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Abstract

Modern control systems require control strategies that can handle multiple levels of abstrac-
tion while providing formal guarantees of system behavior. Traditional hierarchical control
approaches often lack formal interfaces between different layers of abstraction, making it
challenging to ensure system-wide properties and extend implementations across different
platforms.
This thesis presents a contract-based hierarchical control framework that provides formal
guarantees across different layers of abstraction. Building upon recent developments in
vertical contracts with heterogeneous refinements, we develop a three-layer control ar-
chitecture for robot surveillance tasks, decomposing the problem into motion planning,
trajectory generation, and tracking control. Each layer operates at its own time scale and
uses appropriate model abstractions, with contracts ensuring system-wide guarantees while
vertical system relationships enable proper interfacing between layers.
We validate our framework through both simulation studies and physical implementation
on Elisa3 robots. The simulation results demonstrate the framework’s ability to satisfy
high-level temporal logic specifications while maintaining guarantees at each layer. The
physical implementation reveals practical challenges in transitioning from simulation to
hardware, leading to adaptations in the control architecture that maintain theoretical
guarantees while accommodating hardware constraints.
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Chapter 1

Introduction

One of the fundamental challenges in control engineering has been the effective control
of complex dynamical systems. Such systems, characterized by nonlinear or high-order
dynamics, must satisfy various specifications while operating under multiple constraints.
This complexity is particularly evident in multi-agent systems, where multiple robots or
autonomous agents must coordinate their actions while maintaining individual performance
objectives.

The complexity of modern control systems can be effectively managed through hierarchi-
cal decomposition strategies. This approach, which systematically breaks down complex
systems into simpler, interconnected subsystems, enables structured analysis and control
design across multiple time scales. The theoretical foundations of hierarchical systems
theory, established in the late 1960s and 1970s to solve optimization problems, continue to
provide valuable insights today. The fundamental principle, as described in [3], involves
decomposing complex, high-order systems into several simpler, low-order subsystems while
ensuring overall system objectives are met.

In a typical hierarchical structure, the “supervisory” unit in the top layer coordinates
the “local” subsystem units in the bottom layer to achieve high-level objectives. A key
advantage of this approach is its ability to handle different levels of system abstraction:
while the lowest layer maintains the full complex model of the system, higher layers can
operate with simplified models that mask unnecessary lower-level details. This layered
approach to system abstraction simplifies both decision-making and control design across
the hierarchy.

The hierarchical design approach finds applications across various domains today. For
instance, in automobile manufacturing, the overall production process is decomposed into
specialized tasks such as painting, assembly, welding, and inspection, each performed by
dedicated robots. This task decomposition transforms the complex manufacturing process
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into smaller, simpler sub-tasks that can be executed independently. Similarly, in swarm
robotics applications for environment monitoring, hierarchical control enables efficient task
distribution among robots surveying specific regions, leading to more effective resource
utilization.
Traditional hierarchical control approaches often provide guarantees for individual layer
objectives, which collectively ensure desired system behavior. However, these guarantees
are typically system or problem-specific and lack generalizability across different imple-
mentations. Contract theory [4] offers a solution to this limitation by establishing formal
sets of assumptions and guarantees for each system component. These contracts provide a
template where components need only satisfy their specified guarantees, enabling modular
design and component interchangeability.
However, existing contract compositions primarily work horizontally—for components op-
erating within the same modeling domain. This becomes problematic when dealing with
hierarchical systems where different layers operate with heterogeneous models. The work
in [5] addresses this challenge by introducing vertical contracts with heterogeneous refine-
ments, enabling interfaces between different modeling domains. Building on this concept,
Mazo et al. [1] developed a hierarchical control framework that accommodates different
model abstractions operating at different time scales across its layers. Their framework pro-
vides formal guarantees through contracts at each layer, which, when composed vertically,
ensure desired overall system behaviour. This compositional approach enables indepen-
dent controller design at each layer, as fulfilling individual layer contracts is sufficient for
satisfaction of system-wide guarantees.

Contributions and outline

This thesis extends the work of [1], which was initially demonstrated through simulation
experiments for single robot systems. Our framework implements a natural hierarchi-
cal decomposition of a robot control problem: from high-level motion planning, through
trajectory generation, to low-level tracking control. Our primary contribution focuses on
implementing this hierarchical control framework on physical robotic systems and exploring
its extension to multi-agent systems.
The remainder of this thesis is organized as follows. Section 2 reviews related work across
multiple domains: methods for system abstraction,motion planning using temporal logic
specifications, and contract theory and its applications, in control theory and robotics. Sec-
tion 3 introduces key concepts and mathematical preliminaries essential for understanding
our framework. Section 4 develops the theoretical foundation of vertical system relation-
ships, which is crucial for interfacing different layers of our hierarchy. Building upon these
relationships, Section 5 presents our structured hierarchical control framework, detailing
the design and integration of different control layers.
Section 6 describes the experimental setup, including both simulation and hardware plat-
forms, while Section 7 validates our framework through comprehensive simulation studies.
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Section 8 extends these results to physical implementation on Elisa3 robots, addressing
the practical challenges encountered in transitioning from simulation to hardware. Finally,
Section 9 concludes the thesis with a summary of contributions and discusses potential
directions for future research.
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Chapter 2

Literature Review

2-1 Abstractions

System abstraction is a fundamental concept in control theory that enables us to compare
the behaviours of different systems, typically a complex system with a simpler one. The
key idea is to capture essential properties of a complex system while hiding unnecessary
details, allowing us to reason about system behaviour at an appropriate level of detail. For
instance, when dealing with robot motion control, we might abstract a robot’s complex
nonlinear dynamics into a simpler kinematic model for high-level planning purposes.
Formal methods like simulation relations provide a rigorous framework for establishing
these abstractions [6]. A simulation relation between two systems ensures that any be-
haviour of the concrete (more detailed) system can be mapped to a corresponding behaviour
in the abstract (simpler) system. This formal relationship guarantees that properties ver-
ified for the abstract system hold for the concrete system as well.
The power of abstractions becomes particularly evident in hierarchical system design. By
creating multiple levels of abstraction, we can decompose complex control problems into
more manageable subproblems. Each layer operates with a system model of appropriate
complexity: higher layers use simpler abstractions for tasks like planning and decision-
making, while lower layers work with more detailed models for precise control execution.
This hierarchical decomposition, supported by formal abstractions, enables us to handle
complex control problems while maintaining rigorous guarantees across different levels of
the hierarchy.
To illustrate the concept of abstraction, consider a car moving in a space partitioned into
three regions A, B, and C (see Figure 2-1). At the concrete level, the car’s behaviour
is described by detailed differential equations capturing its dynamics, including position,
velocity, steering angle, and physical constraints. However, for high-level planning, we can
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2-2 Motion planning for robots 5

abstract this complex model into a simpler transition system where the car’s location is
represented only by which partition (A, B, or C) it currently occupies. In this abstracted
model, the car’s movement between partitions is represented as discrete transitions (A→
B, B → C), while the detailed dynamics of how the car actually moves within and between
partitions are hidden. This abstraction preserves the essential property of reachability
between regions while significantly simplifying the system representation for high-level
planning tasks.

Figure 2-1: Example for system abstraction

2-2 Motion planning for robots

Motion planning is a fundamental problem in robotics where the objective is to generate a
sequence of actions that takes a robot from an initial state to a goal state while satisfying
various constraints. Traditional motion planning approaches typically focus on point-to-
point navigation [7, 8] or trajectory optimization between waypoints [9, 10]. However,
many modern robotic applications, particularly in surveillance and monitoring, require
more complex behavioural specifications that go beyond simple waypoint navigation -
such as periodic area coverage, ordered task execution, or maintaining safety constraints
throughout the mission [11, 12, 13, 14].

These complex behavioural requirements have motivated the use of formal methods in
robot motion planning, particularly Linear Temporal Logic (LTL) [15, 16]. Temporal
logic is a formalism that enables reasoning about sequences of events over time. LTL,
first introduced in [17] for specifying and verifying properties of computer programs, has
emerged as a powerful tool for specifying the behaviour of dynamical systems. Over the
past two decades, temporal logic has gained significant attention in both robotics and
control systems research as a powerful tool for specifying complex behavioural requirements
that traditional control specifications cannot easily capture. This shift towards temporal
logic specifications helps bridge the gap between software systems and control systems, as
temporal logic properties can be efficiently verified using simple software models like finite
state machines (FSM) [16].

An LTL formula “ϕ” represents an infinite sequence of events, where each event has an
unique successor event in time. Properties expressed in natural language can be translated
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2-2 Motion planning for robots 6

into LTL formulas using temporal operators, boolean operators and atomic propositions.
Consider a simple progress property, which states that every request must eventually be
followed by a response [15]. This property can be expressed using the LTL formula:

ϕ = 2(request→ 3response)

where 2 and 3 are temporal properties “always” and “eventually”, and the symbols “re-
quest” and “response” are the atomic propositions that take boolean values. This formula
specifies that whenever the proposition “request” becomes true, the proposition “response”
must become true at some point in the future. Such LTL formulas can be efficiently verified
against finite state machines.
Similarly, we can express robot motion planning tasks using LTL formulas. Consider a
robot operating in an environment partitioned into finite regions labeled from A to I (see
Figure 2-2). For a surveillance task requiring the robot to periodically visit regions A and
F while avoiding region E, we can encode these requirements as the LTL formula:

ϕ = 23A ∧23F ∧2¬E

This formula specifies that the robot must infinitely often visit regions A and F (23
indicating “always eventually”) while always avoiding region E. Such LTL specifications
generate high-level motion plans that can then be refined into concrete robot trajectories
using lower-level planning algorithms.

Figure 2-2: An example partitioned space

This formula combines both liveness properties (23A and 23F ), which ensure something
“good” eventually happens (in this case, regions A and F are visited infinitely often), and
safety properties (2¬E), which ensure something “bad” never happens (the robot never
enters region E). These fundamental property types form building blocks for constructing
more complex LTL specifications.
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2-2 Motion planning for robots 7

The abstraction methods discussed in the previous section play a crucial role in implement-
ing LTL specifications on dynamical systems. While LTL synthesis generates high-level
motion plans using finite state machines (FSMs), robotic systems are typically described
by continuous-state dynamical models, often nonlinear and subject to various constraints.
This disparity in system representations necessitates a formal bridge between the discrete
planning layer and the continuous execution layer.
Simulation relations provide this critical link by establishing formal behavioural relation-
ships between the concrete robot dynamics and the abstract FSM. These relations guar-
antee that any behaviour possible in the concrete system can be mapped to a correspond-
ing behaviour in the abstract system, ensuring that solutions found at the abstract level
(FSM) can be faithfully implemented by the concrete system (robot). This approach not
only provides theoretical guarantees of correctness but also enables the systematic re-
finement of high-level plans into executable trajectories that respect the robot’s dynamic
constraints[1, 18, 19].
This abstraction naturally leads to a two-layer hierarchical control structure: an upper
layer working with the simpler FSM for discrete planning based on LTL specifications, and
a lower layer handling the concrete robot dynamics for trajectory execution [1, 20, 21]. This
can be viewed as a form of hierarchical control where complex control tasks are decomposed
across layers of varying abstraction, with each layer handling tasks appropriate to its level
of system complexity. The upper layer focuses on satisfying logical specifications using
simplified system representations, while the lower layer manages the detailed dynamic
behaviour of the physical system.
We now review existing approaches to LTL-based motion planning for single-robot systems,
before discussing extensions to multi-robot scenarios.

2-2-1 Planning for single-agent systems

Control synthesis for LTL specifications has been addressed through various methodologies.
The traditional approach relies on automata theory, where the LTL formula is converted
to a Büchi/Rabin automaton and the synthesis problem is solved as a two-player game
[15, 16]. While this method guarantees completeness, it suffers from state explosion in the
Büchi automaton construction, where the state space grows exponentially with both the
length of the LTL formula and the number of atomic propositions involved. This issue
becomes particularly challenging when specifications include multiple temporal operators
or when dealing with intricate behavioural requirements involving multiple system prop-
erties. Alternative approaches include graph-based search methods that find satisfying
paths in product automata [11, 22], and optimization-based techniques that incorporate
LTL constraints into optimization frameworks [23].
There also exists a fragment of LTL called GR(1) (Generalized Reactivity of rank 1)
that restricts specifications to environment assumptions and system guarantees, enabling
polynomial-time synthesis compared to the doubly exponential complexity of general LTL
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synthesis [24, 21, 25, 26]. While traditional LTL synthesis methods compute complete
strategies offline, GR(1)’s reduced computational complexity enables online synthesis of
reactive controllers that can adapt to changing environment conditions. The authors in
[25] develop a receding horizon framework to address the complexity of GR(1) synthesis,
with their implementation available through the TuLiP Python toolbox [27].

