
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

MultiViT: 2D to 3D transfer learning
using a jointly optimized Vision
Transformer without the need for
image labels
Tibbe Lukkassen
Supervisors: Yancong Lin, Holger Caesar

03-07-2024

MultiViT: 2D to 3D transfer learning
using a jointly optimized Vision

Transformer without the need for
image labels

by

Tibbe Lukkassen
TU Delft

Tibbe Lukkassen 4662210

Supervisor: Holger Caesar
Daily supervisor: Yancong Lin
Faculty: Mechanical Engineering, Delft University of Technology
MSc programme: Robotics

Cover: https://www.darpa.mil/ddm gallery/assured-autonomy.png

MultiViT: 2D to 3D transfer learning using a jointly optimized Vision
Transformer without the need for image labels

Tibbe Lukkassen
TU Delft

Abstract

2D to 3D transfer learning has proven to be an effec-
tive method to transfer strong 2D representations into a 3D
network. Recent advancements show that casting seman-
tic segmentation of outdoor LiDAR point clouds as a 2D
problem, such as through range projection, enables the pro-
cessing of 3D point clouds with a Vision Transformer (ViT).
For autonomous vehicles, collecting camera data alongside
point cloud data is inexpensive. In this work, we investi-
gate how we can best use these available 2D images, by ex-
ploring the benefit of camera pretraining to LiDAR semantic
segmentation by using a shared ViT backbone. We propose
a label generation method that generates pixel-wise pseudo
labels for the camera images from the LiDAR annotations.
We show that we can effectively use these for pretraining be-
fore finetuning on point cloud semantic segmentation. Be-
sides, we compare jointly optimizing a shared ViT encoder
for image and point cloud semantic segmentation simulta-
neously, with finetuning on point cloud semantic segmenta-
tion after pretraining on the camera domain. We show that
joint optimization can lead to improved performance com-
pared to pretraining when training from scratch. By using a
shared encoder for the camera and LiDAR domain we can
investigate the joint Camera-LiDAR feature space and find
it is possible to create a shared feature space where LiDAR
and camera features from the same class are mapped to the
same location in the feature space. However, this does not
contribute to a better performance on LiDAR semantic seg-
mentation. These experiments provide valuable insight into
2D to 3D transfer learning and the creation of a shared
Camera and LiDAR feature space.

1. Introduction

In recent years, self-driving cars have garnered significant
attention in research. The concept of vehicles operating au-
tonomously brings about several advantages, including en-
hanced road safety, reduced pollution, improved accessibil-
ity for individuals with mobility challenges, and a decrease
in driving-related stress [36]. The presence of self-driving

cars on our roads is becoming more common, yet there re-
mains a continual pursuit of enhancements in this domain.
Autonomous vehicles are often equipped with LiDAR and
camera sensors [24]. Rich spatial information received from
a LiDAR sensor, and the strong semantic information, ob-
tained from a camera sensor, are both important compo-
nents for an autonomous vehicle to understand its surround-
ings [15]. Because of their importance both camera and Li-
DAR semantic segmentation are extensively researched.

Vision Transformers (ViT) [8] have proven to be very
effective for image semantic segmentation [5, 28]. Recent
works [1, 13, 22, 33] have shown that it is also possible
to achieve competitive performance on the point cloud se-
mantic segmentation task using this ViT architecture. This
has made it possible to transfer 2D knowledge from the
rich semantic information captured by a camera sensor to
a network used for 3D point cloud perception. For exam-
ple, Pix4point [22] and Simple3D-Former [33] use a trans-
former pretrained on image data for indoor object detection.
Pix4point [22] uses the k-NN algorithm with a graph convo-
lution on the aggregated neighborhoods to extract input to-
kens for the ViT encoder such that it can use the original ViT
architecture. Simple3D-Former [33] edits the tokenizer, po-
sition embedding, and head to be able to use the ViT for
3D tasks. Recently, RangeViT [1] shows the same strat-
egy also applies to autonomous driving datasets where the
point clouds are significantly sparser and noisier. Specifi-
cally, RangeViT first projects the point cloud to the range
view and then uses a convolutional stem to steer the range
projection to the right dimensions for the ViT. Pretraining
the ViT on an image dataset like ImageNet21K [23] and
Cityscapes [6] has been proven beneficial for point cloud
semantic segmentation.

Building on the RangeViT [1] framework, we explore
the knowledge transfer from camera sensor to LiDAR sen-
sor using a shared ViT backbone for LiDAR semantic
segmentation in autonomous driving. RangeViT employs
pretrained vision transformers on ImageNet21K [23] and
CityScapes [6] as the backbone. We first question if per-
formance can be further enhanced by pretraining directly
on the same dataset, i.e., both camera and LiDAR data
are from the same scene, thereby addressing potential do-

1

main gaps between the datasets. However, the adopted
nuScenes dataset only provides point-wise semantic labels,
while pixel-wise labels are absent. We leverage foundation
models (SAM) and weak bounding box annotations to gen-
erate pixel-wise pseudo labels, enabling supervised pixel-
wise semantic segmentation. Besides we question if fine-
tuning the weights after pretraining on camera data for Li-
DAR semantic segmentation is the best strategy to leverage
the knowledge gained from the camera modality. Inspired
by works on multitask learning, we test joint training from
scratch instead of pretraining on the camera modality and
fine-tuning on specific downstream tasks where the general
knowledge across sensors might be lost. To conclude we
aim to answer two critical questions:
• Does pretraining on image datasets from the same domain

improve performance more than pretraining on different
domain image datasets for 2D to 3D transfer learning?

• Can joint training preserve 2D knowledge more effec-
tively within the network, resulting in improved perfor-
mance, compared to first pretraining on camera data and
then finetuning on the LiDAR data?
To answer these questions, we conduct experiments from

the following aspects:
Generating pseudo labels. Since the nuScenes bench-

mark adopted in RangeViT does not provide pixel-wise
semantic labels, We create labels using the SAM model
[12] and 3D bounding box annotation labels from LiDAR
data. We evaluate this method on the nuImages mini dataset
with their provided pixel-wise semantic labels. Besides we
demonstrate that the pseudo labels can be effectively used
to train a camera encoder.

Pretraining with pseudo labels. We compare the ef-
fectiveness of pretraining a vision transformer on different
sets of image data before finetuning on 3D semantic seg-
mentation. To be specific, we compare image pertaining on
a different domain with accurate ground truth labels (e.g.,
CitySpace [6]) and on the same domain using generated
pseudo labels. We find that using the pseudo labels helps to
improve performance for the task of 3D semantic segmen-
tation, but that labels from a different domain with accurate
ground truth labels improve performance more.

Comparing joint optimization and pretraining. In-
spired by multitask learning, we investigate whether jointly
optimizing a network for both LiDAR and camera semantic
segmentation is a superior strategy compared to pertaining
and finetuning. We show that joint optimization improves
performance when the model is trained from scratch.

