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Abstract 1 

Continuum traffic flow models are essentially nonlinear hyperbolic systems of Partial 2 
Differential Equations (PDEs). Except for limited specific cases, these systems must be solved 3 
numerically in general.  Mathematical structure of continuum models can be different for each 4 
class of models. As a result, suitable numerical schemes for some classes of models may not be  5 
efficient for others. In this study, an improved numerical method is proposed for a class of second-6 
order traffic flow models. The method is based on McCormack scheme, which is a widely-used 7 
method for non-homogeneous second-order traffic flow models, but fails to produce reasonable 8 
results for homogeneous models including Aw-Rascle type models which are the focus of this 9 
paper. It is shown that this is mainly due to spurious numerical oscillations. Smoothing methods 10 
to overcome these issues are studied and applied. Central Dispersion (CD) and Artificial Viscosity 11 
(AV) methods are incorporated to the standard McCormack scheme and tested. To reduce 12 
numerical diffusion, a Total Variation Diminishing (TVD) Runge-Kutta time stepping scheme is 13 
applied. Results show the capability of the proposed methods - and especially the AV  to eliminate 14 
the oscillations of the standard McCormack scheme as well as controlling numerical diffusion.       15 

Keywords: Traffic flow, continuum models, Aw-Rascle model, Zhang model, McCormack 16 
scheme, numerical method   17 

 Introduction 18 

Traffic flow modelling has attracted growing research attention due to the need for 19 
optimizing the usage of either existing or future road infrastructure. The increasing and dynamic 20 
nature of demand on urban networks and the environmental, societal and economic costs 21 
associated with traffic jams are some reasons justifying robust studies of traffic flow, results of 22 
which could be advantageous in decision-making process of traffic control strategies. Dynamic 23 
non-linear phenomena such as stop-and-go waves and synchronization in congestion [1] require 24 
models that are able to reproduce them, while keeping the number of parameters limited [2]. 25 
Furthermore, computer predictions should be acceptably accurate and computational costs have 26 
to remain low when simulations are applied to real-world traffic scenarios.  27 

Various techniques have been employed for traffic state estimation over the past decades 28 
including mathematical modelling [3]. Continuum (macroscopic) approaches along with car-29 
following and cellular automata models are the most successful methods for mathematical study 30 
of traffic flow. For detailed reviews of traffic flow models, we refer the reader to [4-8]. In this 31 
study, we focus on continuum models because of their low computational costs, simpler 32 
calibration compared to other approaches, and their high potential for incorporation in traffic 33 
control strategies [9]. Continuum models reproduce the behavior of traffic flow by modelling it as 34 
a fluid, with aggregated variables such as average speed and average density. First-order 35 
continuum models assume that local speed is always in equilibrium with local density, while 36 
second-order continuum models define a dynamic equation for local speed [10]. In general, 37 
second-order models can allow traffic states to fluctuate over equilibrium states introducing 38 
acceleration behavior and its associate phenomena such as reaction time and anticipation. Such 39 
fluctuations have been also associated with some complex phenomena such as traffic oscillations, 40 
hysteresis, and capacity drop which have been observed in empirical traffic studies [11]. For a 41 
detailed review of such phenomena, we refer the reader to [12-16]. One of the privileges of 42 
second-order models is their ability to capture such nonlinear traffic phenomena, which cannot 43 
be reproduced by single-class first-order models [7]. However, complex mathematical structure 44 
of such models, call for different numerical schemes to first-order models [6].  45 

Second-order continuum traffic flow models are classified as non-linear system of 46 
hyperbolic equations [17]. In the presence of a source term, they are also classified as non-47 
homogeneous equations. The Payne-Witham [18, 19], Kerner-Konhäuser [20] and the gas-kinetic 48 
based [21] models are examples of non-homogeneous second-order traffic flow models because 49 
they include a relaxation acceleration source. However, in some other continuum models such as 50 
the Aw-Rascle model [22] and the Zhang model [23] there is no source term and they are classified 51 
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as homogeneous equations. Some non-homogeneous models do not satisfy the anisotropy 1 
conditions [24, 25], which means driver do not react to their follower in traffic flow. However, 2 
homogeneous Aw-Rascle and Zhang models have favorable properties such as anisotropic 3 
behavior and it can be proven that solutions to important initial value problems exist [26] . 4 

