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a b s t r a c t

Disturbances in iterative learning control (ILC) may be amplified if these vary from one iteration to the
next, and reducing this amplification typically reduces the convergence speed. The aim of this paper
is to resolve this trade-off and achieve fast convergence, robustness and small converged errors in
ILC. A nonlinear learning approach is presented that uses the difference in amplitude characteristics of
repeating and varying disturbances to adapt the learning gain. Monotonic convergence of the nonlinear
ILC algorithm is established, resulting in a systematic design procedure. Application of the proposed
algorithm demonstrates both fast convergence and small errors.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Iterative learning control (ILC) can attenuate repeating distur-
ances completely, yet it also amplifies iteration-varying distur-
ances. In ILC, the input that compensates the repeating distur-
ances is updated iteratively, resulting in high performance (Bris-
ow, Tharayil, & Alleyne, 2006). To achieve this high performance,
ypical requirements for the ILC algorithm are the following:

R1. monotonic convergence (Longman, 2000),
R2. robustness against model uncertainty (Oomen, 2020),
R3. full attenuation of iteration-invariant disturbances,
R4. minimal amplification of iteration-varying disturbances

(Butcher, Karimi, & Longchamp, 2008; Oomen & Rojas,
2017),

R5. fast convergence, and
R6. explicit ILC filters.

Thus, the aim of ILC is fast and robust monotonic convergence
o small errors. These requirements lead to trade-offs and perfor-
ance limitations. In particular, R3 and R4 are often conflicting,
.g., iteration-invariant noise is typically amplified up to a factor

✩ This work is part of the research programme VIDI with project number
15698, which is (partly) financed by the NWO, The Netherlands. The material in
this paper was not presented at any conference. This paper was recommended
for publication in revised form by Associate Editor Daniele Astolfi under the
direction of Editor Luca Zaccarian.
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005-1098/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
two (Butcher et al., 2008; Oomen & Rojas, 2017), in contrast to the
iteration-invariant disturbances which are fully compensated.

In widely-used linear time-invariant (LTI) ILC approaches,
limiting the amplification of iteration-varying disturbances typ-
ically results in reduced attenuation of iteration-invariant distur-
bances (Bristow et al., 2006) and slower convergence (Butcher
et al., 2008). Approaches include using a low-pass robustness
filter, systematically reducing an iteration-dependent learning
gain (Butcher et al., 2008), or a combination such as a frequency-
dependent learning gain. While robustness filters are common in
ILC to ensure convergence (Bristow et al., 2006; Oomen, 2020),
using this filter to limit noise amplification may also reduce
the attenuation of repeating disturbances, which is undesired
by R3. Reducing the learning gain reduces the amplification
of the iteration-varying disturbances, but at the cost of slow
convergence (R5). In norm-optimal ILC (Gunnarsson & Norrlöf,
2001), weights on the input signal and the change in input
have effects similar to respectively robustness filters and reduced
learning gains. For repetitive control, a related technique, Kalman
filters may reduce the amplification of non-repeating distur-
bances (Longman, 2010), yet this depends strongly on accurate
models of the system and the repeating disturbance.

In an attempt to circumvent the limitations of LTI ILC, adap-
tive ILC strategies aim to differentiate between iteration-varying
and iteration-invariant disturbances based on their frequency
or amplitude characteristics. In Oomen and Rojas (2017), the
amplification of high-frequency iteration-varying disturbances is
limited by adding a convex relaxation of the ℓ0-norm of the
input signal to the standard norm-optimal ILC criterion. While

this sparse ILC algorithm leads to fast convergence, the input

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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pdate that minimizes the criterion cannot be obtained in closed
orm, i.e., requirement R6 is not met, and as a result analyzing
nd enforcing robustness is challenging.
Nonlinear ILC designs using amplitude-dependent operators

an exploit the typical amplitude characteristics of iteration-
nvariant and iteration-varying disturbances. This idea relates to
he nonlinear filters used in variable-gain feedback controllers,
ee, e.g., Heertjes and Steinbuch (2004) or the performance anal-
sis in Pavlov, Hunnekens, Wouw, and Nijmeijer (2013). In Heert-
es and Tso (2007), a related idea is presented by including a
eadzone in the ILC learning filter. In Heertjes, Rampadarath,
nd Waiboer (2009), a low-pass filter is included in the learning
ilter, but this implementation does not increase the robustness
gainst model uncertainty (Bristow et al., 2006). The approach
n Heertjes et al. (2009) does not allow for the use of a filter
hat does provide robustness (R2). Also, the convergence anal-
sis cannot guarantee monotonic convergence (R1), such that
xcessive learning transients may occur (Longman, 2000). This
imits the applicability in practice. A similar frequency-domain
pproach is introduced in Aarnoudse, Pavlov, and Oomen (2023),
hich assumes infinite-time signals and provides a conserva-
ive contraction-based monotonic convergence condition, which
s difficult to meet in practice. Most analyses of nonlinear ILC
onsider ILC applied to nonlinear systems, e.g., Ahn, Choi, and
im (1993) use an ILC update based on the relative degree of a
onlinear system, Volckaert, Diehl, and Swevers (2013) approxi-
ate a nonlinear system by a nominal model with an estimated
orrection term in norm-optimal ILC, and Altın and Barton (2017)
tudy ILC for nonlinear systems as a two-dimensional differential
epetitive process. In contrast, the current paper uses a nonlinear
LC algorithm to introduce an additional degree of design freedom
or a linear system, a case to which these existing approaches
annot be applied directly.
Although major steps have been taken towards ILC algorithms

hat achieve fast convergence, strong attenuation of iteration-
nvariant disturbances and limited amplification of iteration-
arying disturbances, an approach that also enables tuning for
obustness and monotonic convergence is lacking. In this paper,
nonlinear lifted ILC algorithm is developed that includes a

eadzone in the learning filter, resulting in fast convergence to
mall errors. The ILC algorithm enables tuning for robustness. Cri-
eria for monotonic convergence follow from interpreting the ILC
ystem as a MIMO discrete-time Lur’e system. The contribution
s threefold.