Creating a multimodal shared feature space. Lastly,
we evaluate the benefit of having a shared feature space for
the LiDAR and camera sensors. We find that it is not ben-
eficial for downstream performance to enforce a shared la-
tent space where LiDAR and camera features from the same
class are mapped to the same location in the feature space.

2. Related work

2.1. 2D to 3D transfer learning

Recent works have explored different methods for knowl-
edge transfer from 2D to 3D [1, 17, 18, 20, 22, 25, 33, 34].

Contrastive learning. [17, 18, 20, 25] reach this goal by
using a self-supervised pretraining method. They use con-
trastive learning to transfer strong 2D representations to a
3D network. PPKT [18] is one of the first works to make
use of this 2D-to-3D representation distillation paradigm.
It uses a contrastive loss between features from a frozen
and well-trained camera encoder and a trainable LiDAR en-
coder. SLidR [25] builds upon this method by contrasting
patches instead of pixels by generating superpixels. Both
ST-SLidR [20] and SEAL [17] build on top of SLidR [25].
ST-SLidR [20] adds a semantically tolerant loss to improve
performance. SEAL [17] improves this method by lever-
aging vision foundation models to create patches instead of
using superpixels.

fusion methods. Differing from 2D to 3D transfer learn-
ing, fusion methods [2, 15, 31, 32] show performance im-
provement when using multiple modalities during infer-
ence. Both UniBEV [32] and Transfusion [2] show that
fused training can improve performance on 3D object detec-
tion with LiDAR data when compared to training on LiDAR
only. UniBEV [32] uses a uniform deformable attention-
based architecture for both its camera and LiDAR branch to
build the LiDAR and camera BEV features to create better
aligned features across modalities. The key idea of Transfu-
sion [2] is to reposition the focus of the fusion process, from
hard association to soft association, leading to the robust-
ness against degenerated image quality and sensor misalign-
ment. In contrast to these works, other fusion methods like
PointPainting [31] show they are dependent on both modali-
ties during inference and degrade in performance when only
the LiDAR modality is used. This makes them ineffective
for 2D to 3D transfer learning.

Transfer learning. A different method deployed, is to
copy the weights of a network pretrained on the camera
modality into a network for the LiDAR modality [1, 22,
33, 34]. Image2point [34] is able to do this by converting
a 2D CNN to a 3D CNN by inflating the 2D convolution
into 3D convolutions. Pix4point [22] and Simple3D-Former
[33] use a transformer pretrained on image data for indoor
object detection. Pix4point [22] uses the k-NN algorithm
with a graph convolution on the aggregated neighborhoods
to extract input tokens for the ViT encoder such that it is
able to use the original ViT architecture. Simple3D-Former
[33] uses a teacher branch to maintain the 2D knowledge
in the network. RangeViT [1] proposes a LiDAR network
that enables them to use a Vision Transformer as its core
encoder by transforming the point cloud into a range image
and is the first method to use this for outdoor point cloud se-

2

mantic segmentation. They use pretrained weights for this
Vision Transformer, trained on RGB image data on datasets
like CityScapes [6] and ImageNet21K [23]. They show im-
proved performance when training from these pretrained
weights. Our method builds upon RangeViT [1] and ex-
tends this work into a method where the ViT can be jointly
optimized for both camera and LiDAR semantic segmenta-
tion simultaneously.

2.2. Training with pseudo labels

The field of weakly supervised semantic segmentation
(WSSS) focuses on reducing the label cost of fully super-
vised semantic segmentation [21]. Instead of labeling all
the pixels manually, it resorts to weaker yet cheaper al-
ternatives. Examples include labeling sparse points, using
bounding box labels, scribbles in an image, or image-level
classification results as the label to create the semantic label.
BBAM [14] and [27] both use bounding boxes to generate
semantic and instance segmentation labels. Another line
of works [29] makes use of the Segment Anything model
(SAM) [12] to create semantic labels. [29] creates bound-
ing boxes using text prompts for the image. These bounding
boxes are then processed by SAM [12] to create a semantic
mask using the bounding box as the input. It shows promis-
ing performance with only very little performance degrada-
tion. In this work, we also use bounding boxes as the input
to create the pseudo label and use SAM [12] to create the
pseudo labels within this bounding box.

2.3. Multi task learning

Multi-task learning seeks to combine several tasks within
one network, training them simultaneously in an end-to-
end manner. LiDARMultiNet [35] proposes to unify the
three major LiDAR perception tasks in a single network
that exploits the synergy between these tasks. LidarMLT [9]
proposes joint training with a single network for object de-
tection and road understanding, and achieves on-par single-
task perception performance, regardless of the combination
of multiple tasks. LiDARFormer [37] shows it is possible to
develop a unified transformer-based multi-task LiDAR per-
ception network with the ability to learn global context in-
formation. These works show that multiple losses can serve
as an auxiliary loss and help exploit the synergy between the
different tasks which can lead to improved performance. In
contrast to these methods, there are also works that inves-
tigate a shared network with shared weights across multi-
ple modalities to solve multiple tasks. UniT [10] builds a
unified transformer that takes both image and text as input.
After joint training, it is able to accomplish multiple tasks
ranging from visual perception and natural understanding to
joint vision and language learning. Our work draws inspira-
tion from multitask learning and uses a shared backbone for
2D to 3D transfer learning. To the best of our knowledge,

Figure 1. A visualization of range view compared with the camera
image.

there are currently no works that investigate joint training
for cross-modality tasks in LiDAR-camera perception.

3. Methodology
We first describe the generation of pixel-wise semantic
labels using SAM due to the lack of annotation on the
nuScenes benchmark. Second, we detail the fine-tuning af-
ter pretraining and joint learning strategies adopted in the
comparison. Notably, the backbone model is ViT which
can be trained on either a single modality or jointly opti-
mized for both modalities simultaneously. Fig. 2 shows an
overview of the proposed pipeline.

3.1. Pixel-wise semantic label generation

To create the pixel-wise semantic labels, we leverage the
3D bounding box annotation from the LiDAR data. First,
we map the 3D bounding boxes to the 2D images using
the camera intrinsic matrix. Second, we use SAM [12]
(the ViT-B model) to create a mask within this bounding
box. The created mask shares the same semantic class as
the bounding box annotation. Objects that are completely
occluded by other objects in the camera image can still be
annotated with a 3D bounding box, but they should not
be assigned a pixel-wise semantic label. Therefore bound-
ing boxes that are entirely occluded by different bounding
boxes are excluded. Besides, for boxes of which only a
small part falls within the image, we create a mask using
SAM but add them to the ignored class. The mask created
for these cases is often not precise, but since it is created
within a bounding box this part of the image does certainly
contain a foreground object. All pixels not part of a fore-
ground class or the ignored class are labeled as background.

It is worth mentioning that this method is only able to
create labels for foreground objects that have a bounding
box label. Different static background objects that are not
labeled with a bounding box annotation are grouped into a
single background class. Examples are shown in Fig. 4.

