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Abstract: In recent years, the amount of data available from systems has drastically increased,
motivating the use of direct data-driven control techniques that avoid the need of parametric
modeling. The aim of this paper is to analyze closed-loop aspects of these approaches in the
presence of noise. To analyze this, a unified formulation of several approaches, including Data-
enabled Predictive Control (DeePC) and Subspace Predictive Control (SPC) is obtained and
the influence of noise on closed-loop predictors is analyzed. The analysis reveals potential closed-
loop correlation problems, which are closely related to well-known results in closed-loop system
identification, and consequent control issues. A case study reveals the hazards of noise in data-
driven control.

Keywords: Data-driven control, subspace predictive control, data-enabled predictive control,
closed loop identification, instrumental variables

1. INTRODUCTION

The increasing amount of data available from modern sys-
tems provides major opportunities for data-driven control.
Developments in data-driven models can lead to better
performance compared to physical modeling, in particu-
lar when these are tuned for control (Markovsky et al.,
2022). In the last decades, important aspects regarding
the benefits and pitfalls of closed-loop identification have
been investigated (Gevers, 2005; Söderstrom and Stoica,
1989; Ljung and McKelvey, 1996; Van den Hof, 1998).

The development of identification for control methods,
where the identified model is only used to synthesize a
controller, has led to the natural question of whether the
identification step can be omitted, leading to a range of
direct data-driven control approaches (Markovsky et al.,
2022; Hou and Wang, 2013). In Favoreel et al. (1999),
Subspace Predictive Control (SPC) is developed, which
relies on a linear regression step used in a subspace identi-
fication method developed in Van Overschee and De Moor
(1994). Further developments include the incorporation
of H∞ control (Woodley, 2001) and tuning methods to
ensure (unconstrained) closed-loop stability (Sedghizadeh
and Beheshti, 2018). Recently, in Coulson et al. (2019), the
DeePC approach is presented, which relies on Willems’
Fundamental Lemma (Willems et al., 2005). DeePC ex-
ploits the result that for a linear system, a sufficiently
excited past input-output trajectory parameterizes all pos-
sible future trajectories (van Waarde et al., 2020). Further
developments in the domain of DeePC include closed-loop
stability in the presence of measurement noise (Bongard
et al., 2022), robust constraint satisfaction (Berberich
et al., 2020), extensions to nonlinear systems (Berberich

et al., 2022), and the use of regularization (Coulson et al.,
2019) and instrumental variables (van Wingerden et al.,
2022) to mitigate the effects of noise.

Although data-driven methods have been well-developed
and many successful applications have been reported re-
cently (Markovsky et al., 2022), closed-loop aspects and
the implications for control in relation to noise have re-
mained underexposed. However, it seems prudent to con-
sider the effect of closed-loop operation in the presence
of noise because the aforementioned data-driven methods
inherently operate in closed-loop and often deal with noisy
signals. The aim of this paper is to point out potential
hazards when applying these direct data-driven control
techniques in the presence of noise. In this paper, SPC
and DeePC are addressed in a unified fashion, building on
the recent results of van Wingerden et al. (2022).

The main contribution of this paper is to provide a closed-
loop analysis of a broad class of direct data-driven control
algorithms and to point towards potential hazards. A
unified framework is established that covers both SPC
and DeePC approaches. This paper thereby provides the
following contributions:

(1) A theoretical analysis is performed revealing a closed-
loop problem that arises from correlation between
inputs and system noise.

(2) A relevant simulation study clearly illustrates the
aforementioned closed-loop problem and shows the
resulting impact on performance.

(3) Suggestions are made to address the closed-loop prob-
lem for future work.
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1989; Ljung and McKelvey, 1996; Van den Hof, 1998).

The development of identification for control methods,
where the identified model is only used to synthesize a
controller, has led to the natural question of whether the
identification step can be omitted, leading to a range of
direct data-driven control approaches (Markovsky et al.,
2022; Hou and Wang, 2013). In Favoreel et al. (1999),
Subspace Predictive Control (SPC) is developed, which
relies on a linear regression step used in a subspace identi-
fication method developed in Van Overschee and De Moor
(1994). Further developments include the incorporation
of H∞ control (Woodley, 2001) and tuning methods to
ensure (unconstrained) closed-loop stability (Sedghizadeh
and Beheshti, 2018). Recently, in Coulson et al. (2019), the
DeePC approach is presented, which relies on Willems’
Fundamental Lemma (Willems et al., 2005). DeePC ex-
ploits the result that for a linear system, a sufficiently
excited past input-output trajectory parameterizes all pos-
sible future trajectories (van Waarde et al., 2020). Further
developments in the domain of DeePC include closed-loop
stability in the presence of measurement noise (Bongard
et al., 2022), robust constraint satisfaction (Berberich
et al., 2020), extensions to nonlinear systems (Berberich

et al., 2022), and the use of regularization (Coulson et al.,
2019) and instrumental variables (van Wingerden et al.,
2022) to mitigate the effects of noise.

