
Domain Adaptation in
Acoustic Rainfall Sensors

Author:

Arman Naseri Jahfari

September 5, 2019

Domain Adaptation in Acoustic
Rainfall Sensors

by

Arman Naseri Jahfari

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Thursday September 12, 2019 at 9:30 AM.

Student number: 4036735

Thesis committee: dr. D.M.J. Tax, TU Delft, supervisor
dr. ir. R. Heusdens, TU Delft, chairman
dr. M. Loog, TU Delft

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

ii

Dedicated to the memories of Moreno and Ashley. They
have shown me and ’the gang’ some invaluable traits

needed in this journey of life.

Your positive attitude, curiosity, perception, guts and
most importantly, a great sense of humor will be

remembered and passed on.

C O N T E N T S

1 background information 1

1.1 Problem description . 1

1.2 methods . 2

1.3 Research question . 4

2 data acquisition 5

2.1 Top-level design . 5

2.2 Hardware . 6

2.3 Software . 8

2.4 Rainfall emulation experiment 10

3 baseline 12

3.1 Data preprocessing . 12

3.2 MFCC Feature Generation 13

3.3 Performance evaluation 16

3.4 Cascaded Regression . 19

4 domain adaptation 23

4.1 Introduction . 23

4.2 semi-supervised domain adaptation 28

4.2.1 Standardization 28

4.2.2 Principal Component Analysis 30

4.2.3 Transfer Component Analysis 32

4.3 supervised domain adaptation 39

5 results 47

6 conclusion & discussion 49

Bibliography 52

Appendices 54

a posterior histograms 55

b results 56

c tca derivation 60

c.1 Maximum Mean Discrepancy 60

c.2 The kernel trick . 62

c.3 Optimization Problem 64

d tca example 69

e variance minimization 72

e.1 Derivation . 72

e.2 Experiment . 75

f tca code 78

iii

1

B A C K G R O U N D I N F O R M AT I O N

1.1 problem description

The problem of rainfall analytics is non-trivial and yet, very impor-
tant. In The Netherlands, damage due to rainfall, like flooding and
traffic jams, does not frequently occur. However, when it happens,
the financial and social costs are great[1][2]. Research on prediction
of future rainfall also show that these situations will increase in in-
tensity and frequency, due to climate change[3]. Therefore, measures
must be taken to get more insight in the behaviour of extreme rainfall.
Although satisfactory weather prediction models exist, they are not
able to provide useful information on four criteria of rainfall estima-
tion: accuracy, high temporal and high spatial resolution and range.
The high temporal and spatial resolution is needed, because rainfall is
non-stationary over time and space. Ideally, a street-level resolution
prediction is needed. This high-resolution data can then be passed to
urban hydrology models, which require an accurate estimate of the
rainfall, so that it can be analyzed where flooding might occur, based
on current infrastructure, e.g. sewage systems.

1

1.2 methods 2

1.2 methods

Current measurement methods trade-off these criteria. State-of-the-
art methods discussed are weather satellites, radars and rain gauges.
These are compared to a novel acoustic rainfall estimation method. It
will be discussed, that the latter can overcome limitations from other
methods.

The following table quantitatively scores each method for every of
the four criteria, followed by an elaboration.

Temporal
resolution

Spatial
Resolution

Error
performance

Range

Weather Satellite[4] – – 0 +
Weather radar[5][6] – – 0 +
(Acoustic) Rain gauge + + + –

Table 1.: Comparison of different rainfall estimation systems. Four criteria are
scored qualitatively. Plus, minus and zero indicate strong, weak and neu-
tral satisfaction, respectively.

Weather satellites infer rainfall by remotely sensing electromagnetic
radiation from clouds. Corrections need to be applied for instrumen-
tal and atmospheric factors, resulting in low error performance. The
satellite is positioned at a large distance to the Earth. Therefore,
the range is large, but the spatial resolution low. Satellites orbiting
around the Earth, have extremely low temporal resolution. Geosta-
tionary satellites mitigate the latter, by remaining stationary w.r.t. the
Earth’s rotation. Also, they are also very costly.

Weather radars transmit electromagnetic waves into the atmosphere.
Part of it is reflected back by raindrops. The rainfall intensity is then
infered from this reflected signal. Similar to satellites, the inference
has a poor error performance. The electromagnetic beam tends to
become wider for larger distances, which degrades spatial resolution.
Blockages due to hills and buildings also cause inaccuracies. Weather
radars measure while rotating 360 degrees and rainfall might have
changed significantly in this time, which limits temporal resolution.

Spatio-temporal resolution and error performance can be greatly im-
proved with rain gauges. Laser-based rain gauges, collect rain in a
funnel, which releases water droplets with known volume. A laser
beam at the bottom is interrupted, every time a droplet passes. Then,
the amount of interruptions per unit time gives an estimation of the
rainfall. In contrast to the previous methods, rain is measured di-
rectly, resulting in high error performance. The temporal resolution
is only limited by practical factors like hardware. The spatial resolu-
tion is also high, because it is defined by the size of the funnel, which

1.2 methods 3

is relatively small. Unfortunately, the small size of the rain gauge
results in a small range; rain can only be physically measured locally.
One solution is to distribute these sensor densely over a wide area.
The Koninklijk Nederlands Meteorologisch Instituut (KNMI)/ Royal
Netherlands Meteorological Institute employs rain gauges over the
Netherlands, but due to high costs, they are sparsely distributed as
can be seen in the following figure.

Figure 1.: Weather station locations of the KNMI[7]

A cost-effective acoustic ’rain gauge’ is proposed[8], that can be densely
distributed. Rainfall is infered from physical contact of rain drops
onto a membrane. This results in decent error performance, while
enabling a high spatio-temporal resolution. However, every acous-
tic sensor must be individually calibrated, which is infeasible if the
number of sensors is large.

1.3 research question 4

1.3 research question

To tackle the calibration problem mentioned earlier, it is researched
how to transfer a pattern recognition model trained in a certain point
in time/space with a certain acoustic sensor, to another point in
time/space and or sensor.

This is achieved through transfer learning. The acoustic sensor data,
used to train a model, is defined as the source domain. Then, the data
of another acoustic sensor, where the model is tested on, is defined to
be the target domain. This transfer learning problem is scoped down
to a subfield called domain adaptation, by the following observations.
The source and target domain share the same task to estimate rainfall.
Furthermore, the number of features are equal in both domains.

From the problem description, our project is scoped down to research-
ing and engineering the following objective:

”How can non-stationary inference be made of rainfall, from acoustic
data, using domain adaptation.”

For this performance transfer, measurements of highly accurate ground
truth sensors and simple, cost-effective acoustic sensors must be cor-
related. Then, the resulting model must be adapted to other acoustic
sensors

2

D ATA A C Q U I S I T I O N

In this chapter, it is explained how data acquisition is performed to
collect data for a pattern recognition model. An overview of the
process is given, where after the hardware and software of the self-
developed acoustic sensor and the ground truth weather station is
explained. Finally, the data acquisition experiment is described. The
framework to process this in a pattern recognition pipeline is de-
scribed further in chapter 3.

2.1 top-level design

An overview of the flow of the data acquisition system is given in
figure 2. First, the acoustic and ground truth sensor synchronously
perform timestamped measurements. Then, the data is communi-
cated over WiFi to a server. After preprocessing this data (removing
corrupted data, aligning the data based on timestamps and format-
ting the data to a more suitable form for a machine learning library),
it is input in the pattern recognition pipeline.

Figure 2.: Data acquisition overview: The acoustic and ground truth sensors collect
acoustic and rainfall data, respectively. This is then communicated to a
server for storage. After preprocessing this data, it is input in a pattern
recognition pipeline to construct a model that infers rainfall from the
given audio data.

5

2.2 hardware 6

2.2 hardware

This section describes the hardware design of the acoustic sensor.
Furthermore, an overview is given of the hardware of the accurate
ground truth sensor that is used.

The self-developed acoustic sensor consists of a 20 Hz to 20kHz range
electret microphone with an integrated MAX4466 amplifier. The re-
sulting waveform is passed through a MCP3304 13-bit Analog-to-
Digital Converter (ADC), which samples at 43 kSamples/second.
This digital signal is then communicated to a Wemos processing board,
through the Serial Peripheral Interface (SPI). This board includes an
ESP32 microcontroller, which includes a WiFi chip for Internet of
Things (IoT) capabilities, needed to transmit measurements to a server.
Furthermore, it contains a user-friendly USB connection to a com-
puter from where programs can be written using simple Arduino C
code. An illustration of the (components of the) hardware used is
given below.

Figure 3.: Subcomponents of the acoustic sensor. Left: Microphone and amplifier.
Middle: ADC. Right: Wemos Internet of Things board.

The sensors are deployed outside and the inside must therefore be
robust to environmental factors, like dust and rainfall. Therefore,
they are packaged in PVC pipes. The microphones are taped to a
speciecap. This is a soft and flexible PVC cover, which allows for
vibrations to propagate through the cap into the packaging. This
minimizes attenuation from the cover, enabling measuring vibrations
due to waterdrops hitting the speciecap directly, as well as acoustic
pressure waves from the environment, reaching the inside of the PVC
pipe. An example of an assembled sensor can be found below:

The annotations of the acoustic data are provided by the rain gauge
of a weather station from the Trans African Hydro Meteorological
Observatory (TAHMO). This rain gauge communicates its measure-
ments digitally through the Serial Digital Interface at 1200 baud (SDI-
12) protocol. Similar to the acoustic sensor,the measurements are then
transmitted to a Wemos IoT board, which in turns transmits the mea-

2.2 hardware 7

Figure 4.: Acoustic sensor. From left to right: Red speciecap with microphone glued
on the inside, PVC pipe where electronics are suspended, PVC bottom
cap. In the back is a solar kit(solar panel, battery, USB ports) to provide
electronics with power

.

surements to a server over WiFi. A picture of a TAHMO station is
shown below:

Figure 5.: TAHMO station with a rain gauge sensor module on the top right, used
to provide rainfall annotations for the acoustic sensor.

2.3 software 8

2.3 software

This section describes the firmware of the microcontroller used in the
acoustic and ground truth sensor. Because the firmware is similar for
both acoustic and ground truth, it is described in one section, with
differences elaborated when necessary.

The software is structured as a Finite State Machine (FSM), which
runs different code depending on the current state and can change
states based on a trigger. The FSM is presented below with an expla-
nation of the states:

Figure 6.: An overview of the FSM implemented in the Wemos electronic board
.

The startup state starts up basic functionality of the board. It does so
according to the following procedure:

• Initiate analog input pin connected to the microphone for the
acoustic sensor.

• Connect to WiFi.

• Initiate SPI communication for the acoustic sensor and SDI-12

communication for the ground truth sensor.

• Synchronize with an external Network Time Protocol (NTP) net-
work. NTP is an internet protocol that can accurately synchro-
nize the internal clock of a device, to a universal time refer-
ence. This is essential for synchronizing the measurements of
the acoustic and ground truth sensors. Furthermore, when the
acoustic sensors are deployed, time drifts can result in inaccu-
rate rainfall maps.

2.3 software 9

• When the startup is finished, the device proceeds to the Mea-
sure state

The measure state is the core of the program’s functionality and sam-
ples signals measured by the microphone in the acoustic sensors and
the rain gauge in the ground truth sensor.

• All devices are idle until the synchronized internal time is a
multiple of a measurement interval of five seconds. In other
words, all devices start a measurement at the fifth, tenth, up to
the sixtieth second of a minute.

• When it is time to measure, the acoustic sensor acquires 4000

samples at a sampling rate of 43 kS/s, resulting in roughly 90

milliseconds of audio data every five seconds. The ground truth
sensor acquires only one rainfall sample in this measurement
interval.

• After measuring is complete, the device changes to the publish
state.

Finally, in the publish state, the device communicates it’s measure-
ments to an external server through WiFi.

• In the publish state, the device starts by setting up an MQTT
client. MQTT is a lightweight, small overhead messaging proto-
col.

• The data is sent to the MQTT server, where it is then stored in
a database.

• The device returns to the measuring state, where it sleeps to pre-
serve energy, until the next measurement must be performed. A
small margin is included to account for time needed to wake up.

2.4 rainfall emulation experiment 10

2.4 rainfall emulation experiment

Now that the sensors are explained, this section describes the data ac-
quisition through a rainfall emulation experiment. The experimental
setup is schematically shown in the figure below, with a description
of all components.

Figure 7.: Schematic of rain emulation experiment for data acquisition
.

• PVC T-shaped joints: Joints to connect PVC pipes of framework.

• PVC pipes(long): Long pipes for framework to hold all compo-
nents.

• PVC pipes(short): Short pipes for framework so that wiring of
power supply to sensors can also be kept short.

• Curved PVC joint: Due to the geometry of the T-joints, a curved
pipe is needed to create a rectangle framework.

• Sprinkler: GARDENA Zoommax oscillating water sprinkler. The
sprinkler providing water drops, is suspended to a pole with tie-
wraps and this pole is in turn suspended to a ladder. Further-
more, water is provided by a waterhose. These are not depicted
in the schematic.

• Mesh grid: The sprinkler ejects large beams of water. To emu-
late rain, a mesh grid is placed under the sprinker, that scatters
these beams to small water droplets, improving uniformity. The

2.4 rainfall emulation experiment 11

mesh grid hole size is five square millimeters. Furthermore, it
is suspended to the framework with tie-wraps.

• TAHMO ground truth sensor: Positioned exactly below the
sprinkler.

• Wemos electronic board: Datalogger for the measurements of
the ground truth sensor. Packaged in PVC.

• Audio cable: Used as communication wire from TAHMO ground
truth sensor to Wemos datalogger.

• Acoustic sensors: Packaged as in figure 4 and positioned 25

centimeters from TAHMO ground truth sensor.