One of the most common frameworks for solving non-homogeneous continuum models is 5 
to use McCormack method because of its simplicity, limited computational costs and little 6 
associated numerical diffusion [27]. Furthermore, the minimum supply demand method, which is 7 
commonly used for first order models, has been adapted for second-order traffic flow models [28]. 8 
In the context of hyperbolic systems, high-order methods have been proposed for Computational 9 
Fluid Dynamics and heat transfer applications [17, 29]. By translating concepts from such studies, 10 
some complex methods have also been proposed for continuum traffic flow models [30, 31]. 11 
However, the McCormack still remains one of the most commonly-used schemes in traffic flow 12 
modelling and simulation [6]. As a second-order scheme, McCormack scheme provides less 13 
numerical diffusion compared to first-order schemes [3]. However, this scheme is associated with 14 
numerical oscillations. When applied to non-homogeneous models, numerical oscillations can be 15 
dispersed due to effect of source terms. Therefore, results are usually only slightly affected by 16 
numerical oscillations [27]. However, due to lack of source terms, this scheme fails to reproduce 17 
plausible results for the homogeneous models, as we will show in Section 4.  18 

The contribution of this research is to adapt the McCormack scheme to be able to reproduce 19 
reasonable results when applied to homogeneous second-order traffic flow models, such as the 20 
Aw-Rascle model. Therefore, two smoothing methods are studied: the Central Dispersion 21 
Smoothing (CS) [32]  and the Artificial Viscosity (AV) [33]. In order to increase order of temporal 22 
accuracy, total Variation Diminishing Runge-Kutta time stepping [34] is also added to the method. 23 
Various numerical experiments are performed to evaluate the ability of improved scheme. 24 

The rest of the paper is organized as follows: In Section 2, the applied traffic flow models are 25 
introduced. The numerical methods, including McCormack scheme and smoothing methods are 26 
covered in the Section 3. In Section 4, test cases are introduced and their results are discussed. 27 
Finally, some concluding remarks complete the study in section 5. 28 

 Continuum traffic flow models 29 

The general formulation of a second-order traffic flow model in conservative form is as follows 30 
[10]: 31 

𝝏𝒕𝑼 + 𝝏𝒙𝑭(𝑼) = 𝑺(𝑼) (1), 
where vector 𝑼 indicates state variables, usually 𝝆 the local density of vehicles (𝑣𝑒ℎ/𝑚 ) and 𝒗 the 32 
local macroscopic speed (𝑚

𝑠
). 𝑭(𝑼) is the flux function and 𝑺(𝑼) is the source term which can 33 

represent relaxation or anticipation. The system is non-homogeneous when the source term 𝑺(𝑼) 34 
is nonzero. Payne-type and Gas-kinetic based traffic models [19, 21] are classified as non-35 
homogenous models. The system in (1) can be written in quasi-linear form as follows: 36 

𝝏𝒕𝑼 + 𝑱(𝑼)𝝏𝒙𝑼 = 𝑺(𝑼) (2), 
where 𝑱(𝑼) = 𝝏𝑭

𝝏𝑼
 is the Jacobian matrix. Characteristic speeds equal the eigenvalues of the system 37 

and can be obtained by solving 𝒅𝒆𝒕[𝑱(𝑼) − 𝝀𝑰] = 𝟎 for the eigenvalues 𝝀. In the presence of 38 
distinct and real characteristic speeds, the system is hyperbolic. Characteristic speeds can be 39 
studied to see if the model preserves the anisotropic nature of the traffic flow [24, 25].  40 

Aw-Rascle type traffic flow model  41 

Aw-Rascle type of traffic flow models represent a generic family of homogenous and anisotropic 42 
higher-order traffic flow models. For a section of road without on-ramps and off-ramps, Aw-Rascle 43 
type models can be written in the following formulation [22]: 44 
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{
𝝏𝒕𝝆 + 𝝏𝒙(𝝆𝒗) = 𝟎                                           
𝝏𝒕𝝆(𝒗 + 𝑷(𝝆)) + 𝝏𝒙(𝝆𝒗(𝒗 + 𝑷(𝝆))) = 𝟎

                    (3), 

where 𝑣 is vehicle speed (in 𝑚/𝑠) and 𝑷(𝝆) is an increasing function of density to guarantee that 1 
the model is anisotropic and can be written as: 2 

𝑷(𝝆) = 𝑪𝟎𝟐𝝆𝜸 − 𝝍 (4), 
where 𝑪𝟎 is sonic velocity, 𝝍 is a constant to regulate pressure, and 𝜸 is always greater than zero. 3 
The system has two real eigenvalues: 𝝀𝟏 = 𝒗 − 𝝆𝑷′(𝝆) and 𝝀𝟐 = 𝒗. Furthermore, except for at 4 
zero density (𝝆 = 0), the eigenvalues are distinct and thus the system is strictly hyperbolic.  5 

Zhang model   6 

Zhang model is a special case of the Aw-Rascle type of models [23], in which the dynamic speed 7 
function is derived from a microscopic car-following model, leading to the following pressure 8 
function: 9 

