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Turbulence modulation by variable density
and viscosity

By A. Patel†, R. Pecnik†, J. W. R. Peeters†, S. Hickel† AND M. E. Moghadam

We investigate the effectiveness of the semi-local Reynolds number Re?τ to parametrize
wall-bounded flows with strong density, ρ, and viscosity, µ, gradients. Several cases are
considered, namely, volumetrically heated low-Mach-number turbulent channel flows, a
simultaneously heated and cooled flow with CO2 at supercritical pressure, and heated
and cooled supersonic boundary layer flows. The mean density and viscosity in some of
these cases vary up to a factor of nine and six, respectively. We show that, even for such
high gradients in mean properties, the velocity transformation based on the semi-local
Reynolds number is able to collapse the mean streamwise velocity profiles. We further-
more provide evidence that the turbulent kinetic energy and streamwise vorticity budget
equations are also governed by the semi-local Reynolds number. For cases with strong
property variations, additional mechanisms appear that are caused by individual density
(e.g., baroclinicity) or viscosity gradients. However, in the cases investigated herein, these
additional mechanisms are small. The insights gained are used to improve a wall model,
which is then tested in a wall-modeled large-eddy simulation (LES) of a compressible
channel flow with isothermal walls.

1. Introduction

Turbulent flows with variable thermophysical properties are common in supersonic
flows, in low-Mach-number flows with strong wall heating or cooling, and in reacting
flows. In such cases the effects of thermophysical property variations can be strong
enough to modulate turbulence (Coleman et al. 1995; Foysi et al. 2004; Duan et al.
2010; Lee et al. 2013; Modesti & Pirozzoli 2016). Furthermore, in the past decade, there
has been an increased interest in heated and cooled fluids at supercritical pressure for
novel thermodynamic power cycles or rocket propulsion systems. Fluids slightly above
the supercritical pressure and close to the pseudo-critical temperature pose strong ther-
mophysical property variations due to a combination of strong dependence of properties
with temperature and large molecular Prandtl numbers (Peeters et al. 2016; Nemati
et al. 2016). The strong thermophysical property variations can alter the conventional
behavior of turbulence and make conventional scaling laws for constant-property flows
fail. Moreover, the physical mechanisms that lead to turbulence modulation are not yet
well understood.

For incompressible constant-property flows, the most important parameter in the de-
scription of turbulent boundary layers is the Reynolds number. For compressible flows,
the Mach number and the associated changes in properties become additional parame-
ters that characterize turbulent wall-bounded flows. From past studies, it is known that
differences between a supersonic flow and a constant-property flow can be explained by
simply accounting for the mean fluid property variations, as long as the Mach number,
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M, associated with the turbulent fluctuations remains small (M′ < 0.3; Smits & Dussauge
2006). This result is known as Morkovin’s hypothesis (Morkovin 1962).

In our recent work (Patel et al. 2015) we provide a mathematical basis for the use of the
semi-local scaling as proposed by Huang et al. (1995) based on heuristic arguments. The
main conclusion is that under the limit of small property fluctuations in highly turbulent
flows, a change in turbulent structure is strongly governed by the wall-normal gradient
of the semi-local Reynolds number, Re?τ ≡

√
(ρ/ρw)/(µ/µw) Reτ , and not by individual

mean density or viscosity gradients (the bar denotes Reynolds averaging, subscript w
indicates the value at the wall, and Reτ is the friction Reynolds number based on wall
quantities and the half channel height, h). Thus, Re?τ provides a scaling parameter that
accounts for the influence of variable properties on turbulent boundary layers.

The van Driest velocity transformation uvD =
∫ u+

0

√
(ρ/ρw)du+ (superscript + de-

notes the classical wall-based scaling u+ = u/uτ , with uτ the friction velocity), which
has been successfully applied for adiabatic compressible boundary layers to collapse ve-
locity profiles onto incompressible results, accounts for the changes in velocity scales by
using a density-weighted transformation, but it assumes that the viscous length scale is
similar to an incompressible boundary layer (Smits & Dussauge 2006). We recently de-
rived an extension of the van Driest transformation using the semi-local Reynolds number
Re?τ to account for changes in viscous length scales (Patel et al. 2016). A mathematically
equivalent transformation was earlier derived by Trettel & Larsson (2016) using different
arguments, where they also highlight the importance of accounting for changes in viscous
length scales.

