which is only
tractable for small instances, 2) a lower bound obtained by pricing (Section 4-1), which is less
intensive, but limited too as the Sub Problem (SP) is an NP-hard problem which needs to be
solved at least once, and 3) an upper bound obtained by trivial allocation (Section 4-2).

Not only does the solution method need to approximate the optimal solution sufficiently well,
but it also has to do so while exhibiting the properties of flexibility, robustness, and scalability,
as outlined in Section 5-1. These properties are expected to ensure that a quality solution
will also be obtainable in an uncertain and dynamic environment.

The analysis is split into three parts, as displayed in Figure 6.1. First, the default parameters
are analysed, of which the results are listed in Section 6-1-2. The interested reader can
find the justification in Appendix A. Subsequently, all separate components are analysed on
convergence speeds and solution quality in Section 6-2. Based on these insights, the combined
performance of the complete method in a military environment is assessed in Section 6-3.

Default parameters

Computational efficiency
& solution quality

Military performance

App. A

Combined analysis

Component analysis

Parameter evaluation

Ch. 6.2

Ch. 6.3

Figure 6.1: The analysis structure with the corresponding objectives.

Master of Science Thesis M.A. Korthals Altes

54 Performance Analysis

6-1 Experiment setup

The setup for the performed simulations consists of a high-resolution scenario with terrain
and priority data. A method is added to decrease the resolution to create smaller problem
instances. Furthermore, the default parameter setup is provided.

6-1-1 Scenario

A neighborhood from an unspecified city is used as the scenario (Figure 6.2a). The terrain
traversability Mi consists of hardly inaccessible buildings Mi = 0.5, roads Mi = 1, grass and
low vegetation Mi = 0.8, and inaccessible water Mi = 0 (Figure 6.2b). The priorities defined
by the operator are Pi = 2 for the neighborhood in general and Pi = 3 for the main roads
(Figure 6.2c) for all i ∈ N . The AOI consist of 84 · 106 = 8904 sectors of each 25 · 25m. All
sectors with Pi = 0 can be discarded, as no risk can be present there (see Section 3-3). This
means that 2275 sectors with Pi > 0 remain, approximating a total of 1.42km2.

(a) AOI (b) Traversability (c) Priority

Figure 6.2: The Area of Interest (AOI) is displayed, with a mapping of the corresponding terrain
traversability M , and the priorities P provided by an operator.

Furthermore, a method is added which can reduce the problem size to enable the testing
of smaller problems. Effectively, the resolution is lowered, and some sectors are removed
randomly to retrieve a problem instance with an exact, predefined number of sectors. This
effect is displayed in Figure 6.3, and enables precise comparison for varying instances.

N = 500

10 20 30 40 50

10

20

30

40

N = 100

5 10 15 20

5

10

15

N = 20

2 4 6 8

1

2

3

4

5

6

Figure 6.3: An example of reducing the resolution to match a specific amount of sectors.

M.A. Korthals Altes Master of Science Thesis

6-1 Experiment setup 55

6-1-2 Default parameter values

Based on the experiments provided in Appendix A, a set of default parameters is constructed
for all subsequent experiments. This default setup is used unless stated otherwise. The
resulting parameters are listed in Table 6.1.

Table 6.1: Default parameter values

Symbol Value Parameter

m 1.15 Fuzzifier
σh 3 Heterogeneity standard deviation
e 1.8 Overtime penalty
nb 1 Capacity scaling
nc 4 Maximum number of clusters per agent
ε 0.001 Clustering improvement threshold
β 0.03 Cut-off degree
n 20% nth percentile giving degree cap γ
δ0
i 0.5 Initial uncertainty ∀i ∈ N

The constants S, D, and ρ are discussed in Section 3-3 separately, as they do not influence to
solution method itself but only the underlying model, which is assumed correct. Furthermore,
some notions are used throughout this chapter. The number of sectors |N | is denoted as N ,
the number of clusters/tasks |M| as M , and the number of agents (sensors) |P| as P .

Additionally, some parameters are set using a formula. For instance, the number of clusters
is set to the median of all possible numbers of clusters, depending on each possible number
of sectors per cluster n, limited by a maximum of nc clusters per subordinate, or the total
number of sectors N :

M = min
Å
median

ß°
N

n

§
: ∀n ≤ N, N

P · n
≥ 1
™
, P · nc, N

ã
(6.1)

Furthermore, the agents are initialized using the heterogeneity standard deviation σh. For
each of the properties speed vk in m/s and flight time ek in minutes, a vector of length
P is generated a 1000 times based on a normal distribution, using max(N (14, σh), 5) and
max(N (35, 2σh), 10) respectively. For speed, this implies an average speed of 14 m/s, and at
least 5 m/s. For flight time, this implies 35 min on average and 10 min at minimum. The
property vector with a standard deviation closest to σh for speed, and 2σh for flight time, is
selected. The starting location is set to the center of the AOI for all sensors. The absolute
capacity bk is calculated as follows:

bk = 60ek · dkvk
d2
s

∀k ∈ P (6.2)

Here, dk is the width of the sensor view. In reality, this is dependent on the altitude and field
of view, but it is currently fixed to the sector size ds = 25m for all k ∈ P. Instead of the
absolute capacity, the scaled, normalized capacity b̂k = nb · bk/

∑
k∈P bk is implemented.

Master of Science Thesis M.A. Korthals Altes

56 Performance Analysis

6-2 Component performance

In this section, the performance of all separate components of the solution approach is as-
sessed. The components include the upper- and lower bounds, task allocation, and distributed
cooperation. Depending on the component, performance is regarded both in computational
tractability and in obtained objective value.

6-2-1 Benchmarks

Multiple benchmarking methods are used to compare the performance of the solution ap-
proach. First, a priced lower bound is implemented (Section 4-1), which is compared on
computational efficiency and tightness. Secondly, a heuristical approximation is implemented
to obtain a solution for the SARP (Section 4-3), which is only assessed on tightness.

Priced lower bound computational efficiency

In this first experiment, the solution time for the column generated lower bound is compared
with solving the MARP to optimality using Gurobi. The experiments are performed for an
increasing number of sectors N = {1 . . . 50}, and increasing sensors P = {1 . . . 30}. The
experiment is repeated five times, and the results are averaged. During computations, the
method is cut-off if the computation time exceeds 5 seconds. The results are displayed in
Figure 6.4. It is clearly visible that the column generation depends highly on the number of
sensors. The more sensors are included, the more efficient the search process. This in contrast
to the exact method for which the run time increases when including more sensors.

2 4 6 8 10

Number of sectors N

0

1

2

3

4

5

T
im

e
 [
s
]

P = 1

P = 3

P = 6

P = 10

P = 15

P = 20

P = 30

Median

5 10 15 20 25 30 35 40

Number of sectors N

0

1

2

3

4

5

T
im

e
 [
s
]

Figure 6.4: A runtime comparison between the exact solution and the priced lower bound for
different numbers of sectors and sensors. Pricing is inversely dependent on the number sensors
compared to the optimal approach and can handle significantly larger instances, though the
runtime remains exponentially dependent.

Priced lower bound tightness

Apart from the runtimes, also the tightness is considered for the same experiment. A relatively
small set of instances can be compared, as the computation time explodes inversely for both
methods, making it difficult to obtain data.

M.A. Korthals Altes Master of Science Thesis

6-2 Component performance 57

The results are displayed in Figure 6.5. Apart from the outliers of a single agent, the method
performs consistently regardless of the combination of sensors or sectors. A 95% confidence
for each setup clearly shows this. On average, the lower bound returns an objective ≈ 0.38
times that of the optimal value.

Figure 6.5: Left: a histogram of the performance of each lower bound, excluding the single-agent
case. Right: the average tightness of the priced lower bound with a 95% confidence interval for
each amount of sensors. Apart from the single-agent case, the results are very consistent.

SARP heuristic tightness

To obtain a solution for the SARP, multiple heuristics can be used, which are explained in
Section 4-3. These heuristics are not formulated to provide a very good solution to the SARP
per se but should generate sufficiently close solutions to the optimum to allow comparison in
further experiments.

An experiment is performed to benchmark these heuristics against the optimal solution. To
do so, the task allocation is solved for sectors ranging from N = {4 . . . 25}, and the number
sensors within P = 1, 2, 4. After task allocation, multiple disjoint SARPs are obtained, for
which a quick solution is calculated using the heuristics and the optimal solution using Gurobi.
A comparison is then made between the combined objective values of the optimal solutions
and the combined values of the heuristics.

The results are depicted in Figure 6.6. It is clearly visible that the heuristic’s overall usability
depends on the average size of the SARPs, and not directly on the total number of sectors.
For instance, in the case of twenty sectors and four sensors, the average number of sectors per
SARP is around 20/4 = 5, making the average performance better than the case with seven
sectors and one agent.

To illustrate the relation with the SARP size, the average number of sectors per SARP is
collected for each simulation. Then, the error is displayed for the sorted average sizes in the
right plot of Figure 6.6. Furthermore, a 2nd order polynomial fit is displayed. A clear trend
is visible, as the task allocation method tries to spread out the load of each agent evenly. In
the case of the default σh, the average SARP size can be reasonably approximated by N/P .
If agents become more heterogeneous, this cannot be expected.

The same experiment is repeated for the upper bound with trivial clustering and allocation,
explained in Section 4-2. The results are displayed in Figure 6.7. Immediately, it is observed
that the gaps with the optimal value are more volatile. Because the load is not balanced

Master of Science Thesis M.A. Korthals Altes

58 Performance Analysis

5 10 15 20 25

Number of sectors N

1

1.05

1.1

1.15

1.2

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e P = 1

P = 2

P = 4

1 2 3 4 5 6 7

Average number of sectors N/P

1

1.05

1.1

1.15

1.2

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e Sorted performance

2
nd

 order Polynomial fit

Figure 6.6: Left: the relative performance of the heuristics for different numbers of sectors and
sensors. Right: A plot with 2nd order polynomial fit of the performance sorted on the average
number of sectors, showing performance is dependent on the SARP size, and not the total number
of sectors.

as well, the average SARP size N/P is a less accurate representation of the actual problem
sizes. In the right plot this is shown. The results are much more scattered, and a trend is
hardly visible. This means that when simulating larger problems, it can be expected that the
random upper bound produces more results with occasionally very large SARPs, meaning
that the heuristic approximation tends to overestimate the solution value obtained by the
random upper bound. Nonetheless, the differences are not so dramatic as to prohibit the
usage as a benchmark.

5 10 15 20 25

Number of sectors N

1

1.05

1.1

1.15

1.2

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

P = 1

P = 2

P = 4

1 2 3 4 5 6 7

Average number of sectors N/P

1

1.05

1.1

1.15

1.2

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

Sorted performance

2
nd

 order polynomial fit

Figure 6.7: Left: the relative performance of the heuristics for different numbers of sectors and
sensors. The gap is more volatile due to the lack of load balancing, leading to more variation in
SARP sizes. Right: A plot with 2nd order polynomial fit of the performance sorted on the average
SARP size N/P . The trend is hardly visible compared to the actual task allocation.

6-2-2 Task allocation

Using the previous results, the performance of the task allocation as formulated in Section
5-4 can be assessed. Note that the cooperative formulation is not tested yet, so no hierarchy
is present. Instead, a single supervisor clusters the sectors and assigns them using local task
allocation to any agent. The solution quality of the task allocation is assessed using the
available benchmarks first. Then, the computational efficiency is analysed. Last, the specific
performance of the post-processing interpolation is quantified.

M.A. Korthals Altes Master of Science Thesis

6-2 Component performance 59

Solution quality

The solution quality is assessed over a range of P = {2, 4, 6} sensors. The number of sectors are
selected from N = {2 . . . 30}. The results are compared to the available benchmarks. First,
the optimal value is included up to seven sectors, after which the values are extrapolated
linearly. A 95% confidence interval is included for both the optimal values and the averaged
2nd order extrapolations of each setup. For the extrapolation, this interval gives some idea
about the spread in the extrapolated values. Furthermore, three upper bounds are included.
In the first, trivial clusters are created, which are allocated optimally. The second method
uses actual clustering but with trivial allocation. The third combines these (see Section 4-2).
Lastly, also the priced and linearly relaxed lower bound are included.

The results are displayed in Figure 6.8. The first thing noticed is that the upper bound
for trivial clustering performs equal or even slightly better than the Fuzzy C-Means (FCM)
clusters. This means that, at least for these problem sizes, the clustering has no added
benefit, which is also suggested by the results from Appendix B. Furthermore, the 2nd order
extrapolation suggests that for larger problems, the performance goes down. On the one
hand, this is supported by the fact that the performance approaches the upper bounds. On
the other hand, the performance slightly improves with respect to the lower bound, which is
shown to remain relatively constant to the optimal value. This suggests that the extrapolation
underestimates the true cost. Furthermore, in both cases the values for a larger number of
sectors are based on the SARP heuristics. This means that the displayed values overestimate
the cost and that its true benefit is larger. As discussed in the previous section, however, this
effect can be expected to be larger for the upper bound.

Figure 6.8: The relative performance of the single task allocation problem compared to different
benchmarks. Based on these results, it is reasonable to expect a performance decrease for an
increasing number of sectors.

For more insight into the extrapolations, the average values are displayed in Figure 6.9 for each
sensor setup. Not only the optimal values are included, but also the task allocation values.
Both the task allocation and extrapolated optimal values show a nonlinear trend, possibly
even exponential. The cost for the single-agent case for an equal number of sectors seems
to grow more rapidly, which is understandable given the objective function, as it includes
much larger distances for a single agent. Though the four agent case is much closer to the
extrapolated values, P = 2 and P = 6 show comparable performance, indicating no trend in
increasing deviations between different sensor setups.

Master of Science Thesis M.A. Korthals Altes

60 Performance Analysis

5 10 15 20 25 30

Number of sectors N

0

1000

2000

3000

C
o
s
t

P = 2 - Allocation

P = 4 - Allocation

P = 6 - Allocation

P = 2 - Optimal

P = 4 - Optimal

P = 6 - Optimal

Figure 6.9: The extrapolated values for the optimal values (dashed) are compared with both the
optimal values (solid) and the task allocation solutions (dotted). These results do not indicate
large deviations between different sensor setups.

Computational efficiency

Apart from the solution quality, the computational speed is analysed. The numbers of sectors
are varied from N = 20 . . . 200, and the amount of sensors from P = 1 . . . 6. The number of
clusters is set using the formula described in Section 6-1-2.

The results are displayed in Figure 6.10, which shows the resulting number of clusters (left),
the dependence of the processing time on the number of sectors (center), and the number
of sensors (right). It is clearly visible that increasing the amount of sensors has a much
greater influence than adding clusters. This makes sense, as adding a cluster introduces P
new decisions while adding a sensor results in M new decisions. Generally, M � P such that
the complexity depends more heavily on the number of sensors.

50 100 150 200

Number of sectors N

5

10

15

20

N
u
m

b
e
r

o
f
c
lu

s
te

rs
 M

5 10 15

Number of clusters M

0

20

40

60

S
o
lv

e
r

ti
m

e
 [
s
]

P = 1

P = 2

P = 3

P = 4

P = 5

P = 6

1 2 3 4 5 6

Number of sensors P

0

20

40

60

S
o
lv

e
r

ti
m

e
 [
s
]

M = 4

M = 6

M = 7

M = 8

M = 9

M = 10

M = 11

M = 12

M = 13

M = 14

M = 15

M = 16

M = 17

M = 18

Figure 6.10: Left: the resulting number of clusters for each sensor setup. Center/right: The
processing time, based on the number of clusters and sensors. The addition of more sensors has
a larger impact.

Cluster post-processing

Lastly, also the added benefit of the interpolation during cluster post-processing is assessed.
The goal is to mitigate the negative effects of clusters with physically scattered sectors (see

M.A. Korthals Altes Master of Science Thesis

6-2 Component performance 61

Figure 5.5). In this experiment, the added benefit of this method is quantified by solving the
task allocation using the same clusters with and without post-processing. The amount of over-
lap created during interpolation is dependent on the clustering weights, the fuzziness, and the
number of sectors and clusters (see Appendix A). Therefore, two experiments are performed,
both including four sensors, with the number of sectors varying from N = {50 . . . 400}. In
the first experiment, the fuzziness is varied within m = {1.1, 1.3, 1.6}, and in the second the
clustering weights on the coordinates are scaled by a factor κ = {0.5, 1, 1.5}. The average
results for four simulations are displayed in Figure 6.11, with left the varying fuzziness, and
right the varying cluster weights. A 95% confidence interval is plotted for all setups. For
both experiments, the confidence intervals are wide and show no significant difference with
the solution including the post-processing. Therefore, based on these results, it cannot be
concluded that the post-processing method has a significant effect.

Figure 6.11: Left: the relative performance of task allocation without post-processing, for dif-
ferent values of the fuzzifier m, compared to the case with post-processing. Right: the same
comparison, but for varying factors p increasing the clustering weights for the sector coordinates.
Based on these results, no significant benefit can be observed.