𝑷(𝝆) = −𝒗𝒆(𝝆) (5), 
where 𝒗𝒆(𝝆) is the equilibrium speed-density function, in this case Greenshields’ model [35]: 10 

𝒗𝒆(𝝆) = 𝒗𝒎𝒂𝒙(𝟏 −
𝝆

𝝆𝒋𝒂𝒎
) (6), 

with 𝒗𝒎𝒂𝒙 representing the maximum vehicle speed and 𝝆𝒋𝒂𝒎 is the jam density.  11 

Numerical methods 12 

In this section, the proposed numerical methods for solving Aw-Rascle type models are discussed. 13 
The McCormack method with smoothing is applied for spatial integration. Temporal integration 14 
is done using a Total Variation Diminishing (TVD) Runge-Kutta scheme. 15 

 McCormack scheme 16 

The McCormack scheme (see e.g. [36]) is a second-order finite difference method that has been 17 
applied successfully to non-homogeneous higher order traffic flow models [27]. It consists of a 18 
predictor and a corrector step: 19 

Predictor           20 

𝑼𝒊
𝒏+𝟏/𝟐 = 𝑼𝒊𝒏 −

𝒅𝒕
𝒅𝒙
(𝑭𝒊𝒏 − 𝑭𝒊−𝟏𝒏 )    (7), 

Corrector 21 

𝑼𝒊𝒏+𝟏 = 0.5(𝑼𝒊𝒏 + 𝑼𝒊
𝒏+𝟏𝟐) − 0.5

𝒅𝒕
𝒅𝒙

(𝑭𝒊+𝟏
𝒏+𝟏/𝟐 − 𝑭𝒊

𝒏+𝟏/𝟐) (8), 

As will become clear in Section 4, the standard McCormack method induces oscillations and is not 22 
suitable for homogeneous models such as Aw-Rascle type of models. Therefore, smoothing is 23 
applied. Two different smoothing methods are studied, as described in the following. 24 

3.2 Central Dispersion method 25 

The first method for smoothing, the Central Dispersion Smoothing (CD) method  [36], is 26 
implemented on the updated results in the McCormack: 27 

𝑼𝒊(𝑪𝑫𝑺)𝒏+𝟏 = (1 − 𝑺). 𝑼𝒊𝒏+𝟏 + 𝑺(
𝑼𝒊+𝟏𝒏+𝟏 + 𝑼𝒊−𝟏𝒏+𝟏

𝟐 ) (9), 

where 𝑺  is a weight factor and 0 ≤ 𝑺 ≤ 1. With 𝑺 = 0 there is no smoothing at all and the method 28 
reduces to the standard McCormack scheme.  This method, in fact, acts as a hybrid scheme since 29 
it computes the traffic state as weighted average of results by McCormack method and Lax-30 
Friedrichs scheme (see e.g. [36]). When choosing 𝑺 = 1, the Lax-Friedrichs scheme substitutes the 31 
second step of McCormack scheme as: 32 
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𝑼𝒊𝒏+𝟏 = 0.5(𝑼𝒊−𝟏𝒏 + 𝑼𝒊+𝟏𝒏 ) + 0.5 𝒅𝒕
𝒅𝒙
(𝑭𝒊+𝟏𝒏 − 𝑭𝒊−𝟏𝒏 )   

     (10) 
 

However, since Lax-Friedrichs scheme is diffusive [36], taking values for 𝑺 close to 1 results in 1 
considerable numerical diffusion. In the test cases, a proper value for 𝑺 was established by trial 2 
and error. 3 

At the boundaries, 𝑼𝒊+𝟏𝒏+𝟏 or 𝑼𝒊−𝟏𝒏+𝟏 does not exist and smoothing is performed through: 4 

𝑼𝒊(𝑪𝑫)𝒏+𝟏 = (𝟏 − 𝑺). 𝑼𝒊𝒏+𝟏 + 𝑺(
𝑼𝒊+𝟏𝒏+𝟏 + 𝑼𝒊𝒏+𝟏

𝟐 ) 
 

(11) 
or   

𝑼𝒊(𝑪𝑫)𝒏+𝟏 = (𝟏 − 𝑺). 𝑼𝒊𝒏+𝟏 + 𝑺(
𝑼𝒊𝒏+𝟏 + 𝑼𝒊−𝟏𝒏+𝟏

𝟐 ) 
 

 (12) 
Artificial Viscosity method 5 

The second smoothing method that we study is the artificial viscosity method (AV) [33]. With 6 
AV, the updated results in the McCormack scheme become: 7 