Although data-driven methods have been well-developed
and many successful applications have been reported re-
cently (Markovsky et al., 2022), closed-loop aspects and
the implications for control in relation to noise have re-
mained underexposed. However, it seems prudent to con-
sider the effect of closed-loop operation in the presence
of noise because the aforementioned data-driven methods
inherently operate in closed-loop and often deal with noisy
signals. The aim of this paper is to point out potential
hazards when applying these direct data-driven control
techniques in the presence of noise. In this paper, SPC
and DeePC are addressed in a unified fashion, building on
the recent results of van Wingerden et al. (2022).

The main contribution of this paper is to provide a closed-
loop analysis of a broad class of direct data-driven control
algorithms and to point towards potential hazards. A
unified framework is established that covers both SPC
and DeePC approaches. This paper thereby provides the
following contributions:

(1) A theoretical analysis is performed revealing a closed-
loop problem that arises from correlation between
inputs and system noise.

(2) A relevant simulation study clearly illustrates the
aforementioned closed-loop problem and shows the
resulting impact on performance.

(3) Suggestions are made to address the closed-loop prob-
lem for future work.
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2. SETUP AND PREREQUISITES

This section introduces the system model, notation, and
the assumptions that are used in this paper.

2.1 System Model

A discrete-time linear time-invariant (LTI) system de-
scription in innovation form is considered, which is also
often taken as a basis in subspace identification algo-
rithms (Van Overschee and De Moor, 1996; Knudsen,
2001):

xk+1 = Axk +Buk +Kek, (1a)

yk = Cxk +Duk + ek, (1b)

in which xk ∈ Rn, uk ∈ Rr, yk ∈ Rl, and ek ∈ Rl are
the respective state, input, output, and (innovation) noise
vectors, and k ∈ Z is a discrete-time index. The innovation
sequence ek is an ergodic zero-mean white noise signal
with covariance E[ekeTj ] = Wδkj , W > 0, and δkj as
Kronecker delta function, which is equal to one if k = j
and zero otherwise. The matrices A ∈ Rn×n, B ∈ Rn×r,
C ∈ Rl×n, D ∈ Rl×r, K ∈ Rn×l respectively denote the
system, input, Kalman, output and direct feedthrough
matrices. By substituting ek from (1b) into (1a), the
predictor form is obtained

xk+1 = Ãxk + B̃uk +Kyk, (2a)

yk = Cxk +Duk + ek, (2b)

with Ã = A − KC, and B̃ = B − KD, and where the
explicit dependence of the state evolution in (1a) on the
noise is replaced by an explicit dependence on the output.

2.2 Notation

This section defines the notation that is used throughout
this paper. To start, I and 0 are respectively used to
indicate an identity matrix and zero matrix of appropriate
dimensions.

Block-Hankel matrices are defined as

Ui,s,N =




ui ui+1 · · · ui+N−1

ui+1 ui+2 · · · ui+N

.

.

.
.
.
.

. . .
.
.
.

ui+s−1 ui+s · · · ui+s+N−2


, (3)

with i ∈ Z, {s,N} ∈ Z>, and Ui,s,N ∈ Rrs×N . The
block-Hankel matrices Yi,s,N ∈ Rls×N , Ei,s,N ∈ Rls×N are
defined in a similar manner for the respective outputs and
innovations. For the sake of brevity, block-Hankel matrices
with only a single block-row omit the second index (s = 1),
as with states in Xi,N ∈ Rn×N .

Block-Toeplitz matrices are defined as

Ts(A,B, C,D) =




D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0

.

.

.
.
.
.

. . .
. . .

.

.

.

CAs−2B CAs−3B . . . CB D


, (4)

with A, B, C, and D all of compatible dimensions. This
definition is used to define T e

f = Tf (A,K,C, I) ∈ Rfl×fl,

and T u
f = Tf (A,B,C,D) ∈ Rfl×fr, with f ∈ Z>.