6-2-3 Distributed cooperation

As formalized in Section 5-2, the concept of intent describes how overlapping clusters are
created. In Section 5-5-1 it is stated that overlapping clusters with peer supervisors in the
hierarchy lead to shared tasks, which are included in the cooperative formulation from Section
5-5-2. To solve this problem in a distributed fashion, the novel Complex Concurrent Bounding
(CCB) algorithm is proposed, of which a full description is provided in Section 5-5-5.

The goal of the CCB algorithm is to produce solutions that are closer to the optimum in
less time than alternative approaches. Furthermore, the distribution of the problem should
prevent a single bottleneck. Therefore, the convergence times are compared with a central-
ized Gurobi implementation and a simulation of Concurrent Forward-Bounding (ConcFB), on
which it is based. Furthermore, as it is an anytime algorithm, the effect of a preemptive, sub-
optimal solution is assessed. Lastly, the effect of the complete ordering on CCB performance
is analysed.

Master of Science Thesis M.A. Korthals Altes

62 Performance Analysis

Absolute convergence

Convergence is interpreted as the gap towards the optimal solution. Two characteristics are
important when measuring this: the time to an initial acceptable solution and the tail towards
the actual optimal value. For this experiment, four peer superiors are considered with each
four agents, resulting in P = 16. The number of sectors is varied between N = {20, 50, 80},
and the fuzzifier from m = {1, 1.15, 1.3, 1.5}. Each experiment is repeated five times, and
the results are averaged. Because each run returns new solutions at different times, the
improvements are interpolated. To account for the different times that an initial result is
obtained, results are displayed from the average time the first results were obtained.

The results are shown in Figure 6.12 in semi-log plots with a 95% confidence interval. In
the left plot, the convergence for different sectors is shown. For larger problems, the time to
an initial solution and the tail convergence both become larger. In the left plot, the same
results are shown for different levels of fuzziness. It shows consistent evidence that a higher
fuzzifier leads to slower convergence overall. Particularly outstanding is the case with m = 1,
in which (almost) no overlap is present. The cooperation then only consists of solving the
local problems, which is performed to optimality within 0.1 seconds on average.

Figure 6.12: A plot showing the absolute convergence time for different amount of sensors and
fuzziness on a logarithmic scale. More sectors and larger fuzziness result in slower initial and tail
convergence.

Relative convergence

The convergence of the solution value is compared to that of the centralized Gurobi implemen-
tation and the original ConcFB algorithm. The comparison is relative to another algorithm by
displaying the absolute difference ∆ in the obtained optimality gap at a specific time. Again,
the results need to be interpolated to ensure that a comparison can be made. Therefore, to
prevent skewed results due to less data being available, the comparison is only presented from
the initial time both methods have obtained a first result on average.

Gurobi Figure 6.13 shows the results when comparing to Gurobi. In the left plot, the results
for different amounts of sectors are displayed, and in the right plot the same results are shown
for different fuzzifiers. Both plots include a 95% confidence interval. The results suggest that

M.A. Korthals Altes Master of Science Thesis

6-2 Component performance 63

in a significant number of cases, CCB can obtain a better result initially. However, after the
initial fraction of a second, Gurobi outperforms CCB. Furthermore, a consistent gap can be
observed, indicating long tail convergence, comparable to the results from Figure 6.12. This
effect is more prominent for larger fuzzifiers but not necessarily for more sectors.

Figure 6.13: The relative convergence is measured as the absolute difference in optimality gap
between CCB and Gurobi. A positive difference indicates that CCB has a smaller gap on average
at that time. During the initial fraction of a second, CCB seems to perform better. After that, it
performs worse due to slow convergence.

Furthermore, in Figure 6.14 a further insight is provided for the initial stages of optimization.
Gurobi is found to provide a first solution quicker than CCB in 98.3% of the cases (not
depicted) but that this first result is on average equal or worse than 83.3% of the first obtained
results by CCB, which can be seen from the asymmetrical histogram displayed in the left image
of Figure 6.14. In the right plot, the difference in optimality gap is compared at the time
CCB receives its initial result. Then, in only 30% of the cases CCB performs better. Three
important considerations need to be included to interpret these results. First, in a practical
implementation it can be expected that communication delays worsen CCB performance.
Second, not all recommendations from ConcFB are included yet, like dynamic splitting, which
can increase performance. Thirdly, a weak linear relaxation of the cooperative problem might
result in insufficient bounding, reducing CCB convergence. In any case, the results suggest
that initial results are comparable but that a gap remains.

Figure 6.14: A comparison of the difference in optimality gap of the first obtained result by CCB
and Gurobi (left), and the difference at the time both have a first result (right).

Master of Science Thesis M.A. Korthals Altes

64 Performance Analysis

ConcFB To give some further insights in CCB, it is compared with ConcFB. The ConcFB
algorithm is simulated by modifying the CCB algorithm. This is done in three steps. First,
the concept of the local tree is removed by only allowing relaxations on leaf nodes, which
represent feasible solutions that can be passed down the complete ordering. Secondly, the
linear relaxation of the cooperative formulation from Section 5-5-2 is not used, but instead
UB requests are sent to all succeeding superiors. These provide a local upper bound by
linearly relaxing the local formulation from Section 5-4-2, while changing Constraint (5.18) to
an inequality. As each supervisor does not know if any peer performs a shared task, it cannot
be forced to include it. Instead, it performs only the tasks that maximize the objective of the
relaxed problem. As a consequence, the aggregated upper bounds are guaranteed to be less
tight than the relaxed cooperative problem. Thirdly, as no relaxation is available including all
agents, proper initialization using the best-first strategy cannot be used. Instead, a Current
Partial Assignment (CPA) is initialized by simply performing all accessible shared tasks.
The results for these three changes are depicted in Figure 6.15. Each setup is simulated five
times using N = {20, 50, 80}, m = {1, . . . , 1.5}. The results are interpolated, but displayed
only when, on average, both methods have obtained a first result. Clearly, the CCB algo-
rithm outperforms ConcFB. For larger fuzzifiers and a higher number of sectors, the benefit
increases. The results obtained in the initial stages are much better, and the tail convergence
is closer to the optimum for CCB.

Figure 6.15: The relative convergence between CCB and ConcFB, which has no local tree, uses
separate UB requests and naive initialization of the CPA. CCB clearly outperforms ConcFB, for
which the effect is larger for increasing complexity.

To separately analyse the effect of the different changes to ConcFB, the experiment is repeated
with different setups, including only a part of the changes. The results for this are displayed
in Figure 6.16. Again, the absolute difference in the objective gap is displayed in the left plot.
Only removing the local tree shows no significant difference or even a slight improvement.
The setups which use the trivial initialization of the CPA perform much worse and using
UB requests is slightly worse overall. It can be concluded that the initialization by local
relaxation of the cooperative formulation has a major impact compared to the other changes.
Possibly, the minor effects of including UB requests and the removal of the local tree can be
attributed to an insufficiently tight formulation of the cooperative problem, as only a basic
linearization of the quadratic constraint is implemented. In the right plot from Figure 6.16
the percentage of interpolated optimality gaps that are equal or better compared to CCB are
displayed for varying fuzziness at each time instance. All three setups perform equally well

M.A. Korthals Altes Master of Science Thesis

6-2 Component performance 65

when no fuzziness is present. As (almost) no shared tasks are present. When more shared
tasks are added because of larger fuzziness, the lack of proper initialization has an increasingly
larger effect. The addition of UB requests has a slightly worsening effect too. However, the
contrary is true for the removal of the local tree. As the fuzziness increases, the local tree
becomes larger and increasingly inefficient. Again, this might be due to an insufficiently tight
relaxation of the cooperative problem, such that more relaxations need to be performed when
adding a local search tree.

Figure 6.16: Left: the relative convergence between CCB and partial ConcFB setups. Improper
initialization has a major effect, and UB requests only minor. Removing the local tree is even
slightly beneficial. Right: Percentage of cases in which a partial ConcFB setup performed equal
or better than the CCB result at the same time. The larger the fuzziness, the larger the negative
effect of improper initialization and UB requests. The contrary is true for the local search tree.

Effect of different orderings

As explained in Section 5-5-5, the initial complete ordering is important, as the root superior
remains the same when splitting the Search Processes (SPs). Therefore, the effect of different
orderings is assessed. These orderings are based on the connectivity, as displayed in Figure
5.8b. Three variants are implemented: ascending, descending, and an initial random ordering.

The results are displayed in Figure 6.17. It is clear immediately that the ascending order
outperforms the descending order. Furthermore, the random ordering shows consistent per-
formance approximating the average between the ascending and descending approach. This
strongly suggests ascending and descending are the best and worst in general, respectively.
Ascending connectivity implies that the first agent to assign shared tasks has the least overlap
with other superiors, which is beneficial as the root agent cannot be changed. Concrete, this
means that the workload can be balanced more efficiently. Furthermore, the benefit is ex-
pected to become even larger when any superior is allowed to split an SP. Currently, only the
first is permitted to do so, which limits the number of splits possible. The SP cannot be split
when there is too little overlap, which occurs more often in the ascending case. This implies
that less SPs are spawned in total, which increases the total computation time. Despite this,
ascending still outperforms any other ordering on average.

Master of Science Thesis M.A. Korthals Altes

66 Performance Analysis

Figure 6.17: Based on the connectivity, which describes the number of peers a supervisor shares
a task with, different orderings are tested. An ascending connectivity ordering consistently out-
performs any other ordering, where descending appears to be the least effective.

Effect of suboptimal allocation

Task allocation is based on the assumption that a good allocation results in good SARP
solutions that approach the MARP solution when combined. The validity of this assumption
is benchmarked in Section 6-2-2 using optimal allocation without cooperation. Therefore,
the effect of intermediate suboptimal allocation on the resulting SARP solutions needs to be
assessed. The expected effect is two-fold. When there is a complete lack of optimization,
no tasks are deconflicted, resulting in the worst-case outcome. Any overlap in tasks is then
performed by multiple agents, which can increase the costs dramatically. Second, if any
optimization has taken place, but the allocation is still suboptimal, the sectors might not be
allocated to the appropriate agents, and thus the cost increases.

For this experiment, all solutions generated by CCB are collected. Furthermore, the central-
ized solver is also used with a different gap stopping criteria, set to {30%, 15%, 5%, 2%, 0.1%}.
The solver will stop when the actual gap falls below this limit. The experiment is performed
for N = {20, 40, 60, 80}, m = {1, 1.15, 1.3}, P = 16 and four supervisors.

0 5 10 15 20 25 30

Optimality gap [%]

1

1.05

1.1

1.15

1.2

1.25

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

m = 1

m = 1.15

m = 1.3

Figure 6.18: The linear fit shows that a larger allocation gap leads on average to worse MARP
solutions, for which the effect increases with larger fuzziness, implying more shared tasks.

M.A. Korthals Altes Master of Science Thesis

6-2 Component performance 67

The results are plotted in Figure 6.18, and colored depending on the fuzziness. Clearly, the
larger the fuzziness, the larger the effect of better task allocation. For m = 1, there is hardly
any task to cooperate about, such that an optimality gap has a minor impact. As the top-
down task allocation is a heuristical approach for the MARP, increasing the solution quality
does not guarantee a better solution to the MARP, which is visible from the scattered data.

0 1 2 3 4 5

Optimality gap [%]

1

1.1

1.2

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e m = 1

m = 1.15

m = 1.3

051015202530

Optimality gap [%]

0

20

40

60

80

100

B
e
s
t
in

c
lu

d
e
d
 [
%

]

Figure 6.19: Within the 5% optimality gap no clear trend is visible. The cumulative percentage
of best solutions for varying gaps shows that a significant amount of best solutions is obtained in
the 1-5% range. This suggests solving allocation to optimality is not always crucial.

In Figure 6.19, a close-up is provided for the results within a 5% optimality gap, showing
clearly such a guarantee does not exist, as a trend is less clear. In the right plot, the cu-
mulative fraction of the total number of best solutions found is displayed for a decreasing
optimality gap. Though most of the best solutions are found when the task allocation is opti-
mal (around 60%), over 20% of the best solutions are found within the 1-5% range, indicating
less correlation between optimizing the last 5% of task allocation and the resulting MARP
performance. For gaps ≥ 5% also best solutions are found, but these are scattered over a
longer interval. Combined, this means that nearly half of the best solutions are found before
task allocation is optimal. Furthermore, the trends from Figure 6.18 suggest that close to the
optimal allocation, the results might not be best, but close to the best on average.

It can be concluded that, though convergence to optimality is slow using CCB, it quickly finds
solution within a 5% objective gap from the optimal solution, which produces solutions for
the MARP that are of acceptable performance. An optimal allocation could even result in a
slightly worse MARP solution, as there is no guarantee for convergence when using top-down
allocation for the MARP formulation.

Furthermore, suboptimal allocation can also imply a complete lack of optimization, such that
overlapping parts are not deconflicted, and multiple agents might cover the same area. The
performance of these worst-case solutions is displayed in Figure 6.20. For higher overlap, the
cost of the worst-case solution increases rapidly. Therefore, a trade-off is present between the
risk of a worst-case solution in case of no cooperation and the possible performance increase
by cooperation on increasing overlap.

Master of Science Thesis M.A. Korthals Altes

68 Performance Analysis

Figure 6.20: The relative performance of the worst-case allocation, which occurs when no
cooperation is present. Multiple agents then perform any overlapping parts. Logically, increasing
fuzziness shows worse performance.

6-2-4 Summary

In this section, the components have been analysed separately. First, benchmarks were as-
sessed on computational performance and tightness. Secondly, the performance of task allo-
cation is compared using these benchmarks. Lastly, distributed cooperation and specifically
the performance of CCB was analysed.

Benchmarks

The lower bound obtained by column generation performs consistently for different numbers
of sensors. The computation time is inversely dependent on the number of sensors, meaning
that additional sensors lead to a decrease in computation time. Despite this, the computation
time increases to prohibitive levels when increasing the number of sectors. In part, this can be
attributed to the lack of improvements like bidirectional labeling, for which literature shows
that much better results can be obtained. Still, as the SP is NP-hard, the approach remains
limited.

To be able to obtain solutions to the separate SARPs even for larger problem instances,
multiple heuristics are proposed. There is a clear relation between the optimality gap of the
heuristic and the size of the SARP. As such, the trivial upper bounds can be expected to
perform slightly worse, as the lack of balancing the SARP sizes results in worse allocation
and worse approximation of the SARP cost by the heuristics.

Task allocation

Task allocation for a single supervisor is benchmarked against multiple trivial upper bounds,
the (extrapolated) optimal value, and the prices and linearly relaxed lower bounds. The
task allocation performs consistently better than the trivial allocation. However, only trivial
clustering performs equally well for the tested problem sizes, which indicates that at least for
these smaller instances the chosen clustering approach gives no added benefit. Based on the
extrapolations, which seem to estimate the optimal cost reasonably consistent for different

M.A. Korthals Altes Master of Science Thesis

6-2 Component performance 69

sensor setups, the performance for task allocation decreases for larger problem instances. On
the other hand, the gap with the priced lower bound decreases, suggesting the opposite. From
a computational perspective, the performance relies heavily on the number of included sensors
and less on the number of clusters. Lastly, also the added benefit of using the post-processing
interpolation for clusters is tested. A significant reduction in performance can neither be
observed for varying fuzziness, nor for scaled clustering weights of the sector coordinates,
even for larger clusters.

Distributed cooperation

The novel CCB algorithm is compared with a centralized Gurobi implementation and a sim-
ulated version of ConcFB. Overall, CCB shows quick convergence to an initial solution that
is within a 5% optimality gap. However, a slow tail convergence for larger problems can be
observed. Compared to Gurobi, it performs comparably only during the initial fraction of
a second. Thereafter, a consistent gap can be observed due to the slow tail convergence.
Furthermore, Gurobi nearly always finds a first solution quicker, though in 30% of the cases
CCB finds an initial solution that is better than the one Gurobi could find in the same time.
Compared to ConcFB, CCB performs better, for which the effect grows for larger problem
sizes and increasing fuzziness. When assessing the changes separately, the increase in perfor-
mance can be contributed largely to proper initialization with the best-first strategy. Using
the UB requests only has a minor negative effect, and removing the local tree even slightly
improves the performance, which becomes more apparent for larger fuzziness. Possibly, this
is due to the relaxation of the cooperative formulation not being tight enough.

Furthermore, the compiled domain size of each agent in the complete ordering is largely
dependent on the ordering, as highlighted in Section 5-5-5. Experiments have been performed
assessing a random, ascending or descending connectivity ordering (see Figure 5.8b). The
results show that the ascending order performs best, the descending worst, and the random
ordering in between. This can be attributed to the fact that the initial agent cannot be
reordered. As such, if the first agent has the largest domain, no effective load balancing is
possible when using multiple SPs.

Lastly, the effect of suboptimal allocation is assessed. It is found that there is a clear relation
between suboptimal allocation and the performance of the resulting SARPs. However, this
relationship is not so clear for solutions within the (roughly) 5% optimality gap. This is not
surprising since the top-down task allocation approach provides no convergence guarantees
whatsoever. Furthermore, in the case of no allocation, a clear performance decrease can be
observed for larger fuzzifiers.