𝑼𝒊(𝑨𝑽)𝒏+𝟏 = 𝑼𝒊𝒏+𝟏 + 𝝋𝒊+𝟏𝟐
(𝑼𝒊+𝟏𝒏+𝟏 − 𝑼𝒊𝒏+𝟏) − 𝝋𝒊−𝟏𝟐

(𝑼𝒊𝒏+𝟏 − 𝑼𝒊−𝟏𝒏+𝟏) (13), 

 where 𝝋𝒊+𝟏𝟐
 is the artificial viscosity at (𝒊 + 𝟏

𝟐
): 8 

𝝋
𝒊+𝟏𝟐

= 𝜿.𝒎𝒂𝒙(𝝋𝒊,, 𝝋𝒊+𝟏) (14), 
with 𝜿 representing the viscosity parameter and 𝝋𝒊 computed as follows: 9 

𝝋𝒊 =
|𝑼𝒊+𝟏 − 𝟐𝑼𝒊 + 𝑼𝒊−𝟏 |

|𝑼𝒊+𝟏 | + 𝟐|𝑼𝒊 | + |𝑼𝒊−𝟏 |
 (15), 

The technique is similar to adopting flux-liming terms in high-order Total Variation Diminishing 10 
(TVD) Lax-Wendroff methods [17] and as discussed in section 4, can provide robust results.  11 

At the boundaries, 𝑼𝒊+𝟏 or 𝑼𝒊−𝟏  does not exist and the artificial viscosity is computed using: 12 

𝝋𝒊 =
|𝑼𝒊+𝟏 − 𝑼𝒊|
|𝑼𝒊+𝟏 | + |𝑼𝒊 |

 (16), 

 13 

𝝋𝒊 =
|𝑼𝒊 − 𝑼𝒊−𝟏|
|𝑼𝒊 | + |𝑼𝒊−𝟏 |

 (17), 

Temporal integration  14 

To achieve higher order of temporal accuracy while avoiding numerical oscillations, a Total 15 
Variation Diminishing (TVD) Runge-Kutta scheme [34] is applied for temporal integration. At each 16 
time step, the new state variables are approximated as follows: 17 

{
𝑼(𝒑)𝒊 = 𝑼(𝒏)𝒊 + 𝝃(𝑼(𝒏)𝒊)                                              
𝑼(𝒒)𝒊 = 𝟑/𝟒𝑼(𝒏)𝒊 + 𝟏/𝟒𝑼(𝒑)𝒊 + 𝟏/𝟒𝒅𝒕𝝃(𝑼(𝒑)𝒊)    
𝑼(𝒏+𝟏)𝒊 = 𝟏/𝟑𝑼(𝒏)𝒊 + 𝟐/𝟑𝑼(𝒒)𝒊 + 𝟐/𝟑𝒅𝒕𝝃(𝑼(𝒒)𝒊)

 (18), 

where 𝑼(𝒏)𝒊 the state in the 𝒊-th grid cell at time step 𝒏. 𝒑 and 𝒒 can be interpreted as intermediate 18 
time steps, used to compute the state 𝑼(𝒏+𝟏)𝒊 in the 𝒊-th grid cell, at the next time step 𝒏 + 𝟏. 19 
Furthermore, we use the change rate of effective flux: 20 

𝝃(𝑼(𝒏)) = −
𝒅𝒕
𝒅𝒙

(𝑭𝒊𝒏 − 𝑭𝒊−𝟏𝒏 ) (19), 

 21 
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𝝃(𝑼(𝒏)) = −
𝒅𝒕
𝒅𝒙

(𝑭𝒊𝒏 − 𝑭𝒊−𝟏𝒏 ) (20), 

CFL condition  1 

In order to avoid numerical instabilities, the grid cell and time step size must satisfy the CFL 2 
condition: 3 

𝑪𝒓 = 𝐦𝐚𝐱(𝝀𝟏, 𝝀𝟐)
𝒅𝒕
𝒅𝒙

 (21), 

with 𝑪𝒓 being the CFL number and max (𝝀𝟏, 𝝀𝟐) representing the greater propagation speed. 4 
Numerical diffusion is lowest when the CFL number is close to 1, see e.g. [37]. In the Aw-Rascle 5 
type models, the maximum of eigenvalues equals the maximum speed, is greater than backward 6 
propagation speed. In the numerical tests, the parameter values are chosen as in Table 1. 7 

 Numerical tests and discussions 8 

In this section, numerical tests are performed for evaluation of proposed numerical 9 
methods for application on Aw-Rascle and Zhang models [22, 23]. The model’ parameters take 10 
values given in Table 1. Test cases differ in their initial conditions. They were chosen to reflect a 11 
wide range of realistic traffic scenarios, while also being demanding for the numerical methods. 12 
To confine effects of additional source terms, all test cases are performed on homogeneous road 13 
of length L. At the boundaries, the following conditions are applied:  14 