• A nonlinear ILC algorithm is developed that addresses the
requirements R1–R6.

• Full monotonic convergence proofs are provided, leading to
criteria that are applied in a design framework.

• The approach is validated in simulation.

In addition, the propagation of iteration-varying and iteration-
nvariant disturbances in lifted ILC is analyzed, and the notion
f monotonic convergence as commonly used in LTI ILC is ex-
ended to develop a convergence criterion for the nonlinear ILC
lgorithm. The extension is based on the notion of discrete-
ime nonlinear convergent systems (Pavlov & Van De Wouw,
012), and enables the convergence analysis of the nonlinear ILC
lgorithm in the presence of iteration-varying disturbances.
This paper is structured as follows. In Section 2, the problem

s introduced. In Section 3, the amplification of iteration-varying
isturbances in ILC is analyzed. In Section 4, the nonlinear ILC
lgorithm is introduced and convergence conditions are devel-
ped. Section 5 demonstrates the selection of the design param-
ters. The approach is validated in simulation in Section 6 and
onclusions are given in Section 7.

otation: Throughout, ∥x∥P =
√
xTPx for P ≻ 0 and P = I leads

to the 2-norm ∥x∥ =

√∑N
|x |

2 for a vector x ∈ RN . The norm
2 i=1 i

2

Fig. 1. Schematic representation the considered control scheme.

induced by the ∥x∥P vector norm for matrix G ∈ RN×N is denoted
by ∥G∥P, and P = I gives the induced 2-norm ∥G∥i2 = σ̄ (G). The
vector ℓ∞-norm is denoted by ∥x∥ℓ∞

= supn |x(n)|. The spectral
adius of a matrix is denoted by ρ(G) = maxi |λi(G)|, with λi(G)
he ith eigenvalue of G. The sets of real, integer and non-negative
nteger numbers are denoted by R, Z and Z≥0, respectively. The
otation xj, j ∈ Z≥0 indicates vector x in iteration j, and xj(k)

denotes the kth sample in xj. The lifted representation J ∈ RN×N

f a discrete-time LTI system J with Markov parameters hi, i =

, 1, . . . ,N − 1 is given by

J =

⎡⎢⎢⎣
h0 0 . . . 0
h1 h0 . . . 0
...

...
. . .

...

hN−1 hN−2 . . . h0

⎤⎥⎥⎦ , (1)

ee, e.g., Gunnarsson and Norrlöf (2001) for an example.

. Problem formulation

Iterative learning control updates an input signal to learn to
ttenuate repeating disturbances. The error e ∈ RN for the SISO
iscrete-time LTI system in Fig. 1 is given by

= r − Jf − v, (2)

ith J according to (1), input signal f ∈ RN and disturbances
∈ RN and v ∈ RN . The aim of ILC is to iteratively learn an

nput f that minimizes e in terms of the 2-norm ∥e∥2, leading to
ignals fj and ej that depend on iteration j ∈ Z≥0. Disturbance vj
s iteration-varying and disturbance r is constant over iterations.
or example, r may be due to an iteration-invariant reference
ignal, and vj may result from iteration-varying sensor noise. It
s assumed that vj is bounded, and that iteration-invariant and
teration-varying disturbances have distinct amplitude character-
stics, i.e., ∥vj∥ℓ∞

≪ ∥r∥ℓ∞
∀ j.

This paper aims to develop an ILC algorithm that minimizes
e∥2 in (2) in a small number of iterations. Iteration-invariant dis-
urbance r should be attenuated completely without amplifying
teration-varying disturbance vj, and the algorithm should ensure
ood learning transients, e.g., fast monotonic convergence, while
eing robust against model uncertainty.
To this end, the propagation of disturbances in ILC is analyzed

n Section 3, illustrating that fast and complete compensation of
requires a high learning gain, while limiting the amplification
f vj requires a small learning gain. In Section 4, a nonlinear
LC algorithm is developed that differentiates between r and
j based on their amplitude characteristics to apply time- and
teration-varying learning gains, and convergence conditions for
his algorithm are provided.

. Design trade-off in linear ILC

In this section, the propagation of iteration-varying and
teration-invariant disturbances in the ILC system (2) is ana-
yzed. In addition, the trade-off between reduced amplification
f disturbances and convergence speed is illustrated.
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.1. Lifted iterative learning control

Consider a linear ILC system of the form (2) for which the input
ignal fj is updated iteratively according to

fj+1 = Q(fj + αLej). (3)

Matrices Q and L follow from a norm-optimal ILC cost function
that weights the 2-norms of the error and input signals (Gun-
narsson & Norrlöf, 2001). The weighting on the change in input
signal, which is typically included in this cost function, is replaced
by a learning gain α which is chosen to be ∈ (0, 1], analogous to
ther ILC methods (Bristow et al., 2006). This is elaborated upon
n Section 5.