• Power socket: Power supply to sensors

• Power cables: USB power cables providing power to sensors
through power socket.

The data acquisition experiment has been performed twice over two
days. The first time, two acoustic sensors were used as in figure 7.
In the second experiment four acoustic sensors were used, where the
two additional sensors were placed 25 centimeters from the original
two sensors. Thus, all sensors, including the ground truth sensors,
are placed at equal distance, with the ground truth sensors centered
directly below the sprinkler. The first and second experiment, per-
formed on August 9th 2018 and September 12th 2018, will be denoted
as E1 and E2, respectively. The left and right acoustic sensors in fig-
ure 7 will be denoted as m1 and m2, respectively. In E2, m1 and m2

are positioned the same as E1. The additional sensor placed left of
m1 will be denoted as m3 and the sensor right of m2 will be denoted
m4. In other words, the order of acoustic sensors in E2 is from left
right: m3, m1, m2, m4.

3

B A S E L I N E

3.1 data preprocessing

The acquired data contains corrupted data that need to be filtered
out. When the rain gauge is saturated with too many raindrops, it
reports a measured value of zero. In that case however, the internal
temperature sensor also reports a value of zero. This is an indication
of a corrupted measurement and thus, these are filtered out. Further-
more, for some very high rainfall measurements, the model was not
able to predict them. The intensity of rainfall of these measurements
do not occur in nature and therefore, were also chosen to be filtered
out . Finally, due to communication errors, the acoustic sensors were
not operational 100% of the time. This results in datasets, with dif-
ferent sample sizes per microphone. The resulting measurement size
per microphone is given below:

Measurement size

E1, m1 1941

E1, m2 1939

E2, m1 4479

E2, m2 4551

E2, m3 4871

E2, m4 4436

Table 2.: Measurement size of acquired data for every microphone in each of the
experiments. Every measurement consists of 4000 samples.

A feature vector in the time-domain is defined as:

xt =
[
xt(0) xt(1) . . . xt(S− 1)

]T
(1)

where xt ∈ R1×(S−1) and every time feature vector consists of S =

4000 microphone samples.

12

3.2 mfcc feature generation 13

The time feature matrix consists of these time feature vectors stacked
together:

Xt =
[
xt,0(s) xt,1(s) . . . xt,N−1(s)

]T
(2)

where Xt ∈ R(N−1)×(S−1). It consists of N − 1 measurements, with
each measurement consisting of S = 4000 microphone samples as
mentioned earlier.

3.2 mfcc feature generation

The acoustic sensors measure 4000 samples in each measurement in-
terval, annotated by a single rainfall measurement from the TAHMO
ground truth sensor. As was mentioned in section 2.3, the sensors
measure at a sampling frequency of 43 kiloSamples/s, resulting in a
measurement time of 90 milliseconds. This results in feature vectors
with 4000 features.

Suppose that a waterdrop is measured at the beginning of a sample,
while a similar one is measured at the end of another sample. This
would cause the first features in the first sample to have high values,
while in the second sample, the last features would have high values.
The pattern recognition model would distinguish these two situations
to be different, while they are similar water drops, describing the
same amount of rainfall. This representation is not time-invariant
within the measurement interval. This is solved by using a spec-
tral representation, because the magnitude spectrum is insensitive to
timeshifts of the signal (only the phase spectrum changes). Further-
more, this representation is disadvantageous for a pattern recognition
model due to the high dimensionality. Therefore, dimensionality is
desirable. These problems can be solved by using the Mel frequency
cepstral coefficients (MFCCs)[9]. The procedure to compute MFCCs
for the acquired data, will be explained.

• Data framing: The audio signal of the entire microphone record-
ing is non-stationary and therefore the spectral content is time-
dependent. As a solution, the audio signal is split in small frag-
ments, called frames, where after a Fourier transform is applied
on each frame. The dataset acquired is implicitly already split
up in frames of S microphone samples. Thus, every frame cor-
responds to a time feature vector in equation 2. Furthermore,
because the time interval of five seconds is much larger, than
the measurement duration (approximately 90 milliseconds), the
frames are assumed to be independent. Thus, the framed audio

3.2 mfcc feature generation 14

data is already given earlier as the stacked time feature matrix
in equation 2.

• Apply Hanning window: After dividing the audio data in frames,
a Hanning windowing function is applied. The frames are non-
periodic fragments of the recording. Therefore, the endpoints
of the waveform in a frame are discontinuous. These artificial
discontinuities result in high-frequency components in the fre-
quency domain, not present in the original time-domain frame.
The Hanning window dampens the amplitude of the waveform
at these endpoints to zero, to reduce the discontinuity. This is
applied to every time feature vector, resulting in a windowed
time feature matrix as defined in equation 3.

Xt,w =
[
xt

0(s)w(s) xt
1(s)w(s) . . . xt

N−1(s)w(s)
]T

=
[
xt,w

0 (s) xt,w
1 (s) . . . xt,w

N−1(s)
]T (3)

• Estimate periodogram: Now, for every windowed time feature
vector, the Discrete Fourier Transform is computed through the
Fast Fourier Transform. Because the transform is applied on
short frames, instead of the entire audio data, it is also known as
the Short Time Fourier Transform (STFT). The periodogram of
the STFT for a single frame/measurement is given in equation
4.

xF
n(k) = |F{xt,w

n (s)}|2

=

∣∣∣∣∣S−1

∑
s=0

xt,w
n (s)e

−2jπks
S

∣∣∣∣∣
2 (4)

where k = 0, 1, ... S−1
2 is the frequency bin index of the single-

sided spectrum. Then, applying this to all measurements, the
feature vector matrix is obtained:

XF = |F{Xt,w}|2

=
[
xF

0 (k) xF
1 (k) . . . xF

N−1(k)
]T (5)

• Apply the Mel filterbank on theperiodograms: So far, the pro-
cedure for computing MFCCs is the same as a vanilla Fourier
Transform. Now, a triangular filterbank is applied for dimen-
sionality reduction, which can be regarded as a moving weighted
average filter, where the filter width increases, when moving
over all considered frequencies. This width increases due to

3.2 mfcc feature generation 15

the use of the Mel scale. This scale aims to mimic the non-
linear human auditory sensitivity to frequency changes, by be-
ing more discriminative at lower frequencies and less discrimi-
native at higher frequencies, due to its exponential relationship
with frequency. In other words, changes in the lower frequency
area is generally perceived as a large change in pitch/Mels. At
higher frequencies, the human auditory system is less sensitive
to changes in frequency and thus, it is perceived as a small
change in pitch/Mels. The use of the Mel scale originates from
automatic speech recognition models, that mimic human audi-
tory perception. This has however proven to also work for non-
speech application. For this research, the number of filters used,
is 40. An example of a triangular filterbank is given in figure 21.

Figure 8.: Example filterbank where the sampling rate is 16000 Hz and six filters
are generated.

3.3 performance evaluation 16

• Apply logarithm function: The logarithm with base ten is ap-
plied on all filterbank energies. One motivation for this is that
it emulates the human auditory system, which also perceives
the magnitude of a sound wave logarithmically. More specifi-
cally to domain adaptation, the log power allows for cepstral
mean normalization. This is a technique that removes the effect
of the transfer function of a microphone. In doing so, different
acoustic sensors will have more similar characteristics, which is
beneficial, if prediction is performed on them, using one model.
Because it is a technique beneficial for domain adaptation, it is
further discussed in Chapter 4.

• Discrete Cosine Transform (DCT) Transform: A spectral trans-
form is applied again. Instead of the Fourier transform, the
DCT suffices, because the magnitude square operation in the pe-
riodogram results in real Fourier coefficients. The filters in the
filterbank are overlapping and thus, the resulting coefficients
are correlated. The DCT transform decorrelates them, i.e. the
covariance matrix of the data is diagonal.

3.3 performance evaluation

To assess how the performance of a prediction model will general-
ize, 10-fold cross validation is used. It is motivated why the R2 score
is chosen to evaluate the performance of a model. Furthermore, it
is discussed that every fold contains a random permutation of a mi-
crophone’s data. Lastly, the use of an average R2 score for domain
adaptation is explained .

The ground truth sensor, used to annotate the measurements of the
acoustic sensors, has a relative measurement error (in percent) w.r.t.
the ground truth value. Consequentially, the absolute measurement
error and thus the variance over multiple measurements, is propor-
tional to the magnitude of the ground truth. This is indeed true for
the ground truth time series of microphone E1, m1 below.

3.3 performance evaluation 17

Figure 9.: Ground truth time series corresponding to E1, m1. Black lines divide the
values in ten cross-validation folds.

The measurements have been evenly split into ten folds. It can be seen
that the variance of the last three folds are much larger than the other
folds. Similarly, the absolute prediction error and error variance of a
model when using the mean square error (MSE), typically correlates
with the magnitude of ground truth measurements as well. In figure
9, the MSE would report a larger absolute error and error variance for
the last three folds, than the other ones. This holds even if the relative
error is constant over all folds. It is chosen to therefore normalize the
MSE of each fold by the variance of the ground truth values in that
fold. This leads to the R2 metric:

R2 = 1− ∑N−1
n=0 (yn − ŷn)2

∑N−1
n=0 (yn − ȳ)2

(6)

From another perspective, the R2 score describes the squared error of
an estimator given in the numerator, w.r.t. the squared error of using
the sample mean as estimator. Thus, if R2 = 0, the estimator performs
equally well as the sample mean estimator. When R2 is close to one
or very negative, it performs much better or worse than the sample
mean, respectively.

Figure 9 shows that the first few folds contain only ground truth
values of zero. This will cause the R2 to be undefined due to division
by zero. Therefore, the samples are first uniformly random permuted.
This is a necessity, but the disadvantage is that the model is not tested
on ground truth values that are significantly different in magnitude
than trained on. Consequentially, the score is a poor indication of the
out-of-sample performance.

3.3 performance evaluation 18

Every domain adaptation technique in section 4, is evaluated for all
microphone pairs. There are 6 microphones. Thus, the evaluation of
every technique results in a 6 by 6 score matrix, where every possible
pairwise combination of microphones as source and target, is evalu-
ated. This makes it difficult to compare multiple techniques or param-
eters. Therefore, the average R2 score over all folds of all microphone
pairs that are suitable for that method, is taken. For unsupervised
and supervised domain adaptation, microphones originating from
the same and different experiments, respectively, are considered for
the average R2. A paired t-test is then used to compare all the folds
resulting from one method, with another. This is visually elaborated
in the following tables.

Source \Target E1, m1 E1, m2 E2, m1 E2, m2 E2, m3 E2, m4

E1, m1

E1, m2

E2, m1

E2, m2

E2, m3

E2, m4

Table 3.: Microphone pairs that are considered (in green) to compute the aver-
age R2 performance of unsupervised domain adaptation methods. Only
pairs from the same experiment are considered. Also note that the self-
performance, pairs where the source and target are the same microphone,
are excluded. In total 14 microphone pairs, each consisting of 10 folds
are considered. Therefore, the average R2 score is computed over 140
fold scores. Furthermore, the t-test is performed between 140 folds of one
method and 140 folds of the other.

3.4 cascaded regression 19

For the semi-supervised domain adaptation methods, only micro-
phone pairs from different experiments (with different posterior dis-
tributions) are used to evaluate the average R2 performance. The
following table depicts, which microphone pairs are considered in
the 6 by 6 performance matrix:

Source \Target E1, m1 E1, m2 E2, m1 E2, m2 E2, m3 E2, m4

E1, m1

E1, m2

E2, m1

E2, m2

E2, m3

E2, m4

Table 4.: Microphone pairs that are considered (in green) to compute the average R2

performance of semi-supervised domain adaptation methods. Only pairs
from different experiments are considered. In total 16 microphone pairs,
each consisting of 10 folds are considered. Therefore, the average R2 score
is computed over 160 fold scores. Furthermore, the t-test is performed
between 160 folds of one method and 160 folds of the other.

3.4 cascaded regression

Initially, ordinary least squares is used to predict the ground truth
from the MFCC data. The resulting predictions are given below:

Figure 10.: Ground truth (top) and predicted values (bottom) of E1, m1 using lin-
ear least squares. Ground truth time series is sorted ascending with
predicted values sorted accordingly.

The figures above are sorted ascending by the ground truth. In doing
so, it can be seen that when the ground truth is zero (and thus no
rain is detected) in the upper subfigures, a least squares model pre-

3.4 cascaded regression 20

Figure 11.: Ground truth (top) with predicted values (bottom) of E2, m4 using
linear least squares. Ground truth time series is sorted ascending with
predicted values sorted accordingly.

dicts non-zero, as seen in the lower subfigures. To prevent these false
positive predictions, a method similar to stacked generalization[10]
is used. There, multiple base learners predict the ground truth indi-
vidually, whereafter their predicted output is used as input of a meta
learners. In contrast to this ’stacking’, the learners are cascaded in a
two-stage fashion. First, a logistic regressor classifies the data into no
rain and rain. The use of a classifier in the first stage is motivated by
the fact that it can predict a binary value, preventing the many false
positive predictions as was seen in figure 10 and 11. Feature vectors
that are classified as rain, are then passed on to an ordinary least
squares regressor, to predict the actual rainfall. Finally, the no rain
predictions of the logistic regressor are concatenated with the rain
predictions of the least squares regressor. A schematic of this process
is shown below:

Figure 12.: Cascaded regression. After the classifier and regressor have been trained
by a train set, a test set is fed into the classifier. Feature vectors that
have been predicted to be corresponding to rain are passed on to the
regressor, which predicts the actual rainfall. The predictions for rain
and no rain are then aggregated, resulting in the complete prediction.

Now, the prediction on E1, m1 and E2, m4 are performed again, this
time using cascaded regression.

3.4 cascaded regression 21

Figure 13.: Ground truth (top) and predicted values (bottom) of E1, m1 using cas-
caded regression. Ground truth time series is sorted ascending with
predicted values sorted accordingly.

