
Observable Simulator of
SNNs

Sander Renger

Observable Simulator of
SNNs

by

Sander Renger

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Tuesday August 22, 2023 at 10:30 AM.

Student number: 4483510
Project duration: September 1, 2023 – August 23, 2024
Thesis committee: Prof. dr. ir. G. Gaydadjiev, TU Delft, supervisor

Dr. R. Venkatesha Prasad, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgments

Progressing on this thesis has been quite the challenge sometimes. To ensure this thesis
would meet its deadline I’d like to thank a few people for both their technical and mental sup-
port.

First, I’d like to thank my supervisor Prof.dr.ir. Georgi Gaydadjiev from Delft University of
Technology. The weekly meeting proved very helpful for both the progress of the thesis and
keeping a positive spirit.

Secondly, I’d like to thank Theofilos Spyrou. His insights into Spiking Neural Networks were a
great boon.

Thirdly, I’d like to thank all my friends, who kept encouraging me to keep working on my thesis.

Lastly and maybe most importantly, I’d like to thank my parents for not just their support during
the thesis but the entirety of my university journey.

Sander Renger
Delft, August 2024

iii

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Contribution. 4
1.3 Thesis Organization . 5

2 Introduction to Neural Networks and Simulators 7
2.1 Background. 7
2.2 Neural Networks . 9

2.2.1 Components . 9
2.2.2 Types of layers . 10
2.2.3 Training. 14

2.3 Spiking Neural Networks . 14
2.3.1 Spike Response. 14

2.4 Simulators . 14
2.4.1 Pytorch . 14
2.4.2 TensorFlow. 15
2.4.3 Comparison . 15

3 SNN Simulator 17
3.1 Components . 17

3.1.1 Simulator . 17
3.1.2 Event Handler . 18
3.1.3 Event Reader . 18
3.1.4 File Reader . 19
3.1.5 Randomness . 20
3.1.6 Dropout . 20

3.2 Observability and control . 21
3.2.1 PrintNeuronList . 21
3.2.2 PrintNeuronInformation . 21
3.2.3 PrintClusterInformation. 22
3.2.4 PrintQueuetoFile . 22
3.2.5 PrintNeuronVoltagetoFile . 22
3.2.6 AddConnection and RemoveConnection 22
3.2.7 RemoveNeuron . 23
3.2.8 UpdateThreshold . 23
3.2.9 UpdateWeight . 23

3.3 Summary . 23

4 Functional Validation 25
4.1 Connectivity . 25
4.2 Weights and Thresholds . 26
4.3 Spike Arrival Times . 28
4.4 Negative Weights . 30
4.5 Refractory Function . 31

v

vi Contents

4.6 Summary . 32

5 Validation 33
5.1 Slayernetwork - Multilayer perception . 33

5.1.1 Validation Details . 33
5.1.2 Validation Analysis . 35

5.2 Slayernetwork - DVSGesture . 35
5.2.1 Validation Details . 35
5.2.2 Validation Analysis . 40

5.3 Validation Conclusion . 41

6 Conclusion 43
6.1 Summary . 43
6.2 Future Works . 44

List of Figures

1.1 The market growth of self driving cars [1] . 4
1.2 The market growth of surveillance cameras in North America [2] 4

2.1 Different kinds of Pooling Layers . 11
2.2 32 different kind of masks applied on the input image of a bag[3] 11
2.3 A Convolution Layer . 12
2.4 A Fully Connected Layer [4] . 13
2.5 The dropout function in action [5] . 13

3.1 Both event Queues . 18
3.2 Console output from the function Printneuroninformation 22
3.3 Console output from the function PrintClusterInformation 22

4.1 Three neurons connected to each other in a line 26
4.2 The Three potential spike response functions from the first simulation. 26
4.3 The six neurons used in the second simulation 27
4.4 Three subplots for the first part of the second simulation 27
4.5 Three subplots for the second part of the second simulation 28
4.6 Topography of the third simulation testing different input times 29
4.7 Three subplots of the Spike Response functions for the third simulation 29
4.8 Topography of the fourth simulation testing negative weights 30
4.9 Two subplots showing the line curves of the spike responses of simulation four 31
4.10 Topography of the fifth simulation testing the refractory function 31
4.11 Three subplots detailing the line curves of the spike responses used in simula-

tion five . 32

5.1 The first Neuron in the first layer of the first validation 34
5.2 The eight Neuron in the second layer of the first validation 34
5.3 The seventh Neuron in the first layer of the second validation 37
5.4 The seventh Neuron in the second layer of the second validation 37
5.5 The seventh Neuron in the third layer of the second validation 38
5.6 The 141th Neuron in the fourth layer of the second validation 38
5.7 The 141th Neuron in the fifth layer of the second validation 39
5.8 The 141th Neuron in the sixth layer of the second validation 40
5.9 The second Neuron in the seventh layer of the second validation 40

vii

List of Tables

2.1 The inputs neurons of a convolution layer with a window size of 3 12

3.1 Table of a Neuronlist within the class NeuralNetwork 18

5.1 Mean square errors of the first validation . 35
5.2 Mean square errors of the second validation . 41

ix

Abbreviations

ABC Atanasoff–Berry computer

AI Artificial Intelligence

ALU Arithmetic Logic Unit

ANN Artificial Neural Network

ARCO Automatische Relais Calculator voor Optische berekeningen

CPU Central Processing Unit

DVS Dynamic Vision Sensor

ENIAC Electronic Numerical Integrator and Computer

EWI Elektrotechniek, Wiskunde en Informatica

FET Field-Effect Transistor

IC Integrated Circuit

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

GPU Graphical Processing Unit

MSE Mean Square Error

PSP Post Synaptic Potential

SNN Spiking Neural Network

xi

Abstract

With the rise of the artificial intelligence starting in the late 2010s there has been a great in-
crease of demand for neural networks. It seems AI is omnipresent these days, whether it is
OpenAI releasing the famous or infamous large language model chatGPT, Google following
by adopting a similar approach with integrating Artificial Intelligence (AI) into it’s search engine
or help desks becoming entirely controlled by AI. It is clear, AI is here to stay. NVIDIA nor-
mally a company thought of selling Graphical Processing Units (GPUs) for gaming purposes
has shifted its focus to making GPUs used for running neural networks, this shift has shown
its returns as it is now the most valuable company in the world.

The increased interest in AI does leave a lot of academia wondering: What actually is ar-
tificial intelligence and especially what are neural networks. With the introduction of deep
learning, a machine learning method that searches for features in a dataset, neural networks
have become more and more abstract. Developing an appropriate solution to better interpret,
visualize and adjust the inner workings of a neural network is not just needed to keep track of
the underlying dynamics of a neural network, but also to allow the user to go outside of the
standardized framework to fine tune a network.

This thesis explores the functionality of neural networks, more specifically spiking neural net-
works, and describes the workings and functions of the created simulator. Multiple helper
functions, that allow the user to both visualize and adjust the network outside of the stan-
dardized framework, are introduced that distinguishes the created simulator from the already
present SNN simulators. Afterwards, five small simulations are done to validate the basic
functionality of the simulator. Following these simulations the simulator is validated using two
large datasets and comparing the simulator with the results from a well known spiking neural
network library SLAYER. The first validation is done with a smaller data set containing hand
written images of the numbers zero to nine. The second validation is done with a larger data
set containing multiple different kind of performed hand gestures. Both validations show that
the simulator has a high accuracy with the maximummean square error between the SLAYER
output and the simulators output being less than 2%.

1

1
Introduction

Within this chapter the topics of the thesis, the goal of the thesis and other related works, are
introduced. Section 1.1 talks about the motivation for the thesis, the shortcomings of Spiking
Neural Network simulators, or (SNN) simulators, and possible improvements. Section 1.2
details the contributions done by this project. Lastly, in final the section 1.3 the thesis layout
is described.

1.1. Motivation

What started as simple neural networks able to beat amateur checkers players in 1959 [17],
has now more than 50 years later turned into the fastest growing industry in the world [9].
The application of Artificial intelligence (AI) as a whole is growing exponentially, even more so
SNNs. SNNs operate in a similar manner to the functioning of a human brain, which suggests
their far reaching potential. Currently, however, SNNs are used primarily in the field of image
recognition, where the ability to quickly adapt to change is vital.

The advancement of image recognition technology is paramount for the future of many au-
tonomous machines. As seen in figure 1.1 the self driving car market is growing rapidly,
doubling its size in less than 10 years. With more and more self driving cars on the road [8],
safety is an ever growing concern [20]. To ensure the safety of people inside and the people
outside self driving cars, we have to guarantee that image recognition is infallible.

3

4 1. Introduction

Figure 1.1: The market growth of self driving cars [1]

Surveillance is another field where image recognition is important, The surveillance cam-
era market has seen a significant increase in sales and is only expected to increase more, as
seen in figure 1.2. The surveillance market is not just restricted to government surveillance
but also smart doorbells, highway speed controls or general building security.

Figure 1.2: The market growth of surveillance cameras in North America [2]

The growth of real-time image recognition demands is supported by the application of
advanced spiking neural networks. With SNNs become more advanced, it becomes difficult to
see what happens inside the black box of an SNN. This lack of observability can be detrimental
for both fine tuning and debugging of an SNN. In order to streamline the development of
SNNs, state-of-the-art SNNs use a standardized framework of layers, a grouping of neurons.
Adjusting neurons in a way that would make the layer no longer comply with the framework is
difficult within state-of-the-art SNNs.