Eq. (2) can be substituted in (3) to obtain the following input
nd error iterations.

fj+1 =Q(I − αLJ)fj + αQL(r − vj), (4)

j+1 =(JQJ−1
− αJQL)ej + (I − JQJ−1)r (5)

+ JQJ−1vj − vj+1.

his expression for the error iteration requires that J is invertible
or the substitution fj = J−1(r−ej−vj) to be valid.

.2. Analysis of disturbances in lifted ILC

Next, the influence of the design parameters Q, L and α
n the propagation of disturbances in linear ILC is analyzed in
he stochastic setting. To this end, the following is assumed for
teration-varying disturbance vj.

ssumption 1. The iteration-varying disturbance vj is zero-
ean, stationary and bounded. In addition, it is independent and

dentically distributed (i.i.d.) in the iteration domain.

Norm-optimal ILC aims to achieve a small error in terms of the
-norm ∥ej∥2

2, the expected value of which is given by

{∥ej∥2
2} =

1
N

N∑
k=1

E{ẽ2j (k)} + E{ej(k)}2 (6)

= E{ẽTj ẽj} + E{ej}TE{ej}, (7)

since E{∥ej∥2
2}=

1
N

∑N
k=1E{e2j (k)} by linearity and the variance can

be expressed as

E{ẽ2j (k)} = E{e2j (k)} − E{ej(k)}2. (8)

Thus, a small 2-norm of the error signal requires that both the
variance and expected value of the error are small and therefore
they should both be taken into account in ILC. The following
theorem shows how the variance and expected value of the error,
which together determine the expected value of the error 2-norm
according to (6), depend on Q, L and α. A related statistical anal-
sis using transfer functions with finite-time signals is developed
n Butcher et al. (2008).

heorem 2. Consider the error iteration (5) with vj according to
ssumption 1, and assume that ∥JQJ−1

− αJQL∥P < λ for some
= PT

≻ 0 and λ ∈ (0, 1). Then, the expected value of the
converged error is given by

lim
j→∞

E{ej}= (I − JQ(J−1
−αL))−1(I−JQJ−1)r. (9)

In addition,

E{ẽTj+1ẽj+1} = E{(JQJ−1vj)TJQJ−1vj} + E{vT
j+1vj+1}

+ E{(JQ(J−1
− αL)ẽj)T(JQ(J−1

− αL)ẽj)}

− 2E{(JQJ−1v )TJQ(J−1
− αL)v }. (10)
j j

3

Fig. 2. Error 2-norm over iterations for α = 1 ( ), 0.5 ( ) and 0.2 ( ),
averaged over 20 realizations. Small learning gains lead to smaller converged
errors at the cost of slower convergence.

The proof of Theorem 2 is given in the Appendix. In the case
that L = J−1 and Q = I, the variance of the converged error at
sample k is given by

E{ẽ(k)2j+1} = E{vj(k)2} + E{vj+1(k)2}+ (11)

(1 − α)2E{ẽj(k)2} − 2(1 − α)E{vj(k)2}.

For j → ∞, it holds that E{ẽj+1(k)2} = E{ẽj(k)2}. Using E{vj(k)} =

E{vj+1(k)} = σ 2
v , the variance of the converged error is therefore

given by

E{(ẽ∞(k))2} =
2

2 − α
σ 2

v . (12)

Eq. (12) illustrates that the variance of the error can be reduced
by reducing the learning gain α. In particular, for α → 0,
E{(ẽ(k)∞)2} → σ 2

v , which is the smallest variance that can be
achieved, since fj cannot compensate the unknown disturbance
vj in iteration j. However, reducing α when Q ̸= I may increase
the expected value of the converged error as well, as illustrated
by substituting Q ̸= I and L = J−1 in (9). Moreover, reducing
α reduces the convergence speed significantly. This trade-off be-
tween fast convergence and small converged errors is illustrated
in Fig. 2, using simulations that are elaborated upon in Section 6.

4. Nonlinear ILC

In Section 3, a trade-off between amplification of iteration-
varying disturbances, attenuation of iteration-invariant distur-
bances and convergence speed has been illustrated. In this section
a nonlinear operator is implemented that alleviates this trade-
off. First, nonlinear ILC is introduced. Second, the notion of ex-
ponential convergence for discrete-time (nonlinear) systems is
introduced and related to the standard requirement of monotonic
convergence in ILC. This notion is used to develop a convergence
criterion for nonlinear ILC.

4.1. Nonlinear ILC

To resolve the trade-off in Section 3, a deadzone nonlinearity
is included in the ILC update. The idea is that this nonlinear-
ity leads to different learning gains depending on amplitude
of the error signal. For example, small learning gains are ap-
plied to low-amplitude error signals, limiting the amplification
of iteration-varying disturbances, and high learning gains are
applied to high-amplitude error signals resulting in fast atten-
uation of large iteration-invariant disturbances. The deadzone
nonlinearity is implemented as follows. Consider the system (2)
with an input update of the form

f = Q(f + αLe + Lϕ(e )), (13)
j+1 j j j
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k

ϕ

T

Fig. 3. Deadzone nonlinearity with γ = 1, δ = 1.

with vector-valued deadzone nonlinearity ϕ(ej), which applies a
scalar deadzone ϕ(ej(k)), illustrated in Fig. 3, to each entry ej(k),

= 1, 2, . . . ,N of ej ∈ RN according to

(ej(k)) =

{
0, if |ej(k)| ≤ δ(
γ −

γ δ

|ej(k)|

)
ej(k), if |ej(k)| > δ.

