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Abstract In this paper we discuss a generalization of power algorithms over
max-plus algebra. We are interested in finding such a generalization starting
from various existing power algorithms. The resulting algorithm can be used
to determine the so-called generalized eigenmode of any square regular matrix
over max-plus algebra. In particular, the algorithm can be applied in the case
of regular reducible matrices in which the existing power algorithms can not
be used to compute eigenvalues and corresponding eigenvectors.

Keywords max-plus algebra · generalized eigenmode · power algorithm ·
cycle time vector

1 Introduction

Many problems in operation research, performance analysis, manufacturing,
communication network, etc., can be modeled as discrete event systems with
maximum timing constraints. An algebra underlying such systems is based on
two operations, maximization and addition, and is called max-plus algebra. For
a paper on the scheduling of transportation systems using max-plus algebra,
specifically in supply chain scheduling, see [11]. Eigenvalues and corresponding
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eigenvectors of square matrices over max-plus algebra have a very important
role in applications. Particularly, they can be used to solve periodic scheduling
problems. Periodicity of a timetable is often desired by users. Some results on
eigenvalues and corresponding eigenvectors over max-plus algebra have been
applied to scheduling problems in [7–10]. Moreover, eigenvalue problems for
Latin squares in max-plus algebra and bipartite (min, max, +)-systems have
been discussed in [12,13].

The power algorithm over max-plus algebra was initiated by Olsder in [1].
In that paper the algorithm is stated and an example is given. However, there
is no further theory developed in [1]. Braker and Olsder proved that under
certain conditions, the power algorithm can be used to find the eigenvalue and
eigenvector of a max-algebra system. If the conditions are not satisfied, the
eigenvector can be found using an extension of the power algorithm [3]. The
work on power algorithms was continued by Subiono and van der Woude in [5].
They developed another power algorithm which is simpler than the previously
mentioned algorithms.

In this paper we construct a generalization of the above mentioned power
algorithms. The result is a generalization of Algorithm 2.5.a in [5], and of Algo-
rithm 3.1 and 4.3 in [3], and can be used to determine the so-called generalized
eigenmode of any square regular matrix over max-plus algebra. In particular,
the algorithm can be applied in the case of regular reducible matrices in which
the existing power algorithms can not be used to compute eigenvalues and
corresponding eigenvectors. In addition, based on the results of numerical
experiments, it can be concluded that the generalized power algorithm may
compute the generalized eigenmode of any square regular matrix over max-plus
algebra faster than the policy iteration algorithm given in [4]. However, this
statement is relative to used initial condition and structure of the matrices.
Note that we can consider here square regular matrices over max-plus algebra,
whereas the existing power algorithms require the matrices to be irreducible
and may fail to determine eigenvalues and corresponding eigenvectors in case
they are applied to reducible square matrices.

The outline of this paper is as follows. In Section 2 we give a brief in-
troduction to max-plus algebra and some related notations. In Section 3 we
discuss some lemmas and theorems. In the last part of the section we give a
generalized power algorithm, being the main result of this paper. We illustrate
our main result by means of four examples. We end the paper with Section 4
in which we present some concluding remarks.

2 Max-Plus Algebra

In this section we briefly introduce the notion of max-plus algebra and some
related notations used in the following discussion. A detailed discussion about
the max-plus algebra can be found in [2,6].

The max-plus algebra Rmax is the set R∪{ε}, equipped with two operations,

addition (⊕) and multiplication (⊗), where R is the set of real numbers, ε
def
=
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−∞, x⊕y def
= max{x, y} and x⊗y def

= x+y for every x, y ∈ Rmax. Furthermore,
in the context of max-plus algebra a⊗ b = ba, the conventional multiplication
of b and a. The algebraic structure of Rmax is an idempotent semifield, i.e., an
idempotent commutative semiring where every element x ∈ Rmax, with x 6= ε,
has an inverse under the ⊗ operation, denoted −x. For example, in Rmax we
have 3⊕7 = max{3, 7} = 7 and 3⊗7 = 3+7 = 10. Also ε⊕x = max{−∞, x} =
x = max{x,−∞} = x⊕ ε and 0⊗ x = 0 + x = x = x+ 0 = x⊗ 0 for every x
in Rmax. Further, the following holds 3⊗ 2 = 2(3) = 6.

2.1 Matrices over Rmax

In this subsection we introduce matrices over Rmax. The set of all matrices of
size m × n over the max-plus algebra is denoted by Rm×nmax . For n ∈ N with

n 6= 0, we define n
def
= {1, 2, . . . , n}. An element in row i and column j of a

matrix A ∈ Rm×nmax is denoted by ai,j , for i ∈ m and j ∈ n. Sometimes the
element ai,j is also denoted by [A]i,j , i ∈ m, j ∈ n. A regular matrix is a
matrix where every row contains at least one finite entry.

The identity matrix of size n × n over Rmax is denoted by E, i.e., the

elements on the main diagonal of the matrix are equal to e, where e
def
= 0,

and the other elements are equal to ε. A zero matrix of size m × n in Rm×nmax

is denoted by E(m,n), i.e., all elements of the matrix are equal to ε. For

matrices A,B ∈ Rm×nmax , the sum A⊕B is defined by [A⊕B]i,j
def
= ai,j ⊕ bi,j =

max{ai,j , bi,j}, for i ∈ m and j ∈ n.
For a matrix A ∈ Rm×nmax and a scalar α ∈ Rmax, the scalar multiplication

α ⊗ A is defined by [α ⊗ A]i,j
def
= α ⊗ ai,j , for i ∈ m and j ∈ n. For matrices

A ∈ Rm×pmax and B ∈ Rp×nmax , the matrix multiplication A ⊗ B is defined by

[A ⊗ B]i,j
def
=

p⊕
k=1

ai,k ⊗ bk,j = max
k∈p
{ai,k + bk,j}, for i ∈ m and j ∈ n. Matrix

multiplication is similar to conventional matrix multiplication, where + and
× are replaced by ⊕ and ⊗, respectively. For a matrix A ∈ Rn×nmax and a
positive integer k, the k-th power of A is denoted by A⊗ k and defined as

A⊗ k
def
= A⊗A⊗ . . .⊗A︸ ︷︷ ︸

k

. For completeness, A⊗ 0 def
= E. For ease of notations,

we write A+ for
⊕∞

k=1A
⊗ k, and A∗ for E ⊕ A+ =

⊕
k≥0A

⊗ k, where A is a

square matrix in Rn×nmax .

2.2 Max-Plus and Graphs

In this subsection, we briefly introduce some definitions and max-plus algebra
notations on graphs. We collect some basic definitions from [6].