𝑼𝟏𝒏 = 𝑼𝟐𝒏   
(22), 

 
𝑼𝑰𝒏 = 𝑼𝑰−𝟏𝒏                                             

where 𝐼, denotes the last cell. 15 

Table- 1 Physical and numerical parameters used for Aw-Rascle and Zhang models 16 

Parameter Value Model 
Length of road )𝑳) 12000𝑚 Both  

Maximum speed (𝒗𝒎𝒂𝒙) 30𝑚/𝑠 Both 
Maximum density(𝝆𝒋𝒂𝒎) 0.15𝑣𝑒ℎ/𝑚 Both 

𝑪𝟎𝟐 80 𝑚2/𝑠2 Aw-Rascle  
𝝍 31.94 𝑣𝑒ℎ.𝑚/𝑠^2 Aw-Rascle 
𝜸 0.5 Aw-Rascle 

Critical Density (𝝆𝒄𝒓) 0.04𝑣𝑒ℎ/𝑚 Aw-Rascle 
Critical Density (𝝆𝒄𝒓) 0.075𝑣𝑒ℎ/𝑚 Zhang 

𝑺 0.01 Both 
𝜿 0.25 Both 
𝒅𝒕 1 Both 
𝒅𝒙 31.7𝑚 Both 

𝐦𝐚𝐱(𝝀𝟏, 𝝀𝟐) 30𝑚/𝑠 Both 
𝑪𝒓 0.975 Both 

 𝒅𝒕 (Reference solution) 0.0625𝑠 Both 
𝒅𝒙 (Reference Solution) 1.8𝑚 Both 

 17 

Case 1) Free-flow traffic with transition from high to low densities  18 

𝝆(𝒙, 𝟎) = {
𝟎. 𝟒𝟔𝝆𝒋𝒂𝒎    𝑓𝑜𝑟 𝒙 <

𝑳
𝟐

𝟎. 𝟏𝝆𝒋𝒂𝒎      𝑓𝑜𝑟 𝒙 >
𝑳
𝟐

  

𝒗(𝒙, 𝟎) = 𝒗𝒆(𝝆(𝒙, 𝟎))   

(23), 

 19 
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Case 2) Congested traffic with transition from high to low densities  1 

𝝆(𝒙, 𝟎) = {
𝟎. 𝟗𝝆𝒋𝒂𝒎        𝑓𝑜𝑟 𝒙 <

𝑳
𝟐

𝟎. 𝟓𝟓𝝆𝒋𝒂𝒎      𝑓𝑜𝑟 𝒙 >
𝑳
𝟐

  

𝒗(𝒙, 𝟎) = 𝒗𝒆(𝝆(𝒙, 0))  
(24), 

 2 

Case 3) Queue dissolution   3 

𝝆(𝒙, 𝟎) =

{
 
 

 
 
𝟎. 𝟏𝝆𝒋𝒂𝒎                    

           
𝝆𝒋𝒂𝒎                          

                  
𝟎. 𝟏𝝆𝒋𝒂𝒎                    

 

𝒗(𝒙, 𝟎) = 𝒗𝒆(𝝆(𝒙, 0))  

𝑓𝑜𝑟 𝒙 ≤ 𝑳/𝟑   

𝑓𝑜𝑟 𝑳/𝟑 < 𝒙 ≤ 𝟐𝑳/𝟑   
(25), 𝑓𝑜𝑟 𝑳/𝟑 > 𝟐𝑳/𝟑   

  

Case 4) Free-flow traffic with uniform density and non-equilibrium speeds  4 

𝝆(𝒙, 𝟎) = 𝟎. 𝟑𝟓𝝆𝒋𝒂𝒎      

𝒗(𝒙, 𝟎) =

{
 
 

 
 𝒗𝒆(𝝆(𝒙, 𝟎)) + 𝟓                       
𝒗𝒆(𝝆(𝒙, 𝟎))                    

        
𝒗𝒆(𝝆(𝒙, 𝟎)) + 𝟓            

 

  

𝑓𝑜𝑟 𝒙 < 𝑳/𝟓      (26), 
𝑓𝑜𝑟 𝑳/𝟓 < 𝒙 < 𝟐𝑳/𝟓   

𝑓𝑜𝑟 𝒙 > 𝟐𝑳/𝟓    

 5 

Case 5) Uniform density with non-equilibrium speeds 6 

𝝆(𝒙, 𝟎) = 𝟎. 𝟕𝟓𝝆𝒋𝒂𝒎      

𝒗(𝒙, 𝟎) =

{
 
 

 
 𝒗𝒆(𝝆(𝒙, 𝟎)) + 𝟓                       
𝒗𝒆(𝝆(𝒙, 𝟎))                    

        
𝒗𝒆(𝝆(𝒙, 𝟎)) + 𝟓            

 

  