3.2. Multi modal pertaining, fine-tuning and joint
learning

We adopt the same design as RangeViT [1], consisting of
a convolutional stem, a ViT encoder, a Decoder, and a 3D
refiner module. Given LiDAR data as input, RangeViT first
conducts the range projection [13], which converts the Li-

3

Figure 2. Overview of the MultiViT framework. We research the knowledge transfer from 2D to 3D via a shared backbone design, for
LiDAR semantic segmentation in autonomous driving. We first generate pixel-wise semantic labels for camera data using SAM [12],
enabling supervised training on camera data. Later, we compare pretraining on camera data followed by finetuning on LiDAR data to joint
leaning from camera and LiDAR data.

DAR data as grid representation as images. We visualize the
range projection in Fig. 1. We adapt RangeViT such that it
can also be used for camera semantic segmentation. We re-
fer to this model as CameraViT. Additionally, we propose
MultiViT by sharing the ViT encoder between RangeViT
and CameraViT such that the ViT encoder can be jointly op-
timized with camera and LiDAR data. MultiViT can even-
tually be used for both LiDAR and Camera semantic seg-
mentation. We name the LiDAR branch used for LiDAR
semantic segmentation MultiViT L and name the camera
branch used for camera semantic segmentation MultiViT C,
as shown in Fig. 2.

3.2.1 Model Architecture

RangeViT. RangeViT first conducts range projection to
convert LiDAR point cloud into grid data for sequential pro-
cessing. The LiDAR data is rasterized into a 2D cylindrical
project of size H×W [13]. Where H and W are the height
and width, respectively. The rasterization for each point pn
can be formulated as follows:(

un

vn

)
=

(1
2 [1− arctan(pyn, p

x
n)π

−1]W

[1− (arcsin(pzn, p
d
n)

−1) + ϕdown)ξ−1]H

)
, where (un, vn) denotes the grid coordinate of point pn
in range image R(u, v). The range in this range view is
calculated by pdn =

√
(pxn)

2 + (p7n)
2 + (pzn)

2, which indi-
cates the distance between the point and the LiDAR sensor.

ξ = |ϕup|+ |ϕdown| is the vertical field-of-views of the sen-
sor and ϕup and ϕdown are the inclination angles at the up-
ward and downward directions, respectively. Fig. 1 shows
an example of a point cloud projected in range view. The
range, intensity, x, y, and z values are concatenated for each
rasterized point.

After range projection, the image-like input data is fed
into the convolutional stem. This module uses four resid-
ual blocks of SalsaNext [7] and produces pixel-wise fea-
tures with Dh channels. To steer these pixel-wise features
into tokens suitable for the ViT, we first apply an average
pooling layer to reduce the spatial dimension of the features
from H ×W to (H/PH) × (W/PW), where PW and PH

are the patch sizes. For RangeViT we use a patch size of
2 × 8 in all experiments. We then apply a 1 × 1 convolu-
tional layer with D output channels to form the final visual
tokens to match the input dimension and number of tokens
of a traditional ViT.

The output of the convolutional stem is fed into a ViT
[8]. The vision transformer produces a feature of size 384
for each patch. Afterward, the decoder turns the per patch
feature into a feature map of Dh × PH × PW with a 1× 1
convolution layer, followed by a Pixel Shuffle layer [26].
These features are concatenated with the stem features pro-
duced by the convolutional stem. These concatenated fea-
tures are passed through the last two convolutional layers of
the decoder with Leaky ReLU and batch normalization. The

4

decoder output results in the 2D refined feature map with a
feature of size 256 for each ’pixel’ in the range image. To
project these features from this 2D feature map back into a
feature for each point cloud point, a 3D refiner module is
used. This module makes use of a KPConv layer [30] to do
this. After this KPConv [30] layer the logits are obtained
by applying a BatchNorm, a ReLU, and a final points-wise
linear layer on these point features.

CameraViT. CameraViT has several key changes com-
pared to RangeViT, as it does not need the range projection
and 3D refiner module. The convolutional stem, the ViT,
and the decoder are kept exactly the same as for RangeViT.
The patch size used in the convolutional stem for Camer-
aViT has size 8 × 8. The 3D refiner is replaced by a sin-
gle 2D convolution with a BatchNorm, a Relu, and a linear
layer to produce a logit for each pixel.

MultiViT. MultiViT combines CameraViT and
RangeViT without changing anything to their design.
The model is trained with both Camera and LiDAR data.
Both modalities are processed by the same ViT encoder
with the same weights but the data is not fused. The
model consists of two modality-specific stems and two
modality-specific decoders. This allows the model to
separately process camera and LiDAR data and process
them with the same ViT encoder.

3.2.2 Implementation details

Training loss. We use the same loss functions for training
RangeViT, CameraViT, and MultiViT, including a multi-
class focal loss [16] and a Lovasz-softmax loss [3]. The
multi-class focal loss is a scaled version of the cross-entropy
loss and adapts the loss values accordingly, making it a bet-
ter option for datasets with a high class imbalance. The
Lovasz-softmax loss allows for direct optimization of the
mean intersection-over-union. When training on Camera
data, there is a large class imbalance in the dataset. Al-
most 90% of all the image pixels are labeled as back-
ground while the other 10% is divided over the other 10
foreground classes. Because of this large class imbalance,
we use a correction factor λ to balance the Lovasz and fo-
cal loss, where the total loss for RangeViT and CameraViT
can be formulated as LLiDAR = LLovasz + λlLfocal and
Lcamera = LLovasz + λcLfocal respectively. When train-
ing CameraViT we set λc = 3. When training RangeViT
we set λl = 1. When training MultiViT, the total loss is
Ltotal = LLiDAR + Lcamera.

Inference. As in [1] we use a sliding-window method
during inference for RangeViT. At inference, the range im-
age is divided into overlapping crops of the same size as
those used during training. In comparison, the network
never sees the entire range image during training but uses
crops extracted from the full range image.

4. Experiments

4.1. Experimental setup

Dataset and metrics. We validate our approach for Li-
DAR semantic segmentation on the nuScenes [4] dataset.
This is a dataset consisting of 1,000 scenes of 20 seconds
in Boston and Singapore. It consists of various urban sce-
narios and lighting and weather conditions. The LiDAR
data has been annotated with 16 semantic classes and 3D
bounding boxes. From the 16 semantic classes, 10 classes
are classified as foreground classes and 6 classes as static
background classes. These 6 background classes do not
have bounding box annotations. The dataset is split into
28,130 training and 6,019 validation LiDAR scans. Each
LiDAR scan is associated with 6 corresponding camera im-
ages which form a full 360-degree field of view. The dataset
set therefore consists of 168,780 camera images for train-
ing and 36,114 for validation. We use the mean Intersection
over Union (mIoU) for performance evaluation.

