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a b s t r a c t 

In this paper, we study a model of a flexible hoisting system, in which external distur- 

bances exerted on the boundary can induce large vibrations, and so damage to the per- 

formance of the system. The dynamics is described by a wave equation on a slow time- 

varying spatial domain with a small harmonic boundary excitation at one end of the cable, 

and a moving mass at the other end. Due to the slow variation of the cable length, a sin- 

gular perturbation problem arises. By using an averaging method, and an interior layer 

analysis, many resonance manifolds are detected. Further, a three time-scales perturba- 

tion method is used to construct formal asymptotic approximations of the solutions. It 

turns out that for a given boundary disturbance frequency, many oscillation modes jump 

up from order ε amplitudes to order 
√ 

ε amplitudes, where ε is a small parameter with 

0 < ε << 1 . Finally, numerical simulations are presented to verify the obtained analytical 

results. 

© 2022 Published by Elsevier Inc. 

 

 

 

1. Introduction 

Varying-length cable systems are widely applied in a vast class of engineering problems which arise in industrial, civil, 

aerospatial, mechanical, and automotive applications. Due to external excitations, large oscillations can occur when cables 

are lifted up or down. An example of these oscillations can be founded in mining cables, which are used to transport cargos

in a cage between a working platform and the ground. External disturbances exerted on the cage or the cable can induce

large vibrations and damage to the performance of the system. This phenomenon is caused by resonance. Resonance refers 

to the phenomenon that the amplitude of a mechanical system increases significantly when the excitation frequency of 

the mechanical system is close to a certain natural frequency of the system. In general, resonance is harmful, and can cause

significant deformations and dynamic stresses in machinery and structures, and even can lead to accidents. In order to avoid 

resonances, it is necessary for us to study how external excitations influence the behavior of vertically translating cables for 

various boundary conditions. Most analytical solutions for axial or for transversal displacements of a moving cable focus on 

classical boundary conditions. Tan and Ying in [1] analyzed the axially moving cable based on wave propagation subject to 

a classical boundary condition. Zhu and Ni in [2] considered a class of translating media with moving Dirichlet boundary 

conditions. Sandilo and van Horssen in [3] studied auto-resonance phenomena in a space time-varying mechanical system 
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Fig. 1. The longitudinal vibrating cable with time-varying cable length l(t) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with a moving Dirichlet boundary condition. Gaiko and van Horssen in [4] considered transverse vibrations of a traveling 

cable subject to a moving Dirichlet boundary condition with boundary damping, and in [5] the authors further discussed 

resonances and vibrations in an elevator cable system due to boundary sway. Chen et al. in [6] analyzed vibration responses

for an axially translating cable of fixed length for classical mixed boundary conditions, and in [7] these authors studied for

a traveling cable the energy dissipation and the energy exchange for fixed boundaries. Recently, researchers started to study 

longitudinal and transverse vibrations of moving cables or beams with moving nonclassical boundary conditions. Wang 

et al. in [8] investigated a coupled dynamic model for a flexible guiding hoisting system and presented the response of the

system by numerical simulations. Crespo et al. in [9] introduced a model, and a numerical simulation of a stationary high-

rise elevator system. Wang et al. in [10] studied the axial vibration suppression in a partial differential equation model for

an ascending mining elevator cable system. These studies mainly focus on numerical simulations, and not on an analytical, 

mathematical analysis. For more information on numerical results for axially moving continua, the reader is referred to [11–

16] . Compared to the analysis of systems subject to classical boundary conditions, the analytical study of axially moving 

systems with moving nonclassical boundary conditions is a challenging subject for research. Actually, for the problem with 

moving nonclassical boundary conditions, traditional, analytical methods, such as the method of separation of variables 

(SOV), and the (equivalent) Laplace transform method, can usually not be applied. Thus, it is necessary to develop analytical 

methods or to adapt existing methods to solve these types of problems from a mathematical view-point. 

In [17] , we developed and applied such methods to study a simple mathematical model, in which a one-dimensional

and forced cable equation on a bounded, fixed interval was considered subject to a Dirichlet boundary condition at one 

end of the cable and a Robin boundary condition with a slowly varying time-dependent coefficient at the other end of the

cable. In this paper we will study a real physical varying-length hoisting system model, such as a mining cable, in which

the longitudinal vibrations in an axially moving cable with time-varying length are considered subject to a small harmonic 

boundary excitation at one end of the cable and a moving nonclassical boundary condition at the other end. This hoisting

system consists of a drum, a head sheave, a driving motor, a hoisting moving conveyance, and a hoisting cable with time-

varying length l(t) . The upper end of the vertical hoisting cable is located at x = e (t) , where the small displacement e (t) of

this upper end is supposed to be generated by the catenary system (consisting of drum, head sheave) in vertical direction.

A flexible hoisting cable lets the hoisting conveyance run up and down (see Fig. 1 ). Compared to Wang et al. [17] , the model

in this paper is physically relevant, including a fundamental excitation in a boundary condition, a time-varying interval 

(0 , l(t)) , second order derivatives in a boundary condition, viscous damping, spatiotemporally varying tension, longitudinal 

stiffness and so on. An adapted version of the method of separation of variables, an averaging method, singular perturbation 

techniques, and a three time-scales perturbation method are applied to construct accurate, analytical approximations of the 

solutions of the problem. For the aforementioned reasons, averaging, determining the resonance zones, and constructing ac- 

curate approximations of solutions are much harder than for the problem as studied in [17] . In [17] we concluded that when

the external force frequency satisfies a certain condition, then the resonance will occur in one oscillation mode only and no

resonance will occur in the other modes, i.e., resonance emerges for only one time internal. However, in this paper, based
45 
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on a perturbation analysis of the formulated, mathematical problem for the cable equation, we come to the conclusion that 

for a given arbitrary excitation frequency, many oscillation modes jump up from O( ε) to O( 
√ 

ε ) amplitudes, i.e., resonance

emerges for many times and the size of the resonance zone is of O( 1 √ 

ε 
). This analytical result is accurate and valuable for

real applications. 

The paper is organised as follows. In Section 2 , the problem is formulated and some transformations are introduced to

simplify the originally formulated problem. In Section 3 , an interior layer analysis is presented. By introducing an adapted

version of the method of separation of variables, by using averaging and singular perturbation techniques, the resonance 

zones are detected and the scalings are determined in the problem. By using these scalings, in Section 4 a three time-

scales perturbation method is used to construct accurate, analytical approximations of the solutions of the problem. In 

Section 5 numerical approximations are presented by using a central finite difference scheme, which are in full agreement 

with the obtained, analytical approximations. In Section 6 we draw some conclusions based on the analytical and numerical 

results and also we discuss future research. 

2. Formulation of the problem 

Nomenclature: 

u (x, t) the longitudinal displacement of the cable 

l(t) the length of the cable 

v = 

˙ l (t) the longitudinal velocity of the cable, v is assumed to be a constant. 

ρ the mass density of the cable 

m the mass of the hoisting conveyance 

EA the longitudinal stiffness, E Young’s elasticity modulus, 

A the cross-sectional area of the cable 

T (x, t) the spatiotemporally varying tension in the cable 

c viscous damping coefficient in the cable 

g gravity 

E gs initial gravitational potential energy 

c u viscous damping coefficient 

e (t) the generated longitudinal displacement at the top of the vertical cable 

By using the Hamilton’s variational principle [18] , the longitudinal vibrations of the axially moving hoisting rope in 

Fig. 1 are described by the following initial boundary value problem (see Appendix A ): ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

ρ(u tt + 2 v u xt + v 2 u xx ) − EAu xx + c(u t + v u x ) = 0 , 0 ≤ x ≤ l(t) , t > 0 , 

[ m (u tt + 2 v u xt + v 2 u xx ) + EAu x + c u (u t + v u x )] | x = l(t) = 0 , t > 0 , 

u (0 , t) = e (t) , t > 0 , 

u (x, 0) = u 0 (x ) , u t (x, 0) = u 1 (x ) , 0 ≤ x ≤ l 0 . 

(1) 

For the parameters v , c, c u and the function e (t) , we make the following reasonable assumptions: the longitudinal ve-

locity v is small compared to nominal wave velocity 

√ 

EA 
ρ ; the viscous damping coefficients c and c u are small; and the os-

cillation amplitudes e (t) at x = 0 are small. Then, we can rewrite v = εv 0 , c = εc 0 , c u = εc u 0 , e (t) = β sin (αt) with β = εβ0 ,

where ε is a small parameter with 0 < ε << 1 . And l(t) = l 0 + εv 0 t , where l 0 is the initial cable length. It is also assumed

that both initial conditions are O (ε) , that is, u 0 (x ) = O (ε) , and u 1 (x ) = O (ε) . 

To put problem () in a non-dimensional form, the following dimensionless parameters will be used: u ∗ = 

u 
L , x ∗ =

x 
L , t ∗ = 

t 
L 

√ 

EA 
ρ , l ∗ = 

l 
L , v 

∗ = v 
√ 

ρ
EA 

, c ∗ = 

cL √ 

EAρ
, c ∗u = 

Lc u 
m 

√ 

EA 
ρ , β∗ = 

β
L , α

∗ = Lα
√ 

ρ
EA 

, u ∗0 = 

u 0 
L , u ∗1 = 

√ 

ρ
EA 

u 1 , where L is the

maximum length of the cable. The equations of motion in non-dimensional form then become: ⎧ ⎪ ⎨ ⎪ ⎩ 

u tt − u xx = −2 v u xt − v 2 u xx − c(u t + v u x ) , 0 ≤ x ≤ l(t) , t > 0 , 

u tt (l(t ) , t ) + 

ρL 
m 

u x (l(t ) , t ) = [ −2 v u xt − v 2 u xx − c u (u t + v u x )] | x = l(t) , t > 0 , 

u (0 , t) = e (t) = β sin (αt) , t > 0 , 

u (x, 0) = u 0 (x ) , u t (x, 0) = u 1 (x ) , 0 ≤ x ≤ l 0 , 

(2) 

where m , ρ , α, β , L and l 0 are positive constants, and where the asterisks (indicating the dimensionless variables and

parameters) are omitted in problem (2) for convenience. 

In order to simplify the integration of (2) , it is convenient to transform the time-varying spatial domain [0 , l(t)] to a

fixed domain [0,1] by introducing a new independent spatial coordinate ξ = 

x 
l(t) 

. Since the function u (x, t) becomes a new
46 
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function 

˜ u (ξ , t) , all the partial derivatives have to be transformed in accordance with this new variable ξ as follows: u x =
1 
l ̃

 u ξ , u xx = 

1 
l 2 ̃

 u ξξ , u t = −ξ v 
l ̃

 u ξ + ̃

 u t , u xt = − v 
l 2 ̃

 u ξ + 

1 
l ̃

 u ξ t − ξ v 
l 2 ̃

 u ξξ , u tt = ̃

 u tt − 2 v 
l 
ξ˜ u ξ t + 

v 2 
l 2 

ξ 2 ˜ u ξξ + 

2 v 2 
l 2 

ξ˜ u ξ . Substituting these

derivatives into (2) , we obtain the following problem for ˜ u (ξ , t) : ⎧ ⎪ ⎨ ⎪ ⎩ 

˜ u tt − 1 
l 2 

˜ u ξξ = 

2 v 
l 
ξ ˜ u ξ t − 2 v 

l 
˜ u ξ t − c ̃  u t + O (ε 2 ) , 0 ≤ ξ ≤ 1 , t > 0 , 

˜ u tt (1 , t) + 

ρL 
ml 

˜ u ξ (1 , t) = [ 2 v 
l 
ξ ˜ u ξ t − 2 v 

l 
˜ u ξ t − c u ̃  u t ] | ξ=1 + O (ε 2 ) , t > 0 , 

˜ u (0 , t) = 

˜ e (t) = β sin (αt) , t > 0 , 

˜ u (ξ , 0) = 

˜ u 0 (ξ ) , ˜ u t (ξ , 0) = 

˜ u 1 (ξ ) , 0 ≤ ξ ≤ 1 , 

(3) 

where l = l(t) , ˜ u 0 (ξ ) = u 0 (ξ l 0 ) , and ˜ u 1 (ξ ) = u 1 (ξ l 0 ) − ε ξv 0 
l 0 

u ξ (ξ , 0) . 