Figure 14.: Ground truth (top) with predicted values (bottom) of E2, m4 using
cascaded regression. Ground truth time series is sorted ascending with
predicted values sorted accordingly.

Comparing least squares and cascaded regression for E1, m1 in figure
10 and 13, it can be seen that the amount of false positives for rainfall
activity are reduced, although not much. In contrast, the comparison
for E2, m4 in figure 11 and 13, shows that the amount of false posi-
tives are significantly reduced. The performance of the classifier stage
and the final predictions (ŷ in figure 12 with cascaded regression is
given in the table below:

3.4 cascaded regression 22

Dataset
Classifier
Accuracy

Stacked regression
R2 score

E1, m1 0.91 ± 0.02 0.76 ± 0.03

E1, m2 0.87 ± 0.02 0.65 ± 0.05

E2, m1 0.99 ± 0.01 0.68 ± 0.03

E2, m2 0.99 ± 0.01 0.65 ± 0.03

E2, m3 0.97 ± 0.01 0.60 ± 0.03

E2, m4 0.98 ± 0.01 0.67 ± 0.03

Table 5.: Cascaded regression performance: Accuracy of classifier stage and R2

score for the final predictions.

Thus, in a supervised learning setting, the average R2 score over all
microphones is approximately 0.67. This can be used as reference
score for the domain adaptation performance.

4

D O M A I N A D A P TAT I O N

4.1 introduction

In this chapter, it will be described how the cascaded regressor is
used to perform domain adaptation between the six acoustic sensors.
Two situations are considered and elaborated in the rest of this intro-
duction.

In the situation of a semi-supervised domain adaptation, the poste-
rior distributions of the source and target domain are considered
equal and only the data distributions are matched[11]. Methods in
this situation are described in section 4.2. Therefore, only labels in
the source domain will be utilized, but no target labels. The differ-
ence lies in the joint density function in the following equation:

pS(X, Y) 6= pt(X, Y) (7)

Where p(·) represents the joint density function, X the feature vector
and Y the rainfall annotation, for the source or target.

23

4.1 introduction 24

Now, the assumption is made that the posterior distributions P(Y|X)

of the source and target domain are equal. In other words, funda-
mentally, the same relationship between acoustics and rainfall exists.
Only the data distributions are different due to the characteristics
of the acoustic sensor and the point in time/space the measurements
were performed. Therefore, the joint distributions can be split up into
the posterior and data distribution. This is described in the following
equation:

pS(X, Y) = pS(Y|X)pS(X) 6= pt(Y|X)pt(X) = pt(X, Y)

pS(Y|X) = pt(Y|X)

pS(X) 6= pt(X)

(8)

Thus, if the posterior distributions of the source and target are as-
sumed to be equal, the joint density functions can be made more
similar, by matching the data distributions.

4.1 introduction 25

This situation is illustrated by an example in the figure below:

Figure 15.: Upper: the source and target domain have the same posterior distribu-
tion. Middle: their data distributions is different. Lower: As a result,
they have different joint distributions.

• First, in the upper subfigure, an arbitrary posterior distribution
is chosen, which is equal for the source and target: P(Y|X) =

pS(Y|X) = pt(Y|X) ∼ N (µ, Σ), where µ = 0 and Σ =

[
1 3

4
3
4 1

]
.

• Then, the middle subfigure shows two different, arbitrary data
distributions, pS(X) ∼ N (0, 1

2) and pt(X) ∼ N (1, 1
2).

• Finally, in the lower subfigure, the source and target joint distri-
butions are computed through the identity given below:

P(X, Y) = P(Y|X) · P(X) (9)

In the above figure, the difference in data distributions, results
in two different joint distributions for the source and target, de-
spite having the same posterior distribution

4.1 introduction 26

It is validated whether the assumption that the posterior distribution
is equal for all microphones holds. The posterior is obtained from the
joint density and data distribution:

p(Y|X) =
p(X, Y)

p(X)
(10)

Furthermore, the posterior is estimated by the histogram of the above
joint density and data distribution. This can be achieved as follows:

hY|X =


hX,Y(0,0)

hX(0)
. . . hX,Y(B−1,0)

hX(B−1)
...

. . .
...

hX,Y(0,B−1)
hX(0)

. . . hX,Y(B−1,B−1)
hX(B−1)

 (11)

Where h(·) denotes the histogram value for the B-th bin.

The energies of the (MFCC) spectograms are primarily contained in
the first few coefficients. Therefore, the posterior histograms are in-
spected using the first, second and third coefficients. The latter two
can be found in Appendix A and the former is given below:

Figure 16.: Posterior density estimates of the first MFCC feature with the labels.

Although all posteriors partially overlap, in general the posteriors
from E1 are significantly different from E2. This can be caused by
a significantly different environment. Acoustic data in E1 and E2

that share the same labels, can then originate from different poste-
riors when the enviromental noise drastically influences the acoustic
measurements. Furthermore, microphones from the same experiment

4.1 introduction 27

have reasonably similar posteriors. Therefore, microphones originat-
ing from the same experiment are dealt with semi-supervised domain
adaptation techniques that assume equality in the posterior and only
match the data distributions.

Microphones from different experiments require supervised domain
adaptation techniques. In this setting, the microphones have differ-
ent posterior distributions and data distributions. The consequence
is that there is no choice, but to utilize both annotations from the
source domain as well as some annotations from the target domain.
Corresponding methods are described in section 4.3.

4.2 semi-supervised domain adaptation 28

4.2 semi-supervised domain adaptation

The following methods assume that the posterior distributions of
all microphones are equal and only the data distributions must be
matched.

4.2.1 Standardization

Conventionally, when the features vary largely in scale, it can be ben-
eficial to re-scale the data to zero mean and unit variance as in the
equation below:

X
′
n,d =

Xn,d − µd

σd

=
Xn,d − 1

N ∑n Xn,d
1
N ∑n (Xn,d − µd)

2 ∀d ∈ {0, 1, . . . , D− 1}
(12)

where Xn,d, x
′
n,d ∈ RN×D are the original and standardized d-th fea-

ture, respectively. µd and σd are the mean and variance of the d-th
feature. D is the number of features. Standardization can be specifi-
cally beneficial for domain adaptation, because the source and target
distributions will become more similar, due to the mean and vari-
ance being matched. From the perspective of MFCCs, the benefit
of subtracting the mean from the data is that the different channel
effects(transfer function of the acoustic sensor and environment) of
every microphone is neutralized. This is known as cepstral mean sub-
traction and can be proved by considering the data in the frequency
domain, where it was noted in section 3.2 that a log transform was
applied:

log [X(f)] = log [S(f) · H(f)]

= Xlog(f) = Slog(f) + Hlog(f)
(13)

It can be seen that due to the log transform, the channel effects be-
come an additive term. Then, the average over all measurements is
taken:

1
N ∑

n
Xlog(f) =

1
N ∑

n
Slog(f) + Hlog(f) (14)

4.2 semi-supervised domain adaptation 29

Finally, subtracting equation 14 from 13, it can be seen that subtract-
ing the average from the data, similar to equation 12, eliminates chan-
nel effects:

Xlog(f)− 1
N ∑

n
Xlog(f) = Slog(f)− 1

N ∑
n

Slog(f) (15)

The results of applying standardization compared to the baseline per-
formance is given in Appendix B. It can be seen that indeed, standard-
ization significantly improves the prediction performance, for most
microphone pairs. It is noticable that the performance is low when
the model is trained on a source microphone originating from a differ-
ent experiment than the target microphone it is tested on. Therefore,
standardization is only beneficial if the microphone datasets used,
originate from the same experiment.

4.2 semi-supervised domain adaptation 30

4.2.2 Principal Component Analysis

Principal Component Analysis (PCA)[11], can be beneficial to find a
(sub)space where the soure and target data are more similar. PCA
exploits the statistical information that lies in the data covariance ma-
trix, where its eigenvectors and eigenvalues, describe the directions
and amplitudes of the data variance in the feature space. The first
benefit w.r.t. domain adaptation, is that the transformed data is cen-
tered with mean zero, which matches the mean of the source and
target. Furthermore, PCA is invariant to rotation. Suppose the target
data is simply a rotated version of the source in the feature space.
Then, the direction of the eigenvectors rotate, adaptively. As a result,
the transformed domain is not affected by rotations in the original
domain.

To illustrate the above mentioned properties, consider a binary classi-
fication problem. First, both classes are drawn from an arbitrary nor-
mal distribution N (µ, Σ). Then, a rotation matrix is applied, given in
the equation below:

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(16)

The source and target data is then formed by choosing θ = −20 and
θ = 30 degrees, respectively. This results in two distributions, that
are rotated versions of each other, but with a different mean. A PCA
is applied on both source and target, individually. Finally, a logistic
regression is trained on the source data and applied to the target data.
This is done in the original domain and in the PCA domain:

4.2 semi-supervised domain adaptation 31

Figure 17.: Illustration of insensitivity of PCA to mean and orientation of a distri-
bution. Upper left and right: An arbitrary two-class Gaussian distri-
bution is rotated θ = −20 and θ = 30, to construct the source and
target data. A logistic regression is trained on the source data and ap-
plied on the target. The decision boundary is given in dashed red. The
eigenvectors used to project the data, are given in black. Lower left and
right: A PCA is applied on the source and target data, individually.
Again, a logistic regression is trained on PCA transformed source data
and applied on the PCA target data.

In the figure above, it can be seen that the logistic regression trained
on the original source data (upper left), does not perform well on
the original target (upper right), because the latter is rotated and its
mean is different. After applying PCA on both the source (lower left)
and target (lower right), it can be seen that the logistic regression
trained on the PCA transformed source, transfers very well on the
PCA transformed target, because the distributions are more similar/
The means are zero in both cases and the effect of different orienta-
tions is removed. However, it should be noted that, in general, the
covariance matrix of the source and target should be similar. Other-
wise, their PCA transform will be different.

Now that it is shown that PCA can be beneficial for domain adapta-
tion, it is applied on the rainfall datasets. The comeplete performance
matrix is given in appendix B. As with standardization, microphone
pairs originating from different experiments have low performance.
Pairs originating from the same experiment do not consistently per-
form better with PCA, than the baseline. In section 5, the average R2

will be used to gain more insight in the performance.

4.2 semi-supervised domain adaptation 32

4.2.3 Transfer Component Analysis

Transfer Component Analysis (TCA)[12][11] is a domain adaptation
technique that minimizes the Maximimum Mean Discrepancy (MMD)
cost function. A complete derivation and discussion is given in Ap-
pendix C. Furthermore, an implementation can be found in Appendix
F In this chapter, they keypoints for TCA are given and the technique
is applied to the acoustic rainfall dataset.

The MMD describes the Euclidean distance between statistical de-
scriptions of the source and target distribution. One such description
is the sample mean, which is the sum of all feature vectors normal-
ized by the sample size. In matrix form, this can be described with
the kernel matrix and normalization. The kernel matrix K holds all
information on the feature vectors from the source and target. The
normalization matrix L contains information on the sample size of the
source and target. It should be noted that a transformation φ(·) can
be applied before the sample mean operation. This transforms the
feature vectors into a higher dimensional space, where not only the
difference between the mean is considered, but also other statistical
relations.

A weight matrix is added to the MMD, so that it can control the dis-
tance between the source and target mean. It can be shown, that
the solution for the weight matrix consists of the eigenvectors corre-
sponding to the m leading eigenvalues of equation 17, where m is an
arbitrary desired dimensionality of the transformed TCA space.

W = eig
(

KHK
I + µKLK

)
(17)

Finally, after finding the optimal weight matrix, it can be used to
project the original source and target data in the TCA space:

XTCA = KŴ (18)

Different kernel functions exist to compute the kernel matrix K. The
linear kernel and Radial Basis Function (RBF) kernel are considered.
It is known that a RBF kernel transforms the data, using the map-
ping φ(·), such that not only the mean, but also higher moments are
matched:

K(xi, xj) = e−γ||xi−xj||2 (19)

4.2 semi-supervised domain adaptation 33

The power series expansion then shows that the kernel and thus the
MMD incorporates exponentiations (all higher moments) of the dot
product between two feature vectors in the original domain:

K(xi, xj) = e−γ||xi ||2−γ||xj||2
∞

∑
n=0

(2γ)n(xi · xj)
n

n!
(20)

It can be seen that the RBF kernel is a Gaussian similarity function,
where γ is inversely related to the standard deviation and thus the
bandwidth of the Gaussian function. A value of 1 corresponds to xi
and xj to be very close/similar in the feature space and a value of 0 to
them being very far apart/dissimilar. A large γ, results the function
to appoint a high similarity score only when xi and xj are very close.
Conversely, a small γ results the function to appoint a high similarity,
even when xi and xj are far apart.

A fitting γ parameter is found by inspecting the Nth nearest neigh-
bour (NN) of all samples for a specific microphone. Then, the average
of all these Euclidean distances is computed and is used as γ value
as described in the equation below:

D̄m =
1
N ∑

i
Dm,i (21)

Where m denotes the index of a microphone, and i is the sample in-
dex. Dm,i therefore denotes the Euclidean distance to the Nth nearest
neighbour for sample i of microphone m.

Then, it is computed what the average distance is over all microphone
as defined below:

D̄ =
1
N ∑

m
D̄m (22)

The table below shows the average distance as defined in the above
equation, for the 5th and 10th nearest neighbour:

5
thNN 10

thNN

D̄ 14.60 (5.17) 15.39 (5.23)

Table 6.: Average Euclidean distance of the 5th and 10th NN, over all samples and
all microphones. Standard deviation is denoted by (·).

It can be seen that the mean of the average distance is similar for the
5th and 10th NN. Therefore, it has been chosen to use a value that is
approximately halfway through: γ = 15.