A directed graph G is a pair (V,D), where V is the set of vertices (nodes)
of the graph G and D ⊆ V × V is the set of edges of G. Here (i, j) denotes
an edge from node i to node j. Node i is called the begin node of edge (i, j),
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and node j is called its end node. A directed graph G(A) associated with a
matrix A ∈ Rn×nmax is the graph with vertices in V = {1, 2, ..., n} and edges in
D = {(i, j) : aj,i 6= ε}. We say that aj,i is the weight of edge (i, j) ∈ D. In
this paper we consider matrices A that are regular. It implies that every node
in G is the end node of at least one edge.

A path p from node i to node j in a graph is a sequence of nodes p =
(i1, i2, ..., is+1) with i1 = i and is+1 = j such that each (ik, ik+1), 1 ≤ k ≤ s,
is an edge of the graph. We say the path has length s and denote by ||p||l = s
the length of the path. The weight of the path is defined as the sum of the
weights of all edges in the path, i.e.,

∑s
k=1 aik+1,ik . If this sum is t, we denote

by ||p||w = t the weight of the path. The average weight (or mean) of the path
is then defined as t

s . The set of paths from i to j of length k will be denoted by
P (i, j, k). A vertex j is said to be reachable from a vertex i, denoted by iRj,
if there exists a path from i to j. A strongly connected graph is a graph such
that every vertex is reachable from every other vertex. A matrix A in Rn×nmax

is called irreducible if the corresponding graph G(A) is strongly connected.
If G(A) is not strongly connected, i.e., if G(A) contains nodes that are not
reachable from each other, then the matrix A is called reducible.

A circuit of length s is a closed path i.e., a path p = (i1, i2, ..., is+1) such
that i1 = is+1. A circuit consisting of one edge is also called a loop. An
elementary circuit is one in which i1, i2, ..., is are distinct. For circuits, the
notions of length, weight and average weight (or mean) are defined in the
same way as for paths.

Node j communicates with node i, denoted by iCj, if either i = j, or
vertex j is reachable from vertex i and conversely. Hence, iCj ⇐⇒ i =
j or (iRj and jRi). Note that the relation “communicate with” is an equiva-

lence relation. We denote by [i]
def
= {j ∈ V : jCi} the set of nodes containing

node i that communicate with each other. Then the set V can be partitioned
as [i1] ∪ [i2] ∪ · · · ∪ [iq], where [ir], r ∈ q, denotes a subset of nodes that
communicate with each other, but not with other nodes of V.

Given the above partitioning of V, it is possible to focus on subgraphs of G,
denoted by Gr = ([ir],Dr), r ∈ q, where Dr denotes the subset of D of edges
that have both the begin node and the end node in [ir]. The subgraph Gr is
known as a maximum strongly connected subgraph (m.s.c.s.) of G. By
definition, nodes in [ir] do not communicate with nodes outside [ir].

Let Ar,r denote the matrix obtained by restricting A ∈ Rn×nmax to nodes in
[ir], for all r ∈ q, i.e., [Ar,r]k,l = ak,l for all k, l ∈ [ir]. Notice that for all
r ∈ q either, Ar,r is irreducible or Ar,r = E . The original reducible matrix A,
possibly after a relabeling of nodes in G(A), can be written in the form

A1,1 A1,2 · · · · · · A1,q

E A2,2 · · · · · · A2,q

E E A3,3

...
...

...
. . .

. . .
...

E E · · · E Aq,q

 , (1)
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where As,r, 1 ≤ s < r ≤ q, are matrices of appropriate sizes. Each finite entry
in As,r corresponds to an edge from a node in [ir] to a node in [is]. The upper
triangular block form, shown above, is said to be a normal form of matrix A.

Throughout this paper we assume that matrix A is regular, i.e., A has a
finite entry in each row. However, A is allowed to have columns without any
finite entry. Also then it is possible to determine the above normal form. For
an example, see Example 2.1.3 in [6].

2.3 Asymptotic Behaviour of A⊗ k

In this subsection, we recall some definitions and results about the asymptotic
behaviour of A⊗ k from [2] and [6]. Let G(A) be the graph of a matrix A ∈
Rn×nmax . We can restrict ourselves to the case that G(A) has at least one circuit.
More specifically, as indicated above, we restrict ourselves in this study to
matrices A that are regular.

Definition 1 Let A be a square matrix and assume that the maximum cycle
mean of G(A) is equal to e = 0. The following notions can then be defined:
Critical circuit: A circuit η of the graph G(A) is called critical if it has
maximum weight, that is, ||η||w = e.
Critical graph: The critical graph Gc(A) consists of those nodes and edges
of G(A) which belong to a critical circuit of G(A). Let the nodes constitute
the set Vc.
Cyclicity of a graph: The cyclicity of a m.s.c.s. is the greatest common
divisor (g.c.d.) of the lengths of all its circuits. The cyclicity c(G) of a graph
G is the least common multiple (l.c.m.) of the cyclicities of all its m.s.c.s.’s.
Cyclicity of A: Let A ∈ Rn×nmax be such that its communication graph contains
at least one circuit. The cyclicity of A, denoted by σ(A), is the cyclicity of the
critical graph A.

Let us give now some simple results about these graphs that will be useful
in the next discussion.

Proposition 1 (cf. [6]) If the critical graph of matrix A has cyclicity σ and
A is irreducible, then the critical graph of matrix A⊗σ has cyclicity one.

Proposition 1 is used in the proof of Lemma 32.

Definition 2 Let A ∈ Rn×nmax and define the n× n (projection) matrix

Q =
⊕
i∈Vc

A+
•,i ⊗A

+
i,•,

where A+
•,i and A+

i,• stand for the i-th column and the i-th row of matrix A+,
respectively.
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Proposition 2 (cf. [2]) Let a matrix A ∈ Rn×nmax . If the critical graph has
cyclicity one and the maximum cycle mean (m.c.m.) of G(A) is equal to e = 0,
then

lim
k→∞

A⊗ k = Q, or element-wise, lim
k→∞

[A⊗k]j,l = Qj,l =
⊕
i∈Vc

[A+]j,i ⊗ [A+]i,l.

Note that Proposition 2 assumes that the m.c.m. is equal to e = 0. We will
explain the general case in Lemma 31.

From the proof of the Proposition 2 in [2], it follows that

Corollary 1 Under the conditions of Proposition 2, if there is a path in G(A)
from l to j that passes through a node of the critical graph, then there exists a
finite q such that [A⊗k]j,l = Qj,l for all k ≥ q. Conversely, if no path from l to
j in G(A) passes through a node of the critical graph, then lim

k→∞
[A⊗k]j,l = ε.

Corollary 1 is important to prove Lemma 31.

2.4 Eigenvalues and Eigenvectors of Square Matrix and The Power Algorithm

In this subsection we give the notion of eigenvalue and corresponding eigen-
vector of a square matrix A in Rn×nmax . We also give an existing power algorithm
to compute the eigenvalues and corresponding eigenvectors.