In the following sections, we will construct analytical approximations of the solution of problem (3) on a time-scale of

order 1 
ε by an internal layer analysis and a three time-scales perturbation method. Moreover, to verify the analytical results, 

in Section 6 we will compare these analytical approximations with numerically obtained approximations. 

3. Internal layer analysis 

In this section, we determine resonance manifolds and their corresponding timescales by an adapted version of the 

method of separation of variables, by using averaging and singular perturbation techniques. 

3.1. Transformations to homogeneous boundary conditions on a fixed domain 

The partial differential equation in (3) has in the left-hand side of the equation a variable coefficient 1 
l 2 

. To remove this

variable coefficient the Liouville-Green transformation (or equivalently the WKBJ method [19,20] ) is used by introducing a 

new time-like variable s (t) with 

d s 

d t 
= 

1 

l(t) 
. (4) 

Substituting the derivative into (3) , we obtain the problem for ū (ξ , s ) = ˜ u (ξ , t) (see Appendix B ). Further, in order to elimi-

nate the non-homogeneous terms up to order ε 2 in the boundary condition at ξ = 0 and ξ = 1 in (3) , the following trans-

formation is used: 

ū (ξ , s ) = W (ξ , s ) + ε 
mξ

ρL 
(c 0 − c u 0 ) W s (1 , s ) + ē (s ) + O (ε 2 ) . (5)

Thus, in order to obtain an order ε accurate approximation of the solution of ū (ξ , s ) , it is necessary and sufficient to con-

struct an order ε accurate approximation of the solution of W (ξ , s ) . From (5) and Appendix B , it follows that W (ξ , s ) has to

satisfy: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

W ss − W ξξ = ε[(v 0 − c 0 ̂  l ) W s + 2 v 0 (ξ − 1) W ξ s + β0 α
2 ˆ l 2 sin ( αl 0 

εv 0 (e εv 0 s − 1)) 

− mξ (c 0 −c u 0 ) 
ρL 

W ξξ s (1 , s )] + O (ε 2 ) , 0 ≤ ξ ≤ 1 , s > 0 , 

W ξξ (1 , s ) + 

ρL ̂ l 
m 

W ξ (1 , s ) = O (ε 2 ) , W (0 , s ) = O (ε 2 ) , s > 0 , 

W (ξ , 0) = W 0 (ξ ) , W s (ξ , 0) = W 1 (ξ ) , 0 ≤ ξ ≤ 1 , 

(6) 

where W 0 (ξ ) = f (ξ ) − ē (0) + O (ε 2 ) , W 1 (ξ ) = g(ξ ) − ē s (0) + O (ε 2 ) . So the problem (3) is transformed into a simplified prob-

lem (6) . In the following sections, accurate, analytical approximations of the solution W (ξ , s ) of problem (6) are constructed,

and by using (4) and (5) , accurate approximations of ˜ u of problem (3) can be obtained. 

3.2. An adapted version of the method of separation of variables 

First of all, in order to make the method of separation of variables applicable to problem (6) , we consider problem (6) by

neglecting the O (ε) terms, that is, ⎧ ⎨ ⎩ 

W ss − W ξξ = 0 , 0 ≤ ξ ≤ 1 , s > 0 , 

W (0 , s ) = 0 , W ξξ (1 , s ) + 

ρL ̂ l (s ) 
m 

W ξ (1 , s ) = 0 , s > 0 , 

W (ξ , 0) = W 0 (ξ ) , W s (ξ , 0) = W 1 (ξ ) , 0 ≤ ξ ≤ 1 , 

(7) 

where it should be noted that ˆ l (s ) = l 0 e 
εv 0 s . By defining a slow time variable τ = εs , which will be treated independently

from the variable s , and so by defining l̄ (τ ) = l 0 e 
v 0 τ , function W (ξ , s ) becomes a new function W 

∗(ξ , s, τ ) , and problem

(7) becomes: ⎧ ⎨ ⎩ 

W 

∗
ss (ξ , s, τ ) + 2 εW 

∗
sτ (ξ , s, τ ) + ε 2 W 

∗
ττ (ξ , s, τ ) − W 

∗
ξξ

(ξ , s, τ ) = 0 , 

W 

∗(0 , s, τ ) = 0 , W 

∗
ξξ

(1 , s, τ ) + 

ρL ̄l (τ ) 
m 

u 

∗
ξ
(1 , s, τ ) = 0 , l̄ (τ ) = l 0 e 

v 0 τ , 

W 

∗(ξ , 0 , 0) = W 0 (ξ ) , W 

∗
s (ξ , 0 , 0) + εW 

∗
τ (ξ , 0 , 0) = W 1 (ξ ) , 

(8) 
47 
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where 0 ≤ ξ ≤ 1 and s, τ > 0 . Now let T (s, τ ) X(ξ , τ ) be a nontrivial solution of (8) . The general solution of (6) can be

expanded in the following form (see Appendix C ): 

W (ξ , s ) = 

∞ ∑ 

n =1 

T̄ n (s, τ ) sin (λn (τ ) ξ ) , (9) 

where λn (τ ) is the n th positive root of 

tan (λn (τ )) = 

ρL ̄l (τ ) 

m 

1 

λn (τ ) 
, l̄ (τ ) = l 0 e 

v 0 τ , (10) 

and T̄ k (s, τ ) for k = 1 , 2 , 3 , . . . , s > 0 , τ > 0 have to satisfy: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

T̄ k,ss + λ2 
k 
(τ ) ̄T k = −2 ε ̄T k,sτ + ε(v 0 − c 0 ̄l (τ )) ̄T k,s − 2 

∑ ∞ 

n =1 εc 1 
n,k 

(τ ) 
d λn (τ ) 

d τ
T̄ n,s 

+2 

∑ ∞ 

n =1 εv 0 c 2 n,k 
(τ ) ̄T n,s + 

∑ ∞ 

n =1 ε 
m (c 0 − c uo ) 

ρL 
c 3 

n,k 
(τ ) ̄T n,s 

+ εβ0 α
2 l̄ 2 (τ ) d k (τ ) sin ( 

αl 0 
εv 0 

(e εv 0 s − 1)) , t, τ ≥ 0 , 

T̄ k (0 , 0) = 

∫ 1 
0 σ (0 , ξ ) W 0 (ξ ) sin (λk (0) ξ )d ξ∫ 1 

0 σ (0 , ξ ) sin 

2 (λk (0) ξ )d ξ
= F k , 

T̄ k,s (0 , 0) + ε ̄T k,τ (0 , 0) = −ε 
∑ ∞ 

n =1 T n (0 , 0) 
d λn (τ ) 

d τ
| τ=0 

∫ 1 
0 σ (0 , ξ ) ξ sin (λn (0) ξ ) cos (λk (0) ξ )d ξ∫ 1 

0 σ (0 , ξ ) sin 

2 (λk (0) ξ )d ξ

+ 

∫ 1 
0 σ (0 , ξ ) W 1 (ξ ) sin (λk (0) ξ )d ξ∫ 1 

0 σ (0 , ξ ) sin 

2 (λk (0) ξ )d ξ

= G k , 

(11) 

where c 1 
n,k 

(τ ) , c 2 
n,k 

(τ ) , c 3 
n,k 

(τ ) and d k (τ ) are functions of τ , and are given by: 

c 1 n,k (τ ) = 

∫ 1 
0 σ (τ, ξ ) ξ cos (λn (τ ) ξ ) sin (λk (τ ) ξ )d ξ∫ 1 

0 σ (τ, ξ ) sin 

2 (λk (τ ) ξ )d ξ
, 

c 2 n,k (τ ) = 

λn (τ ) 
∫ 1 

0 σ (τ, ξ )(ξ − 1) cos (λn (τ ) ξ ) sin (λk (τ ) ξ )d ξ∫ 1 
0 σ (τ, ξ ) sin 

2 (λk (τ ) ξ )d ξ
, 

c 3 n,k (τ ) = 

λ2 
n (τ ) sin (λn (τ )) 

∫ 1 
0 σ (τ, ξ ) ξ sin (λk (τ ) ξ )d ξ∫ 1 

0 σ (τ, ξ ) sin 

2 (λk (τ ) ξ )d ξ
, 

d k (τ ) = 

∫ 1 
0 σ (τ, ξ ) sin (λk (τ ) ξ )d ξ∫ 1 

0 σ (τ, ξ ) sin 

2 (λk (τ ) ξ )d ξ
. (12) 

To simplify the formulas, we define a new dependent variable ˜ T k (s ) = T̄ k (s, τ ) , for k = 1 , 2 , 3 , . . . , yielding: ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

˜ T k,ss + λ2 
k 
(τ ) ̃  T k = ε(v 0 − c 0 ̄l (τ )) ̃  T k,s − 2 

∑ ∞ 

n =1 ε(c 1 
n,k 

(τ ) d λn (τ ) 
d τ − v 0 c 2 n,k 

(τ )) ̃  T n,s 

+ 

∑ ∞ 

n =1 ε 
m (c 0 −c uo ) 

ρL 
c 3 

n,k 
(τ ) ̃  T n,s + εα2 β0 ̄l 

2 (τ ) d k (τ ) sin ( αl 0 
εv 0 (e v 0 τ − 1)) + O (ε 2 ) , 

˜ T k (0) = F k , ˜ T k,s (0) = G k , 

(13) 

where F k = O (ε) , G k = O (ε ) , s ≥ 0 and τ = ε s . In the next subsection we will use the averaging method to detect resonance

zones in problem (13) , and to determine time-scales which describe the solutions of (13) accurately. 

3.3. Averaging and resonance zones 

The solution of the linear ordinary differential Eq. (13) with the slowly varying frequencies λk (τ ) as given by (10) , can

be approximated by using the averaging method. In this section, by an interior layer analysis (including a rescaling and 

balancing procedure), the slowly varying frequencies λk (τ ) lead to a description of many resonance manifolds and lead 

to time-scales which describe the solution of (13) sufficiently accurate. For the sake of convenience let us introduce the 

following standard transformations: 

φk (s ) = 

∫ s 

λk (ε ̄s )d ̄s and � = 

αl 0 
εv 

(e v 0 τ − 1) , (14) 

0 0 
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and according to an adapted version of the Lagrange variation of constants method, we assume that ˜ T k (s ) , ̃  T k,s (s ) are de-

scribed by A k (s ) , B k (s ) in the following way: 

˜ T k (s ) = A k (s ) sin (φk (s )) + B k (s ) cos (φk (s )) , 

˜ T k,s (s ) = λk (τ ) A k (s ) cos (φk (s )) − λk (τ ) B k (s ) sin (φk (s )) . (15) 

Then, by substituting (15) into problem (13) , we obtain the following problem (where the dot · represents differentiation

with respect to s): ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ A k = 

˜ A k (s ) + ε α
2 β0 ̄l 

2 d k (τ ) 
2 λk (τ ) 

( sin (� + φk ) + sin (� − φk )) , 

˙ B k = 

˜ B k (s ) + ε α
2 β0 ̄l 

2 d k (τ ) 
2 λk (τ ) 

( cos (� + φk ) − cos (� − φk )) , 

˙ τ = ε, 

˙ � = αl 0 e 
v 0 τ , 

˙ φk = λk (τ ) , 

(16) 

where 

˜ A k (s ) = 

1 

2 

ε(v 0 − c 0 ̄l (τ ))[ A k (s )( cos (2 φk (s )) + 1) − B k (s ) sin (2 φk (s ))] 

+ ε 
d λk (τ ) 

d τ

1 

2 λk 

[ B k (s ) sin (2 φk (s )) − A k (s )( cos (2 φk (s )) + 1)] 