In [20, 18], hybrid controllers are developed from LTL specifications, with [20] utilizing
approximate simulation relations for more robust system abstraction. A notable recent
work [28] presents a three-layer hierarchical control architecture for robots in partially
observable environments. The framework synthesizes motion plans from syntactically co-
safe LTL (scLTL) specifications at the top layer, generates trajectories using MPC at the
middle layer, and employs control barrier functions (CBF) at the bottom layer to ensure
bounded tracking errors.

An extension of LTL is Signal Temporal Logic (STL), which offers enhanced expressive-
ness for system specifications [29, 30, 31, 32]. STL, a predicate-based logic interpreted
over continuous-time signals, enables the specification of quantitative temporal and spa-
tial properties. A key feature of STL is its ability to measure the degree of specification
satisfaction (robustness), in contrast to the boolean satisfaction metrics of LTL. However,
while STL offers more expressive power in defining system specifications, it typically incurs
higher computational complexity compared to LTL synthesis.

2-2-2 Planning for multi-agent systems

Planning for multi-agent systems introduces additional complexity compared to single-
agent LTL synthesis. While individual agents can have local specifications governing their
behaviour, the overall system often needs to satisfy global specifications that require coor-
dination among agents. The synthesis problem can be approached either top-down, where
a global specification is decomposed into local specifications for each agent, or bottom-up,
where individual agent behaviours are composed to satisfy global requirements. Similar to
single-agent cases, solutions employ automata-based, graph-search, or optimization meth-
ods [33]. However, the key challenge lies in handling the exponential growth of the state
space with the number of agents and managing the coupling between agent behaviours
through their specifications. This has led to specialized techniques focusing on decompo-
sition and distributed synthesis to manage computational complexity.

Early works like [34] and [35] established frameworks for automatically generating motion
plans from global LTL specifications for robot teams. These centralized approaches, while
guaranteeing correctness, faced scalability challenges with increasing number of agents.
This led to the development of distributed and decentralized solutions.

One direction focuses on decomposing global specifications into local tasks. [36] and [37]
propose decentralized frameworks where agents coordinate through local LTL specifications
while maintaining global objectives. This approach is further developed in [38], which
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2-3 Contract theory 9

addresses both motion and task specifications in a distributed manner. [39] extends this
by enabling dynamic plan reconfiguration under local specifications.

Alternative approaches include sampling-based methods [40] for handling global tempo-
ral specifications, and optimization-based techniques combining LTL with control barrier
certificates [41] for safety-critical applications. [42] focuses on optimal path planning for
multi-robot systems while [26] addresses reactive mission planning with dynamic obstacle
avoidance and deadlock resolution.

2-2-3 Limitations of existing methods

Existing approaches in hierarchical control and temporal logic-based motion planning,
while effective for their specific contexts, have several limitations. Most hierarchical frame-
works focus on the decomposition of tasks across layers but lack formal guarantees when
different layers use heterogeneous models [20]. For instance, transitioning between dis-
crete plans and continuous controllers often relies on informal bridges between abstraction
layers. Additionally, while some works provide system guarantees, these are typically spe-
cific to particular system types or controller designs, limiting their broader applicability
[28]. Moreover, the independent development of controllers at different hierarchical levels
remains challenging, as most approaches tightly couple the design of high-level planners
with low-level controllers.

2-3 Contract theory

Contract theory was popularized in the early 1990s to address complexity of systems in
the field of software engineering [43]. The primary objective at that time was to improve
the reliability of software systems. Contract-based system design is capable of relating
systems in different layers of abstraction and also enable component-based design in a
horizontal layer. Over time, researchers have extended this concept to cyber-physical
systems (CPS), making it possible to incorporate contract theory with physical processes
using mathematical meta-theory.

Contract theory, particularly in the form of assume-guarantee contracts (AGC), offers
several key advantages in modern system design. First, it provides a formal framework
that simplifies complex system design: each component’s responsibilities are explicitly
defined through its contract, making system-wide properties easier to verify. Second, the
compositional nature of contracts enables independent development and verification of
components, facilitating parallel development by different teams or organizations.

Moreover, contracts serve as a powerful tool for system integration and maintenance. They
provide explicit documentation of component interactions and requirements, making it
easier to identify and resolve integration issues. This formal specification of interfaces
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2-3 Contract theory 10

and behaviours is particularly valuable in large-scale systems where components may be
developed by different suppliers or updated over time.
We now look at an example of an assume-guarantee contract from [4]:

C1 :



variables:
{

inputs: x, y

outputs: z

types: x, y, z ∈ R
assumption A1: y ̸= 0

guarantee G1: z = x/y

(2-1)

This simple contract describes a division operation: under the assumption that the de-
nominator y is non-zero (A1), the contract guarantees that the output z will be equal to
x divided by y (G1). This illustrates the fundamental structure of assume-guarantee con-
tracts, where assumptions specify the conditions under which the component must operate,
and guarantees specify what the component promises to deliver under these conditions.

2-3-1 Application to dynamical systems

A direction focused on behavioural specifications, where [44, 45] establish contracts with
different perspectives on system behaviour: [45] captures pure output behaviour, while
[44] specifies guarantees as input-output behaviours. [46] introduces assume-guarantee
contracts as a framework for specifying control system requirements for dynamical sys-
tems in driving variable form, where system behaviour and its environment are compared
through simulation relations. Both [44, 46] demonstrate the application of contracts in
control systems through implementation on vehicle follower systems.
Parametric assume-guarantee contracts [47] enable more precise specification of guarantees
through the classification of assumptions into sub-classes, each triggering specific guaran-
tees when fulfilled. This framework has been extended to controller synthesis for inter-
connected systems in [48], where parametric AGCs are formulated as STL specifications.
[49] addresses safety synthesis for complex discrete-time interconnected systems, where
controllers are synthesized for each subsystem to ensure operation within their safe sets.
One drawback of traditional contract composition and refinement operations is that they
are applicable only to homogeneous systems operating in the same modeling domain. For
systems with heterogeneous models, [5] introduces the concept of vertical contracts. These
contracts establish behavioural mappings between different modeling domains, enabling
contract operations across heterogeneous system models.
Building upon this concept of vertical contracts, [1] develops a hierarchical control frame-
work that addresses the limitations of existing approaches. The framework provides system
guarantees across heterogeneous models operating in different signal spaces through ver-
tical contracts. Its compositional design principles allow for independent development of
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2-4 Proposed solution 11

controllers at each layer. Moreover, the framework offers flexibility in implementation:
components or controllers can be replaced with alternative designs as long as they satisfy
their respective contracts, maintaining overall system guarantees.

2-4 Proposed solution

Building upon the hierarchical control framework presented in [1], we extend and implement
a three-layer control architecture for robot surveillance problems. Each layer operates at a
different abstraction level and time scale, with formal contracts ensuring proper interaction
between layers. While [1] demonstrated the theoretical framework through simulations, our
work focuses on extending it to physical robot implementation and exploring multi-agent
scenarios.
The top layer handles high-level motion planning using a finite transition system repre-
sentation of the robot’s workspace. Given an LTL specification describing the surveillance
requirements, this layer generates a discrete motion plan that satisfies the high-level task.
The middle layer bridges the gap between discrete planning and continuous motion by
generating feasible trajectories that realize the high-level plan. Operating in discrete time,
this layer employs Model Predictive Control (MPC) [50] to generate feasible trajectories
while respecting the high-level system transitions and other system constraints.
The bottom layer ensures precise trajectory tracking using the robot’s full nonlinear dynam-
ics. It first interpolates the discrete trajectory points from the middle layer to generate a
continuous reference trajectory. A feedback linearization controller [51, 52] is then designed
to track this interpolated trajectory, effectively handling the robot’s nonlinear dynamics.
Formal contracts are defined at each layer, with each contract guaranteeing its layer’s
model abstraction and output property requirements. Through vertical composition of
these contracts, we obtain formal guarantees for the overall system behaviour. The inter-
action between layers is formalized through vertical system relationships, where transducer
maps embedded with simulation relations establish abstractions between systems operating
in different signal spaces. This formal relationship, combined with compositional design
principles, enables the transfer of controller properties across different signal spaces - from
finite transitions to discrete-time signals, and from discrete-time to continuous-time signals.
We validate our framework through both simulation and hardware experiments. For the
single-robot case, we present comprehensive simulation results followed by implementation
on physical Elisa3 robots. We also demonstrate the framework’s extensibility to multi-
robot systems through simulation studies.
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Chapter 3

Preliminaries

We define Ln
∞ to denote the set of bounded signals from time to Euclidean space x : R+ →

Rn, Dn
∞ for bounded discrete time signals xd : N→ Rn, and Σω for the set of infinite-length

sequences over some alphabet Σ of finite cardinality, and ΣX for the space of continuous
time signals with image on Σ, i.e., x ∈ ΣX . We use 2X to denote the power set of X .
We simplify notation by writing x, y ∈ L∞ to denote that both signals belong to their
corresponding Ln

∞, with possibly different n for x and y.
The projection map on the i-th entry is denoted by πi, e.g., π2 : (x, y) 7→ y. To simplify
notation, we sometimes denote by F(A) the set of all values resulting from applying the
function F to every element in A, i.e., F(A) = {y | y = F(x), x ∈ A}, where F : X → Y
and A ∈ 2X . For a differential equation ξ̇u,x(t) = f(ξu,x(t), u(t)), ξ(0) = x, we denote
ξu,x(0 : τ) as the solution to the differential equation ξ̇u,x(t) with initial condition x and
input u, restricted to the time segment 0 to τ .

3-1 Systems

3-1-1 System definitions

Definition 3-1.1 (System [6, 16]). A system S is a tuple S = (X, X0, U,−−�, Y, H)
consisting of

• a (possibly infinite) set of states X;

• a (possibly infinite) set of initial states X0 ⊆ X;

• a (possibly infinite) set of inputs U ;
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3-1 Systems 13

• a transition relation −−� ⊆ X × U ×X;

• a set of outputs Y

• an output map H : X → Y

The states in X are referred to as internal states, and the outputs are externally visible.
A system is called finite-state if the set X is finite. The system is called infinite-state
if the set X is infinite. System evolution is captured by transitions, which is defined by
(x, u, x′) ∈−−�, with x, x′ ∈ X and u ∈ U . This transition will be denoted as x

u
−−−� x′.

In the transition relation x
u
−−−� x′, x′ is called the u-successor or successor state of x.

Similarly, x is called a u-predecessor or predecessor state of x′. We denote the set of u-
successor states of a state x as Postu(x), and its set of u-predecessor states as Preu(x). A
state x may have no successors, a single successor, or multiple successor states. We also
denote U(x) as the set of inputs u ∈ U for which Postu(x) is non-empty. A system is
called deterministic if for any state x ∈ X and u ∈ U , there exists at most one successor
state. An equivalent expression for deterministic systems is for any state x ∈ X and any
input u ∈ U , x

u
−−−� x′ and x

u
−−−� x′′ imply x′ = x′′, assuming that both x′ and x′′ exist.

For multi-agent systems, the collective behaviour of all individual transition systems can
be captured by constructing their product transition system, which represents all possible
combinations of states and transitions of the constituent systems.