4.2 semi-supervised domain adaptation 34

Before assessing the performance of TCA with the cascaded regres-
sor, it is investigated how well the linear and RBF kernel perform
in matching different moments. To do so, a score metric is devised
to quantify the distance between the kth moment of the source and
target data. This moment distance score is given below:

Sk =
||mSk −mtk||2

σ2
S + σ2

T
(23)

and the kth moment is defined below:

mk =

{ 1
N ∑N

i=1(Xi,d − X̄d)
k, k ≥ 2

1
N ∑N

i=1 Xi,d , k = 0
∀d (24)

Therefore, the second moment is equivalent to the variance and the
0th moment is equivalent to the sample mean. Note that m1 should
be zero. This is then computed for every feature, thus mk ∈ R1×d.
The variances in the denominator of equation 23, consider the entire
feature matrix, i.e. all values of all features.

This score is applied to the original domain as well as in the TCA
domain. Then, the ratio between the two is considered to quantify
the domain matching between the source and target. The ratio is
given below:

Sk
ratio =

STCA

Soriginal
(25)

where both for the moment distance score in equation 23, as the ratio
score in equation 25, a lower value is better.

The domain adaption performance of TCA, is assessed for a linear
and RBF kernel for different moments, with the found γ parameter
in table 6. This is done for two cases. In case one E1, m1 is the source
data with E1, m2 as target data. In case two E1, m1 is again the source
data, but E2, m1 the target data. The original data, TCA with a linear
kernel, RBF with γ = 15 and RBF with γ = 1 are evaluated. The latter
is included, to verify that the method to find a suitable γ parameter
discussed earlier, performs better, than a ’default’ value. The data
matching is visualized, by inspecting the first two MFCC components
in the original domain and the first two TCA components in the TCA
domain. The figures are given below. Furthermore, the tables where
different moments are evaluated using the ratio score are also given
below.

4.2 semi-supervised domain adaptation 35

Figure 18.: Visualization of the first two components of E1, m1 as source and E1,
m2 as target. This is done for the first two MFCC components in the
original domain and first two TCA components in the TCA domain
using a linear and two RBF kernels. Red dot shows location of the
sample mean. Color indicates rainfall intensity(darker is less rain)

Figure 19.: Visualization of the first two components of E1, m1 as source and E2,
m2 as target. This is done for the first two MFCC components in the
original domain and first two TCA components in the TCA domain
using a linear and two RBF kernels. Red dot shows location of the
sample mean. Color indicates rainfall intensity (darker is less rain)

4.2 semi-supervised domain adaptation 36

The corresponding tables are given below:

E1, m1(source) E1, m2(target) k=0 k=2 k=3 k=4

Linear kernel, µ = 1 2 · 10−4 5 · 10−3 5 · 10−6 1 · 10−8

RBF kernel, µ = 1, γ = 1 318 2 2 · 10−3 7 · 10−6

RBF kernel, µ = 1, γ = 15 0.3 2 · 10−4 3 · 10−7 9 · 10−10

Table 7.: Evaluation of the data distribution matching of E1, m1 as source and E1,
m2 as target. This is done for a linear and RBF kernel. Different moments
are evaluated using the score functions in equation 23 and 24.

E1, m1(source) E2, m1(target) k=0 k=2 k=3 k=4

Linear kernel, µ = 1 4 · 10−4 3 · 10−3 2 · 10−6 1 · 10−9

RBF kernel, µ = 1, γ = 1 612 0.5 3 · 10−3 3 · 10−7

RBF kernel, µ = 1, γ = 15 0.3 7 · 10−5 2 · 10−8 2 · 10−11

Table 8.: Evaluation of the data distribution matching of E1, m1 as source and E2,
m2 as target. This is done for a linear and RBF kernel. Different moments
are evaluated using the score functions in equation 23 and 24.

The above tables show that all kernels, except for an RBF with γ =

1, improve the matching of the analyzed moments. The RBF with
γ = 15 underperforms in matching the mean compared to a linear
kernel, but is better at matching higher moments. Even though the
tables imply that the matching works well for both cases inn figure 18,
TCA seems to match the shape of the source and target distribution
less well, than in figure 18. It is concluded that a linear kernel and
RBF kernel with γ = 15 are candidates to be used with the cascaded
regressor. It is further investigated, which of the two performs better.

4.2 semi-supervised domain adaptation 37

It was mentioned that in TCA, the number of components m deter-
mine the dimensionality of the transformed data space. It is investi-
gated how many leading components are optimal. A linear kernel is
used with trade-off parameter µ = 1. To compare the performance
matrices, the average R2 performance over all folds of all relevant mi-
crophone pairs is taken. This is then compared for a range of m. The
results are found in the figure below:

Figure 20.: Upper: Average R2 score for different amounts of components extracted.
Lower: Corresponding log magnitude of the eigenvalues retrieved from
TCA with linear kernel. m = 21 components is optimal according to
paired t-test

In the upper figure, it can be seen that the performance of TCA in-
creases drastically with every extra component added. Applying a
paired t-test between the fold scores of the extracted components, it
was found that m = 21 components perform significantly better, than
all other values of m. Furthermore, in the lower figure it can be seen
that the average magnitude of the eigenvalues decreases exponen-
tially. Comparing this with the fact that the performance drastically
increases, with only a few components added, it is concluded that the
magnitude of these eigenvalues, are a good indicator for the amount
of information a component contains.

4.2 semi-supervised domain adaptation 38

Similarly the same experiment is performed for TCA with an RBF
kernel:

Figure 21.: Upper: Average R2 score for different amounts of components extracted.
Lower: Corresponding log magnitude of the eigenvalues retrieved from
TCA with RBF kernel. m = 6 components is optimal according to
paired t-test

From the above two figures, it is concluded that TCA with a linear ker-
nel performs best. The linear kernel is better at matching the mean
and the RBF kernel better at matching higher moments. This can
imply that matching the mean is more important, than the higher
moments. The complete performance matrices can be found in Ap-
pendix B.

4.3 supervised domain adaptation 39

4.3 supervised domain adaptation

In the previous section, the methods assumed similar posterior dis-
tributions. Therefore, the joint distributions were implicitly matched
by matching the data distributions. Therefore, no information on the
labels of the target samples were used. It was found that the methods
were only effective for datasets of microphone pairs that originated
from the same experiment. For domain adaptation of microphone
pairs from different experiments, both the posteriors and data dis-
tributions are assumed to be different. Therefore, the joint distribu-
tions of the source, pS(XS, yS) and target, pt(Xt, yt) must be matched
explicitly. To achieve this, supervised domain adaptation is needed
where some target labels are acquired to match the joint distributions.

An approximation of the joint distribution is explained in terms of
the source and target data distributions, pS(XS) and pt(Xt) and the
source and target prior distributions, pS(yS) and pt(yt). Then, it will
be shown that TCA cannot be used to perform the prior matching.
Furthermore, a mean and variance minimization method are shown
that reweight the source labels, such that the mean and variance of
the source and target are more similar. For each method, a situation
is considered where the available target labels are used in batch and
in an online fashion.

The high-dimensional space and relatively small sample size result in
sparse estimations of the joint distributions. Therefore, the matching
is approximated by matching the transformed data distributions and
prior distributions separately. In terms of loss functions, this can be
expressed as:

L
(

pS(XS, yS), pt(Xt, yt)
)
≈LX

(
pS
(

ψ(XS)
)

, pt (ψ(Xt)
))

+Ly

(
pS
(

Ω(yS)
)

, pt (Ω(yt)
)) (26)

where ψ(·) and Ω(·) transform the feature vectors and labels, respec-
tively, such that the data and prior distributions are matched. It was
shown that TCA was used to find the transformation ψ, which used
the MMD as loss function LX. Optimality is achieved when the losses
are zero. In turn, these loss functions themselves are also approxima-
tions to describe the similarity between two distributions and opti-
mality in these loss functions does not guarantee a perfect matching

4.3 supervised domain adaptation 40

of the distributions[13]. However, the assumption will be made that
this does hold:

LX

(
pS
(

ψ(XS)
)

, pt (ψ(Xt)
))

= 0→ pS(ψ(XS)) = pt(ψ(Xt))

Ly

(
pS
(

Ω(yS)
)

, pt (Ω(yt)
))

= 0→ pS(Ω(yS)) = pt(yt)
(27)

The posteriors of the transformed distributions are assumed equal:

pS(Ω(yS)|φ(XS) = pt(Ω(yt)|φ(Xt) (28)

however, this is not guaranteed if the transformed distributions are
not perfectly matched. Suppose that the data distributions are more
similar after applying a transformation, but not equal. Furthermore,
the prior distributions are perfectly matched and thus its correspond-
ing loss is zero. The posteriors are not matched in this case, because
two different data distributions correspond to the same prior distri-
bution. It would then be more beneficial to transform the priors such
that their loss is unequal to zero, in order to match the posteriors and
thus, have more similar joint distributions. This is contradicting with
the approximate loss function in equation 26 where the transforma-
tions ψ and Ω independently minimize their corresponding losses.

Note that in the previous equations, methods are considered where
the target prior distribution is not transformed. The reason will be
elaborated by considering TCA for the prior matching. Only a small
fraction of target labels is available and therefore, this matching has
to be generalized to the unknown target labels. Consider the TCA
transform of all N source labels, yS

TCA and a subset of P target labels,
yp

TCA, resulting in L = N + P labeled samples. A TCA transform is
performed on L labels followed by a prediction of all M target labels,
ŷT

TCA. It is not clear how an inverse TCA transform on all N + M
labels can be performed to retrieve the unknown target labels in the
original domain. First, the available source and target labels are TCA
transformed:

yTCA =

[
yS

TCA
yp

TCA

]
= KlW (29)

where yTCA, W ∈ RL×1, yS
TCA ∈ RN×1, yp

TCA ∈ RP×1 and Kl ∈ RL×L.

Then, the cascaded regressor is used to predict the target labels:

ŷt
TCA = f (XS, Xt, yS

TCA) (30)

where ŷt
TCA ∈ RM×1, with M the total number of target labels. The

predicted target labels are represented in the TCA domain and it is

4.3 supervised domain adaptation 41

not clear how to project these back to the original domain. The P
target labels could be replaced by the M predicted ones. The pro-
jection matrix W was constructed based on the original labels and
replacing them by predicted values might not be valid for this matrix.
Nonetheless, an attempt to do so is described as:

ŷTCA =

[
yS

TCA
ŷt

TCA

]
= KW (31)

where ŷTCA ∈ R(N+M)×1 and K ∈ R(N+M)×(N+M) The above equation
is however invalid, because the shape of the projection matrix W is
incompatible with K and ŷTCA. Therefore TCA is not considered for
the prior matching.

Instead, a mean matching and variance minimization method is con-
sidered, that match the mean and variance of the source to that of the
target, by weighting the source labels. The means and variances of
the source and target labels are represented as:

m(yS) = mS =
1

Ns
∑

i
yS(i) (32)

m(yt) = mt =
1

Nt
∑

i
yt(i) (33)

s(yS) = sS =
1

Ns
∑

i
(yS(i)−mS)2 (34)

s(yt) = st =
1

Nt
∑

i
(yt(i)−mt)2 (35)

Applying a weight to transform the source mean and variance can
then be represented as:

m(wyS) = wmS (36)

s(wyS) = w2sS (37)

For the mean matching the weight w must satisfy:

m(wyS) = m(yt)

wmS = mt (38)

4.3 supervised domain adaptation 42

Thus, the optimal w is:

w =
mt

mS
(39)

Furthermore, a variance minimization method is devised that mini-
mizes the variance difference of the weighted source labels to that of
the target labels, while constraining the mean difference. The mini-
mization problem is given below.

minw(w2sS − st)2

s.t.
(

wmS −mt

mt

)2

≤ (α)2
(40)

where α sets an upper bound on the maximum allowed difference in
the means. Therefore, this method trades off the mean and variance
minimization, based on a chosen α. The minimization results in five
solutions of which two are dependent on α:

w1 =
mt

mS (1 + α) (41)

w2 =
mt

mS (1− α) (42)

where the first multiplicative term scales the source labels such that
its mean matches that of the target labels. The second term involving
α then adds (w1) or removes (w2) a margin to trade off the mean
matching for a better variance matching. Depending on the influence
of the first term on the variance, the second term can be used to either
increase

The derivation and solution can be found in Appendix E.

The matching performance of the two methods is inspected on the
rainfall labels, by computing the relative difference between the source
and target variance w.r.t. the variance of the target labels. This is done
before the reweighting is applied in equation 43 and after in equation
44:

∆soriginal =
sS − st

st
(43)

4.3 supervised domain adaptation 43

∆snew =
w2sS − st

st
(44)

Furthermore, the mean matching is evaluated as:

∆moriginal = mS −mt (45)

∆mnew = wmS −mt (46)

The prior distribution of microphones from the same experiment are
almost identical. Therefore, instead of reporting the pairwise match-
ing performance for all microphones, only the performance between
experiments is reported. The performance of the mean matching
method is given below:

source/target E1 E2

E1 0.98, 0.47

E2 42, 0.89

Table 9.: Variance difference performance for the mean matching method. Score
between experiments is formatted as:∆soriginal , ∆snew.

source/target E1 E2

E1 -0.48, 0

E2 0.48, 0

Table 10.: Mean difference for the mean matching method. Score between experi-
ments is formatted as:∆moriginal , ∆mnew.

4.3 supervised domain adaptation 44

It can be seen that the mean matching indeed focuses on strictly
matching the means, but this implicitly also matches the variances.
The performance of the variance minimization method is given be-
low:

source/target E1 E2

E1 0.98, 0.24

E2 42, 0.25

Table 11.: Variance difference for the mean matching method. Score between exper-
iments is formatted as:∆soriginal , ∆snew.

source/target E1 E2

E1 -0.48, 0.12

E2 0.48,-0.2

Table 12.: Mean difference for the variance minimization method. Score between
experiments is formatted as:∆moriginal , ∆mnew.