−εηk,k (τ )[ A k (s )( cos (2 φn (s )) + 1) − B k (s ) sin (2 φk (s ))] 

−2 ε 
∑ 

n � = k 

λn (τ ) 

λk (τ ) 
ηn,k (τ )[ A n (s ) cos (φn (s )) cos (φk (s )) − B n (s ) sin (φn (s )) cos (φk (s ))] , 

˜ B k (s ) = −1 

2 

ε(v 0 − c 0 ̄l (τ ))[ A k (s ) sin (2 φk (s )) − B k (s )(1 − cos (2 φk (s )))] 

+ ε 
d λk (τ ) 

d τ

1 

2 λk 

[ A k (s ) sin (2 φk (s )) − B k (s )(1 − cos (2 φk (s )))] 

+ εηk,k (τ )[ A k (s ) sin (2 φk (s )) − B k (s )(1 − cos (2 φn (s )))] 

+2 ε 
∑ 

n � = k 

λn (τ ) 

λk (τ ) 
ηn,k (τ )[ A n (s ) cos (φn (s )) sin (φk (s )) − B n (s ) sin (φn (s )) sin (φk (s ))] , (17) 

and ηn,k (τ ) = c 1 
n,k 

(τ ) d λn (τ ) 
d τ

− v 0 c 2 n,k 
(τ ) − m (c 0 −c uo ) 

2 ρL c 3 
n,k 

(τ ) . Resonance in (16) , can be expected when 

˙ � − ˙ φk ≈ 0 , or when

˙ � + 

˙ φk ≈ 0 . But since αl 0 e 
v 0 τ and λk (τ ) > 0 , resonance only will occur when 

αl 0 e 
v 0 τ ≈ λk (τ ) . (18) 

Since λk (τ ) satisfies (10) , that is, tan (λk (τ )) = 

ρLl 0 e 
v 0 τ

m 

1 
λk (τ ) 

, it follows that resonance occurs when 

λk ≈ arctan ( 
ρL 

αm 

) + (k − 1) π, k = 1 , 2 , . . . , (19) 

corresponding to the manifold τ around τk with 

τk = 

1 

v 0 
ln ( 

1 

αl 0 
λk ) = 

1 

v 0 
ln ( 

arctan ( ρL 
αm 

) + (k − 1) π

αl 0 
) , λk ≥ αl 0 , k = 1 , 2 , . . . (20) 

From (20) , we can conclude that no matter what the frequency is, there will be many resonance manifolds. 

Outside the resonance manifold, we can average the right-hand side of the equations in (16) over φk and � while keeping

A k and B k fixed [21] . Note that ˜ A k (s ) and 

˜ B k (s ) are slowly varying, therefore they will not average out. The last terms of the

first and second equations in (16) is the fast varying terms outside the resonance manifolds, therefore they will average out.

Thus, the averaged equation for A k and B k now become ⎧ ⎪ ⎨ ⎪ ⎩ 

˙ A 

a 
k 

= [ 
1 

2 

ε(v 0 − c 0 ̄l (τ )) − εc 1 
k,k 

(τ ) 
dλk (τ ) 

dτ
+ εv 0 c 2 k,k 

(τ ) + ε 
m (c 0 − c uo ) 

2 ρL 
c 3 

k,k 
(τ ) − ε 

d λk (τ ) 

d τ

1 

2 λk 

] A 

a 
k 
, 

˙ B 

a 
k 

= [ 
1 

2 

ε(v 0 − c 0 ̄l (τ )) − εc 1 
k,k 

(τ ) 
dλk (τ ) 

dτ
+ εv 0 c 2 k,k 

(τ ) + ε 
m (c 0 − c uo ) 

2 ρL 
c 3 

k,k 
(τ ) − ε 

d λk (τ ) 

d τ

1 

2 λk 

] B 

a 
k 
, 

(21) 

where the upper index a indicates that this is the averaged function. From the expression for c 1 
k,k 

> 0 , c 2 
k,k 

= − 1 
2 and c 3 

k,k 
= 0

in (12) , we then obtain 

A 

a 
k (s ) = 

G k 

λ (0) 
e −

∫ τ
0 ζ (�)d � , B 

a 
k (s ) = F k e 

− ∫ τ
0 ζ (�)d � , (22) 
k 
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with 

ζ (τ ) = 

1 

2 

c 0 ̄l (τ ) + c 1 k,k (τ ) 
d λk (τ ) 

d τ
+ 

d λk (τ ) 

d τ

1 

2 λk 

, (23) 

and G k = O (ε) , F k = O (ε) are given in (13) . Hence, outside the resonance manifold the solution of system (13) is given by 

˜ T k (s ) = 

G k 

λk (0) 
e −

∫ εs 
0 ζ (�)d � sin (φk (s )) + F k e 

− ∫ εs 
0 ζ (�)d � cos (φk (s )) , (24) 

where s = O ( 1 ε ) . Observe that outside the resonance zone ˜ T k (s ) remains order ε. 

To study the behavior of the solution in the resonance zone we introduce ψ = �(t) − φk (t) and rescale τ − τk = δ(ε) ̄τ
with τ̄ = O (1) and τk is given by (20) . System (13) then becomes: ⎧ ⎨ ⎩ 

˙ A k = 

˜ A k (s ) + ε α
2 β0 ̄l 

2 (τ ) d k (τ ) 
2 λk (τ ) 

( sin (� + φk ) + sin (ψ)) , 

˙ B k = 

˜ B k (s ) + ε α
2 β0 ̄l 

2 (τ ) d k (τ ) 
2 λk (τ ) 

( cos (� + φk ) − cos (ψ)) , 
(25) 

combined with the slow/fast variables ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ τ = ε, ˙ τ̄ = 

ε 
δ(ε) 

, 

˙ � = λk (τk )e v 0 δ(ε) ̄τ , 

˙ φk = λk (τk + δ(ε) ̄τ ) , 

˙ ψ = λk (τk )e v 0 δ(ε) ̄τ − λk (τk + δ(ε) ̄τ ) = (v 0 λk (τk ) − d λk 

d τ | τ= τk 
) δ(ε) ̄τ + O (δ2 (ε)) , 

(26) 

where ˜ A k (s ) and 

˜ B k (s ) are given by (17) . By differentiating (10) with respect to τ , we obtain 

1 

cos 2 (λk (τ )) 

d λk (τ ) 

d τ
= 

ρL v 0 ̄l (τ ) 

mλk (τ ) 
− ρL ̄l (τ ) 

mλ2 
k 
(τ ) 

d λk (τ ) 

d τ
⇒ 

d λk (τ ) 

d τ
= 

ρL v 0 ̄l (τ ) λk (τ ) cos 2 (λk (τ )) 

mλ2 
k 
(τ ) + ρL ̄l (τ ) cos 2 (λk (τ )) 

. (27) 

This implies for ˙ ψ (see (26) ) that 

˙ ψ = γ δ(ε) ̄τ + O (δ2 (ε)) , γ = 

m v 0 λ3 
k 
(τk ) 

mλ2 
k 
(τk ) + ρL ̄l (τk ) cos 2 (λk (τk )) 

� = 0 . (28) 

It now follows from (26) and (28) that a balance in system (26) occurs by choosing ε 
δ(ε) 

= δ(ε) , that is, δ(ε) = 

√ 

ε . This is

the size of the resonance zone. So, together with τ − τk = δ(ε) ̄τ , it follows from (26) that 

τ̄ = 

√ 

ε (s − s k ) , s k = 

τk 

ε 
. (29) 

Further, from (28) , we obtain ψ(s ) = ψ(s k ) + 

1 
2 γ ε(s − s k ) 

2 . Hence, in the resonance zone, we can write 

sin (ψ(s )) = sin ( 
1 

2 

γ ε(s − s k ) 
2 + 

αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k )) , s k = 

τk 

ε 
, (30) 

where τk is given by (20) . So, let us average system (25) over the fast variables. Then, the averaged equations for A k and B k 
become 

˙ A 

a 
k 

= −ε ζ (τ ) A 

a 
k + 

ε α2 β0 ̄l 
2 (τ ) d k (τ ) 

2 λk (τ ) 
sin (ψ(s )) , ˙ B 

a 
k 

= −ε ζ (τ ) B 

a 
k −

ε α2 β0 ̂
 l 2 (τ ) d k (τ ) 

2 λk (τ ) 
cos (ψ(s )) , (31) 

where the upper index a indicates that this is the averaged function. It follows from (30) and (31) that A 

a 
k 

can be written as

A 

a 
k (s ) = 

G k 

λk (0) 
e −

∫ εs 
0 ζ (�)d � 

+ ε α2 β0 e 
− ∫ εs 

0 ζ (�)d � 

∫ s 

0 

l̄ 2 (ε ̄s ) d k (ε ̄s ) 

2 λk (ε ̄s ) 
e −

∫ −ε ̄s 
0 ζ (�)d � sin [ 

1 

2 

γ ε ( ̄s − s k ) 
2 

+ 

αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k )]d ̄s , 

where ζ (τ ) is given by (23) . For s̄ = s k + O ( 1 √ 

ε 
) , τk = εs k , we can observe that 

l̄ 2 (ε ̄s ) d k (ε ̄s ) 
2 λk (ε ̄s ) 

e −
∫ −ε ̄s 

0 ζ (�)d � =
l̄ 2 (εs k ) d k (εs k ) 

2 λk (εs k ) 
e −

∫ −εs k 
0 

ζ (�)d � + O ( 
√ 

ε ) . Then, it follows from (12) that 

A 

a 
k (s ) = 

G k 

λ (0) 
e −

∫ εs 
0 ζ (�)d � 
k 
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Fig. 2. (a) C Fr (s, s k ) has a resonance jump from O ( 
√ 

ε ) to O (1) around s = 100. (b) S Fr (s, s k ) has a resonance jump from O ( 
√ 

ε ) to O (1) around s = 100. 

 

 

 

 

+ 

εα2 β0 ̄l 
2 (τk ) d k (τk ) 

2 λk (τk ) 

∫ s 

0 

sin [ 
1 

2 

γ ε ( ̄s − s k ) 
2 + 

αl 0 
ε v 0 

(e εv 0 s k − 1) − φk (s k )]d ̄s 

+ high order terms in ε . 

By setting u = 

√ 

1 
2 γ ε ( ̄s − s k ) , we obtain 

ε 

∫ s 

0 

sin [ 
1 

2 

γ ε ( ̄s − s k ) 
2 + 

αl 0 
ε v 0 

(e εl 1 s k − 1) − φk (s k )]d ̄s 

= 

√ 

ε ̄α

∫ √ 

ε ̄β(s −s k ) 

−√ 

ε ̄βs k 

sin (u 

2 + 

αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k ))d u 

= 

√ 

ε ̄α sin ( 
αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k )) C F r (s, s k ) + 

√ 

ε ̄α cos ( 
αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k )) S F r (s, s k ) , 

where γ is given by (28) , and where ᾱ = 

√ 

2 
γ , β̄ = 

√ 

γ
2 and 

C F r (s, s k ) = 

∫ √ 

ε ̄β(s −s k ) 

−√ 

ε ̄βs k 

cos (u 

2 )d u, S F r (s, s k ) = 

∫ √ 

ε ̄β(s −s k ) 

−√ 

ε ̄βs k 

sin (u 

2 )d u, s k = 

τk 

ε 
. (32) 

Actually the presence of the Fresnel functions C F r (s ) and S F r (s ) cause resonance jumps in the system. The integrals C F r (s )

and S F r (s ) are plotted in Fig. 2 with ε = 0 . 01 , β̄ = 1 , and s k = 100 , respectively. 