(14)

he deadzone width δ is chosen such that ϕ(vj) ≈ 0 based
on measured estimates of the iteration-varying disturbances, see
Section 5.1. Deadzone gain γ acts as an additional learning gain
that is only applied when |ej(k)| > δ. By choosing γ ≈ 1 and
linear gain α ≈ 0, the deadzone nonlinearity in (13) allows for
fast convergence when the error is large, and limited disturbance
amplification when the error is small.

The deadzone ϕ(ej(k)) is a static nonlinearity that satisfies the
incremental sector condition

0 ≤
ϕ(a) − ϕ(b)

a − b
≤ γ , (15)

for scalars a ̸= b. This property enables the analysis of the con-
vergence of the nonlinear ILC algorithm, see Section 4.3. Although
ϕ(ej) in the input update (13) is selected to be a deadzone non-
linearity in this paper, the results hold for any static nonlinearity
that satisfies the incremental sector condition (15). This intro-
duces an additional degree of freedom in the proposed nonlinear
ILC scheme.

4.2. Convergence of nonlinear ILC

For linear ILC, monotonic convergence is typically analyzed for
the case of vj = 0. Due to linearity, (monotonic) convergence is
also preserved for the case of non-zero vj. For nonlinear ILC, as
considered in this section, it is not sufficient to analyze conver-
gence only for the case of vj = 0. Even if a nonlinear system
converges monotonically to a fixed point for vj = 0, adding a
(small) nonzero noise vj can render the system unstable. Thus,
for nonlinear ILC, (monotonic) convergence in the presence of
non-zero vj needs to be analyzed. This is not covered by the con-
ventional definition of monotonic convergence from the case of
linear ILC. Below, the notion of convergent (nonlinear) systems is
introduced, that allows one to analyze (monotonic) convergence
of nonlinear ILC for non-zero iteration-varying inputs vj.

The convergence property of a (nonlinear) system implies
that all solutions converge to a bounded steady-state solution.
In particular, there exist conditions that ensure that a system is
convergent for any bounded input, including non-constant and
non-periodic inputs. Convergence of a discrete-time system is
defined as follows (Pavlov & Van De Wouw, 2012, Definition 1).

Definition 3. A system

fj+1 = h(fj, j), j ∈ Z (16)

is called exponentially convergent if
4

• there exists a unique solution f̄j that is defined and bounded
on Z (from −∞ to +∞); and

• f̄j is globally exponentially stable, i.e., there exist c > 0 and
0 < λ < 1 such that |fj − f̄j| ≤ cλj−j0 |fk0 − f̄j0 | for all j ≥ j0.

The solution f̄j is called a steady-state solution. Any solution
of a convergent system converges to the steady-state solution,
irrespective of the initial condition. Note that the time depen-
dency on the right-hand side of system (16) is typically due to
some input dj, such that fj+1 = h(fj, dj). The steady-state solution
is determined only by the input dj, and for a constant dj, f̄j is
also constant, see, e.g., Pavlov and Van De Wouw (2012). For the
convergence by Definition 3 of the (possibly nonlinear) system
(16), the following holds (Pavlov & Van De Wouw, 2012, Theorem
1).

Lemma 4. Consider system (16) with a right-hand side satisfying

∥h(f 1, j) − h(f 2, j)∥P ≤ λ∥f 1 − f 2∥P, (17)

∀f 1, f 2 ∈ Rn, j ∈ Z

sup
j∈Z

∥h(0, j)∥P < +∞, (18)

for some matrix P = PT
≻ 0 and λ ∈ (0, 1). Then system (16) is

exponentially convergent.

Stability of LTI systems, such as the feedforward iteration (4)
of the linear ILC system, is a particular case of this convergence
definition. This is shown in the following theorem, which also
recovers the standard criterion for monotonic convergence of the
sequence of iterates in the 2-norm, see Definition 5, as a special
case.

Definition 5. A sequence of iterates {fj} is called monotonically
convergent in the 2-norm to a unique steady-state solution f̄j if

∥fj+1 − f̄j+1∥2 ≤ λ∥fj − f̄j∥2, ∀j ∈ Z, (19)

for some λ ∈ (0, 1).

Theorem 6. The following statements hold for system (4) with
any constant iteration-invariant input r and bounded sequence of
iteration-varying disturbances vj.

(1) System (4) is exponentially convergent if

∥Q(I − αLJ)∥P ≤ λ, (20)

for some matrix P = PT
≻ 0 and number λ ∈ (0, 1).

(2) If (20) holds for P = I, i.e.,

∥Q(I − αLJ)∥i2 = σ̄ (Q(I − αLJ)) < 1, (21)

then the solutions converge monotonically in the 2-norm to
a unique steady-state solution that only depends on inputs r
and vj.