The extended observability matrix of interest is defined by

Γf =

CT (CA)T (CA2)T · · · (CAf−1)T

T ∈ Rfl×n. (5)

Reversed extended controllability matrices are defined by

Ks(A,B) =

As−1B As−2B . . . AB B


, (6)

with A and B of appropriate dimensions. This definition
is used to define the matrices Ku

p = Kp(Ã, B̃) ∈ Rn×pr and

Ky
p = Kp(Ã,K) ∈ Rn×pl, p ∈ Z>.

2.3 Assumptions

This paper imposes the below assumptions throughout.

Assumption 1. The stationary Kalman gain K from (1)

exists and ensures Ã has its eigenvalues strictly inside the
unit circle (Anderson and Moore, 1979).

Assumption 2. The past window length p is sufficiently
large to ensure that Ãp ≈ 0. This is widely used to neglect
the effect of an initial state (see also Chiuso (2007)).

Assumption 3. The input is assumed to be quasi-stationary
to make sure that limits of time averages that use the input
sequence exist (Ljung, 1999).

Assumption 4. The input is assumed to be sufficiently
persistently exciting (Söderstrom and Stoica, 1989).

3. UNIFYING SUBSPACE AND DATA-ENABLED
PREDICTIVE CONTROL

To provide an analysis that covers a broad class of direct
data-driven control algorithms, a unified approach is pur-
sued. To this end, an equivalence between SPC and DeePC
in a non-deterministic setting is exposed based on the use
of instrumental variables as originally demonstrated in van
Wingerden et al. (2022). Both direct data-driven methods
are first introduced by explaining several common features.

3.1 Commonalities in SPC and DeePC

The setup in Fig. 1 is considered to establish the equiva-
lence. Essentially, SPC and DeePC both solve an optimal
control problem in a Model Predictive Control (MPC)
framework using an output predictor (Coulson et al., 2019;
Favoreel et al., 1999).

To form this output predictor Yîp,f,1
, from the past data

comprising a total length of N̄ data samples, two overlap-
ping sections are used, respectively shown by the green and
blue bars. From the green data section, block-Hankel ma-
trices of inputs Ui,p,N , and outputs Yi,p,N are constructed
with p+N − 1 = N̄ − f samples. Matrices Uip,f,N and
Yip,f,N are likewise constructed from the blue section, con-

taining f +N − 1 = N̄ − p samples. The sample indices
are defined by ip = i+ p, î = i+ N̄ − p, and îp = i+ N̄ .
Both methods subsequently determine a relationship be-
tween data in the green section and data in the blue sec-
tion. This relationship is then employed to form an output

predictor Yîp,f,1
that is dependent on some past input-

output data Uî,p,1 and Yî,p,1 as well as future inputs Uîp,f,1
.

These future inputs are optimized given the cost function,
a reference trajectory rf , and the output predictor.

3.2 The data equation

To establish an equivalence note that the different methods
use past data trajectories for controller synthesis. The aim
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of this section is to provide the data equations that capture
the system behaviour in terms of these past input-output
trajectories.

The first step involves the dependence of the block-Hankel
matrix of past outputs Yip,f,N from Fig. 1 in terms of
past inputs Uip,f,N and Ui,p,N , and past outputs Yi,p,N . By
propagating the innovation model (1) f −1 steps forwards
in time from initial state xip , the leftmost column of

Yip,f,N = ΓfXip,N + T u
f Uip,f,N + T e

f Eip,f,N (7)

is obtained. The complete equation is constructed by
horizontal concatenation of the column vectors that result
from each of the N consecutive initial states in Xip,N .

Equation (7) does not yet indicate the dependence of
Yip,f,N on Yi,p,N and Ui,p,N . Considering the predictor
form (2) it is clear that the states Xip,N can however be
rewritten in terms of the past inputs Ui,p,N and outputs
Yi,p,N as well as a new set of initial states Xi,N . As such,
considering that ip = i+p, propagate (2a) p steps forwards
in time from the initial states in Xi,N to find

Xip,N = ÃpXi,N +Ku
pUi,p,N +Ky

pYi,p,N . (8)

By substituting (8) in (7) it is then found that

Yip,f,N =
[
ΓfKp T u

f

] [ ZN

Uip,f,N

]
+ T e

f Eip,f,N

+ Γf Ã
pXi,N ,

(9)

where in the interest of brevity we define Kp =
[
Ky

p Ku
p

]
and ZT

N =
[
Y T
i,p,N UT

i,p,N

]
. Equation (9) is commonly re-

ferred to as the data equation, and it is fundamental to
the use of DeePC and SPC. The way in which the output
predictor is formed is explained next.

