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Exploring Deep-Reinforcement-Learning-Assisted
Federated Learning for Online Resource

Allocation in Privacy-Preserving EdgeIoT
Jingjing Zheng , Kai Li, Senior Member, IEEE, Naram Mhaisen, Wei Ni , Senior Member, IEEE,

Eduardo Tovar, Member, IEEE, and Mohsen Guizani , Fellow, IEEE

Abstract—Federated learning (FL) has been increasingly con-
sidered to preserve data training privacy from eavesdropping
attacks in mobile-edge computing-based Internet of Things
(EdgeIoT). On the one hand, the learning accuracy of FL can
be improved by selecting the IoT devices with large data sets
for training, which gives rise to a higher energy consumption.
On the other hand, the energy consumption can be reduced by
selecting the IoT devices with small data sets for FL, resulting in
a falling learning accuracy. In this article, we formulate a new
resource allocation problem for privacy-preserving EdgeIoT to
balance the learning accuracy of FL and the energy consumption
of the IoT device. We propose a new FL-enabled twin-delayed
deep deterministic policy gradient (FL-DLT3) framework to
achieve the optimal accuracy and energy balance in a contin-
uous domain. Furthermore, long short-term memory (LSTM)
is leveraged in FL-DLT3 to predict the time-varying network
state while FL-DLT3 is trained to select the IoT devices and
allocate the transmit power. Numerical results demonstrate that
the proposed FL-DLT3 achieves fast convergence (less than 100
iterations) while the FL accuracy-to-energy consumption ratio
is improved by 51.8% compared to the existing state-of-the-art
benchmark.

Index Terms—Deep reinforcement learning (DRL), federated
learning (FL), Internet of Things, mobile-edge computing (MEC),
online resource allocation.

I. INTRODUCTION

MOBILE-EDGE computing (MEC) provides a promis-
ing solution to enabling cloud computing services

in privacy-persevering MEC-based Internet of Things
(EdgeIoT) [1]–[3]. The IoT devices can offload their local

Manuscript received 11 February 2022; revised 24 April 2022; accepted
13 May 2022. Date of publication 20 May 2022; date of current version
24 October 2022. This work was supported in part by the National Funds
through FCT/MCTES (Portuguese Foundation for Science and Technology),
within the CISTER Research Unit under Grant UIDP/UIDB/04234/2020,
and in part by the National Funds through FCT under Project PTDC/EEI-
COM/3362/2021 (ADANET). (Corresponding author: Kai Li.)

Jingjing Zheng, Kai Li, and Eduardo Tovar are with the Real-Time and
Embedded Computing Systems Research Center, 4249-015 Porto, Portugal
(e-mail: zheng@isep.ipp.pt; kai@isep.ipp.pt; emt@isep.ipp.pt).

Naram Mhaisen is with the College of Electrical Engineering, Mathematics,
and Computer Science, TU Delft, 2628 CD Delft, The Netherlands (e-mail:
n.mhaisen@tudelft.nl).

Wei Ni is with Commonwealth Scientific and Industrial Research
Organization, Sydney, NSW 2122, Australia (e-mail: wei.ni@data61.csiro.au).

Mohsen Guizani is with the Machine Learning Department, Mohamed
Bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE (e-mail:
mguizani@ieee.org).

Digital Object Identifier 10.1109/JIOT.2022.3176739

Fig. 1. FL-enabled EdgeIoT. A local model is trained with the data set at
the IoT device. The local model is aggregated by an edge server, where the
global model is trained and returned to the IoT devices.

computation-intensive tasks to computationally powerful edge
servers [4], [5]. In EdgeIoT, offloading the source data of the
IoT devices to the edge server is vulnerable to eavesdropping
attacks [6], [7]. To prevent private data leakage of the IoT
devices, federated learning (FL) [8] is used to train a global
data learning model at the edge server by aggregating the
data structure parameters of the IoT devices, while the source
data remains at the IoT devices.

Fig. 1 depicts an FL-enabled EdgeIoT, where the IoT
devices are deployed to sense and process private information,
e.g., health reports of patients [9]. Specifically, mobile phones
use image classification models to classify pictures or images.
FL can help multiple mobile phones to cooperatively train an
effective global image classification model, without the need
of sharing the images and pictures used for the training [10].
Likewise, vehicles can train an accurate autonomous driving
model by aggregating the local models trained separately by
multiple vehicles [11].

A local model (e.g., the weight vector [12]–[14] or gradi-
ent [15]) is trained on the sensing data of an IoT device to
sense and process private information, such as private health
reports of patients. Next, the edge server aggregates the local
models of all IoT devices to create a comprehensive and effec-
tive global model without collecting the private data of the IoT
devices. A global model is obtained at the edge server, e.g.,
by applying federated averaging (FedAvg) [12] to the local
models. The edge server broadcasts the global model back
to all the IoT devices. According to the global model, each
of the IoT devices renews the training of its local model. By
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iteratively training the local model at the IoT device and updat-
ing the global model at the edge server, the learning accuracy
of FL on the data classification and event prediction can be
progressively improved [16].

While selecting the IoT devices with large training data sets
can improve the learning accuracy of FL [17], it can often
result in fast depletion of the batteries at the devices. On the
other hand, selecting the IoT devices with small data for train-
ing the local models can save the battery energy of the IoT
devices, but likely leads to a low accuracy of the global model.
In this sense, balancing the learning accuracy of FL and the
energy consumption of the IoT devices is crucial to EdgeIoT.