B a 
k 

can also be approximated in a similar expression as for A 

a 
k 
. So, in the resonance zone, the solution of ˜ T k (s ) for problem 

(13) is given by 

˜ T k (s ) = 

√ 

ε M k [( sin ( 
αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k )) C F r (s, s k ) 

+ cos ( 
αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k )) S F r (s, s k )) sin (φk (s )) − ( cos ( 
αl 0 
εv 0 

(e εv 0 s k − 1) 

−φk (s k )) C F r (s, s k ) − sin ( 
αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k )) S F r (s, s k )) cos (φk (s ))] + O (ε) , 

where C F r (s, s k ) and S F r (s, s k ) are given in (32) , and 

M k = 

ᾱα2 β0 ̄l 
2 (τk ) d k (τk ) 

2 λk (τk ) 
, (33) 

where ᾱ is given in (32) . Thus, the resonance always occurs for s near s k and the size of the resonance zone in s is of O ( 1 √ 

ε 
) .

For O (ε) initial conditions and for an O (ε) external, harmonic excitation, an O ( 
√ 

ε ) amplitude modal response will occur.

And for a fixed fundamental excitation frequency α, many resonance manifolds arise. The solution ū (ξ , s ) in (5) (see also

Appendix B (B.2) ) is given by 

ū (ξ , s ) = 

∞ ∑ 

k =1 

√ 

ε M k [( sin ( 
αl 0 
εv 0 

(e εv 0 s k − 1)) C F r (s, s k ) + cos ( 
αl 0 
εv 0 

(e εv 0 s k − 1)) 
51 
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S F r (s, s k )) sin ( 

∫ s 

s k 

λk (ε ̄s )d ̄s ) + (− cos ( 
αl 0 
εv 0 

(e εv 0 s k − 1)) C F r (s, s k ) 

+ sin ( 
αl 0 
εv 0 

(e εv 0 s k − 1)) S F r (s, s k )) cos ( 

∫ s 

s k 

λk (ε ̄s )d ̄s )] sin (λk (εs ) ξ ) + O (ε) . (34) 

In the next section, the timescales as found by using the averaging method in this section will be used again to construct

accurate approximations of the solutions for problem (13) by using a three-timescales perturbation method. 

4. Formal approximation 

4.1. Analysis results by using a three-timescales perturbation method 

In this section the solution of problem (13) will be approximated by using a three-timescales perturbation method. This 

method can be applied to construct more accurate approximations of the solutions for problem (13) and can be applied to

test the accuracy of the analytical results as obtained in the previous sections. It will turn out that the approximation as

constructed in this section coincides up to order 
√ 

ε with the approximation as constructed in the previous section by using

the averaging method. The Liouville-Green transformation and the following standard transformations are introduced (for 

fixed k) to study problem (13) : 

˜ T k,s = λk (τ ) ̂  T k,φk 
, ˜ T k,ss = λ2 

k (τ ) ̂  T k,φk φk 
+ ε 

d λk (τ ) 

d τ
ˆ T k,φk 

, (35) 

where ˜ T k (s ) = 

ˆ T k (φk (s )) and φk (s ) is given by (14) . Substituting the transformations (35) into (13) , we obtain the following

problem for ˆ T k (φk ) : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ˆ T k,φk φk 
+ 

ˆ T k = −ε 
d λk (τ ) 

d τ

1 

λ2 
k 
(τ ) 

ˆ T k,φk 
+ ε(v 0 − c 0 ̄l (τ )) 

1 

λk (τ ) 
ˆ T k,φk 

+ 2 

∑ ∞ 

n =1 ε 
v 0 c 2 n,k 

(τ ) 

λn (τ ) 
ˆ T n,φn 

−2 

∑ ∞ 

n =1 εc 1 
n,k 

(τ ) 
d λn (τ ) 

d τ

1 

λn (τ ) 
ˆ T n,φn 

+ 

∑ ∞ 

n =1 ε 
m (c 0 − c uo ) 

ρL 
c 3 

n,k 
(τ ) 

1 

λn (τ ) 
ˆ T n,φn 

+ εα2 β0 ̄l 
2 (τ ) 

d k (τ ) 

λ2 
k 
(τ ) 

sin ( 
αl 0 
εv 0 

(e v 0 τ − 1)) + O (ε 2 ) , t ≥ 0 , 

ˆ T k (0) = F k , ˆ T k,φk 
(0) = 

G k 

λk (0) 
, 

(36) 

where τ = εs is a function of φk . In the previous section, it was shown that (under certain conditions on the fundamental

excitation frequency α) resonance can occur around times s k , for k = 1 , 2 , . . . . In order to construct accurate approximations

in the neighborhood of s k , we rescale s with s = ˜ s + s k , τ = ε ̃  s + τk , and φk (s ) = φk ( ̃ s + s k ) = 

˜ φk ( ̃ s ) = 

∫ ˜ s 
−s k 

λk (τk + ε ̄s )d ̄s . So,

problem (36) can be rewritten for the function 

ˆ T k ( ̃  φk ) in: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ˆ T 
k, ̃ φk ̃

 φk 
+ 

ˆ T k = −ε 
d λk (τ ) 

d τ

1 

λ2 
k 
(τ ) 

ˆ T 
k, ̃ φk 

+ ε(v 0 − c 0 ̄l (τ )) 
1 

λk (τ ) 
ˆ T 
k, ̃ φk 

+ 2 

∑ ∞ 

n =1 ε 
v 0 c 2 n,k 

(τ ) 

λn (τ ) 
ˆ T 
n, ̃ φn 

−2 

∑ ∞ 

n =1 εc 1 
n,k 

(τ ) 
d λn (τ ) 

d τ

1 

λn (τ ) 
ˆ T 
n, ̃ φn 

+ 

∑ ∞ 

n =1 ε 
m (c 0 − c uo ) 

ρL 
c 3 

n,k 
(τ ) 

1 

λn (τ ) 
ˆ T 
n, ̃ φn 

+ εα2 β0 ̄l 
2 (τ ) 

d k (τ ) 

λ2 
k 
(τ ) 

sin ( 
αl 0 
εv 0 

(e v 0 τ − 1)) + O (ε 2 ) , t ≥ 0 , 

ˆ T k (0) = F k , ˆ T 
k, ̃ φk 

(0) = 

G k 

λk (0) 
, 

(37) 

where τ is a function of ˜ φk . Next we study problem (37) in detail. The application of the straightforward expansion method

to solve (37) will result in the occurrence of so-called secular terms which cause the approximations of the solutions to

become unbounded on long timescales. And it has been shown in the previous section that the O (ε) excitation can produce

timescale of O ( 
√ 

ε ) . Therefore, to avoid these secular terms, we introduce three timescales ˜ s 0 = ˜ s , ˜ s 1 = 

√ 

ε ̃  s , ˜ s 2 = ε ̃  s , τ =
˜ s 2 + τk , and so ˜ φk, 0 , 

˜ φk, 1 , 
˜ φk, 2 are introduced as follows: 

˜ φk, 0 = 

∫ ˜ s 0 

a 

λk (τk + ε ̄s )d ̄s , ˜ φk, 1 = 

∫ ˜ s 1 

b 

λk (τk + 

√ 

ε ̄s )d ̄s , ˜ φk, 2 = 

∫ ˜ s 2 

c 

λk (τk + s̄ )d ̄s , 

where a = −s k , b = −√ 

ε s k , c = −εs k . These scalings are based on the size of the resonance zone (which has been found

in the previous section), and on the natural scalings for weakly nonlinear equations such as (37) . By using the three

timescales perturbation method, the function 

ˆ T k ( ̃  φk ;
√ 

ε ) is supposed to be a function of ˜ φk, 0 , 
˜ φk, 1 , 

˜ φk, 2 , that is, 

ˆ T k ( ̃  φk ;
√ 

ε ) = w k ( ̃  φk, 0 , 
˜ φk, 1 , 

˜ φk, 2 ;
√ 

ε ) . (38) 
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By substituting (38) into (37) , we obtain the following equations up to O (ε 
√ 

ε ) : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ 2 w k 

∂ ˜ φ2 
k, 0 

+ w k + 2 

√ 

ε 
∂ 2 w k 

∂ ˜ φk, 0 ∂ ˜ φk, 1 

+ ε(2 

∂ 2 w k 

∂ ˜ φk, 0 ∂ ˜ φk, 2 

+ 

∂ 2 w k 

∂ ˜ φ2 
k, 1 

) + 2 ε 
√ 

ε 
∂ 2 w k 

∂ ˜ φk, 1 ∂ ˜ φk, 2 

= ε[ −d λk (τ ) 

d τ

1 

λ2 
k 
(τ ) 

∂w k 

∂ ˜ φk, 0 

+ (v 0 − c 0 ̄l (τ )) 
1 

λk (τ ) 

∂w k 

∂ ˜ φk, 0 

+ α2 β0 ̄l 
2 (τ ) 

d k (τ ) 

λ2 
k 
(τ ) 

sin ( 
αl 0 
εv 0 

(e v 0 τ − 1)) 

−2 

∑ ∞ 

n =1 (c 1 
n,k 

(τ ) 
d λn (τ ) 

d τ
− v 0 c 2 n,k 

(τ ) − m (c 0 − c uo ) 

2 ρL 
c 3 

n,k 
(τ )) 

1 

λn (τ ) 

∂w n 

∂ ˜ φn, 0 

] 

+ ε 
√ 

ε [ −d λk (τ ) 

d τ

1 

λ2 
k 
(τ ) 

∂w k 

∂ ˜ φk, 1 

+ (v 0 − c 0 ̄l (τ )) 
1 

λk (τ ) 

∂w k 

∂ ˜ φk, 1 

−2 

∑ ∞ 

n =1 (c 1 
n,k 

(τ ) 
d λn (τ ) 

d τ
− v 0 c 2 n,k 

(τ ) − m (c 0 − c uo ) 

2 ρL 
c 3 

n,k 
(τ )) 

1 

λn (τ ) 

∂w n 

∂ ˜ φn, 1 

] , 

w k (0 , 0 , 0 ;√ 

ε ) = F k , 
∂w k 

∂ ˜ φk, 0 

(0 , 0 , 0 ;√ 

ε ) + 

√ 

ε 
∂w k 

∂ ˜ φk, 1 

(0 , 0 , 0 ;√ 

ε ) + ε 
∂w k 

∂ ˜ φk, 2 

(0 , 0 , 0 ;√ 

ε ) = 

G k 

λk (0) 
, 

(39) 

where F k = ε ̄F k and G k = ε ̄G k are O (ε) , and τ is a function of ˜ φk, 2 . By using a three-timescales perturbation method, the

function w k ( ̃  φk, 0 , 
˜ φk, 1 , 

˜ φk, 2 ;
√ 

ε ) is approximated by the formal asymptotic expansion 

w k ( ̃  φk, 0 , 
˜ φk, 1 , 

˜ φk, 2 ;
√ 

ε ) = 

√ 

ε w k, 0 ( ̃  φk, 0 , 
˜ φk, 1 , 

˜ φk, 2 ;
√ 

ε ) + εw k, 1 ( ̃  φk, 0 , 
˜ φk, 1 , 

˜ φk, 2 ;
√ 

ε ) 

+ ε 
√ 

ε w k, 2 ( ̃  φk, 0 , 
˜ φk, 1 , 

˜ φk, 2 ;
√ 

ε ) + O (ε 2 ) . (40) 

By substituting (40) into problem (39) , and after equating the coefficients of like powers in 

√ 

ε , we obtain as: the O ( 
√ 

ε ) -
problem: 

∂ 2 w k, 0 

∂ ˜ φ2 
k, 0 

+ w k, 0 = 0 , w k, 0 (0 , 0 , 0) = 0 , 
∂w k, 0 

∂ ˜ φk, 0 

(0 , 0 , 0) = 0 , (41)

the O (ε) -problem: 

∂ 2 w k, 1 

∂ ˜ φ2 
k, 0 

+ w k, 1 = −2 

∂ 2 w k, 0 

∂ ˜ φk, 0 ∂ ˜ φk, 1 

+ α2 β0 ̄l 
2 (τ ) 

d k (τ ) 