Master of Science Thesis M.A. Korthals Altes

70 Performance Analysis

6-3 Combined performance

In this section, the performance of the complete method is assessed for a military environment
specifically, which implies high dynamics and uncertainty (Section 1-2). In Section 5-1 three
requirements are outlined to deal with these challenges: flexibility, robustness, and scalability.
The solution method should have these characteristics while generating solutions of acceptable
quality. First, the effect of the hierarchy and fuzziness on the overall performance is analysed.
Then, each of the requirements is assessed.

6-3-1 Solution quality

First, the solution quality of the complete method is assessed. As a part of this, the effect of
the hierarchy structure and the amount of cluster overlap are analysed separately.

Hierarchy structure

For any given problem with N sectors and P sensors, different kind of hierarchies can be
constructed. As each supervisor has a group of subordinates, this group size is the main
factor influencing the hierarchy structure. Examples are displayed in Figure 6.21. On the
left, an asymmetrical hierarchy is shown. To the right of that, a symmetrical hierarchy is
displayed with varying group sizes for each level. The third hierarchy is completely uniform,
and the right is a ‘centralized’ hierarchy, with a single supervisor. In this thesis, the hierarchies
are assumed symmetrical but not necessarily uniform.

Figure 6.21: Different hierarchical structures, ranging from asymmetrical (first left), to symmet-
rical (second), uniform (third), and centralized (fourth).

To optimize the performance of this solution approach, the specific impact of the hierarchy
structure is analysed. Multiple experiments are performed, with varying amounts of sensors
within P = {8, 16, 32}. The number of sectors remains constant at N = 150. The group
sizes are then varied at most between {2, 4, 8, 16, 32}, limited by the number of sensors used
(corresponding to the centralized case from Figure 6.21). The results are displayed in Figure
6.22. Three plots are compared. On the left, the group size is compared with the relative
cost. The central plot compares the group sizes against the total allocation times, and the
right image shows the average optimality gap after the allocation time limit of 300s has been
reached.

M.A. Korthals Altes Master of Science Thesis

6-3 Combined performance 71

It is particularly striking that the computation time explodes when the group sizes approach
the centralized case and much less because of the absolute group size itself. Furthermore, for
the cases with P = 16 and P = 32 with group sizes equal to P , the time-out limit is reached
every time, resulting in a significant optimality gap. For P = 16, the gap is on average 6%,
which does not necessarily imply a much worse solution to the MARP (see Section 6-2-3).
For the case of P = 32, the relative performance shows a clear increase compared to the other
cases, which is most likely due to the average gap of 10%. Nonetheless, the results already
indicate that increasing the group size is not profitable at all. Instead, the smallest group
size of 2 is significantly better in all cases.

0 10 20 30

Group size

1

1.05

1.1

1.15

1.2

1.25

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

0 10 20 30

Group size

0

100

200

300

T
o

ta
l
ti
m

e
 [

s
]

0 10 20 30

Group size

0

2

4

6

8

10

A
llo

c
a

ti
o

n
 g

a
p

 [
%

] P = 8

P = 16

P = 32

Figure 6.22: Left: the relative performance of different group sizes. Center: the total run time
for different group sizes. Right: the resulting allocation gap after the time-out limit has been
reached. The results are in clear favor of a group size of 2.

Furthermore, the consistency of the results is assessed for varying group sizes. This is nec-
essary, as smaller sizes increase the height of the hierarchy, possibly compounding the effect
of randomizations in the solution approach. Two elements are of influence here. First, the
clustering can converge to a local optimum, depending on the clustering centroids. Second,
if allocations are different, the usage of inexact heuristics can generate different results. The
results are displayed in Figure 6.23. The results show that smaller problem sizes are more
consistent, but that inconsistency of the results is a problem overall. This obfuscates the
results from further experiments.

Figure 6.23: Consistency of the results for a varying problem and group size. Smaller group sizes
are slightly more consistent, although all setups show large deviations.

Master of Science Thesis M.A. Korthals Altes

72 Performance Analysis

Range of intent

By increasing cluster overlap, the solution quality is expected to improve at the cost of longer
runtimes as the cooperative problem becomes larger, allowing more freedom in the allocation.
To influence the cluster overlap, the fuzzifier m and the number of sectors are varied, as both
these parameters have a clear relation with the resulting overlap.
An experiment is performed with P = 16 and a group size of two, leading to a hierarchy with
five levels. The sectors are ranged between N = {50, 100, 150, 200}, and the fuzziness within
m = {1, . . . , 1.7}. The processing time and relative performance are displayed in Figure
6.24. It becomes clear that the processing time relies both heavily on the number of sectors
and the fuzziness. Increasing the fuzziness clearly improves the objective value with around
10% on average. However, the positive effect flattens quickly. Therefore, as the computation
time increases, it is best to keep the fuzziness as small as possible. This will also reduce the
negative effect of the worst-case solution, as described in 6-2-3.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Fuzzifier

1

1.05

1.1

1.15

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e N = 50

N = 100

N = 150

N = 200

Mean

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Fuzzifier

0

0.5

1

1.5
T

o
ta

l
ti
m

e
 [
s
]

Figure 6.24: A plot showing the relative performance for different fuzziness and number of
sectors, for a hierarchy with groups of 2 and 16 agents. Based on these results, it is best to keep
the fuzziness as low as possible, around m = 1.15

Solution quality

In line with the experiment from Section 6-2-2, the performance of the complete distributed
hierarchical setup is benchmarked. The priced lower bound, trivial upper bound, centralized
task allocation, and optimal solution are all displayed in Figure 6.25. The results are displayed
on a semi-log scale. Furthermore, the optimal solution is linearly extrapolated. The initial
results show that the hierarchical setup performs slightly worse for smaller problems than
the centralized case. However, this is not expected to be true for an increasing number of
sectors, as shown in Figure 6.22. On average, there is a very consistent gap between the upper
bound and the hierarchical solution, indicating that performance remains relatively constant.
Though the gap with the extrapolated optimal solution increases, this linear extrapolation
does not provide a strong argument. More specifically, when sectors are added, the cycle
distance is increased on average, which increases the cost for all sectors in the sequence.
This suggests a quadratic dependence, which means the linear interpolation underestimates
the cost. In line with this argument, the gap with the priced lower bound also decreases,
indicating consistent performance.

M.A. Korthals Altes Master of Science Thesis

6-3 Combined performance 73

Figure 6.25: The performance of the hierarchical approach compared to the other benchmarks.
The hierarchical approach shows consistent performance for an increasing number of sectors.

6-3-2 Flexibility

Flexibility implies that after changes in the environment have occurred, adjusting the solution
locally already provides sufficient increase in solution quality. This means that the method is
more adaptive for a broader range of unforeseen events, as the solution does not have to be
revised as a whole immediately.

To assess this, a base solution is obtained for a given environment. Then, this original
problem is perturbed, after which the solution is revised at different levels of the hierarchy.
It is expected that the larger the perturbations, the higher in the hierarchy a revision needs
to be performed. Perturbation are performed in three types: flipping an academic example,
scattered, and concentrated perturbations.

Academic example

The first experiment performed is an academic example, for which there is a clear indication
the solution needs to be revised after a fixed perturbation. It is composed of four unique
planes, being each a combination of low or high risk and risk increase, based on specific
values for priority Pi, traversability Mi, and uncertainty δi. The example is shown in Figure
6.26. As a perturbation, the map is flipped horizontally. This means agents will cover a
suboptimal area, assuming the solution method made the best assignment originally.

The results of this perturbation are shown in Figure 6.27, for an experiment with N =
100 sectors, 300 simulations, 16 agents and a group size of 2. The hierarchy consists of 4
supervising levels, with the highest indicated as level 4. Four metrics are collected to show
the performance. The fraction of improvements indicates the fraction of the total number
of simulations where revising the solution from that hierarchy level improved the solution
value. The average improvement indicates how much the solution value increases on average
by revising the solution from that level. The worst and best quarter occurrences measure
how often a solution from any of the hierarchy levels occurs in the worst and best 25% of

Master of Science Thesis M.A. Korthals Altes

74 Performance Analysis

Risk

2 4 6 8 10

2

4

6

8

10

Risk increase

2 4 6 8 10

2

4

6

8

10

Risk flipped

2 4 6 8 10

2

4

6

8

10

Risk increase flipped

2 4 6 8 10

2

4

6

8

10

0.05

0.1

0.15

0.2

0.25

0.3

0.5

1

1.5

2

2.5

3

Figure 6.26: An academic example map, consisting of four distinct planes, each being a combi-
nation of high and low risk or risk increase.

all solutions respectively, as depicted in Figure 6.28. The average improvement also includes
bars for the 95% confidence interval. It is clearly visible that revision at the lower two levels
is not sufficient. However, revising the solution at level 4 instead of 3 yields no improvement
or even a slight decrease.

1 2 3 4

30

50

90

[%
]

Fraction of improvements Average improvement

1 2 3 4
-2

0

2

4

[%
]

Best quarter occurences

1 2 3 4

Hierarchy level

0

25

50

[%
]

Worst quarter occurences

1 2 3 4

Hierarchy level

0

25

50

[%
]

Figure 6.27: Metrics showing the effect of revising the solution at different hierarchy levels if the
academic example is flipped. Clearly, improvement is only achieved when starting the revision at
least on the third (second-highest) level.

The distribution of the average improvement is displayed in Figure 6.28. The performance
of levels 3 and 4 is significantly better on average. However, on all levels the results vary,
as more parameters influence the actual performance. For instance, the distribution of the
heterogeneous capabilities varies in each simulation.

M.A. Korthals Altes Master of Science Thesis

6-3 Combined performance 75

Figure 6.28: A distribution of the average improvement obtained for each level. The upper two
levels (3 & 4), show consistently better results, but deviations remain large.

Scattered perturbations

Furthermore, perturbations are also performed on the original map. These are expressed as
a percentage κ of the original map and completed as follows:

1. While not κ% changed of original map, select a random sector.

2. Collect all priorities P and uncertainty δ from all first and second-order neighbors.

3. Set new P and δ as any from these neighboring values, or a uniform value ≤ max(P)
or max(δ) respectively.

These perturbations are displayed in Figure 6.29, which shows that the larger κ, the more
sectors are changed. Furthermore, the sector values appear less structured. As the changes
are random, they do not compare directly to, for example, a shifted focus to a parallel road.

Original

5 10 15 20

5

10

15

 = 25%

5 10 15 20

5

10

15

 = 50%

5 10 15 20

5

10

15

 = 75%

5 10 15 20

5

10

15

Figure 6.29: A display of the difference if perturbations are performed on the original problem
for increasingly larger percentages κ.

An experiment is performed with 300 simulations for κ = {25%, 50%, 75%}, and again 16
agents and a group size of 2. The same four metrics are collected but displayed in parallel for

Master of Science Thesis M.A. Korthals Altes

76 Performance Analysis

all different sizes of κ in Figure 6.30. The results are less outspoken than with the academic
example but consistent nonetheless. Clearly, for larger perturbations, the effect of redoing the
solution for any level increases. The fraction of improvements and the average improvement
are concentrated much more nominally. For the worst quarter, it seems the levels perform
approximately equal. For the best quarter, the higher levels more often deliver the best-
performing solutions. However, good solution are also obtained for lower levels, indicating
that it cannot be assumed that redoing the solution at higher levels is always necessary.

1 2 3 4

35

50

65

[%
]

Fraction of improvements Average improvement

1 2 3 4

-0.5

0

0.5

1

[%
]

Best quarter occurences

1 2 3 4

Hierarchy level

15

25

35

[%
]

Worst quarter occurences

1 2 3 4

Hierarchy level

15

25

35
[%

]

 = 25%

 = 50%

 = 75%

Figure 6.30: The results for varying perturbations. At every level, a larger perturbation leads to
bigger improvements when revising the solution. Still, the best results are obtained when revising
at the highest two levels.

Concentrated perturbations

In line with the previous experiment, also concentrated perturbations are considered. The
key difference is that instead of randomly picking an unchanged node to perturb, the closest
unchanged node by Euclidean distance is selected. By doing so, changes are concentrated in
some part of the original problem. The difference is exemplified in Figure 6.31. It is clearly
visible that for increasingly larger values of κ, the total revised area expands around the initial
perturbation. In this example, the lower right corner remains untouched in all cases.

Original

5 10 15 20

5

10

15

 = 25%

5 10 15 20

5

10

15

 = 50%

5 10 15 20

5

10

15

 = 75%

5 10 15 20

5

10

15

Figure 6.31: A display of the difference if perturbations are performed on the original problem
for increasingly larger percentages κ of concentrated changes.

M.A. Korthals Altes Master of Science Thesis

6-3 Combined performance 77

The results are displayed in Figure 6.32, and show similar behavior as with the scattered
perturbations, though the difference of the average performance seems to be slightly larger
between the lower and higher two levels with concentrated perturbations. This suggests that
with concentrated changes, recalculating the solution at higher levels is more beneficial. This
result seems counter-intuitive, as the locality of the changes suggests that a local revision is
sufficient. A possibility is that as the changes are concentrated, this justifies relocating some
assets at a higher level, as the changes are more prominent. In the scattered case, the changes
are on average less radical, such that at a local level improvement is already possible.

1 2 3 4

35

50

65

[%
]

Fraction of improvements Average improvement

1 2 3 4

-0.5

0

0.5

1

[%
]

Best quarter occurences

1 2 3 4

Hierarchy level

15

25

35

[%
]

Worst quarter occurences

1 2 3 4

Hierarchy level

15

25

35

[%
]

 = 25%

 = 50%

 = 75%

Figure 6.32: The results for varying concentrated perturbations. Compared to the scattered
case, the lower two levels show slightly worse performance.

6-3-3 Robustness

The second requirement is robustness against unreliable communication. This implies that at
any moment during cooperative optimization, the process can be preemptively terminated.
In the worst case, cooperative optimization might not be possible at all.
In Section 6-2-3, an experiment is already dedicated to quantifying the relationship between
a larger optimality gap of the cooperative formulation and the performance of the combined
SARP solutions. However, in that case the effect of the hierarchy itself is not included.
It is not unreasonable to believe that problems during optimization at different echelons in
the hierarchy have a varying impact. Therefore, two experiments are performed, which are
displayed in Figure 6.33. The first experiment introduces an optimality gap for all groups
in a specific echelon (a level). The second experiment introduces an optimality gap for all
supervisors and agents succeeding a level (a column).

Suboptimal level

The goal of this experiment is to quantify the effect of suboptimal allocation at different
echelons. In reality, it can not be expected that a complete echelon will fail, but rather a
specific group. However, for larger hierarchies the effect of a specific group on the complete
solution is minor, such that it is chosen to allocate suboptimally in the complete level.

Master of Science Thesis M.A. Korthals Altes

78 Performance Analysis

Figure 6.33: Left: suboptimal allocation for a complete echelon (a level). Right: suboptimal
allocation for all supervisors and agents succeeding a superior (a column).

The experiment is performed for P = 16, a group size of 2, and N = 100. The allocation
is allowed to terminate at {30%, 15%, 5%}, and the worst-case solution is represented by a
gap of ∞. A histogram of the results per hierarchy level is displayed in Figure 6.34. For
the fourth level the results are normally concentrated around 1. This is to be expected, as
no cooperative problem needs to be solved at the highest level. Furthermore, performance
of suboptimal allocation at higher levels is better than at lower levels, though for the tails
exactly the opposite effect is true. This indicates that lower levels are able to ‘repair’ the
suboptimal allocation of a superior to some extent, which is not possible if at the lowest level
the method terminates preemptively.

Figure 6.34: A distribution of the relative cost increase if the allocation is suboptimal at specific
levels. On average, lower levels show a larger decrease but a smaller worst-case tail, implying that
lower levels partially mitigate the negative effect of suboptimal allocation at higher levels.

The four metrics are displayed in Figure 6.35, which are split for each optimality gap and level.
The gaps in the legend are the average gaps obtained for the provided stopping criterion. The
fraction of deteriorating solutions shows that suboptimal allocation at the lowest level nearly
always results in a worse solution, even for lower gaps. This fraction decreases slightly for
higher levels. For the highest level there is no effect, as in roughly 50% cases it performs worse
due to the nominal deviations in the solution method itself. Clearly, the average decrease in
performance is much larger in case no cooperation is present at all. This effect increases for
higher levels as the resulting overlap becomes greater. The worst and best quarter occurrences
support this. On average, suboptimal allocation at lower levels has a higher effect. In case of
no cooperation, the result is exactly the opposite.

M.A. Korthals Altes Master of Science Thesis

6-3 Combined performance 79

1 2 3 4
0

50

100

[%
]

Fraction deteriorating Average decrease

1 2 3 4
0

30

60

[%
]

Lower quarter occurences

1 2 3 4

Hierarchy level

0

50

100

[%
]

Upper quarter occurences

1 2 3 4

Hierarchy level

0

50

100

[%
]

gap = Inf%

gap = 21%

gap = 9%

gap = 2%

Figure 6.35: The metrics are split per level and optimality gap. The highest level is not influenced,
as no cooperation is present. The worst-case no cooperation has the largest impact at the second-
highest level. For suboptimal allocation the worst results are obtained at the lowest level.

Suboptimal columns

In this experiment, the suboptimal allocation starts at a specific level, which is continued on
all succeeding levels. Hence, the name column, as displayed in Figure 6.33. In contrast to this
figure, the effect is applied for a whole level downwards and not a specific supervisor. Though
the depicted example is a more likely representation of, for instance, a regional blackout, it is
chosen to include all supervisors in each level to enlarge the effect for measurement purposes.