Definition 3-1.2 (Product Transition System (PTS) [40]). Given N transition systems
Si = (Xi, Xi,0, Ui,−−−�

i
, Yi, Hi), i = 1, 2, . . . , N , the product transition system SP = S1 ⊗

S2 ⊗ · · · ⊗ SN is a tuple SP = (XP , XP,0, UP ,−−−�
P

, YP , HP) consisting of

• a (possibly infinite) set of states XP = X1 ×X2 × . . . XN ;

• a (possibly infinite) set of initial states XP,0 ⊆ XP ;

• a (possibly infinite) set of inputs UP ;

• a transition relation −−−�
P
⊆ XP × UP ×XP ;

• a set of outputs YP

• an output map HP : XP → YP

The transition xP
uP−−−� x′

P holds true if and only if ∧N
i=1(xi

ui−−−� x′
i) is true.
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3-1-2 System behaviour

We will now define system behaviour. Given any state x ∈ X, a finite internal behaviour
generated from x is a finite sequence of transitions

x0
u0−−−� x1

u1−−−� x2
u2−−−� · · ·

un−2
−−−� xn−1

un−1
−−−� xn

such that x0 = x and xi

ui−−−� xi+1 for all 0 ≤ i < n, i, n ∈ N. A finite internal behaviour
can be extended to infinite internal behaviour, which is an infinite sequence of states instead
of the finite case.
Similarly, using an output map, we can extract an external behaviour for every internal
behaviour. A finite external behaviour corresponding to the finite internal behaviour is

y0 −−� y1 −−� y2 −−� · · · −−� yn−1 −−� yn

with H(xi) = yi ∈ Y for all 0 ≤ i < n, i, n ∈ N0. An external behaviour is also represented
using the notation Y = y0y1y2 . . . yn. We denote the finite external behaviour defined by
the finite internal behaviour generated from state x ∈ X0 as Bx(S), where S refers to
the system. The set of all external behaviours generated by the system S is given by
B(S) = ⋃

x∈X0 Bx(S). For output deterministic systems, we can uniquely identify a finite
internal behaviour of a system given a finite external behaviour.
Similar to internal behaviour, finite external behaviour can be extended to infinite exter-
nal behaviour. We denote the infinite external behaviour defined by the infinite internal
behaviour generated from state x ∈ X0 as Bω

x (S), where S refers to the system. The set of
all external behaviours generated by the system S is given by Bω(S) = ⋃

x∈X0 Bω
x (S).

3-1-3 Similarity relationships

We will now look at means to establish a relationship between two systems.

Definition 3-1.3 (Simulation relation [6]). Given two systems Sa and Sb with Ya = Yb, a
relation R ⊆ Xa×Xb is a simulation relation from Sa to Sb if the following conditions are
satisfied:

1. for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;

2. for every (xa, xb) ∈ R we have Ha(xa) = Hb(xb);

3. for every (xa, xb) ∈ R we have that xa

ua−−−�
a

x′
a in Sa implies the existence of xb

ub−−−�
b

x′
b in Sb satisfying (x′

a, x′
b) ∈ R.

If there exists a simulation relation from Sa to Sb, we say that Sb simulates Sa, denoted by
Sa ⪯S Sb.
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3-2 Linear Temporal Logic 15

Let us elaborate the meaning of the above definition. Firstly, the initial state in system
Sa must be simulated by some initial state in Sb. Secondly, if a state in Sb simulates a
state in Sa, then their outputs must be equal. Finally, for a transition in Sa, there must
exist an equivalent transition in Sb such that the pair of successor states also satisfy the
simulation relation given that the pair of predecessor states satisfy the relation. We call Sb

to be an abstraction of Sa and Sa to be a refinement of Sb. We can also define R to be a
bisimulation relation if there exists a simulation relation R from Sa to Sb and a simulation
relation R−1 from Sb to Sa, and we say that Sa is bisimilar to Sb, denoted by Sa

∼=S Sb

When we deal with control systems, in addition to the existence of matching transitions,
we also require the existence of control inputs that forces these transitions. Including the
condition of matching control inputs help us distinguish when the system is acted upon by
the controller and when it is acted upon by the environment. An alternating simulation
relation captures this relation, providing an extension to the classic simulation relation.

Definition 3-1.4 (Alternating simulation relation [6]). Given two systems Sa and Sb with
Ya = Yb, a relation R ⊆ Xa ×Xb is an alternating simulation relation from Sa to Sb if the
following conditions are satisfied:

1. for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with (xa0, xb0) ∈ R;

2. for every (xa, xb) ∈ R we have Ha(xa) = Hb(xb);

3. for every (xa, xb) ∈ R and for every ua ∈ Ua(xa), there exists ub ∈ Ub(xb) such that
for every x′

b ∈ Postub
(xb) there exists x′

a ∈ Postua(xa) satisfying (x′
a, x′

b) ∈ R.

If there exists an alternating simulation relation from Sa to Sb, we say that Sa is alternating
simulated by Sb, denoted by Sa ⪯AS Sb.

In the case of deterministic systems, where |Postua| ≤ 1 and |Postub
| ≤ 1, the definition

of alternating simulation relation simplifies to a simulation relation. Specifically, the final
condition in each definition is the same.

3-2 Linear Temporal Logic

An LTL formula “ϕ” typically represent an infinite sequence of events, where each event
has an unique successor event in time. Events are described using natural language and
translated into LTL formulas using special symbols. An LTL formula is constructed using a
set of observations or atomic propositions, Boolean operators (⊤ or “true”, ¬ or “negation”,
and ∧ or “conjunction”), and temporal operators (⃝ or “next”, and U or “until”) [15, 16].
We define the syntax of LTL formulas as follows:
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3-2 Linear Temporal Logic 16

Definition 3-2.1 (LTL syntax [16]). A (propositional) Linear Temporal Logic (LTL) for-
mula ϕ over a given set of atomic propositions AP is recursively defined as

ϕ = ⊤ | p | ϕ1 ∧ ϕ2 | ¬ϕ | ⃝ ϕ | ϕ1Uϕ2, (3-1)

where p ∈ AP is an atomic proposition, and ϕ, ϕ1 and ϕ2 are LTL formulas

Additional operators are defined as follows:

ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2)
ϕ1 → ϕ2 := ¬ϕ1 ∧ ϕ2

ϕ1 ↔ ϕ2 := (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1),
(3-2)

where ∨,→ and ↔ stand for disjunction, implication and equivalence respectively. Addi-
tionally, the temporal operators 3 (“eventually”) and 2 (“always”) are defined as

3 := ⊤Uϕ
2 := ¬3¬ϕ

(3-3)

As we mentioned earlier, an LTL formula is represented using an infinite sequence of events.
We describe these events as words made of atomic propositions from AP . In other terms,
the infinite sequence of words are made over the set of infinite propositions APω. Formally,
we define the LTL semantics as follows:

Definition 3-2.2 (LTL semantics [16][1]). The satisfaction of formula ϕ over a set of
propositions AP at position k ∈ N by word σ = σ0σ1σ2... ∈ (2AP)ω, denoted by σ |= ϕ, is
defined recursively as follows:

• σ |= ⊤;

• σ |= p if and only if p ∈ σ0;

• σ |= ϕ1 ∧ ϕ2 if and only if σ |= ϕ1 and σ |= ϕ2;

• σ |= ¬ϕ if and only if σ ̸|= ϕ;

• σ |=⃝ϕ if and only if σ1σ2σ3 . . . |= ϕ;

• σ |= ϕ1 U ϕ2 if and only if ∃j ≥ 0 such that σjσj+1σj+2 . . . |= ϕ2 and σiσi+1σi+2 . . . |=
ϕ1 for all 0 ≤ i < j.

In LTL synthesis, we want to find an accepting word σ that satisfies the LTL formula ϕ
(σ |= ϕ). Any accepting word σ can be written as a combination of finite prefix of symbols
σpre ∈ 2AP followed by the infinite repetition of a finite suffix of symbols σsuf ∈ 2AP . This is
called the prefix-suffix structure, where an accepting word can be represented as σpre(σsuf)ω.
In later sections, we will discuss how to find this accepting word using the system S and
the LTL formula ϕ.
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3-3 Contract Theory 17

Büchi Automaton

When synthesizing a sequence of states that satisfy the LTL formula, we often convert the
LTL formula into a Büchi automaton.
Definition 3-2.3 (Büchi automaton [16]). A (nondeterministic) Büchi automaton is a
tuple B = (S, S0, Σ, δ, F ) where

• S is a finite set of states

• S0 ⊆ S is a finite set of initial states

• Σ is the input alphabet

• δ : S × Σ→ 2S is a nondeterministic transition function

• F ⊆ S is the set of accepting(final states)

3-3 Contract Theory

We begin this section by defining a component and an environment. A component “M”
can be considered to be an open-system that accepts inputs from other components and/or
the external world and generates outputs. A component is characterized by its variables
and behaviour. An environment “E” is defined as the external world along with other com-
ponents that interact with the component of interest. We define the set of all components
by the symbol “M” and the set of all environments by the symbol “E” [4].
A contract “C” is a way of specifying these components by exposing only the necessary
information about them. A contract is defined as a pair of a subset of contract implemen-
tations and a subset of the environments in which it operates, denoted by C = (EC,MC).
Definition 3-3.1 (Contract [4]). A contract is a pair C = (EC,MC) where:

• MC ⊆M is a set of implementations of C

• EC ⊆ E is a set of environments for C

A contract is said to be consistent if it possesses implementations, i.e., MC ̸= ∅. A
contract is said to be compatible if there exists environments in which it can operate, i.e.,
EC ̸= ∅. We denote a component that implements a contract by M |=M C (or equivalently
M ∈MC), and an environment for the contract by E |=E C (or equivalently E ∈ EC).
In this work, we will use the notion of assume-guarantee reasoning to define the behaviour
of a component in a contract, also called assume/guarantee contract (AGC) theory. The
component makes assumptions about the environment, and the guarantees are the contract
implementations when the said assumptions hold true. To incorporate assume/guarantee
reasoning to the definition of a contract, we redefine 3-3.1 as follows:

Master of Science Thesis Shashank Dilip Kumar



3-3 Contract Theory 18

Definition 3-3.2 (Assume-guarantee contract [4]). A contract is a pair C = (A, G) of
assertions, called the assumptions and guarantees, such that

1. The set EC of the legal environments for C collects all components E such that E ⊆ A

2. The set MC of all components implementing C is defined by A×M ⊆ G

where × is the composition operator for components.

Contract composition combines multiple contracts to describe how different components
interact with each other in a system. The overall contract resulting from composition
describes the behaviour of a larger subsystem or the overall system.

Definition 3-3.3 (Contract composition [53]). Given contracts C1 and C ′, their composi-
tion, written as C ⊗ C ′, is the smallest contract in the refinement order such that:

1. Composing implementations of each contract results in an implementation that sat-
isfies the composed contract (M ×M ′ |=M C ⊗ C ′, ∀M |=M C, M ′ |=M C ′)

2. Composing an implementation of C with the environment of the composed contract
results in an environment for C ′ and vice-versa (E ×M ′ |=E C and E ×M |=E C ′,
∀M |=M C, M ′ |=M C ′, E |=E C ⊗ C ′)

Equivalently, these can be expressed as

M ×M ′ |=M C ⊗ C ′

E ×M ′ |=E C
E ×M |=E C ′

∀M |=M C, M ′ |=M C ′, E |=E C ⊗ C ′ (3-4)

We say a contract C = (A, G) is saturated if G = G ∪ ¬A. A contract C = (A, G) is
equivalent to its saturated form C = (A, G ∪ ¬A). A saturated contract C = (A, G) is
consistent if and only if G ̸= ∅ and compatible if and only if A ̸= ∅. If two contracts C1
and C2 are saturated, the composition C1⊗C2 is defined as being the pair (A, G) such that
G = G1 ∩G2 and A = (A1 ∩ A2) ∪ ¬(G1 ∩G2) [4].
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Chapter 4

Vertical System Relationships

4-1 Signals and transducer maps

To define heterogeneous relationships between layers of control operating in different signal
spaces, we first need to establish a form of mapping, which we call transducer maps,
between the different signal spaces of these layers. We start with the mapping between the
continuous and discrete-time signals.
Definition 4-1.1 (Periodic sampler [1]). Given a continuous-time signal x : R+ → Rn,
we define a discrete-time signal xd using the map ST : L∞ → D∞ such that

ST (x) = xd, xd(k) = x(kT ) ∀k ∈ N, (4-1)

where T is the sampling period. We call the map ST as the periodic sampler.
Definition 4-1.2 (Linear periodic interpolator [1]). Given a discrete-time signal xd : N→
Rn, we define a continuous-time signal x̂(t) using the map TT : D∞ → L∞ such that

x̂(t) = TT (xd),
x̂(t) = xd(k) + t−kT

T
(xd(k + 1)− xd(k)),

∀t ∈ [kT, (k + 1)T ), k ∈ N
(4-2)

where T is the sampling period. We call the map TT as the linear periodic interpolator.
Definition 4-1.3 ((ϵ, δ)−T inverse sampler [1]). Given a discrete-time signal xd : N→ Rn,
we define a map S−1

(ϵ,δ)−T : D∞ → 2L∞ such that

S−1
(ϵ,δ)−T (xd) := {x | ∥x− TT (xd)∥∞ ≤ δ} ∩ {x | ∥x(kT )− xd(k)∥ ≤ ϵ} (4-3)

S−1
(ϵ,δ)−T represents the set of continuous-time signals bounded by (ϵ, δ) from the linear

periodic interpolator.
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The bound ϵ constrains how far the continuous-time signal x can deviate from the discrete-
samples of signal xd and the bound δ constrains how far the continuous-time signal x
can deviate from the interpolated signal TT (xd). If ϵ = δ, we can say S−1

(ϵ,δ)−T := S−1
δ−T .