(3) If, in addition, vj = 0 ∀ j, then the sequence of iterates {fj}
converges monotonically in the 2-norm to a fixed point f∞:

∥fj+1 − f∞∥2 ≤ λ∥fj − f∞∥2, ∀j ∈ Z. (22)

Proof. Regarding statement (1), consider two solutions f 1 and
f 2 to (4), with the same iteration-varying input αQL(r − vj).
Substituting in condition (17) givesh(f 1, j) − h(f 2, j)


P =

Q(I − αLJ)f 1 + αQL(r − vj)

− Q(I − αLJ)f 2 − αQL(r − vj)

P

=∥Q(I − αLJ)(f 1 − f 2)∥P

≤∥Q(I − αLJ)∥P∥f 1 − f 2∥P. (23)



L. Aarnoudse, A. Pavlov and T. Oomen Automatica 171 (2025) 111902

T
c
g
o

T
m
i
t
c
t
P
d

4

d
i
c
i
i
a

L
n

ϕ

w

S

w
−

d

d

s

t
s

T
i

T
w
b
t
d

hus, if (20) holds for some P = PT
≻ 0 and λ ∈ (0, 1) then also

ondition (17) is met, and the system (4) is exponentially conver-
ent by Lemma 4. Statements (2) and (3) follow from substitution
f P = I and from the property that for convergent systems,

a constant input leads to a constant steady-state solution, see,
e.g., Pavlov and Van De Wouw (2012). □

For the LTI system (4), exponential convergence according to
heorem 6 is equivalent to exponential stability. The notion of
onotonic convergence in the 2-norm of the sequence of iterates

s common in ILC (Bristow et al., 2006) and ensures good learning
ransients (Longman, 2000). Typically, only the noise-free case is
onsidered. Theorem 6 extends the notion of convergence in ILC
o the noisy case, and the analysis of convergence in an arbitrary
-norm connects standard ILC to the nonlinear ILC approach
eveloped in this paper.

.3. Criterion for convergence of nonlinear ILC

A criterion for the exponential convergence of nonlinear ILC is
eveloped by interpreting the algorithm as a MIMO Lur’e system
n the iteration domain. The criterion ensures that the system is
onvergent for any bounded input, including the combination of
teration-invariant and iteration-varying disturbances considered
n this paper. The following auxiliary result enables convergence
nalysis of algorithm (13).

emma 7 (Loop Transformation). The nonlinear ILC update (13)with
onlinearity ϕ(ej(k)) satisfying sector condition (15) is equivalent to

fj+1 = Q
(
fj +

(
α +

γ

2

)
Lej + Lϕ̃(ej)

)
, (24)

˜ (ej) = ϕ(ej) −
γ

2
ej (25)

ith ϕ̃(ej(k)) satisfying the symmetric sector condition

−
γ

2
≤

ϕ̃(a) − ϕ̃(b)
a − b

≤
γ

2
. (26)

Substituting (2) in (24) leads to

fj+1 =

(
α +

γ

2

)
QL(r − vj) + Q

(
I −

(
α +

γ

2

)
LJ

)
fj

+ QLϕ̃(r − Jfj − vj). (27)

ystem (27) can be described as an N×N Lur’e system, consisting
of a linear system M with a static nonlinearity ϕ in feedback and
external inputs d1 and d2, see Fig. 4. The system M with state fj
is given by

fj+1 = Afj + Buj + d1,j (28)
yj = Cfj,

ith system matrices A = Q
(
I −

(
α +

γ

2

)
LJ

)
, B = QL and C =

J. The external inputs d1,j and d2,j are chosen as

1,j =

(
α +

γ

2

)
QL(r − vj), (29)

2,j = r − vj, (30)

uch that the input to ϕ̃ is ej = r − Jfj − vj and the output uj of
the feedback nonlinearity is given by

uj = ϕ̃(r − Jfj − vj). (31)

The following theorem holds for the convergence, according
o Definition 3, of the input iteration (27) of the nonlinear ILC
ystem, which is equivalent to the Lur’e system (28).

heorem 8. The dynamic system defined by the input iteration (27)
s exponentially convergent if the following conditions hold.
5

Fig. 4. Lur’e system with M a linear system and ϕ a static, memoryless
nonlinearity.

A1. For matrix A in (28) it holds that ρ(A) < 1, i.e.,

max
i

⏐⏐⏐λi

(
Q

(
I −

(
α +

γ

2

)
LJ

))⏐⏐⏐ < 1. (32)

A2. Nonlinearity ϕ satisfies (15).
A3.

sup
ω∈[0,2π )

σ̄ (33)(
J
(
eiωI − Q

(
I −

(
α +

γ

2

)
LJ

))−1
QL

)
<

2
γ

.

The proof is given in the Appendix. Theorem 8 ensures that the
nonlinear system is convergent for any input, including iteration-
varying disturbances such as noise. For the noise-free case with
vj = 0 ∀ j, the external input of the Lur’e system is constant, and
convergence of the system implies that the steady-state solution
is also constant (Pavlov & Van De Wouw, 2012).

Theorem 8 provides a criterion for exponential convergence of
the nonlinear ILC system. In typical ILC results, including Long-
man (2000), monotonic convergence in the 2-norm, see Defini-
tion 5, is desired to ensure good learning transients. For mono-
tonic convergence in the 2-norm for nonlinear ILC, which requires
that Lemma 4 holds for P = I, the following holds.

Corollary 9. The dynamic system defined by the input iteration
(27) is monotonically convergent in the 2-norm if

B1.

σ̄

(
Q

(
I −

(
α +

γ

2

)
LJ

))
< 1, (34)

B2. ϕ satisfies (15), and
B3. [

ATA + CTC − I ATB

BTA BTB −

(
2
γ

)2
I

]
≺ 0, (35)

with system matrices A, B and C in (28).

The proof is related to the proof of Theorem 8 and is given in
the Appendix.