Augmentations. When training on LiDAR data, we use
the same augmentations as in [1], including (a) flips over
the y-axis (the vertical axis on the range image), (b) random
translations, and (c) random rotations between ±5◦ (using
the roll, pitch, and yaw angles). All augmentations are ap-
plied randomly with a probability of 0.5. We randomly sam-
ple a crop of size 32 × 384 from the full range image of size
32 × 2048. When training on camera data, we use a combi-
nation of augmentation techniques, including random flip-
ping, random scaling, and random rotation. Images from
all 6 views are of size 256 × 704. For MultiViT training,
we use both LiDAR and camera data. We divide the range
image into 6 even crops of size 32 × 384, each of which
aligns with a camera view. We sample only aligned range
image crops and their camera images. We train CameraViT
6 times fewer epochs than RangeViT as each LiDAR scan
corresponds to 6 camera views.

Model configuration. For all experiments (RangeViT,
CameraViT, and MultiViT), we use the ViT-S backbone [8].
It has 12 layers, 6 attention heads, and a feature size of 384.
The convolutional stem, decoder, and 3D refiner use a fea-
ture of size 256.

Training setup. We use the AdamW optimizer [19] with
β1 = 0.9, β2 = 0.999 and weight decay 0.01 as in [1]. The
batch size during training is set to 32 for RangeViT, and
to 12 for MultiViT and CameraViT. Regarding the learn-
ing rate schedule, we employ a linear warm-up from 0 to
its peak value over a specified number of warm-up epochs,
followed by a cosine annealing schedule that decreases the
learning rate to 0 over the remaining epochs. Specifically,
when training from scratch, we initialize the learning rate to
lr = 0.008. Conversely, when initializing the Vision Trans-
former (ViT) from pre-trained weights on the ImageNet21K
dataset [23], we adjust the learning rate to lr = 0.004.

5

Method camera
pretraining ba

rr
ie

r

bi
cy

cl
e

bu
s

ca
r

co
ns

tr
uc

tio
n

m
ot

or
cy

cl
e

pe
de

st
ri

an

tr
af

fic
co

ne

tr
ai

le
r

tr
uc

k

dr
iv

ea
bl

e

ot
he

rfl
at

si
de

w
al

k

te
rr

ai
n

m
an

m
ad

e

ve
ge

ta
tio

n

m
Io

U
(%

)

Random initialization
1 RangeViT - 74.8 25.6 82.1 87.0 39.0 66.7 74.9 58.2 59.3 72.6 96.1 70.3 73.1 73.8 87.8 85.9 70.5
2 RangeViT nuScenes 74.7 26.4 87.5 88.1 40.1 72.1 75.2 58.8 58.9 73.6 96.0 70.6 72.2 73.3 88.0 86.2 71.4
In21k Initialization
3 RangeViT In21k 75.8 35.3 87.0 89.0 46.9 76.3 77.9 64.7 64.7 76.1 96.5 71.8 73.6 73.7 88.8 87.2 74.1
4 RangeViT In21k + CS 73.7 37.9 91.3 90.1 49.2 76.4 77.6 65.2 66.2 79.4 96.4 71.9 74.1 74.1 89.0 87.3 75.0
5 RangeViT In21K + nuScenes 76.2 35.9 88.9 88.2 43.8 74.0 77.2 64.6 63.0 77.5 96.3 71.5 73.8 73.7 88.8 87.0 73.8

Table 1. nuScenes [4] validation set comparison for different starting weights for the ViT. All models have been trained on the nuScenes
[4] dataset for LiDAR semantic segmentation. The camera pretraining column indicates what camera data has been used for initiating the
weights of the ViT. Best results are for each training setting are in bold. (-) = trained from scratch, (In21k) = pretrained on ImageNet21k,
(In21k + CS) = pretrained on ImageNet21K and CitScapes, (nuScenes) = pretrained on nuScenes images using the generated pixel-wise
semantic labels, (In21K + nuScenes) = pretrained on ImageNet21K and nuScenes images using the generated pixel-wise semantic labels.

Similar to [1], we train RangeViT for 150 epochs with 10
warm-up epochs. We train CameraViT and MultiViT for 25
epochs with 2 warm-up epochs.

Baselines. As our baseline we compare with RangeViT
[1]. We reproduce their results and mention these results in
our work. RangeViT [1] employs pretrained vision trans-
formers on ImageNet21K [23] and CityScapes [6] trained
with [28].

Optimization. During training, occasionally, a large
sudden dip in model performance occurred, after which the
model often was not able to recover to its original state. The
occurrence of this phenomenon has been random and sev-
eral attempts have been made to better understand it. More
details on this can be found in appendix 6. In the occurrence
of such a dip, the training will be restarted from the most re-
cent training checkpoint saved before the dip. In almost all
cases the dip did not reoccur after restarting.

4.2. Evaluating pixel-wise pseudo label generation

The quality of pseudo labels is a key to supervised learning.
To evaluate the effectiveness of our pseudo label genera-
tion pipeline, we conduct an evaluation on the manually-
annotated nuImages dataset [4]. This dataset has a mini-
mal domain gap compared to nuScenes [4], as both datasets
were collected using the same sensor setup and in similar
environments. The nuImages dataset provides ground truth
image semantic labels, allowing us to assess the accuracy of
the SAM-assisted semantic label generation pipeline. A no-
table difference between these datasets is that the nuScenes
dataset contains only 3D bounding boxes, while nuImages
contains 2D bounding boxes. Our method generates la-
bels from the 3D bounding boxes, which, when mapped
to the 2D image, often do not tightly fit around the ob-
jects. To ensure a fair comparison, we apply random in-
flation to the bounding boxes, increasing their size by a ran-

Class IoU
barrier (69) 87.7
bicycle (14) 73.8
bus (5) 94.1
car (117) 90.3
construction (5) 78.3
motorcycle (13) 89.0
pedestrian (193) 73.1
traffic cone (44) 70.8
trailer (2) 85.1
truck (28) 81.7
mIoU 82.4

Table 2. Evaluation of the generated pixel-wise semantic labels on
the nuImages [4] mini dataset. To assess if the labels are accurate
enough to train CameraViT, we calculate the IoU score for each
class and report the mIoU. The numbers between the brackets are
the number of occurrences of the objects from each class in the
dataset.

dom percentage between 0 and 20 percent of the original
size. We present the mean Intersection over Union (mIoU)
of the pixel-wise pseudo labels using the inflated 2D bound-
ing boxes on the nuImages-mini dataset in Tab. 2.

Tab. 2 shows a quantitative result. The bicycle, pedes-
trian, and traffic cone classes show a relatively lower accu-
racy compared to the other classes. Evaluating the qualita-
tive results from Fig. 4 most of the mistakes are found at
the object borders. The labels look promising and show po-
tential to be used to effectively distill camera information to
the LiDAR encoder.

4.3. How does pertaining on camera data benefit
LiDAR semantic segmentation?

We aim to study how pertaining on camera data benefits
LiDAR semantic segmentation. To do this we first evaluate

6

Figure 3. This figure analyses the difference between pretraining
on the CityScapes dataset and on the nuScenes images. When the
ViT is initialized with ImageNet pretrained weights, pretraining on
CityScapes finds performance improvements while pretraining on
the nuScenes images does not. Since both datasets consist of dif-
ferent class distributions this figure shows the correlation between
the class distribution and the increase in mIoU for each class com-
pared to training directly from ImageNet pretrained weights. The
figure shows no clear correlation between improvements in mIoU.
(e.g. the truck class is less common in the CityScapes dataset but
still a higher increase in mIoU is found.)