Establishing these bounds help account for noisy measurements and imperfections during
signal sampling.

Definition 4-1.4 (Quantizer [1]). Given a discrete-time T = N, a signal T → X , a
partition P ⊂ 2X of X = ∪[pi]∈P [pi], we denote by pi the representative of each set [pi],
p(x) = p s.t. x ∈ [p], and Σ = {pi}, the alphabet of symbols of the quantizer. We define
the map QP : D∞ → Σω such that

QP (x)(t) = p(x(t)), ∀t ∈ N (4-4)

We call the map QP as the quantizer with partition P .

Definition 4-1.5 (P-inverse quantizer [1]). We define the map Q−1
P : Σω → 2D∞ such that

Q−1
P (xq) := {xd |xd(t) ∈ [xq(t)]}, ∀t ∈ N (4-5)

We call the map Q−1
P as the P-inverse quantizer.

We can further transform quantized signals into a sequence discrete events as follows.

Definition 4-1.6 (Eventifier [1]). Given a sequence xe
q defined iteratively starting with

k = 0, r = 1, xe
q(0) = xq(0) we define a map E : Σω → Σω, E(xq) := xe

q such that:

xe
q(r) = xq(k + 1), r ← r + 1, k ← k + 1, if xq(k + 1) ̸= xq(k)

k ← k + 1, if xq(k + 1) = xq(k) (4-6)

We call the map E as the eventifier.

Definition 4-1.7 (l-inverse eventifier [1]). We define the map E−1
l : Σω → 2Σω such that

E−1
l (xe

q) := {xq ∈ Σω
l | E(xq) = xe

q} (4-7)

Σω
l is the set of signals satisfying ∀k ∈ N, ∃r(k) ≤ l s.t. xq(k + r(k)) ̸= xq(k). We call the

map E−1
l as the l-inverse eventifier.

In simpler terms, an l-inverse eventifier is the set of all signals that have an output symbol
change separated by at most l time-steps, which when eventified result in the sequence xe

q.
Figure 4-1, taken from [1], provides a visual representation of the relationships between
the transducer maps we have defined.
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Figure 4-1: Relationship between the transducer maps [1]

4-2 System relationships

In Section 3-1-3, we introduced the concept of simulation relations as a way to establish
formal relationships between systems. While traditional simulation relations are effective
when comparing systems that share the same signal space, our framework deals with sys-
tems that operate across different signal spaces. Therefore, we present a modified definition
of simulation relations that incorporates these maps between heterogeneous systems.

Definition 4-2.1 (F−1-simulation relation [1]). Consider two systems Sa and Sb, F =
Fu × Fy, Fu : Ua → Ub, Fy : Ya → Yb be a transducer map between two spaces with
corresponding proper inverse F−1 = F−1

u × F−1
y ,F−1

u : Ub → 2Ua and F−1
y : Yb → 2Ya.

A relation RF−1 ⊆ Xa × Xb is an F−1-simulation relation from Sa to Sb if the following
conditions are satisfied:

(i) for every xa,0 ∈ Xa,0, there exists xb,0 ∈ Xb,0 with (xa,0, xb,0) ∈ RF−1;

(ii) for every (xa, xb) ∈ RF−1, and for every ua ∈ U(xa), there exists ub = Fu(ua) ∈
U(xb) such that for every xa

ua−−−�
a

x′
a in Sa, there exists xb

ub−−−�
b

x′
b in Sb satisfying

(x′
a, x′

b) ∈ RF−1 and Ha(xa

ua−−−�
a

x′
a) ∼F−1

y
Hb(xb

ub−−−�
b

x′
b).

If there exists an F−1-simulation relation from Sa to Sb, we say that Sb F−1 simulates Sa,
denoted by Sa ⪯S,F−1 Sb.

The difference between a classical simulation relation (3-1.3) and an F−1 simulation relation
is the embedding of a transducer F in the relation. As we discussed in the previous section,
an example of this transducer map F is a periodic sampler ST . In that case, system Sa will
be modelled in continuous-time and system Sb in discrete-time. When RF−1 is a simulation
relation from Sa to Sb and its inverse R−1

F−1 is a simulation relation from Sb to Sa, we obtain
an F−1-bisimulation relation between Sa and Sb.
We can also define alternating F−1 simulation relation.

Master of Science Thesis Shashank Dilip Kumar



4-2 System relationships 22

Definition 4-2.2 (Alternating F−1-simulation relation [1]). Consider two systems Sa and
Sb, F = Fu × Fy, Fu : Ua → Ub, Fy : Ya → Yb be a transducer map between two spaces,
with corresponding proper inverse F−1 = F−1

u ×F−1
y ,F−1

u : Ub → 2Ua and F−1
y : Yb → 2Ya.

A relation RF−1 ⊂ Xa ×Xb is an alternating F−1-simulation relation from Sa to Sb if the
following conditions are satisfied:

(i) for every xa,0 ∈ Xa,0, there exists xb,0 ∈ Xb,0 with (xa,0, xb,0) ∈ RF−1;

(ii) for every (xa, xb) ∈ RF−1 and for every ua ∈ U(xa), there exists some ub ∈ U(xb)
such that ub = Fu(ua), and for every x′

b ∈ Postub
(xb), there exists x′

a ∈ Postua(xa)
satisfying (x′

a, x′
b) ∈ RF−1 and Ha(xa

ua−−−�
a

x′
a) ∼F−1

y
Hb(xb

ub−−−�
b

x′
b).

The above described simulation relations help compare the behaviour of two systems op-
erating in different signal spaces. We also need to define a framework that allow us to
use the inputs and outputs of systems defined in one signal space with systems defined in
another signal space.

Definition 4-2.3 (F -transduced system [1]). Given a system S = (X, X0, U,−−�, Y, H)
and the transducers F = Fu × Fy, F−1 = F−1

u × F−1
y with Fu : U → Uf , Fy : Y → Yf ,

F−1
u : Uf → 2U , and F−1

y : Yf → 2Y , we call the F-transduced system of S:

F(S,F−1) =
(

X, X0, Uf ,−−−�
f

, Yf ,Fy ◦H
)

where
(x, uf , x′) ∈−−−�

f
⇐⇒ ∃u ∈ F−1

u (uf ) s.t. (x, u, x′) ∈−−� .

Definition 4-2.4 (F−1-transduced system [1]). Given a system S = (X, X0, U,−−�, Y, H)
and the transducers F = Fu × Fy, F−1 = F−1

u × F−1
y with Fu : U → Uf , Fy : Y → Yf ,

F−1
u : Uf → 2U , and F−1

y : Yf → 2Y , we call the F−1-transduced system of S:

F−1(S) =
(

X, X0, 2Uf ,−−−�
f

, 2Yf ,F−1
y ◦H

)

where
(x, uf , x′) ∈−−−�

f
⇐⇒ ∀u′ ∈ Fu(uf ), (x, u′, x′) ∈−−� .

To achieve the desired system behavior, we can utilize system composition. Through
system composition, it is possible to combine two systems to create an open system that
exhibits our target properties. We introduce a composition method that incorporates both
feedback and feedforward elements:
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Definition 4-2.5 (Open sequential feedback composition [1]). Given two systems Sa =
(Xa, Xa,0, Ua,−−−�

a
, Ya, Ha) and Sb = (Xb, Xb,0, Ub,−−−�

b
, Yb, Hb), and a pair F = (Fi, Fo) of

interconnection maps Fi : Ya× Yb×Uc → Ua×Ub, with Fi = Fi1×Fi2, Fi1 : Ya× Yb → Ua,
Fi2 : Ya × Uc → Ub, and Fo : Ya × Yb → Yc, the open sequential feedback composition of Sa

with Sb, denoted Sa ∥F Sb, is given by the system Sc = (Xc, Xc,0, Uc,−−−�
c

, Yc, Hc) with:

• Xc : Xa ×Xb × Ya

• Xc,0 : Xa,0 ×Xb,0 × Ya,0

• −−−�
c

= {((xa, xb, ya), uc, (x′
a, x′

b, y′
a)) ∈ Xc × Uc ×Xc | (xa, ua, x′

a) ∈−−−�
a

∧ (xb, ub, x′
b) ∈−−−�

b
∧ y′

a = Ha((xa, ua, x′
a))

with ua = Fi1(ya, Hb(xb, ub, x′
b)), ub = Fi2(ya, uc)}

• Hc = Fo

This system composition can be interpreted from a control theory perspective, where Sa

represents the plant and Sb serves as the controller, resulting in the controlled system Sc.
Figure 4-2 illustrates this feedback composition through a block diagram.

Figure 4-2: Block diagram of open sequential feedback composition

This feedback composition, when combined with our previously defined F−1 simulation
relations, provides a powerful framework for translating controller designs across different
signal spaces.

Proposition 1 (Controller transference [1]). Let the system Sb = (Xb, Xb,0,Fu(Ua),−−−�
b

,Fy(Ya), Hb) be an abstraction of system Sa = (Xa, Xa,0, Ua,−−−�
a

, Ya, Ha) in the sense that:

Sa ⪯S,F−1 Sb ⪯AS,F−1 Sa,
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with F = Fu×Fy, F−1 = F−1
u ×F−1

y proper, Fy : Ya → Yb, Fu : Ua → Ub, F−1
y : Yb → 2Ya ,

F−1
u : Ub → 2Ua . Consider a third system Sc = (Xc, Xc,0, Uc,−−−�

c
, Yc, Hc) composable with

Sb via an interconnection mapping F . The following holds:

F(Sa) ∥F Sc ⪯S F ◦ F−1(Sb ∥F Sc) ⪯AS F(Sa) ∥F Sc.

For the proof of proposition 1, we ask the reader to refer [1].

Master of Science Thesis Shashank Dilip Kumar



Chapter 5

Structured Hierarchical Control System
Design

In this work, we implement a novel approach to hierarchical control systems that com-
poses control systems vertically, in contrast to the more common horizontal compositions
prevalent in the literature. The framework we implement, developed by Mazo et al. [1],
addresses the limitations of existing hierarchical control structures, which typically fall into
three categories:

• Hierarchical structures where each layer operates in the same modeling domain and
has system guarantees,

• Hierarchical structures where each layer operates in different modeling domains but
lacks comprehensive system guarantees, or

• Hierarchical structures where controllers at different layers are tightly coupled, mak-
ing independent development and modification difficult.

The framework proposed by Mazo et al. [1] allows us to:

• Model each layer using different signal spaces, and operate each layer at different
frequencies.

• Obtain guarantees that the behavior of the concrete system at the bottom layer is
accurately simulated by the abstracted system at the top layer.

• Enable modular development where controllers can be independently designed and
readily substituted.