Moreover, the FL process is time slotted by design and
sequential decision making is required. Hence, in this arti-
cle, we propose an online resource allocation optimization to
balance the learning accuracy of FL and energy consumption
of the IoT devices. In practice, the instantaneous information
of data size, transmit power, and link qualities between the
edge server and the IoT devices is unlikely to be known. The
optimization is formulated as a partially observable Markov
decision process (POMDP), where the network state consists
of the source data size of the IoT devices, channel condi-
tions between the edge server and the IoT devices, bandwidth,
and the remaining energy of the selected IoT devices. All the
entries of a network state are continuous. The action space
includes the discrete selection of IoT devices and the continu-
ous transmit power allocation. Given the continuous network
states and actions, a large number of IoT nodes lead to a
large state and action space, and complex network state tran-
sitions. This results in difficulty in the joint optimization of
IoT device selection and transmits power allocation. Due to a
large and continuous state and action space in the formulated
POMDP, a new deep reinforcement learning (DRL)-based
device selection and transmit power allocation algorithm is
proposed to maximize the ratio of the learning accuracy of
FL and the energy consumption of the IoT devices. The major
contributions of this article are summarized as follows.

1) We propose to jointly optimize the selection of IoT
devices and their transmit powers in an FL-empowered
edge IoT system, thereby balancing the learning accu-
racy of FL and energy consumption of the IoT devices.
The optimization is online, adapting to the time-varying
arrivals of training data and the energy budget of the IoT
devices, and the changing channel conditions between
the IoT devices and the base station (i.e., the model
aggregator).

2) FL-DLT3 is proposed to learn the network state dynam-
ics while maximizing the ratio of the learning accuracy
of FL to the energy consumption of the IoT devices.
Considering the continuous transmit powers of the IoT
devices, FL-DLT3 optimizes the edge server’s selection
of IoT devices for each round of FL and the transmit
powers of the IoT devices, based on twin delayed deep
deterministic policy gradient (TD3).

3) A new long short-term memory (LSTM) layer is
designed in coupling with the proposed FL-DLT3 to
predict the time-varying network states, e.g., data size,
bandwidth, channel gain, and the remaining energy
of the IoT devices. The LSTM layer estimates the

unobserved states at every training iteration of the TD3.
To the best of our knowledge, this is the first time
that LSTM is employed in coupling with TD3 for the
resource allocation of FL-enabled EdgeIoT.

4) FL-DLT3 is implemented in PyTorch. The effective-
ness of FL-DLT3 is validated with the experimental
data. Numerical results show that FL-DLT3 achieves
fast convergence (less than 100 iterations) while the
FL-accuracy-to-energy-consumption ratio is improved
by 51.8%, as compared to the state of the art.

The remainder of this article is structured as follows.
The literature on FL-based resource allocation in MEC is
reviewed in Section II. Section III presents the FL proto-
col and system models. The resource allocation optimization
for EdgeIoT is formulated in Section IV. Section V proposes
the FL-DLT3 framework which conducts DRL-based EdgeIoT
devices selection and resource allocation. Section VI evalu-
ates the proposed FL-DLT3 framework. Finally, Section VII
concludes this article.

II. RELATED WORK

This section presents the literature on resource allocation
with FL in MEC.

Assuming that the IoT devices have the same compu-
tational resources and wireless channel conditions, FedAvg
[12] randomly selects IoT devices to participate FL training
and synchronously aggregates local models. This process is
repeated until a desirable training accuracy is achieved. In [18],
different IoT devices own different computing capabilities and
wireless channel conditions, resulting in different local model
training time and upload time. The authors develop an FL
protocol called FedCS, which allows the server to aggregate
as many local model updates as possible to improve image
classification accuracy.

To improve the training accuracy of FL systems in the con-
text of wireless channels and energy arrivals of mobile devices,
Chu et al. [19] modeled the transmission power allocation and
mobile device selection of the FL training as a constrained
Markov decision process (MDP). Due to a high complexity,
stochastic learning methods and Lagrange multipliers are used
to simplify the model and to obtain an efficient policy for all
mobile device. In [20], the devices with limited battery energy,
CPU computations, and bandwidths are considered in a mobile
crowd network. A deep Q-learning-based resource allocation
for data, energy, and CPU cycles is developed to reduce the
energy consumption of FL-based mobile devices and training
time of the FL. Given limited computation and communica-
tion resources at the devices, [21] analyzes the convergence
bound of distributed gradient descent. A control algorithm is
developed to determine the tradeoff between local update and
global parameter aggregation. Some IoT devices have limited
communication and computing resources and fail to com-
plete training tasks, which leads to many discarded learning
rounds affecting the model accuracy [22]. The authors study
the multicriteria-based approach for IoT device selection in FL
that reducing the number of communication rounds to reach
the intended accuracy and increasing the number of selected
IoT devices in each round.
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Yoshida et al. [23] studied a trial-and-error-based IoT device
selection based on multiarmed bandit (MAB), where com-
putation tasks, traffic, and link qualities are unknown. The
MAB-based IoT device selection balances the IoT device selec-
tion according to the selection frequency and IoT devices’
resources. In [24], the IoT device scheduling in MEC is
formulated without the IoT devices’ channel and computing
information. To reduce the training latency, the IoT device
scheduling is formulated as an MAB problem, where ε-greedy
is used to reduce the learning accuracy. Xia et al. [25] developed
an MAB-based IoT device scheduling framework to reduce
the training latency of FL. Given the known independent and
identically distributed (i.i.d.) local data at the IoT devices, an
FL-based IoT device scheduling algorithm is designed.