3.3 Obtaining the output predictor

The distinguishing feature between SPC and DeePC is how
a relationship is inferred from the past data to arrive at an
output predictor. This section first illustrates this process
for SPC and then for DeePC.

Subspace Predictive Control (SPC): Given the stochastic
nature of the innovation sequence, note that the structure

of the data-equation (9) lends itself well to a linear least-
squares estimation problem of

[
ΓfKp T u

f

]
, which will be

referred to as the dynamic matrix. In fact, the output
predictor that SPC uses is of the form

Ŷîp,f,1
=

[ΓfKp T̂ u
f

] [ zp
Uîp,f,1

]
, (10)

in which the circumflex notation (̂·) is used to indi-
cate an estimate and a past data vector is defined as
zTp =

[
Y T
î,p,1

UT
î,p,1

]
for brevity. The contribution of the

initial states is neglected by means of Assumption 2.

The dynamic matrix estimate in (10) is obtained by solving
[ΓfKp T̂ u

f

]
= argmin

L

∣∣∣∣Yip,f,N − LZ̄N

∣∣∣∣2
F
, (11)

with L ∈ Rfl×p(r+l)+fr to be optimized, || · ||F indicating a
Frobenius norm, and Z̄T

N =
[
ZT
N UT

ip,f,N

]
. The analytical

solution to the above estimation problem is
[ΓfKp T̂ u

f

]
= 1

N Yip,f,N Z̄T
N

(
1
N Z̄N Z̄T

N

)−1

, (12)

in which Assumption 4 ensures that the inverse exists. The
fractions preceding matrix products above are superfluous
since they cancel, but serve as a reminder that in a non-
deterministic setting the estimate is based on empirical
correlation matrices (Van Overschee and De Moor, 1996).
Assumption 3 ensures that the empirical correlation ma-
trices above approach a well-defined actual correlation
matrix as N → ∞.

Combining (10) with (12) the output predictor becomes

Ŷîp,f,1
= Yip,f,N Z̄T

N

(
Z̄N Z̄T

N

)−1

[
zp

Uîp,f,1

]
. (13)

Data-enabled Predictive Control (DeePC): The output
predictor is determined in a different way in DeePC, as
the algorithm makes use of Willems’ Fundamental Lemma.
Providing Assumption 4 is satisfied, in a noise-free setting,
linear combinations of past input-output trajectories char-
acterize all feasible future input-output trajectories. How-
ever, in the non-deterministic case, the above characteri-
zation is imperfect because the trajectories are corrupted
by noise. In van Wingerden et al. (2022) instrumental
variables are employed to mitigate the effects of this noise,
which is the approach also followed here.

To this end, the linear combination of past input-output
trajectories is restricted to lie in the row-space of Z̄N ,
which functions as an instrumental variable because it is
assumed to be uncorrelated with the noise and is highly
correlated with the data matrix Z̄N – which in this case is
itself. This results in an output predictor described by[

zp
Uîp,f,1

]
= Z̄N Z̄T

Ng, (14a)

Ŷîp,f,1
= Yip,f,N Z̄T

Ng, (14b)

in which g ∈ Rp(l+r)+fr is a vector. Assumption 4 ensures
that (14a) permits a unique solution for g, which when
substituted in (14b) obtains (13) as output predictor.

Since DeePC and SPC share the same output predictor in
a non-deterministic setting using instrumental variables,
given the same noise realizations, cost function, and con-
straints, the analytical solutions are equivalent. Hence,
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of this section is to provide the data equations that capture
the system behaviour in terms of these past input-output
trajectories.

The first step involves the dependence of the block-Hankel
matrix of past outputs Yip,f,N from Fig. 1 in terms of
past inputs Uip,f,N and Ui,p,N , and past outputs Yi,p,N . By
propagating the innovation model (1) f −1 steps forwards
in time from initial state xip , the leftmost column of

Yip,f,N = ΓfXip,N + T u
f Uip,f,N + T e

f Eip,f,N (7)

is obtained. The complete equation is constructed by
horizontal concatenation of the column vectors that result
from each of the N consecutive initial states in Xip,N .