The distribution of the results per level downwards are displayed in Figure 6.36. Compared
to the results for a specific level in Figure 6.34, the tail for the worst-case solutions is much
longer. This implies that the reduction in performance compounds over an increasing number
of levels. Furthermore, the distributions for suboptimal allocation show no difference when
repeated over multiple layers, suggesting that performance on the lowest level is dominant.

Figure 6.36: A distribution of the relative increase in cost for suboptimal allocation in a column.
Performance of suboptimal allocation is equal at all levels. The worst-case solution compounds
over multiple levels, generating longer tails for higher levels.

Master of Science Thesis M.A. Korthals Altes

80 Performance Analysis

The results are further supported by the metrics in Figure 6.37. The average decrease shows
a very clear compounded effect of multi-layer suboptimal allocation. Furthermore, in nearly
all cases it leads to worse allocation for the MARP, as the fraction is approximately 100% for
all levels and gaps. For the worst-case performance, no allocation starting from high levels is
worse than only on lower levels, as more overlap is produced. However, for an optimality gap,
this is not the case. Instead, performance appears relatively constant. This implies that the
performance decrease is largely dependent on the success of optimization on lower levels. This
is an interesting property, which indicates that the solution approach shows robust features
against a high-level suboptimal allocation.

1 2 3 4
0

50

100

[%
]

Fraction deteriorating Average decrease

1 2 3 4
0

75

150

[%
]

Lower quarter occurences

1 2 3 4

Hierarchy level

0

50

100

[%
]

Upper quarter occurences

1 2 3 4

Hierarchy level

0

50

100

[%
]

gap = Inf%

gap = 22%

gap = 9%

gap = 2%

Figure 6.37: For the suboptimal columns, the average decrease in worst-case performance is
significantly larger, with almost 150% reduction. The suboptimal allocation, however, seems
constant over multiple levels. This shows robustness against communication failures at higher
levels.

6-3-4 Scalability

Neither the addition of extra agents nor the increase in environment size should lead to an
intractable problem, such that the flexibility and robustness properties can be maintained.
The proposed hierarchy is expected to perform better based on two key features. First,
the hierarchy naturally exploits parallelism, as the columns of the hierarchy can perform
calculations simultaneously. Therefore, the total execution time is equal to the maximum
time it takes to perform the sequential calculations from the root supervisor to any of the
subordinate agents. Furthermore, the scalability is expected to benefit from the constant
group size. This implies that for each task allocation problem being solved, the complexity is
approximately fixed. This is true as the group size is predefined, and the number of clusters
can be controlled directly.
The experiment is performed for N = {5, . . . , 1000}, and P = {4, 8, 16, 32}. The group size
is fixed to 2. The results are compared between a single task allocation problem and the
complete hierarchy. In Figure 6.38 a comparison is made for varying sectors, displayed in a
log-log plot. On the left, it can be seen that for a larger amount of sensors, the calculation
time grows exponentially for the number of sectors. On the right, it is clearly visible that the
hierarchical approach shows (sub)linear growth instead.

M.A. Korthals Altes Master of Science Thesis

6-3 Combined performance 81

10
1

10
2

10
3

N

10
-1

10
0

10
1

10
2

T
im

e
 [
s
]

Centralized

P = 4

P = 8

P = 16

P = 32

10
1

10
2

10
3

N

10
-1

10
0

T
im

e
 [
s
]

Hierarchical

Figure 6.38: Log-log plots showing the growth in computation time for the centralized and
hierarchical setup. In contrast to the centralized approach, the hierarchy shows the desired linear
increase in computation time.

In Figure 6.39 the same results are displayed for increasing the number of sensors. On the
left, the results for the centralized case are displayed on a semi-log plot, as the processing time
varied by large amounts depending on the setup. This is most probably due to the non-linear
formula for setting the number of clusters. On the right, the results for the hierarchical setup
are displayed. There is a slight sublinear growth in the number of sensors, which becomes
larger when more sectors are added.

4 8 16 32

P

10
-1

10
0

10
1

10
2

T
im

e
 [
s
]

Centralized

N = 5

N = 10

N = 15

N = 20

N = 30

N = 50

N = 100

N = 150

N = 250

N = 500

N = 1000

4 8 16 32

P

0

0.5

1

1.5

2

T
im

e
 [
s
]

Hierarchical

Figure 6.39: Due to large deviations in computation time, the results for the centralized case are
displayed using a semi-log plot, while the hierarchy is shown on a regular scale. The centralized
case increases much for more than four sensors and varies more greatly. The hierarchy is both
fast and more consistent.

The hierarchy shows consistently quicker execution time, and the computation time is much
more reliable in the number of sectors and sensors. Therefore, it can be concluded that the
computation time of the hierarchy is more stable, quicker overall, and with a sublinear growth
in the number of sectors.

Master of Science Thesis M.A. Korthals Altes

82 Performance Analysis

6-3-5 Summary

In this section, the combined performance of the distributed, hierarchical intent-based coor-
dination has been assessed. First, the performance of the hierarchy is analysed by evaluating
the group size, the fuzzifier, and the performance compared to the benchmarks. Secondly, the
flexibility is measured for an academic example, scattered and concentrated perturbations.
Thirdly, the robustness against failing communication is analysed by measuring the effect of
suboptimal allocation or the complete lack thereof. Lastly, the scalability is measured for
increasing sectors and sensors.

Hierarchy performance

The analysis on the group size showed that a smaller group size of 2 significantly outper-
formed larger groups, both in solution quality and computation time. Furthermore, it is
noted that due to the hierarchical structure the deviations in solutions for equal problems
vary significantly, which influences the consistency of the experimental results.
Combined with varying fuzziness, it is found that a fuzzifier m > 1 returns better results, but
that the benefit diminishes quickly. However, computation time keeps increasing, such that
the m is kept as small as possible, resulting in m = 1.15.
The overall performance of the hierarchy is compared with the available benchmarks. For
smaller problems, the distributed hierarchical setup performs slightly worse than the central-
ized allocation with one supervisor, which seems to contradict the result that smaller groups
are better than the centralized case. The difference lies in the included number of sectors
for both experiments, which suggests that for more sectors, the importance of smaller groups
becomes larger. The results are very consistent compared to the trivial allocation, but seem
to diverge from the extrapolated optimal solution slightly. However, this provides no strong
argument as the cost is not expected to increase linearly. In contrast, the gap with the lower
bound becomes smaller for increasing sectors.

Flexibility

When analysing the flexibility for the academic example, it is expected that only higher levels
should return better results. This is clearly visible, confirming the validity of the experiments.
However, though the benefit is visible for reoptimizing at the highest two levels, the average
improvement is not large in an absolute sense, being around 3%. This could be attributed to
the large deviations in results for hierarchical setups.
For scattered perturbations of the scenario the results are split per level and amount of
perturbations. The larger the perturbations, the larger the benefit of revising the solution at
any level. Though more often revision at the highest two levels provides the best solutions,
the lower levels frequently generate it too. Also, the average improvement varies much less,
except for the 75% perturbation case. This implies that revising the solution at the highest
level is not always necessary.
The concentrated perturbations show comparable results, though revising the solution at
higher levels seems slightly more profitable. Counter-intuitively, larger perturbations in a
concentrated area suggests that relocating assets at a higher level is more beneficial.

M.A. Korthals Altes Master of Science Thesis

6-3 Combined performance 83

Robustness

Robustness is assessed in two ways. First, suboptimal allocation is enforced at a specific
level. Secondly, the suboptimal allocation is enforced from a level downwards to the agents.
In the first experiment, suboptimal allocation at lower levels appears to have a significantly
larger effect. For the tails generated by the worst-case scenario of no cooperation, the effect is
reversed. This suggests that suboptimal allocation at higher levels can be partially mitigated
by lower levels.

When suboptimal allocation is applied downwards to all succeeding levels, no difference can
be observed between the initial suboptimal levels. This implies the performance of the lowest
level is dominant, which must always allocate suboptimally in this experiment. However, the
effect of no cooperation compounds over multiple levels, creating longer tails for increasingly
higher levels.

Scalability

The scalability is tested for varying numbers of sectors and sensors. It has been shown
that the computation time for the centralized case increases exponentially for an increasing
number of sectors. In contrast, for the hierarchical case the growth in computation time
seems sublinear. This can be attributed to smaller problems in each group and the natural
exploitation of parallelism as groups can perform optimization independently of each other.
Furthermore, though the computation time seems to increase on average for P > 4 for the
centralized case, there is no clear trend visible. This makes the computation time unreliable
and hard to predict. The hierarchical setup shows a very consistent increase for an increasing
amount of sensors and sectors, which is a beneficial property.

Master of Science Thesis M.A. Korthals Altes

84 Performance Analysis

M.A. Korthals Altes Master of Science Thesis

Chapter 7

Conclusion

Despite advancements made on Robotic & Autonomous Systems (RAS) in civil industries and
a large amount of literature produced on algorithms for military purposes, implementations
are still lacking. The main reason for this is that state-of-the-art algorithms deal insufficiently
with the highly dynamic and uncertain characteristics of a military environment, leaving room
for improvement. For this thesis, the application is limited to persistent reconnaissance with
heterogeneous Unmanned Aerial Vehicles (UAVs), leading to the research question:

Can a solution method be developed for persistent reconnaissance that produces consistently
good results in a highly dynamic environment with unreliable communication?

It is hypothesized that intent-based Command & Control (C2), as in use with the military
today, provides a possible solution approach to mitigate the problems posed by this complex
environment. The challenge is how these communicative principles can be converted to a
mathematical approach applicable to RAS.

As the underlying model, the Multi-Agent Reconnaissance Problem (MARP) is formulated
as a compact combination of the frequency and coverage level approach for persistent recon-
naissance with heterogeneous agents (Chapter 3). Intent-based coordination is proposed as
a method to partition the Area of Interest (AOI) for the MARP into disjoint subsets, such
that independent Single-Agent Reconnaissance Problems (SARPs) can be solved separately.
To ensure that this method can deal with a dynamic and uncertain environment, it should
meet three requirements: 1) it needs the flexibility to adjust solutions locally, 2) it must be
robust against unreliable communication, and 3) it needs to be scalable.

These requirements lead to a distributed hierarchy with multiple groups of supervisors at each
level. Each supervisor performs clustering and subsequent task allocation, and each group can
perform distributed cooperation to resolve shared tasks (Chapter 5). Complex Concurrent
Bounding (CCB) is proposed to perform distributed cooperation, which is an adjusted version
of ConcFB for complex local problems. When the subsets for the disjoint SARPs have been
obtained, they can be assessed using the benchmarks from Chapter 4. A lower bound is
discussed based on the pricing step of branch & price, and a method is provided to generate
a trivial allocation for an upper bound. Lastly, heuristics are provided to solve the SARPs.

Experiments are performed on an example scenario in Chapter 6. The separate compo-
nents have been analysed on solution quality and computational efficiency first. The results

Master of Science Thesis M.A. Korthals Altes

86 Conclusion

show that the priced lower bound performs consistently relative to the optimal solution,
though computational performance remains limited due to the Sub Problem (SP) complexity.
Furthermore, CCB shows a clear performance increase compared to Concurrent Forward-
Bounding (ConcFB), where especially best-first strategy makes a major contribution. The
addition of a local tree did not have a significant effect, though this might be attributed to in-
sufficient tightness of the underlying formulation. Compared to the centralized solver Gurobi,
CCB shows slightly worse performance initially, but mainly longer tails to convergence. This,
however, is not surprising compared to a state-of-the-art solver. Moreover, the added benefit
of using a distributed algorithm lies in the removal of a single bottleneck, such that prob-
lems can still be solved by a part of the supervisors if connectivity issues occur. When the
components are combined in the hierarchy, groups of two supervisors are shown to generate
the best results in the least time. Furthermore, the fuzziness improves performance against
a higher computational cost. However, the added benefit of increasing fuzziness diminishes
quickly, such that small values are sufficient and quick computations remain viable.

The high dynamics are simulated by perturbing the environment. By revising the solution at
different levels and comparing the results, the difference in solution quality can be observed.
The results show that a revision of the solution at the highest levels generates better solutions
on average – though by a minor percentage only – but certainly not exclusively. This indicates
that it is not required to constantly revise the complete solution, or at least not initially, which
implies a degree of flexibility. Furthermore, the results indicate that the revision at higher
levels becomes more profitable for more concentrated changes, most probably as more suitable
assets become available for the drastic but local changes.

Robustness against unreliable communication is tested by applying suboptimal allocation to
one or multiple levels. The results are clear: suboptimal allocation at the lower levels has
a larger effect on the performance. This means that at higher levels, this effect is partially
mitigated by corrective allocation at lower levels. This is a very promising feature. Further-
more, though the worst-case effect of no cooperation compounds over multiple levels, this is
not necessarily a problem. First, it is unlikely that no cooperation is possible at all, but a
connection exists with the subordinates. Secondly, the flexibility experiments show that the
effect of not updating the subsets is smaller than updating with worst-case subsets. There-
fore, it is simply better to only update the solution if cooperation is possible. Thirdly, the
worst-case solution naively sums the cost for sequences that overlap, which is not an accurate
representation anymore, given that the (nonlinear) cycle distances created by overlapping
sequences should lower the actual cost of the worst-case outcomes.

Lastly, the computation time scales sublinear in the number of sectors, allowing for large
problem instances. The computation time increases gradually for more sensors, but the rate
with which the computation time increases for more sectors is not jointly dependent on the
number of sensors. This indicates that the approach is scalable, and that also for realistic
problems consistent results can be obtained quickly.

Concluding, the usage of intent-based coordination appears to contain the desired properties
of flexibility, robustness, and scalability while providing solutions that are reasonably close
to the optimal value. Though further research is necessary to validate the results in dynamic
time-extended simulations, this research provides a strong argument for including a form of
intent in a distributed hierarchical setup for highly dynamic and uncertain environments.

M.A. Korthals Altes Master of Science Thesis

Chapter 8

Discussion

The approach outlined in this thesis consists of many components. The main goal was binding
them in a unified framework based on intent-based Command & Control (C2). As such, not
all components are at the cutting-edge of the current state of the art, leaving areas for im-
provement. Therefore, different improvements and suggestions for future work are discussed,
including the outline of an alternative solution approach with convergence guarantees.

Modelling persistent reconnaissance The Multi-Agent Reconnaissance Problem (MARP)
has been proposed as a suitable model for persistent reconnaissance. Though this formula-
tion is compact, it does not explicitly include capacity. As the cycle distance might not be
a sufficient metric for realistic recharging and capacity constraints, extending it to a more
complex problem could prove valuable. Especially in a dynamic environment, this capacity
could be dependent on multiple (mobile) recharging points. Furthermore, the model assumes
a fixed value for risk each iteration. In line with other Intelligence, Surveillance & Reconnais-
sance (ISR) models, also a Partially Observable Markov Decision Process (POMDP) can be
formulated, which includes a form of transition probabilities to include the effect of the agent
on its environment during optimization. This could generate more useful results, but makes
it more complex. Lastly, as already mentioned in the conclusion, no method is included to
assess the effect of overlapping sequences. Multiple sequences result in varying (nonlinear)
cycle times, making it difficult to determine the actual cost: what is the difference between
a sector that is visited twice within 10 minutes, and then 50 minutes not, compared to being
visited exactly once every half hour?

Column generation The column generation procedure still shows limited performance. As
also summarized in Section 4-1-2, some concrete improvements are possible to improve the
performance of the column generation. The most prominent is the extension toward bi-
directional labeling [87] and decremental state-space relaxation [88], but also the heuristics
can be improved, or forward labeling can be used in a relaxed version first. Furthermore, the
tightness of the lower bound can be improved by applying a Dantzig-Wolfe reformulation on
the MARP, instead of a set covering reformulation [114].

Master of Science Thesis M.A. Korthals Altes

88 Discussion

Task allocation The speed with which task allocation can be solved can be improved by
removing the standard linearization and using a better alternative. Semidefinite Programming
(SDP) might prove a useful strategy, which requires the dependency matrix to be positive
definite, which can be achieved by creating a diagonal dominant reformulation. However, this
is no trivial operation for which specifically designed operations exist [94, 95]. Alternatively,
other more efficient linearizations can be applied [96, 101, 102]. An additional benefit is that
the task allocation can be solved more quickly and that the cooperative allocation relaxations
become tighter, as they are based on the same quadratic constraint. As such, Complex
Concurrent Bounding (CCB) might be able to prune much larger parts of the local search tree,
improving the solution speed to the cooperative problem too. Lastly, the task allocation does
not include the current position of the agents or their distance towards a recharging location.
This means that in a time-extended formulation, highly suboptimal allocations can occur,
as agents have to relocate large distances before being able to perform any reconnaissance
in their assigned subset. As such, robustness over time is not guaranteed. It might prove
valuable to perform an analysis of the added cost by reassigning subsets and how potentially
some type of robust assignment could reduce these effects.