Remark 10. If the inverse J−1 exists, the system defined by the
error iteration with a nonlinear ILC update can be constructed as
follows.

ej+1 =

(
JQJ−1

−

(
α +

γ

2

)
JQL

)
ej − JQLϕ̃(ej)

+ (I − JQJ−1)r + JQJ−1vj − vj+1. (36)

his constitutes a Lur’e system similar to the input iteration, for
hich conditions for the convergence of error iteration (36) can
e developed similar to Theorem 8. In addition, conditions for
he convergence of the error iteration (5) for linear ILC can be
eveloped similar to Theorem 6.
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. Design procedure

In this section, guidelines for the parameter selection are
rovided. The design procedure is summarized in Procedure 11
nd is further described in the remainder of the section.

Procedure 11 Nonlinear ILC design
1: Determine deadzone width δ based on system measurements

(Section 5.1).
2: Design learning and robustness matrices Q and L using

standard lifted ILC methods (Section 5.2).
3: Select learning gains α ≈ 0 and γ ≈ 1 while satisfying the

convergence conditions of Theorem 8 (Section 5.3).

5.1. Deadzone selection

The aim is to attenuate repeating disturbances without ampli-
ying the iteration-varying disturbances. Therefore, the deadzone
idth δ is determined based on the amplitude of the iteration-
arying disturbances. The experimental data needed to determine
is typically already available before ILC is implemented, because
t follows from the standard operation of the system. Consider
series of ne standard-operation experiments on the system (2)
ith a constant input fj = 0 for j = 1, 2, . . . , ne. Each experiment
ives

j = r − vj, (37)

ith r the iteration-invariant part of the disturbances, and vj a re-
lization of the iteration-varying disturbances. Note that E{vj} =

by definition, since all iteration-invariant disturbances are in-
luded in r . An estimate r̂ of the iteration-invariant disturbance
s obtained by computing the sample mean of the (37) over ne
xperiments, see also Oomen (2020):

ˆ =
1
ne

ne−1∑
j=0

ej = r −
1
ne

ne−1∑
j=0

vj. (38)

hen, for each experiment ej an estimate of the iteration-varying
isturbances is given by

ˆ j = r̂ − ej. (39)

ased on the estimates r̂ and v̂j, j = 1, 2, . . . , ne, a value of δ
that filters out the desired percentage of iteration-varying distur-
bances is chosen. Note that for errors slightly larger than δ the
gain is very small, because of the shape of the deadzone in Fig. 3.
Therefore, disturbances that are slightly larger than δ are barely
amplified, and δ does not have to fully encompass all iteration-
varying disturbances. Fig. 5 shows an example of the estimates
r̂ , v̂j and a suitable choice of δ for the simulation example in
Section 6 with ne = 20.

5.2. Design of Q and L

The nonlinear ILC update law is designed based on norm-
optimal ILC (Bristow et al., 2006; Gunnarsson & Norrlöf, 2001), yet
instead of a weight on the change in input, a combination of linear
and nonlinear learning gains is used. In standard norm-optimal
ILC, the feedforward update is the model-based minimizer of a
cost function of the form

J (fj+1)=∥ej+1∥We+∥fj+1∥Wf+∥fj+1−fj∥W∆f . (40)

This leads to the update (3) with matrices

Q = (JTWeJ + Wf + W∆f )−1(JTWeJ + W∆f )

L = (JTW J + W )−1JTW , (41)
e ∆f e

6

Fig. 5. Mean r̂ of the error signal ( ) and noise estimates v̂j, j = 1, 2, . . . , 20
for 20 iterations. The interval [−5 × 10−6, 5 × 10−6

] ( ) contains most of the
noise.

where the weight on the input Wf acts as a regularization term
and the weight W∆f on the change in input has a role similar
to the learning gain α. For the nonlinear ILC algorithm, this last
erm is replaced by a combination of linear and nonlinear learning
ains, leading to the ILC update

j+1 = Q(fj + αLej + Lϕ(ej)) (42)

ith Q and L according to (41) with W∆f = 0. Note that if
is singular, L cannot be computed and the update should be

mplemented using QL = (JTWeJ+Wf )−1JTWe. TakingWe ≻ 0 and
f ⪰ 0, ensures convergence in the linear case with non-singular
and a perfect model (Gunnarsson & Norrlöf, 2001). In practice
f ≻ 0 is often required, both because J is often singular and to
rovide robustness against model uncertainty (van de Wijdeven,
onkers, & Bosgra, 2009). For We = I , Wf should be chosen
s small as possible but such that σ̄ (Q(I − LJ)) < 1, i.e., such
hat Condition (21) for monotonic convergence in the 2-norm of
heorem 6 is met for α = 1, γ = 0.

.3. Gain selection

The main idea of using a nonlinear learning filter in ILC is to
gnore iteration-varying disturbances vj completely, and achieve
ast learning only for the iteration-invariant disturbance r . This
uggests choosing the linear learning gain α in (13) approxi-
ately zero and the nonlinear gain γ = 1. However, iteration-
arying disturbances may occur on top of iteration-invariant dis-
urbances. Initially, these varying disturbances are amplified by
, but as the iteration-invariant disturbances are attenuated the
otal error approaches the bounds of the deadzone and the in-
luence of γ reduces. At this point the convergence speed and
onverged error depend on α, and for small α the initial ampli-
ication of the iteration-varying disturbances is reduced through
veraging. It follows that α should be small but nonzero, while γ

hould be close to 1. The influence of γ and α on the convergence
ccording to Theorem 8 should also be taken into account.

. Example

In this section, linear and nonlinear ILC are compared in sim-
lation. The system P is a 20th-order model of the carriage of an



L. Aarnoudse, A. Pavlov and T. Oomen Automatica 171 (2025) 111902

l
b
f
f
s

N
b

e

T

e

s
t

Fig. 6. Bode diagram of the system P ( ) and a low-order approximation ( )
that is used to design learning filter L.