It can be seen in table 12 that the variance minimization allows for
some difference in the means, in favour of matching the variances,
which it does better than the mean matching approach.

Both prior matching methods can be used in a batched an online
fashion. In a batched approach, many target labels are gathered, be-
fore the target mean and variance are re-estimated and a matching
method is applied. In contrast, an online approach, immediately up-
dates the target mean and variance, every time a new target label is
available. The recursive estimation of the target mean and variance
can be implemented as smoothing filters:

mt
new = αmt

old + (1− α)yt(i) (47)

st
new = αstold + (1− α)(yt(i)−mt

new)
2 (48)

Note that for the solution of the mean matching, only the target mean
is used and for the variance minimization, both mean and variance
must be known. α is a trade-off parameter between the old estimate
and a newly available target label yt(i). This has arbitrarily chosen to
be 0.9. At the beginning of the recursion, the mean and variance are
initialized by the mean and variance of the source labels. Its purpose
is to reduce the variance of subsequent estimations (i.e. to smooth).
Furthermore it prevents the estimation to converge for many samples.
This would be problematic if the target mean and variance signifi-

4.3 supervised domain adaptation 45

cantly change, since the online estimators cannot adaptively follow
the change, accordingly.

The average R2 performance of the prior matching methods using a
batched and online estimation is inspected for different percentages
of target labels used. The chosen target labels are uniformly selected.
As mentioned in section 3, only the performance of microphone pairs
that originate from different experiments are considered. Two ap-
proaches are considered. The best found data distribution matching,
TCA with linear kernel is used with the best prior matching, the vari-
ance minimization. Also, linear TCA is used with the mean matching
method. The result are shown below:

Figure 22.: Average R2 scores of an online and batched approach, using TCA with
linear kernel for data distribution matching and the variance minimiza-
tion method for prior matching, using α = 0.2. 0% denotes no target
labels utilized. The corresponding mean sits at approximately -1, but
is omitted from the figure to keep the other scores more readable. Black
lines indicate standard deviation over all folds of all used microphone
pairs.

4.3 supervised domain adaptation 46

Figure 23.: Average R2 scores of an online and batched approach, using TCA with
linear kernel for data distribution matching and the mean matching
method for prior matching. 0% denotes no target labels utilized. The
corresponding mean sits at -1, but is omitted from the figure to keep
the other scores more readable. Black lines indicate standard deviation
over all folds of all used microphone pairs.

Although the variance minimization method was shown to match the
variance of the prior distributions better than mean matching, figure ,
the performance is similar. This can be seen from figure 22 and 23. A
paired t-test shows that the variance minimization does not perform
significantly better than mean matching. Therefore, linear TCA for
data matching and the mean matching method for prior matching is
concluded to perform better. A paired t-test is used to compare the
fold scores between different percentages of target labels used. This
is done for the batched and online approach. The results are given
below:

Average R2 Percentage target labels used (%)

Online 0.32 (0.241) 10

Batch 0.52 (0.01) 14

Table 13.: Best average R2 of figure 23, according to a paired t-test.

5

R E S U LT S

The average R2 performance for the semi-supervised domain adapta-
tion methods is given in the following figure:

Figure 24.: Average R2 scores for the supervised domain adaptation methods. Only
performances of microphone pairs from different experiments are consid-
ered.Black line denotes standard deviation.

A paired t-test shows that TCA with linear kernel performs better
than other methods.

47

results 48

The average R2 performance for the supervised domain adaptation
methods is given in the following figure:

Figure 25.: Average R2 scores for the supervised domain adaptation methods. Only
performances of microphone pairs from different experiments are consid-
ered.Black line denotes standard deviation

It was shown in the previous chapter and summarized in the figure
above, that a batched mean estimation approach with 14% of the tar-
get labels used, was the best performer. An online approach with 10%
target labels used can provide real-time predictions, but the trade off
is a significantly worse performance.

6

C O N C L U S I O N & D I S C U S S I O N

The criteria for rainfall estimation consists of temporal/spatial reso-
lution, range, accuracy and cost. An acoustic approach has potential
to achieve a better trade-off of these criteria, compared to the state of
the art. A machine learning model to estimate rainfall from acoustic
sensor data has been proposed. Furthermore, it has been investigated
how to transfer the model trained on one acoustic sensor, called the
source domain, to a characteristically different one, called the target
domain.

A two-stage regression model has been devised to estimate rainfall
from acoustics. In the first stage, data is classified as rain presence
or absence. This reduced false positive predictions of the model; the
prediction of rain presence, when there is no rain. Data correspond-
ing to rain presence is then processed by the second stage, where an
estimate of the rainfall intensity is predicted.

Despite the sparsity of the acquired acoustic data (approximately 90

millisecond recordings every 5 seconds), when training and testing
was performed on the same sensor, in a supervised learning manner,
this resulted in an average R2 scores of 0.65.

Using domain adaptation techniques, t was explained that transfer-
ring the model gained from a source domain to a target domain
boiled down to matching the joint distributions of the two. The joint
distribution can be decomposed in terms of the posterior and data
distribution.

Data acquisition was done through two rainfall emulation experiment
over two days. Two microphones were used in the first experiment
and four microphones in the second. It turned out that sensors orig-
inating from the same experiment had similar posteriors and thus
semi-supervised domain adaptation techniques that only match the
data distributions without knowledge on the target labels were used
for this case. The methods that were investigated were standardiza-
tion, PCA and TCA. The latter had the best performance.

49

conclusion & discussion 50

TCA transforms the data onto a subspace, where the source and tar-
get data distributions are more similar. A kernel function is required.
It was shown that theoretically, an RBF kernel is more advantageous
than a linear kernel. This is because, a linear kernel only matches
the mean of the soure and target, while an RBF kernel also matches
higher moments of the data. Comparing the two, it was shown that
TCA with an RBF kernel matched the higher moments of the acous-
tic data better, but the mean much worse. The RBF kernel also per-
formed worse with the two-stage regressor. It was therefore hypothe-
sized that, for the acoustic data, matching the mean is more important
than the higher moments and that this was the reason the linear ker-
nel performed better. Thus, for sensors from the same experiment,
linear TCA performed best, with an R2 of 0.58.

For sensors from different experiments, the posteriors were assumed
to be different. This required supervised domain adaptation tech-
niques. The consequence was that the joint distributions had to be be
explicitly matched and therefore, (a small selection of) target labels
were needed. This was approximated by matching the data and prior
distributions, seperately. It was found that this method is indeed ben-
eficial in matching the joint distributions, but is prone to overfitting.

The data distribution matching was the same as for the semi-supervised
approach and the priors were matched with two methods. The mean
matching method transforms the source prior distribution to have the
same mean as the distribution of the acquired target labels. Similarly,
the variance minimization method minimizes the difference between
the variances, while constraining the difference in the mean. This did
not perform better than mean matching.

For both methods, two situations were considered. One where a
batch of target labels were available before performing the matching
and prediction. In the other, the target labels were exposed one by
one, requiring an online learning approach. Every time a new target
label was available, the matching and prediction model was updated
and applied to unlabeled data, until the next target label was avail-
able. Mean matching was chosen as the preferred method and the
batched and online approach resulted in an average R2 of 0.45 and
0.30, respectively.

An approximation that matches the data and prior distributions in-
dependently was used. A method could be devised that explicitly
matches the source and target joint distributions.

The prediction model combined benefits of a classifier and regressor.
In the same way, multiple domain adaptation methods with different
characteristic benefits can be combined. For example, this could be

conclusion & discussion 51

done in the form of a composition f
(

g(Xs, Xt)
)
, where f (·) and g(·)

denote transformations from different methods.

It was shown in chapter 4, that TCA constrains the covariance matrix
of the transformed data to be identity. This is an arbitrary choice
and results in the same projection for both the source and target. It
would be of interest to incorporate the covariance matrices of the orig-
inal domain in the constraint, such that a seperate projection matrix
can be constructed for the source and target. This would add an ex-
tra degree of freedom to match the two. However, the constraint is
a covariance matrix in the TCA domain. A method must then be
found that transforms the original covariance matrices onto this TCA
domain.

Finally, a more formal online target mean and variance estimation
method could be used, like Recursive Least Squares.

B I B L I O G R A P H Y

[1] Nu.nl, “Schade door noodweer randstad geschat op 20

miljoen euro.” https://www.nu.nl/binnenland/4282024/

schade-noodweer-randstad-geschat-20-miljoen-euro.html.
Accessed: 15-07-2019.

[2] Metro Nieuws, “Drukste avondspits van het jaar.”
https://www.metronieuws.nl/nieuws/binnenland/2017/

12/drukste-avondspits-van-het-jaar. Accessed: 15-07-2019.

[3] KNMI, “Intensiteit van extreme neerslag
in een veranderend klimaat.” https://www.

knmi.nl/kennis-en-datacentrum/achtergrond/

intensiteit-van-extreme-neerslag-in-een-veranderend-klimaat.

[4] C. Zhang et al., “Evaluation and intercomparison of high-
resolution satellite precipitation estimates—gpm, trmm, and
cmorph in the tianshan mountain area,” Remote Sensing, vol. 10,
no. 10, p. 1543, 2018.

[5] P. Hazenburg, Rainfall estimation for hydrology using volumetric
weather radar. PhD thesis, Wageningen University, 2013.

[6] S. Thorndahl et al., “Weather radar rainfall data in urban hydrol-
ogy,” Hydrology and Earth System Sciences, vol. 21, no. 3, p. 1359,
1380.

[7] KNMI, “Weather station locations of the knmi.” https://www.

weerwoord.be/uploads/2210201273640.gif. Accessed: Decem-
ber 14, 2017.

[8] R. Hut, New Observational Tools and Datasources for Hydrology: Hy-
drological data Unlocked by Tinkering. PhD thesis, Delft University
of Technology, 2013.

[9] J. Lyons, “Mel frequency cepstral coeffi-
cient tutorial.” http://practicalcryptography.

com/miscellaneous/machine-learning/

guide-mel-frequency-cepstral-coefficients-mfccs/. Ac-
cessed: 15-05-2019.

[10] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5,

52

https://www.nu.nl/binnenland/4282024/schade-noodweer-randstad-geschat-20-miljoen-euro.html
https://www.nu.nl/binnenland/4282024/schade-noodweer-randstad-geschat-20-miljoen-euro.html
https://www.metronieuws.nl/nieuws/binnenland/2017/12/drukste-avondspits-van-het-jaar
https://www.metronieuws.nl/nieuws/binnenland/2017/12/drukste-avondspits-van-het-jaar
https://www.knmi.nl/kennis-en-datacentrum/achtergrond/intensiteit-van-extreme-neerslag-in-een-veranderend-klimaat
https://www.knmi.nl/kennis-en-datacentrum/achtergrond/intensiteit-van-extreme-neerslag-in-een-veranderend-klimaat
https://www.knmi.nl/kennis-en-datacentrum/achtergrond/intensiteit-van-extreme-neerslag-in-een-veranderend-klimaat
https://www.weerwoord.be/uploads/2210201273640.gif
https://www.weerwoord.be/uploads/2210201273640.gif
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/

BIBLIOGRAPHY 53

no. 2, pp. 241–259, 1991.

[11] D. Tuia, C. Persello, and L. Bruzzone, “Domain adaptation for
the classification of remote sensing data: An overview of recent
advances,” IEEE Geoscience and Remote Sensing Magazine, vol. 4,
no. 2, pp. 41–57, 2016.

[12] S. Pan et al., “Domain adaptation via transfer component analy-
sis,” IEEE Transactions on Neural Networks, vol. 22, no. 2, pp. 199–
200, 2011.

[13] W. Kouw and M. Loog, “An introduction to domain adaptation
and transfer learning.” https://arxiv.org/abs/1812.11806v2.
Accessed: 31-08-2019.

[14] Weather Underground, “Wunderground website.” https://www.

wunderground.com/. Accessed: 20-12-2017.

 https://arxiv.org/abs/1812.11806v2
https://www.wunderground.com/
https://www.wunderground.com/

Appendices

54

A
P O S T E R I O R H I S T O G R A M S

Figure 26.: Posterior density estimates of the second MFCC feature with the labels.

Figure 27.: Posterior density estimates of the third MFCC feature with the labels.

55

B
R E S U LT S

Source \Target E1, m1 E1, m2 E2, m1 E2, m2 E2, m3 E2, m4

B
0.758

(0.031)
0.304

(0.094)
0.048

(0.031)
-0.140

(0.031)
-0.109

(0.035)
-0.100

(0.036)
E1, m1

S
0.758

(0.031)
0.503

(0.065)
0.078

(0.023)
0.006

(0.021)
-0.035

(0.022)
-0.001

(0.022)

B
0.649

(0.052)
0.645

(0.050)
0.039

(0.025)
-0.188

(0.020)
-0.096

(0.021)
0.041

(0.018)
E1, m2

S
0.659

(0.053)
0.645

(0.050)
0.011

(0.023)
-0.020

(0.018)
-0.020

(0.025)
0.068

(0.017)

B
-3.331

(0.528)
0.004

(0.221)
0.676

(0.032)
0.364

(0.038)
0.453

(0.041)
0.457

(0.037)
E2, m1

S
-9.129

(1.019)
-4.643

(1.166)
0.676

(0.032)
0.570

(0.035)
0.494

(0.041)
0.593

(0.037)

B
-1.266

(0.389)
-1.166

(0.477)
-0.112

(0.070)
0.650

(0.027)
0.150

(0.077)
0.354

(0.077)
E2, m2

S
-7.284

(1.436)
-9.179

(1.933)
0.618

(0.039)
0.650

(0.027)
0.484

(0.032)
0.536

(0.047)

B
-3.615

(1.221)
-3.618

(1.184)
0.553

(0.036)
0.557

(0.037)
0.599

(0.034)
0.539

(0.047)
E2, m3

S
-9.008

(1.769)
-9.987

(2.127)
0.614

(0.036)
0.595

(0.039)
0.599

(0.034)
0.603

(0.030)

B
-2.537

(0.470)
-0.672

(0.331)
0.627

(0.046)
0.392

(0.030)
0.506

(0.044)
0.669

(0.032)
E2, m4

S
-8.286

(0.883)
-5.781

(1.357)
0.630

(0.040)
0.568

(0.032)
0.529

(0.040)
0.669

(0.032)

Table 14.: Pairwise R2 comparison between the baseline (B) and standardization
(S). Rows and columns indicate source and target microphone, respec-
tively. Green indicates method that performs significantly better, based
on a t-test on the ten folds.