λ2 
k 
(τ ) 

sin ( 
αl 0 
εv 0 

(e v 0 τ − 1)) , 

w k, 1 (0 , 0 , 0) = F̄ k , 
∂w k, 1 

∂ ˜ φk, 0 

(0 , 0 , 0) = −∂w k, 0 

∂ ˜ φk, 1 

(0 , 0 , 0) + 

Ḡ k 

λk (0) 
, (42) 

and the O (ε 
√ 

ε ) -problem: 

∂ 2 w k, 2 

∂ ˜ φ2 
k, 0 

+ w k, 2 = −2 

∂ 2 w k, 1 

∂ ˜ φk, 0 ∂ ˜ φk, 1 

− 2 

∂ 2 w k, 0 

∂ ˜ φk, 0 ∂ ˜ φk, 2 

− ∂ 2 w k, 0 

∂ ˜ φ2 
k, 1 

+ [(v 0 − c 0 ̄l (τ )) λk (τ ) 

−d λk (τ ) 

d τ
] 

1 

λ2 
k 
(τ ) 

∂w k, 0 

∂ ˜ φk, 0 

− 2 

∞ ∑ 

n =1 

[ c 1 n,k (τ ) 
d λn (τ ) 

d τ
− v 0 c 2 n,k (τ ) 

−m (c 0 − c uo ) 

2 ρL 
c 3 n,k (τ )] 

1 

λn (τ ) 

∂w k, 0 

∂ ˜ φk, 0 

, 

w k, 2 (0 , 0 , 0) = 0 , 
∂w k, 2 

∂ ˜ φk, 0 

(0 , 0 , 0) = −∂w k, 0 

∂ ˜ φk, 2 

(0 , 0 , 0) − ∂w k, 1 

∂ ˜ φk, 1 

(0 , 0 , 0) . (43) 

The O ( 
√ 

ε ) − problem has as solution 

w k, 0 ( ̃  φk, 0 , 
˜ φk, 1 , 

˜ φk, 2 ;
√ 

ε ) = C k, 1 ( ̃  φk, 1 , 
˜ φk, 2 ) sin ( ̃  φk, 0 ) + C k, 2 ( ̃  φk, 1 , 

˜ φk, 2 ) cos ( ̃  φk, 0 ) , (44) 

where C k, 1 and C k, 2 are still unknown functions of the slow variables ˜ φk, 1 and 

˜ φk, 2 , and they can be determined by avoiding

secular terms in the solutions of the O (ε) − and the O (ε 
√ 

ε ) − problems (see Appendix A ). Before entering the resonance

zone, the following result is found: 

C k, 1 ( ̃  φk, 1 , 
˜ φk, 2 ) = 0 , C k, 2 ( ̃  φk, 1 , 

˜ φk, 2 ) = 0 , (45) 

and inside of the resonance zone, to avoid secular terms in the solution w k, 1 and w k, 2 , it turns out that 

C k, 1 ( ̃  φk, 1 , 
˜ φk, 2 ) = ᾱα2 β0 ̄l 

2 (τ ) 
d k (τ ) 

2 λ (τ ) 
[ sin (ϑ(s k )) ̄C F r ( ̃  s 1 ) + cos (ϑ(s k )) ̄S F r ( ̃  s 1 )] , 
k 
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C k, 2 ( ̃  φk, 1 , 
˜ φk, 2 ) = ᾱα2 β0 ̄l 

2 (τ ) 
d k (τ ) 

2 λk (τ ) 
[ cos (ϑ(s k )) ̄C F r ( ̃  s 1 ) − sin (ϑ(s k )) ̄S F r ( ̃  s 1 )] , (46) 

where γ is given by (28) , ᾱ and β̄ are given by (32) , 

ϑ(s k ) = 

αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k ) , C̄ F r ( ̃  s 1 ) = 

∫ β̄ ˜ s 1 

β̄b 

cos (u 

2 )d u, S̄ F r ( ̃  s 1 ) = 

∫ β̄ ˜ s 1 

β̄b 

sin (u 

2 )d u. (47) 

Further, to obtain more accurate approximations of problem (39) , the O (ε) − problem and the O (ε 
√ 

ε ) − problem can also

be solved by using a similar analysis as for the O ( 
√ 

ε ) − problem in Appendix D . At this moment, only the first term in the

expansion of the solution for the cable problem is important from the physical point of view. So, to shorten the paper, we

are not interested in high-order approximations. 

Thus, from (40) , an approximation of the solution of Eq. (39) is given by w (ξ , s ) = 

∑ ∞ 

n =1 

√ 

ε w n, 0 + O (ε) , where w n, 0 , is

given by (44) . It follows from (20) , for a given value of α, that around τ = τn = 

1 
v 0 

ln ( 
arctan ( ρL 

αm )+(n −1) π

αl 0 
) the n th oscillation

mode jumps up from O (ε) to O ( 
√ 

ε ) . For such a jump the inequality arctan ( ρL 
αm 

) + (n − 1) π ≥ αl 0 needs to be satisfied. This

implies that it might occur that the first few modes do not show this jump, but all that the higher order modes do. Before

entering the resonance zone for the n th oscillation mode w n, 0 ≡ 0 and in the resonance zone the n th oscillation mode w n, 0 

is given by 

w n, 0 ( ̃  φn, 0 , ˜ φn, 1 , ˜ φn, 2 ;
√ 

ε ) 

= 

1 

2 

α2 β0 ̄l 
2 (τn ) 

d n (τn ) 

λn (τn ) 
ᾱ[ sin (ϑ(s n )) ̄C F r ( ̃  s 1 ) + cos (ϑ(s n )) ̄S F r ( ̃  s 1 )] sin ( ̃  φn, 0 ) 

−1 

2 

α2 β0 ̄l 
2 (τn ) 

d n (τn ) 

λn (τn ) 
ᾱ[ cos (ϑ(s n )) ̄C F r ( ̃  s 1 ) − sin (ϑ(s n )) ̄S F r ( ̃  s 1 )] cos ( ̃  φn, 0 ) 

= M n [( sin ( 
αl 0 
εv 0 

(e εv 0 s n − 1)) ̄C F r ( ̃  s 1 ) + cos ( 
αl 0 
εv 0 

(e εv 0 s n − 1)) ̄S F r ( ̃  s 1 )) sin ( ̃  φn, 0 − φn (s n )) 

+(− cos ( 
αl 0 
εv 0 

(e εv 0 s n − 1)) ̄C F r ( ̃  s 1 ) + sin ( 
αl 0 
εv 0 

(e εv 0 s n − 1)) ̄S F r ( ̃  s 1 )) cos ( ̃  φn, 0 − φn (s n ))] , (48) 

where ˜ φk, 0 − φk (s k ) = 

∫ s 
s k 

λk (ε ̄s )d ̄s , γ , ᾱ, ϑ(s n ) , C̄ F r ( ̃ s 1 ) and S̄ F r ( ̃ s 1 ) are given by (28), (32), (47) and M n is given by (33) .

The solution w n, 0 in (48) implies a resonance jump from O (ε) to O ( 
√ 

ε ) around τn in the n th oscillation mode. Thus, the

solution ū (ξ , s ) in (5) (see also Appendix B (B.2) ) is given by 

ū (ξ , s ) = 

∞ ∑ 

k =1 

√ 

ε w k, 0 ( ̃  φk, 0 , 
˜ φk, 1 , 

˜ φk, 2 ;
√ 

ε ) sin (λk (εs ) ξ ) + O (ε) . (49) 

The solution in (49) is in agreement with (34) , that is, the one obtained by the averaging method. All in all, introducing

the following notation χ(t) = 

1 
εv 0 

ln ( l(t) 
l 0 

) , according to the solution of ū (ξ , s ) in (49) , we obtain as approximation for the

solution ˜ u (ξ , t) of problem (3) 

˜ u (ξ , t) = 

∞ ∑ 

k =1 

√ 

ε M k [( sin ( 
αl 0 
εv 0 

(e εv 0 s k − 1)) ̄C F r ( 
√ 

ε (χ(t) − s k )) + cos ( 
αl 0 
εv 0 

(e εv 0 s k − 1)) ̄S F r ( 
√ 

ε (χ(t) 

−s k ))) sin ( 

∫ χ(t) 

s k 

λk (ε ̄s )d ̄s ) + (− cos ( 
αl 0 
εv 0 

(e εv 0 s k − 1)) ̄C F r ( 
√ 

ε (χ(t) − s k )) + sin ( 
αl 0 
εv 0 

(e εv 0 s k 

−1)) ̄S F r ( 
√ 

ε (χ(t) − s k ))) cos ( 

∫ χ(t) 

s k 

λk (ε ̄s )d ̄s )] sin (λk (εχ(t)) ξ ) + O (ε) , (50) 

where s k = 

τk 
ε and τk is given by (20) , C̄ F r , S̄ F r ( ̃ s 1 ) are given by (47) , M k is given by (33) and ξ = 

x 
l(t) 

. 

4.2. Numerical results 

In this section we will present numerical simulations of the vibration response as computed and based on the analytical 

expressions (50) . The computations are performed by using the following parameters: 

ε = 0 . 01 , l 0 = 3 , v 0 = 1 , c 0 = 2 , c uo = 1 , ρ = 1 , m = 10 , L = 10 , β0 = 1 , α = 1 . (51) 

For simplicity, let us assume that only the initial displacement is prescribed, so that 

˜ u 0 (ξ ) = ε sin (1 . 5 ξ ) , ˜ u 1 (ξ ) = 0 , 0 ≤ ξ ≤ 1 . (52) 

It is worth mentioning that the following numerical results are computed based on O (ε) approximations. Higher-order 

approximations are neglected due to their insignificant and small contribution to the solution. By using (18) , we see that

the resonance occurs around time instants s k satisfying 

αl 0 e 
v 0 τ = λ , τ = εs. (53) 
k 
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Fig. 3. Perturbation method: (a) Displacements of the mid-point of the cable. (b) The energy of the cable. The shadowed bands represent the resonance 

zones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

By using the Liouville-Green transformation with 

ds 
dt 

= 

1 
l(t) 

, we obtain αl(t) = λk , l(t) = l 0 + εv 0 t , which implies that 

t k = 

λk − αl 0 
εαv 0 

, k ∈ N , (54) 

where λk is given by (19) . From the analysis in Section 4.1 , we observe that the resonance times depend on the mode

numbers k. Resonance for the first oscillation mode does not occur in this numerical example. For the second, third and

forth oscillation modes, resonance emerges for times t 2 ≈ 92 . 7 , t 3 ≈ 406 . 8 , t 4 ≈ 721 . 0 , respectively. The solution ˜ u (ξ , t) in

(50) , and its corresponding energy are illustrated in Fig. 3 , respectively. 

5. Numerical approximation 

In this section we will directly integrate problem (3) with a numerical method. To solve (3) numerically, we first rewrite

(3) as { 

˜ u tt − 1 
l 2 

˜ u ξξ = 

2 v 
l 
ξ ˜ u ξ t − 2 v 

l 
˜ u ξ t − c ̃  u t + O (ε 2 ) , 0 ≤ ξ ≤ 1 , t > 0 , 

˜ u ξξ (1 , t) + 

ρLl 
m 

˜ u ξ (1 , t) = [(c − c u ) l 2 ˜ u t ] | ξ=1 + O (ε 2 ) , ˜ u (0 , t) = 

˜ e (t) = β sin (αt) , t > 0 , 

˜ u (ξ , 0) = 

˜ u 0 (ξ ) , ˜ u t (ξ , 0) = 

˜ u 1 (ξ ) , 0 ≤ ξ ≤ 1 . 