Fig. 7. Parallel ILC configuration.

industrial flatbed printer with a PD-type controller C in closed-
oop. For the design of L and Q, the system is approximated
y a 12th-order model, resulting in a model mismatch at high
requencies, see Fig. 6. Parallel ILC is applied to this system, where
j is a feedforward signal injected between P and C and J =

P
1+PC ,

ee Fig. 7. The iteration-invariant disturbance is given by r = Syd
with S =

1
1+PC , and reference yd a forward and backward motion

with length N = 1000. The iteration-varying disturbance is given
by vj = SP ṽj, where ṽj is Gaussian i.i.d. noise with a variance of
0.005 that is injected between the controller and the plant.

The parameters are chosen according to Procedure 11. Because
of the model mismatch at high frequencies, Wf ≻ 0 is required
and the weights are chosen as We = I and Wf = 10−10I. The
scaling ofWe andWf depends on the magnitudes of e and f . Based
on Fig. 5, a deadzone width of δ = 5 × 10−6 is chosen. To meet
the convergence conditions in Theorem 8, the gains are chosen as
γ = 0.9 and α = 0.1.

The results in Fig. 8, which are averaged over 20 realizations,
show that nonlinear ILC achieves both fast convergence and small
converged errors. The convergence speed is comparable to the
linear case with α = 1, while the converged error 2-norm
matches that for the linear case with α = 0.2. This illustrates
that nonlinear ILC can remove the trade-off between convergence
speed and converged error.

7. Conclusions

A nonlinear ILC approach is introduced that achieves both
fast convergence and small errors in the presence of iteration-
varying disturbances. Through a deadzone nonlinearity, the tra-
ditional trade-off between convergence speed and amplification
of iteration-varying disturbances is removed by applying various
learning gains to different elements of the error signal depending
on their magnitude. A condition for monotonic convergence is
7

Fig. 8. Error 2-norm averaged over 20 realizations for lifted linear ILC with
We = I, Wf = 10−10I and α = 1 ( ), 0.5 ( ) and 0.2 ( ) and nonlinear
lifted ILC with α = 0.1, γ = 0.9 and δ = 5 × 10−6 ( ). For linear ILC, small
learning gains lead to smaller converged errors and reduced convergence speed.
Nonlinear ILC removes this trade-off between convergence speed and converged
error.

developed by interpreting the system as a Lur’e system in the
iteration domain. In addition, a design procedure is provided
based on disturbance measurements and system knowledge. The
approach is validated in simulations in which fast convergence to
small errors is demonstrated. Future work concerns experimental
validation, as well as the analysis of the effect of the design pa-
rameters in nonlinear ILC on the expected value of the converged
error, similar to the result in Theorem 2 for the linear case.

Appendix. Proofs of Theorems 2 and 8 and Corollary 9

In this appendix, the proofs of Theorems 2 and 8 and
Corollary 9 are given.

Proof of Theorem 2. Consider the error iteration (5). By linearity
of the expectation operator,

E{ej+1} =JQ(J−1
− αL)E{ej} (A.1)

+ (I − JQJ−1)r + JQJ−1E{vj} − E{vj+1}

=JQ(J−1
− αL)E{ej} + (I − JQJ−1)r.

Since ∥JQ(J−1
−αL)∥P < λ for some P = PT

≻ 0, λ ∈ (0, 1), this
system is exponentially stable and the constant input (I− JQJ−1)r
leads to a unique constant solution E{e∞}, given by

E{e∞} = JQ(J−1
− αL)E{e∞} + (I − JQJ−1)r

= (I − JQ(J−1
− αL))−1(I − JQJ−1)r (A.2)

ext, consider the deviation ẽj+1 = E{ej+1} − ej+1, which is given
y

˜j+1 = JQ(J−1
− αL)ẽj − JQJ−1vj + vj+1. (A.3)

hen,

˜
T
j+1ẽj+1 = (JQJ−1vj)TJQJ−1vj + vT

j+1vj+1

+ (JQ(J−1
− αL)ẽj)T(JQ(J−1

− αL)ẽj)
+ 2[−(JQJ−1vj)Tvj+1 − (JQJ−1vj)TJQ(J−1

− αL)ẽj
+ vT

j+1JQ(J
−1

− αL)ẽj]. (A.4)

The variance E{ẽTj+1ẽj+1} of ej+1 is then given by

E{ẽTj+1ẽj+1} = E{(JQJ−1vj)TJQJ−1vj} + E{vT
j+1vj+1}

+ E{(JQ(J−1
− αL)ẽj)T(JQ(J−1

− αL)ẽj)}

− 2E{(JQJ−1vj)TJQ(J−1
− αL)ẽj}, (A.5)

ince E{vjvj+1} = 0 and E{vj+1ẽj} = 0 due to Assumption 1. For
he last cross-term, ẽ follows from evaluating (A.3) at iteration j
j
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nd is premultiplied by (JQJ−1vj)TJQ(J−1
− αL), hence

E{(JQJ−1vj)TJQ(J−1
− αL)ẽj} (A.6)

= E{(JQJ−1vj)TJQ(J−1
− αL)vj}.