Equation (7) does not yet indicate the dependence of
Yip,f,N on Yi,p,N and Ui,p,N . Considering the predictor
form (2) it is clear that the states Xip,N can however be
rewritten in terms of the past inputs Ui,p,N and outputs
Yi,p,N as well as a new set of initial states Xi,N . As such,
considering that ip = i+p, propagate (2a) p steps forwards
in time from the initial states in Xi,N to find

Xip,N = ÃpXi,N +Ku
pUi,p,N +Ky

pYi,p,N . (8)

By substituting (8) in (7) it is then found that

Yip,f,N =
[
ΓfKp T u

f

] [ ZN

Uip,f,N

]
+ T e

f Eip,f,N

+ Γf Ã
pXi,N ,

(9)

where in the interest of brevity we define Kp =
[
Ky

p Ku
p

]
and ZT

N =
[
Y T
i,p,N UT

i,p,N

]
. Equation (9) is commonly re-

ferred to as the data equation, and it is fundamental to
the use of DeePC and SPC. The way in which the output
predictor is formed is explained next.

3.3 Obtaining the output predictor

The distinguishing feature between SPC and DeePC is how
a relationship is inferred from the past data to arrive at an
output predictor. This section first illustrates this process
for SPC and then for DeePC.

Subspace Predictive Control (SPC): Given the stochastic
nature of the innovation sequence, note that the structure

of the data-equation (9) lends itself well to a linear least-
squares estimation problem of

[
ΓfKp T u

f

]
, which will be

referred to as the dynamic matrix. In fact, the output
predictor that SPC uses is of the form

Ŷîp,f,1
=

[ΓfKp T̂ u
f

] [ zp
Uîp,f,1

]
, (10)

in which the circumflex notation (̂·) is used to indi-
cate an estimate and a past data vector is defined as
zTp =

[
Y T
î,p,1

UT
î,p,1

]
for brevity. The contribution of the

initial states is neglected by means of Assumption 2.

The dynamic matrix estimate in (10) is obtained by solving
[ΓfKp T̂ u

f

]
= argmin

L

∣∣∣∣Yip,f,N − LZ̄N

∣∣∣∣2
F
, (11)

with L ∈ Rfl×p(r+l)+fr to be optimized, || · ||F indicating a
Frobenius norm, and Z̄T

N =
[
ZT
N UT

ip,f,N

]
. The analytical

solution to the above estimation problem is
[ΓfKp T̂ u

f

]
= 1

N Yip,f,N Z̄T
N

(
1
N Z̄N Z̄T

N

)−1

, (12)

in which Assumption 4 ensures that the inverse exists. The
fractions preceding matrix products above are superfluous
since they cancel, but serve as a reminder that in a non-
deterministic setting the estimate is based on empirical
correlation matrices (Van Overschee and De Moor, 1996).
Assumption 3 ensures that the empirical correlation ma-
trices above approach a well-defined actual correlation
matrix as N → ∞.

Combining (10) with (12) the output predictor becomes

Ŷîp,f,1
= Yip,f,N Z̄T

N

(
Z̄N Z̄T

N

)−1

[
zp

Uîp,f,1

]
. (13)

Data-enabled Predictive Control (DeePC): The output
predictor is determined in a different way in DeePC, as
the algorithm makes use of Willems’ Fundamental Lemma.
Providing Assumption 4 is satisfied, in a noise-free setting,
linear combinations of past input-output trajectories char-
acterize all feasible future input-output trajectories. How-
ever, in the non-deterministic case, the above characteri-
zation is imperfect because the trajectories are corrupted
by noise. In van Wingerden et al. (2022) instrumental
variables are employed to mitigate the effects of this noise,
which is the approach also followed here.

To this end, the linear combination of past input-output
trajectories is restricted to lie in the row-space of Z̄N ,
which functions as an instrumental variable because it is
assumed to be uncorrelated with the noise and is highly
correlated with the data matrix Z̄N – which in this case is
itself. This results in an output predictor described by[

zp
Uîp,f,1

]
= Z̄N Z̄T

Ng, (14a)

Ŷîp,f,1
= Yip,f,N Z̄T

Ng, (14b)

in which g ∈ Rp(l+r)+fr is a vector. Assumption 4 ensures
that (14a) permits a unique solution for g, which when
substituted in (14b) obtains (13) as output predictor.

Since DeePC and SPC share the same output predictor in
a non-deterministic setting using instrumental variables,
given the same noise realizations, cost function, and con-
straints, the analytical solutions are equivalent. Hence,

whilst the closed-loop identification problem is derived
next in the context of SPC, it also applies to DeePC.

4. CLOSED-LOOP IDENTIFICATION PROBLEM

In this section, the unified setup of Section 3 is employed
to investigate closed-loop aspects in direct data-driven
control. To compute the output predictor, both SPC and
DeePC implicitly assume that the instrumental variable

Z̄N =
[
Y T
i,p,N UT

i,p,N UT
ip,f,N

]T
is uncorrelated with the

noise. This assumption is clearly violated when the input-
output data has been acquired from closed-loop operation,
as is inherently the case with SPC and DeePC; the con-
troller determines inputs in part from measured outputs,
which in turn are affected by noise as shown by (2b).