Definition 3 Let a matrix A ∈ Rn×nmax be given. If λ ∈ R is a scalar and
vvv ∈ Rnmax is a vector that contains at least one finite element, such that

A⊗ vvv = λ⊗ vvv,

then λ is called an eigenvalue of A and vvv is a corresponding eigenvector of A.

In the existing power algorithms the eigenvalues and the corresponding
eigenvectors of a square matrix A in Rn×nmax are determined by using the fol-
lowing recurrence equation:

xxx(k + 1) = A⊗ xxx(k), k = 0, 1, 2, . . . , (2)

with a finite initial condition xxx(0) = xxx0 ∈ Rn. The j-th component of xxx(k) is
denoted by xj(k) for j ∈ n. In the following we give a known power algorithm.

Algorithm 21 (cf. [5])

1. Choose an arbitrary initial vector xxx(0) = xxx0 ∈ Rn.
2. Iterate equation (2) until there are integers p > q ≥ 0 and a real number c

such that a periodic behavior occurs, i.e., xxx(p) = c⊗ xxx(q).
3. Compute the eigenvalue λ = c

p−q
4. Compute a vector as follows

vvv =

p−q⊕
i=1

(
λ⊗(p−q−i) ⊗ xxx(q + i− 1)

)
.
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5. Then vvv is an eigenvector of matrix A for the eigenvalue λ.

According to step 2 of Algorithm 21, we can conclude that xxx(k) = c⊗xxx(k+
(q−p)) for k ≥ p. Furthermore, when Algorithm 21 is successfully applied to a
regular square matrix A its cycle time vector, see below for the definition, must
contain equal values. In other words, the algorithm cannot be used to regular
square matrices A for which the cycle time vector contain different values.
Therefore, in this paper we discuss a generalization of Algorithm 21 which can
be used to calculate a so-called generalized eigenmode of any regular square
matrix over max-plus algebra by using the recurrence relation in Equation (2).

2.5 Cycle Time Vector and The Generalized Eigenmode

In this subsection, we give the definition of cycle time vector and we recall the
generalized eigenmode as introduced in [4] and [6].

Definition 4 Given a regular square matrix A ∈ Rn×nmax . Using recurrence
relation (2) we obtain a sequence {xxx(k) : k ∈ N} ⊆ Rnmax. Assume that for all
j ∈ n the quantity ηj , defined by

ηj = lim
k→∞

xj(k)

k
,

exists. The vector χ(A) = (η1, η2, . . . , ηn)T , where T denotes transposition, is
called the cycle time vector of the sequence {xxx(k) : k ∈ N}.

In fact, the cycle time vector is independent of the initial condition. There-
fore, χ(A) is also referred to as the cycle time vector of matrix A. The following
proposition describes this independence property. Proposition 4 describes an-
other property of the cycle time vector. Propositions 3 and 4 are used to prove
Theorem 1.

Proposition 3 (cf. [6]) Consider the recurrence relation equation (2). If xxx0 ∈
Rn is a particular initial condition such that the limit lim

k→∞
xj(k)
k exists for all

j ∈ n, then each these limits exists and has the same value for any initial
condition yyy0 ∈ Rn.

Recall that [j] stands for the m.s.c.s. that node j belongs to. Hence, η[j]
denotes the cycle time vector corresponding to m.s.c.s. [j]. Similarly, λ[i] de-
notes the eigenvalue corresponding to the m.s.c.s. [i], i.e., the eigenvalue of
A[i],[i], where the latter is the submatrix of A with rows and columns in [i].
Finally, π∗(j) stands for the set of nodes i from which there is a path in G(A)
to node j, including node j itself. Below we also use λi instead of λ[i], where λi
indicates the maximum among the average weights of all circuits that contain
node i.
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Proposition 4 (cf. [6]) Consider the recurrence relation given in (2) with a
square regular matrix A ∈ Rn×nmax and an initial condition xxx(0) = xxx0 ∈ Rn. Let

ηηη = lim
k→∞

xxx(k;xxx0)

k
be the cycle time vector of A, where xxx(k,xxx0) denotes the

value of xxx(k) generated by the recurrence relation (2) with xxx(0) = xxx0. Then
for all j ∈ n and any xxx0 ∈ Rn, we have

lim
k→∞

xj(k,xxx0)

k
=

⊕
i∈π∗(j)

λ[i],

where xj(k,xxx0) is the j-th component of xxx(k,xxx0). Furthermore, for G(A) =
(V,D) then

ηj =
⊕

(i,j)∈D

ηi

Next, Definition 5 introduces the generalized eigenmode.

Definition 5 A pair of vectors (ηηη,vvv) ∈ Rn×Rn is called a generalized eigen-
mode of a regular matrix A ∈ Rn×nmax if

A⊗ (m× ηηη + vvv) = (m+ 1)× ηηη + vvv, for all m ≥ 0. (3)

Moreover, we refer to the vectors ηηη and vvv as the (generalized) eigenvalue
and eigenvector, respectively, of a generalized eigenmode. Existence of a gen-
eralized eigenmode of a regular matrix A ∈ Rn×nmax can be found in [4]. The
form of the eigenvalue of a generalized eigenmode is described below.

Lemma 21 (cf. [4]) If a regular matrix A ∈ Rn×nmax has a generalized eigenmode
(ηηη,vvv), then we have χ(A) = ηηη.

3 Results and Discussions

In this section we discuss some lemmas and theorems and in the last part we
state the generalized power algorithm as our main result. First we discuss
Lemma 31, Lemma 32, Theorem 1, and Theorem 2. They will become the
basis of the second step of Algorithm 31 (our main result). Before we give the
lemmas and the theorems, we investigate the example below.

Example 1 Given the matrix

A =

15 ε ε
9 19 15
20 5 14

 with cycle time vector ηηη =

15
19
19

 .
In this example, we choose some initial conditions to observe what we can

expect for the generalized eigenmode (containing the cycle time vector) by
iterating Equation (2) a finite number of times. This observation is inspired
by step 2 of Algorithm 21.
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• Choosing initial vector xxx(0) = [14, 27, 7]T , we get

xxx(3)− xxx(2) = xxx(4)− xxx(3) = xxx(5)− xxx(4) = [15, 19, 19]T = ηηη.

• Choosing initial vector xxx(0) = [2, 8, 6]T , we get

xxx(5)− xxx(4) = xxx(6)− xxx(5) = xxx(7)− xxx(6) = [15, 19, 19]T = ηηη.

• Choosing initial vector xxx(0) = [5, 19, 5]T , we get

xxx(3)− xxx(1) = xxx(4)− xxx(2) = xxx(5)− xxx(3) = [30, 38, 38]T = 2× ηηη.