Zhu et al. [26] aimed to reduce the average age of data
sources by controlling the IoT devices, scheduling the data,
and allocating the bandwidth. An actor–critic learning frame-
work is developed, where the IoT devices learn the schedul-
ing strategies based on their local observations. To reduce
the training time and energy consumption of IoT devices,
Zhan et al. [27] designed an experience-driven algorithm
based on proximal policy optimization and produce suboptimal
results. To improve the network throughput, Kwon et al. [28]
presented a cell association and base station allocation method.
Multi-agent deep deterministic policy gradient is used to han-
dle unexpected events and unreliable channels in underwater
wireless networks. In [29], the IoT devices are selected to
improve the FL accuracy and reduce the training time and
energy consumption. To balance the training accuracy and
delay of FL and energy consumption, twin delayed deep
deterministic policy gradient algorithm (TD3) is employed to
capture the interplay between function approximation error in
both policy and value updates, and produce the IoT devices
scheduling policy, the CPU frequency allocated for training,
and the transmit power allocation.

An FL-based device selection optimization is developed in
our preliminary work [30] to balance the energy consump-
tion of the IoT devices and the learning accuracy of FL. The
optimization model takes advantage of the a-priori knowledge
of the network state information, e.g., data size, bandwidth,
and channel gain. Due to the NP-hardness of the optimization,
an energy efficiency-FL accuracy balancing heuristic algorithm
(FedAECS) was presented in [30] to approximate the optimal
IoT device selection policy offline. In contrast, this article con-
siders a practical scenario without the prior information about
data size, bandwidth, channel gain, and the remaining energy
of the IoT devices. Due to a large state and action space, we
propose a new FL-DLT3 to balance FL accuracy and energy
consumption of the IoT devices online, where LSTM is lever-
aged to predict the hidden state of the IoT devices as the input
state of TD3. In addition, we also compare the performance
of the proposed FL-DLT3 with the FedAECS in [30].

III. SYSTEM MODEL

In this section, we study the training protocol and energy
model of FL. The notations used in this article are summarized
in Table I.

TABLE I
LIST OF KEY VARIABLES DEFINED IN SYSTEM MODEL

A. FL Protocol With MEC

Fig. 2 depicts the FL protocol, where the global model
at the edge server and the local models at the IoT devices
are trained in T rounds. Each FL round is composed of the
resource request, IoT device selection, global model aggrega-
tion, global model download, local model update, and upload.
The edge server initializes the hyperparameters of the global
model, e.g., learning rate, batch size, and the weights of the
global model.

1) Resource Request: The IoT devices send to the
edge server the information needed, i.e., data size, for
the device selection.

2) IoT Device Selection: The edge server selects
the IoT devices to upload the local model for the training
of the global model, where the details will be presented
in the next section.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 09:02:53 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Whole training process of FL, in each round, the time consumption of IoT device k includes global model download, local model update, and upload.

3) Global Model Aggregation: The edge server
aggregates the local models of the selected IoT devices
to produce the global model.

4) Global Model Download: All the IoT devices
download the global model from the edge server.

5) Local Model Update and Upload: The
selected IoT devices individually train their local
models according to the FL parameters of the global
model.

We consider K number of IoT devices, where k ∈ [1, K].
Let xki and yki denote the input (e.g., pixels of an image) and
the output (e.g., labels of the image) of the FL model [31],
respectively. The data set of device k is denoted as Dt,k =
{xki, yki}Dt,k

i=1 , where Dt,k is the size of the data set of device k
in the tth round and data sample i in device k. Let f (w, xki, yki)

denote the loss function of FL, which captures approximation
errors over the input xki and the output yki. w is the weight
parameter of the loss function of the neural network being
trained according to the FL procedure. Given Dt,k, the loss
function at IoT device k can be specified as

Ft,k(w) = 1

Dt,k

Dt,k∑

i=1

f (w, xki, yki) (1)

where f (w, xki, yki) can be specified according to the FL struc-
ture. For example, f (w, xki, yki) = (1/2)(xT

kiw − yki)
2 is used

to model linear regression, or f (w, xki, yki) = − log(1 +
exp (ykixT

kiw)) is for the model of logistic regression [32].
Since the training of FL aims to minimize the weighted global
loss function, we have

min
w

Ft(w) =
K∑

k=1

Dt,k

Dt
Ft,k(w)

= 1

Dt

K∑

k=1

Dt,k∑

i=1

f (w, xki, yki) (2)

where Dt =∑K
k=1 Dt,k, it represents the total amount of data

in the tth round.

B. Energy Model

The energy consumption of the IoT devices accounts for
the local training of the data set and the transmissions of the

local model. We assume that training a data sample at the IoT
device requires ck CPU cycles per bit. Given the data size of
Dt,k, the number of CPU cycles for the local model training is
ckDt,k. We denote fk as the computation capacity of IoT device
k, which is measured in CPU cycles per second. According
to [33], the computation time of training the local model at
device k in the each tth round [33], we have

τ train
t,k =

ckDt,kL

fk
(3)

where L is the number of local iterations of FL training.
According to [34] and [35], the energy consumption on

ckDt,k CPU cycles at IoT device k is

Ecmp
t,k1 = ζkckDt,kf 2

k (4)

where ζk is the effective capacitance coefficient of comput-
ing chipset for device k. To compute the local model, IoT
device k needs to compute ckDt,k CPU cycles. Thus, the total
computation energy at IoT device k in the tth round can be
given as

Ecmp
t,k = LEcmp

t,k1 = LζkckDt,kf 2
k . (5)

Furthermore, the achievable uplink transmit rate of IoT
device k is given by

rup
t,k = bt,k log2

(
1+ Pt,kGt,k

N0bt,k

)
(6)

where bt,k is the bandwidth allocated to IoT device k by the
edge server in the tth round, Pt,k is the power consumption of
data transmit for IoT device k, Gt,k is the uplink channel gain
between device k and the edge server, and N0 is the power
spectral density of the Gaussian noise.