Additionally, the concept of intent can also be applied in the objective function of task alloca-
tion. Currently, the overlap is only used as constraint, as it outlines which tasks are accessible
and should be deconflicted. However, the degrees in the subset of each supervisor can also be
used to measure how much they overlap, which can be implemented as a relative measure in
the objective function. By doing so, tasks that overlap only by a minor degree are less likely
to be assigned to a subordinate of that superior. Currently, any overlap is treated equally,
which undoubtedly influenced the performance.

Practical constraints During these simulations, the distributed problems are all solved in a
distributed fashion on a single computer. Therefore, it overcomes any issues that arise from
practical distributed implementations. In reality, bandwidth is limited, package drops may
occur, and additional bargaining or communication algorithms might need to be implemented
to ensure the algorithms remain functional, potentially worsening performance. These prac-
tical setups also give a chance to include additional layers of logic that can be used in more
demanding environments. For instance, if there is a connection loss within groups, agents
might relocate to try to reconnect or reorganize in smaller groups locally.

Alternative approach During the analysis in this thesis, it became apparent that it is dif-
ficult to perform a definitive assessment, both practical and theoretical, on the performance
of intent-based coordination. This is due to the large deviations in the results, which are
attributed to the many stochastic elements in the combined approach and the lack of any
convergence guarantees. Therefore, an argument can be made to choose another approach
that might not have the best performance but generates more consistent results. By doing
so, a better picture can be constructed of the intricacies of the solution method, forming a
better basis for future developments.

An obvious choice would be to extend the priced lower bound with a branching step, such
that branch & price is fully implemented, which converges to the optimal solution. As this ap-
proach is not scalable, it is interesting to see if intermediate fractional solutions are of any use.
In Appendix B an experiment is discussed with a provisional allocation based on the relaxed

M.A. Korthals Altes Master of Science Thesis

89

solution obtained for the lower bound. The fractional solution from the relaxed Restricted
Master Problem (RMP) is converted to a feasible integer solution, which is compared to the
task allocation. The initial converted solution already performs quite comparable, though for
larger problems the deviations are large. This indicates that if branch & price is used, inter-
mediate solutions might already provide acceptable performance. In line with this argument,
possibly also heuristical variants or a relaxed version of the RMP can generate a preliminary
feasible integer solution.

One could argue that two main properties of the originally proposed method are lost. First,
this branch & price approach is not distributed, introducing a single bottleneck. Secondly,
even for the heuristical approach it cannot be expected that the computations scale linearly,
as no hierarchy is used. Fundamentally, this is true, but the method can be converted to
fit within the distributed hierarchy with intent-based cooperation. It is crucial to include
clustering in a hierarchy. Otherwise, the method will not be scalable.

Fortunately, the obtained fractional allocation already suggests which cluster is appropriate
for a subordinate. Depending on the amount of partially allocated sectors to an agent, the
clusters can be combined and passed down as subsets, comparable to the current implemen-
tation. The difference is that, while branch & price is running, the clusters can be adjusted
based on the generated fractional solutions, which can be reallocated and passed down as
updated subsets. By doing so, the solution would converge to clusters that consist solely of
the optimal set of sectors, such that guaranteed convergence becomes possible. Again, using
the fact that each pricing step generates fractional allocations at first, a concept of intent
is also immediately retrieved. Each cluster that still contains sectors assigned to multiple
subordinates can be considered a shared task. This preserves the property that lower levels
in the hierarchy can correct the suboptimal allocation of higher levels.

To summarize, depending on the fractional solutions obtained by branch & price, clusters
can be labeled as a local or shared task. The clusters can continuously be adjusted based
on improved intermediate solutions. After time, the clusters become perfect, and the subsets
purely local. Then it has converged to the optimal solution.

The merit of this approach would mainly be that a guaranteed convergence allows for more
consistent results. As such, an analysis can be performed that is more detailed and thor-
ough. This could lead to a better understanding of intent-based coordination in general, and
substantiate new improvements.

Master of Science Thesis M.A. Korthals Altes

90 Discussion

M.A. Korthals Altes Master of Science Thesis

Appendix A

Parameter Evaluation

The component (Section 6-2) and complete analysis (Section 6-3) are based on the default
parameter setup provided in Section 6-1-2. These parameters are chosen carefully based on
the experiments performed below. As overlapping clusters represent the concept of intent,
all parameters influencing the amount of overlap are quantified first. Secondly, the effect of
varying the overtime penalty and relative capacities in the task allocation formulation from
Section 5-4 is measured. Thirdly, it is measured if varying the clustering weights can be used
as a form of capability-based clustering, such that the solution better accommodates larger
differences in sensor heterogeneity, as hypothesized in Section 5-3-1.

A-1 Influencing cluster overlap

If clusters overlap, they are considered shared clusters and are allocated during distributed
cooperation (See Section 5-5-1). As found in Section 6-2-3, larger overlap can lead to worse
solutions, but it can also improve the solution if cooperation is possible, shown in Section
6-3-1. Therefore, it is clear that the amount of overlap has a great influence on the solution
quality. Because of this influence, it is desirable to tightly set the number of overlapping
clusters. There are four parameters influencing the amount of overlap: 1) the fuzzifier m, 2)
the post-processing method, 3) the cluster sparseness, and 4) the cluster size. For each of
these parameters, it is assessed what the influence is on the cluster overlap.

A-1-1 Fuzzifier

First, the fuzzifier is tested for the values ranging from m = {1 . . . 1.3}. This setup has
N = 200 sectors, and M = 10 clusters. Each setup is simulated five times and averaged to
account for the random initialization of the cluster centroids. The average amount of overlaps
any cluster has with other clusters is displayed in Figure A.1. In the left plot, it is clear that
all the clusters overlap with each other for a fuzzifier m ≥ 1.2. For m = 1, clusters overlap
only with themselves, as Fuzzy C-Means (FCM) converges to hard clustering. In the right
picture, an indication of the overlap distribution is given for three fuzzifier values. Though
the average number of overlaps for fuzzifier m = 1.02 lies around 3, the distribution includes
clusters with an overlap ranging from 1 up to 6.

Master of Science Thesis M.A. Korthals Altes

92 Parameter Evaluation

1 1.05 1.1 1.15 1.2 1.25 1.3

Fuzzifier value

2

4

6

8

10

N
u
m

b
e
r

o
f
o
v
e
rl
a
p
s

1 2 3 4 5 6 7 8 9 10

Number of overlaps

0

10

20

30

40

50

[%
]
o
f
c
lu

s
te

rs

m = 1.03

m = 1.09

m = 1.15

Figure A.1: A comparison of the average number of other clusters that any cluster overlaps with,
for varying fuzzifiers m. In this case, all clusters overlap for m ≥ 1.2.

A-1-2 Post-processing method

Next, also the post-processing method is considered. Two specific factors are of influence.
First, this method interpolates cluster degrees which can result in extra overlap between
clusters. Secondly, the cut-off threshold β removes low degrees, lowering the resulting overlap.
To effectively measure the combined effect of interpolation, it is compared with the cleaned
degree, meaning the original degree for which any degree uij < β is also removed. The
experiment is again performed five times and averaged for the same setup with N = 200
and M = 10. The fuzzifier is tested for the range m = {1 . . . 2}, and the threshold over
β = {0.01 . . . 0.2}. In Figure A.2 the results are displayed.

1 1.2 1.4 1.6 1.8 2

Fuzzifier value

2

4

6

8

10

N
u
m

b
e
r

o
f
o
v
e
rl
a
p
s

Interpolated degree

Cleaned degree

0.001 0.05 0.1 0.15 0.2

Threshold value

2

4

6

8

10

N
u
m

b
e
r

o
f
o
v
e
rl
a
p
s

m = 1

m = 1.1

m = 1.2

m = 1.3

m = 1.4

m = 1.5

m = 1.6

m = 1.7

m = 1.8

m = 1.9

m = 2

Figure A.2: Left: a comparison of the overlap for varying fuzziness for both the cleaned and
interpolated degree, which are cut-off and averaged over a range of threshold β. Right: The
combined effect of the fuzzifier and the threshold for the interpolated degree. The higher the
threshold, the lower the overlap. This effect increases for larger fuzziness.

In the left image, the interpolated degree is compared with the cleaned degree. The mean
increase in overlapping clusters is 4.8% by interpolating the degrees, for which the effect
diminishes for higher fuzziness. Furthermore, it can be seen that even for m = 1, no hard
clusters are retrieved, as the interpolation still generates overlap. The cleaned degree results in
significantly fewer overlaps than in Figure A.1, where no cut-off is applied. This suggests the
threshold value has a major impact on the overlap. The right plot from Figure A.2 confirms
this. Here, the combined effect of the fuzziness and threshold is depicted for the interpolated
degree. The higher the threshold value, the lower the number of overlaps. However, the effect

M.A. Korthals Altes Master of Science Thesis

A-1 Influencing cluster overlap 93

becomes larger for increasing fuzziness. For initial hard clusters (m = 1), the threshold does
not affect the overlap after interpolation, as no degree is initially removed.

A-1-3 Cluster sparseness

Thirdly, it should be noted that the results obtained in the previous experiment are strongly
related to cluster sparseness. The cluster sparseness means how much the sectors within each
cluster are scattered physically, as shown in Figure 5.5. By changing the clustering weights,
the relevance of the Cartesian distance between the sector coordinates is decreased, resulting
in a visually sparse cluster. This sparseness, in turn, is diminished by the post-processing
method. Consequentially, the effect of post-processing on cluster overlap becomes larger.

1 1.2 1.4 1.6 1.8 2

Fuzziness

1

1.5

2

2.5

3

3.5

R
e
la

ti
v
e
 o

v
e
rl
a
p
 d

if
fe

re
n
c
e = 0.2

 = 0.4

 = 0.6

 = 0.8

 = 1.0

 = 1.2

 = 1.4

 = 1.6

 = 1.8

 = 2.0

1 1.2 1.4 1.6 1.8 2

Fuzziness

2

4

6

8

10

N
u
m

b
e
r

o
f
o
v
e
rl
a
p
s

Figure A.3: Varying cluster overlap based on scaling the clustering weights for the sector co-
ordinates by κ. Left: a plot comparing the relative increase in cluster overlap compared to the
cleaned degree. Right: an absolute comparison of the resulting overlap after interpolation.

In this experiment, the coordinate features [ȳi, x̄i] ∀i ∈ N of the default clustering weights
are multiplied by factor κ. The default weights are set to w = [1.5, 1.5, 0.5, 5] for Xi =
[ȳi, x̄i, R̄i, ¯̇ri], for all sectors i ∈ N . The factor for this experiment is varied between κ =
{0.2 . . . 2}. A small κ results in scattered, sparse clusters. A high κ results in very compact,
dense clusters. The experiments are performed five times, with β = 0.1. The results are
displayed in Figure A.3. In the left plot, the relative difference in cluster overlap is compared
between the cleaned degree and the interpolated degree. For extremely compact clusters, the
post-processing does not result in extra interpolation, even if the fuzzifier is very high. On
the contrary, for very sparse clusters the interpolation has a larger effect, which is dependent
on the fuzzifier. For small fuzzifiers, the cleaned degree generates up to 4 times less overlap
than the interpolated degree. In the right plot, the absolute number of average overlaps per
cluster is displayed. Independent of the clustering weights for the coordinates, the overlap
increases for a higher fuzzifier, for which the trend is approximately equal. However, it is
clear that compact clusters result in consistently less overlap, as can be expected.

A-1-4 Cluster size

Lastly, also the cluster size is considered. A fixed setup is used withm = 1.1, and β = 0.1. The
number of clusters are varied between N = {50 . . . 400} and M = {2 . . . 50}. In Figure A.4

Master of Science Thesis M.A. Korthals Altes

94 Parameter Evaluation

the results are displayed. Instead of the absolute number of overlapping clusters, the y-axis
is now expressed as a percentage of the total number of clusters present. On the x-axis, the
cluster sizes are expressed as a percentage of the total number of sectors. This range is defined
as 1

M = {0.5 . . . 0.02}. It becomes clearly visible that if a few clusters cover a large portion
of the sectors, the overlap becomes larger. However, if the problem consists of fewer sectors,
the growth in overlap less radical, which could be due to a lack of interpolation for smaller
clusters. Furthermore, it can be intuitively explained by considering that if clusters consist
of many sectors, the probability for any of their sectors overlapping increases. Additionally,
if fewer clusters are present, the percentage of clusters it has overlap with increases.

5 10 15 20 25 30 35 40 45 50

Cluster size [%]

0

20

40

60

80

100

O
v
e

rl
a

p
p

in
g

 c
lu

s
te

rs
 [

%
]

N = 50

N = 100

N = 150

N = 200

N = 250

N = 300

N = 350

N = 400

Figure A.4: The average percentage of total clusters any cluster overlaps with (y-axis), compared
to the average cluster size as a percentage of the number of sectors N (x-axis).

A-2 Tuning capacity violation

The Multi-Agent Reconnaissance Problem (MARP) does not include an explicit form of
capacity. Instead, a low speed penalizes the initial distance to each sector, and a short flight
time penalizes the cycle distance. However, the task allocation used as a top-down heuristic
does include a capacity, which is intended to prevent the allocation of long distances to
unsuitable agents.

Because of this approach, inefficiencies can occur. To understand this, consider a basic ex-
ample of sensors 1 and 2, needing to cover sectors A and B. Both sensors are almost equal,
though sensor 1 is slightly better. Both sensors have ample speed and flight time to cover
both sectors in one flight. The task allocation would then assign both sectors to sensor 1.
In reality, however, the optimal solution would be to allocate one sector to sensor 1, and one
to sensor 2. This illustrates that calculating the capacity as an absolute value, meaning the
number of sectors it can cover in one flight, has no clear benefit for the underlying MARP.
Instead, it should be used to define the relative difference between the available sensors. The
question then is: At which point is it worthwhile to penalize a sensor compared to its relatives,
and by how much?

To answer this question, the standard capacity bk is normalized, such that b̄k = bk/
∑
k∈P bk =

1. Then, a capacity scaling factor nb is introduced making b̂k = nb · b̄k. For nb = 1, all sectors
can be allocated without violating the capacity constraint. For nb = 0.5, only half, and so
forth. Note that even with nb = 1 the capacity can be violated, as the utility can lead to one

M.A. Korthals Altes Master of Science Thesis

A-3 Varying weights for capability-based clustering 95

agent performing more than its relative capacity. Setting nb < 1 means that exceeding the
relative capacity is punished quicker.

0.5 1 1.5 2

Penalty

1400

1600

1800

2000

2200

2400

C
o

s
t

n
b
 = 0.2

n
b
 = 0.5

n
b
 = 1

n
b
 = 2

n
b
 = 3

0.5 1 1.5 2 2.5 3

Capacity scaling

1400

1600

1800

2000

2200

2400

C
o

s
t

e = 0.05

e = 0.2

e = 0.5

e = 1

e = 1.5

e = 2

Figure A.5: Left: the effect on the MARP cost by scaling the normalized capacity with nb.
Right: The effect on the MARP cost by scaling the overtime penalty e.

An experiment is performed for a fixed setup with N = 30, P = 4, and M = 9. The
interpolation cut-off degree is set at β = 0.1. The capacity violation penalty is ranged within
e = {0.05 . . . 6.4} and the capacity scaling factor in nb = {0.1 . . . 1.5} The results are displayed
in Figure A.5. From both plots it becomes clear that scaling the capacity down to nb ≤ 1
returns the best results, though setting it lower does not improve the solution. For the
penalty, there seems to be no significant difference between 1.5 and 2. Therefore, for further
experiments it is set to e = 1.8. It is very clear that a too low penalty has a significant negative
effect on the objective. Following the same argument, the objective is also significantly worse
if sensors have too much capacity,and subsequently cover too many sectors.

A-3 Varying weights for capability-based clustering

The solution approach deals with heterogeneous sensors in two ways. It is directly included
during allocation as a utility in the objective and as a capacity constraint. However, in Section
5-3-1 it is hypothesized that tuning the clustering weights can result in more suitable clusters
for specific agents, leading to a more distinct utility.

To test this, the relative size between the weights is varied in an equal manner as in Experiment
A. The weights can be increased by a factor κ for either the coordinates [ȳ, x̄], the risk R̄,
or the risk increase ¯̇r. The sensor heterogeneity is measured as the standard deviation σh in
speed and flight time of all sensors.

The results are displayed in Figure A.6. In the left plot, the absolute cost for varying weight
scaling κ and sensor heterogeneity σh are shown. It is clearly visible that the heterogeneous
teams outperform the other teams by a large amount. Whether this can be attributed to
the heterogeneity itself or a disproportionate decrease in cost by the best-performing agents
is unclear. Furthermore, for all different heterogeneous setups, there is a clear decrease in
performance for low weights. Most probably, this is due to scattered clusters, for which
the post-processing does not yield efficient interpolations anymore. In the right plot, the
performance of each weight scaling is displayed for different levels of heterogeneity. It can be
observed that high weights for the coordinates are marginally better for homogeneous teams.

Master of Science Thesis M.A. Korthals Altes

96 Parameter Evaluation

Figure A.6: Left: the total cost depending on the deviation in the sensor properties. High
deviation results in much better performance. Right: the relative performance for each scale with
a 95% confidence interval. A low weight for sector coordinates performs significantly worse.

This means that more compact clusters are created, regardless of risk or risk increase. For
higher heterogeneity, the results are equal for the default weights or higher.