According to the above initial conditions, there are natural numbers N and l
such that xxx(m+ l) = l × ηηη + xxx(m), for m = N,N + 1, N + 2. A more general
version of this statement will be proved in Theorem 1. Before we discuss the
theorem, we write two lemmas which help to prove Theorem 1.

Lemma 31 Given the recurrence relation in (2) for a regular square matrix
A ∈ Rn×nmax such that the m.c.m. (maximum cycle mean) of G(A) is equal to e
and the cyclicity of A is one. If for a node j there is a path from all (other)
nodes to node j, then there exists a positive integer q such that

xj(k + 1) = xj(k),

for all k ≥ q and any initial condition xxx(0) in Rn. More general, if the m.c.m.
of G(A) is equal to λ ∈ R, then

xj(k + 1) = λ⊗ xj(k),

for all k ≥ q and any xxx(0) in Rn.

Proof: Let Hj denotes the set of the nodes l from which there is a path to
node j that passes through a node of the critical graph. Recall that [A⊗k]j,l
equals the (j, l)-th element of A⊗ k. According to Corollary 1 it follows that
there exists a finite q such that

[A⊗q]j,l ⊗ xl(0) = [A⊗k]j,l ⊗ xl(0),

for all l ∈ Hj and for all k ≥ q. Then also for all k ≥ q⊕
l∈Hj

[A⊗q]j,l ⊗ xl(0) =
⊕
l∈Hj

[A⊗k]j,l ⊗ xl(0).

Moreover, the integer q can be chosen such that

[A⊗k]j,m ⊗ xm(0) <
⊕
l∈Hj

[A⊗q]j,l ⊗ xl(0) =
⊕
l∈Hj

[A⊗k]j,l ⊗ xl(0),
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for all m /∈ Hj and for all k ≥ q. Hence, there exists a finite q such that for all
k ≥ q

xj(k) =

n⊕
l=1

[A⊗k]j,l ⊗ xl(0) =
⊕
l∈Hj

[A⊗k]j,l ⊗ xl(0)

=
⊕
l∈Hj

[A⊗q]j,l ⊗ xl(0) =

n⊕
l=1

[A⊗q]j,l ⊗ xl(0),

implying that for all k ≥ q

xj(k + 1) = xj(k).

More general, if the m.c.m. of G(A) is equal to λ and B = λ⊗−1 ⊗ A, then
the m.c.m. of G(B) is equal to zero. Given the recurrence relation yyy(k + 1) =
B⊗yyy(k) for k ≥ 0 and yyy(0) = xxx(0), there exists a positive integer q1 such that
yj(k + 1) = yj(k) for all k ≥ q1. Hence, for all k ≥ q1

n⊕
l=1

[B⊗k+1]j,l ⊗ yl(0) =

n⊕
l=1

[B⊗k]j,l ⊗ yl(0),

n⊕
l=1

[B⊗k+1]j,l ⊗ xl(0) =

n⊕
l=1

[B⊗k]j,l ⊗ xl(0),

n⊕
l=1

λ⊗−k−1 ⊗ [A⊗k+1]j,l ⊗ xl(0) =

n⊕
l=1

λ⊗−k ⊗ [A⊗k]j,l ⊗ xl(0),

λ⊗−k−1 ⊗

(
n⊕
l=1

[A⊗k+1]j,l ⊗ xl(0)

)
= λ⊗−k ⊗

(
n⊕
l=1

[A⊗k]j,l ⊗ xl(0)

)
,

λ⊗−k−1 ⊗ xj(k + 1) = λ⊗−k ⊗ xj(k),

xj(k + 1) = λ⊗ xj(k).

ut

One of the conditions in Lemma 31 is that the cyclicity of the regular
square matrix A is one. In fact, the cyclicity of the matrix A can be greater
one. To handle this problem, we derive the lemma below which is an extension
of Proposition 1.

Lemma 32 Let A ∈ Rn×nmax be a square regular matrix and suppose that its
cyclicity is equal to τ , i.e., σ(A) = τ . Then the cyclicity of matrix A⊗ τ is
equal to one.

Proof: Recall that by renumbering the nodes in the graph G(A), matrix A
can be transformed into an upper triangular block form, called a normal form
of A, given by the matrix in (1) with the condition that for i ∈ q,

– either Ai,i is an irreducible matrix with cyclicity σ(Ai,i), or
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– Ai,i = ε with cyclicity σ(Ai,i) = 1.

By Definition 1, given

τ = l.c.m.(σ(A1,1), σ(A2,2), . . . , σ(Aq,q)).

Therefore, we obtain

B = A⊗τ =



B1,1 B1,2 · · · · · · B1,q

E B2,2 · · · · · · B2,q

E E B3,3

...
...

...
. . .

. . .
...

E E · · · E Bq,q

 .

It follows easily that Bi,i = A⊗τii . Since G(Ai,i) is strongly connected (=irre-
ducible), it follows from Proposition 1 that σ(Bi,i) = 1. Then we conclude
that

σ(A⊗ τ ) = σ(B) = l.c.m.(σ(B1,1), σ(B2,2), . . . , σ(Bq,q)) = 1.

ut

Theorem 1 Let a square regular matrix A ∈ Rn×nmax be given and consider the
recurrence relation in Equation (2). Let xxx(0) ∈ Rn be a given arbitrary vector,
then there exist natural numbers N, l such that xxx(m+ l) = l×ηηη+xxx(m) for all
m ≥ N , where ηηη = (η1, η2, . . . , ηn)T is the cycle time vector of A.

Proof: Let σ = σ(A) and write B = A⊗σ. By Lemma 32, the cyclicity of B
is one. Take an arbitrary t ∈ {0, 1, 2, . . . , σ − 1} and consider the recurrence
relation yyy(k + 1) = B ⊗ yyy(k), where yyy(0) = xxx(t). If node i ∈ n is contained in
some circuit in G(B), write λi for the maximum among the average weights of
all circuits that contain node i. If this node is not contained in any circuit in
G(B), then write λi = ε. According to Proposition 4, it follows that

ηj =
⊕

i∈π∗(j)

λi, ∀j ∈ n,

where ηj is the cycle time vector of B and λ[i] is replaced by λi (see the remark
below Proposition 3). Hence, it follows that ηj ≥ λi for all i ∈ π∗(j), and that
equality holds for at least one i ∈ π∗(j), i.e., ηj = λi for at least one i ∈ π∗(j).

Clearly, ηj equals the maximum of the average weight of all circuits in
G(B) that are upstream of node j. Since by the regularity of A there is at
least one circuit upstream of node j, it follows that ηj is finite.