𝑓𝑜𝑟 𝒙 < 𝑳/𝟑   
    (27), 𝑓𝑜𝑟 𝑳/𝟑 < 𝒙 < 𝟐𝑳/𝟑   

𝑓𝑜𝑟 𝒙 > 𝟐𝑳/𝟑    
 
 

Case 1-3 include equilibrium traffic states that cannot be simulated through standard McCormack 7 
scheme. This is due to either existence of sharp transition from congestion to free-flow regime or 8 
formation of them due to oscillatory behavior of the method. In cases 5, 6, initial non-equilibrium 9 
traffic states results in formation and propagation of contact discontinuity and expansion waves. 10 
Non-convergent formation of numerical oscillations in these cases result in failure of standard 11 
McCormack scheme which ultimately lead to physically unrealistic results.   12 

Numerical results for standard McCormack scheme and discussion 13 

In this section, behavior of standard McCormack scheme for simulation of Aw-Rascle type 14 
models will be investigated. We apply the method for some test cases, to illustrate why this 15 
scheme is not well-suited for this type of problems. Failure in these cases, implies that the method 16 
would not work well in any of the other cases either. Afterwards, we test both smoothing methods 17 
on all test cases. The standard McCormack scheme is applied to Zhang model, only for test case 1 18 
and 2. Results are illustrated in figure 1.      19 
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Fig 1) Results of McCormack scheme for transition from higher densities to the lowers in uniform traffic 1 
condition. (Left) Case 1, free-flow condition, (Right) Case 2, congestion regime. 2 

Results show oscillations around the transitions from high to low densities. These 3 
oscillations lead to discontinuous transitions from congestion to free-flow regime and ultimately 4 
results in failure of the method. This is because the Aw-Rascle type models are highly nonlinear 5 
and lack a dissipative term to smooth out numerical oscillations that are introduced by the 6 
McCormack scheme. Analogous behavior of the McCormack scheme has been reported when the 7 
scheme is applied to the shallow water equations with initial sharp transition from subcritical to 8 
supercritical flows, in the absence of a dissipative (friction-type) term or in the presence of a 9 
booster (topography-type) term for oscillations. We refer the reader to [38, 39] for further 10 
discussion on shallow water equations. For this type of problems, smoothing methods are 11 
commonly applied to eliminate or reduce oscillations [40, 41]. It should be mentioned that the 12 
McCormack scheme can be well-suited for other traffic flow simulations, such as for non-13 
homogeneous models and for specific cases with other initial conditions such as red-light 14 
modelling. However, it is not suitable to simulate wide range of realistic traffic scenarios using a 15 
homogeneous second-order model. 16 

Set up of numerical tests on smoothed McCormack with TVD Runge-Kutta scheme 17 

Artificial Viscosity (AV) and Central Dispersion (CD) Smoothing methods are applied to decrease 18 
the oscillations inherent to the standard McCormack scheme. The smoothing parameters are 19 
shown in Table 1. Several values were tested and these turned out to give good results in terms of 20 
removing spurious oscillations, while keeping numerical diffusion low. Figure 2 illustrates an 21 
example of various smoothing parameters for both AV and CD methods. Choice of Zero smoothing 22 
parameters in both methods reduces proposed method to standard McCormack, which cannot 23 
provide reasonable solution. It is clear from figure 2 that with the increase in smoothing 24 
parameters, numerical diffusion also increase which result in sooner propagation of traffic 25 
density. More elaborate testing would be beneficial for future applications. Results are compared 26 
with a reference solution that is obtained using a fine grid, with parameters as in Table 1. For the 27 
reference solution, AV with the same parameters in accordance with first order explicit time 28 
stepping was used. The grid cell sizes are chosen such that the CFL number is equal to the CFL 29 
number of the methods on the normal grid. It is worth mentioning that exact solution for discussed 30 
models cannot be calculated using techniques such as method of characteristics [17], variational 31 
theory [42], or Hamilton-Jacobi representation [43]. In fact, discussed models are both second-32 
order and nonlinear and exact solution for such models cannot be obtained through analytical 33 
methods. However, we use fine-grid reference solutions through which our results are evaluated.    34 
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a)  b)  

  
c)  d)  

Fig 2- Effects of choice of smoothing parameter on numerical diffusion for case 3, initial queue 1 
problem: a, b) CD method, c, d) AV method 2 

  
  

a) Aw-Rascle model b) Aw-Rascle model c) Aw-Rascle model d) Aw-Rascle model 

  
  

a) Zhang model b) Zhang model c) Zhang model d) Zhang model 

    Fig 3) Results for case 1. a) Cross section at t=50s, b) Cross section at t=150s, c) CD spatiotemporal 3 
evolution of local densities, d) AV spatiotemporal evolution of local densities., e) cross section at 4 
t=50s, f) Cross section at t=150s, g) CD spatiotemporal evolution of local densities, h) AV 5 
spatiotemporal evolution of traffic densities. 6 