The first objective of the present work is to test the validity of the extended van Driest
transformation on a range of turbulent flows with strong density/viscosity gradients, such
as volumetrically heated channel flows, heated or cooled flows with fluids at supercritical
pressure and supersonic boundary layer flows. We also investigate the effectiveness of Re?τ
as a scaling parameter for cases with very large gradients in density/viscosity, and we
discuss the significance of additional physical mechanisms that occur due to these strong
gradients. Finally, we will use the semi-local scaling methods to correct a simple mixing
length eddy viscosity model that can be used in wall-modeled large-eddy simulations
(LES) of compressible flows.

2. Methodology and turbulent flow cases

The channel flow cases have been obtained using our own in-house DNS solver of the
low-Mach-number approximation of the Navier-Stokes equations. Gradients in temper-
ature are obtained by heating the flow using a constant volumetric heat source in the
energy equation and by applying isothermal boundary conditions at both walls. Differ-
ent constitutive relations for density, ρ, and viscosity, µ, as a function of temperature,
T , are used. The details of all investigated cases are outlined in Table 1. The consti-
tutive relations for density and viscosity as a function of temperature are listed in the
second and third columns, respectively. The following columns report the wall-based
friction Reynolds number, Reτ ; the semi-local Reynolds number at the channel center,
Re?τ c =

√
(ρc/ρw)/(µc/µw) Reτ (subscript c denotes the value at channel center); and

the number of mesh points, N , and the length of the domain, L, in streamwise, x,
wall-normal, y, and spanwise, z, directions. The last column shows the wall heat flux
parameter, Bq = qw/(ρwcpuτTw) (where qw is the wall heat flux and cp is the specific
heat at constant pressure).
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Case ρ/ρw µ/µw Reτ Re∗τ c Nx ×Ny ×Nz Lx × Ly × Lz Bq

CP395 1 1 395 395 240× 264× 240 2πh× 2h× πh 0

CRe∗τ1 (T/Tw)−1 (T/Tw)−0.5 395 395 240× 264× 240 2πh× 2h× πh -0.044

CRe∗τ2 (T/Tw)−1 (T/Tw)−0.5 395 395 288× 264× 288 2πh× 2h× πh -0.137

CRe∗τ3 (T/Tw)−1 (T/Tw)−0.5 395 395 288× 312× 288 2πh× 2h× πh -0.24

GL (T/Tw)−1 (T/Tw)0.7 950 137 360× 360× 360 4πh× 2h× 1.5πh -0.079

LL 1 (T/Tw)−1 150 943 360× 312× 360 2πh× 2h× πh -0.413

Table 1. Parameters for the simulated cases. CP395 – constant-property case with Reτ = 395;
CRe∗τ1, CRe∗τ2, CRe∗τ3 – variable-property cases with constant Re∗τ (= 395) across the channel
height; GL – case with gas-like property variations; LL – case with liquid-like property variations.
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Figure 1. (a) Density ρ/ρw, (b) viscosity µ/µw, and (c) semi-local Reynolds number Re?τ .

The case CP395 corresponds to a constant-property case with Reτ = 395. Cases CRe?τ1,
CRe?τ2 and CRe?τ3 are flows with increasing mean gradients (increasing Bq) in density
and viscosity, but such that the semi-local Reynolds number Re?τ is constant across the
whole channel height (meaning

√
ρ/ρw = µ/µw). These cases have been simulated to

test the efficacy of Re?τ as a scaling parameter. The density gradients increase from
ρw/ρc ≈ 2 for case CRe?τ1 to ρw/ρc ≈ 9 for case CRe?τ3. Cases GL and LL are flows
with gas-like and liquid-like property variations that have large gradients in Re?τ . Cases
CP395 and CRe?τ1 were also studied in Patel et al. (2015, 2016) and are used here
as a reference. The corresponding plots of mean density, viscosity and Re?τ are shown
in Figure 1. The relative property fluctuations ρ′rms/ρ and µ′rms/µ (prime denotes
Reynolds-averaged fluctuations, and the subscript rms indicates the root mean square
value) for the cases with very large property variations reach a value of about 0.25. The
details on the governing equations and the numerical schemes can be found in Patel et al.
(2015). For cases CRe?τ2, CRe?τ3 and GL with large density gradients, we used a two-step
predictor-corrector time integration scheme (Najm et al. 1998) to increase the numerical
stability. The velocity components along the x, y and z directions are denoted as u, v
and w.