Now, take some j ∈ n and restrict the graph G(B) to the subgraph made
up of all nodes in π∗(j) and the corresponding edges. Denote this subgraph by
G(B), where B is the matrix made up of the corresponding rows and columns
of B. Note that j is a node of G(B) since j ∈ π∗(j). Then it follows that there
is a path from every node in G(B) to node j. It follows from Proposition 4 that
the maximal average circuit weight in G(B) is equal to ηj .
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By Lemma 31, there exists a finite positive integer qj such that

yj(k + 1) = ηj ⊗ yj(k), for all k ≥ qj . (4)

Hence, given any j ∈ n, we have obtained a real number ηj and finite positive
integer qj such that equation (4) is true for all k ≥ qj . Repeating the previous
steps for all j ∈ n and taking q = max{q1, q2, . . . , qn}, it follows (easily) that
for all k ≥ q

yyy(k + 1) = ηηη + yyy(k),

where ηηη = (η1, η2, . . . , ηn)T . Then we also obtain that for all k ≥ q

xxx(kσ + t+ σ) = x(t+ (k + 1)σ)

= A⊗ (k+1)σ ⊗ xxx(t)

= B⊗ (k+1) ⊗ yyy(0)

= yyy(k + 1)

= ηηη + yyy(k)

= ηηη +B⊗ k ⊗ yyy(0)

= ηηη +A⊗ kσ ⊗ yyy(0)

= ηηη +A⊗ kσ ⊗ xxx(t)

= ηηη + xxx(kσ + t).

It is easy to check that

ηηη = lim
k→∞

xxx(k)

k
=

1

σ
ηηη.

Finally, we can conclude that there exist integers N = qσ, l = σ such that
xxx(m+ l) = l × ηηη + xxx(m), for all m ≥ N . ut

Theorem 1 is not sufficient to obtain the eigenvalue (part) of the generalized
eigenmode, because we can not check it for all m ≥ N . To solve this problem,
we derive Theorem 2 in which xxx(q) is written as vvv, where q is a natural number.

Theorem 2 Let a square regular matrix A ∈ Rn×nmax be given and let B ∈ Rn×nmax

be the matrix defined by

[B]i,j(= bi,j) =

{
0, if [A]i,j 6= ε,
ε, if [A]i,j = ε.

If l is a positive integer and ψψψ,vvv ∈ Rn are vectors such that the following
equations hold

A⊗l ⊗ vvv = ψψψ + vvv, (5)

A⊗l ⊗ (A⊗l ⊗ vvv) = ψψψ + (A⊗l ⊗ vvv), (6)

B ⊗ψψψ = ψψψ, (7)

then we obtain

A⊗l ⊗ (m×ψψψ + (A⊗l ⊗ vvv)) = (m+ 1)×ψψψ + (A⊗l ⊗ vvv),

for any real number m ≥ 0. ut
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It is clear that with vvv = xxx(q), we can rewrite Equation (5), (6), and (7) in
Theorem 2 as

xxx(q + l) = ψψψ + xxx(q),

xxx(q + 2l) = ψψψ + xxx(q + l)

B ⊗ψψψ = ψψψ,

or we can combine first and second equation, so that we obtain

xxx(q + l)− xxx(q) = xxx(q + 2l)− xxx(q + l) = ψψψ,

B ⊗ψψψ = ψψψ.

Proof of Theorem 2: Note that from the definitions it follows that
B⊗l ⊗ψψψ = ψψψ. By equations (5) and (6), we have

A⊗l ⊗ (ψψψ + vvv) = ψψψ + (A⊗l ⊗ vvv),

or, for i ∈ n we can write

n⊕
j=1

([A⊗l]i,j + ψj + vj) =

n⊕
j=1

(ψi + [A⊗l]i,j + vj), (8)

where ψj , vj are the j-th component of ψψψ and vvv, respectively. Recall that we
write [A⊗l]i,j for the component of matrix A⊗l in i-th row and j-th column.
Recall that π∗(i) is the set of indices j such that in the graph G(A) there is a
path from node j to node i. We can rewrite equation (8) then as⊕

j∈π∗(i)

([A⊗l]i,j + ψj + vj) =
⊕

j∈π∗(i)

(ψi + [A⊗l]i,j + vj), (9)

According to equation (7) and B⊗l ⊗ψψψ = ψψψ, we obtain

ψi =
⊕

j∈π∗(i)

ψj . (10)

Next, denote by π∗(i) = {j ∈ π∗(i)|ψi = ψj} and take arbitrary s /∈ π∗(i), but
s ∈ π∗(i), then by equation (9) and (10), we obtain

[A⊗l]i,s + ψs + vs < [A⊗l]i,s + ψi + vs

≤
⊕

j∈π∗(i)

(
ψi + [A⊗l]i,j + vj

)
=

⊕
j∈π∗(i)

(
ψj + [A⊗l]i,j + vj

)
.

Thus for all i ∈ n,⊕
j∈π∗(i)

(
[A⊗l]i,j + ψj + vj

)
=

⊕
j∈π∗(i)

(
[A⊗l]i,j + ψj + vj

)
. (11)
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Therefore, there exists a t ∈ π∗(i) such that

[A⊗l]i,s + ψs + vs < [A⊗l]i,t + ψt + vt.

Since mψs ≤ mψt for any real number m ≥ 0, it follows that

[A⊗l]i,s + (m+ 1)ψs + vs < [A⊗l]i,t + (m+ 1)ψt + vt,

such that in the same way as (11) is obtained⊕
j∈π∗(i)

(
[A⊗l]i,j + ψ⊗m+1

j + vj
)

=
⊕

j∈π∗(i)

(
[A⊗l]i,j + ψ⊗m+1

j + vj
)

=
⊕

j∈π∗(i)

(
[A⊗l]i,j + ψ⊗mi + ψj + vj

)
= ψ⊗mi +

⊕
j∈π∗(i)

(
[A⊗l]i,j + ψj + vj

)
.(12)

Substituting (11) into (12), we can rewrite (12) as⊕
j∈π∗(i)

(
[A⊗l]i,j + ψ⊗m+1

j + vj
)

= ψ⊗mi +
⊕

j∈π∗(i)

(
[A⊗l]i,j + ψj + vj

)
. (13)

Substituting (9) into (13), it follows that⊕
j∈π∗(i)

(
[A⊗l]i,j + ψ⊗m+1

j + vj
)

= ψ⊗mi +
⊕

j∈π∗(i)

(
[A⊗l]i,j + ψi + vj

)
= ψ⊗m+1

i +
⊕

j∈π∗(i)

(
[A⊗l]i,j + vj

)
.

Finally, from the last equation, we obtain that

A⊗ l ⊗
(
(m+ 1)×ψψψ + vvv

)
= (m+ 1)×ψψψ + (A⊗ l ⊗ vvv).