The achievable downlink transmit rate of IoT device k is

rdown
t,k = bt,k log2

(
1+ Ps

t Ht,k

N0bt,k

)
(7)

where Ps
t denotes the transmit power of the edge server, and

Ht,k is the downlink wireless channel gain from the edge server
to device k.

The downloading time of the global model at device k in
the tth round is

τ down
t,k = Sd

rdown
t,k

(8)
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where Sd denotes the size of the global model. The trans-
mission time of the local model at the tth round can be
given by

τ
up
t,k =

Su

rup
t,k

(9)

where Su is the size of the local model. By substituting (6)
to (9), the energy consumption of an IoT device on the local
model transmission is

Eup
t,k = Pt,kτ

up
t,k =

Pt,kSu

bt,k log2

(
1+ Pt,kGt,k

N0bt,k

) . (10)

The total energy consumption Ec
t,k of the selected IoT device

k in the tth round is

Ec
t,k = Ecmp

t,k + Eup
t,k. (11)

The remaining battery energy of the selected IoT device k
in the tth round is

Et,k = Et−1,k − Ec
t−1,k +�Et,k (12)

where �Et,k is the amount of harvested energy.

IV. PROBLEM FORMULATION

In this section, we study the IoT device selection and trans-
mit power allocation to maximize the ratio of the learning
accuracy of FL to the energy consumption of IoT devices.

Let βt,k be a binary indicator. If IoT device k is selected by
the edge server in the tth round, βt,k = 1; otherwise, βt,k = 0.
We define the accuracy of FL as the fraction of predictions
FL model got right. According to [36]–[38], the accuracy of
FL, denoted by �(βt,k), can be simplified as

�(βt,k) = log

(
1+

K∑

k=1

μkβt,kDt,k

)
∀t ∈ T (13)

where μk > 0 is a system parameter [37]. To improve the
evenness of data size of the selected IoT devices, similar
to [39], we define the expectation of the difference between
the total amount of data for all devices and the amount of data
for the selected devices at the tth training round, and normalize
the expectation, we have

�t =
E

[
ν

∑K
k=1 Dt,k − βt,kDt,k

]

∑K
k=1 Dt,k

∀t ∈ T (14)

where ν ∈ (0, 1] is a constant value, the arrival data
Dt,k of device k follows uniform distribution or normal
distribution. The objective function can be determined as
([�(βt,k)]/[

∑K
k=1 βt,kEc

t,k]) − �t, which aims to balance the
learning accuracy of FL and energy consumption of the IoT
device and improve the evenness of data size of the selected
IoT devices. We formulate the optimization as P1

P1: max
βt,k,Pt,k

T∑

t=1

[
�(βt,k)∑K

k=1 βt,kEc
t,k

−�t

]

s.t.: βt,kEc
t,k ≤ Et,k, (t ∈ [1, T], k ∈ [1, K]). (15)

�(βt,k) ≥ ε0, (ε0 ∈ (0, 1]). (16)

K∑

k=1

βt,kbt,k ≤ B, (t ∈ [1, T], k ∈ [1, K]). (17)

1 ≤
K∑

k=1

βt,k ≤ K, (t ∈ [1, T], k ∈ [1, K]). (18)

βt,kτt,k ≤ td, (t ∈ [1, T], k ∈ [1, K]). (19)

Pmin
k ≤ Pt,k ≤ Pmax

k , (t ∈ [1, T], k ∈ [1, K]). (20)

βt,k ∈ {0, 1}, (t ∈ [1, T], k ∈ [1, K]). (21)

Specifically,
1) Constraint (βt,kEc

t,k ≤ Et,k) guarantees that the selected
IoT device has sufficient energy to complete the local
model training in t.

2) Constraint (�(βt,k) ≥ ε0) specifies the minimum require-
ment of the FL accuracy in t, where ε0 ∈ (0, 1] defines
the lower bound threshold.

3) Constraint (
∑K

k=1 βt,kbt,k ≤ B) guarantees that the total
bandwidth of the selected IoT devices is smaller than
the bandwidth capacity B.

4) Constraint (1 ≤ ∑K
k=1 βt,k ≤ K) describes that at least

one IoT device is selected for FL.
5) Constraint (βt,kτt,k ≤ td) ensures that the download,

computation and transmit delay of the selected device
has to be less than the duration of the round td. As
shown in Fig. 2, each tth round contains the download-
ing time of the global model, and local computation
and transmission time of the local model. According
to (3), (8), and (9), we can obtain the time delay τt,k,
i.e., τt,k = τ train

t,k + τ
up
t,k + τ down

t,k . Note that the IoT
device selection time and training time of the global
model at the edge server can be neglected since the
edge server supports more powerful CPUs than the IoT
device.

6) Constraint (Pmin
k ≤ Pt,k ≤ Pmax

k ) indicates the upper and
lower bounds of IoT devices’ transmit power.