1.2. Contribution
In this thesis, the objective is to increase the observability and control of a trained SNN. The
developed simulator, aptly named SNNSim, has multiple added functions that both help to
visualize the spiking functions of the neural network and allow for a better view and control of
the connectivity inside the neural network.

1.3. Thesis Organization 5

The main contributions of the thesis are:

• Increasing the observability of connectivity between neurons: The added observ-
ability functions allow the user to more easily understand the mapping of SNNSim. By
requesting the connectivity lists of the interested neurons the user is able to see the
mapping of the requested neuron.

• Increasing the control of connectivity between neurons: Multiple control functions
allow for both adding, deleting and editing existing connections between neurons, out-
side of the more established framework that current state-of-the-art SNN use.

• Visualization of the spike response functions: By extracting the spike response func-
tion of a neuron, the potential of the specified neuron over the duration of the entire
simulation can be shown in a graph.

1.3. Thesis Organization
The remainder of the thesis is divided up into several chapters. The second chapter provides
an introduction into Machine Learning, Spiking Neural Networks and their simulators. The
third chapter entails the design of my simulator. The fourth chapter validates the functionality
of SNNSim with small scale simulations. The fifth chapter explains the method of validating
SNNSim against a state-of-the-art SNN. Finally, the last chapter concludes the thesis. The
following list provides a more detailed explanation of every chapter:

Chapter 2: A quick introduction of Machine Learning and Spiking Neural Networks. It introduces the
different types of layers in a Spiking Neural Network and the way spikes are transmitted.
Finally, two simulators, Pytorch and Tensorflow, are introduced and compared.

Chapter 3: Introduces the different components of SNNSim and its design choices. Secondly, the
different observability and control functions are introduced.

Chapter 4: The functionality of SNNSim is validated with multiple simulations. The first simulation
is about testing the connectivity of the neurons and validates the ability for neurons to
spike. The second simulation validates the ability to change the weights and threshold of
a neuron. The third simulation is about different spike arrival times. The fourth simulation
is on inhibitory connections. The fifth and final simulation validates the refractory function
of the neuron.

Chapter 5: SNNSim is validated with two SNNs both provided by the SLAYER library for Pytorch,
the first network is validated with Multilayer Perception and the second network with a
DVSGesture data set. The last part of the chapter gives a conclusion on the validation
of SNNSim.

Chapter 6: A summary of the chapters within the thesis is given and the thesis is given a conclusion.
Lastly, the chapter provides suggestions for possible future works on SNNSim.

2
Introduction to Neural Networks and

Simulators

The first section 2.1 introduces neural networks and gives a short background on both AI and
neural networks. The second section 2.2 describes the inner workings of a neural network.
The third section 2.3 goes into further detail on the specifics of an SNN. The third and final
section 2.4 introduces and compares the two most prominent neural network libraries, Pytorch
and TensorFlow.

2.1. Background
Back in the 17th century a computer meant someone who computes. In 1820 the English
inventor Charles Babbage invented the first modern mechanical computer, the Difference En-
gine. These computers worked on intricate gear systems used to do simple arithmetic calcu-
lations. Not long after the second world war the first electronic computers came to the forefront.

The Atanasoff–Berry computer (ABC), developed in 1942 by is the first fully electronic com-
puter to be invented. The ABC is the first electronic computer to introduce arithmetic logic unit
(ALU). An ALU allows a different kind of operations to be executed on inputs depending on a
secondary signal that determines the type of operation to be performed, for instance: addition,
subtraction, multiplication and division.

TUDelft did not shy away during the early development electronic computers either. The
Automatische Relais Calculator voor Optische berekeningen (ARCO), better known as the
Testudo, is an early computer designed by the Dutch computer scientist Willem van der Poel.
The Testudo was a relatively slow computer, but it was capable of executing calculations day
and night. This was an impressive feat compared to other computers of the time, which re-
quired maintenance every few hours. The slow speed yet long endurance of the computer
explains the name ’Testudo’, the latin name for tortoise. Willem van der Poel was also respon-
sible for developing other notable computers such as the ZEBRA, the ZERO, and the PTERA.
Each of these machines contributed to advancements in computing during that era. Most of
Van der Poel’s computers are still visible in the cellar museum below the TUDelft faculty of
Elektrotechniek, Wiskunde en Informatica (EWI).

Starting with the ABC computer, vacuum tubes, which function as electronic switches without
moving parts, became crucial in the early development of computers. The Electronic Numer-
ical Integrator and Computer (ENIAC) was the first large-scale implementation of a computer

7

8 2. Introduction to Neural Networks and Simulators

with vacuum tubes. The ENIAC however, did also show the problems vacuum tubes have. A
computer with 18.000 vacuum-tubes, a relatively small number of switches by today’s stan-
dards, required 150 kW of power and occupied a space of 28 m2. Both these problems, high
power usage and large size, caused a so to speak ’computer winter’ with respect to the de-
velopment of computers.

The ’computer winter’ saw its first signs of ending with the rapid development of the first tran-
sistors. One of the earliest transistors, the Bipolar Junction Transistor, functions by applying
a constant current to control the conductivity of a semi-conductor, allowing it to act as an
electronic switch. The first transistors were made with the semi-conductor germanium. Ger-
manium is fragile and difficult to work with, on top of that the workable temperature range is
less than ideal. The transition from germanium as a substrate to silicon, a semi-conductor with
a higher temperature range and a lower voltage leakage when turned off, was the second sign
the ’computer winter’ was ending. The final sign was the introduction of the Field-Effect Tran-
sistor (FET). Compared to the BJT the FET uses an electric field to control the conductivity of
a semi-conductor, thereby eliminating the need for a continuous current flow and significantly
reducing overall energy consumption. The integration of silicon as substrate with the FET
technology allowed for the development of Metal-Oxide-Semiconductor Field-Effect Transis-
tor (MOSFET). With the advent of MOSFETs the development of integrated circuits (ICs), an
electronic device of multiple interconnected components like transistors etched into a semi-
conductor, started to accelerate. Not long after the introduction of IC, Gordon Moore, one of
the founders of intel, observed that the components in IC seemed to double every year [13].
The term now known as Moore’s law, slightly adjusted in later years to doubling every other
year, seems to still hold up to this day.

Nowadays, computers in the modern sense are everywhere, from the mobile phones in our
pockets to the large data centers scattered around the country, supporting everything from
personal devices to large scale online computing services that drive global communication
and industry.

The emergence of artificial intelligence shares a similar story as the rise of computers, not
just because both fields are related but also in the ways the rose to prominence.

During the second world war the Germans had invented the then most heavily encrypted
messaging device, the Enigma machine. With this computing unit the Germans were capable
of sending encrypted messages all across the globe with impunity.

Shortly after the outbreak of the war Alan Turing started working as a codebreaker at Bletch-
ley Park. In 1940 Alan Turing developed his new code breaking machine the Bombe, an
electro-mechanical machine. The Bombe saw its first success with the breaking of a German
submarine messages. Alan Turing kept improving his code breaking machine and played a
very important role in winning the second world war.

In his 1950 paper: ”Computing Machinery and Intelligence” [19] Alan Turing starts the field
of artificial intelligence by asking himself: Can you build a machine that is capable of being
trained in a similar way as how humans learn new information. With this thought in mind Alan
Turing proposed the Turing Test. In a Turing test a participant is having a conversation with
either a machine or a human, if the participant cannot tell whether it is a person or a machine,
the machine passes the Turing test. The publication of this paper is often considered as the

2.2. Neural Networks 9

starting point of the field of machine learning.

The first neural network that was capable of learning from data provided to it, is the Neu-
ral Network named Perceptron, developed in 1957 by Frank Rosenblatt [15]. The Perceptron
is the simplest form of a Neural Network that takes inputs and weights these inputs to create
an output. The network is trained by adjusting the weights in such a way to get a more de-
sirable output, this all was done by hand. In 1969 both Minsky and Papert published a paper
outlining the limitations of the Perceptron and Simple Neural Networks like the Perceptron in
general [12]. With the publication of this paper the development of artificial intelligence and
neural networks entered a winter period with little to no new development.

The winter ended with the invention of the back propagation algorithm developed by Rumel-
hart, Hinton, andWilliams in 1986 [16]. This algorithm allowed for the training of more complex
neural networks, removing the limitations that stagnated the field of artificial intelligence.

The supercomputer Deep Blue caught the world by storm as it beat the world champion chess
player, Garry Kasparov, in a six-game chess match in 1997. The Chinese board game Go on
the other hand remained elusive for a much longer period. The difficulty in creating an AI capa-
ble of beating a professional go player becomes clear when comparing the two games: Chess
has an approximate 1040 possible positions in go on the other hand there are an approximate
10170 positions. On top of the difference in amount of positions, the complexity in the value
of a move is a lot higher in Go compared to chess. Despite the elusiveness of Go the victory
against Garry Kasparov marks a significant win for artificial intelligence. The confidence that
there is a future in AI started to take off.

The introduction of more advancedGraphical Processing Units (GPUs) gave way to the current
AI revolution. GPUs allow for more and faster computations than what a central processor unit
(CPU) is capable off. This coincided with the emergence large scale cloud computing. Cloud
computing grants a person the ability to access the large computing capabilities present in
data centers over the internet. Togehter both the development of more advanced GPUs and
the increased accessibility cloud computing provides, gave rise to the current state-of-the-art
neural networks, such as like OpenAI’s ChatGPT and Google’s Gemini.