In the next section, we define the hierarchical control framework.
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5-1 Contract template for the hierarchical system

We use contracts to formulate the hierarchical system framework. A contract template Ci

for each layer i is defined as follows [1]:

Ai := Mi−1∧ (Model abstraction from layer below)
Pi+1 (Signal property from the layer above)

Gi := Mi∧ (Model abstraction of this layer)
Pi (Signal property of this layer)

(5-1)

Utilizing the system relationships and feedback composition defined in Section 4-2, the
model abstraction at each layer Mi is defined as:

Mi := Si ∥Fi
Πi ⪯S,F−1

i
Si+1 ⪯AS,F−1

i
Si ∥Fi

Πi, (5-2)

where Fi is the transducer map that maps the signal space of Si to the signal space of
Si+1 and Fi is the interconnection mapping for the controller at the i-th layer. The model
abstraction guarantee establishes that the behaviour of the controlled system obtained by
composing system Si with the controller Πi is F−1

i simulated by the abstracted system
Si+1. The signal properties of each layer Pi is also referred to as the output property of the
composed system Si ∥Fi

Πi. The signal property Pi enforces a specific output structure for
each layer’s controlled system, allowing other layers to make reliable assumptions about
the form of signals they will receive. This structure simplifies and promotes independent
controller design at each layer.
Each control layer is responsible for fulfilling its contract guarantees based on assumptions
about the output signals and model abstractions it expects to receive from adjacent layers.
To obtain guarantees for the desired overall system behaviour, it is sufficient to check the
satisfaction of an overall contract obtained by composing all the individual contracts at
each layer. The overall contract CC = ⊗ Ci = (AC , GC), where

AC := S1 (Ground truth model)
GC := ∧N

i=1 Mi∧ (Intermediate models)∧N
i=1 Pi (All signal properties)

(5-3)

A key result of this framework is that if S1 (the lowest-level system) is true, the conjunc-
tion of models ∧N

i=1 Mi establishes a formal chain of abstractions. This ensures that the
composed controllers recursively satisfy:(

Fi(S̃i) ∥Fi+1 Πi+1
)
|= Fi ◦ F−1

i (Pi+1), ∀i = 1, 2, . . . , N

S̃i+1 =
(
Fi(S̃i) ∥Fi+1 Πi+1

)
, S̃1 = S1 ∥F1 Π1.

(5-4)

While the contract template discussed thus far applies to a single control plant, it can be
extended to multi-agent systems where several control plants need to satisfy a combined
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global specification. If we can decompose this global high-level specification into individual
plans for each plant, then the satisfaction of individual contracts by each plant ensures the
fulfillment of the global specification.
In this thesis, we implement this framework to create a robust foundation for a hierarchical
control system with guarantees across different modeling domains and time scales. The
following sections will detail the specific implementation of each layer in our hierarchical
control structure, demonstrating how this theoretical framework translates into practical
control algorithms for complex robotic systems.

5-2 System description

Our aim is to design a hierarchical control system suitable for robotic applications. To
achieve this, we develop a control architecture that comprises of three distinct layers, each
operating at varying levels of system complexity and frequency:

1. The highest level focuses on abstract motion planning in a quantized state space.

2. The middle layer generates concrete trajectories using information from the top layer.

3. The bottom layer tracks the generated trajectory in continuous-time.

This hierarchical approach allows us to manage the complexity of control tasks by decom-
posing the problem into more manageable sub-problems at each level. Figure 5-1 provides
a visual representation of our hierarchical control system architecture.
The subsequent system and controller descriptions are inspired by the work of Mazo et al.
[1]. In the following sections, we will elaborate on each layer of this hierarchical structure,
detailing the systems and controllers that comprise each level.

5-2-1 High-level system

The top layer defines the system in terms of high-level objectives governing the overall
behavior. At this level, the positional space is divided into a finite set of cells or partitions,
representing system states. A motion planner synthesizes a sequence of system states
satisfying the given LTL specifications. The system complexity is kept relatively abstract,
delegating more complex motion plan implementation details to lower layers.
We describe the high-level system as a FSM. Formally, we denote this FSM system as
S3 = (X3, X3,0, U3,−−−�3

, Y3, H3), where

• X3 = Σ
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Figure 5-1: Block diagram of the proposed hierarchical control system

• X3,0 = Σ

• U3 = Σ× Σ

• x3
u3−−−�
3

x′
3 : x3 = u3(1) ∧ x′

3 = u3(2) ∧ [x3] ∩ [x′
3] ̸= ∅

• Y3 = U3

• H3 : (x3, u3, x′
3) 7→ u3

Here, Σ represents a finite set of cell labels. We index a cell label as c_ij, where i = 1, 2, . . . p
and j = 1, 2, . . . , q, with p and q denoting the number of cells in a row and column
respectively. The input space U3 combines two cell labels, indicating the current cell and
the successor cell for movement. The transition condition

u3−−−�
3

ensures that the current
and successor cells are adjacent. This system operates in event time, progressing to the
next step only after completing the current transition, thus allowing for flexible planning.
Figure 5-2 illustrates the partitioning of the position space (environment).
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Figure 5-2: Partitioned environment used by the high-level system

5-2-2 Mid-level system

The middle layer of our hierarchical control structure serves as an intermediary between ab-
stract high-level plans and concrete low-level execution. Its primary function is to translate
the high-level motion plan into feasible trajectories. This layer processes the output from
the top layer, generating a trajectory that facilitates the system’s transition from the cur-
rent cell to the successor cell in a finite number of steps. The resulting planned trajectory
is then passed to the bottom layer for precise tracking of the interpolated trajectory.
A key advantage of this approach is that the mid-level system can operate without con-
sidering the complex nonlinear dynamics of the bottom layer. Instead, it is defined by the
discretization of a single integrator model. This simplification is possible because the bot-
tom layer is tasked with precise tracking of the mid-level trajectory, allowing the mid-level
system to behave as a discretized single integrator system.
The dynamics of the mid-level system can be described as follows:

x[k + 1] =
(

I TI
0 I

)
x[k] +

(
0
I

)
u[k]

x[k] =


xm[k]
ym[k]
vxm [k]
vym [k]

 ∈ R4, u[k] =
(

∆vxm [k]
∆vym [k]

)
∈ R2

(5-5)

In this model, the states of the mid-level dynamics comprise the position and linear veloci-
ties along the X and Y coordinates. The inputs to the mid-level dynamics are the changes
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in velocities between successive time steps along the X and Y directions.
Formally, we define the mid-level system S2 = (X2, X2,0, U2,−−−�2

, Y2, H2) as:

• X2 =


xm[k]
ym[k]
vxm [k]
vym [k]

 ∈ X2 ⊆ R4

• X2,0 = X2

• U2 =
{

[u[k]]N−1
k=0 : u[k] =

(
∆vxm [k]
∆vym [k]

)
∈ U2 ⊆ R2

}

• (x, u, x′) ∈−−−�
2
⇐⇒ ∃ a sequence [x[k]]Nk=0 with x[k] ∈ X2 such that x = x[0], x′ =

x[N ] and ∀k ∈ {0, 1, . . . , N − 1}, x[k] obeys the dynamics in equation 5-5

• Y2 =
{
[x[k]]Nk=0 : x[k] ∈ X2

}
• H2 : (x, u, x′) 7→ [x[k]]Nk=0

The input to the system S2 is a sequence of inputs u[k]N−1
k=0 , while its output is the se-

quence of states x[k]Nk=0 obtained by applying the input U2. This formulation allows us to
use the output sequence from S2 for the trajectory interpolation required by the bottom
layer. It’s important to note that both x[k] and u[k] are subject to constraints dictated by
environmental factors and physical limitations of the system.

5-2-3 Low-level system

The bottom layer of our hierarchical control structure plays a critical role in ensuring proper
tracking of the mid-level trajectory, thereby enabling seamless operation of the middle and
top layers. This layer receives a sequence of discrete-time points from the middle layer,
which it must track accurately. To achieve smooth and continuous motion, we employ
a nonlinear interpolation function to generate a curve that passes through these discrete
points. A feedback linearization controller then ensures that the system accurately tracks
this continuous trajectory.
For describing the low-level dynamics of the system, we utilize the unicycle model, which
is defined as follows: 

ẋ
ẏ

θ̇
v̇
ω̇

 =


vcos(θ)
vsin(θ)

ω
a
α

 (5-6)
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In this model, the state vector comprises five components: position along the X and Y
directions, orientation θ, linear velocity v, and angular velocity ω. The system inputs are
linear acceleration a and angular acceleration α.
Formally, we define the low-level system S1 = (X1, X1,0, U1,−−−�1

, Y1, H1) as:

• X1 =


x
y
θ
v
ω

 ∈ X1 ⊆ R5

• X1,0 = X1

• U1 = u1 =
(

a
α

)
: [0, τ)→ U1 ⊆ R2, u1(·) is piecewise continuous

• (x, u, x′) ∈−−−�
1
⇐⇒ ∃ a continuously differentiable function ξu,x : [0, τ)→ X1 such

that ξu,x(0) = x, ξu,x(τ) = x′, and ξ̇u,x(t) = f(ξu,x(t), u(t)) ∀t ∈ [0, τ)

• Y1 = {ξ : [0, τ ]→ X1 | ξ(·) is continuously differentiable}

• H1 = (x, u, x′) 7→ ξu,x(0 : τ)

5-2-4 Signal properties

The signal property, or the output property defined at each layer is as follows:

• P4 = ⊤

• P3 := S3 ∥ Π3 |= ϕ

• P2 := y2c ∈ Q−1
P ◦ E−1

N ◦ E ◦ QP(y2c)

• P1 := y1c = S−1
δ,T ◦ ST (y1c)

Note that we have defined a higher layer than previously described top layer. But this top
layer is more of a placeholder to ensure that the system guarantees are properly met. We
also define the model M4 = ⊤, which is used for proving the model abstraction guarantee
of the top layer.

5-3 Controller design

This section delves into the design of controllers for each layer, enabling the composed
system to fulfill its respective contracts. The presence of these contracts allows for inde-
pendent controller design at each layer, regardless of the functioning of other layers.
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5-3-1 High-level controller

The high-level controller aims to determine a sequence of states in the Finite State Machine
(FSM) that satisfies the given LTL specification. We can express this as S3 ∥ Π3 |= ϕ,
where S3 ∥ Π3 represents the system composed with the control policy that satisfies the
LTL specification ϕ.

To identify a sequence of states (or trajectory) of S3 that satisfies the LTL formula ϕ, we
use graph-based search methods. Algorithm 5.1 outlines this approach.

Algorithm 5.1 LTL Control: Finding shortest path (S, ϕ) [22], [40]
1: Define the system S as a directed graph with states as graph vertices V and state

transitions as graph edges E
2: Translate ϕ into a deterministic Büchi/Rabin automaton B
3: Construct the product automaton P = S ⊗B as a directed graph
4: Determine the shortest path from the initial state to an accepting state of P and store

it in σpre
5: Find the shortest path from a successor state of σpre to an accepting state of P and

store it in σsuf
6: Project the accepting run σpre(σsuf)ω onto a trajectory of S

This method is applicable to both single and multi-robot systems. In the case of multi-
robot systems, the system S becomes a product transition system SP defined in 3-1.2. We
can employ the same graph-based search methods to find an accepting run of the product
automaton P = SP ⊗ B. Once an accepting run is identified, we can project it onto
individual trajectories for each transition system Si, allowing them to perform their tasks
independently.

5-3-2 Mid-level controller

The mid-level controlled system is responsible for generating trajectories that facilitate the
robot’s transition from one cell to the next. This layer operates under the assumptions
of signal property P3 from the top layer and the model abstraction M1 from the bottom
layer. Given this information, the middle layer must guarantee its model abstraction
M2 = S2 ∥F2 Π2 and its output property P2. The output from the top layer, a pair
containing the current and the successor partition, is transformed into constraints for
solving a MPC problem. The solution to this MPC problem yields a trajectory that guides
the robot from the current cell to the successor cell.