Problem P1 involves nonlinear problems with continuous
and integer variables [40]. The typical 0-1 multidimensional
knapsack problem (MKP) [41] is a special case of problem P1.
Assume that transmit power is a constant. In this case, the only
variable is the selected IoT device. The items to be put in the
knapsack are the IoT devices with energy consumption Et,k,
data size Dt,k, and bandwidth bt,k. The capacity of the knap-
sack is equal to the total bandwidth, the optimization variable
βt,k is a binary indicator of item (IoT device) k selection. βt,k

is set to 1 to indicate that item k is selected. Otherwise, βt,k is
set to 0. The total reliability of the knapsack has lower bounds
which are equal to the minimum requirement of accuracy con-
straint (16). Note that every item to be put into the knapsack
must obey the time constraint (19). Coupled with the energy
consumption of IoT devices on the transmission is a nonlin-
ear function of the transmit power, which has a continuous
variable. Therefore, the proposed optimization is NP-hard. It
is also mentioning that problem P1 involves a long time hori-
zon with random and unpredictable data and energy arrivals.
This leads to an intractable large state space of the problem
requires online optimization of selection and allocation
decisions.
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V. DRL-BASED IOT DEVICES SELECTION AND

RESOURCE ALLOCATION

A. POMDP Formulation for FL-Based IoT Device Selection
and Resource Allocation

The considered resource allocation can be formulated as a
POMDP which is a generalization of an MDP with only par-
tially observable states [42]. A POMDP can be represented by
a 6-tuple (S, A, P, R, O,	), where S is the state space, A is the
action space, P is the transition probability, R is the reward
function, O is the observation space, and 	 is the observa-
tion model. The edge server cannot observe the underlying
state. Instead, an observation So

α′ ∈ O is received after a state
transition to the next state Sα′ with the probability 	(So

α′ |Sα′).
State and Action Space: According to problem P1, the state

space of the POMDP consists of data size, uplink channel
gains, downlink channel gains, bandwidth, and the remaining
energy of the IoT devices. The network state Sα is defined as

Sα =
{(

Dα,k, Gα,k, Hα,k, bα,k, Eα,k
)
, k = 1, . . . , K

}
. (22)

The action of the POMDP is the selection of the IoT devices
for FL, denoted by βα,k, and the transmit powers of the
selected IoT devices, Pα,k, as given by

A ∈ {
(βα,k, Pα,k), k = 1, . . . , K

}
(23)

where βα,k ∈ {0, 1} and Pα,k ∈ [Pmin
k , Pmax

k ].
Observation Space: At each state Sα , the edge server can

observe partially the network state from the selected IoT
devices, where the state observation So

α can be packed in
its uploaded local model. Particularly, the state observation
So
α ∈ Sα is given by

So
α =

{
(Dα,k, Gα,k, Hα,k, bα,k, Eα,k)o, k = 1, . . . , K

}
. (24)

Note that the state of unselected IoT devices cannot be
observed by the edge server.

Reward: Let R(So
α′ |So

α, Aα) denote the immediate reward
received when the action Aα ∈ A is taken at state Sα . The
reward is defined to consist of the AE gain that is the ratio of
the FL accuracy to the energy consumption of the selected IoT
devices, and the penalty resulting from the data unevenness
among the selected IoT devices, i.e.,

R
(
So
α′ |So

α, Aα

) = �(βα,k)∑K
k=1 βα,kEc

α,k

−�α (25)

where R(So
α′ |So

α, Aα) indicates that the state observation transits
to subsequent So

α′ from the current state observation So
α . For

illustration convenience, we use Rα to denote the reward in
the following sections.

To evaluate the action selected by a policy πθ with param-
eters θ , where πθ is a mapping from state observations to
actions, and the set of all policies is defined as 
. We aim to
maximize the expected total reward denoted as action-value
function Qπθ (S

o
α, Aα)

Qπθ

(
So
α, Aα

) = max
π∈
 E

πθ

So
α

{ ∞∑

n=0

γ nRα

}
(26)

where γ ∈ [0, 1] is a discount factor for future state obser-
vations. E

πθ

So
α
{·} takes the expectation with respect to policy

πθ and state observation So
α . According to the Bellman

equation [43], the optimal action-value function (26) of a
state–action pair (So

α, Aα) and the value of the subsequent
state–action pair (So

α′ , Aα′) can be further rewritten as

Qπθ

(
So
α, Aα

) = max
πθ∈


E
πθ

So
α

{
Rα + γ Qπθ

(
So
α′ , Aα′

)}
. (27)

The optimal action, namely, A∗α , which satisfies (27), can
be given by

A∗α = arg max
πθ∈


E
πθ

So
α

{
Rα + γ Qπθ

(
So
α′ , Aα′

)}
(28)

where A∗α provides the maximized AE gain.
Given a practical scenario where the edge server has no

prior knowledge on the transition probabilities, we propose
an FL-DLT3 framework that joint IoT device selection and
transmit power allocation algorithm that utilizes TD3, one of
the DRL techniques, to maximize the AE gain.

The state and action space increase dramatically with the
number of devices, and the action space has both continuous
and discrete actions. Moreover, the network state, in prac-
tice, is not always observable at the edge server because the
data size and remaining energy information of IoT devices are
always kept locally before the server takes the devices selec-
tion. In view of these challenges, it is difficult to find the
exact solution of P1. To this end, we develop the FL-DLT3
framework to find the near-optimal solution of problem P1.