2.2. Neural Networks
In the section Neural Networks the functionality of a neural network is introduced. The first
part 2.2.1 introduces the modules and functions of a neural network. In the second part of the
section 2.2.2 layers are introduced with their functionalities. In the final part 2.2.3 the method
of training a neural network is discussed.

2.2.1. Components
A Neural Network [10] is a computational model inspired by the human brain’s processing
abilities. It consists of neurons, which are organized in groups also known as layers. The data
flows from one layer of neurons to another until it reaches the output layer. A neural network
can be divided into multiple components and functions. The Components of a Neural Network
are as follows:

• Neuron: The main and basic computing unit in a Neural Network. All the calculations
happen inside this unit. The neuron both receives and sends information from one neu-
ron to another neuron.

10 2. Introduction to Neural Networks and Simulators

• Layers: A Neural Network is divided up into multiple layers. The input layer takes in the
data, usually from either a data set or real-life data. The hidden layers are the interme-
diate layers where the calculations happen. The output layer is the final layer inside a
Neural Network and describes the output of a Neural Network.

• Connections: The neurons inside the layers of a Neural Network are connected to neu-
rons inside the next layer in various ways depending on the type of layer used. These
connections all have different weights and biases. The weights are variable to differen-
tiate the importance of each connection. The biases on the other hand are present to
counteract the over reliance on too highly weighted connections.

The functions of a basic neural network are as follows:

• Forward Propagation. The transfer of data between the layers is done using forward
propagation. From the input data at the input layer through the different weights from
each connection the final output data is generated with this forward propagation.

• Backwards Propagation. The process of learning is done with backwards propagation.
Backwards propagation is an algorithm that calculates the loss function of a connection.
The loss function is a formula that compares the current output with the desired output.
A common type of loss function is the mean squared error (MSE) loss function. The
common MSE loss function is in the format of 1𝑛 ∑

𝑛
𝑛=1(𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑦)2. Using the loss

function the weights or gradients are adjusted to reduce the loss of each connection.

2.2.2. Types of layers
Multiple types of layers are used in neural networks. The most commonly used layer types in
a neural network are: The Pooling layer, a layer used to condense the data from the previous
layer with the intention to lower the data points without losing too much of the information.
The Convolution layer, a layer used to select different type of characteristics from the previous
layer. The fully connected, a layer used to combine all the previously collected information
and condense it into a usable output.

Pooling Layer
The Pooling layer is a layer used to compress the spatial dimensions of a layer without losing
much of the data. The inputs of a pooling layer are determined by the pooling window.

As an example, the first neuron of a pooling layer where the indexes represent the xy-axis
is as follows: 𝑁𝑒𝑢𝑟𝑜𝑛[𝑦][𝑥]. In a pooling layer, with window size of two by two, this neuron
takes the following outputs of the neurons in the previous layer as inputs:

𝑁𝑒𝑢𝑟𝑜𝑛[𝑦][𝑥], 𝑁𝑒𝑢𝑟𝑜𝑛[𝑦][𝑥 + 1],
𝑁𝑒𝑢𝑟𝑜𝑛[𝑦 + 1][𝑥], 𝑁𝑒𝑢𝑟𝑜𝑛[𝑦 + 1][𝑥 + 1]

There are multiple types of pooling layers as seen in figure 2.1, these types of layers are:
Average, Summation and Maximum.

2.2. Neural Networks 11

Figure 2.1: Different kinds of Pooling Layers

The average pooling layer takes the average value of the values inside the pooling window
as its output. The Summation pooling layer sums the values inside the pooling window. The
maximum pooling takes the highest valued number inside the pooling window and uses it as
its output.

Convolution Layer
The convolution layer has the function of selecting desired characteristics from a layer using
a window, better known as a mask. The weights of a convolution layer window are, unlike the
pooling layer, not all the same. Because the weights of different positions on the mask differ, a
mask can specifically select for desired characteristics from the previous layer. A convolution
layer can exist of multiple different weighted masks and can therefore create multiple different
output dimensions, where each mask creates a different dimension. The figure 2.2 shows this
clearly. The input image of a bag is taken through a convolution layer with 32 masks that all
have different weights. These masks all search for different characteristics creating 32 distinct
new images of a bag.

Figure 2.2: 32 different kind of masks applied on the input image of a bag[3]

The convolution layer spatial mapping works on the same principle as the pooling layer,
but whereas in the pooling layer the window moves with the size of the pooling window, the

12 2. Introduction to Neural Networks and Simulators

convolution layer does not. As shown in table 2.1 in the convolution layer inputs are centered
around the outputs neuron window, compared to the pooling layer where the output neuron is
located on the top left of the window.

Table 2.1: The inputs neurons of a convolution layer with a window size of 3

Neuron[y-1][x-1] Neuron[y-1][x] Neuron[y-1][x+1]
Neuron[y][x-1] Neuron[y][x] Neuron[y][x+1]

Neuron[y+1][x-1] Neuron[y+1][x] Neuron[y+1][x+1]

As seen in figure 2.3, a convolution layer using a three by three convolution window, the
layer give a problematic output. The border regions of the output layer are undefined, shown
in the figure as white. This problem arises when for instance both x and y are zero and the
convolution layer tries to access the 𝑁𝑒𝑢𝑟𝑜𝑛[𝑦 − 1][𝑥 − 1], resulting in negative indexes.

Figure 2.3: A Convolution Layer

As the Neurons with negative indexes do not exist, taking the convolution of all border
neurons is impossible. To circumvent this problem, zero padding is used. With zero padding
temporary neurons are created around the border with a connection weight of zero. To ensure
that the outgoing spatial dimensions are the same as the incoming spatial dimensions, there
should be as much padding as the convolution window size divided by two rounded down.

Fully Connected Layer

A fully connected layer or a dense layer, is a layer where every neuron has a connection with
all neurons from the previous layer. This layer is used to combine all gathered information from
the previous layer, and all its different masks, and condense it towards a single presentable
output layer. As shown in figure2.4 the first layers neurons are all connected to the second
layers neurons. Th different width and boldness of the lines represent the different weights
assigned to each connection.

2.2. Neural Networks 13

Figure 2.4: A Fully Connected Layer [4]

Dropout
To combat over learning specific characteristics in a dataset the dropout function can be used.
During every learning cycle, when dropout is applied, all neurons have a chance 𝑝 to be de-
activated. To keep the functionality of the network, the remaining neurons have their output
strength increased by 1

1−𝑝 . This way of randomly deleting different neurons every learning
cycle is a tool to not just prevent the over learning of specific characteristics, but it will also
create a more robust network that relies on every aspect of the data set. Once the learning
process of the network is complete every neuron is turned on again and the output strength of
every neuron is scaled back down. In figure 2.5 the dropout function is seen in action. As seen
in the figure every neuron has an approximate 𝑝 = 0.5 chance of deactivation. The second
and third neuron the lowest layer are during this specific learning cycle deactivated forcing the
network to rely on the first, fourth and fifth neuron.

Figure 2.5: The dropout function in action [5]

The dropout function has both upsides and downsides. On one side it decreases the over
usage of specific characteristics in a dataset, but on the other side it might not learn important
characteristics that are present in the dataset that are vital for the output.

14 2. Introduction to Neural Networks and Simulators

2.2.3. Training
With the use of the previously described functions a neural network is able to be trained for a
desired output. In order to train a network on a specific dataset, the dataset has to be divided
up into two components, the training set and the test set. The training set is used to train the
neural network and the test set is used to confirm the functionality of the trained neural network
on data that was not used in the training period.

In the first generation the weights are normally randomly distributed. After the first generation
the loss function is calculated. Before rerunning the neural network for its second generation
the weights are adjusted. After the second generation the new loss function is calculated, if
the loss function is lower compared to the first generations loss function, the new generations
weights are saved as the new optimal generation. This process continues until the maximum
desired generation has been reached. Letting a network train for too long however causes the
network to overfit itself to the training data. This overfitting will often result in a high accuracy
on the training data, yet a low accuracy on the testing data. To combat this overfitting the
a commonly used strategy is to forcefully stop the training the moment the test performance
starts to degrade.

2.3. Spiking Neural Networks
an SNN differs from a more standard and well known artificial neural network or (ANN) in
that it takes both information and the time into account instead of just the information as in
ANNs. In an SNN the output data from a neuron is not transmitted as a single instance of
information, but a potential spike that slowly decays over time. Image recognition software
uses Neuromorphic datasets, these data sets only record changes in the image compared to
sending the entire image every frame. Neuromorphic datasets are very suitable for SNNs as
the changes in pixels can be well represented as spikes in an SNN. On top of that an SNN is a
lot more energy efficient due to the nature of only responding to changes in the image instead
processing the entire image every time step. These differences make an SNN very suitable
for image recognition.

2.3.1. Spike Response
When a neuron outputs a spike, it is represented as a response kernel 𝜖. This response func-
tion will then be multiplied by the weight of the connection to generate the incoming spike re-
sponse function 𝑎(𝑡) at the input of the next neuron. The combined incoming spikes response
functions are called the Post Synaptic Potential or (PSP). The neuron will output a spike itself
the moment the PSP crosses the threshold 𝜗. As would happen with a real-life neuron, a
neuron has a refractory response 𝑉(𝑡) to prevent itself from immediately firing again.

2.4. Simulators
There are many different kinds of machine learning libraries, the main two neural network
libraries currently available are TensorFlow and Pytorch. The SNN used for validation in this
thesis is a library based on Pytorch, namely SLAYER.