The second dataset is a DNS of a turbulent flow with CO2 at supercritical pressure
(scCO2) in an annulus with a hot inner wall and a cold outer wall (Peeters et al. 2016).
The pseudo-critical temperature, at which the thermophysical properties change from
a liquid-like state to a gas-like state, is close to the heated inner wall. The transition
results in strong thermophysical property variations, accompanied by a five-fold increase
in the molecular Prandtl number. The third database corresponds to a heated/cooled
supersonic boundary layer from Shadloo et al. (2015).
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Figure 2. (a) Kolmogorov length scale in terms of wall-based viscous units, and (b) Kolmogorov
length scale and (c) mixing length in terms of semi-local viscous units. Two additional constan-
t-property flows with Reτ = 150 (CP150) and Reτ = 950 (CP950) are shown to depict Reynolds
number effects in the outer layer.

3. Results

First, we highlight the change in length scales due to mean property variations and
how Re?τ provides a good measure of it. Second, we highlight some structural changes due
to gradients in Re?τ . Third, we discuss the significance of some additional mechanisms
that are not governed by Re?τ and that occur because of property fluctuations and very
strong density/viscosity gradients. Finally, wall-modeled LES of a compressible channel
flow with cold walls is performed by taking into account the change in characteristic
length scales due to Re?τ gradients.

3.1. Length scales and mean velocity scaling

As pointed out in Section 1, near-wall property gradients could possibly cause a change in
viscous length scales. Figure 2(a) shows the Kolmogorov length scale η = ((µ/ρ)3ρ/εk)0.25

(here εk is the turbulent kinetic energy dissipation rate per unit volume) normalized by
the wall-based viscous length scale δ+v = h/Reτ and plotted as a function of y+ = y/δ+v . η
normalized in terms of semi-local viscous units (δ?v = h/Re?τ ) and plotted as a function of
semi-local wall distance y? = y/δ?v is shown in Figure 2(b). It can be seen that cases with
gradients in Re?τ show strong deviations in η when normalized using classical wall-based
units. On the other hand, η can be collapsed when using semi-local length scales. Note,
for cases with constant Re?τ , the semi-local scaling is equivalent to the wall-based scaling.
Similar observations can be made for the mixing length, which is defined as

l2m = −ũ′′v′′/(du/dy)
2
, (3.1)

where the tilde denotes Favre averaging and the double prime indicates the corresponding
fluctuations. Figure 2(c) shows the mixing length normalized and plotted in terms of
semi-local units and a good collapse is obtained in the entire inner layer, except very
close to wall (y? < 10) where cases with Re?τ gradients show deviations. However, for
y? < 10, lm is small and the flow is dominated by viscosity. The suggested scaling of lm
in Figure 2(c) can be naturally obtained from the streamwise stress-balance equation,
which, after neglecting the viscosity fluctuations, can be written as

−ρũ
′′v′′

τw
+

h

Reτ

(
µ

µw

)
du+

dy
≈ τ

τw
=
(

1− y

h

)
, (3.2)

where τ and τw represent the total and wall shear stress, respectively. Substituting
Eq. (3.1) into Eq. (3.2) results in a quadratic equation for du+/dy, which, after solv-
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Figure 3. (a,b,c) van Driest–transformed velocity uvD as a function of y+, (d,e,f) extended van
Driest–transformed velocity u? as a function of y?. (a,d) Cases CP395, CRe?τ1, CRe?τ2, CRe?τ3,
GL and LL; (b,e) scCO2 cases from Peeters et al. (2016); (c,f) heated, cooled and adiabatic
supersonic boundary layers from Shadloo et al. (2015). The thin dash-dotted lines indicate the
linear and log-law velocity profiles.

ing and simplifying, can be written as

h

Re?τ

duvD

dy
=

2τ/τw

1 +

√
1 + 4τ/τw (lmRe?τ/h)

2
. (3.3)

The good collapse of lm in terms of semi-local units can also be exploited to derive the
extended van Driest transformation as

du? =

(
1 +

y

Re?τ

dRe?τ
dy

)
duvD. (3.4)

For a more detailed description of the derivation refer to Patel et al. (2016). The trans-
formation proposed by Trettel & Larsson (2016) is equivalent to Eq. (3.4) and can be
obtained by substituting the definitions of Re?τ and uvD.