Solution of Riemann problem to the Case 1 is the formation and propagation of expansion waves 7 
to the right. This is because initial traffic state is of free-flow regime and the upstream density is 8 
greater than that of downstream. Density profile propagates in a slower rate for Aw-Rascle model 9 
than for Zhang model because of different parameters taken for traffic pressure functions. As 10 
previously stated, McCormack scheme can successfully simulate such cases. However, when the 11 
upstream density is very close to critical density, spurious oscillation lead to unreasonable results.  12 
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Results from figures 3 and 4 clearly show that smoothing methods can overcome previously 1 
mentioned problem of standard McCormack method and results. Furthermore, spatiotemporal 2 
evolution of density for both Zhang and Aw-Rascle model reveal that overall results provided by 3 
these smoothing methods are correct and only on a certain trajectory (the edge of the initial 4 
discontinuity) some trivial oscillations can be observed. These slight oscillations are also 5 
alleviated more effectively when AV is applied.  6 

    
a) Aw-Rascle model b) Aw-Rascle model c) Aw-Rascle model d) Aw-Rascle model 

  
  

a) Zhang model b) Zhang model c) Zhang model d) Zhang model 

Fig 4) Results case 2. a) Cross section at t=50s, b) Cross section at t=150s, c) CD spatiotemporal 7 
evolution of local densities, d) AV spatiotemporal evolution of local densities. Results for e) Cross 8 
section at t=50s, f) Cross section at t=150s, g) CD spatiotemporal evolution of local densities, h) AV 9 
spatiotemporal evolution of traffic densities. 10 

Being analogous to case one, the second case is also on transition from higher to lower densities. 11 
However, due to the dominance of congestion regime characteristic speeds- which determine the 12 
direction of traffic waves- are of negative signs and traffic density propagates leftward. Similarly, 13 
for the densities close enough to critical density, standard McCormack provides physically absurd 14 
results. According to fig- 5, 6, overall results obtained from the two smoothing methods are highly 15 
acceptable compared to the reference solution. Although the general propagation of traffic density 16 
is correct for each of the smoothing methods, for Zhang model, obtained results from CD method 17 
are riddled with greater oscillations on the trajectory following by the edge of the discontinuity. 18 
This is because downstream density for Zhang model is closer to its critical density compared to 19 
Aw-Rascle model due to its different pressure function. AV smoothing provides less oscillatory 20 
results in this case as well. Yet, CD method also provides acceptable results.  21 

   
 

a) Aw-Rascle model b) Aw-Rascle model c) Aw-Rascle model d) Aw-Rascle model 
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a) Zhang model b) Zhang model c) Zhang model d) Zhang model 
      Fig 5) Results for case 3. a) Cross section at t=50s, b) Cross section at t=150s, c) CD spatiotemporal 1 
evolution of local densities, d) AV spatiotemporal evolution of local densities. e) Cross section at 2 
t=50s, f) Cross section at t=150s, g) CD spatiotemporal evolution of local densities, h) AV 3 
spatiotemporal evolution of traffic densities. 4 

 Case 3 is simply a condition in which free-flow condition is present in the upstream and 5 
downstream of congestion regime. Solution of this Riemann problem for the downstream 6 
discontinuity is expansion waves heading both to the left and right side because of discontinuous 7 
transition from congestion regime to the free-flow condition. Solution of the Riemann problem in 8 
the upstream is a shockwave which initially propagates leftwards, and after some points when 9 
free-flow condition is provided in downstream, this shockwave heads to the right side. This case 10 
cannot be simulated by standard McCormack scheme as discussed before. However, both 11 
smoothing methods can overcome oscillations to an acceptable point and produce reasonable 12 
results as shown in spatiotemporal evolutions of traffic densities shown in figure 5 (c, d, g, h).  13 
Cross-sectional results (fig- 5 (a, b, e, f), show that effects of oscillations are conspicuous when CD 14 
method is applied. Spatiotemporal results (fig- 5 (c, d, g, h), however, reveal that there is slight 15 
difference in the overall results of CD method compared to AV, which also provides better results 16 
in these cases as well.   17 

 
 

  

a) Aw-Rascle model b) Aw-Rascle model c) Aw-Rascle model d) Aw-Rascle model 

    
a) Zhang model b) Zhang model c) Zhang model d) Zhang model 

    Fig 6) case 4. a) cross section at t=50s, b) cross section at t=150s, c) CD spatiotemporal evolution 18 
of local densities, d) AV spatiotemporal evolution of local densities, e) cross section at t=50s, f) cross 19 
section at t=150s, g) CD spatiotemporal evolution of local densities, h) AV spatiotemporal evolution 20 
of traffic densities. 21 
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a) Aw-Rascle model b) Aw-Rascle model c) Aw-Rascle model d) Aw-Rascle model 