(55) 

By using the transformation ˜ u (ξ , t) = ǔ (ξ , t) + β sin (αt) + ξ ml 
ρL (c − c u ) ̌u t (1 , t) , problem (55) can be written as ⎧ ⎨ ⎩ 

ǔ tt − 1 
l 2 

ǔ ξξ = 

2 v 
l 
(ξ − 1) ̌u ξ t − c ̌u t + α2 β sin (αt) − mξ (c−c u ) 

ρLl 
ǔ ξξ t (1 , t) + O (ε 2 ) , 0 ≤ ξ ≤ 1 , t > 0 , 

ǔ ξξ (1 , t) + 

ρLl 
m 

ǔ ξ (1 , t) = O (ε 2 ) , ǔ (0 , t) = 0 , t > 0 , 

ǔ (ξ , 0) = ǔ 0 (ξ ) , ǔ t (ξ , 0) = ǔ 1 (ξ ) , 0 ≤ ξ ≤ 1 , 

(56) 

where 0 ≤ ξ ≤ 1 and t > 0 . For problem (56) , we first discretize the partial differential equation in (56) in the ξ− coordinate

by using a central finite difference scheme. Then, we rewrite the so-obtained discretized equation in a matrix form and use

the numerical time integration method of Crank-Nicolson(see Appendix E ). We will use the same parameter values (51) and

initial conditions (52) as for the analytic approximation, which is presented in the previous section (see also Fig. 3 ). Fig. 4

show the displacements at ξ = 0 . 5 and the vibratory energy of the cable, respectively, for times up to t = 850. 

Comparison with Fig. 3 : both Figs. 3 and 4 illustrate that resonances emerge at times t 1 ≈ 92 . 7 , t 2 ≈ 406 . 8 , t 3 ≈ 721 . 0 . In

the resonance zones the displacements and the energy increase, and between these zones, stay constant (approximately). 

Around the first resonance time t 1 , the displacement amplitudes jump up from O (ε) to O ( 
√ 

ε ) . Around the second resonance

time t 2 and the third resonance time t 3 , the amplitudes change again at the O ( 
√ 

ε ) level, where ε is a small parameter with

ε = 0 . 01 . Moreover, we can observe that, between the resonance times, the frequency ranges are similar in Figs. 3 and 4 , and

the sizes of the resonance zones are of O ( 1 √ 

ε 
) . Thus, the numerical simulations in Fig. 4 agree very well with the analytical

results as presented in Fig. 3 , respectively. 
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Fig. 4. Numerical method: (a) Displacements of the mid-point of the cable. (b) The energy of the cable. The shadowed bands represent the resonance 

zones. 

 

 

 

 

 

 

6. Concluding remarks 

In this paper, the longitudinal vibrations and associated resonances in an hoisting system due to a harmonic excitation at 

one of its boundaries have been studied. The problem is described by a partial differential equation (PDE) on a time-varying

spatial interval with a small harmonic disturbance at one end and a moving nonclassical boundary condition at the other 

end. By assuming that the small harmonic boundary disturbance is of order ε and by assuming that the initial values are

also small and of order ε, it is shown in this paper that for a given arbitrary boundary disturbance frequency, many oscilla-

tion modes jump up from O (ε) to O ( 
√ 

ε ) . To obtain these results an adapted version of the method of separation of variables

is introduced and presented, and perturbation methods, (such as averaging methods, singular perturbation techniques, and 

multiple timescales perturbation methods) are used. Furthermore, explicit, and accurate approximations of the solution of 

the initial-boundary value problem are constructed. These approximations are valid on time-scales of order ε −1 . Also approx- 

imations of the solution of the initial-boundary value problem are computed by using a numerical method. These numerical 

approximations are in full agreement with the analytically obtained approximations. The presented methods clearly indicate 

how more complicated problems can now be treated analytically. Also more complicated boundary conditions and changes 

of cable length over time can be included in the analysis of these problems. Finally, it should be remarked that we intend

to apply the presented analytical approach to nonlinearly coupled transverse and longitudinal vibrations of axially moving 

cables. For these problems the partial differential equations, the boundary conditions and the nonlinear terms are expected 

to give challenges, which might be solved by applying the approach as has been presented in this paper. 
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Appendix A. The derivation of motion (1) 

According to Fig. 1 , the partial differential equation (PDE) can be derived by Hamilton’s variational principle: ∫ t 2 

t 1 

(δE k (t) − δE p (t) + δW c (t))d t = 0 . (A.1) 

The Kinetic energy E k (t) can be represented as E k (t) = 

1 
2 ρ

∫ l(t) 
0 ( D u D t + v ) 2 d x + 

1 
2 m ( D u D t + v ) 2 | x = l(t) , the Potential energy E p (t)

can be expressed as E p (t) = 

1 
2 EA 

∫ l(t) 
0 u 2 x d x + 

∫ l(t) 
0 T u x d x + E gs −

∫ l(t) 
0 ρgu d x − mgu | x = l(t) , and 

δE k (t) − δE p (t) = ρ

∫ l(t) 

0 

( 
D u 

D t 
+ v ) δ

D u 

D t 
d x + m ( 

D u 

D t 
+ v ) δ

D u 

D t 
| x = l(t) 

−[ EA 

∫ l(t) 

u x δu x d x + 

∫ l(t) 

T δu x d x −
∫ l(t) 

ρgδu d x − mgδu | x = l(t) ] , (A.2) 

0 0 0 
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where the operator D u 
D t is defined as D u 

D t = 

∂u 
∂t 

+ v ∂u 
∂x 

= u t + v u x . The virtual work δW c done by the distributed and the lumped

damping force is given by 

δW c (t) = −
∫ l(t) 

0 

c 
D u 

D t 
δu d x − c u 

D u 

D t 
δu | x = l(t) . (A.3) 

By substituting the Eqs. (A .2) - (A .3) into (A.1) , we obtain ∫ t 2 

t 1 

∫ l(t) 

0 

ρ( 
D u 

D t 
+ v ) δ

D u 

D t 
d x d t + 

∫ t 2 

t 1 

m ( 
D u 

D t 
+ v ) δ

D u 

D t 
| x = l(t) d t 

−EA 

∫ t 2 

t 1 

∫ l(t) 

0 

u x δu x d x d t −
∫ t 2 

t 1 

∫ l(t) 

0 

T δu x d x d t + 

∫ t 2 

t 1 

∫ l(t) 

0 

ρgδu d x d t 

+ 

∫ t 2 

t 1 

mgδu | x = l(t) d t −
∫ t 2 

t 1 

∫ l(t) 

0 

c 
D u 

D t 
δu d x d t −

∫ t 2 

t 1 

c u 
D u 

D t 
δu | x = l(t) d t = 0 . (A.4) 

By integrating by parts the integrals in (A.4) it then follows that (A.4) can be rewritten in: ∫ t 2 

t 1 

∫ l(t) 

0 

[ −ρ(u tt + 2 v u xt + v 2 u xx ) + EAu xx + T x + ρg − c(u t + v u x )] δu d x d t 

+ 

∫ t 2 

t 1 

[ −m (u tt + 2 v u xt + v 2 u xx + au x ) − EAu x − T + mg − c u (u t + v u x )] δu | x = l(t) d t 

+ 

∫ t 2 

t 1 

[ ρv (u t + v u x + v ) + EAu x + T ] δu | x =0 d t = 0 . (A.5) 

So, the initial boundary value problem of the system can be obtained from (A.5) as 

ρ(u tt + 2 v u xt + v 2 u xx ) − EAu xx − T x − ρg + c(u t + v u x ) = 0 , 0 ≤ x ≤ l(t) , t > 0 , (A.6) 

[ m (u tt + 2 v u xt + v 2 u xx ) + EAu x + T − mg + c u (u t + v u x )] | x = l(t) = 0 , t > 0 , (A.7) 

EAu x + T + ρv (u t + v u x + v ) | x =0 = 0 , t > 0 . (A.8) 

Note that (A.7) and (A.8) are the natural boundary conditions. However, the natural boundary condition (A.8) is not appro-

priate for our problem, since the cable at the top has an assumed and prescribed displacement e (t) , which is supposed to

be generated by the catenary system (consisting of drum, head sheave) in vertical direction. Thus, the boundary condition 

is given by u (e (t ) , t ) = e (t) , t ≥ 0 . By using the Taylor expansion for u (x, t) in x for x = 0 , and by assuming that e (t) and

u (x, t) are small, the boundary condition 

e (t) = u (e (t ) , t ) = u (0 , t) + e (t ) 
∂u 

∂x 
(0 , t ) + O (e 2 (t)) 

can be approximated by u (0 , t) = e (t) . Since the tension T (x, t) is given by T (x, t) = [ m + ρ(l(t) − x )] g, 0 ≤ x ≤ l(t) , it then

follows that the initial boundary value problem for the axially moving hoisting rope is given by (1). 

Appendix B. Transformation to a fixed domain 

By introducing a new time-like variable s (t) with 

d s 
d t 

= 

1 
l(t) 

, l(t) = ̂

 l (s ) = l 0 e 
εv 0 s , All partial derivatives then become s =

1 
εv 0 

ln ( l(t) 
l 0 

) , ˜ u t = 

1 
ˆ l 
ū s , ˜ u ξ t = 

1 
ˆ l 
ū ξ s , ˜ u tt = 

1 
ˆ l 2 

ū ss − v 
ˆ l 
ū s , ˜ e (t) = β sin ( 

αl 0 
εv 0 

(e εv 0 s − 1)) , where ˜ u (ξ , t) = ū (ξ , s ) . Substituting these

derivatives into (3) , we obtain the following problem for ū (ξ , s ) : ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

ū ss − ū ξξ = v ̄u s + 2 v ξ ū ξ s − 2 v ̄u ξ s − c ̂ l ̄u s + O (ε 2 ) , 0 ≤ ξ ≤ 1 , s > 0 , 

ū ss (1 , s ) + 

ρL ̂ l 
m 

ū ξ (1 , s ) = [ v ̂ l ̄u s + 2 v ξ ū ξ s − 2 v ̄u ξ s − c u ̂  l ̄u s ] | ξ=1 + O (ε 2 ) , s > 0 , 

ū (0 , s ) = β sin ( αl 0 
εv 0 (e εv 0 s − 1)) , s > 0 , 

ū (ξ , 0) = f (ξ ) , ū s (ξ , 0) = g(ξ ) , 0 ≤ ξ ≤ 1 , 

(B.1) 

where ˆ l = ̂

 l (s ) , f (ξ ) = ˜ u 0 (ξ ) and g(ξ ) = l 0 ̃  u 1 (ξ ) . By using the PDE, the boundary condition at ξ = 1 can be rewritten and

we obtain from (B.1) the following problem: ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

ū ss − ū ξξ = v ̄u s + 2 v ξ ū ξ s − 2 v ̄u ξ s − c ̂ l ̄u s + O (ε 2 ) , 0 ≤ ξ ≤ 1 , s > 0 , 

ū ξξ (1 , s ) + 

ρL ̂ l 
m 

ū ξ (1 , s ) = (c − c u ) ̂ l ̄u s (1 , s ) + O (ε 2 ) , s > 0 , 

ū (0 , s ) = ē (s ) = β sin ( αl 0 
εv 0 (e εv 0 s − 1)) , s > 0 , 

ū (ξ , 0) = f (ξ ) , ū s (ξ , 0) = g(ξ ) , 0 ≤ ξ ≤ 1 . 

(B.2) 
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Fig. C.1. For s = 0, intersection points of y = tan λ and y = 

1 
λ

are giving λn (0) . 