2.4.1. Pytorch
Pytorch [14] is an open-source machine learning library written in either Python or C++. It is
based on the much older Lua based machine learning library Torch. Originally developed by
META AI in 2016 it is now part of the Linux foundation umbrella. This up-and-coming Machine
Learning library is extensively used in the academic field and is especially popular among

2.4. Simulators 15

researchers. The Python friendly way of describing networks and intuitive flow of data makes
this simulator one of the most popular simulators.

2.4.2. TensorFlow
TensorFlow [6] is an open-source machine learning library written for Python, JavaScript, C++
and Java. Developed by the Google Brain team in 2015 it is one of the older still up-to-date
machine learning library. TensorFlow focuses on the industrial deployment of machine learning
and is optimized for large data set handling, training and evaluating networks.

2.4.3. Comparison
Both Pytorch and TensorFlow have their similarities and differences. The comparison is di-
vided up into multiple categories. These categories are: The computational mapping, the ease
of use, the performance, and the ecosystem and community.

1. Computation Graph

• Pytorch: The computation graph, the connectivity mapping between layers, is con-
structed as the program is executed allowing for easier debugging.

• TensorFlow: The computation graph is constructed in a static fashion, before ex-
ecution of the program. This allows for additional optimization of the program com-
pared to Pytorch.

2. Ease of Use

• Pytorch: Written in a python friendlymanner, Pytorch is popular among researchers
for its ease of use and quick adoption.

• TensorFlow: With the introduction of TensorFlow 2.X the ease of use has increased
compared to the first versions of TensorFlow, however the learning curve is still
steep compared to Pytorch.

3. Performance

• Pytorch: The Dynamic nature of Pytorch’s computation graph has its downsides in
that the performance is less optimal. The performance however is efficient enough
for research purposes.

• TensorFlow: The Static nature of TensorFlow computation graph allows for greater
optimizations. On top of the higher efficiency TensorFlow also allows for a greater
scalability compared to Pytorch.

4. Ecosystem and Community

• Pytorch: The community of Pytorch is growing rapidly, especially in academic and
research circles. On top of that Pytorch integrates well with other Python libraries.

• TensorFlow: TensorFlow is widely adopted in the industry. TensorFlow has a large
ecosystem of tools and a broad user base for the industry.

With these comparisons in mind, it is evident to draw a conclusion that Pytorch is mainly used
by academia, whilst the Industry favours TensorFlow.

SNNSim adds additional aspects to the computation graph compared to both Pytorch and
TensorFlow, like Pytorch the computation graph is constructed during execution, but unlike
Pytorch this computation graph is not limited to predefined frameworks of layers.

3
SNN Simulator

The design goal of this thesis is creating a simulator that allows people to easily extract in-
formation from the hidden layers of a network and modify the network freely compared to the
more conventionally used simulators. With this in mind, the chapter is divided up in the follow-
ing sections. Section 3.1 details a detailed description of SNNSim’s components. Section 3.2
explains the added observability and modification functions added to SNNSim. Finally Section
3.3 gives a summary of the chapter.

3.1. Components
The components of SNNSim are discussed in the following sections. The first section 3.1.1
describes SNNSim itself. The second section 3.1.2 talks about the event handler and the
third section 3.1.3 describes the event reader. In the fourth section 3.1.4 file reader is dis-
cussed. The fifth section 3.1.5 introduces the added randomness functions to simulate real
world scenarios. The sixth and final section 3.1.6 describes the dropout function of SNNSim.

3.1.1. Simulator
SNNSim is written in an object oriented manner. This way of designing simulator is picked
to allow for both easier debugging and for better scalability of SNNSim. On top of the object
oriented programming SNNSim also uses an event driven simulation. The decision to use
event driven simulation compared to a continues simulation is because of the nature of an
SNN. Compared to an ANN an SNN does not always have new information, or events, to
process. An event driven simulation entails that not every neuron is processed every time
step, only when a spike event occurs and only the neurons that are affected by the spiking
event are processed. This reduces the time to run a simulation drastically.
The SNN simulator itself is divided up into three classes. The highest class in SNNSim is
the NeuralNetwork class. The class describing the layers is the NeuronCluster class. The
deepest class is in SNNSim, describing the neurons, is the Neuron class.

NeuralNetwork The entire combined network is called the NeuralNetwork, the class Neu-
ralNetwork hence contains a vector with all the NeuronClusters. On top of that it also contains
the outgoing connections of every neuron, in which cluster they exist and their intrinsic delay.
An example of such a list is shown in table 3.1. The first column of the table denotes the as-
signed number the neuron has. In the second column the assigned cluster is listed. The third
column lists every outgoing connection the neuron has. The fourth and final column denotes

17

18 3. SNN Simulator

the intrinsic delay of the neuron. This table is used to determine to which neuron a spike has
to be send using the outgoing connectivity list.

Table 3.1: Table of a Neuronlist within the class NeuralNetwork

Neuron Cluster number Outputs Delay
1 1 3,4,5,6 0
2 1 3,4,5,6 0
3 2 7,8,9,... 0
...

NeuronCluster The class Neuroncluster, better known as a layer, keeps track of all the
neurons in its layer using a vector of the class Neurons and a list of the ID’s of all the neurons
in the cluster.

Neuron The information used in the simulation is mostly saved inside the individual Neuron
class. Every individual neuron is written as a class that keeps track of the input neuron con-
nections and their weights, its own threshold and its spiking potential function over the entire
simulation time.

3.1.2. Event Handler
The event handler is an independent class that has a queue full of the class spike events, as
seen in figure 3.1. These events hold the information of what neuron fires and at what instant.
The event handler will go through the entire queue one by one and either handle the event if
the delay is zero or reduce the delay by one and put it back at the back of the queue. If an
event causes a neuron to spike a new event is added into a different queue with the current
time and the neuron that spiked, once the queue is empty the new queue is loaded in. This
process continues until both queues are empty.

Figure 3.1: Both event Queues

3.1.3. Event Reader
There are two spike event readers, one to read out events from a binary format and one to
read out events from a Python Numpy format. The binary event reader reads the binary data
from a dataset and converts them to events to be added to the event queue. The events are
encoded as 30 bits each as follows:

3.1. Components 19

• X-data 5 bits;

• Y-data 5 bits;

• polarization 1 bits;

• time data 14 bits.

Both the positional data points are encoded with five bits each. This allows for a maximum
xy-plane of 32 by 32. The time data is stored in 14 bits, this allows for a total of 16384 pos-
sible time data points. These exact amount of bits are picked to minimize the file size of the
datasets. To extend the maximum xy-plane the reader has to be adjusted to fit the larger sized
events.

The Numpy file format uses the same principle as the binary format, but unlike the binary
format the data of one event is not stored in 30 bits total but each data part is stored in its
own array index handled by a build in header file. This change removes the limited amount of
xy-plane positions and is the preferred reader.

3.1.4. File Reader
SNNSim has two different kind of file readers. The two file readers are: The Python format file
reader, and the text format file reader.

Python File Reader The first file reader is in the numpy library format for Python. The first
bites are used to describe the format of the network in a header:

• Total amount of bits in header;

• incoming XY dimension;

• incoming Polarities;

• Layer 0 characteristics;

• Layer 1 characteristics.

As each layer of the layers have different kind of characteristics, the different types of layers
are saved differently in the file. Every layer is described with five bits. The final bit always
denotes the type of layer, where a one means the pooling layer, a two means the convolution
layer and a three means the fully connected layer. The functionality of the other four bits are
determined by the type of the layer. A full description of the layers is shown in the list below:

• Fully Connected Layer:
�[Neurons in layer, Previous Layer Mask Polarity, window X-axis, window Y-axis, 3];

• Convolution Layer:
�[Output Polarities, Previous Layer Mask Polarity, Window X-Axis, Window Y-Axis, 2];

• Pooling Layer:
�[1, 1, window X-Axis, window Y-Axis, 1].

For the fully connected layer the first bit describes the total amount of neurons in the layer,
the second bit the amount of polarities, the amount of masks, the previous layer has, the third
and the fourth bit describe the window size of the layer. For the convolution layer the only
difference is in the first bit, where it now describes the outgoing amount of polarities. The final

20 3. SNN Simulator

layer type is the pooling layer. The first two bits are always one and the third and fourth bit
again describe the window size of layer.

This is then followed by the weights for each layer. The Fully connected layer describes
each connection between every neuron. The Pooling layer only describes one weight for the
entire layer, as it’s always the same weight. The Convolution Layer holds the weights of the
convolution window for every incoming polarity to every outgoing polarity. As an example, a
Convolution layer with a convolution window of 5𝑥5 with two incoming polarities and 16 out-
going polarities will have a total of 5 ∗ 5 ∗ 2 ∗ 16 = 800 weights saved. Lastly the Pooling layer,
as the pooling layer is simply a summation layer of all the neurons inside the pool only one
weight is saved for the entire pooling layer, a weight equal to the threshold of the neurons.