  
 

 

a) Zhang model b) Zhang model c) Zhang model d) Zhang model 
Fig 7) Results for case 5. a) Cross section at t=50s, b) Cross section at t=150s, c) CD 1 

spatiotemporal evolution of local densities, d) AV spatiotemporal evolution of local densities. e) Cross 2 
section at t=50s, f) Cross section at t=150s, g) CD spatiotemporal evolution of local densities, h) AV 3 
spatiotemporal evolution of traffic densities. 4 

Simulation of non-equilibrium traffic state has been performed on case 4 and 5. In these test cases, 5 
despite initial uniform density profile, local speeds are not in equilibrium with traffic density. 6 
Initial traffic density in case 4 represent free-flow condition while in case 5, congestion regime is 7 
dominant. Non-equilibrium local speeds results in formation of shock-waves as contact 8 
discontinuities in these cases and also expansion waves. Numerical oscillations in standard 9 
McCormack lead to the failure of scheme for simulation of such cases. However, both smoothing 10 
methods can successfully capture those waves and present reasonable results for spatiotemporal 11 
evolution of traffic flow as illustrated in figures 6 and 7.   12 

Results of numerical tests on smoothed McCormack with TVD Runge-Kutta scheme 13 

Figures 3-7 show the test results, for both Aw-Rascle and Zhang model, comparing the smoothing 14 
methods with the reference solutions. Both numerical methods show little spurious oscillations, 15 
though there are more and stronger oscillations with the Zhang model, and with the CD. This is 16 
especially strong in case 2: the Zhang model exhibits more oscillations than the Aw-Rascle model 17 
and the AV performs better at reducing them than the CD method. Results also show that the 18 
Runge-Kutta time stepping provides a high-order temporal accuracy while avoid numerical 19 
oscillations.  Cases 2, 3 and 4, furthermore show differences in the continuous parts of the solution 20 
as well: i.e. the red (CD) line deviates from the reference solution further than the blue line (AV) 21 
does. In fact, cases 1-3 show an almost exact overlap between the AV and the reference solution, 22 
except for at discontinuities. Cases 4 and 5 show that AV is also susceptible to diffusion and the 23 
numerical solution is smoother than the reference solution. Results also show that the initial 24 
instabilities are damped and oscillations decrease over time; this is especially visible in the 25 
contour plots for cases 4 and 5 (fig- 6, 7). Finally, the choice of the smoothing parameters 26 
influences the results as shown in figure 2, which also indicates that the choice of 𝜿 (in AV) is much 27 
less sensitive then the choice of 𝑺 (in CD) in terms of numerical diffusion.  28 

Discussion and Conclusion 29 

Aw-Rascle type traffic flow models are systems of homogeneous non-linear hyperbolic equations. 30 
Because of their homogeneity, they require different numerical methods than the non-31 
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homogeneous higher-order traffic flow models. More specifically, the standard McCormack spatial 1 
integration scheme works fine for non-homogeneous models, but does not for homogeneous ones. 2 
Therefore, two smoothing methods are proposed to reduce numerical oscillations inherent to the 3 
standard McCormack scheme. Furthermore, it is suggested to apply a TVD Runge-Kutta scheme to 4 
increase the order of temporal accuracy. Results show that both Central Dispersion Smoothing 5 
and Artificial Viscosity Method lead to more accurate results with less numerical oscillation. 6 
Diffusion is kept within reasonable limits in both methods compared to reference solution. 7 
Because of better performance at discontinuities (less numerical oscillations) and a lower 8 
sensitivity of the smoothing parameter, the Artificial Viscosity Method is preferred. 9 

Future developments include application of the proposed numerical methods in simulation tools. 10 
Therefore, the methods will have to be extended to deal with nodes such as on ramps and off 11 
ramps. Furthermore, the methods can be studied further and applied to different models, such as 12 
other Aw-Rascle type models, the generic second-order model, traffic flow models in Lagrangian 13 
formulation and to both first order and higher order models including multiple vehicle classes 14 
(e.g. cars and trucks). Non-Homogeneous models with relative small source terms (e.g. due to 15 
large relaxation times) will also benefit from applying the smoothing methods in combination 16 
with the McCormack and TVD Runge-Kutta schemes. Other types of smoothing, including flux 17 
limiting, can be studied and compared with those presented here. Study on other flux limiting 18 
terms for smoothing is also suggested for comparison purposes. Accuracy of the methods, as well 19 
as their computational costs in terms of memory and computation time can be compared in more 20 
detail.   21 
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