In line with this argument, an experiment is performed in which either the flight time is
fixed and the speed varied, or vice versa. Then, the question is whether scaling the weights
separately for the risk or risk increase yields significantly different results. As described in
Section 5-3-1, it is expected that higher weights for risk increase will perform better with
larger deviation in flight time. The same argument is made for a higher weight on risks for
larger deviation in speed.

Figure A.7: A plot indicating the relation between scaling the risk or risk increase clustering
weights by κ, and a heterogeneity in velocity or flight time by the standard deviation σh. Although
some trend is visible, a clear correlation is not visible. Still, it is clear that insufficient prioritization
of coordinates (κ = 4), generates worse results.

For each weight scale κ and sensor deviation σh, a simulation is performed 50 times. The
results are displayed in Figure A.7. A 95% confidence interval is drawn to indicate the spread
of the results. It is clearly visible that a high weight of κ = 4 underperforms for all cases.

M.A. Korthals Altes Master of Science Thesis

A-4 Parameter summary 97

However, it is difficult to draw any other conclusions. The deviations are spread out over a
relatively wide, overlapping region, and the absolute performance differences are meager, as
they deviate on average 0.8% from the default weight solution. Still, some trends are visible,
indicating some relation between heterogeneity and clustering weights. It is, however, not as
directly correlated as hypothesized.

A-4 Parameter summary

A-4-1 Intent & cluster overlap

As overlapping clusters represent intent, it is important to identify how this is influenced.
Naturally, the overlap is larger for a larger fuzzifier m. The post-processing method also
increases overlap, but this effect is highly dependent on the cluster sparseness. This, in turn,
is dependent on the clustering weights for the sector coordinates. For the selected default
weights, the added overlap by interpolation is small and diminishes for higher fuzziness. Fur-
thermore, the overlap is reduced by a higher cut-off threshold β, for which the effect increases
for higher fuzziness. Lastly, the percentage of overlapping clusters is highly correlated with
the relative cluster size, for which the effect is larger if more sectors are considered. As default
values, a fuzzifier m = 1.15 and cut-off degree β = 0.03 are chosen.

A-4-2 Tuning the capacity

Furthermore, the capacity is normalized and scaled by a factor nb to improve the task allo-
cation. The capacity violation penalty e is also varied to measure the combined effect. Any
value nb ≤ 1 generates approximately the same, best case result. However, independent of
the scaling, if the penalty is set too low, the performance decreases dramatically. Any value
1.5 ≤ e ≤ 2 can be regarded as a safe choice.

A-4-3 Accommodating sensor heterogeneity

The relation between sensor heterogeneity, expressed as the standard deviation of the sensor
properties σh and the clustering weights w, is analysed in further depth. It becomes clear that
high heterogeneity significantly outperforms homogeneous agents. Furthermore, setting the
clustering weights too low for the Cartesian coordinates results in significantly worse results.
Increasing these weights beyond the default values has no apparent effect. When comparing
the deviations in speed and flight time separately, some trends are visible for separate scaling
of risk and risk increase weights. However, no clear relation can be uncovered, which appears
to be more complex than expected. The results from these experiments are in line with the
scaling of the coordinate weights, as a very high priority on either risk or risk increase lowers
the performance equally as when the weight for the coordinates is lowered too much.

Master of Science Thesis M.A. Korthals Altes

98 Parameter Evaluation

M.A. Korthals Altes Master of Science Thesis

Appendix B

Additional Experiments

In this appendix, some additional experiments are included that are not a core part of the
result but are sometimes referenced. Furthermore, some experiments are performed as a
thought experiment for future work.

B-1 Convergence Fuzzy C-Means (FCM)

The limits of FCM are assessed by analyzing the convergence and runtimes, dependent on the
number of clusters and sectors. For the input scenario, the data is sampled to fit the number
of sectors, as explained in Section 6-1. For each setup, the experiment is repeated five times
due to the stochastic initialization of the cluster centroids. The results are averaged over all
simulations. The amount of sectors is varied from N = {100 . . . 500}, width for each setup a
varying number of clusters M = {4 . . . N4 }. Furthermore, the threshold for convergence is set
at 0.1% improvement and the iteration limit at 200.

100 200 300 400 500

Number of sectors N

0

1

2

3

4

T
o

ta
l
ru

n
ti
m

e
 [

s
]

M = 4

M = 25

M = 46

M = 67

M = 88

M = 109

20 40 60 80 100

Number of cluster M

0

1

2

3

4

T
o

ta
l
ru

n
ti
m

e
 [

s
]

N = 100

N = 200

N = 300

N = 400

N = 500

Figure B.1: The correlation between the number of sectors and clusters, and the total runtime
until convergence. Adding clusters has a greater effect than adding sectors, which can be expected.

In Figure B.1, it is clearly visible that the runtime is increasingly dependent on the number
of clusters, though the number of iterations needed remains roughly equal. For an equal
number of sectors, a higher number of clusters shows consistently longer runtimes. The
number of sectors appears to have only a mild effect on the total runtime. This effect is to

Master of Science Thesis M.A. Korthals Altes

100 Additional Experiments

be expected. Degree calculations for FCM are repeated for every sector and every cluster.
The addition of a cluster will add a calculation for every sector and vice versa. As there are
naturally more sectors than clusters, the effect of adding a cluster is much larger. Though the
clustering process takes more time for an increasing number of clusters, it will also increase
the allocation runtime.

B-2 Clustering significance

One could argue that very small or large clusters have no benefit. This problem is particularly
evident for M = N or M = 1. In these cases, each sector is its own cluster, or all sectors are
in a single cluster, respectively. In this experiment, the cluster significance is assessed.

FCM creates cluster similarity by minimizing the Euclidean distance between the feature
vectors Xi, by varying the degree uij and cluster centroids Cj . The average similarity d after
performing FCM is therefore given as:

d = 1
N ·M

∑
i∈N

∑
i∈M

umij ||Xi − cj ||2 (B.1)

Consequently, the different centroids are expected to become dissimilar. Dissimilarity is
measured using the standard deviation between the cluster centroids, with µ being the average:

σ =

Ã(
1
M

M∑
j

(Cj − µ)2

)
(B.2)

These metrics are compared to the random clustering benchmark from Section 4-2 to measure
the significance, for which the same similarity d and dissimilarity σ are calculated. For a setup
of N = 200 and M = {2 . . . 200} the relative performance is simulated 5 times. The results
are displayed in Figure B.2. The similarity is significantly better for smaller cluster sizes,
but the opposite is true for feature deviation. This could imply that for small clusters, the
random clustering performs equally well as FCM.

10 20 30 40 50 60 70 80 90

Average cluster size N / M

1

1.5

2

2.5

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

Similarity

Feature deviation

Figure B.2: Though the similarity is higher for small clusters, the low difference in feature
deviations with the random approach indicates small FCM clusters are of insignificant value.

M.A. Korthals Altes Master of Science Thesis

B-3 Provisional allocation based on a relaxed solution 101

B-3 Provisional allocation based on a relaxed solution

The column generated lower bound originates from the branch & price scheme, which can be
used to solve the underlying problem to optimality. As such, if a branching method would be
added, the method can be used to solve the Multi-Agent Reconnaissance Problem (MARP)
to optimality. The question then arises, what is the quality of the – possibly fractional –
allocation, retrieved by the initial column generated lower bound?

To use the allocation, the included sequences r ∈ Ωr, the allocations xrk, and the sequences
air are collected from the Restricted Master Problem (RMP), and transformed to a feasible
allocation. First, a fractional allocation cannot be performed, so xrk is transformed to a binary
solution. Secondly, Constraint (4.2) of the RMP has to be satisfied, such that all sectors are
covered by one sequence only. The sector is allocated to the agent with the highest fraction
to remove the fractional allocation of multiple agents:

x̂rk =
®

1 k = arg maxk∈P(xrk)
0 otherwise

∀r ∈ Ωr, k ∈ P (B.3)

Though each partially allocated sequence is now performed by at least one agent, it is still
possible that sectors are covered by multiple sequences that are now both fully allocated.
Therefore, the sequences itself are transformed to prevent this problem. For each sector in
each sequence, it is only kept of that sequence covers it by the largest fraction:

âir =
®

1 r = arg maxr∈Ωr
(air ·

∑
k∈P xrk)

0 otherwise
∀i ∈ N , r ∈ Ωr (B.4)

Lastly, the regular Single-Agent Reconnaissance Problems (SARPs) heuristics from Section
4-3 can be applied to the transformed sequences âir and allocations x̂rk.

Figure B.3: The relative performance for each number of sensors (left) and the combined results
(right) are shown with a 95% confidence interval. These results do not provide evidence against
the use of transformed fractional allocation from the column generated lower bound.

Master of Science Thesis M.A. Korthals Altes

102 Additional Experiments

The experiment is repeated 5 times for an increasing number of sectors N = {2 . . . 30}, and
sensor P = {2, 4, 6}. The column generation is cut-off if the calculation time exceeds 10
seconds. The results are compared and displayed in Figure B.3. In the left plots, the results
are shown separately for each amount of sensors. On the right, the combined result is displayed
with a 95% confidence interval. The interval is much smaller for a lower number of sectors, as
the column generation can be performed for all amounts of sensors. For larger problem sizes,
fewer results are obtained. It becomes clear that performance is not significantly worse than
task allocation. For smaller problem sizes, it seems to even outperform the task allocation
method. For larger problem sizes, the intervals are too large to draw sharp conclusions, but
there is no evidence against the usage of the transformed allocation.

B-4 Predicting performance differences in the hierarchy

An additional feature of the hierarchical approach is that the intermediate results within
the hierarchy can also be benchmarked. An example is displayed in Figure B.4. For each
supervisor, the three values represent the LB ≤ opt ≤ TA solutions, respectively. For the
agents, only opt ≤ TA is shown. The colors of the arcs in the hierarchy represent the relative
gap between the lower bound and the task allocation. The nodes are colored depending on the
relative gap between the optimal solution and the task allocation. In this specific example, it
can be seen that the largest gap with the lower bound also represents the largest gap with the
optimal solution. If this correlation is consistent, this could imply that it can be predicted
which parts of the solution underperform. These specific parts could then be re-optimized to
improve the solution.

55.18<=152.18<=159.41

35.82<=104.48<=110.67 20.4<=48.74<=48.74

43.36<=110.67<=110.67 0<=0<=0 2.96<=5.31<=5.31 17.44<=43.43<=43.43

76.07<=76.07 34.6<=34.6 0<=0 0<=0 0<=0 5.31<=5.31 21<=21 22.43<=22.43

Figure B.4: Intermediate results within a hierarchy. A red arc color indicates a larger gap between
the task allocation and relaxed lower bound. A red node indicates a larger gap between the task
allocation and optimal solution. Possibly the gap with the lower bound predicts the gap with the
optimal solution. In this selected example, it clearly does.

An experiment is performed with 30 simulations, in which these correlations are measured
for N = 6, P = 8, and a group size of 2. As the computation time for the optimal solution
explodes quickly it is not possible to include more sectors. The results are displayed in
Figure B.5. On the x-axis, the relative performance of task allocation to the LB is shown.
On the y-axis the relative performance of the task allocation is compared to the optimal
value. Furthermore, a second-order interpolation is fitted to the data, capped at 1. A strong

M.A. Korthals Altes Master of Science Thesis

B-4 Predicting performance differences in the hierarchy 103

correlation is visible, as worse relative performance to the optimal solution also implies a bigger
gap with the lower bound. The converse relation, however, is not so clear. Unfortunately,
this is the relation needed to predict the performance.

Using the Pearson correlation coefficient, the linear correlation has a value of 0.28, with
a p-value of 4.1e-05, clearly signalling a positive correlation. This correlation cannot be
applied directly, but it could provide a basis for further improvements to the solution method.
Possibly, within the hierarchy supervisors can be selected as a candidate for improvement.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Relative to LB

0.6

0.7

0.8

0.9

1

R
e
la

ti
v
e
 t
o
 o

p
t

Figure B.5: The correlation between the relative performance of task allocation to the lower
bound (x-axis), and the relative performance to the optimum (y-axis).

Master of Science Thesis M.A. Korthals Altes

104 Additional Experiments

M.A. Korthals Altes Master of Science Thesis

Appendix C

Task dependency proof

Section 5-4-1 highlights how the capacity and task sizes are related. To this end, task depen-
dency is introduced to account for inefficiencies arising from the distance between tasks.
The difficulty is that capacity is measured as the ability to cover a squared distance, as
opposed to the distance between tasks. Therefore, some quadratic measure must be included
to express the inefficiencies as an increase in the area that has to be covered. The resulting
measure is a fractional approximation of the added squared distance:

Df
ij = AiAj ||Fi − Fj ||22∑

i,j∈MAiAj ||Fi − Fj ||22
∀i, j ∈M (C.1)

This formula squares the distance between the task centroids i, j ∈ M, weighed by the total
squared distance between all centroids. These metrics, however, are also weighed by each
respective task size.
Weighing over the respective task sizes is necessary to overcome the problem of increasing cost
for increasingly more, smaller tasks. This example is illustrated in Figure C.1. Given that
task 1-4 and task 7-10 are collected in assignment S1, and task 5 and 6 in assignment S2, their
areas are exactly equal in size and shape. Without weighing, however, the task dependency
cost of S1 would be much higher, as there are more tasks generating more dependencies.
More formally, given there are currently N tasks, the total number of dependencies is given
as 2

∑N
n=1(n− 1) = (N − 1)N . This means (N − 1− |S2|)(N − |S2|) dependencies belong to

S1, and (N − 1− |S1|)(N − |S1|) to S2. If a task in S1 is split, this generates 2(N − |S2|) new
dependencies for S1, but none for S2. It needs to be shown that the sum of the dependencies
in S1 grows in size compared to S2, when splitting the tasks in S1 indefinitely.
After splitting tasks in S1, there are n1 unaltered and ñ new tasks in S1, and n2 unaltered
tasks in S2. The total sum of the dependencies of the unaltered tasks in S1 can be denoted
as the constant b1, and of S2 by b2. The ñ new tasks produce new dependencies, which are
at least as large as the smallest dependency b−. Dependency b− could even be zero, if for
instance all tasks are concentric circles. The summation of the dependencies b1, b2, and all
new dependencies of at least size b−, give a lower bound on the actual sum of all dependencies:

b1 + b2 + b−ñ(ñ− 1) + 2b−ñn1 + 2b−(ñ+ n1)n2 ≤
∑
i,j∈M

||Fi − Fj ||22 (C.2)

Master of Science Thesis M.A. Korthals Altes

106 Task dependency proof

1

2

5

3

4

6

7

8

9

10

Figure C.1: An example of 10 tasks with unequal sizes. Without weighing the task dependency
cost, task 1-4 and 7-10 combined would yield higher costs than 5 and 6 combined, though the
areas are equal.

The cumulative fractional dependency for set S2 can be formulated as:

Df
S2 = b2∑

i,j∈M ||Fi − Fj ||22
(C.3)

Then in the limit of ñ, an upper bound on this measure can be written as:

lim
ñ→∞

Df
S2
≤ b2
b1 + b2 + b−ñ(ñ− 1) + 2b−ñn1 + 2b−(ñ+ n1)n2

= 0 (C.4)

This proves that without weighing, splitting tasks in S1 indefinitely would result in Df
S2
→ 0.

Furthermore, the largest dependency to have ever been present between S1 and S2 is called
b+. Then, an upper bound on the total sum of dependencies between S1 and S2 is given as:

2b+(ñ+ n1)n2 ≥
∑
i∈S1

∑
j∈S2

||Fi − Fj ||22 (C.5)

In the limit of ñ, this forms an upper bound on the fractional cumulative dependencies between
the sets:

lim
ñ→∞

Df
S1S2

≤ 2b+(ñ+ n1)n2
b1 + b2 + b−ñ(ñ− 1) + 2b−ñn1 + 2b−(ñ+ n1)n2

= 0 (C.6)

Now, it is also proven that without weighing, Df
S1S2

→ 0. By definition it should hold
that Df

S1
+Df

S2
+Df

S1S2
= 1. Therefore, it can be concluded that Df

S1
→ 1 for ñ→∞, while

it should hold that Df
S2 ≈ D

f
S1, as the areas are equal.

When weighing with the size of the tasks, a converse argument can be provided. Again, for
the unaltered tasks in S1 and S2, the weighed dependency can simply be shortened as b1
and b2 respectively. Furthermore, the largest and smallest original task size of S1 can be
defined as A+ and A−, and the size of either task in S2 as A2. Following a logical argument,
the average fraction of a sector left after splitting is 1

ñ . This is true as no area is added or

M.A. Korthals Altes Master of Science Thesis

107

removed, such that the summed fractions of all split tasks will equal one. An upper bound
on the average size of a split task is then defined as 1

ñA
+. Using this, Equation (C.2) can be

rewritten as an upper bound:

b1 + b2 + b+
Å
A+

ñ

ã2
ñ(ñ− 1) + 2b+A

+

ñ
ñA+n1 + 2b+

Å
A+

ñ
ñ+A+n1

ã
A2n2 =

b1 + b2 − b+
(A+)2

ñ
+ 2b+(A+)2n1 + 2b+A+A2(1 + n1)n2 ≥

∑
i,j∈M

AiAj ||Fi − Fj ||22
(C.7)

Subsequently, the upper bound (C.4) can be reformulated as a lower bound:

lim
ñ→∞

Df
S2 ≥

b2

b1 + b2 − b+ (A+)2

ñ + 2b+(A+)2n1 + 2b+A+A2(1 + n1)n2
(C.8)

In this case, cumulative fractional dependency Df
S2
6→ 0 for n → ∞, but remains above a

certain constant.