Text File Reader The second File reader is in an ASCII text file format, this file reader allows
the user more insight into the network and is only used for small networks. Each file has three
components: The Mode, The Clusters and the Neurons. The Mode declares the format of
the file, where 𝑀𝑜𝑑𝑒 ∶ {1} means a fully declared network with all its neurons and clusters
and 𝑀𝑜𝑑𝑒 ∶ {2} means a random network. In a random network, the Cluster component is
declared as follows 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ∶ {{𝑊𝑖𝑑𝑡ℎ, 𝐿𝑒𝑛𝑔𝑡ℎ}, 𝐺𝑎𝑚𝑚𝑎𝑐𝑦𝑐𝑙𝑒}. The Width x Length describe
the dimensions of the lattice. It then connects all Neurons from one Cluster to all neurons
from the next Cluster. In a fully declared network the Cluster component works differently.
In this case, the Cluster dimensions do not need to be declared, since the fully declared net-
work also uses the neuron component. The neuron component works as follows: 𝑁𝑒𝑢𝑟𝑜𝑛 ∶
{{𝑁𝑒𝑢𝑟𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟,𝑊𝑒𝑖𝑔ℎ𝑡}, {𝑁𝑒𝑢𝑟𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟, 𝑤𝑒𝑖𝑔ℎ𝑡}, ..., 𝐷𝑒𝑙𝑎𝑦, 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}Where the part
of {𝑁𝑒𝑢𝑟𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟,𝑊𝑒𝑖𝑔ℎ𝑡} declares its outgoing connections with their respective weights.
The Delay is the intrinsic delay in the neuron, and the threshold sets the threshold required to
fire the Neuron.

3.1.5. Randomness
To simulate real life scenarios SNNSim needs to be able to add a random amount of noise to
each connection. SNNSim has three possible ways of introducing randomness.

The first randomness function achieves this by slightly adjusting the weight of a connection
within a desired range. To use the function you both declare the layer you want to add ran-
domness to, the one sided amount of randomness you want to add and the percentage of
connections you want to give this bias to.

The second function that introduces randomness is a function that instructs a layer to add
a specified amount of random delay to each spike event created in said layer. The first inputs
specifies the layer you want to introduce the delay to, the second input is the one sided amount
of random delay and the third input is the chance an event has a delay.

The final way SNNSim introduces randomness is by adjusting the strength of a spike the
neuron creates. This adjustment affects the outgoing potential of all connections.

3.1.6. Dropout
The dropout function is capable of deleting a number of randomly selected connections be-
tween neurons. In the function you declare both the amount of connections to be deleted and
the layer in which these connections have to be deleted.

3.2. Observability and control 21

3.2. Observability and control

To improve the ability to view and adjust the hidden layers of SNNSim, multiple helper func-
tions are written to extract important information from SNNSim and adjust the connectivity of
the neurons.

The helper functions to improve the observability are: the function PrintNeuronList and the
function PrintNeuronListOutput 3.2.1, the function PrintNeuronInformation 3.2.2, the function
PrintClusterInformation 3.2.3, the function PrintQueuetoFile 3.2.4, the function PrintNeuron-
VoltagetoFile 3.2.5.

The functions to adjust the connectivity and mapping of the hidden layers are: the function
AddConnection and RemoveConnection 3.2.6, the function RemoveNeuron 3.2.7, the func-
tion UpdateThreshold 3.2.8 and the function UpdateWeight 3.2.9.

3.2.1. PrintNeuronList

The function PrintNeuronList is used to get the outgoing connections of a neuron. A similar
function PrintNeuronListOutput is a function that returns the information of all neurons that
have an output to the requested neuron.

3.2.2. PrintNeuronInformation

The function PrintNeuronInformation has multiple possible inputs. You can either enter in the
neuron number you want information on or both the layer of the neuron and the neuron’s index
in said layer. Image 3.2 shows the important information of the neuron 34,816. On top the
neurons index of 34,816 is presented. Below the neurons index the threshold of the neuron
is displayed. On the third row the amount of inputs the neuron has is shown. The fourth row
tells the user if the neuron has spiked during the simulation. The fifth row shows a detailed
list of all the incoming neuron connections with their neuron index, their weight and whether
or not the incoming neuron has activated. The extracted information can further be used to
fine tune a neural network.

22 3. SNN Simulator

Figure 3.2: Console output from the function Printneuroninformation

3.2.3. PrintClusterInformation
PrintClusterInformation is another such function, as seen in image 3.3 this function prints the
requested cluster information to the console. With the first line returning the requested neuron
cluster, the second line the amount of neurons inside the requested neuron and the last line
the lowest or first index or neuron number inside the cluster. This information can be helpful
during fine tuning and pruning neurons with the dropout function.

Figure 3.3: Console output from the function PrintClusterInformation

3.2.4. PrintQueuetoFile
The event queue of the last layer is automatically saved into a text file for further analysis.
This file contains the neuron number of the spike and the time at which the spike happens. It
is also possible to manually call 𝑃𝑟𝑖𝑛𝑡𝑄𝑢𝑒𝑢𝑒𝑡𝑜𝐹𝑖𝑙𝑒, to manually write all events to a file, or
𝑃𝑟𝑖𝑛𝑡𝑄𝑢𝑒𝑢𝑒 to get the current queue information.

3.2.5. PrintNeuronVoltagetoFile
The function 𝑃𝑟𝑖𝑛𝑡𝑁𝑒𝑢𝑟𝑜𝑛𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑡𝑜𝐹𝑖𝑙𝑒 allows the user to print the potentials of all neurons
in a layer to a folder to make it easy to read out the post synaptic potential of every neuron.

3.2.6. AddConnection and RemoveConnection
The function AddConnection takes four inputs. The first input is the index of neuron A’s the
outgoing connection, the second input is the index neuron B’s the incoming connection, the
third input is the delay on the connection, currently always set to zero, and the final input the
weight of the connection. The function RemoveConnection takes two inputs. Neuron A the
outgoing connection and neuron B the incoming connection.

3.3. Summary 23

3.2.7. RemoveNeuron
The function RemoveNeuron has two possible inputs. The first input type is only the exact
index of the neuron that you want to delete, the second possibility is adding the layer number
and specifying the neurons number inside the layer.

3.2.8. UpdateThreshold
The function UpdateThreshold takes two inputs. The index of the neuron and the desired new
threshold of the neuron.

3.2.9. UpdateWeight
The function UpdateWeight takes in three inputs. The first and second input being both indexes
of neuron A and neuron B, and the third input being the desired new weight of the connection.

3.3. Summary
In this chapter the simulator SNNSim has been introduced. The key components of SNNSim
are introduced, with a focus on the added observability and control functions that set it apart
from other simulators.

4
Functional Validation

To validate that the basic functionality of SNNSim operates as intended, a few initial small scale
simulations are run. The first section 4.1 entails the first simulation that tests the connectivity
between neurons and the ability for neurons to spike. The second section 4.2 describes the
simulation that tests the effect different weights have on the ability for neurons to spike. In the
third section 4.3 a simulation is done to test the difference in arrival times. The fourth section
4.4 simulates the ability for SNNSim to have negative weights. The fifth section 4.5 tests the re-
fractory function of SNNSim. Lastly, the final section 4.6 summarizes the functional validation.

To provide more clarity and consistency during the simulations a matching colour coding pat-
tern is used for both the figures and the graphs. The layers and curves are coloured as fol-
lowed:

• The first layer is coloured cyan;

• The second layer is coloured orange;

• The third layer is coloured blue.

The line arrow between the neurons points to a connection between the two neurons. The
weights of the connections are listed on top of the arrow tipped lines, and the thresholds of
the neurons are listed underneath the neurons.

The spike response functions used in the simulations to test the functionality of SNNSim are
of the form 𝜖(𝑡) = 1.1 𝑡5𝑒

1− 𝑡5 . The refractory response used in the fifth simulation is of the form

𝑣(𝑡) = −𝑒1−
𝑡
5 . The formulas used are based on the formula used in the SLAYER [18] for both

the spike response function and the refractory function. The variables are adjusted to better
fit the graphs.

4.1. Connectivity
The first initial simulation is a simple test where the connectivity between the neurons is val-
idated. The neuron network setup in the first simulation as seen in figure 4.1 is as follows:
The zeroth neuron has a connection to the first neuron and the first neuron has a connection
to the final second neuron. All neurons in this setup have a threshold to trigger of 1.0 and all
connections between the neurons have a weight of 1.0.

25

26 4. Functional Validation

Figure 4.1: Three neurons connected to each other in a line

The graph 4.2 shows that SNNSim is capable of creating new spikes if the potential reaches
the threshold. The time step after the cyan line curve crosses the threshold of 1.0 the first
neuron, the orange line curve, starts spiking.

Figure 4.2: The Three potential spike response functions from the first simulation.

4.2. Weights and Thresholds
The second simulation tests the functionality of changing the weights and thresholds of SNNSim.
Figure 4.3 shows the neural network setup for the second simulation. The zeroth neuron, the
input neuron, has three outputs: The first, second and third neuron. Both the first and second
neuron have an outgoing connection with the fourth neuron. The third neuron has an outgoing
connection with the fifth neuron.

The simulation is split up in two parts the upper part with neuron zero, one, two and four,
and the second part with neuron zero, three and five. To test the functionality of different
weights, the weights of neurons are changed.

The zeroth neuron still has a weight of 1.0 with the input and a threshold of 1. The first neuron
has a weight of 1.25 with the first neuron and a threshold of 1.0, whereas the second neuron
kept its incoming weight of 1 and kept its threshold of 1.0. The fourth neuron has its input
connection to the second neuron lowered to 0.4 and its threshold is increased to 1.2.

The third neuron has its threshold lowered to 0.5 and the incoming connection weight from
neuron zero is also set to 0.5. The connection between neuron three and neuron five has its

4.2. Weights and Thresholds 27

weight lowered to 0.4 and the threshold of neuron five remains unchanged.