In our controller construction, we consider system Π2 to be trivial, meaning it passes the
input (the output from the top layer) to its output without modification. Formally, we
define system Π2 = (XΠ2 , XΠ2,0, UΠ2 ,−−−�

Π2
, YΠ2 , HΠ2) as:
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• XΠ2 = UΠ2

• XΠ2,0 = XΠ2

• UΠ2 = Y3c

• (xΠ2 , uΠ2 , x′
Π2) ∈−−−�

Π2
⇐⇒ x′

Π2 = uΠ2

• YΠ2 = UΠ2

• HΠ2 : (xΠ2 , uΠ2 , x′
Π2) 7→ uΠ2

Consequently, the controlled system S2c = S2 ∥ Π2 = (X2c, X2c,0, U2c,−−−�2c
, Y2c, H2c) is

defined as:

• X2c : X2 ×XΠ2 × Y2

• X2c,0 = X2c

• U2c : u2c = Q−1
P ◦ E−1

N (u3)

• −−−�
2c

= {((x2, xΠ2 , y2), u2c, (x′
2, x′

Π2 , y′
2)) ∈ X2c × U2c ×X2c | (x2, u2, x′

2) ∈−−−�2
∧ (xΠ2 , uΠ2 , x′

Π2) ∈−−−�
Π2
∧ y′

2 = H2((x2, u2, x′
2)) with u2 = F2i(y2, yΠ2), uΠ2 = u2c}

• Y2c =
(

xm[k]
ym[k]

)
∈ Y2c

• H2c = F2o

• F2i = MPC(y2, yΠ2), F2o =
(
I2 0

)
y2

In definition 4-2.5, we define the input map Fi = Fi1 × Fi2, where Fi1 : Ya × Yb → Ua,
Fi2 : Ya × Uc → Ub. For the middle layer, Fi2 simplifies to a direct mapping from Uc to
Ub. This simplification is represented in the controlled system S2c by setting uΠ2 = u2c.
Hence, for notational clarity, we omit the explicit Fi2 mapping and represent the middle
layer’s input map as F2i : Y2 × YΠ2 → U2, where the subscript ‘2’ denotes the middle layer
and ‘i’ indicates the input map. Figure 5-3 illustrates the block diagram of the feedback
composition for the middle layer.
To better understand the middle layer’s operation, we introduce additional terms. We
define Cpi

as the maximal control invariant set contained in pi⊖Bδ, where pi is a partition
from the top layer, ⊖ denotes the Pontryagin set difference, and Bδ is a ball of radius δ.
The ball Bδ is formulated to accommodate for the tracking error of the bottom layer. Note
that the partition pi is just another way of representing the symbols c_ij. For the top-level
system to transition from one state (or partition) to another, the control invariant set of
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Figure 5-3: Block diagram of feedback composition for the middle layer

the current partition pi must be N -step backward reachable from the control invariant set
of the next partition pj. Mathematically, this is expressed as:

(pi, (pi, pj), pj) ∈−−−�3c
⇐⇒ Cpi

⊂ RN(Cpj
)

where RN(·) computes the N -step backward reachable set. For polytopic pi, we can com-
pute Cpi

and RN(Cpi
) using algorithms from Chapter 10 of [50]. This restriction ensures

that the high-level system only demands transitions that the mid-level system can satisfy.

Additionally, we require that the initial state of the mid-level system lies within the control
invariant set of its partition pi. For multi-robot systems, we solve multiple MPC problems,
each specific to an individual robot. The detailed formulation of these MPC problems is
provided in appendix A. For a comprehensive proof of the model abstraction and signal
property guarantees of the middle layer, please refer to [1].

5-3-3 Low-level controller

The primary objective of the low-level controller is to accurately track the output from
the middle layer, minimizing deviations to allow the mid-level system to function as a
discrete-time linear system. This is achieved through a two-step process. First, we employ
a nonlinear interpolation function Tα,T (·) to generate a continuous trajectory from the
discrete points provided by the middle layer output. Following this, we implement a
feedback linearization controller to track this interpolated trajectory with high precision.

In our formulation, we consider the system Π1 to be identical to system S2. This design
choice allows Π1 to perform the interpolation of the mid-level trajectory, resulting in a
continuous trajectory suitable for controller tracking. To achieve this interpolation of the
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middle layer output, we modify HΠ1 as follows:

HΠ1 : (xΠ1 , uΠ1 , x′
Π1) 7→ Tα,T ([xm[k]]Nk=0)

The controlled system S1c = S1 ∥ Π1 = (X1c, X1c,0, U1c,−−−�1c
, Y1c, H1c) is defined as

• X1c : X1 ×XΠ1 × Y1

• X1c,0 = X1c

• U1c : u1c = S−1
0,δ−T (u2)

• −−−�
1c

= {((x1, xΠ1 , y1), u1c, (x′
1, x′

Π1 , y′
1)) ∈ X1c × U1c ×X1c | (x1, u1, x′

1) ∈−−−�1
∧ (xΠ1 , uΠ1 , x′

Π1) ∈−−−�
Π1
∧ y′

1 = H1((x1, u1, x′
1)) with u1 = F1i(y1, yΠ1), uΠ1 = u1c}

• Y1c =


xl

yl

vxl

vyl

 ∈ Y1c

• H1c = F1o

• F1i = Kfbl(y1, yΠ1), F1o = y1c

In definition 4-2.5, we define the input map Fi = Fi1 × Fi2, where Fi1 : Ya × Yb → Ua,
Fi2 : Ya×Uc → Ub. For the bottom layer, Fi2 simplifies to a direct mapping from Uc to Ub.
This simplification is represented in the controlled system S1c by setting uΠ1 = u1c. Hence,
for notational clarity, we omit the explicit Fi2 mapping and represent the bottom layer’s
input map as F1i : Y1 × YΠ1 → U1, where the subscript ‘1’ denotes the bottom layer and
‘i’ indicates the input map. The bottom layer’s feedback composition follows a structure
similar to figure 5-3.
For a detailed formulation of the nonlinear interpolation function Tα,T and the feedback
linearization controller Kfbl, please refer to appendix B and C respectively. The proof for
the guarantees of signal property P1 and model abstraction M1 can be found in [1].

5-4 Overall system guarantees

Applying contract composition 5-3 results in a system-wide contract CC = (S1,
∧2

i=1 Mi ∧∧3
i=1 Pi) with guaranteed behaviours

K (S (S1 ∥F1 Π1) ∥F2 Π2) ∥F3 Π3 |= K ◦ K−1(P3)
S (S1 ∥F1 Π1) ∥F2 Π2 |= S ◦ S−1(P2)

S1 ∥F1 Π1 |= P1

(5-7)
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where S = ST , S−1 = S−1
δ,T , K = E ◦QP , K−1 = Q−1

P ◦E−1
N . Breaking down equation 5-7, we

can identify all the individual guarantees. The first is the straightforward signal property
guarantee P1. The guarantee S (S1 ∥F1 Π1) ∥F2 Π2 |= S ◦ S−1(P2) can be understood in
two parts. The model abstraction guarantee M1 ensures that S (S1 ∥F1 Π1) is simulated
by system S2, while the expression S2 ∥F2 Π2 |= S ◦ S−1(P2) provides the signal property
guarantee for the middle layer.
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Chapter 6

Experiment Setup

6-1 Simulation setup

This section details the software implementation for the hierarchical control system. The
majority of the system is implemented in Python, chosen for its ease of use and strong
library support for solving LTL and MPC problems. We also attempted to implement the
controller in MATLAB, but discarded the option as it took more time to solve optimization
problems compared to Python. Additionally, Python provides a more natural syntax for
object-oriented programming constructs, making it preferable to MATLAB. For few specific
tasks, we utilize MATLAB through its Python engine.

The experiments are performed on a machine running Ubuntu 20.04 (dual-boot), equipped
with an Intel i7-1165G7, 4-core processor, 8 logical processors, 16 GB of RAM. For the
versions of software packages used in the experiments, please refer to table 6-1.

Software Version
Ubuntu 20.04.6 LTS

ROS Noetic
Python 3.10.13

g++/gcc Ubuntu 9.4.0-1ubuntu1~20.04.2
cmake 3.20.0
SPOT 2.12.1

MATLAB 2024a

Table 6-1: Software versions used in implementation
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6-1-1 Top layer implementation

The top layer of our control hierarchy synthesizes a motion plan from LTL specifications.
We represent the top-level finite transition system as a directed graph using the NetworkX
library. The Spot library [54] is employed to translate LTL specifications into Büchi au-
tomata. We construct the product automaton as a directed graph and determine an accept-
ing run using NetworkX’s built-in “shortest_path” algorithm. The output is a sequence
of partitions that the robot must traverse to satisfy its corresponding LTL specification.

6-1-2 Middle layer implementation

The middle layer generates trajectories given a pair of states from the top layer. We employ
CVXPY as our optimization framework for formulating and solving the MPC problem.
System dynamics are described using NumPy arrays. Polytopic constraints for the MPC
problem are defined using the polytope package [55] in Python. Position constraints,
control invariant sets, and N-step backward reachable sets are formulated using the MPT3
[56] toolbox with MATLAB. We utilize the MATLAB Engine API for Python to execute
these MATLAB operations within our Python code. To enhance runtime performance, all
these sets are precomputed and stored prior to execution.

6-1-3 Bottom layer implementation

The bottom layer implementation is straightforward. Control inputs are designed as per
appendix C, with equations defined symbolically using SymPy. This approach allows for
efficient manipulation and evaluation of these equations based on the current state and
execution time.

6-2 Hardware setup

Our experimental setup employs Elisa3 robots operating within an environment equipped
with a motion capture (MoCap) system. This section details the physical design of the
robot and the software architecture based on Robot Operating System (ROS). Our im-
plementation relies on multiple ROS nodes that communicate with each other, facilitating
the deployment of our hierarchical control system in a real-world setting.

6-2-1 Physical design of Elisa3 robots

Figure 6-1 shows the physical design of an Elisa3 robot. Some of the important features
include [2]
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• 8 MHz microprocessor

• A 3-axis accelerometer

• RF radio for communication

• 2 DC motors

• 8 proximity sensors for obstacle detection and avoidance

• 4 ground sensors for line following and cliff detection

• Max speed of 60 cm/s

• Wireless communication throughput of around 250Hz for 4 robots, and 100Hz for 10
robots

Additionally, due to limited memory capabilities of the robot, most of the processing is
done on the PC side. The robot is responsible in computing odometry, transmitting the
status of its sensors, and receiving actuator commands from the central PC.

Figure 6-1: Physical design of an Elisa3 robot [2]

6-2-2 MoCap system

Our experiments utilize a camera-based motion capture (MoCap) system consisting of 10
cameras installed in the Delft Center for Systems and Control (DCSC) Laboratory at TU
Delft. This high-precision system provides global positioning data for the robots, comple-
menting the relative positioning information from their onboard sensors. The integration
of MoCap data significantly enhances the accuracy of robot localization within the exper-
imental environment.
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6-2-3 Overall software architecture

Our codebase is built upon the Robot Operating System (ROS) framework, which facili-
tates communication and data exchange between various components of the system. The
implementation uses multiple ROS nodes, each responsible for specific functionalities.

Mocap node

This node interfaces with the motion capture system and publishes information about the
robots’ pose (position and orientation) obtained from the global camera system.

Elisa3 node

The Elisa3 node manages direct communication with the Elisa3 robots. It handles the
transmission of actuation commands to the robots and receives data from their onboard
sensors.

Estimator node

The estimator node is responsible for fusing data from multiple sources to provide accurate
estimates of the robots’ pose. This node implements an Extended Kalman Filter (EKF)
to combine robot sensor data and data from the camera system to generate more accurate
estimates of the robots’ pose. The initial version of this estimator was developed by a
former Master student at TU Delft[57, 58]. We have since improved the estimator node’s
performance, particularly its speed of operation, and this enhanced version is used in our
current implementation [59].

Controller node

The controller node implements the hierarchical control system described in the previous
section. It receives pose estimates from the estimator node and generates control commands
for the Elisa3 robots.

Software integration

The integration of these ROS nodes creates a closed-loop system as seen in figure 6-2. This
architecture allows for real-time control and adaptation of our hierarchical control system
to physical Elisa3 robots.
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Figure 6-2: Overall software architecture for the hardware implementation
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Chapter 7

Simulation Results

In this chapter, we present simulation studies to validate our hierarchical control archi-
tecture. We demonstrate the framework’s effectiveness by implementing a high-level task
specification using LTL formulas and establishing appropriate parameters for both middle
and bottom layers. Through these simulations, we show how our architecture generates
feasible trajectories at the concrete system level that not only track the mid-level reference
trajectories but also satisfy the prescribed high-level mission specifications.