In general, FL-DLT3 consists of the TD3-based DRL and
the LSTM-based state characterization layer, as depicted in
Fig. 3. FL-DLT3 leverages the actor–critic neural network
structure to develop the TD3-based DRL [44]. The TD3 at
the edge server is trained to optimize IoT device selection and
transmit power allocation in a continuous action space, where
the edge server has no prior information on the state transi-
tion probabilities. The LSTM is used to predict the hidden
state of the IoT devices as the input state of TD3. The AE
gain is maximized over the large continuous state and action
spaces. Specifically, the global model is trained iteratively to
improve the learning accuracy of the local model. With the
growth of FL iterations, FL-DLT3 optimally selects the IoT
devices to maximize the accuracy of FL while ensuring the
energy consumption requirement.

B. TD3 on the Edge Server

TD3 utilizes the deterministic policy gradient algorithm
(DPG) [45] to optimally update the current policy by deter-
ministically mapping network states to a specific action of
the edge server. The critic is used to approximate the action-
value function, which is related to the update of the actor, also
known as policy. Moreover, the edge server stores the tran-
sition about the previous actions of the edge server, current
observation, actions of the edge server, AE gain, next obser-
vations, i.e., (Aα− , So

α, Aα, Rα, So
α′), into the replay buffer B at

each training step. A mini-batch of N transitions is randomly
sampled from B to train the actor–critic networks. The action
will be selected according to the policy network with explo-
ration noise after the first M time steps. Since the IoT device
selection action output from the policy network may not be
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Fig. 3. Illustration of the proposed FL-DLT3 framework, where a policy network, a policy target network, two critic networks, and two critic target networks
are trained. Each of the networks consists of a feedforward branch and a recurrent branch. A training round of FL is performed by the selected IoT devices
with the allocated transmit power. Then, the edge server gets the reward Rα and the state update So

α′ of the IoT devices. The transition {(Aα− , So
α, Aα, Rα, So

α′ )}
is stored into the replay buffer B, and a mini-batch of transitions is randomly sampled from B to train the policy and critic networks on the edge server.

binary, we classify them as binary by setting thresholds. Based
on the TD3 framework, the policy and critic networks can be
trained to approximate the optimal policy of the formulated
POMDP problem.

For the continuous IoT device selection and transmit power
allocation, the objective is to find the optimal policy πθ , which
maximizes the expected AE gain J(θ) = E

πθ

So
α
[R(So

0, A0)],
the parameterized policies πθ can be updated by taking the
gradient of the expected return with respect to θ , i.e.,

∇θ J(θ) = Eπθ

[
∇Aα Qπθ

(
So
α, Aα

)|Aα=π(So
α)
∇θπθ

(
So
α

)]
(29)

where the optimal action-value function can be approximated
by the critic neural network [46] Qω(So

α, Aα) with parame-
ters ω, which obtains the AE gain. To update Qω(So

α, Aα),
the critic neural network minimizes the approximation loss
between the current target value and Qω(So

α, Aα) by adjusting
the parameter ω

min
ω

E

[(
Rα + γ Qω′

(
So
α′ , πθ

(
So
α′

))− Qω(So
α, Aα)

)2
]

(30)

where ω′ stands for the periodically updated parameters of the
critic target network, πθ (So

α′) is the policy target network takes
action in the next state observation So

α′ .
However, the update of the critic neural network with the

above value function may result in overestimation, which can
produce suboptimal policies of the policy network. To deal
with the overestimation bias problem, TD3 uses two approxi-
mately independent critic networks {Qω1 , Qω2} to estimate the
value function, i.e.,

yα,1 = Rα + γ Qω′1
(
So
α′ , πθ

(
So
α′

))

yα,2 = Rα + γ Qω′2
(
So
α′ , πθ

(
So
α′

))
(31)

where the minimum of the two estimators is utilized in the
update of the value function, i.e., yα = min{yα,1, yα,2}.

Moreover, FL-DLT3 follows TD3 to update the policy and
targets less frequently than the Q functions. Delayed policy
updates consist of only updating the policy and critic target
network every d intervals. And we also add noise to the tar-
get action, which makes the policy network less likely to
exploit actions with high Q-value estimates. The proposed
FL-DLT3 IoT device selection and transmit power allocation
policy is shown in Algorithm 1. Since the network system
has K IoT devices, each state of the IoT devices is made
up of the source of data size, uplink channel gain, down-
link channel gain, bandwidth, and the remaining energy of
the IoT device. It takes T rounds of iterations to before the
algorithm terminates. Therefore, the complexity of FL-DLT3
is O(T[7K(npa+ npc1+ npc2)+ (lpa− 1)n2

pa+ (lpc1− 1)n2
pc1+

(lpc2 − 1)n2
pc2 + 12 × (7K × Nlstm + (7K)2 + 7K)]), where

npa, npc1, and npc2 are the number of neurons in the hidden
layer of policy network, critic network 1, and critic network
2, respectively; lpa, lpc1, and lpc2 are the number of the hidden
layers of policy network, critic network 1, and critic network
2, respectively; and Nlstm is the hidden size of LSTM.

C. Network Architecture

Each network follows the two-branch structure as in [47],
which consists of a feedforward branch and recurrent branch
(as shown in Fig. 3). The feedforward branch and recurrent
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Algorithm 1: Developed FL-DLT3 IoT Device Selection
and Resource Allocation Policy

Initialize critic networks
{Qω1(S

o
α, Aα, Aα−), Qω2(S

o
α, Aα, Aα−)} and policy network

πθ (So
α, Aα−) with random parameters ω1, ω2, θ .

Initialize target networks ω
′
1 ← ω1, ω

′
2 ← ω2, θ ′ ← θ .