Figure 4.3: The six neurons used in the second simulation

The graph 4.4 shows three subplots from the first part of the second simulation. The
first subplot contains the zeroth neuron, the second subplot contains the orange line curve
of neuron one and the olive line curve of neuron two, the final subplot contains the light blue
line curve coming from neuron two, the navy blue line curve coming from neuron one and the
combined blue line curve.

Figure 4.4: Three subplots for the first part of the second simulation

There are two observations to be made from this part of the simulation, namely a higher
weight of an incoming connection causes earlier spikes and two combined inputs can over-
come an increased weight. The orange curve has a higher peak because of the increased
weight compared to the olive curve, because of this it spikes a time step earlier. This causes

28 4. Functional Validation

the light blue curve to rise one time step earlier compared to the navy blue curve. The in-
creased threshold of neuron four would have caused the neuron not to spike with only the
dark blue line curve, but because neuron four is also connected to neuron two it still fires.

The second graph 4.5 shows the potentials for the lower half of the neural network. The
third neuron barely spikes thanks to its lowered threshold despite the low incoming weight.
Finally the fifth neuron does not spike as the weight of the connection with neuron three is too
low to reach the threshold.

Figure 4.5: Three subplots for the second part of the second simulation

The second simulation validates the functionality of changing the weights and threshold of
the neurons in a simulation. On top of that it also shows the effect these changes have on a
neurons spike function.

4.3. Spike Arrival Times

In the third simulation, the effect of different spike times is evaluated. The setup as shown in
figure 4.6 is as follows: Neuron zero has a single output to neuron three. Neuron one has two
outputs to both neuron three and neuron four. Neuron two has a single output to neuron four.
All neurons have a threshold and weight of 1.0. The three input neurons receive their input
at different time periods. Neuron zero receives its input spike at time step five, neuron one at
time step zero and neuron two at time step 10.

4.3. Spike Arrival Times 29

Figure 4.6: Topography of the third simulation testing different input times

As seen in graph 4.7 the first subplot shows the three different times of arrival for the
incoming spikes. the blue coloured line curve is neuron zero, the cyan line curve is neuron
one, the light blue line curve is of neuron two. The second subplot shows the individual and the
combined input spike response functions of neuron three. The orange line curve shows the
spike response curve coming from spike of neuron one, the olive line curve shows the spike
response curve from neuron zero. The gold curve is the combined line curve of both inputs.
The third subplot shows the line curves of the incoming signals for neuron four. The navy blue
curve is like the orange curve in subplot two the incoming signal from neuron one. The light
blue line curve is the spike response from neuron two. The blue curve is the combined line
curve of both inputs.

Figure 4.7: Three subplots of the Spike Response functions for the third simulation

As neuron three has its incoming spikes at time step four and six it is able to reach the
threshold and create a spike. Neuron four, however, shows clearly that because the incoming

30 4. Functional Validation

spikes are at time step four and nine the spike at time step four has decayed too much to
still reach the threshold. The third simulation has shown that SNNSim is capable of having
different timed input events and how this affects the simulation.

4.4. Negative Weights

The weights of the connections in SNNSim are not absolute values. This means that a con-
nection between neurons can be an inhibitory, a negative, connection, reducing the value of
the spike potential function. To ensure this functionality works in SNNSim the fourth simulation
is designed. The layout of the fourth simulation is shown in figure 4.8.

There are two input neurons, neuron zero and neuron one. These neurons both have an
output connection to neuron two. The weight of the connection between neuron zero and
neuron two is 1.0, the weight of the connection between neuron one and neuron two is low-
ered to -0.7. The input spike time differs between neuron zero and neuron one, the zeroth
neuron receives an input spike at time step zero and the first neuron receives its input spike
at time step two.

Figure 4.8: Topography of the fourth simulation testing negative weights

The graph 4.9 shows the inhibitory effect a negative weight connection has on a neurons
spike response. The yellow line curve shows the spike response function of the zeroth neuron
spike. The olive curve shows the negatively weighted response function of the first neuron.
The orange curve shows the combined spike response of both connections. The yellow line
curve crosses the threshold and the second neuron would have spiked if the inhibitory olive
curve was not present. If the spike event of neuron one arrived two time steps later the in-
hibitory effect of the olive curve would have arrived too late and the orange curve would have
still reached the threshold.

4.5. Refractory Function 31

Figure 4.9: Two subplots showing the line curves of the spike responses of simulation four

The fourth simulation shows a more intricate view of what an inhibitory connection can
achieve. Not only is the negative weight important to inhibit a spike, but also the time of the
inhibitory spike is important.

4.5. Refractory Function
The fifth and final simulation is about the refractory response of a neuron. When a neuron
spikes it increases its threshold to spike again by an additive amount equal to the refractory
response of the neuron. To test this functionality a new neural network is designed with the
layout as shown in figure 4.10. The mapping of the neurons is the same as in the first sim-
ulation. The weight the connection between neuron one and neuron two is changed from a
weight of 1.0 to a weight of 2.0.

Figure 4.10: Topography of the fifth simulation testing the refractory function

In graph 4.11 the spike responses of the fifth simulation are shown. The first subplot shows
the input spike response for neuron zero. The second subplot shows the spike response for
neuron one, with the increased threshold of neuron two caused by the refractory function. The
third subplot shows the spike response for neuron two with the multiple incoming spikes from
neuron one.

32 4. Functional Validation

Figure 4.11: Three subplots detailing the line curves of the spike responses used in simulation five

The simulation has shown that having an incoming potential above the threshold for a
prolonged time, as is shown in subplot two, causes the inhibitory effect of the neuron wanes
off and enables the neuron to fire again. These effects are even clearer in subplot three where
the three spikes incoming from neuron one are visible.

4.6. Summary
In this chapter we validated the basic functionality of SNNSim by first validating the connectivity
between multiple neurons. Secondly, the ability to change the weight of connections and
threshold of neurons were validated. Thirdly, the capability of the simulator to have different
timed events was validated. Afterwards, we validated the functionality of inhibitory connections
by giving connections a negative weight. Lastly, the refractory function of neurons in SNNSim
was validated. These validations have shown that SNNSim has working basic functionalities.

5
Validation

To validate the accuracy of SNNSim two validations were made. Both validations were done
by comparing SNNSim with the results from the SLAYER simulator[18]. The first validation
5.1 is done by using the example network given in SLAYER, this network uses the MNIST
dataset of handwritten digits [11]. The second validation 5.2 is done using a Network build for
the DVSGesture dataset of Gestures [7] also in SLAYER. In the final section 5.3 a conclusion
is drawn from both validations.

Both Validations use the same spike response 𝜖(𝑡) together with the same as refractory re-
sponse 𝑣(𝑡) used in the SLAYER simulator.

𝜖(𝑡) = 𝑡
𝜏𝑠
𝑒1−

𝑡
𝜏𝑠

𝑣(𝑡) = −2𝜗𝑒1−
1
𝜏𝑟

5.1. Slayernetwork - Multilayer perception
In this section the first validation is described. The first part of this section 5.1.1 introduces the
method of validation. The second part of the section 5.1.2 analyzes and summarizes the first
validation of SNNSim.

5.1.1. Validation Details
For the validation, the network was trained with SLAYER and the trained network was after-
wards exported to the developed simulator. The MNIST dataset uses images of the size 34
by 34 with two polarities. The network only uses two fully connected layers. The first fully
connected layer of 512 neurons is connected to the 2312 input neurons. The second fully
connected and output layer is connected to the previous first fully connected layer. For the
validation, the first test set is used, namely: 60001.𝑏𝑠2. The Mean Square Error (MSE) be-
tween SLAYER and SNNSim is used validate SNNSim. The formula used to calculate the
MSE is as follows:

1
𝑛

𝑛

∑
𝑛=1
(𝑇𝑟𝑢𝑒𝐺𝑟𝑎𝑝ℎ − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐺𝑟𝑎𝑝ℎ)2

. As the Mean Square Error heavily depends on peak values of both graphs, the graphs are
first normalized to the highest or lowest point in the SLAYERs graph, depending on whether
the highest peak is negative or positive. Afterwards, the normalized MSE is calculated.

33

34 5. Validation

The potential curve of the first Neuron in layer one is seen in graph 5.1. The figure shows
a near match between SNNSim’s red curve and the desired SLAYER blue curve.

Figure 5.1: The first Neuron in the first layer of the first validation

The normalized MSE of the first neuron is 6.2 ∗ 10−5 and the average MSE of the entire
first layer is 8.7∗10−5. The first layer received has a total of 3323 spike events from the dataset.

In graph 5.2 the eighth neuron of the output layer is shown. As shown in the graph, the
red curve of SNNSim closely follows blue SLAYER curve.

Figure 5.2: The eight Neuron in the second layer of the first validation

5.2. Slayernetwork - DVSGesture 35

The eight neuron has an MSE of 1.1 ∗ 10−3 and the average MSE of the entire second
layer is 6.61 ∗ 10−5. The output layer received a total of 875 incoming spike events from the
first layer.

5.1.2. Validation Analysis
The table shown in 5.1 has all the calculated MSE of every layer combined in one table. The
first column describes the layer, the second column describes the average normalized MSE of
that layer, the third and fourth column detail the extremes of the layers, with both the highest
MSE and the lowest MSE.