7-1 Simulation results for a single robot

We begin by defining the operational environment for the robot. Based on calculations
detailed in appendix B, the ball Bδ has a radius δ = 3

32αT∆vmax, which evaluates to ap-
proximately 0.0005m. As a precautionary measure, we use a more conservative estimate of
δ = 0.01m(1cm). This larger value of Bδ results in a more constrained control invariant set,
which restricts the robot’s terminal state to a smaller subset of the partition space. This
conservative choice helps prevent the robot from approaching cell boundaries when receiv-
ing new partition commands from the top layer, thereby reducing the risk of unintended
transitions into neighboring partitions
Figures 7-1 and 7-2 illustrate the complete environment and a single partition, respec-
tively. These visualizations highlight the partition boundaries and their associated control
invariant sets. We employ the L∞ norm to represent Bδ as a polytope. Notably, figure 7-2
demonstrates that the control invariant set of a partition closely approximates c_41⊖Bδ.
We define a set of atomic propositions AP = {‘b’, ‘g’, ‘d’}, where

• ‘b’ denotes base region
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Figure 7-1: The environment where the robots operate

Figure 7-2: Visual representation of a single partition of the environment

• ‘g’ denotes goal region

• ‘d’ denotes dangerous region

Each partition is associated with at most one of these propositions or labels. Figure 7-3
depicts the environment with these atomic propositions assigned to specific partitions.

7-1-1 Choosing the LTL formula

Having established the robot’s operational environment, we now focus on defining the high-
level specification. For this simulation, we’ve chosen a simple surveillance task where the
robot must navigate through the environment, surveying specific regions while avoiding
others. The high-level specification is represented by the following LTL formula:

ϕ = 23b ∧2(b→⃝¬bU3g) ∧2¬(b ∧ g) ∧2¬d
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Figure 7-3: Visual representation of the environment marked with labels

Let us break down this LTL formula into multiple parts and analyse their meaning:

• 23b: The robot must always eventually visit the base region

• 2(b→⃝¬bU3g): When in the base region, the robot must not return to it before
visiting the goal region

• 2¬(b ∧ g): The robot cannot simultaneously occupy the base and goal regions

• 2¬d: The robot must always avoid the dangerous region

With our LTL formula defined, we proceed to construct the Büchi automaton using the
“translate” command from the Spot library. We employ the options “Büchi”, “Determin-
istic”, and “state-based” to generate a deterministic Büchi automaton with state-based
acceptance. Figure 7-4 illustrates the Büchi automaton representation of the LTL formula
ϕ.

Figure 7-4: LTL formula ϕ translated to a Büchi automaton

The Büchi automaton depicted consists of three states: 0, 1, and 2. State “2” is designated
as the accepting state, which implies that our LTL synthesis solution must ensure that state
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“2” is visited infinitely often. A key observation is that the only transition leading to the
accepting state (state “2”) is conditioned by “b & !g”, which corresponds to the base
region. This structure ensures that our solution will visit the base region infinitely often,
aligning with our expected behavior. Moreover, after exiting state “2”, the automaton
ensures a visit to the goal region, though not necessarily immediately. This can occur
either through a direct transition from state “2” to state “1” using the condition “g”, or by
first transitioning to state “0” and later moving to state “1” with the condition “g”. This
structure enforces the surveillance pattern we intended: the robot must always visit the
goal after leaving the base before it can return to the base again.

The top-level system S3 is represented as a directed graph, as illustrated in Figure 7-5.

Figure 7-5: Top-level system as a directed graph

Following algorithm 5.1, we construct a product automaton and determine an accepting run
using NetworkX’s “shortest_path” command. Prior to finding this accepting run, we verify
the N-step backward reachability condition for all pi, (pi, pj), pj ∈−−−�3

. This step ensures
the feasibility of reaching any adjacent cell from the current cell. The entire process—from
translating the LTL formula to a Büchi automaton to identifying an accepting run—was
completed in 8.5ms. The accepting run, projected onto the trajectory of S3, yields the
following results:

σpre = [‘c_31’, ‘c_21’, ‘c_11’, ‘c_12’]

σsuf = [‘c_13’, ‘c_14’, ‘c_24’, ‘c_34’, ‘c_44’, ‘c_45’, ‘c_35’, ‘c_34’, ‘c_24’,

‘c_14’, ‘c_13’, ‘c_12’, ‘c_11’, ‘c_12’]

Examining the Büchi automaton in Figure 7-4, we observe that the accepting state “2”
can only be reached via the transition condition “b & !g”. In our transition system S3,
the sole state associated with proposition “b” is c_11. Notably, state c_11 appears as the
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penultimate state in both the prefix and suffix. This occurrence aligns with the Büchi au-
tomaton’s transition from state 1 to state 2 using the condition “b & !g”, which corresponds
to the transition from state c_11 to c_12 in S3, as c_11 carries the atomic proposition
“b”. Figure 7-6 provides a visual representation of this accepting run as a directed graph,
with the initial state highlighted in orange.

Figure 7-6: Accepting run projected onto a trajectory of S3

7-1-2 Constraints for the MPC problem

The initial state of the mid-level system S2 is defined as S2,0 = (0.2, 0.6, 0, 0)T . The
sampling time for the system is set to T = 1s. We set the prediction horizon for the MPC
problem to N = 15 steps. We define the cost matrices as Q = Qf = diag(10, 10, 1, 1)
and R = diag(1, 1). The higher weights in the position components of matrices Q and
Qf prioritize the minimization of positional errors in the optimization. The complete
formulation of the MPC problem is detailed in appendix A.
Position constraints for states (xm, ym) are derived from the output partitions of the top
layer. For velocity constraints, we face a tricky design choice. Ideally, we would prefer
constraints of the form

√
v2

xm
+ v2

ym
≤ vmax. However, to maintain the structure of poly-

topic constraints, we opt for |vxm|+ |vym| ≤ vmax, with vmax = 0.5m/s. This design choice
is motivated by our attempt to incorporate the physical limitations of the Elisa3 robots
into our simulated environment. An alternative approach would be to set |vxm| ≤ vmax

and |vym | ≤ vmax independently. However, this could potentially allow the robot to move
at a speed of 0.7m/s (when both vxm = vym = vmax = 0.5m/s), which exceeds the physi-
cal capabilities of the robot. Our more conservative approach ensures that the simulated
robot’s movement remains within realistic bounds.
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In our simulations, the middle layer completes its operations in an average of 9ms for a
single robot over the entire prediction horizon. If we consider only the top and middle
layers, ignoring the bottom layer, the mid-level controlled system produces the output
trajectory shown in figure 7-7.

Figure 7-7: Trajectory of the robot commanded by the middle layer

7-1-3 Tuning the feedback linearization controller

The feedback linearization controller formulated in appendix C requires tuning of three
controller constants: Kp, Kd, and σ. We employ a trial-and-error approach to determine
the optimal set of these constants for our specific problem. This approach involves system-
atically adjusting one parameter while keeping the others fixed. For instance, we might fix
Kd and σ while incrementally adjusting Kp to observe its effect on the system response.
Once a satisfactory response is achieved, we then fix Kp and σ, and vary Kd. Through
multiple iterations of this process, we converge on a set of constants that provide a suffi-
ciently good response for our system. The final controller constants are Kp = 17, Kd = 1.6,
and σ = 17. An important consideration in the initialization of system S1 pertains to the
velocity state. The control input calculations incorporate terms where velocity appears
in the denominator, necessitating the need to maintain non-zero velocity values to avoid
undefined behavior. This situation is particularly relevant at the start of the program,
where the initial velocity of the robot is typically zero. To address this, we initialize the
low-level system with a small, non-zero velocity of 0.01m/s (or 1cm/s). This initialization
serves a dual purpose: it prevents undefined behavior that would arise from a zero initial
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velocity, while also avoiding the generation of excessively large control inputs that could
result from very small velocities (e.g., 0.00001m/s).
While true continuous control is not feasible in our digital implementation, we approximate
it by operating the low-level controller at a high frequency of 20Hz (corresponding to a
time period of 50ms). This high-frequency operation ensures sufficient time for calculating
low-level control inputs and occasionally computing the mid-level trajectory, as the middle
layer operates at 1Hz. It is generally beneficial to run the bottom layer multiple times
between successive middle layer operations. For instance, if the bottom layer operates
only 5 times between two middle layer operations, there might not be adequate time to
rectify any errors originating from the bottom layer. Finally, our simulations show that
the bottom layer requires an average of 5ms to complete its operation.
Figure 7-8 illustrates the interpolation of the mid-level trajectory performed by the function
Tα,T . This interpolated trajectory closely aligns with the linear interpolation shown in figure
7-7. However, the key distinction lies in the nature of our nonlinear interpolation function.
Unlike a linear interpolator, Tα,T enables us to perform the necessary calculations for
deriving low-level control inputs. For instance, Tα,T allows us to compute second and third-
order derivatives of the trajectory, which are crucial for our low-level controller calculations.

Figure 7-8: Nonlinear interpolation of the mid-level trajectory

7-1-4 Results of the integrated system

With all layers of our hierarchical control system defined and implemented, we now present
the results of the full system in operation. Figure 7-9 illustrates the performance of our
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integrated control structure. As evident from the figure, the low-level concrete system
demonstrates a good degree of accuracy in tracking the interpolated trajectory. This close
adherence to the planned path indicates effective coordination between the different layers
of our control hierarchy. The trajectory shown in the figure not only represents the robot’s

Figure 7-9: Trajectory of robot generated by the hierarchical control system

movement through space but also embodies the successful execution of the high-level task
specification encoded in the LTL formula. As the robot traverses its path, it fulfills various
aspects of its mission, including visiting designated areas and avoiding restricted regions,
all while adhering to the constraints imposed by the hierarchical control system.

The implementation code for the simulation experiments is available in the “simulation”
branch of the project repository [60].

7-2 Discussion

The slight deviations observed in the low-level controller’s tracking of the desired trajectory
can be attributed to the inherent nonlinear nature of the system and the current tuning
of the controller constants. These deviations could potentially be reduced through fur-
ther refinement of the low-level controller parameters. Additionally, exploring alternative
nonlinear control strategies might yield improved tracking performance.
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7-3 Simulation results for multiple robots

We extend our framework to consider a multi-robot scenario with three robots surveying
the environment. Each robot is represented by a transition system Sk

i , where i = {1, 2, 3}
denotes the hierarchical layer and k = {a, b, c} identifies the specific robot. For multi-robot
coordination, we first construct a product transition system SP = Sa

3×Sb
3×Sc

3. The product
automaton SP ⊗ B is then created to find an accepting run that, when projected onto
individual systems Sa

3 , Sb
3, and Sc

3, provides independent trajectories for each robot. This
approach enables the specification of global LTL formulas that can enforce coordination
between robots However, our current implementation faces limitations in the multi-robot
scenario. While our algorithm successfully finds accepting runs for single-robot systems
by comparing Büchi automaton transitions with atomic propositions (both represented as
strings), it cannot handle the complexity of the product transition system in the multi-
robot case. The primary challenge lies in comparing the Büchi automaton transitions
(generated by Spot) with the atomic propositions of the product transition system. We
were unable to develop a complete solution for this comparison, and we identify this as an
important direction for future work
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Hardware Implementation

In this chapter, we transition from theoretical simulations to physical implementation using
Elisa3 robots, discussing the challenges encountered and presenting experimental results
with a modified control framework that better accommodates the practical constraints of
these robots.

8-1 Challenges in hardware implementation

When implementing our hierarchical control structure on physical systems like Elisa3
robots, we introduce an additional layer beneath our concrete system for robot interfacing.
This layer’s primary function is to translate control inputs from the bottom layer into
commands interpretable by the robots. We illustrate this modified hierarchical structure
in figure 8-1.
Our control inputs consist of linear acceleration a and angular acceleration α. To make
these usable for the robots, we first integrate these acceleration terms to obtain linear
velocity v and angular velocity ω. These velocities are then converted to individual wheel
speeds using the following equations:

vr = v + ωL

2

vl = v − ωL

2
where L represents the distance between the two wheels (4.1cm in our case).
However, experimental results revealed several challenges. As is common with physical
systems, actual behavior often deviates significantly from theoretical expectations. Factors
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Figure 8-1: Modified block diagram of the hierarchical control system with robot interfacing

such as aging components, improper calibration, battery charge levels, and general wear
and tear affect robot performance. We observed that even when commanding equal speeds
to both wheels, the robots failed to move in a straight line, indicating asynchronous wheel
behavior.