4.1 Operational modes

The nature of the correlation between inputs and noise
depends on how frequently the controller is updated since
different controllers logically induce different correlations.
Hence, three different operational modes are discerned
below given an initial sufficiently exciting past input-
output trajectory obtained from open-loop operation.

(1) Non-adaptive operation: The initial open-loop data is
used to form an output predictor and thereby syn-
thesize a controller. Thereafter, the output predictor,
and thus the controller, remains the same.

(2) Adaptive operation: Under adaptive operation, corre-
lation between inputs and system noise under feed-
back are a result of multiple different controllers.

(3) Batch-wise operation: The controller is updated (at
most) once every N̄ samples. Hence, a new controller
works with input-output trajectories that have been
affected only by the directly preceding controller.

With adaptive operation a mechanism that affects cor-
relation between inputs and noise under feedback is the
stochastic variability of the different controllers. In batch-
wise operation the closed-loop correlation between inputs
and noise experienced during controller synthesis comes
only from the preceding controller, which simplifies the
analysis. Hence, the analysis presented in the remainder
of this paper employs batch-wise operation.

4.2 The closed-loop identification problem

In this section the bias that is introduced due to correlation
between inputs and noise is derived along the lines of
the consistency analysis in Knudsen (2001) using the data
equation (9) and the SPC framework.

The actually obtained future outputs that are estimated
by the output predictor are given akin to (9) as

Yîp,f,1
=

[
ΓfKp T u

f

] [ zp
Uîp,f,1

]
+ T e

f Eîp,f,1

+ Γf Ã
pXî,1.

(15)

The resulting error of the output predictor is found by
subtracting (15) from (10) to find that

Ŷîp,f,1
−Yîp,f,1

=[[
Γ̂fKp T̂ u

f

]
−
[
ΓfKp T u

f

]] [ zp
Uîp,f,1

]

−T e
f Eîp,f,1

− Γf Ã
pXî,1.

(16)

The bias of the output predictor is given by the expected
value of this error, which using Assumption 2 reduces to
the expected value of the middle row. Clearly, the bias
of the estimated dynamic matrix plays a significant role
in the bias of the output predictor. To find the error of
the estimated dynamic matrix substitute (9) in (12) and
subtract the actual dynamic matrix to find[

Γ̂fKp T̂ u
f

]
−
[
ΓfKp T u

f

]
=

T e
f

(
1
NEip,f,N Z̄T

N

) (
1
N Z̄N Z̄T

N

)−1

+Γf Ã
p
(

1
NXi,N Z̄T

N

) (
1
N Z̄N Z̄T

N

)−1

.

(17)

Whilst, as before, the bottom row will vanish under As-
sumption 2, the middle row requires the empirical corre-
lation matrix Eip,f,N Z̄T

N/N to vanish 1 . The instrumen-

tal variable Z̄N contains inputs Uip,f,N , which in closed-
loop will be determined in part by outputs and hence
noise Eip,f,N . This in turn means that the input and
noise sequences are correlated, which as (17) demon-
strates prevents unbiased estimation of the dynamic ma-
trix

[
ΓfKp T u

f

]
even as both p,N → ∞.

The bias that is encountered is problematic because it
degrades the accuracy of the output predictor as demon-
strated by (16), thereby potentially reducing the perfor-
mance of adaptive or batch-wise SPC and DeePC imple-
mentations in the presence of noise.

5. SIMULATION RESULTS

This section presents several batch-wise, unconstrained
SPC simulation results that demonstrate the existence
of correlation between inputs and noise when using data
obtained in closed-loop, resulting in a bias of the estimated
dynamic matrix and thus performance degradation of the
considered data-driven control methods.

To illustrate these effects the 5th order, marginally stable
system from Favoreel et al. (1999) (representing a motor
that drives two plates and flexible shafts) is simulated.
Batch-wise SPC operation is simulated using equal past
and future window lengths p = f = 50, which is common
in subspace methods (van der Veen et al., 2013), for 24
different numbers of columns N ranging from 180 to 8459.
For each N , 120 different noise realizations are taken to
obtain averaged quantities of interest.