Table 5.1: Mean square errors of the first validation

Layer Average MSE Highest MSE Lowest MSE Total Events
1 8.7 ∗ 10−5 4.36 ∗ 10−4 3.81 ∗ 10−5 3323
2 6.61 ∗ 10−4 1.92 ∗ 10−3 1.56 ∗ 10−4 875

The average MSE of both layers are low enough to conclude that the functionality of
SNNSim and the SLAYER SNN implementation are identical. The validation however only
consists of two relatively small layers, as is evident from the low amount of spikes both incom-
ing from the dataset and between the two layers. With this in mind another more expansive
validation has to be done to ensure the increasing, all be it small, MSE is kept at a minimum.

5.2. Slayernetwork - DVSGesture
In this section the second validation is discussed. The first part of this section 5.2.1 introduces
the method of validation. The second part of the section 5.2.2 analyzes and sumarizes the
first validation.

5.2.1. Validation Details
The Dynamic Vision Sensor (DVS) Gesture data set is a dataset that includes different kind
of gestures. In line with the previous Dataset, the dataset consists of neuromorphic data. The
second validation was done with a more extensive network trained in SLAYER. This network
uses pool, convolution and fully connected layers. To accommodate for this change, the file
reader was extended to be able to also interpret pool and convolution layers.

Compared to the first validation, the new neural network and dataset both contain more neu-
rons, connections and events. When validating SNNSim, this brings multiple complications,
both in complexity and in speed. To partly address this problem the sample time is reduced
by a factor of 10, this reduction in sample time means that every event that happens between
simulation time 15 and 24 will now be set to simulation time 2. These adjustments are both
done in SNNSim and in the Slayer script as to not affect the resulting network. The precision of
the trained network is heavily reduced by this adjustment, but for the sake of the validation this
is not important, since the goal of for SNNSim is to match the network generated in SLAYER,
not to have a good result per se.

To simplify the validation the simulation is segmented. Firstly, the entire Data set is read
in, and the first layer processes these events. Instead of putting the newly generated events
from the first layer into the next queue, they are instead saved into a Numpy file. Once the val-
idation of the first layer is complete, the events from the validated first layer’s Numpy files are

36 5. Validation

read in instead of the dataset events. After validating the second layer, the events are once
again saved. This process is continued until every layer is validated individually. Afterwards
a final full validation is run and the data points from this validation are used.

The network layout used in the second validation consists of the following layers in order
is as follows:

• A 32 by 32 pooling layer with 2 polarities;

• A 32 by 32 convolution layer with 16 polarities;

• A 16 by 16 pooling layer with 16 polarities;

• A 16 by 16 convolution layer with 32 polarities;

• An 8 by 8 pooling layer with 32 polarities;

• A fully connected layer with 512 neurons;

• A fully connected layer with 11 neurons.

The dataset events are of the dimension 128 by 128 with two polarities, these neurons are
then connected to the first summation pooling layer with a window of four. The first convolu-
tion layer has a convolution window of five by five with enough zero padding as to not reduce
the xy-plane dimension. The second pooling layer reduces the xy-plane by a factor of two
with a window size of two. The second and final convolution layer has a convolution window
of three by three again with enough zero padding, increasing the polarities from 16 to 32. The
final pooling layer then reduces the xy-plane by a factor two again to eight by eight. The first
fully connected layer connects the entire 3rd pooling layer to its 512 neurons. The second
fully connected and the last layer in the neural network has all 11 neurons connected to all
512 neurons from the previous layer and is used as the output of the neural network. To keep
the graphs consistent with each other the red line curve is always from SNNSim and the blue
line curve is always from the SLAYER SNN.

The first layer shows a near perfect match between the SLAYER output and SNNSim’s out-
put, as you can see in graph 5.3. The figure shows the Synaptic Potential of both the neuron
generated by SLAYER, the turquoise curve and SNNSim, the red curve. The first layer had a
total of 148,149 incoming spike events from the Dataset.

The normalized MSE of the Neuron shown in 5.3 is 2.79 ∗ 10−6. The average Normalized
MSE of the first layer 2.36 ∗ 10−4.

5.2. Slayernetwork - DVSGesture 37

Figure 5.3: The seventh Neuron in the first layer of the second validation

For validating the second layer, the first convolution layer, the seventh neuron is shown
in graph 5.4. In this graph the turquoise curve is from SLAYER and the red curve is from
SNNSim. The second layer had a total of 208,040 incoming spike events from the first layer.
This can be explained by the previous layer being a pooling layer that combined four inputs,
creating more time spent above the threshold. The Normalized MSE of the seventh neuron is
7.01 ∗ 10−4. The average normalized MSE of the entire second layer is 2.35 ∗ 10−3.

Figure 5.4: The seventh Neuron in the second layer of the second validation

In graph 5.5 the seventh neuron of the third layer, or the second pooling layer, is shown.
The red curve follows SNNSim and the turquoise curve follows SLAYER. The third layer had
a total amount of incoming events of 3,400,796. This sharp increase in events can easily be

38 5. Validation

explained by the fact that the incoming layer is a convolution layer that increased the masks
from two to sixteen. The Normalized MSE of the seventh neuron is 3.02 ∗ 10−3. The average
MSE of the entire third layer is 4.97 ∗ 10−3.

Figure 5.5: The seventh Neuron in the third layer of the second validation

As most neurons in the fourth layer did not have any spikes, the 141st neuron is shown in
graph 5.6 instead. The graph shows the spike potential of SNNSim in red and the potential of
SLAYER in turquoise. The fourth layer has a reduced amount of incoming events compared
to the previous layer, with 1,286,310 spikes. The Normalized MSE of the 141st neuron is
9.32 ∗ 10−3. The average MSE of the entire fourth layer is 6.37 ∗ 10−3.

Figure 5.6: The 141th Neuron in the fourth layer of the second validation

5.2. Slayernetwork - DVSGesture 39

In the fifth layer, the third pooling layer, the 141st neuron is again shown in graph 5.7. The
spike potential of SNNSim is shown in the graph as red. As the layers are compacting down
in size the amount of incoming events are also reduced. The fifth layer had a total of 863,515
incoming spike events. The spike potential of SLAYER is in turquoise. The Normalized MSE
of the 141st neuron is 2.02 ∗ 10−2. The average MSE of the entire fifth layer is 9.11 ∗ 10−3.

Figure 5.7: The 141th Neuron in the fifth layer of the second validation

With the sixth layer, the first fully connected layer, the 141th neuron is once again picked
and shown in graph 5.8. As the amount of neurons is diminishing the amount of incoming
is also lowered, the total amount of incoming spike events in the sixth layer is 372,314. The
potential of SLAYER is shown in the graph as turquoise and the potential of SNNSim is shown
in red. The Normalized MSE is 1.36 ∗ 10−3. The average MSE of the entire sixth layer is
2.33 ∗ 10−3.

40 5. Validation

Figure 5.8: The 141th Neuron in the sixth layer of the second validation

In the seventh layer, the final fully connected layer and output layer, the second neuron is
shown in graph 5.9. The final graph has the potential of SNNSim in red and of SLAYER in
turquoise. The final layer had a total amount of 108,570 incoming events. The Normalized
MSE of the second neuron is 5.09 ∗ 10−3. The average MSE of the entire output layer is
1.03 ∗ 10−2.

Figure 5.9: The second Neuron in the seventh layer of the second validation

5.2.2. Validation Analysis
The table shown in 5.2 has all MSE combined in one table, with the last column detailing the
total amount of spike events that occurred during each layer. The average MSE for each layer
is below or at 1%. The high outliers are caused by a few neurons having a low spike count

5.3. Validation Conclusion 41

in combination with normalizing every graph, which has the downside of having single spike
differences stand out more in low spike numbers compared to high spike count.

Table 5.2: Mean square errors of the second validation

Layer Average MSE Highest MSE Lowest MSE Total Events
1 0.0002 0.0462 0.0000 148149
2 0.00219 0.1064 0.0000 208040
3 0.00497 0.5933 0.0000 3400796
4 0.0009 0.2091 0.0000 1286310
5 0.0091 1.1046 0.0000 863515
6 0.0023 0.0636 0.0000 372314
7 0.0103 0.0244 0.0030 108570

The average MSE of each layer changes significantly between the first and last layer. As
expected the MSE slowly increases between layers as small differences accumulate between
layers. The table however also shows that some layers have the effect of lowering the average
MSE back down. These layers are the second convolution layer and the first fully connected
layer. The high average MSE of the fifth layer can be explained by the high outliers present in
the layer. If the outliers are removed the average MSE falls more inline with the surrounding
layers. The drop in average MSE between the third layer and the fourth layer is also explain-
able. Most of the neurons in the fourth layer did not fire a single time during the simulation.
This both explains why the average MSE is this low and the relatively high maximum MSE.
When a neuron spikes in SNNSim but not in SLAYER or vice versa the MSE is high.

5.3. Validation Conclusion
Both Validations show that the MSE of SNNSim compared to the SLAYER SNN is on average
small enough to consider the functionality of SNNSim and the SLAYER SNN near identical.
However it also shows that SNNSim starts to diverge from the SLAYER SNN the more layers
are added. With this in mind, further improvements have to be made to say with certainty that
SNNSim is reliable for simulator larger neural networks.

6
Conclusion

This chapter concludes the thesis with a summary on its achievements, a conclusion is given
and highlights possible future works to SNNSim. Section 6.1 provides a summary of all the
chapters in the thesis and gives a conclusion to the thesis. Section 6.2 presents possible
future works for SNNSim.

6.1. Summary
Chapter 1 introduced the ascent of artificial intelligence to the front page of information technol-
ogy and how neural networks play a role within this field. The chapter discussed the increased
reliance on image recognition in the fields of self driving cars and surveillance. This focus was
mostly laid on the specific neural network type of SNN, with the objective to increase the ob-
servability of the spiking response functions.