Using (5) we get

A⊗l ⊗
(
m×ψψψ + (A⊗ l ⊗ vvv)

)
= (m+ 1)×ψψψ + (A⊗ l ⊗ vvv). (14)

for any real number m ≥ 0. ut

Note:

• For integer m and vvv = xxx(q), with q a natural number, we can rewrite
Equation (14) as

xxx((m+ 2)l + q)− xxx((m+ 1)l + q) = ψψψ,

for all integer m ≥ 0. By (5) it follows from (14) that

A⊗l ⊗ ((m+ 1)ψψψ + vvv) = (m+ 2)ψψψ + vvv.

It follows now by mathematical induction using (5) that

x((m+ 1)l + q) = (m+ 1)ψψψ + vvv

for any integer m ≥ 0. With this the required identity follows.
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• Matrix B in Theorem 2 is inspired by the equation

ψj =
⊕

(i,j)∈D

ψi,

in Proposition 4, which we can rewrite as Equation (7).

Corollary 2 Under the condition of Theorem 2, if l = 1 then (ψψψ,A⊗ vvv) is a
generalized eigenmode of A.

Proof: According to (14), it is clear that (ψψψ,A⊗vvv) is a generalized eigenmode
of A. ut

Next, we discuss Lemma 33. It will become basis of the third step of Algo-
rithm 31 and will be used to prove Lemma 34. Note that vector www in Equation
(15), see below, is inspired by vector vvv in Algorithm 21. Before we give the
lemma, we investigate the example below.

Example 2 Given matrix

A =



15 ε ε 19 ε 13 ε ε ε
9 19 15 ε 16 ε ε ε ε
20 5 14 ε ε ε ε ε ε
17 ε ε 10 13 ε ε ε ε
ε ε ε 2 5 7 ε ε ε
ε ε ε 1 7 1 ε ε ε
7 ε ε ε 9 ε 18 ε ε
ε 3 ε ε ε ε ε 2 16
ε ε ε ε ε ε 13 14 20


and initial vector xxx(0) =



31
−17
22
−22
−138
−121

52
−24
13


.

Recall that matrix B can be obtained from matrix A by replacing in the latter
all finite entries by zero. Iterating Equation (2), we obtain xxx(0),xxx(1),xxx(2),xxx(3),
xxx(4),xxx(5) and xxx(6) with xxx(4) − xxx(2) 6= xxx(6) − xxx(4), and B ⊗ (xxx(4) − xxx(2)) 6=
xxx(4)−xxx(2). Hence, this iteration does not yet satisfy the conditions in Theorem
2 and has to be continued with a next iteration. After some iterations, we
obtain q = 16 and l = 2, where ψψψ = xxx(16+4)−xxx(16+2) = xxx(16+2)−xxx(16) =
[36, 38, 38, 36, 36, 36, 36, 40, 40]T and B ⊗ψψψ = ψψψ. According to Theorem 2, we
obtain

xxx(16 + 2(p+ 1)) = xxx(16) + (p+ 1)ψψψ,
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for all p ≥ 0. Hence, for j ∈ n we obtain, with l = 2,

ηj = lim
k→∞

xj(k)

k

= lim
p→∞

xj(16 + 2(p+ 1))

16 + 2(p+ 1)

= lim
p→∞

(p+ 1)ψj + xj(16)

q + 2(p+ 1)

= lim
p→∞

(p+ 1)ψj
16 + 2(p+ 1)

+
xj(16)

16 + 2(p+ 1)

=
ψj
l
, since l = 2.

So, ηηη = 1
2ψψψ = [18, 19, 19, 18, 18, 18, 18, 20, 20]T . Then we compute vvv = (ηηη +

xxx(17)) ⊕ xxx(18) by (15). In Algorithm 21, vector vvv is eigenvector, but in this
example, vector vvv is not eigenvector, because (A ⊗ vvv) − vvv 6= ηηη. Actually, a
(generalized) eigenvector of A is given by A⊗3⊗vvv, because (A⊗4⊗vvv)−(A⊗3⊗
vvv) = (A⊗3⊗vvv)−(A⊗2⊗vvv) = ηηη (see Corollary 2). More details on the procedure
to obtain the eigenvalue are given in Lemma 33. The lemma also gives a
property of the vector www, defined in (15), playing a similar role as vector vvv in
Algorithm 21. The vector www is used in Lemma 34.

Lemma 33 Let a square regular matrix A ∈ Rn×nmax be given and consider the
recurrence relation in equation (2). Suppose that for arbitrary xxx(0) ∈ Rn, there
exist positive integers q, l and a vector ψψψ ∈ Rn such that xxx(q+ 2l)−xxx(q+ l) =
xxx(q + l) − xxx(q), and B ⊗ ψψψ = ψψψ, where ψψψ = xxx(q + l) − xxx(q). Then the cycle

time vector of A is ηηη = lim
k→∞

1

k
xxx(k) =

1

l
ψψψ. Next, define

www =

l⊕
i=1

[(l − i)ηηη + xxx(q + i− 1)] (15)

then A⊗m ⊗www ≤ ηηη + (A⊗m−1 ⊗www) for all integer m ≥ 0.

Proof: From Proposition 4 it follows that the cycle time vector ηηη = lim
k→∞

1

k
xxx(k)

exists, independently of the initial condition. From xxx(q + 2l) − xxx(q + l) =
xxx(q+l)−xxx(q) = ψψψ and B⊗ψψψ = ψψψ, it follows by Theorem 2 that xxx(q+(p+1)l) =
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xxx(q) + (p+ 1)ψψψ for all p ≥ 0. Hence, for j ∈ n we obtain

ηj = lim
k→∞

xj(k)

k

= lim
p→∞

xj(q + (p+ 1)l)

q + (p+ 1)l

= lim
p→∞

(p+ 1)ψj + xj(q)

q + (p+ 1)l

= lim
p→∞

(p+ 1)ψj
q + (p+ 1)l

+
xj(q)

q + (p+ 1)l

=
ψj
l
.