Initialize environment So
α , previous actions Aα− ← 0, replay

buffer B.
for α = 1, · · · , T do

if α ≤ N then
Explore N steps with random policy, obtain Rα and
So
α′ , and storage the transition (Aα− , So

α, Aα, Rα, So
α′)

of the N steps into B.
else

Select action with exploration noise
Aα ∼ πθ (So

α, Aα−)+ ρ, ρ ∼ N (0, σ ).
Server allocates the selected IoT devices Pα,k.
Server performs model aggregation to obtain updated
global model and distributes it to all selected devices
in the next round.
Server observes new observation So

α′ , calculates Rα ,
and stores the experience (Aα− , So

α, Aα, Rα, So
α′) into

B.
Sample mini-batch of N experiences
{(Aα− , So

α, Aα, Rα, So
α′)i}Ni=1 from B.

Obtain target action
Âα′ ← πθ ′ (So

α′ , Aα)+ ρ̂, ρ̂ ∼ Clip(N (0, σ̂ ),−c, c).
ŷ← Rα + γ min

m=1,2
Qωm(So

α′ , Âα′ , Aα).

Update critics ωm ← arg min
ωm

E(̂y− Qωm(So
α, Aα−))2.

if α mod d = 0 then
Update θ by the deterministic policy gradient
using equation (29).
Update target networks:
ωm′ ← ϕωm + (1− ϕ)ωm′ .
θ ′ ← ϕθ + (1− ϕ)θ ′.

end
end

end

branch both use five fully connected layers neural network of
512 hidden nodes. The recurrent branch consists of an embed-
ding layer of 512 fully connected units followed by 512 LSTM
units. For each hidden layer (apart from the LSTM), ReLU
activations are used between the two hidden layers for both the
policy and critic. The final tanh unit and linear unit following
the output of the policy and critic, respectively.

D. LSTM Layer

The unknown network observation transitions resulting from
time-varying data size, channel gains, bandwidth, and energy
harvesting, which increase learning uncertainties and reduce
learning accuracy. The edge server running the FL-DLT3 can-
not observe the complete states of all the IoT devices. It
can only make the observation of an IoT device when the
device is selected and uploads its state information to the edge
server. The learning efficiency and accuracy of the TD3-based
FL-DLT3 can be compromised by the imperfect knowledge
of the states of the IoT devices. Motivated by this fact, we
develop a state characterization layer to predict the states of the
IoT devices which are not observable, and feed the predicted
states into every neural network of FL-DLT3.

For every policy (target) network, two critic (target)
networks, and memory replay, we use LSTM to predict their
respective hidden states. The LSTM-based neural network is
used to find out the hidden state in the environment, e.g.,
the state of a device that has not been selected previously.
Moreover, the LSTM-based state characterization layer helps
to accelerate the convergence of the FL. At time state i, the
hidden state hhid

i is calculated by the following composite
function:

hhid
i = oi tanh(Ci) (32)

oi = σ
(

W0 ·
[
Ci, hhid

i−1, Ai

]
+ e0

)
(33)

Ci = FiCi−1 + pi tanh
(

Wc ·
[
hhid

i−1, Ai

]
+ ec

)
(34)

Fi = σ
(

Wf ·
[
hhid

i−1, Ci−1, Ai

]
+ ef

)
(35)

pi = σ
(

Wp ·
[
hhid

i−1, Ci−1, Ai

]
+ ep

)
(36)

where oi, Ci, Fi, and pi denote the output gate, cell activation
vectors, forget gate, and input gate of the LSTM layer, respec-
tively. σ and tanh refer to the logistic sigmoid function and the
hyperbolic tangent function, respectively. {W0, Wc, Wf , Wp}
are the weight matrix, and {e0, ec, ef , ep} are the bias matrix.

VI. NUMERICAL EXPERIMENTS

In this section, we present the implementation of the
proposed FL-DLT3 on PyTorch, which is an open-source
machine learning library based on the Torch library. We com-
pare FL-DLT3 with benchmarks in terms of network size,
data size, and communication bandwidth. Table II specifies
the configuration of simulation parameters.

A. Implementation and Training of FL-DLT3

We implement the proposed FL-DLT3 with Python 3.9.
PyTorch is set up on a Linux workstation with 64-bit Ubuntu
18.04. FL-DLT3 trains the resource allocation with FL on
2 Nvidia’s GPUs, one is GeForce GTX 1060 with 3-GB
memory, the other is GeForce RTX 2060 with 6-GB memory.

The experience replay memory can store 5 × 105 training
samples in terms of previous actions of the edge server, current
observation, actions of the edge server, AE gain, and next
observations. The previous actions and current observation are
combined to feed into policy network and critic networks to
infer the hidden state. Both state space and action space are
updated by using the Adam optimizer, where the learning rate
is 3×10−4. At one training step, the policy and critic networks
are trained with a mini-batch of 45 transitions, sampled from
the experience replay memory.

The policy target network is implemented by adding ρ ∼
N (0, 0.5) to the actions chosen by the policy target network,
clipped to (0, 60). The delayed policy updates the policy and
critic target networks at every d interval, where d = 10.

B. AE Gain Performance

For performance validation, we compare FL-DLT3
with existing state-of-the-art FL-based device scheduling
approaches, i.e., FedAECS [30], FedCS [18], and FedAvg [12].
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TABLE II
SIMULATION PARAMETERS

Fig. 4. Comparison of the AE gains, where T = 1000 and K = 40.