56

results 57

Source \Target E1, m1 E1, m2 E2, m1 E2, m2 E2, m3 E2, m4

B
0.758

(0.031)
0.304

(0.094)
0.048

(0.031)
-0.140

(0.031)
-0.109

(0.035)
-0.100

(0.036)
E1, m1

PCA
0.758

(0.031)
0.406

(0.069)
0.181

(0.021)
-0.131

(0.019)
0.084

(0.027)
0.126

(0.020)

B
0.649

(0.052)
0.645

(0.050)
0.039

(0.025)
-0.188

(0.020)
-0.096

(0.021)
0.041

(0.018)
E1, m2

PCA
0.454

(0.038)
0.645

(0.050)
0.097

(0.018)
-0.167

(0.014)
0.053

(0.018)
0.062

(0.020)

B
-3.331

(0.528)
0.004

(0.221)
0.676

(0.032)
0.364

(0.038)
0.453

(0.041)
0.457

(0.037)
E2, m1

PCA
-6.806

(0.772)
-7.295

(1.459)
0.676

(0.032)
0.024

(0.039)
0.438

(0.054)
0.575

(0.044)

B
-1.266

(0.389)
-1.166

(0.477)
-0.112

(0.070)
0.650

(0.027)
0.150

(0.077)
0.354

(0.077)
E2, m2

PCA
-21.722

(3.763)
-22.557

(2.628)
-0.971

(0.229)
0.650

(0.027)
-0.600

(0.102)
-0.062

(0.085)

B
-3.615

(1.221)
-3.618

(1.184)
0.553

(0.036)
0.557

(0.037)
0.599

(0.034)
0.539

(0.047)
E2, m3

PCA
-8.359

(1.222)
-8.145

(1.675)
0.554

(0.043)
0.096

(0.048)
0.599

(0.034)
0.614

(0.043)

B
-2.537

(0.470)
-0.672

(0.331)
0.627

(0.046)
0.392

(0.030)
0.506

(0.044)
0.669

(0.032)
E2, m4

PCA
-7.147

(1.014)
-7.440

(1.354)
0.559

(0.047)
0.148

(0.028)
0.539

(0.035)
0.669

(0.032)

Table 15.: Pairwise R2 comparison between the baseline (B) and PCA. Rows and
columns indicate source and target microphone, respectively. Green in-
dicates method that performs significantly better, based on a t-test on the
ten folds.

results 58

Source \Target E1, m1 E1, m2 E2, m1 E2, m2 E2, m3 E2, m4

B
0.758

(0.031)
0.304

(0.094)
0.048

(0.031)
-0.140

(0.031)
-0.109

(0.035)
-0.100

(0.036)
E1, m1

LTCA
0.757

(0.028)
0.543

(0.069)
0.155

(0.023)
0.085

(0.013)
0.076

(0.025)
0.159

(0.013)

B
0.649

(0.052)
0.645

(0.050)
0.039

(0.025)
-0.188

(0.020)
-0.096

(0.021)
0.041

(0.018)
E1, m2

LTCA
0.670

(0.037)
0.634

(0.054)
0.067

(0.024)
0.076

(0.016)
0.006

(0.022)
0.069

(0.012)

B
-3.331

(0.528)
0.004

(0.221)
0.676

(0.032)
0.364

(0.038)
0.453

(0.041)
0.457

(0.037)
E2, m1

LTCA
-6.627

(0.770)
-6.168

(1.127)
0.676

(0.034)
0.532

(0.040)
0.508

(0.036)
0.625

(0.042)

B
-1.266

(0.389)
-1.166

(0.477)
-0.112

(0.070)
0.650

(0.027)
0.150

(0.077)
0.354

(0.077)
E2, m2

LTCA
-5.140

(0.891)
-6.774

(0.900)
0.606

(0.032)
0.638

(0.030)
0.539

(0.031)
0.606

(0.047)

B
-3.615

(1.221)
-3.618

(1.184)
0.553

(0.036)
0.557

(0.037)
0.599

(0.034)
0.539

(0.047)
E2, m3

LTCA
-6.470

(1.321)
-8.125

(1.532)
0.638

(0.031)
0.559

(0.034)
0.594

(0.031)
0.631

(0.033)

B
-2.537

(0.470)
-0.672

(0.331)
0.627

(0.046)
0.392

(0.030)
0.506

(0.044)
0.669

(0.032)
E2, m4

LTCA
-6.937

(0.903)
-4.785

(0.812)
0.651

(0.040)
0.582

(0.029)
0.534

(0.040)
0.667

(0.037)

Table 16.: Pairwise R2 comparison between the baseline (B) and TCA with linear
kernel (LTCA) where 21 and 6 components are extracted, respectively.
Trade-off parameter µ = 1. Rows and columns indicate source and
target microphone, respectively. Green indicates method that performs
significantly better, based on a paired t-test on the ten folds.

results 59

Source \Target E1, m1 E1, m2 E2, m1 E2, m2 E2, m3 E2, m4

LTCA
0.757

(0.028)
0.543

(0.069)
0.155

(0.023)
0.085

(0.013)
0.076

(0.025)
0.159

(0.013)
E1, m1

RTCA
0.762

(0.035)
0.179

(0.104)
-0.018

(0.039)
-0.249

(0.020)
-0.057

(0.026)
0.057

(0.039)

LTCA
0.670

(0.037)
0.634

(0.054)
0.067

(0.024)
0.076

(0.016)
0.006

(0.022)
0.069

(0.012)
E1, m2

RTCA
0.374

(0.090)
0.661

(0.059)
-0.098

(0.042)
-0.261

(0.021)
-0.225

(0.027)
-0.188

(0.037)

LTCA
-6.627

(0.770)
-6.168

(1.127)
0.676

(0.034)
0.532

(0.040)
0.508

(0.036)
0.625

(0.042)
E2, m1

RTCA
-2.876

(0.514)
-1.897

(0.520)
0.682

(0.030)
0.461

(0.071)
0.531

(0.041)
0.516

(0.026)

LTCA
-5.140

(0.891)
-6.774

(0.900)
0.606

(0.032)
0.638

(0.030)
0.539

(0.031)
0.606

(0.047)
E2, m2

RTCA
-3.800

(0.848)
-0.600

(0.094)
-1.473

(0.752)
0.652

(0.032)
-0.477

(0.092)
-2.187

(0.430)

LTCA
-6.470

(1.321)
-8.125

(1.532)
0.638

(0.031)
0.559

(0.034)
0.594

(0.031)
0.631

(0.033)
E2, m3

RTCA
-10.373

(2.362)
-3.990

(1.297)
0.627

(0.027)
0.124

(0.183)
0.605

(0.034)
0.650

(0.048)

LTCA
-6.937

(0.903)
-4.785

(0.812)
0.651

(0.040)
0.582

(0.029)
0.534

(0.040)
0.667

(0.037)
E2, m4

RTCA
-3.134

(0.550)
-2.472

(0.568)
0.608

(0.036)
0.582

(0.031)
0.567

(0.037)
0.672

(0.033)

Table 17.: Pairwise R2 comparison between TCA with linear (LTCA) and RBF
(RTCA) kernel where 21 components are extracted. Trade-off parameter
µ = 1 and bandwidth γ = 15. Rows and columns indicate source and
target microphone, respectively. Green indicates method that performs
significantly better, based on a t-test on the ten folds.

C
T C A D E R I VAT I O N

In this chapter, the full derivation of the TCA domain adaptation
method is given. First, the use of the Maxmimum Mean Discrepancy
(MMD) cost function is motivated and is rewritten in matrix form in
section C.1. Then, the kernel trick and it’s benefits w.r.t. the MMD is
explained in C.2. Finally, the optimization problem constructed from
the MMD, which is the core of TCA, is derived in C.3.

c.1 maximum mean discrepancy

The starting point is the Maximum Mean Discrepancy cost function.
This is a distance measure between the source and target.

The MMD is defined as follows:

Dist(XS, XT) =

∥∥∥∥∥ 1
NS

NS

∑
i=1

xS
i −

1
Nt

Nt

∑
i=1

xt
i

∥∥∥∥∥ (49)

where XS ∈ RNS×D, is the data matrix in the source domain, consist-
ing of NS number of D-dimensional samples. Similarly, XT ∈ RNt×D,
is the data matrix in the target domain. The MMD can be rewritten
more succently in matrix form. To realize this, equation 49 can be
written out, resulting in the following equation:

Dist(XS, XT) =
1

N2
S

NS

∑
i=1

NS

∑
j=1

xS
i xS

j

− 2
NSNt

NS

∑
i=1

Nt

∑
j=1

xS
i xt

j

+
1

N2
t

Nt

∑
i=1

Nt

∑
j=1

xT
i xt

j

(50)

60

C.1 maximum mean discrepancy 61

Comparing the MMD in equation 49 and 50, a familiar pattern can
be seen, that one would expect from the square of a sum/subtraction.
The first term of equation 50 describes the quadratic influence of the
source data of equation 49. The double sum operators show that
the MMD describes all possible pairwise products of the source and
target samples, normalized according to the sample size of the corre-
sponding domain. This can be rewritten in matrix form as follows:

1
N2

S

NS

∑
i=1

NS

∑
j=1

xS
i xS

j = tr(KSSLSS) (51)

where KSS contains all pairwise dot products of the source samples
and LSS contains all corresponding normalizations. These are de-
scribed in the following two equations:

KSS =

 xS
1 xS

1 . . . xS
1 xS

NS
...

. . .
...

xS
NS

xS
1 . . . xS

NS
xS

NS

 (52)

LSS =


1

N2
S

. . . 1
N2

S
...

. . .
...

1
N2

S
. . . 1

N2
S

 (53)

Similarly, the second term of equation 50 describes the cross influence
of the source and target and the last term describes the quadratic
influence of the target data. These terms can also be rewritten in
matrix form, as was explicitly shown for the first term in equation 52

and 53. This results in the matrix form of the MMD:

Dist(XS, XT) = tr(KSSLSS) + tr(KStLSt) + tr(KtSLtS) + tr(KttLtt)

= tr(KL)
(54)

where the normalization matrix L is:

L =

[
LSS LSt
LtS Ltt

]
=

 1
N2

S
11T −1

NS Nt
11T

−1
NS Nt

11T −1
N2

t
11T

 (55)

C.2 the kernel trick 62

where LSS ∈ RNS×NS , LSt ∈ RNS×Nt , LtS ∈ RNt×NS , Ltt ∈ RNt×Nt and
L ∈ R(NS+Nt)×(NS+Nt). Similarly, the pairwise products can be grouped
in a kernel matrix:

K =

[
KSS KSt
KtS Ktt

]

=



xS
1 xS

1 . . . xS
1 xS

NS
xS

1 xt
1 . . . xS

1 xt
Nt

...
. . .

...
...

. . .
...

xS
NS

xS
1 . . . xS

NS
xS

NS
xS

NS
xt

1 . . . xS
NS

xt
Nt

xt
1xS

1 . . . xt
1xS

NS
xt

1xt
1 . . . xt

1xt
Nt

...
. . .

...
...

. . .
...

xt
Nt

xS
1 . . . xt

Nt
xS

NS
xt

Nt
xt

1 . . . xt
Nt

xt
Nt


(56)

where the shape of K and it’s submatrices are equivalent to that of
L. Note that from equation 56, it can be seen that the kernel matrix
is the outer product of all feature vectors. Therefore, if all source
and target data are stacked into a super matrix as in equation 57, the
kernel matrix can be written as equation 58.

X =

[
XS

Xt

]
(57)

K = XXT (58)

Finally, all terms of the MMD in equation 50, can be rewritten similar
to 51:

Dist(XS, XT) = tr(KSSLSS) + tr(KStLSt) + tr(KtSLtS) + tr(KttLtt)

= tr(KL)
(59)

c.2 the kernel trick

It is seen in equation 49, a mapping φ(·) is applied to the source
and target data, before the distance between the means is determined.
Such a mapping transforms the feature vectors into a higher-dimensional
space, extracting (non-linear) information from the original data. Al-
though the MMD originally described the distance between the mean
and source data, by applying this mapping, it allows to also include
other non-linear measures that relate to the variance or higher mo-
ments. Consider one dimensional feature vectors where the mapping
is given by equation 60

φ(x) = (x, x2) (60)

C.2 the kernel trick 63

It can be seen that from the original one dimensional data, including
the square adds non-linear information and gives a new two dimen-
sional feature vector. Using this mapping, the MMD in 49, results in
equation 61

Dist(XS, XT) = (
1

NS

NS

∑
i=1

xS
i −

1
Nt

Nt

∑
i=1

xt
i)

2 + (
1

NS

NS

∑
i=1

(xS
i)

2− 1
Nt

Nt(

∑
i=1

xt
i)

2)2

(61)
Indeed, now, the MMD not only describes a square distance between
the mean of the source and target data, but also something that re-
lates to the variance. Thus, choosing an appropriate mapping helps
to augment the MMD to describe additional properties between the
source and data distribution, aside from the sample mean.