5.1 Batch-wise simulation

The batch-wise simulation procedure is illustrated by
Fig. 2. For each noise realization, the simulation is per-
formed for three consecutive sections of equal length
(N̄ = p+ f +N − 1). The zero-mean white noise inno-
vation sequence of the system as given by (1) has
var(ek) = 0.01 for all three of the sections. In the first
section, the input is a zero-mean white noise signal with
var(uk) = 1 to provide a persistently exciting input with
which to initialize a controller that is based on open-loop
data. From this point onwards, the input is determined by
the controller and a zero mean white-noise input distur-
bance dk with var(dk) = 0.05. This considerably smaller

1 In Peternell et al. (1996) it is additionally shown that consistent
estimation of the estimated matrix requires that N must go to
infinity at an adequately larger rate than p goes to infinity.



1392 Rogier Dinkla  et al. / IFAC PapersOnLine 56-2 (2023) 1388–1393

0 0.5 1 1.5 2 2.5
Time #104

0
20
40
60

O
u
tp

u
ts output

reference

0 0.5 1 1.5 2 2.5
Time #104

-2
0
2

In
p
u
ts

0 0.5 1 1.5 2 2.5
Time #104

-0.5

0

0.5

In
n
ov

at
io

n
s

Fig. 2. Illustration of a data-driven control pitfall in closed-
loop using N = 8459. The reference-tracking per-
formance of the updated controller is considerably
reduced due to identification bias arising from cor-
relation between inputs and noise in closed-loop.

variance of the stochastic input component is chosen to
guarantee satisfaction of Assumption 4 whilst maintaining
a similar input variance as in the first section. Henceforth,
the controller tracks a reference with a step magnitude
of 10. Based on the resulting closed-loop input-output
data from the second section the controller is subsequently
updated again. The last section serves to illustrate the per-
formance of batch-wise operation using closed-loop data,
but its data is not processed further in this paper. That
is, except for Fig. 2, the results shown here only consider
the closed-loop data from the second section.

Moreover, since closed-loop stability is not ensured, only
noise realizations that lead to a closed-loop stable system
are used. This is necessary to satisfy Assumption 3 and
hence demonstrate meaningful correlations between inputs
and noise. Similarly, to satisfy Assumption 4, only noise
realizations that lead to a full row rank Z̄N are used.

5.2 Correlation between inputs and noise

Fig. 3 illustrates the correlation that arises between inputs
and noise in closed-loop, and shows the correlation matrix
Eip,f,N Z̄T

N/N from (17) for N = 8459 as averaged over the
120 noise realizations. The data that was obtained in open-
loop indicates no significant correlation. However, the data
that was obtained in closed-loop in the subsequent section
of the simulations clearly shows a causal correlation that
arises between the relevant input and innovation signals.
The correlation is illustrated for the maximum number
of columns that was investigated (N = 8459) because
under such conditions experimental correlation matrices
best reflect the actual correlation.

To quantify the correlation between the inputs and the
noise Eip,f,NUT

ip,f,N
/N a squared Frobenius norm is used.

The resulting plot is shown by Fig. 4. This figure clearly
shows that in open-loop, the experimental correlation de-
creases with N . This is to be expected since in open-
loop these inputs are uncorrelated with the innovation
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Fig. 3. Visualization of the average open and closed-loop
correlation matrices Eip,f,N Z̄T

N/N forN = 8459. Note
the non-zero, causal closed-loop correlation between
future inputs and noise.

102 103 104
N

10-5

100
- - -- - -1 N

E
i p

;f
;N

U
T i p
;f

;N

- - -- - -2 F

open-loop
closed-loop

Fig. 4. Squared Frobenius norm of the average open and
closed-loop matrices Eip,f,NUT

ip,f,N
/N for varying N .

Uncorrelated signals should display a correlation that
decreases with N , which is not visible for the closed-
loop correlation between inputs and noise shown here.

sequence. In closed-loop however, existing correlation be-
tween inputs and noise becomes evident as the number of
columns N increases. As described this is due to the fact
that in closed-loop, inputs from the controller are based
on past outputs, which in turn are affected by noise.

5.3 Bias of the dynamic matrix estimate

Equation (17) indicates that in closed-loop a bias is
introduced in the estimation of the dynamic matrix as a
result of the correlation between inputs and noise. This
holds true even if p is sufficiently large. Fig. 5 illustrates
the open-loop and closed-loop bias for different values of
N and the different components of the estimate of the
dynamic matrix

[
ΓfKp T u

f

]
=

[
ΓfKy

p ΓfKu
p T u

f

]
.