Model pretraining Contrastive
loss mIoU

CameraViT - - 57.0
MultiViT C - - 60.2
CameraViT In21k - 63.4
MultiViT C In21k - 61.8
MultiViT C In21k pull 61.8
MultiViT C In21k pull + push 58.1

Table 3. The evaluation scores for different training methods eval-
uated on image semantic segmentation. The models are evaluated
on the images from the nuScenes validation set using the generated
pixel-wise semantic labels. CameraViT means only the Camera
branch is trained. MultiViT C means MultiViT is used in a joint
training objective and the Camera branch is used for evaluation.

training CameraViT on the generated pixel-wise semantic
labels. Thereafter we evaluate different camera pretraining
settings for LiDAR semantic segmentation.

The results presented in Tab. 3 demonstrate that the Cam-
eraViT model achieves satisfactory mean Intersection over
Union (mIoU) when evaluated on the nuScenes images us-
ing the generated pixel-wise semantic labels. Qualitative
analysis in Fig. 5 indicates that distant objects are often
challenging to distinguish. However, the model generally
exhibits a robust capability to segment different classes in
complex images. Based on the quantitative data in Tab. 3
combined with the qualitative assessment from Fig. 5 we
conclude that the CameraViT model can be effectively
trained using the SAM-assisted generated labels.

Tab. 1 shows the results on the nuScenes [4] validation

set for LiDAR semantic segmentation by fine-tuning var-
ious pretrained models on camera data. The comparison
between Experiment 1 and Experiment 2 shows that pre-
training on the nuScenes camera data, even though with
imperfect pseudo label, improves performance on LiDAR
semantic segmentation by 0.9 in terms of mIoU.

However, the comparison between Experiment 3 and
Experiment 5 tells a different story. When initialized by
ImageNet pre-trained weights, extra camera pretraining on
nuScenes decreases the performance by 0.3. Meanwhile,
Experiment 4 shows that extra pertaining on CitySpaces
[6] can increase the mIoU from 74.1 to 75.0. The differ-
ence between Experiment 4 and Experiment 5 indicates the
pertaining dataset plays an important role in improving Li-
DAR semantic segmentation. Since both CityScapes and
the nuScenes images consist of different scenes and thereby
have different class distributions, Fig. 3 shows the correla-
tion between the increase in mIoU and the class distribu-
tions for the common classes between CityScapes and the
nuScenes images. The figure shows no clear proof that the
increased performance for the different classes derives from
the difference in class distributions between the datasets.
Besides CityScapes consists of much fewer images com-
pared to the nuScenes dataset.

Our primary speculation is that, despite coming from the
same scene, the pixel-wise semantic label on nuScenes is
not as precise as the manually annotated CitySpace dataset,
thus leading to performance decrease.

4.4. Pretraining+finetuning v.s. joint training

One common strategy in knowledge transfer is pertaining
on camera data and then fine-tuning on LiDAR data. An-
other strategy, inspired by multi-task learning, is joint learn-
ing on both camera and LiDAR data, which has the poten-
tial to maintain decent performance on both camera and Li-
DAR data. In this section, we compare these two strategies
numerically.

Tab. 4 presents the results on the nuScenes [4] valida-
tion set for LiDAR semantic segmentation. The comparison
between Experiment 6 and Experiment 7 shows that joint
training increases the mIoU by 0.9 over finetuning after pre-
training and indicates that performance is enhanced by joint
optimization. When comparing Experiment 8 and Exper-
iment 9, where the ViT is initialized with ImageNet pre-
trained weights, finetuning after pretraining can outperform
joint training by 0.6. ImageNet initialization has, again, be-
come a crucial factor, without which joint training exhibits
advantage, while with this initialization, finetuning excels.

Notably, the performance of joint training on bus, con-
struction classes is noticeably lower than finetuning when
using ImageNet initialization. Besides, Tab. 3 shows that
using ImageNet initialization does significantly improve
performance on image semantic segmentation which might

7

Figure 4. Three different images from the nuImages dataset [4] with the correctly labeled pixels using the generated pixel-wise semantic
label. The images show the bounding box used as the input for SAM [12]. The blue pixels are the correctly labeled pixels while the yellow
pixels are wrongly labeled. Mostly the object borders show wrongly labeled pixels.

Figure 5. Three different scenarios from the nuImages dataset [4] are used to evaluate the label generation method and the CameraViT
model trained from scratch. From top to bottom, we show the original image, the ground label, the generated pixel-wise semantic label
with the bounding boxes used as the input, and finally the model prediction from CameraViT (-).

help for finetuning with this ViT. However, it remains un-
clear why such dramatic changes happen when employing
ImageNet pretrained weights to initialize ViT.

To conclude, these results suggest that a well-initialized
ViT encoder contributes more to task-specific finetuning
than joint training.

8

Method camera
pretraining ba

rr
ie

r

bi
cy

cl
e

bu
s

ca
r

co
ns

tr
uc

tio
n

m
ot

or
cy

cl
e

pe
de

st
ri

an

tr
af

fic
co

ne

tr
ai

le
r

tr
uc

k

dr
iv

ea
bl

e

ot
he

rfl
at

si
de

w
al

k

te
rr

ai
n

m
an

m
ad

e

ve
ge

ta
tio

n

m
Io

U
(%

)

Random initialization
6 RangeViT nuScenes 74.7 26.4 87.5 88.1 40.1 72.1 75.2 58.8 58.9 73.6 96.0 70.6 72.2 73.3 88.0 86.2 71.4
7 MultiViT L - 75.2 28.9 87.7 91.4 41.4 69.7 75.7 57.4 60.7 77.5 96.6 71.3 73.8 73.7 88.7 87.0 72.3
In21k initialization
8 RangeViT nuScenes 76.2 35.9 88.9 88.2 43.8 74.0 77.2 64.6 63.0 77.5 96.3 71.5 73.8 73.7 88.8 87.0 73.8
9 MultiViT L - 75.4 35.1 83.0 90.8 40.9 75.7 77.0 62.4 64.1 75.4 96.7 70.9 74.0 73.8 88.9 87.1 73.2

Table 4. Results on nuScenes [4] validation set. The RangeViT models are first pre-trained with camera data and then finetuned with
LiDAR data, while the MultiViT L models are jointly trained with nuScenes camera and LiDAR data. The pretraining column indicates
what data has been used for pretraining. Best results for each setting are in bold.