1) FedAECS: The edge server selects the IoT devices to
fulfill a predetermined ratio of FL accuracy to energy
consumption while meeting the requirement of accuracy
and bandwidth.

2) FedCS: Given the bandwidth limit, the edge server
selects the maximum number of IoT devices for FL.

3) FedAvg: Given the limit of the bandwidth, the edge
server determines the number of IoT devices for FL
training and randomly selects the IoT devices.

Fig. 4 shows the AE gains, where the tth round is from 1
to 1000 and K = 40. The data size Dt,k and bandwidth bt,k of

Fig. 5. Comparison of the AE gain obtained by using FL-DLT3, FL-DLT3
without LSTM, FedAECS, FedCs, and FedAvg with different number of IoT
devices.

Fig. 6. Compare the FL accuracy and energy consumption of FL-DLT3 and
FL-DLT3 without LSTM as the number of devices changes.

the K devices vary in [2, 10] MB and [10, 50] kHz, respec-
tively. In general, the proposed FL-DLT3 achieves the highest
AE gain, as compared to the existing FedAECS, FedCS, and
FedAvg, improved by 51.8%, 82.4%, and 85.0% respectively.
The reason is that FL-DLT3 leverages experience replay and
predicts the states of the IoT devices which are not observ-
able, however, FedAECS, FedCS, and FedAvg are unable to
predict the states of the IoT devices.

FL-DLT3 outperforms FL-DLT3 without the LSTM layer
with a gain of 39.8%. This is because the LSTM layer effi-
ciently predicts the unknown network observation transitions,
which enriches the training environment for FL and TD3.

Fig. 5 studies the AE gain of the proposed FL-DLT3, where
K increases from 10 to 80. In general, the proposed FL-DLT3
achieves the highest AE gain 11.4557, as compared to the
existing FedAECS (2.7212), FedCS (1.3952), and FedAvg
(1.3498) given K = 10.

In Fig. 6, it can be observed that the energy consumption
of FL-DLT3 dominates the performance when K increases
from 10 to 50. When K > 60, the FL accuracy dominates
the performance. This confirms that the AE gain’s fluctuation
in Fig. 5 when K increases from 10 to 50. The reason is that
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Fig. 7. AE gain achieved by the proposed FL-DLT3 given K = 20, 40,
or 80.

Fig. 8. AE gain varying with data size following normal distribution while
keeping the same variance (0.2 MB).

FL-DLT3 can select more IoT devices, hence the FL accu-
racy and energy consumption increase monotonically with the
number of devices.

Fig. 7 shows the AE gain given 1000 rounds. With an
increase of K, the AE gain achieved by FL-DLT3 decreases
from 5.3411 to 3.7066. This also validates the performance in
Fig. 5.

Fig. 8 depicts the AE gain of FL-DLT3 with regard to
the average data size. In general, the AE gain increases with
the growth of the data size. This is because the FL accu-
racy rises in a high rate while the energy consumption of the
IoT devices on the training of FL-DLT3 slightly increases.
Moreover, the AE gain obtained by FL-DLT3 is about twice
that obtained by FedAECS, thanks to the transmit power
allocation in FL-DLT3.

Fig. 9 describes the AE gain of FL-DLT3 with regard to
the average bandwidth. Overall, the AE gain raises with an
increase of the average bandwidth since the energy consump-
tion of the IoT devices on the local models transmission
is reduced, in other words, a better channel quality leads
to smaller packet retransmission and energy consumption.
In addition, FL-DLT3 achieves the highest AE gain given
different bandwidths. This is achieved by the LSTM layer
is integrated into the FL-DLT3 to predict the time-varying
bandwidth.

Fig. 9. AE gain varying with bandwidth following normal distribution while
keeping the same variance (4 kHz).

Fig. 10. Compare the FL accuracy and energy consumption of FL-DLT3 and
FL-DLT3 without LSTM as the average channel size of IoT devices changes.

Fig. 10 shows the FL accuracy and energy consumption
of FL-DLT3 and FL-DLT3 without LSTM in regard to the
average bandwidth size of IoT devices changes. Generally, the
energy consumption of FL-DLT3 decreases with an increase
of the bandwidth since the retransmission of the local models
is reduced.

Fig. 11 shows the runtime of FL-DLT3, where K is set
to 10, 40, 60, or 80. In the first 45 rounds, the runtime of
FL-DLT3 is about 0.018 s. This is because the experience
replay buffer is initialized in which the training of FL-DLT3 is
not conducted yet. Once the learning experience is sufficient
and FL-DLT3 carries out the training, the runtime raises to
0.74 s given K = 10. When K increases to 80, the training
of FL-DLT3 takes 1.3286 s. The reason is that an increase
of the IoT devices results in a large state and action space,
hence the learning time of FL-DLT3 increases. In addition,
the runtime of FL-DLT3 randomly fluctuates. This is due to
random interruptions from other program executions that are
concurrently operated on the server.

VII. CONCLUSION

In this article, we proposed FL-DLT3, which is a new
DRL-based resource allocation with FL for EdgeIoT. Given
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Fig. 11. Runtime with the tth round.

the large state and action space, FL-DLT3 learns the network
state dynamics while maximizing the ratio of the learning
accuracy of FL to the energy consumption of the IoT devices
in a continuous domain. To improve the learning accuracy, a
new state characterization layer based on LSTM is developed
in FL-DLT3 to predict the time-varying data size, bandwidth,
channel gain, and the remaining energy of the IoT devices.
FL-DLT3 is implemented in PyTorch. The effectiveness of
FL-DLT3 is validated with the experimental data.
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