For data obtained in open-loop, the results in Fig. 5 are
illustrative of consistent estimation, meaning that the bias
decreases asymptotically with increasing N (Söderstrom
and Stoica, 1989). In this case it is expected that the bias
would eventually approach a limit that is determined by
the contribution of a finite p apparent from (17). Moreover,
Fig. 5 demonstrates that the bias of the different estimated
matrix components deriving from closed-loop operation
actually increase with N (at least after some initial value
in the case of the two leftmost plots).
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guarantee satisfaction of Assumption 4 whilst maintaining
a similar input variance as in the first section. Henceforth,
the controller tracks a reference with a step magnitude
of 10. Based on the resulting closed-loop input-output
data from the second section the controller is subsequently
updated again. The last section serves to illustrate the per-
formance of batch-wise operation using closed-loop data,
but its data is not processed further in this paper. That
is, except for Fig. 2, the results shown here only consider
the closed-loop data from the second section.

Moreover, since closed-loop stability is not ensured, only
noise realizations that lead to a closed-loop stable system
are used. This is necessary to satisfy Assumption 3 and
hence demonstrate meaningful correlations between inputs
and noise. Similarly, to satisfy Assumption 4, only noise
realizations that lead to a full row rank Z̄N are used.

5.2 Correlation between inputs and noise

Fig. 3 illustrates the correlation that arises between inputs
and noise in closed-loop, and shows the correlation matrix
Eip,f,N Z̄T

N/N from (17) for N = 8459 as averaged over the
120 noise realizations. The data that was obtained in open-
loop indicates no significant correlation. However, the data
that was obtained in closed-loop in the subsequent section
of the simulations clearly shows a causal correlation that
arises between the relevant input and innovation signals.
The correlation is illustrated for the maximum number
of columns that was investigated (N = 8459) because
under such conditions experimental correlation matrices
best reflect the actual correlation.

To quantify the correlation between the inputs and the
noise Eip,f,NUT

ip,f,N
/N a squared Frobenius norm is used.

The resulting plot is shown by Fig. 4. This figure clearly
shows that in open-loop, the experimental correlation de-
creases with N . This is to be expected since in open-
loop these inputs are uncorrelated with the innovation
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sequence. In closed-loop however, existing correlation be-
tween inputs and noise becomes evident as the number of
columns N increases. As described this is due to the fact
that in closed-loop, inputs from the controller are based
on past outputs, which in turn are affected by noise.

5.3 Bias of the dynamic matrix estimate

Equation (17) indicates that in closed-loop a bias is
introduced in the estimation of the dynamic matrix as a
result of the correlation between inputs and noise. This
holds true even if p is sufficiently large. Fig. 5 illustrates
the open-loop and closed-loop bias for different values of
N and the different components of the estimate of the
dynamic matrix
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For data obtained in open-loop, the results in Fig. 5 are
illustrative of consistent estimation, meaning that the bias
decreases asymptotically with increasing N (Söderstrom
and Stoica, 1989). In this case it is expected that the bias
would eventually approach a limit that is determined by
the contribution of a finite p apparent from (17). Moreover,
Fig. 5 demonstrates that the bias of the different estimated
matrix components deriving from closed-loop operation
actually increase with N (at least after some initial value
in the case of the two leftmost plots).
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Fig. 5. Squared Frobenius norm of the error of different
average open and closed-loop matrix estimates (used
to quantify estimation bias) for varying N . Since the
bias of the closed-loop estimates does not decrease
asymptotically these estimates are not consistent.

5.4 Impact on controller performance

The biased estimate of the dynamic matrix
[
ΓfKp T u

f

]
deriving from closed-loop operation clearly introduces a
bias in the output predictor according to (16). The biased
predictor in turn has an impact on the performance of the
controller as it is used in an MPC setting. Fig. 2 serves
as an example of how closed-loop system identification in
a direct data-driven control framework can degrade the
performance of a reference-tracking controller.

6. CONCLUSION

The theoretical and simulation results of this paper reveal
that direct data-driven control may suffer from identifi-
cation bias arising from closed-loop correlation between
inputs and noise. This bias can impact the performance,
potentially even leading to closed-loop instability. Whilst
results here are presented using SPC, based on the de-
rived unified framework, it is clear that the closed-loop
problem is also to be expected with other direct data-
driven methods like DeePC. In the future we intend to
investigate two promising solution methods in the contexts
of SPC and DeePC. These methods respectively avoid
close-loop correlation by means of a past window length
f = 1 (Ljung and McKelvey, 1996) or the use of instru-
mental variables (Söderstrom and Stoica, 1989).
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(2020). Robust Constraint Satisfaction in Data-Driven
MPC. In 2020 59th IEEE Conference on Decision and
Control (CDC), 1260–1267.
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