Seperate
train

Joint
train

Joint train,
pull loss

Joint train,
pull + push loss

barrier - - - -
bicycle 0.30 0.04 0.34 0.47
bus 0.19 0.18 0.16 0.59
car -0.06 -0.03 0.06 0.73
construction - - - -
motorcycle 0.26 0.23 0.19 0.29
pedestrian 0.05 -0.02 0.24 0.84
traffic cone 0.37 0.1 0.13 0.47
trailer - - - -
truck -0.17 0.16 0.21 0.70
Mean 0.13 0.09 0.19 0.58

Table 5. Cosine similarity between the average camera feature and
average LiDAR feature for each class at the ViT encoder output on
the nuScenes mini dataset. All the models used are initiated with
ImageNet pretrained weights. The average feature for each class is
calculated using features from correctly predicted points and pix-
els. This ensures a representative average feature for each class.
The highest similarity for each class is in bold and the second
highest mean similarity is underlined. This shows that joint train-
ing does not converge towards a solution where camera and Li-
DAR features have a high cosine similarity. Adding a contrastive
loss creates a feature space where the LiDAR and camera branches
show a high cosine similarity for each class.

4.5. Creating a shared feature space

Joint training with a shared ViT encoder (MultiViT) creates
a shared feature space for the camera and LiDAR data. We
analyze the learned features per class within the shared fea-
ture space to better understand joint training.

We first use the features at the ViT encoder output to cal-
culate the average feature for each class on the nuScenes
mini dataset. Next, we compute the per-class cosine sim-
ilarity between the averaged camera and LiDAR features.
Tab. 5 shows the similarity between the average camera and

Figure 6. A simplification of the MultiViT framework which
shows where the contrastive loss has been applied to create a
shared LiDAR and camera feature space.

LiDAR features. We observe that neither the joint train-
ing nor the finetuning (after pretraining) reaches a solution
where the ViT encoder features from the camera and LiDAR
branches for the same class exhibit high cosine similarity.

Since MultiViT does not inherently converge towards a
solution where camera features and LiDAR features from
the same class are mapped to the same location in the la-
tent space, it is likely that enforcing a shared feature space
is not beneficial for model performance. To validate this
statement, we conduct an additional experiment by incor-
porating a contrastive loss on top of the Lovasz and Focal
losses to better align the camera and LiDAR features. We
utilize a supervised contrastive loss [11], employing labels
to identify camera and LiDAR features from the same class
as positive pairs. To compute this loss, we first calculate the
average feature for each camera and LiDAR class within
each mini-batch. LiDAR and camera features from match-
ing classes are treated as positive pairs, while features from
different classes serve as negative pairs. We apply the con-
trastive loss on top of the decoder features, as it requires
point and pixel-specific embeddings to calculate the aver-

9

Method Contrastive
loss type ba

rr
ie

r

bi
cy

cl
e

bu
s

ca
r

co
ns

tr
uc

tio
n

m
ot

or
cy

cl
e

pe
de

st
ri

an

tr
af

fic
co

ne

tr
ai

le
r

tr
uc

k

dr
iv

ea
bl

e

ot
he

rfl
at

si
de

w
al

k

te
rr

ai
n

m
an

m
ad

e

ve
ge

ta
tio

n

m
Io

U
(%

)

10 MultiViT L - 75.4 35.1 83.0 90.8 40.9 75.7 77.0 62.4 64.1 75.4 96.7 70.9 74.0 73.8 88.9 87.1 73.2
11 MultiViT L Pull only 75.3 35.1 87.4 91.0 41.9 73.5 75.6 61.8 62.3 77.5 96.6 71.6 73.8 73.7 88.7 86.9 73.3
12 MultiViT L Pull + Push 72.2 24.9 86.9 89.8 39.9 67.9 73.0 48.8 55.9 75.0 96.2 69.7 72.9 73.0 87.0 85.3 69.9

Table 6. Results on nuScenes [4] validation set for the task of pointcloud semantic segmentation. All models are jointly trained on Image
and LiDAR semantic segmentation using MultiViT and at experiment 11 and 12 a contrastive loss is added to align the camera and LiDAR
features. The ViT for each experiment is initialized with In21k weights. Best results are in bold. (-) = joint training only, (pull only) = joint
trianing with pull loss, (pull + push) = joint training with the pull and push loss added

(a) Joint training only (b) Joint training with pull loss (c) Joint training with pull and push loss

Figure 7. t-SNE plots with camera- and LiDAR features from MultiViT (initiated with ImageNet pre-trained weights). The three plots
show the result using the different contrastive losses. Point and pixel features at the decoder output are used. The points and pixels are
randomly sampled from the nuScenes mini dataset and for each plot, the same points and pixels are used. Dots are features from the LiDAR
branch while triangles are features from the camera branch. We obtain the best mIoU result in (a) where no contrastive loss is added. In
comparison, adding contrastive loss (both pull and push losses) decreases the performance despite higher correlation between LiDAR and
camera features.

aged per-class feature, as shown in Fig. 6.
We conduct two separate experiments, each utilizing a

different type of contrastive loss. In the first experiment, a
supervised pull loss is added, only using the positive pairs
to pull together LiDAR and camera features from the same
class. In the second experiment, a pull and push loss is used
which also uses the negative pairs to push away dissimilar
class features. We first validate whether a shared feature
space has been achieved by assessing the cosine similarity
between the average features for each class at the encoder
output. The results, presented in Tab. 5, indicate that using
the pull loss results in higher cosine similarity between cam-
era and LiDAR features compared to joint training. How-
ever, the cosine similarity remains low. Conversely, when
using both pull and push losses, the camera and LiDAR fea-
tures exhibit significantly higher cosine similarity. As illus-
trated in Fig. 8, a pixel feature from a pedestrian has high
cosine similarity to both pixel and point features originating
from other pedestrians.

Tab. 6 presents the results on LiDAR semantic segmen-

tation using the MultiViT models optimized with the var-
ious contrastive losses. The comparison between Exper-
iments 10 and 12 indicates that the cosine similarity be-
tween LiDAR and camera features correlates negatively to
the performance. Adding the pull and push loss increases
feature similarity between modalities from 0.09 to 0.58 but
decreases the performance substantially by 3.3 (from 73.2
to 69.9). Fig. 7 visualizes the latent feature space using
t-SNE plots, where joint training without enforcing con-
trastive loss shows a clear separation between LiDAR and
camera features. In contrast, Fig. 7c shows that adding the
pull and push loss better aligns the LiDAR and camera fea-
tures from the same class. This aligns with the findings in
Tab. 5. Besides, Fig. 7c shows more faint class boundaries
compared to the other t-SNE plots. However, it remains un-
clear why this results in a performance decrease.

We conclude that enforcing a shared latent space, where
LiDAR and camera features are mapped to the same loca-
tion in the feature space does not improve performance.

10

(a) Pedestrian pixel as query feature (b) Car pixel as query feature (c) Bicycle pixel as query feature

Figure 8. This figure shows the cosine similarity between a query feature from the image compared with the other pixel features of the
image and the pointcloud features from the same scene. The features are generated using MultiViT trained with the pull and push loss.
The features at the output of the encoder are used. The top image shows the original image. The middle image shows the cosine similarity
of the image features compared with the query pixel. The bottom image shows the cosine similarity of the pointcloud features compared
with the query pixel. In all images yellow means a high cosine similarity and blue means a low cosine similarity. The red dot indicates
the query pixel. The scenes show that there is a clear similarity in the pedestrian and car classes between the LiDAR and camera features.
There is less similarity in the bicycle class between the LiDAR and camera features.