The velocity transformation is applied to the cases described in Section 2. The van
Driest–transformed velocity, uvD, is plotted as a function of y+ in Figure 3(a-c), and
the extended velocity transformation, u?, is plotted as a function of y? in Figure 3(d-f).
uvD for cases with constant Re?τ profiles follow the incompressible velocity profile closely.
However, uvD deviates for cases with gradients in Re?τ in Figure 3(a), while all u? profiles
show a collapse in Figure 3(d). For the flow with CO2 at supercritical pressure in an
annulus (Peeters et al. 2016) in Figure 3(b,e), the velocity profile is split into two profiles
corresponding to the hot and cold walls. Using uvD shows a slight deviation among the
two profiles, while a good collapse is obtained using the u? transformation. The cooled
and heated supersonic boundary layers compared to an adiabatic case (Shadloo et al.
2015) is shown in Figure 3(c,f). While the uvD for adiabatic and heated cases follows
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Figure 4. Joint probability density function at y? ≈ 15 of
√
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√
τw and
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τw with

contours of probability-weighted Reynolds shear stress ρu′′v′′/τwP (
√
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√
τw,
√
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√
τw) for

cases (a) CRe?τ2, (b) GL and (c) LL (all lines) compared with case CP395 (filled contours).

the incompressible profile closely, the cooled case shows deviation. Using u? provides a
universal profile for all three cases; however, a slight increase in the log-law constant is
noticeable.

3.2. Modulation in Reynolds stress generation mechanisms due to Re?τ gradients

Besides the changes of the viscous length scale observed above, gradients of Re?τ also
affect turbulence structure, which is related to turbulence anisotropy and Reynolds
stress generation mechanisms. These changes can be seen by plotting the weighted
joint probability density function (JPDF)

(
ρu′′v′′P (

√
ρu′′/

√
τw,
√
ρv′′/

√
τw)
)
/τw, where

P (
√
ρu′′/

√
τw,
√
ρv′′/

√
τw) is the JPDF of

√
ρu′′/

√
τw and

√
ρv′′/

√
τw. Figure 4 shows

the contours of the weighted JPDF, where the filled contour depicts case CP395 and
the contour lines correspond to cases CRe?τ2, GL and LL, respectively. While the case
CRe?τ2 shows contours similar to those for case CP395, the contour lines for cases with
Re?τ gradients show deviations. It can be seen that for case GL, the low-speed streaks
strengthen and do not lift as intensely. The opposite is true for case LL. The influence of
the structural changes on the mixing length in the near-wall region is too small to affect
the validity of the derived velocity scaling.

3.3. Significance of effects due to individual density and viscosity gradients

The significance of additional mechanisms that may arise due to property fluctuations in
addition to very large density or viscosity gradients is discussed next. The cases CRe?τ1,2
and 3 are ideal for investigating these additional mechanisms, because Re?τ is constant
across the channel and equal to case CP395. We first examine the budget equations of

the turbulent kinetic energy k = ρũ′′i u
′′
i /2 written as Pk + Dk − εk + Ck = 0, with the

production Pk = −ρũ′′v′′dũ/dy, diffusion Dk = d(u′′i τ
′
iy − v′′p′ − ρu′′i u

′′
i v
′′)/dy, dissi-

pation per unit volume εk = −τ ′ijdu′′i /dxj and additional terms arising due to density

fluctuations Ck = −u′′i dp/dxi +u′′i dτiy/dy+ p′du′′i /dxi (p is the pressure and τij denotes
the shear stress tensor). Figure 5(a) shows the dominant terms in the kinetic energy
budget; namely, diffusion, dissipation and production normalized by h/(ρu?τ

3Re?τ ) (see
also Morinishi et al. 2004), with the semi-local friction velocity defined as u?τ =

√
τw/ρ.

It can be seen that with increasing viscosity/density gradients (CRe?τ1 to CRe?τ3), the
near-wall turbulence dissipation increases and is balanced by an increase of the diffusion.
Although not shown, the contribution of the additional terms Ck remains negligible.

It is well known that density variations may result in a baroclinic torque affecting the
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Figure 5. Budgets terms in (a) the turbulent kinetic energy equation for cases CP395, CRe?τ1,
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3.

flow field in multiphase flows (see, for instance, Chassaing et al. 2002). The vorticity
transport equations, using the semi-locally scaled variables, can be written as

∂t̂(ρ̂ω̂) + ∇̂ · ρ̂ûω̂ = ρ̂ω̂

(
ρ

ρw

) 1
2

· ∇̂u+ + ∇̂× ∇̂ ·
{

2µ̂

Re?τ

(
ρ

ρw

) 1
2

S+

}

− ρ̂ω̂
(
ρ

ρw

) 1
2

∇̂ · u+ +
1

ρ
∇̂ρ× φ̂, (3.5)

where the hat denotes semi-locally scaled variables, with ρ̂ = ρ/ρ, µ̂ = µ/µ, û = u/u?τ ,