 

 

 

 

 

 

 

Appendix C. An adapted version of the method of separation of variables 

By substituting T (s, τ ) X(ξ , τ ) into the partial differential equation in (8) ,we obtain 

T ss (s, τ ) 

T (s, τ ) 
+ O (ε) = 

X ξξ (ξ , τ ) 

X (ξ , τ ) 
, 0 ≤ ξ ≤ 1 , s > 0 , τ > 0 . (C.1) 

The O (1) part of the left-hand side of Eq. (C.1) is a function of s and τ , and the right-hand side is a function of ξ and τ . To

be equal, both sides need to be equal to a function of τ . Let this function be −λ2 (τ ) (which will be defined later), so we

obtain from (C.1) by neglecting terms of order ε: T ss (s,τ ) 
T (s,τ ) 

= 

X ξξ (ξ ,τ ) 

X(ξ ,τ ) 
= −λ2 (τ ) , implying: 

X ξξ (ξ , τ ) + λ2 (τ ) X (ξ , τ ) = 0 , T ss (s, τ ) + λ2 (τ ) T (s, τ ) = 0 , 0 ≤ ξ ≤ 1 , s > 0 , τ > 0 . (C.2) 

In accordance with the first equation for X(ξ , τ ) in (C.2) and boundary conditions in (E.3) , a nontrivial solution X n (ξ , τ ) is 

X n (ξ , τ ) = B n (τ ) sin (λn (τ ) ξ ) , (C.3) 

where B n (τ ) is an arbitrary function of τ only, and λn (τ ) is given by (10) . Assuming that 
ρLl 0 

m 

= 1 , the values of λn (0) can

be obtained in Fig. C.1 . It should be observed that the eigenfunctions X n (ξ , τ ) are orthogonal on 0 < ξ < 1 . And so, 

The general solution of (7) - (8) can be expanded in the form in (9) . By substituting Eq. (9) into the nonhomogeneous

governing equation and initial conditions in (6) , we obtain 

∞ ∑ 

n =1 

[( ̄T n,ss + 2 ε ̄T n,sτ + λ2 
n (τ ) ̄T n ) sin (λn (τ ) ξ ) + 2 εξ

d λn (τ ) 

d τ
T̄ n,s cos (λn (τ ) ξ )] 

= 

∞ ∑ 

n =1 

ε[(v 0 − c 0 ̄l (τ )) ̄T n,s sin (λn (τ ) ξ ) + 2(ξ − 1) v 0 λn (τ ) ̄T n,s cos (λn (τ ) ξ ) 

+ 

m (c 0 − c uo ) λ2 
n (τ ) ξ

ρL 
T̄ n,s sin (λn (τ ))] + ε β0 α

2 l̄ 2 (τ ) sin ( 
αl 0 
ε v 0 

(e εv 0 s − 1)) + O (ε 2 ) , 

∞ ∑ 

n =1 

[ ̄T n (0 , 0) sin (λn (0) ξ )] = W 0 (ξ ) , (C.4) 

∞ ∑ 

n =1 

[( ̄T n,s (0 , 0) + ε ̄T n,τ (0 , 0)) sin (λn (0) ξ ) + ε ̄T n (0 , 0) 
dλn (0) 

dτ
ξ cos (λn (0) ξ )] = W 1 (ξ ) . (C.4) 

Now, let σ (τ, ξ ) = 1 + 

2 m 

ρL ̄l (τ ) 
δ(ξ − 1) be a weight function, where δ(ξ − 1) is the Dirac delta function (with δ(ξ − 1) = 0 for

ξ � = 1 , and 

∫ 1 
0 δ(ξ − 1)d ξ = 

1 
2 ). By multiplying the first equation in (C.4) by σ (τ, ξ ) sin (λk (τ ) ξ ) , and the second and third

equations in (C.4) with σ (0 , ξ ) sin (λk (0) ξ ) , by integrating the so-obtained equation from ξ = 0 to ξ = 1 , and by using the

fact that the sin (λk (τ ) ξ ) functions subject to the inner product with weight function σ (τ, ξ ) are orthogonal on 0 ≤ ξ ≤ 1 , 

it follows that T̄ k (s, τ ) for k = 1 , 2 , 3 , . . . , and s > 0 , τ > 0 have to satisfy (11) . 
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Appendix D. The construction of the functions C k, 1 and C k, 2 

First of all, by using the initial conditions in Eq. (41) , it follows that C k, 1 (0 , 0) = C k, 2 (0 , 0) = 0 . Then, we shall solve the

O (ε) − problem (42) . This problem (outside as well as inside the resonance manifold) can be written as 

∂ 2 w k, 1 

∂ ˜ φ2 
k, 0 

+ w k, 1 = −2[ 
∂C k, 1 

∂ ˜ φk, 1 

cos ( ̃  φk, 0 ) −
∂C k, 2 

∂ ˜ φk, 1 

sin ( ̃  φk, 0 )] + α2 β0 ̄l 
2 (τ ) 

d k (τ ) 

λ2 
k 
(τ ) 

sin ( 
αl 0 
εv 0 

(e v 0 τ − 1)) , (D.1) 

w k, 1 (0 , 0 , 0) = F̄ k , 
∂w k, 1 

∂ ˜ φk, 0 

(0 , 0 , 0) = −∂w k, 0 

∂ ˜ φk, 1 

(0 , 0 , 0) + Ḡ k . (D.2) 

Outside of the resonance zone, it should be observed that the last term in Eq. (D.1) does not give rise to secular terms in

w k, 1 . To avoid secular terms outside the resonance zone, it follows from (D.1) that C k, 1 and C k, 2 have to satisfy the following

conditions 
∂C k, 1 

∂ ̃  φk, 1 

= 0 , 
∂C k, 2 

∂ ̃  φk, 1 

= 0 , which has as solutions 

C k, 1 ( ̃  φk, 1 , 
˜ φk, 2 ) = C̄ k, 1 ( ̃  φk, 2 ) , C k, 2 ( ̃  φk, 1 , 

˜ φk, 2 ) = C̄ k, 2 ( ̃  φk, 2 ) , (D.3) 

where C̄ k, 1 and C̄ k, 2 are still unknown functions of the slow variable ˜ φk, 2 , and can be used to avoid secular terms in the

O (ε 
√ 

ε ) − problem (43) . Since C k, 1 (0 , 0) = C k, 2 (0 , 0) = 0 , this implies that C̄ k, 1 (0) = C̄ k, 2 (0) = 0 . Now we consider the O (ε)

equation inside the resonance zone and observe that inside the resonance zone, the last term in Eq. (D.1) gives rise to secular

terms in w k, 1 . According to (30) , we can write sin ( 
αl 0 
εv 0 

(e v 0 τ − 1)) = sin ( 1 2 γ ˜ s 2 
1 

+ 

αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k ) + 

˜ φk, 0 ) , where γ is

given by (28) . So we can rewrite Eq. (D.1) inside the resonance zone as 

∂ 2 w k, 1 

∂ ˜ φ2 
k, 0 

+ w k, 1 = [ −2 

∂C k, 1 

∂ ˜ φk, 1 

+ α2 β0 ̄l 
2 (τ ) 

d k (τ ) 

λ2 
k 
(τ ) 

sin ( 
1 

2 

γ ˜ s 2 1 + 

αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k ))] cos ( ̃  φk, 0 ) 

+[2 

∂C k, 2 

∂ ˜ φk, 1 

+ α2 β0 ̄l 
2 (τ ) 

d k (τ ) 

λ2 
k 
(τ ) 

cos ( 
1 

2 

γ ˜ s 2 1 + 

αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k ))] sin ( ̃  φk, 0 ) . 

In order to remove secular terms, it follows that C k, 1 and C k, 2 have to satisfy 

−2 

∂C k, 1 

∂ ˜ φk, 1 

+ α2 β0 ̄l 
2 (τ ) 

d k (τ ) 

λ2 
k 
(τ ) 

sin ( 
1 

2 

γ ˜ s 2 1 + ϑ(s k )) = 0 , 2 

∂C k, 2 

∂ ˜ φk, 1 

+ α2 β0 ̄l 
2 (τ ) 

d k (τ ) 

λ2 
k 
(τ ) 

cos ( 
1 

2 

γ ˜ s 2 1 + ϑ(s k )) = 0 , 

where ϑ(s k ) = 

αl 0 
εv 0 

(e εv 0 s k − 1) − φk (s k ) and
∂C k,i 

∂ ̃  φk, 1 

= 

1 
λk (τ ) 

∂C k,i 

∂ ̃ s 1 
, i = 1 , 2 . Thus, 

C k, 1 ( ̃  φk, 1 , 
˜ φk, 2 ) = C̄ k, 1 ( ̃  φk, 2 ) + 

1 

2 

α2 β0 ̄l 
2 (τ ) 

d k (τ ) 

λk (τ ) 

∫ ˜ s 1 

b 

sin ( 
1 

2 

γ ˜ s 2 1 + ϑ(s k ))d ̄s 1 

= C̄ k, 1 ( ̃  φk, 2 ) + 

˜ F ( ̃  s 1 , τ ) , 

C k, 2 ( ̃  φk, 1 , 
˜ φk, 2 ) = C̄ k, 2 ( ̃  φk, 2 ) − ˜ G ( ̃  s 1 , τ ) , (D.4) 

where 

˜ F ( ̃  s 1 , τ ) = ᾱα2 β0 ̄l 
2 (τ ) 

d k (τ ) 

2 λk (τ ) 
[ sin (ϑ(s k )) ̄C F r ( ̃  s 1 ) + cos (ϑ(s k )) ̄S F r ( ̃  s 1 )] , 

˜ G ( ̃  s 1 , τ ) = ᾱα2 β0 ̄l 
2 (τ ) 

d k (τ ) 

2 λk (τ ) 
[ cos (ϑ(s k )) ̄C F r ( ̃  s 1 ) − sin (ϑ(s k )) ̄S F r ( ̃  s 1 )] , (D.5) 

and where C̄ k, 1 and C̄ k, 2 are still unknown functions of the slow variables ˜ φk, 2 . The undetermined behaviour with respect 

to ˜ φk, 2 can be used to avoid secular terms in the O (ε 
√ 

ε ) − problem (43) . Taking into account the secularity conditions, the

general solution of w k, 1 is given by 

w k, 1 ( ̃  φk, 0 , 
˜ φk, 1 , 

˜ φk, 2 ;
√ 

ε ) = D k, 1 ( ̃  φk, 1 , 
˜ φk, 2 ) sin ( ̃  φk, 0 ) + D k, 2 ( ̃  φk, 1 , 

˜ φk, 2 ) cos ( ̃  φk, 0 ) , (D.6)

where D k, 1 ( ̃  φk, 1 , 
˜ φk, 2 ) and D k, 1 ( ̃  φk, 1 , 

˜ φk, 2 ) are unknown functions of ˜ φk, 1 and 

˜ φk, 2 . By using the initial conditions in Eq. (42) ,

the values of D k, 1 (0 , 0) and D k, 2 (0 , 0) are given by the following equations D k, 1 (0 , 0) = 

Ḡ k 
λk (0) 

− ∂C k, 2 

∂ ̃  φk, 1 

(0 , 0) , D k, 2 (0 , 0) = F̄ k . 