5. Conclusion and Discussion

We use LiDAR annotations to create pixel-wise semantic la-
bels for image semantic segmentation and use this to study
the benefit of camera pertaining to Lidar semantic segmen-
tation by using a shared ViT backbone. Further, we com-
pare finetuning against joint training in multi-modal percep-
tion. Finally, because our model MultiViT is able to pro-
cess both camera and LiDAR data with the same encoder,
we are able to investigate the shared feature space between
the camera and LiDAR and analyze how this shared feature
space affects performance.

We find that pretraining the ViT backbone with cam-
era data generally enhances the performance of LiDAR se-
mantic segmentation and show that when the model is ran-
domly initialized the generated pixel-wise semantic labels
improve performance. We also observe that having precise
pixel-wise annotation is the key to the performance, no mat-
ter whether the camera data comes from the same domain
or not. The model gains the most performance improve-
ment on nuScenes LiDAR semantic segmentation by utiliz-
ing the ImageNet21K and CityScapes pretrained weights,

despite the domain gap between ImageNet, CityScapes and
nuScenes.

Besides, we conclude that joint training does improve
performance compared to pretraining when training a ran-
domly initialized model from scratch. When starting from
a well-initialized ViT, e.g., initialized by ImageNet21K
weights, finetuning leads to the most performance gain.
We find that our joint training approach does not lead to
a feature space where camera and LiDAR features are well
aligned. Additionally, we show that by adding a contrastive
loss, it is possible to create a shared feature space where
the camera and LiDAR features are well aligned. However,
this does not contribute to a better performance on LiDAR
semantic segmentation.

Discussion. Although our pseudo label generation
pipeline using SAM is able to generate semantic masks for
the foreground classes, it is unable to provide masks for
background classes. In comparison, CityScapes provides
both foreground and background labels. The lack of back-
ground labels results in extensive class imbalance on the
nuScenes images since more then 90% of the pixels are at-
tributed to the background class. This may decrease the

11

value of camera pertaining. Besides, using a larger SAM
model, like the ViT-H model, might generate more precise
pixel-wise semantic labels which can increase the value of
camera pretraining.

To ensure a fair comparison between RangeViT and
MultiViT L, hyper parameters such as the number of
epochs and the selected optimizer were kept the same, with
only a different learning rate used for training MultiViT
from ImageNet21K weights. There might be hyper param-
eters which are more suitable for joint training which can
improve performance.

Future work. As mentioned, there are multiple design
choices in terms of model optimization, data sampling, and
hyperparameter tuning, which we leave for future works.
Besides, it remains unclear why contradicting results arise
when employing ImageNet pretrained weights to initialize
ViT. Further analysis could provide more clarity. Also,
the contrastive loss is currently used in a supervised set-
ting. Although we demonstrate the contrastive loss does
not improve performance in a supervised setting, it could
be beneficial in a self-supervised setup where the Lovasz
and Focal loss are removed, similar to contrastive learning
approaches like [17, 18, 20, 25]. Using MultiViT offers
the benefit of a shared main encoder for both the camera
and LiDAR branches. This approach might eliminate the
need for a frozen, well-trained 2D encoder as required in
[17, 18, 20, 25].

References
[1] Angelika Ando, Spyros Gidaris, Andrei Bursuc, Gilles Puy,

Alexandre Boulch, and Renaud Marlet. Rangevit: Towards
vision transformers for 3d semantic segmentation in au-
tonomous driving. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 5240–5250, 2023. 1, 2, 3, 5, 6

[2] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun
Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Robust
lidar-camera fusion for 3d object detection with transform-
ers. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1090–
1099, 2022. 2

[3] Maxim Berman, Amal Rannen Triki, and Matthew B.
Blaschko. The lovász-softmax loss: A tractable surrogate
for the optimization of the intersection-over-union measure
in neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.
5

[4] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In CVPR, 2020. 5, 6,
7, 8, 9, 10

[5] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong
Lu, Jifeng Dai, and Yu Qiao. Vision transformer adapter for

dense predictions. In The Eleventh International Conference
on Learning Representations, 2023. 1

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 1, 2, 3, 6, 7

[7] Tiago Cortinhal, George Tzelepis, and Eren Erdal Aksoy.
Salsanext: Fast, uncertainty-aware semantic segmentation
of lidar point clouds. In Advances in Visual Computing -
15th International Symposium, ISVC 2020, San Diego, CA,
USA, October 5-7, 2020, Proceedings, Part II, pages 207–
222. Springer, 2020. 4

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 1, 4, 5

[9] Di Feng, Yiyang Zhou, Chenfeng Xu, Masayoshi Tomizuka,
and Wei Zhan. A simple and efficient multi-task network for
3d object detection and road understanding, 2021. 3

[10] Ronghang Hu and Amanpreet Singh. Unit: Multimodal mul-
titask learning with a unified transformer. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 1439–1449, 2021. 3

[11] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu,
and Dilip Krishnan. Supervised contrastive learning. In
Advances in Neural Information Processing Systems, pages
18661–18673. Curran Associates, Inc., 2020. 9

[12] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and
Ross Girshick. Segment anything, 2023. 2, 3, 4, 8

[13] Lingdong Kong, Youquan Liu, Runnan Chen, Yuexin Ma,
Xinge Zhu, Yikang Li, Yuenan Hou, Yu Qiao, and Ziwei Liu.
Rethinking range view representation for lidar segmentation.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 228–240, 2023. 1, 3, 4

[14] Jungbeom Lee, Jihun Yi, Chaehun Shin, and Sungroh Yoon.
Bbam: Bounding box attribution map for weakly super-
vised semantic and instance segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2643–2652, 2021. 3

[15] Tingting Liang, Hongwei Xie, Kaicheng Yu, Zhongyu Xia,
Zhiwei Lin, Yongtao Wang, Tao Tang, Bing Wang, and Zhi
Tang. Bevfusion: A simple and robust lidar-camera fusion
framework. In Advances in Neural Information Processing
Systems, pages 10421–10434. Curran Associates, Inc., 2022.
1, 2

[16] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. In Pro-
ceedings of the IEEE International Conference on Computer
Vision (ICCV), 2017. 5

12

[17] Youquan Liu, Lingdong Kong, Jun Cen, Runnan Chen, Wen-
wei Zhang, Liang Pan, Kai Chen, and Ziwei Liu. Segment
any point cloud sequences by distilling vision foundation
models. arXiv preprint arXiv:2306.09347, 2023. 2, 12

[18] Yueh-Cheng Liu, Yu-Kai Huang, Hung-Yueh Chiang, Hung-
Ting Su, Zhe-Yu Liu, Chin-Tang Chen, Ching-Yu Tseng, and
Winston H. Hsu. Learning from 2d: Contrastive pixel-to-
point knowledge transfer for 3d pretraining, 2021. 2, 12