ω̂ = ωh/u?τ , ∇̂ = h∇, φ̂ ≡ ∇̂p̂ − ∇̂ · (2µ̂/Re?τ (ρ/ρw)
1
2 S+), p̂ = p/(ρu?τ

2) and S+ =

(∇̂u+) + (∇̂u+)T − 1
3 (∇̂ · u+)I is the strain rate tensor. The physical significance

of the terms on the right-hand side can be seen as the production of vorticity due to
stretching and tilting, diffusion of vorticity, production or destruction of vorticity due to
thermal expansion, and production or destruction due to density gradients. We will refer
to ρ−1∇̂ρ× φ̂ as the baroclinic source term b̂. The last two terms on the right-hand side
are zero in a constant-density flow, since they only appear because of density variations.
This is also the reason why these two terms cannot be incorporated in the semi-local scal-
ing framework. This also suggests that very large (instantaneous) density gradients may
lead to situations in which the semi-local scaling would no longer be valid. To investigate
the baroclinic effect, we calculated the budgets of the streamwise vorticity. These budgets
are obtained by decomposing all variables of the streamwise component of Eq. (3.5) in a

Favre-averaged part (̃...) and a fluctuating part (...)′′, then multiplying the result by the

fluctuating part of the streamwise vorticity ω̂′′x and subsequently averaging with respect

to time (...). These budgets can be used to compare the magnitude of baroclinicity ω̂′′x b̂x

with the magnitude of the stretching and tilting term ρ̂ω̂′′xω̂ (ρ/ρw)
1
2 · ∇̂u+, which we

shall denote ω̂′′x ŝx. Figure 5(b) shows both ω̂′′x b̂x and ω̂′′x ŝx normalized by 1/Re?τ
3

for the
cases CRe?τ1,2 and 3 compared with case CP395. It is clear from Figure 5(b) that the
stretching/tilting term scales well using the semi-local scaling, while the baroclinicity in-
creases with increasing property gradients. The effect of baroclinicity is confined mostly
to the near-wall region (y? < 10). Furthermore, its magnitude is small compared to that
of the stretching/tilting term. Figure 5(c) shows similar results for the forced convection
scCO2 case. Note that the sign of the baroclinic effect in the scCO2 case is opposite to



220 Patel et al.

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

(a)

GL, DNS

GL, D (y⋆)
GL, D

(

y+
)

y⋆

GL = 30

y+

GL
= 30

µ
t
/
(ρ

w
u
τ
h
)

y
0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

(b)

DNS, CKM
LES, D

(

y+
)

LES, D (y⋆)

ρ
u
′
′
v
′
′
/
τ w

y/H
100 101 102

0

5

10

15

20

(c)

DNS, CKM
LES, D

(

y+
)

LES, D (y⋆)

u
⋆

y⋆

Figure 6. (a) Eddy viscosity µt for the cases GL compared to mixing length models that use
either y+ or y? as the normalized wall distance in the ad hoc damping function D, (b) turbulent
shear stress ρu′′v′′ and (c) semi-locally transformed mean velocity u? from LES with either
D

(
y+

)
or D (y?) compared to DNS of Coleman et al. (1995) abbreviated as CKM.

that of the CRe?τ cases, because the flow in the scCO2 case is heated, whereas the flow
in the CRe?τ cases is cooled.

3.4. Wall-modeled LES of a M = 3 turbulent channel flow

Based on the scaling law for velocity and the scaling of the turbulent statistics discussed
above, it is now possible to revisit turbulence models that are commonly used in wall-
modeled LES and RANS. Arguably, the simplest turbulence model that can be considered
is the eddy viscosity model based on Prandtl’s mixing length hypothesis. Such an eddy
viscosity model can be written as

µt = κyρu?τD
2, (3.6)

with D an ad hoc van Driest damping function for the near-wall region, given by

D
(
y+
)

= 1− exp
(
−y+/A+

)
. (3.7)