The O (ε 
√ 

ε ) − problem (43) outside and inside the resonance manifold can be written as 

∂ 2 w k, 2 

∂ ˜ φ2 
k, 0 

+ w k, 2 = −2[ 
∂D k, 1 

∂ ˜ φk, 1 

cos ( ̃  φk, 0 ) −
∂D k, 2 

∂ ˜ φk, 1 

sin ( ̃  φk, 0 )] − 2[ 
∂C k, 1 

∂ ˜ φk, 2 

cos ( ̃  φk, 0 ) −
∂C k, 2 

∂ ˜ φk, 2 

sin ( ̃  φk, 0 )] 

−[ 
∂ 2 C k, 1 

∂ ˜ φ2 
k, 1 

sin ( ̃  φk, 0 ) + 

∂ 2 C k, 2 

∂ ˜ φ2 
k, 1 

cos ( ̃  φk, 0 )] 
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+[(v 0 − c 0 ̄l (τ )) λk (τ ) − d λk (τ ) 

d τ
] 

1 

λ2 
k 
(τ ) 

[ C k, 1 cos ( ̃  φk, 0 ) − C k, 2 sin ( ̃  φk, 0 )] 

−2[ c 1 k,k (τ ) 
d λk (τ ) 

d τ
− v 0 c 2 k,k (τ ) 

−m (c 0 − c uo ) 

2 ρL 
c 3 k,k (τ )] 

1 

λk (τ ) 
[ C k, 1 cos ( ̃  φk, 0 ) − C k, 2 sin ( ̃  φk, 0 )] 

−2 

∞ ∑ 

n � = k 
[ c 1 n,k (τ ) 

d λn (τ ) 

d τ
− v 0 c 2 n,k (τ ) 

−m (c 0 − c uo ) 

2 ρL 
c 3 n,k (τ )] 

1 

λn (τ ) 
[ C n, 1 cos ( ̃  φn, 0 ) − C n, 2 sin ( ̃  φn, 0 )] 

w k, 2 (0 , 0 , 0) = 0 , 
∂w k, 2 

∂ ˜ φk, 0 

(0 , 0 , 0) = −∂w k, 0 

∂ ˜ φk, 2 

(0 , 0 , 0) − ∂w k, 1 

∂ ˜ φk, 1 

(0 , 0 , 0) . (D.7) 

To avoid secular terms in the solution w k, 2 of Eq. (D.7) , outside the resonance zone, it follows from (D.7) that D k, 1 , D k, 2 , C̄ k, 1 ,

and C̄ k, 2 have to satisfy: 

−2 

∂D k, 1 

∂ ˜ φk, 1 

− 2 

∂ ̄C k, 1 

∂ ˜ φk, 2 

+ ζ̄ (τ ) 
1 

λk (τ ) 
C̄ k, 1 = 0 , 2 

∂D k, 2 

∂ ˜ φk, 1 

+ 2 

∂ ̄C k, 2 

∂ ˜ φk, 2 

− ζ̄ (τ ) 
1 

λk (τ ) 
C̄ k, 2 = 0 , (D.8) 

where ζ̄ (τ ) = (v 0 − c 0 ̄l (τ )) − d λk (τ ) 

d τ
1 

λk (τ ) 
− 2 c 1 

k,k 
(τ ) 

d λk (τ ) 

d τ
+ 2 v 0 c 2 k,k 

(τ ) + 2 
m (c 0 −c uo ) 

2 ρL c 3 
k,k 

(τ ) . If we solve Eq. (D.8) for D k, 1 and

D k, 2 and integrate Eqs. (D.8) with respect to ˜ φk, 1 , we observe that the solutions will be unbounded in 

˜ φk, 1 due to terms

which are only depending on 

˜ φk, 2 . Therefore, to have secular-free solutions, the following conditions have to be imposed 

independently 

∂ ̄C k, 1 

∂ ˜ φk, 2 

− 1 

2 

ζ̄ (τ ) 
1 

λk (τ ) 
C̄ k, 1 = 0 , 

∂ ̄C k, 2 

∂ ˜ φk, 2 

− 1 

2 

ζ̄ (τ ) 
1 

λk (τ ) 
C̄ k, 2 = 0 . (D.9) 

For 
∂ ̄C k,i 

∂ ̃  φk, 2 

= 

1 
λk (τ ) 

∂ ̄C k,i 

∂ ̃ s 2 
, i = 1 , 2 , we obtain C̄ k, 1 = C̄ k, 1 (0)e 

∫ τ
0 

1 
2 
ζ̄ (�)d � , C̄ k, 2 = C̄ k, 2 (0)e 

∫ τ
0 

1 
2 
ζ̄ (�)d � . Since C̄ k, 1 (0) = C̄ k, 2 (0) = 0 and

λk (τ ) is bounded, it follows from Eq. (D.9) that outside the resonance zone 

C k, 1 ( ̃  φk, 1 , 
˜ φk, 2 ) = 0 , C k, 2 ( ̃  φk, 1 , 

˜ φk, 2 ) = 0 . (D.10) 

Inside the resonance zone, to avoid secular terms in the solution w k, 2 of Eq. (D.7) , the following conditions have to be

imposed 

−2 

∂D k, 1 

∂ ˜ φk, 1 

− 2 

∂ ̄C k, 1 

∂ ˜ φk, 2 

− 2 

∂ ̃  F ( ̃  s 1 , τ ) 

∂ ˜ φk, 2 

+ 

1 

λ2 
k 
(τ ) 

∂ 2 ˜ G ( ̃  s 1 ) 

∂ ̃  s 2 
1 

+ ζ̄ (τ ) 
1 

λk (τ ) 
( ̄C k, 1 + 

˜ F ( ̃  s 1 , τ )) = 0 (D.11) 

2 

∂D k, 2 

∂ ˜ φk, 1 

+ 2 

∂ ̄C k, 2 

∂ ˜ φk, 2 

− 2 

∂ ˜ G ( ̃  s 1 , τ ) 

∂ ˜ φk, 2 

− 1 

λ2 
k 
(τ ) 

∂ 2 ˜ F ( ̃  s 1 ) 

∂ ̃  s 2 
1 

− ζ̄ (τ ) 
1 

λk (τ ) 
( ̄C k, 2 − ˜ G ( ̃  s 1 , τ )) = 0 . (D.12) 

If we solve Eqs. (D.11) and (D.12) for D k, 1 and D k, 2 and integrate respect to ˜ φk, 1 , we observe that the solutions will be

unbounded in 

˜ φk, 1 due to terms which are only depending on 

˜ φk, 2 . Therefore, to have secular-free solutions, the following 

conditions have to be imposed independently 

∂ ̄C k, 1 

∂ ˜ φk, 2 

= 

1 

2 

ζ̄ (τ ) 
1 

λk (τ ) 
C̄ k, 1 , 

∂ ̄C k, 2 

∂ ˜ φk, 2 

= 

1 

2 

ζ̄ (τ ) 
1 

λk (τ ) 
C̄ k, 2 . (D.13) 

Since C̄ k, 1 (0) = C̄ k, 2 (0) = 0 , it follows from Eq. (D.13) that inside the resonance zone 

C̄ k, 1 ( ̃  φk, 2 ) = 0 , C̄ k, 2 ( ̃  φk, 2 ) = 0 , C k, 1 ( ̃  φk, 1 , 
˜ φk, 2 ) = 

˜ F ( ̃  s 1 , τ ) , C k, 2 ( ̃  φk, 1 , 
˜ φk, 2 ) = 

˜ G ( ̃  s 1 , τ ) , (D.14) 

where ˜ F ( ̃ s 1 , τ ) and 

˜ G ( ̃ s 1 , τ ) are given by (D.5) . Thus, we obtain the functions of C k, 1 ( ̃  φk, 1 , 
˜ φk, 2 ) and C k, 1 ( ̃  φk, 1 , 

˜ φk, 2 ) in

(D.10) and (D.14) . Similarly, we also can obtain the solution w k, 1 of O (ε) problem and the solution w k, 2 of O (ε 
√ 

ε ) problem

by using the above analysis. In order to shorten the paper, this derivation is omitted. 

Appendix E. Discretization and energy 

To solve (56) numerically, it is convenient to rewrite the second order partial differential equation as a system of two

coupled first-order partial differential equations: 

ǔ t = ν̌, ν̌t = 

1 

l 2 
ǔ ξξ + ε[ 

2 v 0 
l 

(ξ − 1) ̌νξ − c 0 ̌ν + α2 β sin (αt) − mξ (c − c u ) 

ρLl 
ν̌ξξ (1 , t)] . (E.1) 
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Next, let us use mesh grids ξ j = ( j − 1)�ξ for j = 1 , 2 , n, n + 1 with n �ξ = 1 . By introducing the differences, ǔ ξξ (ξ j , t) =
ǔ j+1 −2 ̌u j + ̌u j−1 

(�ξ ) 2 
+ O ((�ξ ) 2 ) , ν̌ξ (ξ j , t) = 

ν̌ j+1 −ν̌ j−1 

2�ξ
+ O ((�ξ ) 2 ) , ν̌ξξ (ξ j , t) = 

ν̌ j+1 −2 ̌ν j + ̌ν j−1 

(�ξ ) 2 
+ O ((�ξ ) 2 ) , it follows how system

(E.1) can be discretized, yielding: {
d ̌u 
dt 

(ξ j , t) = ν̌ j , 
d ̌ν
dt 

(ξ j , t) = r( ̌u j+1 − 2 ̌u j + ǔ j−1 ) + q j ( ̌ν j+1 − ν̌ j−1 ) − εc 0 v j + p j ̌νn − p j ̌νn −1 + εα2 β0 sin (αt) , 

where r = 

1 
l 2 (�ξ ) 2 

, q j = 

εv 0 (ξ j −1) 

l�ξ
, p j = 

εm (c 0 −c u 0 ) ξ j 

ρL (2+�ξ )�ξ
for j = 1,2,.,n. Further, 

R = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

−2 r r 0 · · · · · · 0 

r −2 r r · · · · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 · · · · · · r −2 r r 
0 · · · · · · 0 c −c 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

∈ R 

n ×n , where c = 

2 ρL 

l(2 m + ρLl�ξ )�ξ
, and 

P = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−εc 0 q 1 0 · · · 0 −p 1 p 1 
−q 2 −εc 0 q 2 · · · 0 −p 2 p 2 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
0 · · · 0 −q n −2 −εc 0 q n −2 − p n −2 p n −2 

0 · · · 0 0 −q n −1 −εc 0 − p n −1 q n −1 + p n −1 

0 · · · · · · · · · 0 d n − q n − p n e n − εc 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

∈ R 

n ×n , 

where d n = 

ρLl�ξ−2 m 

2 m + ρLl�ξ
, e n = 

4 m 

2 m + ρLl�ξ
+ p n . The four matrices ∅ , I, R and P compose the system matrix M: 

M = 

(
∅ I 
R P 

)
∈ R 

2 n ×2 n , 

where ∅ is the zero matrix, and I is the identity matrix. In addition, let us introduce the following vector: w =
(u 1 (ξ1 , t) , u 2 (ξ2 , t) , . . . , u n (ξn , t) , ν1 (ν1 , t) , ν2 (ξ2 , t) , . . . , νn (ξn , t)) 

T , s = ( 0 , 0 , . . . , 0 ︸ ︷︷ ︸ 
n times 

, ̄s , ̄s , . . . , ̄s ︸ ︷︷ ︸ 
n times 

) T , where s̄ = εα2 β0 sin (αt) . So,

system (E.1) can be written in the following matrix form: dw 

dt 
= Mw + s . In order to perform a time integration, we apply

the Crank-Nicolson method. Introducing the mesh grid in time, t k = k �t for k = 1,2,...,n, we obtain 

w 

k +1 = Dw 

k + 

�t 

2 

(I − �t 

2 

M 

k +1 ) −1 (s k +1 + s k ) , (E.2) 

where I is the identity matrix and I ∈ R 

2 n ×2 n and D = (I − �t 
2 M 

k +1 ) −1 (I + 

�t 
2 M 

k ) . 

The total mechanical energy of the problem (8) is given by 

E(t) = 

1 

2 

∫ l(t) 

0 

[ ρ(u t + v u x ) 
2 + EAu 

2 
x ] dx + 

m 

2 

[ u t (l(t ) , t ) + v u x (l(t ) , t )] 2 . 

Using the dimensionless quantities, we rewrite the energy in a dimensionless form: 

E (t) = 

1 

2 

E AL 

∫ l(t) 

0 

[(u t + v u x ) 
2 + u 

2 
x ] dx + 

EAm 

2 ρ
[ u t (l(t ) , t ) + v u x (l(t ) , t )] 2 . 

In order to define the energy on the interval (0,1), we obtain problem (10) by using the following transformation ξ = 

x 
l(t) 

: 

E (t) = 

E AL 

2 l(t) 

∫ 1 

0 

[(l(t) ̃  u t + (1 − ξ ) v ̃  u ξ ) 
2 + 

˜ u 

2 
ξ ] dξ + 

EAm 

2 ρl 2 (t) 
[ l(t ) ̃  u t (1 , t ) + (1 − ξ ) v ̃  u ξ (1 , t)] 2 . (E.3) 
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