In a similar manner, Equation (C.5) can be rewritten to the converse lower bound:

2b−
Å
A−

ñ
ñ+A−n1

ã
A2n2 ≤

∑
i∈S1

∑
j∈S2

AiAj ||Fi − Fj ||22 (C.9)

Such that the upper bound from Equation (C.6) becomes a lower bound:

lim
ñ→∞

Df
S1S2

≥ 2b−A−A2(1 + n1)n2

b1 + b2 − b+ (A+)2

ñ + 2b+(A+)2n1 + 2b+A+A2(1 + n1)n2
(C.10)

Again, it is shown that Df
S1S2

6→ 0 for ñ → ∞. Combined with Equation (C.8) this must
imply that Df

S1
6→ 1 for n→∞. It can be concluded that by weighing the dependencies with

the size of each task, the sum of the dependencies in each set is approximately insensitive to
the number of tasks it is composed of.

Then a generalized measure of capacity can be constructed for each agent k ∈ P. First, there
is the fractional task dependency Df

k ∈ [0, 1], in which all dependencies of all allocated tasks
are summed. Second is the fractional task size Afk ∈ [0, 1], in which the size of all allocated
tasks is summed. Ideally, one would then like to enforce the following constraint on the
solution:

1
2D

f
k + 1

2A
f
k ≤ b̂k ∀k ∈ P (C.11)

This equation states that the total task size and total task dependency should not exceed the
fractional area an agent can effectively service. Using these measures, a formulation can be
constructed to perform the task allocation.

Master of Science Thesis M.A. Korthals Altes

108 Task dependency proof

M.A. Korthals Altes Master of Science Thesis

Bibliography

[1] Ministerie van Defensie, “Defensievisie 2035. vechten voor een veilige toekomst,” 2020.

[2] S. Bungay, “The road to mission command: The genesis of a command philosophy,”
British Army Review, vol. 137, pp. 22 – 29, 2005.

[3] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen, “An exact algorithm for the ele-
mentary shortest path problem with resource constraints: Application to some vehicle
routing problems,” Networks: An International Journal, vol. 44, no. 3, pp. 216–229,
2004.

[4] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms. Springer
Science & Business Media, 1981.

[5] A. Netzer, A. Grubshtein, and A. Meisels, “Concurrent forward bounding for distributed
constraint optimization problems,” Artificial Intelligence, vol. 193, pp. 186–216, 2012.

[6] M. A. Korthals Altes, “A framework for intent-based command and control of robotic
autonomous systems for persistent reconnaissance - literature survey.” Unpublished,
2020.

[7] N. Nigam, “The multiple unmanned air vehicle persistent surveillance problem: A re-
view,” Machines, vol. 2, no. 1, pp. 13–72, 2014.

[8] M. M. Polycarpou, Y. Yang, and K. M. Passino, “Cooperative control of distributed
multi-agent systems,” IEEE Control Systems Magazine, vol. 21, pp. 1–27, 2001.

[9] A. E. Gil, K. M. Passino, and J. B. Cruz Jr, “Stable cooperative surveillance with infor-
mation flow constraints,” IEEE Transactions on Control Systems Technology, vol. 16,
no. 5, pp. 856–868, 2008.

[10] Y. Yang, M. M. Polycarpou, and A. A. Minai, “Multi-UAV cooperative search using
an opportunistic learning method,” Journal of Dynamic Systems, Measurement, and
Control, vol. 129, no. 5, pp. 716–728, 2007.

[11] C. A. Baker, S. Ramchurn, W. T. Teacy, and N. R. Jennings, “Planning search and
rescue missions for UAV teams,” Frontiers in Artificial Intelligence and Applications,
vol. 285, pp. 1777–1782, 2016.

[12] C. Hu, Z. Zhang, N. Yang, H. S. Shin, and A. Tsourdos, “Fuzzy multiobjective co-
operative surveillance of multiple UAVs based on distributed predictive control for un-
known ground moving target in urban environment,” Aerospace Science and Technology,
vol. 84, pp. 329–338, 2019.

Master of Science Thesis M.A. Korthals Altes

110 Bibliography

[13] L. Lin and M. A. Goodrich, “Hierarchical heuristic search using a gaussian mixture
model for UAV coverage planning,” IEEE Transactions on Cybernetics, vol. 44, no. 12,
pp. 2532–2544, 2014.

[14] J. Tisdale, A. Ryan, Z. Kim, D. Tornqvist, and J. K. Hedrick, “A multiple UAV system
for vision-based search and localization,” Proceedings of the American Control Confer-
ence, pp. 1985–1990, 2008.

[15] K. N. McGuire, C. de Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E. de Croon,
“Minimal navigation solution for a swarm of tiny flying robots to explore an unknown
environment,” Science Robotics, vol. 4, no. 35, 2019.

[16] Y. Wang, P. Bai, X. Liang, W. Wang, J. Zhang, and Q. Fu, “Reconnaissance Mission
Conducted by UAV Swarms Based on Distributed PSO Path Planning Algorithms,”
IEEE Access, vol. 7, pp. 105086–105099, 2019.

[17] M. Scheutz, P. Schermerhorn, and P. Bauer, “The utility of heterogeneous swarms of
simple UAVs with limited sensory capacity in detection and tracking tasks,” in Pro-
ceedings IEEE Swarm Intelligence Symposium, pp. 257–264, IEEE, 2005.

[18] W. M. Shen, P. Will, A. Galstyan, and C. M. Chuong, “Hormone-inspired self-
organization and distributed control of robotic swarms,” Autonomous Robots, vol. 17,
no. 1, pp. 93–105, 2004.

[19] S. Ragi and E. K. Chong, “UAV path planning in a dynamic environment via partially
observable markov decision process,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 49, no. 4, pp. 2397–2412, 2013.

[20] H.-J. Chae, S.-S. Park, H.-V. Kim, H.-S. Ko, and H.-L. Choi, “UAV path planning for
local defense systems,” in RITA 2018, pp. 199–211, Springer, 2019.

[21] H. Y. Shin., A. Tsourdos, V. Lappas, A. Ampatzoglou, V. Kostopoulos, S. Bertrand,
J. Marzat, H. Piet-Lahanier, D. Lindgren, and M. Detratti, “Autonomous unmanned
heterogeneous vehicles for persistent monitoring,” AIAA Scitech 2019 Forum, pp. 1–24,
2019.

[22] B. D. Song, J. Kim, and J. R. Morrison, “Rolling Horizon Path Planning of an Au-
tonomous System of UAVs for Persistent Cooperative Service MILP Formulation and
Efficient Heuristics,” Journal of Intelligent and Robotic Systems Theory and Applica-
tions, vol. 84, no. 1-4, pp. 241–258, 2016.

[23] H. X. Chen, Y. Nan, and Y. Yang, “Multi-UAV reconnaissance task assignment for het-
erogeneous targets based on modified symbiotic organisms search algorithm,” Sensors
(Switzerland), vol. 19, no. 3, 2019.

[24] C. Ercan and C. Gencer, “An Integer Programming Model for the Heterogeneous MILP
Fleet Routing Problemsi,” Savunma Bilimleri Dergisi, vol. 12, no. 2, pp. 119–144, 2013.

[25] S. K. K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. G. Manyam, and D. Cas-
beer, “The generalized persistent monitoring problem,” in American Control Conference
(ACC), pp. 2783–2788, 2019.

M.A. Korthals Altes Master of Science Thesis

111

[26] K. Sundar and S. Rathinam, “Algorithms for Heterogeneous, Multiple Depot, Multi-
ple Unmanned Vehicle Path Planning Problems,” Journal of Intelligent and Robotic
Systems: Theory and Applications, vol. 88, no. 2-4, pp. 513–526, 2017.

[27] J. Faigl and P. Vana, “Unsupervised learning for surveillance planning with team of
aerial vehicles,” Proceedings of the International Joint Conference on Neural Networks,
vol. 2017-May, pp. 4340–4347, 2017.

[28] Yan Jin, A. A. Minai, and M. M. Polycarpou, “Cooperative real-time search and task
allocation in UAV teams,” in 42nd IEEE International Conference on Decision and
Control, vol. 1, pp. 7–12 Vol.1, 2003.

[29] L. F. Bertuccelli, H. L. Choi, P. Cho, and J. P. How, “Real-time multi-UAV task
assignment in dynamic and uncertain environments,” AIAA Guidance, Navigation, and
Control Conference and Exhibit, pp. 1–16, 2009.

[30] X. Hu, H. Ma, Q. Ye, and H. Luo, “Hierarchical method of task assignment for multiple
cooperatingUAVteams,” Journal of Systems Engineering and Electronics, vol. 26, no. 5,
pp. 1000–1009, 2015.

[31] J. Cortés, S. Martínez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing
networks,” IEEE Transactions on Robotics and Automation, vol. 20, no. 2, pp. 243–255,
2004.

[32] K. Guruprasad and D. Ghose, “Coverage optimization using generalized voronoi parti-
tion,” arXiv preprint arXiv:0908.3565, 2009.

[33] K. Laventall and J. Cortés, “Coverage control by multi-robot networks with limited-
range anisotropic sensory,” International Journal of Control, vol. 82, no. 6, pp. 1113–
1121, 2009.

[34] A. Trotta, M. D. Felice, F. Montori, K. R. Chowdhury, and L. Bononi, “Joint Cov-
erage, Connectivity, and Charging Strategies for Distributed UAV Networks,” IEEE
Transactions on Robotics, vol. 34, no. 4, pp. 883–900, 2018.

[35] M. Burger, M. Huiskamp, and T. Keviczky, “Complete field coverage as a multi-vehicle
routing problem,” IFAC Proceedings Volumes, vol. 46, no. 18, pp. 97–102, 2013.

[36] I. Maza and A. Ollera, “Multiple UAV cooperative searching operation using polygon
area decomposition and efficient coverage algorithms,” Distributed Autonomous Robotic
Systems, vol. 6, 2007.

[37] P. Stodola, J. Drozd, J. Nohel, J. Hodickỳ, and D. Procházka, “Trajectory optimization
in a cooperative aerial reconnaissance model,” Sensors, vol. 19, no. 12, p. 2823, 2019.

[38] M. Schwager, M. P. Vitus, S. Powers, D. Rus, and C. J. Tomlin, “Robust adaptive
coverage control for robotic sensor networks,” IEEE Transactions on Control of Network
Systems, vol. 4, no. 3, pp. 462–476, 2017.

[39] D. A. Anisi, P. Ögren, and X. Hu, “Cooperative minimum time surveillance with
multiple ground vehicles,” IEEE Transactions on Automatic Control, vol. 55, no. 12,
pp. 2679–2691, 2010.

Master of Science Thesis M.A. Korthals Altes

112 Bibliography

[40] I. I. Hussein and D. M. Stipanović, “Effective coverage control for mobile sensor net-
works with guaranteed collision avoidance,” IEEE Transactions on Control Systems
Technology, vol. 15, no. 4, pp. 642–657, 2007.

[41] C. Franco, D. Paesa, G. Lopez-Nicolas, C. Sagues, and S. Llorente, “Hierarchical strat-
egy for dynamic coverage,” in IEEE International Conference on Intelligent Robots and
Systems, pp. 5341–5346, 2012.

[42] S. A. Sadat, J. Wawerla, and R. Vaughan, “Fractal trajectories for online non-
uniform aerial coverage,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 2971–2976, 2015.

[43] P. Vincent and I. Rubin, “A framework and analysis for cooperative search using UAV
swarms,” in Proceedings of the 2004 ACM symposium on Applied computing, pp. 79–86,
ACM, 2004.

[44] S. G. Manyam, S. Rasmussen, D. W. Casbeer, K. Kalyanam, and S. Manickam, “Multi-
UAV routing for persistent intelligence surveillance & reconnaissance missions,” Inter-
national Conference on Unmanned Aircraft Systems, pp. 573–580, 2017.

[45] S. L. Smith and D. Rus, “Multi-robot monitoring in dynamic environments with guar-
anteed currency of observations,” Proceedings of the IEEE Conference on Decision and
Control, pp. 514–521, 2010.

[46] J. Scherer and B. Rinner, “Persistent multi-UAV surveillance with energy and commu-
nication constraints,” in IEEE International Conference on Automation Science and
Engineering, pp. 1225–1230, 2016.

[47] K. Kalyanam, S. Manyam, A. Von Moll, D. Casbeer, and M. Pachter, “Scalable and
Exact MILP Methods for UAV Persistent Visitation Problem,” IEEE Conference on
Control Technology and Applications, pp. 337–342, 2018.

[48] J. Scherer and B. Rinner, “Persistent multi-UAV surveillance with data latency con-
straints,” arXiv preprint arXiv:1907.01205, 2019.

[49] G. Sun, R. Zhou, B. Di, Z. Dong, and Y. Wang, “A novel cooperative path planning
for multi-robot persistent coverage with obstacles and coverage period constraints,”
Sensors (Switzerland), vol. 19, no. 9, 2019.

[50] N. Nigam and I. Kroo, “Persistent surveillance using multiple unmanned air vehicles,”
IEEE Aerospace Conference Proceedings, pp. 1–14, 2008.

[51] N. Nigam, S. Bieniawski, I. Kroo, and J. Vian, “Control of multiple UAVs for persistent
surveillance Algorithm and flight test results,” IEEE Transactions on Control Systems
Technology, vol. 20, no. 5, pp. 1236–1251, 2012.

[52] C. C. Olsen and D. L. Kunz, “A utility approach to UAS-based persistent ISR,” AIAA
Information Systems-AIAA Infotech at Aerospace, no. 209989, pp. 1–14, 2018.

[53] J. Wang, J. Guo, M. Zheng, Z. Wang, and Z. Li, “Uncertain multiobjective orienteer-
ing problem and its application to UAV reconnaissance mission planning,” Journal of
Intelligent and Fuzzy Systems, vol. 34, no. 4, pp. 2287–2299, 2018.

M.A. Korthals Altes Master of Science Thesis

113

[54] Q. Fan, F. Wang, X. Shen, and D. Luo, “Path planning for a reconnaissance UAV in
uncertain environment,” IEEE International Conference on Control and Automation,
ICCA, vol. 2016-July, pp. 248–252, 2016.

[55] B. Hefferan, O. M. Cliff, and R. Fitch, “Adversarial patrolling with reactive point
processes,” in Proceedings of the ARAA Australasian Conference on Robotics and Au-
tomation, pp. 39–46, 2016.

[56] B. Kartal, J. Godoy, I. Karamouzas, and S. J. Guy, “Stochastic tree search with useful
cycles for patrolling problems,” in Proceedings - IEEE International Conference on
Robotics and Automation, pp. 1289–1294, IEEE, 2015.

[57] T. Kusnur, S. Mukherjee, D. M. Saxena, T. Fukami, T. Koyama, O. Salzman, and
M. Likhachev, “A planning framework for persistent, multi-MILP coverage with global
deconfliction,” arXiv preprint arXiv:1908.09236, 2019.

[58] M. Charitidou, “Multi-robot path planning for persistent coverage tasks with perfor-
mance guarantees,” Master’s thesis, Delft Center for Systems & Control, 2019.

[59] J. Finke and K. M. Passino, “Stable cooperative vehicle distributions for surveillance,”
Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,
vol. 129, no. 5, pp. 597–608, 2007.

[60] J. R. Oliveira, R. Calvo, and R. A. Romero, “Integration of virtual pheromones for map-
ping/exploration of environments by using multiple robots,” Proceedings of the IEEE
RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics,
pp. 835–840, 2014.

[61] J. M. Palacios-Gasós, E. Montijano, C. Sagüés, and S. Llorente, “Distributed coverage
estimation and control for multirobot persistent tasks,” IEEE Transactions on Robotics,
vol. 32, no. 6, pp. 1444–1460, 2016.

[62] C. Huang, W. Li, C. Xiao, B. Liang, and S. Han, “Potential field method for persis-
tent surveillance of multiple unmanned aerial vehicle sensors,” International Journal of
Distributed Sensor Networks, vol. 14, no. 1, 2018.

[63] M. A. Batalin and G. S. Sukhatme, “The analysis of an efficient algorithm for robot
coverage and exploration based on sensor network deployment,” in Proceedings of the
IEEE International Conference on Robotics and Automation, pp. 3478–3485, 2005.

[64] A. Mellone, G. Franzini, L. Pollini, and M. Innocenti, “Persistent coverage control for
teams of heterogeneous agents,” in Proceedings of the IEEE Conference on Decision
and Control, pp. 2114–2119, 2018.

[65] G. Chmaj and H. Selvaraj, “Distributed processing applications for UAV/drones: a
survey,” in Progress in Systems Engineering, pp. 449–454, Springer, 2015.

[66] J. Liu, M. Chu, and J. E. Reich, “Multitarget tracking in distributed sensor networks,”
IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 36–46, 2007.