Chapter 2 of the thesis provided an introduction to the concept of neural networks and in-
troduces the inner workings of a neural network. The chapter started with background infor-
mation on neural networks, which was followed up by the inner workings of an ANN and how
an SNN spike function changes the neural network. Finally two neural network libraries were
discussed and compared, Pytorch and Tensorflow.

Chapter 3 introduced SNNSim with its components and functionalities. The components of
SNNSim are: The simulator classes, the event handler, the event reader, the file reader, the
file writer and the dropout function. To improve the observability of SNNSim the ability to view
the internal mapping is added. On top of that the control of the SNNSim is improved by adding
multiple functions that allow the editing of layers outside of the standardized frameworks.

Chapter 4 details the functional validation done on SNNSim to validate the basic functionalities
of SNNSim. The simulations that were tested on SNNSim are as follows: The connectivity of
the neurons and the ability to spike. The ability for SNNSim to work with different weights and
thresholds. The effect different input arrival times have on a neurons. The inhibitory effect
negative weights have on a neuron. The refractory function and what it does to the threshold
of a neuron.

Chapter 5 Validated SNNSim by comparing the functionality of a trained network on the devel-
oped simulator and on the SLAYER SNN. The first small validation was done using a dataset
that contains handwritten letters. The second more expansive validation was done using

43

44 6. Conclusion

a dataset that contains hand gestures. Finally a conclusion was made on the validation of
SNNSim.

In summary, the thesis has explored the rapid advancement of spiking neural networks. It then
presented a potential solution to the standardization caused by this fast-paced growth, by im-
proving the observability and controlability of the hidden layers. We introduced SNNSim, which
has been thoroughly tested and validated. Although the validation results indicate SNNSim
has amaximum averageMSE of less than 2%, further development of SNNSim has to be done
to ensure it remains within acceptable ranges of state-of-the-art SNNs in terms of accuracy,
when more complex simulations are performed.

6.2. Future Works
There are couple of possibilities left to improve SNNSim. The discussed possibilities are:
Adding possible flags to the observability functions, Implementing an internal graphical display,
Implementing multithreading and finally introducing the ability to save changed networks.

Flags Currently, the function PrintneuronInformation returns the information of the neuron
with exact indexes of the neuron. To improve the readability of this function an improvement
would be adding a possible flag to the function, which allows the function to either return the
exact indexes of the neuron or the layer the neurons are situated in and their number inside
the layer.

Graphs As of right now the only way to get a graph from the Neuron potential is exporting
the potential to a Numpy file and importing it to python where Math Plot is able to make a
graph. A Wrapper library that does this in C++ would be a great improvement for the goal of
this project.

Multi Threading SNNSim currently handles events one by one as of right now. Since the
events queue handled events layer by layer, the handling of the events one by one is not
necessary as there is no conflict between inputs and outputs between those layers. Therefore,
the events could easily be divided up between the available threads, provided by the CPU, to
heavily speed up the program.

Saving Changed Networks Currently, the networks can only be saved in a text file for-
mat, Although this is advantageous for small size networks to see the inner workings and a
great way to learn to understand neural networks, for larger networks this is both unreadable
and therefore no longer convenient, On top of that, loading a network saved in text format
is incredibly slow compared to a binary format saved network. A great improvement would
therefore be a network saved entirely binary. Compared to the input file, this file cannot have
the same structure. If for instance connections are removed by using the dropout function the
file structure is no longer the same as the input. The moment you drop out a connection in
the convolution layer, the saved format of only saving the weights of a window is no longer
feasible. One option would be to see every layer as a fully connected layer, where the neurons
that don’t have a connection get a weight of 0, this would however greatly increase the file size
of the network.

Bibliography

[1] URL: https://www.polarismarketresearch.com/industry- analysis/
autonomous-vehicle-market.

[2] URL: https://www.grandviewresearch.com/industry-analysis/trade-
surveillance-market.

[3] URL: https://www.bouvet.no/bouvet-deler/understanding-convolutional-
neural-networks-part-2.

[4] URL: https://www.oreilly.com/library/view/tensorflow-for-deep/
9781491980446/ch04.html.

[5] URL: https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.
pdf.

[6] Martín Abadi et al. TensorFlow: A system for large-scale machine learning. 2016. arXiv:
1605.08695 [cs.DC]. URL: https://arxiv.org/abs/1605.08695.

[7] Arnon Amir et al. “A Low Power, Fully Event-Based Gesture Recognition System”. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017,
pp. 7388–7397. DOI: 10.1109/CVPR.2017.781.

[8] Keshav Bimbraw. “Autonomous Cars: Past, Present and Future - A Review of the De-
velopments in the Last Century, the Present Scenario and the Expected Future of Au-
tonomous Vehicle Technology”. In: ICINCO 2015 - 12th International Conference on
Informatics in Control, Automation and Robotics, Proceedings 1 (Jan. 2015), pp. 191–
198. DOI: 10.5220/0005540501910198.

[9] Oktavia Catsaros. URL: https://www.bloomberg.com/company/press/generative-
ai-to-become-a-1-3-trillion-market-by-2032-research-finds/.

[10] Ben Kröse et al. “An introduction to neural networks”. In: J Comput Sci 48 (Jan. 1993).
[11] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The mnist database. 1994.

URL: https://yann.lecun.com/exdb/mnist/.
[12] M. Minsky and S. Papert. Perceptrons; an Introduction to Computational Geometry. MIT

Press. ISBN: 9780262630221.
[13] Gordon E. Moore. “Cramming More Components onto Integrated Circuits”. In: Electron-

ics (1965).
[14] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. 2019. arXiv: 1912.01703 [cs.LG]. URL: https://arxiv.org/abs/
1912.01703.

[15] F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton Project Para.
Report: Cornell Aeronautical Laboratory. Cornell Aeronautical Laboratory, 1957. URL:
https://websites.umass.edu/brain-wars/files/2016/03/rosenblatt-
1957.pdf.

[16] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning representa-
tions by back-propagating errors”. In: Nature 323 (1986), pp. 533–536. URL: https:
//api.semanticscholar.org/CorpusID:205001834.

45

https://www.polarismarketresearch.com/industry-analysis/autonomous-vehicle-market
https://www.polarismarketresearch.com/industry-analysis/autonomous-vehicle-market
https://www.grandviewresearch.com/industry-analysis/trade-surveillance-market
https://www.grandviewresearch.com/industry-analysis/trade-surveillance-market
https://www.bouvet.no/bouvet-deler/understanding-convolutional-neural-networks-part-2
https://www.bouvet.no/bouvet-deler/understanding-convolutional-neural-networks-part-2
https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html
https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://arxiv.org/abs/1605.08695
https://arxiv.org/abs/1605.08695
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.5220/0005540501910198
https://www.bloomberg.com/company/press/generative-ai-to-become-a-1-3-trillion-market-by-2032-research-finds/
https://www.bloomberg.com/company/press/generative-ai-to-become-a-1-3-trillion-market-by-2032-research-finds/
https://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://websites.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://websites.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834

46 Bibliography

[17] A. L. Samuel. “Some Studies in Machine Learning Using the Game of Checkers”. In:
IBM Journal of Research and Development 3.3 (1959), pp. 210–229. DOI: 10.1147/
rd.33.0210.

[18] Sumit Bam Shrestha and Garrick Orchard. “SLAYER: Spike Layer Error Reassignment
in Time”. In: Advances in Neural Information Processing Systems 31. Ed. by S. Bengio et
al. Curran Associates, Inc., 2018, pp. 1419–1428. URL: http://papers.nips.cc/
paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf.

[19] A.M. TURING. “I.—COMPUTINGMACHINERYAND INTELLIGENCE”. In:Mind LIX.236
(Oct. 1950), pp. 433–460. ISSN: 0026-4423. DOI: 10.1093/mind/LIX.236.433.
eprint: https://academic.oup.com/mind/article-pdf/LIX/236/433/
30123314/lix-236-433.pdf. URL: https://doi.org/10.1093/mind/LIX.
236.433.

[20] Jun Wang et al. “Safety of Autonomous Vehicles”. In: Journal of Advanced Transporta-
tion 2020 (Oct. 2020), pp. 1–13. DOI: 10.1155/2020/8867757.

https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1147/rd.33.0210
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
https://doi.org/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1155/2020/8867757

	Introduction
	Motivation
	Contribution
	Thesis Organization

	Introduction to Neural Networks and Simulators
	Background
	Neural Networks
	Components
	Types of layers
	Training

	Spiking Neural Networks
	Spike Response

	Simulators
	Pytorch
	TensorFlow
	Comparison

	SNN Simulator
	Components
	Simulator
	Event Handler
	Event Reader
	File Reader
	Randomness
	Dropout

	Observability and control
	PrintNeuronList
	PrintNeuronInformation
	PrintClusterInformation
	PrintQueuetoFile
	PrintNeuronVoltagetoFile
	AddConnection and RemoveConnection
	RemoveNeuron
	UpdateThreshold
	UpdateWeight

	Summary

	Functional Validation
	Connectivity
	Weights and Thresholds
	Spike Arrival Times
	Negative Weights
	Refractory Function
	Summary

	Validation
	Slayernetwork - Multilayer perception
	Validation Details
	Validation Analysis

	Slayernetwork - DVSGesture
	Validation Details
	Validation Analysis

	Validation Conclusion

	Conclusion
	Summary
	Future Works