The model parameters are κ = 0.41 and A+ = 17. Using u?τ in Eq. (3.6) accounts for
changes in the velocity scales due to mean density gradients. However, using y+ implicitly
assumes that the viscous length scales are not affected by property gradients and are
thus the same for a constant-property flow. Simply replacing y+ with y? in Eq. (3.7)
corrects for changes in viscous length scales in variable-property flows due to gradients
in Re?τ . This is highlighted in Figure 6(a), where the eddy viscosity µt = −ρu′′v′′/(dū/dy)
obtained from DNS for the case GL is compared with Eq. (3.6) using either y+ or y? as
the argument in the damping function. It can be clearly seen that the model with D(y?)
closely follows the DNS. Although not shown, similar improvements are obtained for the
case LL. The figure also indicates the wall-normal locations where y+ and y? equals 30 to
highlight again the significant changes of viscous scales for case GL. The effectiveness of
the semi-local scaling to accommodate changes in viscous length scales was also evident
for the Kolmogorov and mixing length profiles in Figure 2(b,c). Bocquet et al. (2012)
suggested a similar modification of the wall distance scaling in the van Driest damping
function in order to accommodate compressibility effects in supersonic channel flows.

To test the suggested modification of the damping function, we performed a wall-
modeled LES of a M = 3 compressible channel flow with cold isothermal walls as doc-
umented in Coleman et al. (1995). The LES code INCA (Hickel et al. 2014) was used
and an equilibrium wall model, which makes use of the eddy viscosity model as given
in Eq. (3.6), was implemented during the summer program. For the sake of complete-
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ness we briefly outline the implementation hereafter. The equilibrium boundary layer
equations for momentum (∂y (µ+ µt) ∂yũ = 0) and total energy (∂yũ (µ+ µt) ∂yũ +

∂y (µ/Pr + µt/Prt) cp∂yT̃ = 0) are solved using a Newton-type iteration procedure. A
second-order finite-difference scheme, with analytic transformations to incorporate mesh
stretching, is used to discretize the spatial derivatives. ũ and T̃ are the filtered stream-
wise velocity and temperature, while Pr = 0.7 and Prt = 0.9 are the molecular and
turbulent Prandtl numbers, respectively. The coupling between LES and the equilibrium
wall model follows a standard procedure, whereby the numerical solution of the equilib-
rium boundary layer equations provides the wall boundary conditions for the LES (in
the form of viscous and thermal fluxes); and the LES provides the boundary conditions
for velocity and enthalpy at a location of y? ≈ 30 for the numerical integration of the
boundary layer equations. Note the choice of y?, instead of y+, to define the coupling
point between LES and boundary layer equations. Twelve mesh points are used for the
integration of the boundary layer equations and the LES uses 24 control volumes in the
wall-normal direction and a mesh resolution of ∆x+ and ∆z+ of 120 and 83 at the wall,
respectively.

4. Conclusions

The LES results for the turbulent shear stress ρu′′v′′ and the transformed velocity ū?

are compared to the DNS of Coleman et al. (1995) in Figure 6(b,c). It can be clearly seen
that the simple correction for the damping function in Eq. (3.7), where we replaced y+

with y?, significantly improves the results for the turbulent shear stress. Accordingly, the
velocity profiles are also close to those of the DNS. However, cases with higher Reynolds
numbers will be tested in the future to thoroughly assess the validity of suggested modi-
fications. We investigated wall-bounded turbulent flows with strong variations in density
and viscosity to verify if the semi-local Reynolds number can be used as a universal
parameter to characterize turbulent statistics and to collapse mean velocity profiles. The
cases analyzed are volumetrically heated channel flows with isothermal walls, heated and
cooled annular flows with carbon dioxide at supercritical pressure, and heated and cooled
supersonic boundary layer flows. We showed that velocity profiles for these cases can be
collapsed if the mean velocity is transformed as a function of the semi-local Reynolds
number. Also, the turbulence statistics in the budget equations of the turbulence kinetic
energy and streamwise vorticity equation are governed by Re?τ . However, for strong den-
sity gradients, baroclinicity is increasing in magnitude, which cannot be incorporated in
the semi-local scaling framework. Large gradients of viscosity (and density) also cause
turbulence dissipation to deviate slightly from the constant-property case, even if scaled
by semi-local scales. These observations enabled us to revisit and correct a simple eddy
viscosity model (based on the mixing length hypothesis) to account for strong thermo-
physical property gradients. Simply replacing the normalized wall distance y+ (based on
wall units) with the semi-local wall distance y? significantly improves the results obtained
by a wall-modeled LES of a turbulent channel flow at M = 3 with isothermal walls. The
knowledge obtained in this work can further be utilized to correct and properly account
for property gradients in more complex turbulence models used in LES and RANS.
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