The quest for explicitly finding a mapping is non-systematic. Further-
more, it can be computationally heavy or infeasible. Luckily, there ex-
ist functions, referred to as kernels, that find this mapping implicitly,
by computing the dot product of mapped feature vectors. Re-visiting
the equation for the kernel matrix, which is a part of the MMD, in
equation 56, it can be seen that, indeed, this information turns out to
be sufficient to utilize the mapping. Thus, instead of computing the
mapping directly, finding the pairwise dot products of all mapped
feature vectors suffices. To show that such functions exist, consider
a two-dimensional feature vector and a mapping applied on it, given
by equation 62 and equation 63, respectively.

x = (x1, x2) (62)

φ(x) = (x2
1, x2

2,
√

2x1x2) (63)

Now, consider another feature vector, y, where the same mapping
has been applied. Then, the dot product of the two mapped feature
vectors, is given in equation 64.

φ(x)Tφ(y) = x2
1y2

1 + x2
2y2

2 + 2x1y1x2y2

= ((x1, x2)(y1, y2)
T)2

= (xty)2

(64)

The dot product of mapped feature vectors using the mapping in
equation 63, is equivalent to the polynomial kernel in equation 64,
which computes the dot product of the original feature vectors, where
after the result is squared. The latter is computationally more effi-
cient and systematic. Thus, the kernel matrix of equation 56 can be
more efficiently computed by choosing an appropriate kernel func-
tion. The kernel chosen defines which statistical measures the MMD

C.3 optimization problem 64

can describe as well as the characterstics of the higher-dimensional
space, the original feature vectors are transformed onto. The MMD
in equation 49 can be modified to utilize the mapping discussed in
this section. This is shown in the following equation:

Dist(XS, XT) =

∥∥∥∥∥ 1
NS

NS

∑
i=1

φ(xS
i)−

1
Nt

Nt

∑
i=1

φ(xt
i)

∥∥∥∥∥ (65)

The kernel matrix from equation 58, is also modified accordingly as
shown in the equation below:

K = φ(X)φ(X)T (66)

Thus, every feature vector x, is transformed to φ(x), so that the MMD
not only matches the means of the source and target distribution,
rather other (higher moment) statistical properties as well.

c.3 optimization problem

Up until now, it has only been described how to measure the distance
between the source and target data. However, in order to control their
distance, i.e. make their respective distributions more similar, every
feature vector must be reweighted. This can be done by applying
a weight matrix to the complete data matrix of equation 57 as in
equation 67.

φ̂(X) = φ(X)W (67)

where W ∈ R(NS+Nt)×m. This weight matrix thus adds a weight to all
features and transforms them to a m-dimensional latent space, lower
than the original space, i.e. m < D. Then, a modified kernel matrix
can be defined, by substituting equation 67 in equation 58, resulting
in equation 68.

K̃ = φ̂(X)φ̂(X)T

= φ(X)WWTφ(X)T (68)

The modified kernel matrix can be expressed in terms of the original
kernel matrix by expressing the kernel matrix as equation 69.

K = KK−
1
2 K−

1
2 K (69)

C.3 optimization problem 65

Comparing equation 58 with 69, it can be seen that the mapped data
in the TCA domain can be written in terms of the kernel. This is
given in equation 70.

φ(X) = KK−
1
2 (70)

Then, this can be substituted in equation 68, to describe the modified
kernel in terms of the original kernel and weight matrix. Finally, the
MMD in matrix form in equation 59, with a weight matrix incorpo-
rated, can then be expressed as equation 71

Dist(XS, XT) = tr(K̃L)

= tr((KK−
1
2 WWTK−

1
2 K)L)

= tr((KW̃W̃TK)L)

= tr(W̃TKLKW̃)

(71)

where K−
1
2 is applied to the original weight matrix W, resulting in a

modified weight matrix, given in equation 72.

W̃ = K−
1
2 W (72)

Now, the core of TCA has been reached. The goal is to minimize
the weighted MMD from equation 71. Additionally, a regularization
term is included in order to control the complexity of W̃. Thus, the
optimization problem of equation 73, must be solved.

minW̃ µtr(W̃TW̃) + tr(W̃TKLKW̃) (73)

Before continuing with deriving the objective function of equation 73,
it can be seen that there are trivial solutions for this minimization. In-
deed, W̃ = 0, minimizes the objective, but collapses all samples from
the source and target onto the origin. Also, the possibility exists, that
there exist a W̃ 6= 0, such that all samples collapse onto some other
point in the feature space, which is not the origin. Lastly, if W̃ is in the
null space of K, similar to W̃ = 0, the MMD part, excluding the regu-
larization term is minimized and all samples collapse onto the origin.
This can be more clearly seen, when regarding the transformation
from the original domain to the TCA domain, once the optimal W̃ is
found, given in equation 74.

XTCA = φ(X)W

= KW̃
(74)

This is done by applying the weight matrix to the mapped feature vec-
tors . However, this is equivalent to projecting the modified weight

C.3 optimization problem 66

matrix onto the kernel matrix, which can be seen by substitution us-
ing equation 70 and 72.

The collapsing of the transformed feature vectors, due to the reasons
described, can be prevented by constraining the variance of the fea-
ture vectors in the TCA domain to be fixed. To succinctly apply a
centering on the feature vectors to achieve a mean of zero, as part
of the computation of the covariance matrix, a centering matrix is
applied. Multiplication by this centering matrix is equivalent to sub-
tracting the mean from the feature vectors. It is defined as:

H = INS+Nt −
1

NS + Nt
11T (75)

where H ∈ R(NS+Nt)×(NS+Nt), which is also the case for the identity
matrix, I and the all ones matrix 11T, in equation 75. Two properties
of the centering matrix that will be used in defining the constraint are
given below:

• idempotent: HH = H

• symmetric: HT = H

For simplicity, the scattering matrix is constrained instead of the co-
variance matrix. It does not require normalization by the sample size
as with the covariance matrix, which is merely a scaling operation af-
fecting all features equally and thus, does not affect the performance
of TCA to prevent transformed samples to collapse onto one point
in the TCA feature space. The constraint for the scattering matrix is
then:

S = (HXTCA)(HXTCA)
T

= (HKW̃)(HKW̃)T

= W̃TKHKW̃

(76)

where substitution with equation 74 is used. Furthermore, in the last
equality, the idempotency property of the centering matrix is used
and the symmetry property of both the centering and kernel matrix.

Then, combining equation 73 and 76, the complete constrained opti-
mization problem becomes:

minW̃ µtr(W̃TW̃) + tr(W̃TKLKW̃)

s.t.W̃TKHKW̃ = I
(77)

C.3 optimization problem 67

The Lagrangian is:

L(W̃, Z) = tr[W̃T(INS+Nt + µKLK)W̃] + (W̃TKHKW − I)Z1 (78)

where Z is a symmetric matrix, consisting of the Lagrangian multi-
pliers. It should be noted that, when the constraint is a vector, as
would be the case in the form Ax = b, the Lagrangian multipliers
also form a vector. In this case, the constraint is a matrix and thus,
every Lagrangian multiplier is a vector, forming a matrix.

Setting the partial derivative of equation 78 w.r.t. W̃ to zero, results
in equation 79

∂L(W̃, Z)
∂W̃

= 0

(I + µKLK)W̃ = KHKW̃Z
(79)

where the matrix identities for deriving the first and second term of
78 are given in equation 80 and 81, respectively.

∂tr(XT AX)

∂X
= XT(A + AT) (80)

Where A = (INS+Nt + µKLK).

∂tr(XTBXC)
∂X

= BXC + BTXCT (81)

Where B = KHK and C = Z.

Then, after left-multiplying equation 79 by W̃T, it can be substituted
back in 78, resulting in the following equation:

L(W̃, Z) = tr(Z)

= tr[(W̃TKHKW̃)−1W̃T(INS+Nt + µKLK)W̃]
(82)

where the last equality is gained by solving for Z in equation 79.
Now, that the penalty term consisting of the Lagrangian multipliers,
Z, has been substituted in the Lagrangian, equation 82 must be min-
imized. However, it is noted that the minimization of this division

1 In the original paper, a trace operation is applied to the constraint, before being
added to the Lagrangian. This is because the constraint is a matrix, whereas the trace
operation summarizes it’s properties as a scalar. However, conceptually this means
that any constraint in this matrix can be heavily violated in favor of reducing the
overall penalty from other constraints. However, it is preferable that all constraints
are satisfied jointly.

C.3 optimization problem 68

is equivalent to the maximization of it’s inverse. Using this fact, the
maximization problem to be solved from equation 82 is:.

maxW̃ tr
[

W̃TKHKW̃
W̃T(INS+Nt + µKLK)W̃

]
= maxW̃ tr

[
f (W̃)

]
(83)

Using the chain rule, equation 82 can be simplified as follows:

∂tr
[

f (W̃)
]

∂W̃
=

∂tr
[

f (W̃)
]

∂ f (W̃)
· ∂ f (W̃)

∂W̃

=
∂ ∑N−1

i=0 f (W̃)ii

∂ f (W̃)ij
· ∂ f (W̃)

∂W̃

= I · ∂ f (W̃)

∂W̃
=

∂ f (W̃)

∂W̃

(84)

where the elements of the trace derivative in the second equality are
0, if i 6= j and 1, if i = j, hence it is the identity matrix.

Thus, the maximization of equation 83 simplifies to deriving the divi-
sion within the trace operator, according to equation 84 and setting it
to zero. Using the quotient rule this results in:

∂ f (W̃)

∂W̃
= W̃TKHKW̃(INS+Nt + µKLK)W̃ −

[
W̃T(INS+Nt + µKLK)W̃

]
KHKW̃ = 0

(85)

Rewriting the above equation results in the final solution:

KHKW̃ =
W̃TKHKW̃

W̃T(INS+Nt + µKLK)W̃
(INS+Nt + µKLK)W̃2 (86)

It can be seen that this is in the form of AW̃ = λBW̃. Indeed, TCA
boils down to a generalized eigenvalue decomposition, where the
eigenvectors corresponding to the m leading/largest eigenvalues of

KHK
INS+Nt+µKLK form the columns of the weight matrix. Finally, the found
weight matrix can be used to project the original data onto the TCA
domain using equation 74.

2 In the original paper, the generalized eigenvalue problem consists of the identity
matrix I, which is defined to be of size m× m. This should be In1+n2 according to
the notation of the paper and thus INS+Nt according to that of this thesis.

D
T C A E X A M P L E

A step-by-step example of TCA is given below. Consider a data fea-
ture matrix, where the first and last two rows represent feature vec-
tors of the source and target domain, respectively:

X =


0 2
−1 1

1
2 2
1
2 4

 (87)

Using a linear kernel, the kernel matrix is then computed.

K = XXT + εI =


4.0001 2 4 8

2 2.0001 1.5 3.5
4 1.5 4.2501 8.25
8 3.5 8.25 16.2501

 (88)

Where the second term ensures that the kernel matrix is positive def-
inite and ε = 10−4. The normalization matrix is computed as below.

L =


1

N2
S

1
N2

S
− 1

NS NT
− 1

NS NT
1

N2
S

1
N2

S
− 1

NS NT
− 1

NS NT

− 1
NS NT

− 1
NS NT

1
N2

S

1
N2

S

− 1
NS NT

− 1
NS NT

1
N2

S

1
N2

S



=


1
4

1
4 − 1

4 − 1
4

1
4

1
4 − 1

4 − 1
4

− 1
4 − 1

4
1
4

1
4

− 1
4 − 1

4
1
4

1
4


(89)

Where NS and NT denote the number of samples in the source and
target domain, which is two for both.

69

tca example 70

Furthermore, the centering matrix is given below:

H = I − 11T 1
NS + NT

=


3
4 − 1

4 − 1
4 − 1

4
− 1

4
3
4 − 1

4 − 1
4

− 1
4 − 1

4
3
4 − 1

4
− 1

4 − 1
4 − 1

4
3
4

 (90)

Now, the eigenvalues and eigenvectors of the following cost function
can be computed:

KHK
I + µKLK

(91)

Where µ = 10−4. As was discussed in Appendix A, any multiple
k, of the columns of the eigenvectors is a correct solution. Typically,
software libraries give the eigenvectors such that their length is 1. Be-
cause the constraint in TCA requires the transformed data to have a
variance of 1, all eigenvectors returned by the software package, are
divided by the square root of their corresponding eigenvalues. More
specifically, every column of the returned eigenvector matrix, which
is also the weight matrix, is divided by it’s corresponding eigenvalue.
Furthermore, because the feature vectors are two-dimensional, only
the two largest eigenvectors with corresponding eigenvectors are con-
sidered. The resulting eigenvalues and normalized eigenvector ma-
trix is given below:

Λ =

[
120.52
0.8167

]
(92)

with corresponding normalized eigenvector/weight matrix:

W =


−0.03510 0.19503
−0.01017 1.04894
−0.03878 −0.2807
−0.07387 −0.0855

 (93)

It can be checked wether the constraint indeed holds, using this nor-
malized weight matrix. The constraint is therefore computed below:

WTKHKW =

[
1.0636 −4.441 · 10−16

−4.545 · 10−16 1.0001

]
(94)

Indeed, the diagonal elements are close to one and the off-diagonals
are many orders of magnitude smaller. Thus, the normalization of

tca example 71

the eigenvectors by the corresponding eigenvalues, has successfully
resulted in satisfying the constraint in TCA.

Now, the weight matrix is used to project the original feature matrix
onto the TCA domain:

XTCA = KW =


−.9069 1.0709
−.4073 1.7676
−.9300 0.4548
−1.837 1.5258

 (95)

Where the first and last two rows represent the source and target
feature vectors in the TCA domain, respectively.