[67] H. Choset, “Coverage for robotics - A survey of recent results,” Annals of Mathematics
and Artificial Intelligence, vol. 31, no. 1-4, pp. 113–126, 2001.

Master of Science Thesis M.A. Korthals Altes

114 Bibliography

[68] T. Cabreira, L. Brisolara, and P. R Ferreira, “Survey on coverage path planning with
unmanned aerial vehicles,” Drones, vol. 3, no. 1, p. 4, 2019.

[69] R. Jans and Z. Degraeve, “Meta-heuristics for dynamic lot sizing: A review and compar-
ison of solution approaches,” European journal of operational research, vol. 177, no. 3,
pp. 1855–1875, 2007.

[70] A. Farinelli, L. Iocchi, and D. Nardi, “Multirobot systems: a classification focused on
coordination,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34,
no. 5, pp. 2015–2028, 2004.

[71] L. E. Parker, “Distributed intelligence: Overview of the field and its application in multi-
robot systems.,” in AAAI Fall Symposium: Regarding the Intelligence in Distributed
Intelligent Systems, pp. 1–6, 2007.

[72] H. Abbas, S. Shaheen, and M. Amin, “Organization of multi-agent systems: An
overview,” International Journal of Intelligent Information Systems, vol. 4, no. 3,
pp. 46–57, 2015.

[73] B. Horling and V. Lesser, “A survey of multi-agent organizational paradigms,” Knowl-
edge Engineering Review, vol. 19, no. 4, pp. 281–316, 2004.

[74] A. Tate, “Generating project networks,” in Proceedings of the 5th international joint
conference on Artificial intelligence-Volume 2, pp. 888–893, 1977.

[75] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application of theorem
proving to problem solving,” Artificial intelligence, vol. 2, no. 3-4, pp. 189–208, 1971.

[76] R. I. Brafman and C. Domshlak, “From one to many: Planning for loosely coupled
multi-agent systems.,” in ICAPS, vol. 8, pp. 28–35, 2008.

[77] A. Torreño, E. Onaindia, and Ó. Sapena, “FMAP: Distributed cooperative multi-agent
planning,” Applied Intelligence, vol. 41, no. 2, pp. 606–626, 2014.

[78] M. Tambe, “Towards flexible teamwork,” Journal of artificial intelligence research,
vol. 7, pp. 83–124, 1997.

[79] K. Geihs, “Engineering challenges ahead for robot teamwork in dynamic environments,”
Applied Sciences, vol. 10, no. 4, p. 1368, 2020.

[80] P. R. Cohen and H. J. Levesque, “Teamwork,” Nous, vol. 25, no. 4, pp. 487–512, 1991.

[81] B. J. Grosz and S. Kraus, “Collaborative plans for complex group action,” Artificial
Intelligence, vol. 86, no. 2, pp. 269–357, 1996.

[82] H. Skubch, Modelling and controlling of behaviour for autonomous mobile robots.
Springer Science & Business Media, 2012.

[83] M. Güzelsoy and T. K. Ralphs, “Duality for mixed-integer linear programs,” Interna-
tional Journal of Operations Research, vol. 4, no. 3, pp. 118–137, 2007.

[84] M. Dror, “Note on the complexity of the shortest path models for column generation
in vrptw,” Operations Research, vol. 42, no. 5, pp. 977–978, 1994.

M.A. Korthals Altes Master of Science Thesis

115

[85] C. Nilsson, “Heuristics for the traveling salesman problem,” Linkoping University,
vol. 38, pp. 00085–9, 2003.

[86] M. Desrochers, An algorithm for the shortest path problem with resource constraints.
École des hautes études commerciales, Groupe d’études et de recherche en analyse des
décisions, 1988.

[87] G. Righini and M. Salani, “Symmetry helps: Bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints,” Discrete
Optimization, vol. 3, no. 3, pp. 255–273, 2006.

[88] G. Righini and M. Salani, “New dynamic programming algorithms for the resource
constrained elementary shortest path problem,” Networks: An International Journal,
vol. 51, no. 3, pp. 155–170, 2008.

[89] L. D. P. Pugliese and F. Guerriero, “A survey of resource constrained shortest path
problems: Exact solution approaches,” Networks, vol. 62, no. 3, pp. 183–200, 2013.

[90] A. Bettinelli, A. Ceselli, and G. Righini, “A branch-and-cut-and-price algorithm for the
multi-depot heterogeneous vehicle routing problem with time windows,” Transportation
Research Part C: Emerging Technologies, vol. 19, no. 5, pp. 723–740, 2011.

[91] D. Feillet, “A tutorial on column generation and branch-and-price for vehicle routing
problems,” 4OR, vol. 8, no. 4, pp. 407–424, 2010.

[92] A. Saxena, P. Bonami, and J. Lee, “Convex relaxations of non-convex mixed integer
quadratically constrained programs: extended formulations,” Mathematical program-
ming, vol. 124, no. 1, pp. 383–411, 2010.

[93] A. Saxena, P. Bonami, and J. Lee, “Convex relaxations of non-convex mixed integer
quadratically constrained programs: projected formulations,” Mathematical program-
ming, vol. 130, no. 2, pp. 359–413, 2011.

[94] M. W. Carter, “The indefinite zero-one quadratic problem,” Discrete Applied Mathe-
matics, vol. 7, no. 1, pp. 23–44, 1984.

[95] A. Billionnet, S. Elloumi, and M.-C. Plateau, “Improving the performance of standard
solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method,”
Discrete Applied Mathematics, vol. 157, no. 6, pp. 1185–1197, 2009.

[96] S. Mallach, “Compact linearization for binary quadratic problems subject to assignment
constraints,” 4OR, vol. 16, no. 3, pp. 295–309, 2018.

[97] R. Fortet, “Applications de l’algebre de boole en recherche opérationelle,” Revue
Française de Recherche Opérationelle, vol. 4, no. 14, pp. 17–26, 1960.

[98] P. L. Hammer and S. Rudeanu, Boolean methods in operations research and related
areas, vol. 7. Springer Science & Business Media, 2012.

[99] F. Glover and E. Woolsey, “Further reduction of zero-one polynomial programming
problems to zero-one linear programming problems,” Operations Research, vol. 21, no. 1,
pp. 156–161, 1973.

Master of Science Thesis M.A. Korthals Altes

116 Bibliography

[100] F. Glover and E. Woolsey, “Converting the 0-1 polynomial programming problem to a
0-1 linear program,” Operations research, vol. 22, no. 1, pp. 180–182, 1974.

[101] L. Liberti, “Compact linearization for binary quadratic problems,” 4OR, vol. 5, no. 3,
pp. 231–245, 2007.

[102] W. P. Adams, R. J. Forrester, and F. W. Glover, “Comparisons and enhancement
strategies for linearizing mixed 0-1 quadratic programs,” Discrete Optimization, vol. 1,
no. 2, pp. 99 – 120, 2004.

[103] F. Fioretto and W. Yeoh, “Distributed constraint optimization problems and applica-
tions: A survey,” Journal of Artificial Intelligence Research, vol. 61, 02 2016.

[104] M. Yokoo, O. Etzioni, T. Ishida, and N. Jennings, Distributed Constraint Satisfaction:
Foundations of Cooperation in Multi-Agent Systems. Springer-Verlag, 2001.

[105] D. A. Burke and K. N. Brown, “A comparison of approaches to handling complex
local problems in dcop,” in Sixth International Workshop on Distributed Constraint
Reasoning, pp. 27–33, 2006.

[106] D. A. Burke and K. N. Brown, “Efficient handling of complex local problems in dis-
tributed constraint optimization,” in 17th European Conference on Artificial Intelli-
gence, pp. 701–702, 2006.

[107] J. Davin and P. Modi, “Hierarchical variable ordering for multiagent agreement prob-
lems,” in Proceedings of the International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 1433–1435, 2006.

[108] S. Khanna, A. Sattar, D. Hansen, and B. Stantic, “An efficient algorithm for solving dy-
namic complex dcop problems,” in International Joint Conference on Web Intelligence
and Intelligent Agent Technology, vol. 2, pp. 339–346, 2009.

[109] C. Portway and E. H. Durfee, “Ordered multi-variable multi-constrained distributed
constraint optimization framework,” in International Conference on Web Intelligence
and Intelligent Agent Technology, vol. 2, pp. 379–382, 2010.

[110] T. Grinshpoun, “Clustering variables by their agents,” in International Conference on
Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 250–256, 2015.

[111] F. Fioretto, W. Yeoh, and E. Pontelli, “Multi-variable agents decomposition for dcops,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 30, 2016.

[112] A. Gershman, A. Meisels, and R. Zivan, “Asynchronous forward bounding for dis-
tributed cops,” Journal of Artificial Intelligence Research, vol. 34, pp. 61–88, 2009.

[113] W. Yeoh, A. Felner, and S. Koenig, “Bnb-adopt: An asynchronous branch-and-bound
dcop algorithm,” Journal of Artificial Intelligence Research, vol. 38, pp. 85–133, 2010.

[114] F. Vanderbeck, “On dantzig-wolfe decomposition in integer programming and ways to
perform branching in a branch-and-price algorithm,” Operations Research, vol. 48, no. 1,
pp. 111–128, 2000.

M.A. Korthals Altes Master of Science Thesis

Glossary

List of Acronyms

AOI Area of Interest
C2 Command & Control
CCB Complex Concurrent Bounding
ConcFB Concurrent Forward-Bounding
CONOPS Concept of Operations
CPA Current Partial Assignment
DAI Distributed Artificial Intelligence
DCOP Distributed Constraint Optimization Problem
EMCON Emission Control
ESPP Elementary Shortest Path Problem
FCM Fuzzy C-Means
HFVRP Heterogeneous Fleet Vehicle Routing Problem
HTN Hierarchical Task Network
ISR Intelligence, Surveillance & Reconnaissance
LB Lower Bound
MAP Multi-Agent planning
MARP Multi-Agent Reconnaissance Problem
MAS Multi-Agent system
MDHVRP Multi-Depot Heterogeneous Vehicle Routing Problem
MILP Mixed Integer Linear Program
MIQCP Mixed Integer Quadratically Constrained Program
MP Master Problem
MRS Multi-Robot System
MTSP Multiple Traveling Salesmen Problem
POMDP Partially Observable Markov Decision Process
QCLP Quadratically Constrained Linear Program
QCR Quadratic Convex Reformulation
RAS Robotic & Autonomous Systems
RMP Restricted Master Problem
SA Situational Awareness

Master of Science Thesis M.A. Korthals Altes

118 Glossary

SARP Single-Agent Reconnaissance Problem
SDP Semidefinite Programming
SFB Synchronous Forward Bounding
SP Search Process
SP Sub Problem
SPP Shortest Path Problem
TSP Traveling Salesman Problem
UAV Unmanned Aerial Vehicle
UB Upper Bound
VRP Vehicle Routing Problem

List of Symbols

δ̄ti Average uncertainty of adjacent sectors from sector i ∈ N at time t
β Cut-off degree below which any degree is removed as not significant
βk Overused capacity for subordinate k ∈ P
δti Uncertainty in sector i ∈ N at time t
ṙti Risk of sectors i ∈ N at time t
Ṙj Average risk increase of cluster j ∈M
ε Clustering improvement threshold
γ Degree belonging to the nth percentile of all ordered degrees uij ∀i ∈ N , j ∈M
γti Uncertainty dispersion to sector i ∈ N at time t
b̂k Normalized capacity given as fractional area agent k ∈ P can service
ĉlb Lower bound on the minimum reduced cost obtainable by extending label L
ĉstepjk Added reduced cost by stepping to vertex j ∈ V with agent k ∈ P from label L
ĉk Reduced cost for the sequence of label L
Ĵijk Approximation of added reduced cost by including edge {i, j} in sequence for

agent k ∈ P
Ĵrk Reduced cost if sequence r ∈ Ω is performed by agent k ∈ P
ûj Lower bound on distance to vertex j ∈ V
ûij Interpolated degree of sector i ∈ N belonging to cluster j ∈M
ẑ Lower bound on cycle distance
κ Scaling factor used for various experiments
Λi Set of supervisors q ∈ C that can perform task i ∈M
λi Duals for the sectors i ∈ N
λk Duals for the agents k ∈ P
E , Ek Set of graph edges (of agent k ∈ P)
M Set of clusters (=tasks)

M.A. Korthals Altes Master of Science Thesis

119

Ms Set of shared clusters with a group of supervisors C
Mq,Ml

q Set of (local) clusters of supervisor q ∈ C
N Set of sectors
P Set of agents (subordinates)
Pq Set of subordinates for supervisor q ∈ C
Uk Linearly ordered set composing a sequence of vertices and cumulative distances

{j, dk} ∀i ∈ V, k ∈ P, of label L
V, Vk Set of graph vertices (of agent k ∈ P)
W Set of unvisited vertices of label L
Ω Set of all possible sequences
Ωr Restricted set of sequences
ρ A weight balancing the risk and risk increase objective cost
σh Heterogeneity standard deviation
ũij Discounted degree of sector i ∈ N belonging to cluster j ∈ Mq of supervisor

q ∈ C
{yi, xi} Cartesian coordinates for sector i ∈ N
Afi Normalized size of task i ∈M
As Standard squared sector area (= d2

s) for every sector in N
Aj Total area of cluster j ∈M
Aik A constant indicating if vertex i ∈ V can be visited by agent k ∈ P
air Constant indicating if sector i ∈ N is included in sequence r ∈ Ω
ajk Total utility of agent k ∈ P performing task j ∈M
bk Absolute capacity given as area agent k ∈ P can service
czk Cycle cost for the sequence of label L
cstepjk Added cost by stepping to vertex j ∈ V with agent k ∈ P from label L
Cj Centroid of cluster j ∈M
ck Total cost for the sequence of label L
cij Distance between vertex i and j ∈ V
D Constant influencing dynamic increase of uncertainty by dispersion
Df
ij Normalized dependency between tasks i, j ∈M

ds Standard sector width
dk Cumulative distance to the current vertex of label L
Dq Compiled variable domain of supervisor q ∈ C
e Inefficiency penalty for capacity violation
ek Flight time in minutes for agent k ∈ P
Fj Centre of mass of cluster j ∈M
Jrk Cost if sequence r ∈ Ω is performed by agent k ∈ P
L, L′ A label used during forward labeling
l1jk Linear score indicating the suitability of agent k ∈ P dealing with the risk in

task j ∈M

Master of Science Thesis M.A. Korthals Altes

120 Glossary

l2jk Linear score indicating the suitability of agent k ∈ P dealing with the risk
increase in task j ∈M

m Fuzzifier used during Fuzzy C-Means (FCM)
Mi Terrain traversability in sector i ∈ N
nb Factor used to scale the normalized capacity
nc Maximum number of clusters per agent
Pi Operator priority of sector i ∈ N
rti Risk of sectors i ∈ N at time t
Rj Total risk of cluster j ∈M
S Constant influencing static increase of uncertainty
s, sk Source node in V (for agent k ∈ P)
ui, uik Distance of the sequence to vertex i ∈ V (for agent k ∈ P)
uij Degree of sector i ∈ N belonging to cluster j ∈M
uik, uiq Degree with which sector i ∈ N belongs to agent k ∈ P (or subordinate q ∈ C)
uti Uncertainty reduction by agent presence in sector i ∈ N at time t
vi, vik Remaining distance of the sequence from vertex i ∈ V (for agent k ∈ P)
vk Speed in m/s for agent k ∈ P
w A weight vector used to emphasize specific features during clustering
Xi Feature vector for sector i ∈ N
xij , xijk Decision variable if vertex j is visited after i ∈ V (for agent k ∈ P)
xik Decision variable if task i ∈M is performed by subordinate k ∈ P
xrk Decision variable if sequence r ∈ Ω is performed by agent k ∈ P
z, zk Cycle distance of the sequence (for agent k ∈ P)

M.A. Korthals Altes Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Preface

	Main Matter
	Introduction
	The complexity of military autonomy
	Problem statement
	Contributions
	Structure

	Persistent Reconnaissance State of the Art
	Classification of reconnaissance
	Solution methods
	Towards distributed coordination

	Modelling Reconnaissance
	Single-Agent Reconnaissance Problem
	Multi-Agent Reconnaissance Problem
	Risk evolution

	Benchmarking
	Lower bound
	Reformulation
	Column generation

	Upper bound
	SARP solution

	Intent-Based Coordination
	Solution structure
	Application of intent
	Clustering sectors
	Sector features
	Fuzzy C-Means algorithm
	Reducing cluster sparseness

	Task Allocation
	Valuing task properties
	Local formulation

	Distributed cooperation
	Concept of shared tasks
	Cooperative formulation
	Distributed Constraint Optimization Problems
	Concurrent Forward Bounding
	Complex Concurrent Bounding

	Combining the components

	Performance Analysis
	Experiment setup
	Scenario
	Default parameter values

	Component performance
	Benchmarks
	Task allocation
	Distributed cooperation
	Summary

	Combined performance
	Solution quality
	Flexibility
	Robustness
	Scalability
	Summary

	Conclusion
	Discussion

	Appendices
	Parameter Evaluation
	Additional Experiments
	Task dependency proof

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