[19] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019. 5

[20] Anas Mahmoud, Jordan S. K. Hu, Tianshu Kuai, Ali
Harakeh, Liam Paull, and Steven L. Waslander. Self-
supervised image-to-point distillation via semantically tol-
erant contrastive loss. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7102–7110, 2023. 2, 12

[21] Deepak Pathak, Evan Shelhamer, Jonathan Long, and Trevor
Darrell. Fully convolutional multi-class multiple instance
learning, 2015. 3

[22] Guocheng Qian, Abdullah Hamdi, Xingdi Zhang, and
Bernard Ghanem. Pix4point: Image pretrained standard
transformers for 3d point cloud understanding, 2024. 1, 2

[23] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi
Zelnik-Manor. Imagenet-21k pretraining for the masses. In
Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1), 2021.
1, 3, 5, 6

[24] Francisca Rosique, Pedro J. Navarro, Carlos Fernández, and
Antonio Padilla. A systematic review of perception system
and simulators for autonomous vehicles research. Sensors,
19(3), 2019. 1

[25] Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre
Boulch, Andrei Bursuc, and Renaud Marlet. Image-to-lidar
self-supervised distillation for autonomous driving data. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 9891–9901,
2022. 2, 12

[26] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016. 4

[27] Chunfeng Song, Yan Huang, Wanli Ouyang, and Liang
Wang. Box-driven class-wise region masking and filling rate
guided loss for weakly supervised semantic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2019. 3

[28] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia
Schmid. Segmenter: Transformer for semantic segmenta-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 7262–7272, 2021.
1, 6

[29] Weixuan Sun, Zheyuan Liu, Yanhao Zhang, Yiran Zhong,
and Nick Barnes. An alternative to wsss? an empirical study
of the segment anything model (sam) on weakly-supervised
semantic segmentation problems, 2023. 3

[30] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, Francois Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019. 5

[31] Sourabh Vora, Alex H. Lang, Bassam Helou, and Oscar Bei-
jbom. Pointpainting: Sequential fusion for 3d object detec-
tion. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 2

[32] Shiming Wang, Holger Caesar, Liangliang Nan, and Julian
F. P. Kooij. Unibev: Multi-modal 3d object detection with
uniform bev encoders for robustness against missing sensor
modalities, 2024. 2

[33] Yi Wang, Zhiwen Fan, Tianlong Chen, Hehe Fan, and
Zhangyang Wang. Can we solve 3d vision tasks starting from
a 2d vision transformer?, 2022. 1, 2

[34] Chenfeng Xu, Shijia Yang, Tomer Galanti, Bichen Wu,
Xiangyu Yue, Bohan Zhai, Wei Zhan, Peter Vajda, Kurt
Keutzer, and Masayoshi Tomizuka. Image2point: 3d point-
cloud understanding with 2d image pretrained models, 2022.
2

[35] Dongqiangzi Ye, Weijia Chen, Zixiang Zhou, Yufei Xie, Yu
Wang, Panqu Wang, and Hassan Foroosh. Lidarmultinet:
Unifying lidar semantic segmentation, 3d object detection,
and panoptic segmentation in a single multi-task network,
2022. 3

[36] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and
Kazuya Takeda. A survey of autonomous driving: Com-
mon practices and emerging technologies. IEEE Access, 8:
58443–58469, 2020. 1

[37] Zixiang Zhou, Dongqiangzi Ye, Weijia Chen, Yufei Xie, Yu
Wang, Panqu Wang, and Hassan Foroosh. Lidarformer: A
unified transformer-based multi-task network for lidar per-
ception, 2024. 3

13

MultiViT: 2D to 3D transfer learning using a jointly optimized Vision
Transformer without the need for image labels

Supplementary Material

Figure 9. The training development of RangeViT from scratch and
RangeViT pretrained on the nuScenes images with CameraViT
where the dotted line shows the training development without a
dip and the continuous line shows the training development with
dip. Important to note is that when a dip has occurred the model is
not able to fully recover to it’s original state.

6. Training dip
During training of the different models occasionally a large
sudden dip in model performance occurred, after which
the model often was not able to recover to it’s original
state. This chapter will explain the occurrence of this phe-
nomenon.

The occurrence of this phenomenon has been random
and it has occurred for the training of MultiViT, CameraViT
and RangeViT. The problem is visualized in Fig. 9. This
figure shows the performance of the model on the train set
when training RangeViT. The dotted line shows the training
development of the model without the dip while the contin-
uous lines show the model performance with the dip occur-
ring. When the dip occurs the model is often able to recover
to a decent performance, but the model will always under
perform compared to when the dip does not occur. This is
why it is important to address this.

Several attempts have been made to find the cause of this
dip. An extensive analyses of the code has been done to
investigate if this dip occurs due to a bug in the code. In
this analyses no bug has been found. Besides, an analyses
has been done which investigates if a faulty sample can be
the cause of this dip. A faulty sample which causes an ex-
tremely high loss and therefore a wrong, but large update
step could cause the model to degrade. Tab. 7 shows this
analyses. From this table we can conclude that at the oc-

Iteration Loss mIoU Note
139 0.61 52.0 Model performs well
633 1.21 30.7 First occurrence of high loss
634 1.61 20.9 Model degrades
635 1.53 17.8 Model degrades
636 1.49 18.2 Models starts recovery

Table 7. This table shows the results of an experiments to better
understand the occurence of the dip. During the training of the
model, several checkpoints have been saved at the moment a high
loss occured. These checkpoints at different iterations have been
used for the same minibatch. The loss and mIoU for this mini
batch are reported in the table.

currence of the first high loss the model has already poor
performance compared to earlier iterations. This shows that
the loss grows over several steps when such a dip occurs and
there is not a single mini batch which causes an extremely
high loss. Lastly the optimization hyper parameters such as
the learning rate have been adjusted to test it’s effect. The
dip still occurred while adjusting to a lower learning rate.

These analyses show several hints on the cause of the dip
during the model training, but no clear reason for the occur-
rence has been found nor have the analyses convincingly
excluded any of the earlier mentioned reasons. Restarting
the training from the latest training checkpoint before a dip
occurs has been an effective and trustworthy solution. In
almost all cases a dip did not reoccur when the training was
restarted from such a checkpoint which made it possible to
receive all the results without a dip in the training curves.

1

	. Introduction
	. Related work
	. 2D to 3D transfer learning
	. Training with pseudo labels
	. Multi task learning

	. Methodology
	. Pixel-wise semantic label generation
	. Multi modal pertaining, fine-tuning and joint learning
	Model Architecture
	Implementation details

	. Experiments
	. Experimental setup
	. Evaluating pixel-wise pseudo label generation
	. How does pertaining on camera data benefit LiDAR semantic segmentation?
	. Pretraining+finetuning v.s. joint training
	. Creating a shared feature space

	. Conclusion and Discussion
	. Training dip