Therefore,

E{ẽTj+1ẽj+1} = E{(JQJ−1vj)TJQJ−1vj} + E{vT
j+1vj+1}

+ E{(JQ(J−1
− αL)ẽj)T(JQ(J−1

− αL)ẽj)}

− 2E{(JQJ−1vj)TJQ(J−1
− αL)vj}, (A.7)

which concludes the proof. □

The proof of Theorem 8 employs the discrete-time Kalman–
Yakubovich–Popov lemma (see, e.g., Rantzer (1996, Theorem 2))
in the following form.

Lemma 12. Given A ∈ Rn×n, B ∈ Rn×m, and M = MT
∈

(n+m)×(n+m), with ρ(A) < 1, the following two statements are
quivalent:

(1) [
(ejωI − A)−1B

I

]∗

M
[
(ejωI − A)−1B

I

]
≺ 0∀ω ∈ R (A.8)

(2) There exists a matrix P = PT
∈ Rn×n such that

M +

[
ATPA − P ATPB

BTPA BTPB

]
≺ 0, (A.9)

and if the upper left corner of M is positive semidefinite, it
follows from Schur stability of A that P ≻ 0.

Proof of Theorem 8. First, condition A1 ensures that the linear
system is exponentially stable, ensuring exponential convergence
for any bounded input for which ϕ̃(ej) = 0 ∀j. Secondly, con-
ditions A1–A3 ensure that the nonlinear Lur’e system (28) is
exponentially convergent for any bounded input. The condition
of Lemma 4 is applied to (28). Take

h(f 1, j) − h(f 2, j) =Af 1 + Bϕ̃(Cf 1 + d2,j) + d1,j−

Af 2 − Bϕ̃(Cf 2 + d2,j) − d1,j
=A∆f (k) + B∆u(k), (A.10)

ith ∆f = f 1 − f 2 and ∆u = ∆ϕ̃ = ϕ̃(Cf 1 + d2,j) − ϕ̃(Cf 2 + d2,j).
sing (A.10), condition (17) is rewritten to[
∆f
∆u

]T [
ATPA ATPB
BTPA BTPB

][
∆f
∆u

]
(A.11)

− λ2∆f TP∆f < 0, ∀∆f , ∆u ∈ Rn, j ∈ Z.

ext, the symmetric sector condition for ϕ̃ is written as a
uadratic matrix inequality. Denote z i = Cf i + d2,j and ∆z =
1
−z2. By condition A2, ϕ̃ satisfies the symmetric sector condition
ith γ

2 , and therefore[
∆z
∆ϕ̃

]T [
( γ

2 )
2I 0

0 −I

][
∆z
∆ϕ̃

]
≥ 0. (A.12)

ubstituting ∆z = C∆f , ∆ϕ̃ = ∆u, and dividing by ( γ

2 )
2 gives[

∆f
∆u

]T
[
CTC 0

0 −

(
2
γ

)2
I

][
∆f
∆u

]
≥ 0. (A.13)

he system is exponentially convergent if there exists a P = PT
≻

and λ ∈ (0, 1) such that (A.11) holds for all ∆f , ∆u that satisfy
A.13). By the S-procedure (Pólik & Terlaky, 2007), this holds if
8

here exist a P = PT
≻ 0 and λ ∈ (0, 1) such that[

∆f
∆u

]T
[
ATPA + CTC − λ2P ATPB

BTPA BTPB −

(
2
γ

)2
I

][
∆f
∆u

]
≤ 0, ∀∆f , ∆u ∈ Rn, j ∈ Z. (A.14)

Condition A3 implies the existence of a P = PT
≻ 0 and

λ ∈ (0, 1) such that (A.14) holds, as is shown next. Substitute
A = Q

(
I −

(
α +

γ

2

)
LJ

)
, B = QL and C = −J according to (28) in

Condition A3 and rewrite to obtain[
(eiωI − A)−1B

I

]∗
[
CTC 0

0 −

(
2
γ

)2
I

][
(eiωI − A)−1B

I

]
<0

∀ω ∈ R, (A.15)

which is equivalent to (A.8) in Lemma 12 with

M =

[
CTC 0

0 −

(
2
γ

)2
I

]
. (A.16)

Therefore, by Lemma 12, Condition A3 implies that there exists a
matrix P = PT

≻ 0 such that[
ATPA + CTC − P ATPB

BTPA BTPB −

(
2
γ

)2
I

]
< 0, (A.17)

and therefore also[
∆f
∆u

]T
[
ATPA + CTC − P ATPB

BTPA BTPB −

(
2
γ

)2
I

][
∆f
∆u

]
< 0

∀∆f , ∆u ∈ Rn. (A.18)

ince (A.18) holds, there always exists a value ε ∈ (0, 1) small
nough such that[
∆f
∆u

]T
[
ATPA + CTC − P ATPB

BTPA BTPB −

(
2
γ

)2
I

][
∆f
∆u

]
+ ∆f TεP∆f ≤ 0, ∀∆f , ∆u ∈ Rn. (A.19)

It follows that Condition A3 ensures the existence of λ =
√
1 − ε

∈ (0, 1) and P = PT
≻ 0 for which (A.14) holds. Therefore, if

onditions A1–A3 are satisfied, the system (28) is exponentially
onvergent for any bounded input. □

Next, the proof of Corollary 9 is given.

roof of Corollary 9. Condition B1 ensures that the error itera-
ion {ej} of the linear system is monotonically convergent in the
2-norm according to Theorem 6 when ϕ̃(e) = 0. Next, conditions
B2 and B3 ensure that Lemma 4 holds for P = I, which follows
from the proof of Theorem 8, cf. Eq. (A.18) with P = I. □
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