Next, by induction on m we prove that A⊗m ⊗www ≤ ηηη +
(
A⊗m−1 ⊗www

)
for all

integer m ≥ 0. First, we will prove that A ⊗www ≤ ηηη +www. Recall the notation
that [B]i,j or bi,j is the component of B ∈ Rn×nmax in the i-th row and j-th
column, and [xxx]j or xj is the j-th component of vector xxx ∈ Rn. For j ∈ n, we
can write

[A⊗www]j =

n⊕
t=1

aj,t ⊗
( l⊕
i=1

((l − i)ηt + xt(q + i− 1))
)

=

n⊕
t=1

l⊕
i=1

(
aj,t + (l − i)ηt + xt(q + i− 1)

)
=

l⊕
i=1

n⊕
t=1

(
aj,t + (l − i)ηt + xt(q + i− 1)

)
=

l⊕
i=1

⊕
(t,j)∈D

(
aj,t + (l − i)ηt + xt(q + i− 1)

)

where D = {(i, j)|[A]j,i 6= ε} is the set of edges of graph G(A). Since ηj =⊕
(t,j)∈D ηt and l − i ≥ 0, it follows that

[A⊗www]j ≤
l⊕
i=1

⊕
(t,j)∈D

(
aj,t + (l − 1)ηj + xt(q + i− 1)

)
=

l⊕
i=1

(
(l − 1)ηj +

⊕
(t,j)∈D

(
aj,t + xt(q + i− 1)

))

=

l⊕
i=1

(
(l − 1)ηj +

n⊕
t=1

(
aj,t + xt(q + i− 1)

))
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or we can rewrite

A⊗www ≤
l⊕
i=1

(
(l − i)ηηη + (A⊗ xxx(q + i− 1))

)
=

l⊕
i=1

(
(l − i)ηηη + xxx(q + i)

)
=

l+1⊕
j=2

(
(l − j + 1)ηηη + xxx(q + j − 1)

)
= ηηη +

( l+1⊕
j=2

(
(l − j)ηηη + xxx(q + j − 1)

))

= ηηη +
( l⊕
j=2

(
(l − j)ηηη + xxx(q + j − 1)

)
⊕
(
(−1)ηηη + xxx(q + l)

))

= ηηη +
( l⊕
j=2

(
(l − j)ηηη + xxx(q + j − 1)

)
⊕
(
(−1)ηηη + lηηη + xxx(q)

))

= ηηη +
( l⊕
j=2

(
(l − j)ηηη + xxx(q + j − 1)

)
⊕
(
(l − 1)ηηη + xxx(q)

))

= ηηη +
( l⊕
j=1

(
(l − j)ηηη + xxx(q + j − 1)

))
= ηηη +www

Hence, we obtain A⊗www ≤ ηηη+www. Next, assume that m is an integer such that
A⊗m ⊗www ≤ ηηη + (A⊗m−1 ⊗www). Then we have

A⊗m+1 ⊗www = A⊗A⊗m ⊗www
≤ A⊗ (ηηη + (A⊗m−1 ⊗www)).

Thus for all j ∈ n, we can write

[A⊗m+1 ⊗www]j ≤
n⊕
t=1

(
aj,t + ηt + [A⊗m−1 ⊗www]t

)
=

⊕
(t,j)∈D

(
aj,t + ηt + [A⊗m−1 ⊗www]t

)
.
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Because ηj =
⊕

(t,j)∈D ηt, it follows that

[A⊗m+1 ⊗www]j ≤
⊕

(t,j)∈D

(
aj,t + ηt + [A⊗m−1 ⊗www]t

)
≤

⊕
(t,j)∈D

(
aj,t + ηj + [A⊗m−1 ⊗www]t

)
= ηj +

⊕
(t,j)∈D

(
aj,t + [A⊗m−1 ⊗www]t

)
= ηj +

n⊕
t=1

(
aj,t + [A⊗m−1 ⊗www]t

)
,

and hence we obtain that

A⊗m+1 ⊗www ≤ ηηη + (A⊗A⊗m−1www) = ηηη + (A⊗m ⊗www),

which concludes the proof. ut

Next, we discuss Lemma 34. It will become the basis of Step 5 to 7 in
Algorithm 31. This algorithm explains how to obtain an eigenvector of the
generalized eigenmode from the initial condition xxx(0) = www and iteration of
Equation (2).

Lemma 34 Let a square regular matrix A ∈ Rn×nmax be given and consider the
recurrence relation in equation (2). Take as initial condition xxx(0) = www, where
vector www is given by (15). Then there exists an r ∈ N such that

xxx(r + 2) = ηηη + xxx(r + 1) = 2ηηη + xxx(r),

where ηηη is the cycle time vector of A. Furthermore (ηηη,xxx(r+1)) is a generalized
eigenmode of matrix A.

Proof: By Lemma 33, for all natural numbers m, we have

xxx(m)− xxx(m− 1) = A⊗m ⊗ xxx(0)−A⊗m−1 ⊗ xxx(0)

= (A⊗m ⊗www)− (A⊗m−1 ⊗www)

≤ (ηηη + (A⊗m−1 ⊗www))− (A⊗m−1 ⊗www) = ηηη (16)

and according to Theorem 1, there exist positive integers q and σ such that

xxx(q + 2σ) = σηηη + xxx(q + σ) = 2σηηη + xxx(q).

If σ = 1, then the proof is complete. If σ 6= 1, note that

xxx(q + σ)− xxx(q) = σηηη.
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Applying equation (16), it follows that

xxx(q + σ)− xxx(q + σ − 1) ≤ ηηη,
xxx(q + σ − 1)− xxx(q + σ − 2) ≤ ηηη,

...

xxx(q + 1)− xxx(q) ≤ ηηη,

and hence, with xxx(q + σ)− xxx(q) = σηηη, it follows that

xxx(q + σ)− xxx(q + σ − 1) = xxx(q + σ − 1)− xxx(q + σ − 2)

= . . .

= xxx(q + 1)− xxx(q)

= ηηη.

Thus we have proved that there exists an r = q ∈ N such that

xxx(r + 2) = ηηη ⊗ xxx(r + 1) = 2ηηη ⊗ xxx(r).

Furthermore, according to Corollary 2, we can conclude that (ηηη,xxx(r+ 1)) is a
generalized eigenmode of A. ut

Inspired by Lemma 33 and Lemma 34, we state the following algorithm
which is the main result of our paper. Step 1 until step 4, and step 5 until step
7 are based on Lemma 33 and 34, respectively.

Algorithm 31 (Generalized Power Algorithm)

1. Choose an arbitrary initial vector xxx(0) = xxx0 ∈ Rn.
2. Iterate equation xxx(k + 1) = A ⊗ xxx(k) until there are positive integers σ, q

and a vector ψψψ ∈ Rn that satisfy xxx(q + 2σ) − xxx(q + σ) = xxx(q + σ) − xxx(q)
and B ⊗ ψψψ = ψψψ, where ψψψ = xxx(q + σ) − xxx(q) and matrix B is defined in
Theorem 2.

3. Compute the cycle time vector ηηη = 1
σψψψ.

4. Compute vectorwww =
⊕l

i=1 [(σ − i)ηηη + xxx(q + i− 1)] according to Lemma 33.
5. Define a new initial vector xxx(0) = www.
6. Iterate equation xxx(k + 1) = A ⊗ xxx(k) until there is an integer r > 0 such

that
xxx(r + 2)− xxx(r + 1) = xxx(r + 1)− xxx(r) = ηηη.