To address these issues, we implemented a proportional controller for velocity tracking.
However, two significant problems persisted. First, the velocity controller could not fully
compensate for the wheel speed synchronization issues. Second, our bottom layer’s design
posed challenges: even with successful velocity tracking, positional errors could accumulate
between the desired and actual robot positions. Our feedback linearization controller was
not designed to handle large errors, as its control inputs increase rapidly with growing
error magnitudes. This situation demanded extremely precise velocity control at the robot
level for proper trajectory tracking. Given these practical constraints, we developed an
alternative control strategy better suited to the robots’ capabilities.
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8-2 Solution for hardware implementation

Figure 8-2 illustrates the modified control architecture implemented in our robot experi-
ments.

Figure 8-2: Final version of the hierarchical control system with robot interfacing

We simplified our original design by removing the bottom layer containing the nonlinear
system with feedback linearization controller, instead creating a direct interface between
the middle layer and the robot. On the robot side (estimator node), we implement the
proportional controller developed in [59] to get the linear and angular velocity inputs. This
controller uses the difference between current position and destination as its error term.
The destination coordinates are derived from the MPC optimization problem solved in
the middle layer, enabling the robot to maintain sufficient speeds for reaching subsequent
partitions.

We implemented an additional control feature where the robot prioritizes rotational move-
ment when the angular velocity exceeds certain thresholds. This enhancement allows the
robot to achieve proper orientation before forward movement, resulting in smoother tra-
jectories with reduced curvature (see [59] for more details).
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8-3 Experiment: Case 1

In our first experimental scenario, we focused on a subset of the environment, specifically
cells c_ij where i, j = {1, 2, 3}. Figure 8-3 shows this environment with its corresponding
labels. The LTL formula remains unchanged:

Figure 8-3: Visual representation of the environment for case 1

ϕ = 23b ∧2(b→⃝¬bU3g) ∧2¬(b ∧ g) ∧2¬d

Graph search yielded the following accepting run:

σpre = [‘c_11’, ‘c_12’, ‘c_11’]

σsuf = [‘c_21’, ‘c_22’, ‘c_23’, ‘c_22’, ‘c_12’, ‘c_11’]

For our experimental implementation, we set the Elisa3 node to run at 100Hz and the
estimator node at 50Hz. The middle layer operates at a frequency of 2Hz (T = 0.5s) with
a prediction horizon of N = 15. Figure 8-4 displays the resulting robot trajectories, with
arrows indicating their evolution. Despite significant deviations from the desired mid-level
trajectory, the robot successfully satisfied its high-level LTL specification. These deviations
arose from limitations in robot side control and hardware variations. The erratic nature of
robot motion could be mitigated by implementing a more sophisticated velocity controller
and using well-calibrated robots in better mechanical condition. A video demonstration of
the robot’s motion can be found in [61].

8-4 Experiment: Case 2

In our second experimental case, we expand our testing to include the entire workspace, re-
sulting in a more extensive motion plan than Case 1. Figure 8-5 illustrates the environment
with its corresponding labels.
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Figure 8-4: Trajectory of robot for Case 1

Figure 8-5: Visual representation of the environment for case 2

We maintain the same LTL specification and operational frequencies for all nodes as in
Case 1. The accepting run for this case is:

σpre = [‘c_11’, ‘c_12’, ‘c_13’]

σsuf = [‘c_14’, ‘c_24’, ‘c_34’, ‘c_35’, ‘c_34’, ‘c_24’, ‘c_14’, ‘c_13’, ‘c_12’, ‘c_11’]

The robot’s trajectory for this extended scenario is depicted in Figure 8-6. Similar to case
1, the robot successfully fulfills its LTL specification, albeit in a slightly erratic manner.
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Figure 8-6: Trajectory of robot for Case 2

A video demonstration of the robot’s motion can be found in [62]. The implementation
code for the hardware experiments is available in the “hardware” branch of the project
repository [60].

8-5 Discussion

Although our experiments demonstrated successful completion of the high-level mission
specifications in both cases, the robot exhibited irregular motion patterns due to limitations
in the velocity controller. In some trials, the experiments had to be terminated when the
robot deviated into incorrect partitions, causing the MPC optimization problem to become
infeasible. The implementation of a more sophisticated velocity controller would likely
result in more consistent performance, characterized by smoother trajectories and fewer
deviations from the planned path.
As discussed in Section 7-3, our current limitation in finding accepting runs for product
automata in multi-robot systems prevents us from implementing hardware experiments
with multiple robots. The development of this capability and corresponding physical im-
plementation remains an important direction for future work.
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Chapter 9

Conclusion and Future Work

This thesis presented the implementation of a contract-based hierarchical control frame-
work for robotic systems. The framework addresses several key challenges: providing formal
guarantees across different abstraction levels, enabling independent controller development,
and offering implementation flexibility where components can be replaced while maintain-
ing system guarantees. Using this hierarchical approach, complex robotic surveillance tasks
were decomposed into manageable subtasks, integrating motion planning, trajectory gen-
eration, and trajectory tracking into a unified framework. Through both simulation and
hardware experiments on Elisa3 robots, the framework demonstrated its capability to exe-
cute surveillance tasks specified using Linear Temporal Logic. The modular nature of the
framework makes it adaptable to various complex problems through different choices of
system models and controller designs.
The implementation revealed several practical challenges and limitations. A primary lim-
itation was the suboptimal velocity controller implementation on the robot side, coupled
with the feedback linearization controller being tuned through trial and error rather than
systematic methods. The framework’s assumption of a disturbance-free environment pre-
sented challenges in hardware implementation where external disturbances are inevitable.
Furthermore, the current algorithm for finding accepting runs, being a temporary solution,
proved inadequate for extension to multi-robot systems, where additional challenges of
communication delays and synchronization would need to be addressed.
The framework’s evaluation also had several analytical limitations. The testing was re-
stricted to relatively simple LTL specifications, leaving questions about computational
feasibility for more complex temporal requirements unanswered. The absence of multi-
robot implementation prevented assessment of task completion times in coordinated sce-
narios. Additionally, the lack of comparison with baseline approaches makes it difficult to
quantitatively evaluate the framework’s performance advantages, despite its use of simple
controllers at each layer.
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A key priority for future work is developing enhanced correction controllers for the physical
robots to better match simulation performance, addressing issues like wheel synchroniza-
tion and hardware variations. To enhance the system’s real-world applicability, incorpo-
rating robust control techniques and obstacle avoidance in one or multiple layers could be
a valuable direction for future work. At the middle layer, for example, Tube MPC could
be employed to explicitly account for uncertainties and disturbances. For the lower layer,
robust nonlinear control methods such as H-infinity control or adaptive control could be
considered to maintain performance in the face of model inaccuracies or external pertur-
bations.
The framework could also be extended to handle dynamic environments, including both
moving obstacles and changing workspace conditions, through the incorporation of reactive
synthesis techniques. The framework’s applicability could be extended to more complex
scenarios, such as coordinated warehouse operations where one robot performs surveillance
of restricted areas while another handles package delivery tasks, with both robots needing
to coordinate their movements to avoid conflicts. Additionally, the integration of STL
tasks could enable richer specifications with explicit timing constraints, enhancing the
framework’s expressiveness.
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Appendix A

MPC formulation

We formulate our MPC problem following an approach similar to [1]. Consider a transition
pi → pj commanded by the top layer, with an initial state x2,0 ∈ Cpi

, where both partitions
pi and pj are represented as polytopes. The first constraint restricts the robot’s movement
to the space (pi ∪ pj) ⊖ Bδ, which itself forms a polytope. Defining the position states as
xpos[k] =

(
xm[k] ym[k]

)T
, we can express this overall position constraint as the polytope

Aposxpos[k] ≤ bpos.

For terminal constraints, the robot must reach the set Cpj
within N steps, where N is

the prediction horizon. This can be formulated as ACpj
xpos[k] ≤ bCpj

, with the terminal
position states of x2,f chosen as the center of the control invariant set Cpj

and terminal
velocity states set to zero.

The state velocity and input constraints are defined as −vmax ≤ xvel[k] ≤ vmax and
−∆vmax ≤ u2[k] ≤ ∆vmax respectively, where xvel[k] =

(
vxm [k] vym [k]

)T
are the velocity

states.

With cost matrices Q, Qf ⪰ 0 and R ≻ 0, we formulate the optimal control problem over
the input u∗

2 as:

u∗
2 = arg min

u2

∑N−1
k=0

(
∥x2[k]− x2,f∥2

Q + ∥u2[k]∥2
R

)
+ ∥x2[N ]− x2,f∥2

Qf (A-1)
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s.t. x2[k + 1] =
[
I TI
0 I

]
x2[k] +

[
0
I

]
u2[k], ∀k ∈ {0, . . . , N − 1}

Aposxpos[k] ≤ bpos, ∀k ∈ {0, . . . , N − 1− n}

ACpj
xpos[k] ≤ bCpj

, ∀k ∈ {N − n, . . . , N}

−vmax ≤ xvel[k] ≤ vmax, ∀k ∈ {0, . . . , N}

−∆vmax ≤ u2[k] ≤ ∆vmax, ∀k ∈ {0, . . . , N − 1}

(A-2)

where ∥x∥2
Q = xT Qx denotes the weighted 2-norm. The variable n tracks the elapsed time

steps since receiving new partition commands from the top layer, ensuring the transition
completes within N steps.
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Appendix B

Interpolation Function

We implement a slightly modified version of the interpolation function presented in [1]. The
nonlinear interpolation function Tα,T ([xm[k]]Nk=0) generates a smooth trajectory through the
discrete points xm[k]. This function is defined over time intervals t ∈ [kT, (k + 1)T ) as:

x(t) =

x1(t) t ∈ [kT, (k + 0.5)T )
x2(t) t ∈ [(k + 0.5)T, (k + 1)T )

x1(t) = sk + vk(t− kT )− vk+1 − vk

δT 2 t3
p,1

(
1 + 2tp,1

δT

)
x2(t) = sk + vk(t− kT )− vk+1 − vk

δT 2 t3
p,2

(
1− 2tp,2

δT

)
δT = 2(1− α/2)T
tp,1 = t− kT − αT/2
tp,2 = t− kT − δT/2

(B-1)

where sk = xm[k], vk = vxm [k], vk+1 = vxm [k + 1], α = 1 and T is the sampling time
of the middle layer. An identical interpolation can be applied to ym[k]. At the interval
endpoints kT and (k+1)T , the nonlinear interpolator coincides with the linear interpolator,
ensuring the trajectory passes through the discrete points specified by the middle layer.
The maximum deviation between the linear interpolator x̄ and our nonlinear interpolator
x(t) is given by:

|x(t)− x̄| = 3
32α|vk+1 − vk|T (B-2)

This maximum deviation value is considered when designing the polytope Bδ in the middle
layer to ensure safe transitions between partitions. Figure 7-8 shows an example case of
the nonlinear interpolator. For a further analysis of the interpolation function, please refer
to [1].
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Appendix C

Feedback Linearization Controller

We design the low-level controller by combining feedback linearization with Lyapunov
backstepping techniques [1, 52, 51]. The control design begins by defining the error signal:

e =
(

xl

yl

)
+ xd(t) (C-1)

where xl, yl represent the low-level system’s position states, and xd(t) is the reference tra-
jectory obtained by interpolating xm and ym using the function Tα,T (detailed in appendix
B). Following the approach in [1], the control inputs are given by:

u =
(

ad

αd

)
ad =

(
cos θ sin θ

)
ëd

ad = −1
2σ(ω − ωd) + ω̇d − 2

(
eT ėT

)
P


0
0

−v sin θ
v cos θ


ëd = ẍd(t)−Kpe−Kdė

ë = −Kpe +−Kdė

ωd = 1
v

(
− sin θ cos θ

)
ëd

ω̇d =
(

ad

v2 sin θ − ω
v

cos θ −ad

v2 cos θ − ω
v

sin θ
)

ëd+
1
v

(
− sin θ cos θ

)
( ...

x d(t)−Kpė−Kdë)

(C-2)
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where Kp, Kd, σ are the controller constants. P is obtained by solving the continuous-time
Lyapunov equation

AT P + PA = −I

A =
(

0 I
−Kp −Kd

)
(C-3)
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