To inspect whether TCA has brought the source and target distribu-
tions closer together, the moment score metric from Chapter 4, equa-
tion 24 is used with k = 0. Thus, the sample means of the source and
target are compared and the score in this form is repeated below:

S =
||µS − µT||2

σS + σT
(96)

where the lower the score, the better the means of the source and
target are matched, considering their variances. Using the score met-
ric for the original feature matrix in equation 87 and the TCA trans-
formed feature matrix in equation 95, results in the scores Soriginal =

0.41 and STCA = 0.22. Indeed, the score for the TCA transformed
data is almost twice as small as the original data and thus, it is con-
cluded that TCA has successfully accomplished the goal of making
the source and target distributions more similar, by bringing their
respective means closer together.

E
VA R I A N C E M I N I M I Z AT I O N

A sample weighting method is considered that transforms the source
labels, such that its transformed variance, s(wyS) = 1

Ns
∑i(wyS(i) −

mS)2 = w2s(yS), is closer to that of the target, s(yt) = 1
Nt

∑i(yt(i)−
mt)2. This is done under the constraint that the sample mean of the
transformed source labels, m(wyS) = 1

Ns
∑i wyS(i), is within a margin

α of the target sample mean, m(yt) = 1
Nt

∑i yt(i). The source and
target variances and means will be represented as sS, st, mS and mt.

e.1 derivation

The optimization problem is defined as:

minw(w2sS − st)2

s.t.
(

wmS −mt

mt

)2

≤ (α)2
(97)

where α is the upper bound by which the transformed source mean,
wmS, is allowed to deviate from the target mean. The upper bound
is defined relative to the target mean. For example, for α = 0.1 the
transformed source mean is allowed to deviate less than or equal to
10% from the target mean.

The Lagrangian is:

L(w, λ) = (w2sS − st)2 + λ

((
wmS −mt

mt

)2

− α2

)
(98)

72

E.1 derivation 73

Derive and set to zero:

∂L(w, λ)

∂w
= 4w3(sS)2 − 4wsSst + λ

(
2w(ms)2 − 2mSmt

(mt)2

)
= 0 (99)

Solve for λ:

λ =
−2w3(sS)2(mt)2 + 2wsSst(mt)2

w(mS)2 −mtmS (100)

Substituting this λ in equation 98:

L(w) = (w2sS − st)2 +

(
−2w3(sS)2(mt)2 + 2wsSst(mt)2

w(mS)2 −mtmS

)((
wmS −mt

mt

)2

− α2

)
(101)

Deriving again, simplifying and setting to zero:

∂L(w)

∂w
=

p5w5 + p4w4 + p3w3 + p2w2 + p1w + p0

mS(wmS −mt)2 = 0 (102)

p5 = −4(mS)3(sS)2 (103)

p4 = 14(mS)2mt(sS)2 (104)

p3 = 4α2mS(mt)2(sS)2 − 16mS(mt)2(sS)2 (105)

p2 = −6α2(mt)3(sS)2 − 2(mS)2mtsSst + 6(mt)3(sS)2 (106)

p1 = 4mS(mt)2sSst (107)

p0 = 2α2(mt)3sSst − 2(mt)3sSst (108)

Solving equation 102 for w, results in five solutions:

w1 =
mt(1 + α)

mS (109)

E.1 derivation 74

w2 =
mt(1− α)

mS (110)

w3 =
(mt)2(sS)2 + mtsS f

1
3 + f

2
3

2mSsS f
(111)

w4, w5 =
− f

1
3

4mSsS −
(mt)2sS

4mS f
1
3
+

mt

2mS ±
1
2

j
√

3
(

f
2mSsS −

(mt)2sS

2mS f

)
(112)

where f is:

f = mt(sS)2
(
−2st(mS)2 + (mt)2sS + 2mS

√
st(st(mS)2 − (mt)2sS)

)
(113)

It is noticeable that only w1 and w2 depend on α. The influence of α

on the variance matching is described for different situations, based
on these two weights.

• sS < st, mS < mt: when the source mean is smaller than the
target mean, the former is scaled up to match the latter by the
mean ratio mt

mS , because it will be greater than 1. The source
variance is also smaller than the target variance, which also re-
quires an upscaling. This is also achieved by the same scaling
with the mean ratio. If after this upscaling the source variance
is still smaller, w1 is preferable which adds a margin (1 + α). If
the upscaling is so large that it upscales the source variance to
be much larger than the target variance, the margin (1− α) in
w2 can counteract the scaling in favor of the variance matching.
This however, results in the transformed source labels to devi-
ate from the target labels: m(wyS) = mt

mS (1 + α)mS = mt(1 + α).
Thus, this results in a deviation of αmt or α percent w.r.t. the
target mean. Therefore, the matching in the mean is trade off in
favour of a better variance matching.

• sS > st, mS > mt: similarly, in this case the source mean and
variance must be scaled down. The mean ratio achieves this,
because it is smaller than 1 in this case. If after this downscal-
ing the source variance is still smaller, w2 is preferable which
removes a margin (1− α). If the downscaling is so large that it
downscales the source variance to be much smaller than the tar-
get variance, the margin (1+ α) in w2 can counteract the scaling
in favor of the variance matching.

E.2 experiment 75

• sS < st, mS > mt: the source mean must be downscaled, which
counteracts the source variance, which must be upscaled. The
mean ratio mt

mS therefore contributes to match the means, while
the factor (1 + α in w1 is needed to counteract this in favour of
the variance matching.

• sS > st, mS < mt: Similarly, the source mean must be upscaled,
which counteracts the source variance, which must be down-
scaled. The mean ratio mt

mS therefore contributes to match the
means, while a factor (1− α in w2 is needed to counteract this
in favour of the variance matching.

• mS = mt: when the source and target mean are equal, the mean
ratio mt

mS = 1 and has no effect when applied to the source labels.
However, the factor (1+ α) or (1− α) can still scale the variance
up or down, which results the means to become unmatched.

• sS = st: Similar to the previous case, the weight has no effect on
the source variance, but the factor (1 + α) or (1− α) can scale
the mean up or down, which results the variances to become
unmatched.

It can be seen that in the above cases, the choice of w1 or w2 depends
on the inequality between means and variances; whether the source
is larger or smaller than the target. Furthermore, it also depends on
the absolute distance between the means and variances.

Instead of considering every specific case before deciding on a suit-
able weight, the weight is chosen based on the following:

w∗ =argmin(w2sS − st)2

w ∈W
(114)

where W is the set containing the five solutions.

Thus, the weight that fulfills the objective best is chosen.

e.2 experiment

The variance method is applied on the rainfall dataset where E1, m1 is
chosen as source and E2, m1 as target. In this setting, sS < st, mS < mt.

E.2 experiment 76

The method is evaluated for 0 ≤ α ≤ 1 and the scores for the variance
and mean matching are:

∆s =
|w2sS − st|

st
(115)

∆m =
|wmS −mt|

mt
(116)

E.2 experiment 77

The results are given below:

Figure 28.: Upper: Variance matching performance for different α. Vertical line
splits graph in two parts. In the left part the variance of the transformed
source labels is smaller than that of the target labels. In the right part,
this is the opposite. Lower: Mean matching performance for different α.
Black line represents the upper bound of the constraint in equation 97,
which states that the relative difference between the source and target
mean, may not exceed α.

It can be seen in the lower plot that the mean matching satisfies the
constraint with equality. Furthermore, it can be seen that adding a
margin in the mean matching, the variance matching improves, but
degrades after α = 0.42. This is because initially sS < st, which
requires an upscaling of the source variance. Choosing a too large α,
scales the source variance such that the inequality flips and w2sS > st,
causing the variances to move away from each other. Therefore, a
gridsearch could be performed to find the α that results in the best
variance matching. Any α higher than this is not suitable.

F
T C A C O D E

Author: Arman Naseri Jahfari

Simplified and slightly optimized from:

Original author: W.M. Kouw

https://github.com/wmkouw/libTLDA/blob/master/libtlda/tca.py

import numpy as np

from scipy.sparse.linalg import eigs

from scipy.linalg import cholesky, LinAlgError, inv

from scipy.spatial.distance import cdist

class TCA(object):

"""

Transfer Component Analysis.

"""

def __init__(self,

mu=1.0,

num_components=40, # Number of MFCC features

kernel_type='rbf',

bandwidth=1.0,

order=2.0,

kernel_reg_step = 1e-10,

kernel_reg_start = 0):

"""

Select parameters for transfer component analysis.

Parameters

mu : float

trade-off parameter (def: 1.0)

num_components : int

number of transfer components to maintain (def: 1)

kernel_type : str

type of kernel to use, options: 'linear', 'polynomial', 'rbf',

'sigmoid' (def: 'linear')

78

tca code 79

bandwidth : float

kernel bandwidth for RBF kernel (def: 1.0)

order : float

order of polynomial kernel (def: 2.0)

kernel_reg_step : float

step size to increase kernel regularization (def: 1e-10)

kernel_reg_start : float

Initial value of kernel regularization (def: 0)

Returns

None

Attributes

"""

self.mu = mu

self.num_components = num_components

self.kernel_type = kernel_type

self.bandwidth = bandwidth

self.order = order

self.kernel_reg_step = kernel_reg_step

self.kernel_reg_start = kernel_reg_start

def kernel(self, X, Z, type='rbf', order=2, bandwidth=1.0):

"""

Compute kernel for given data set.

Parameters

X : array

data set (N samples by D features)

Z : array

data set (M samples by D features)

type : str

type of kernel, options: 'linear', 'polynomial', 'rbf',

'sigmoid' (def: 'linear')

order : float

degree for the polynomial kernel (def: 2.0)

bandwidth : float

kernel bandwidth (def: 1.0)

Returns

array

kernel matrix (N+M by N+M)

"""

Data shapes

N, DX = X.shape

tca code 80

M, DZ = Z.shape

Assert equivalent dimensionalities

if not DX == DZ:

raise ValueError('Dimensionalities of X and Z should be equal.')

Select type of kernel to compute

if type == 'linear':

Linear kernel is data outer product

return np.dot(X, Z.T)

elif type == 'polynomial':

Polynomial kernel is an exponentiated data outer product

return (np.dot(X, Z.T) + 1) ** p

elif type == 'rbf':

Radial basis function kernel

return np.exp(-cdist(X, Z) / (2. * bandwidth ** 2))

elif type == 'sigmoid':

Sigmoidal kernel

return 1. / (1 + np.exp(np.dot(X, Z.T)))

else:

raise NotImplementedError('Loss not implemented yet.')

def transfer_component_analysis(self, X, Z, **flags):

"""

Transfer Component Analysis.

Parameters

X : array

source data set (N samples by D features)

Z : array

target data set (M samples by D features)

Returns

X : array

domain adapted source data set (N samples by m features)

Z : array

domain adapted target data set (M samples by m features)

"""

Data shapes

N, DX = X.shape

M, DZ = Z.shape

print(X.shape)

print(Z.shape)

Assert equivalent dimensionalities

if not DX == DZ:

tca code 81

raise ValueError('Dimensionalities of X and Z should be equal.')

Assert correct number of components for given dataset

if not self.num_components <= N + M - 1:

raise ValueError('''Number of components must be

smaller than or equal to the

source sample size plus target sample

size plus 1.''')

Compute kernel matrix

XZ = np.concatenate((X, Z), axis=0)

K = self.kernel(XZ, XZ, type=self.kernel_type,

bandwidth=self.bandwidth)

Footnote 1, page 3

add regularization to diagonals to make K positive definite

posdef_warning = False

regct = self.kernel_reg_start

K += np.eye(N + M) * regct

while not is_pos_def(K):

Give warning only once if not PD

if not posdef_warning:

print('Warning: covariate matrices not PD.')

posdef_warning = True

regct += self.kernel_reg_step

print('Adding regularization: ' + str(regct))

Add regularization

K += np.eye(N + M)*self.kernel_reg_step

Normalization matrix

LSS = np.ones([N, N])/N**2

LST = -1*np.ones([N, M])/(N*M) # equal to LTS

LTT = np.ones([M, M])/M**2])

L = np.vstack([np.hstack([LSS , LST]),

np.hstack([LTS, LTT])

I = np.eye(N + M)

Centering matrix

H = I - np.ones((N + M, N + M)) / float(N + M)

tca code 82

KLK = np.dot(np.dot(K, L), K)

KHK = np.dot(np.dot(K, H), K)

page 3, last paragraph

Solution of optimization problem

is Generalized eigenvector

a, b = KHK , I + self.mu * KLK

lambdas, W = geig(a, b)

Rewriting as 'regular' eigenvalue decomposition is faster

(I + mu*K*L*K)^{-1}*K*H*K

J = np.dot(inv(I + self.mu * KLK), KHK)

lambdas, W = eigs(J, k=self.num_components, which='LM')

Normalize to unit variance to make sure constraint is satisfied.

This is done by dividing every eigenvector by the square root

of the corresponding eigenvalue

W = 1/np.sqrt(lambdas)*W

Discard imaginary numbers (possible computation issue)

W = np.real(W)

Project source and target data onto transfer components

X = np.dot(K[:N, :], W)

Z = np.dot(K[N:, :], W)

return X, Z

def is_pos_def(K):

""" Kernel is positive-definite if Cholesky decomposition exists """

try:

cholesky(K)

return True

except LinAlgError:

return False

	Contents
	Background information
	Problem description
	methods
	Research question

	Data Acquisition
	Top-level design
	Hardware
	Software
	Rainfall emulation experiment

	Baseline
	Data preprocessing
	MFCC Feature Generation
	Performance evaluation
	Cascaded Regression

	Domain Adaptation
	Introduction
	semi-supervised domain adaptation
	Standardization
	Principal Component Analysis
	Transfer Component Analysis

	supervised domain adaptation

	Results
	Conclusion & Discussion
	Bibliography
	Appendices
	Posterior histograms
	Results
	TCA Derivation
	Maximum Mean Discrepancy
	The kernel trick
	Optimization Problem

	TCA Example
	Variance minimization
	Derivation
	Experiment

	TCA code