7. Set the generalized eigenmode of A as (ηηη,vvv) =
(
1
σψψψ,xxx(r + 1)

)
.

Before we give a conclusion, we give some examples to illustrate the generalized
power algorithm.

Example 3 Given the matrix

A =

3 ε ε
6 4 ε
ε 7 5

 and initial vector xxx(0) =

0
0
0

 .
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As in Theorem 2, we define the matrix

B =

0 ε ε
0 0 ε
ε 0 0

 .
Iterating Equation (2), we obtain xxx(0),xxx(1) and xxx(2). By inspection it can be
shown that B ⊗ (xxx(1) − xxx(0)) = xxx(1) − xxx(0), but xxx(1) − xxx(0) 6= xxx(2) − xxx(1).
Hence, this iteration does not yet satisfy conditions in second step of the
Algorithm 31, and the algorithm has to be continued with a next iteration.
After some iterations we obtain q = 2 and σ = 1 where ψψψ = xxx(q+ 2σ)−xxx(q+
σ) = xxx(q + σ)− xxx(q) and B ⊗ψψψ = ψψψ, so we obtain ηηη = 1

σψψψ = [3, 4, 5]T . Then
we compute www according to Lemma 33. This gives www = xxx(2). Next we redefine
xxx(0) = www and obtain directly that r = 0. Finally, we obtain a generalized
eigenmode of A given by (ηηη,vvv) =

(
[3, 4, 5]T , [9, 14, 18]T

)
.

Example 4 Consider the matrix

A =



ε ε 16 ε ε ε ε ε ε ε
14 15 18 ε ε ε ε ε ε ε
14 2 ε 1 ε ε ε ε ε ε
17 3 ε 12 2 ε 3 ε ε ε
12 ε ε 1 ε ε ε ε ε ε
ε ε ε ε ε 8 ε ε ε ε
ε ε ε ε ε ε 7 19 ε ε
ε ε ε ε ε ε ε ε 2 ε
ε ε ε ε ε ε ε 13 ε ε
ε ε ε ε ε 10 7 12 2 5


and initial vector xxx(0) =



0
0
0
0
0
0
0
0
0
0


.

According to Theorem 2 we obtain matrix

B =



ε ε 0 ε ε ε ε ε ε ε
0 0 0 ε ε ε ε ε ε ε
0 0 ε 0 ε ε ε ε ε ε
0 0 ε 0 0 ε 0 ε ε ε
0 ε ε 0 ε ε ε ε ε ε
ε ε ε ε ε 0 ε ε ε ε
ε ε ε ε ε ε 0 0 ε ε
ε ε ε ε ε ε ε ε 0 ε
ε ε ε ε ε ε ε 0 ε ε
ε ε ε ε ε 0 0 0 0 0


.

Again, iterating Equation (2), we obtain xxx(0),xxx(1),xxx(2),xxx(3),xxx(4),xxx(5) and
xxx(6) with xxx(4)−xxx(2) = xxx(6)−xxx(4), but B⊗(xxx(4)−xxx(2)) 6= xxx(4)−xxx(2). Hence,
this iteration does not yet satisfy conditions in second step of the Algorithm 31
and has to be continued with a next iteration. After some iterations, we obtain
q = 17 and σ = 2 where ψψψ = xxx(q + 2σ) − xxx(q + σ) = xxx(q + σ) − xxx(q) and
B ⊗ψψψ = ψψψ, so we obtain ηηη = 1

σψψψ = [15, 15, 15, 15, 15, 8, 7.5, 7.5, 7.5, 8]T . Then
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computing www = (ηηη + xxx(17))⊕ xxx(18) and redefining xxx(0) = www,we obtain r = 0.
Finally we get vvv = [286, 288, 285, 288, 283, 152, 154, 142.5, 148, 154]T .

Note that in both Examples 3 and 4, the cycle time vectors of matrices A
contain different values. Therefore, we can not use Algorithm 21, but we can
use Algorithm 31.

Numerical Experiment

In this part, we will compare the computation times between our general-
ized power algorithm and policy iteration. Specifications of the computer we
used are: RAM 2 GB, OS 64 byte and processor Intel Celeron. We use a toolbox
which contains the functions “policyIteration” (policy iteration) and “max-
plusmaxalgolgeneral” (generalized power algorithm) in the scilab toolbox (can
be seen at https://atoms. scilab.org/toolboxes/maxplus_petrinet). We
performed numerical experiments with 10 random matrices of size n × n for
n = 5, 10, 15, · · · , 200. For every matrix of size n×n, the form of the matrices
was fixed to be [

A1 A2

E(bn/2c, bn/2c) A3

]
where E is max-plus zero matrix of size bn/2c × bn/2c, and A1, A2, A3 are
random matrices of which 20% of the elements are max-plus zeros (ε = −∞).

For every matrix, we computed the generalized eigenmode by using policy
iteration and by the generalized power algorithm (initial condition is chosen
random), and record the computation times of these algorithms. Figure 1 is
a plot containing computation times of the generalized power algorithm and
policy iteration where each computation time is obtained as the average over
10 random matrices of similar size and form.

Based on this experiment, we can conclude that computation times of the
generalized power algorithm are less than computation times of the policy
iteration algorithm given in [4]. But this experiment is relative to the chosen
initial condition and structure of matrices A. For example, we want obtain the
generalized eigenmode of matrix

A =

19 ε ε
18 7 5
8 8 18

 ,
using the generalized power algorithm. If we choose [254, 201, 283]T as initial
condition, then computation time is 0.04 second, but if we choose the initial
condition [−1017, 1260, 1142]T , then computation time is 4.843 second. The
second initial condition is slow because we obtain q = 2278, and the first
initial condition is faster because q = 40.
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Fig. 1 computation times of the generalized power algorithm and policy iteration

4 Conclusion

In this paper we have constructed and proved a generalized power algorithm
that can be used to calculate a generalized eigenmode of any regular square
matrix over max-plus algebra by using the recurrence relation in Equation (2).
The algorithm is presented in Algorithm 31. The algorithm is illustrated by
means of simple examples.

In Subiono and van der Woude [5] a kind of power algorithm was presented
that, under some mild conditions on the structure of the (max,+)-systems, de-
termines eigenvalues and corresponding eigenvectors in an iterative way. This
algorithm was the inspiration to the so-called generalized power algorithm
which has been discussed in this paper. Finally, the resulting algorithm can
be used to determine the so-called generalized eigenmode of any square regu-
lar matrix over max-plus algebra. In particular, the algorithm can be applied
in the case of regular reducible matrices in which the existing power algorithms
can not be used to compute eigenvalues and corresponding eigenvectors. The
computations in the algorithm are done faster than the policy iteration algo-
rithm given in [4] (according to the numerical experiment). But this conclusion
is relative to the chosen initial condition and structure of matrices A.
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