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A B S T R A C T

Inspired by recent innovations in the retail industry, we study an on-demand personal shopper
service that lets customers shop online for products from brick and mortar stores. A fleet of
personal shoppers fulfills customer orders, performing both shopping at the stores and delivery
to the customers. The operation of such a service requires to dynamically offer service to
incoming shopping and delivery requests, coordinate a fleet of shoppers, schedule shopping
operations at stores, and execute deliveries to customers on time. This paper studies this new
problem and proposes three different order-consolidation strategies for service operators. Our
numerical results show that order consolidation, particularly shopping consolidation, can signif-
icantly increase the number of served orders by better using the available shopper capacity. We
observe that splitting orders can further enhance the performance of the system. The results also
suggest that personal shopper services increase time utilization and execute shopping activities
using significantly less human resources than customers shopping for themselves.

1. Introduction

Online retailers continuously seek faster delivery services to satisfy the customers’ need for instant gratification. Online shopping
services such as Amazon Prime Now offer delivery within one or two-hour deadlines in selected US cities. Moreover, we see the
rise of online platforms that allow customers to receive expedited deliveries from local brick and mortar stores. These platforms
aggregate the assortment of different affiliated stores to provide a convenient ‘one-stop shopping’ experience.

These services are increasingly popular in the delivery of groceries and convenience goods, since they integrate the comfort of
online shopping with product assortment at brick and mortar stores. The Coronavirus pandemic has boosted the demand for online
grocery delivery services due to lock-downs and customers’ safety concerns of shopping at the physical stores. For example, online
grocery sales in the US in August 2020 increased by 400% as compared to the previous year (Bishop, 2020). It is expected that
many of the new customers that moved online during the pandemic will continue to shop online after the pandemic (Gunday et al.,
2020).

A lot of the growth in online grocery was captured by personal shopper services (Nesin, 2020). The reason for this is that
traditional warehouse-based online grocery retailers could not quickly ramp up their fulfillment capacity (e.g., warehouse space) to
handle the demand surge. As the asset-light personal shopper services pick directly from existing stores, their fulfillment capacity
is more flexible, e.g., Instacart hired 300,000 new drivers in March 2020. Consequently, these platforms saw spectacular growth
rates. Grocery delivery platform Instacart is now operating in all major cities in the US and Canada and its valuation has more than
doubled in 2020 to 17.7 billion USD. Cornershop (The Americas), GrabMarkt (South East Asia), Getir (Europe), and Meutian (China)
are other examples of this online grocery model that have seen strong growth.
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Most personal shopper services offer on-demand delivery within a specific delivery deadline, e.g., 120 min. To guarantee timely
delivery, an automated dispatcher dynamically offers service to incoming customer requests and assigns orders (i.e., accepted
requests) to personal shoppers. The fulfillment of an order involves shopping at specific stores and delivery to the customers’ location.
These operations are similar to those in meal delivery. However, in personal shopper operations there is typically more time and
route flexibility as compared to the delivery of fresh meals. Another difference is that the personal shopper may have to visit multiple
retail stores to serve a single customer.

In this paper, we introduce the Personal Shopper Problem (PSP), which models an online shopping service dynamically receiving
and serving on-demand shopping and delivery requests. All orders must be assigned to shoppers and be fully served before a known
delivery deadline. The objective of the PSP is to maximize the number of requests served subject to a fixed shopper capacity.

To simplify planning, personal shopper service providers may operate a sequential delivery strategy, in which each shopper
serves a single customer order at a time. However, it may be possible to reduce shopping and travel by combining the service of
multiple customer orders in one trip. These time reductions could add more service capacity, especially if the different orders share
the same shopping locations, or if delivery locations are close. Unfortunately, a delivery service with tight delivery deadlines offers
limited order consolidation opportunities. Therefore, we explore different operational strategies for personal shopper services. In
particular, we study the benefits of splitting a customer order that involves shopping at multiple stores into separate tasks that are
served by different shoppers. Also, we study the additional consolidation opportunities that arise from splitting customer orders.

Our main contributions are summarized as follows. (i) We are the first to study a new service model in which personal shoppers
shop for lists of goods at local stores for delivery to the customer. It differs from other same-day delivery systems, since it vertically
integrates product fulfillment (shopping) and order distribution activities in one person. This integration enables a fast response
service without intermediate order transfers. (ii) We introduce the Personal Shopper Problem model and present a rolling horizon
framework that dynamically solves a snapshot version of the problem. Moreover, we present three operational strategies, each
involving a different setting of order consolidation and service splitting. (iii) We assess our solution approach and the performance
of different operational strategies with a set of computational experiments across different instance settings. We observe that the
number of served orders increases as order consolidation and service splitting strategies are implemented. (iv) Finally, we also
numerically study the effectiveness of the personal shopper service model compared to a setting in which customers travel to the
stores and shop for themselves; i.e., a ‘Do it Yourself’ (DIY) benchmark.

The remainder of this paper is organized as follows. Section 2 provides a review of the related literature. We present the
problem setting, a decision framework and operational strategies in Section 3. Section 4 presents solution methods for the snapshot
optimization problem. Section 5 outlines the results of our computational study. Finally, Section 6 provides conclusions and future
research opportunities.

2. Literature review

Conceptually, the Personal Shopper Problem (PSP) is related to the vast family of Pick-up and Delivery Problems (PDP), that
involve designing cost-efficient routes to serve a set of transport requests, each with a specific origin and destination (Savelsbergh
and Sol, 1995). The PSP extends the PDP, as one single transportation request may require pickups at multiple locations. Moreover,
while the ‘pickup time’ is often negligible as compared to the travel time in the PDP, it is significant for the PSP and concave
increasing on the number of simultaneous pickups per store visit. Also, the PSP vertically integrates the shopping and delivery
activities into the same mobile resource (the shopper) and involves planning an operation having two order consolidation levels:
pickup at stores and routing.

An important feature of the personal shopper service is that shopping and delivery requests continuously come in over time
in parallel to the execution of the delivery operation. This links it to the growing body of literature on dynamic vehicle routing
problems (Pillac et al., 2013; Ulmer et al., 2020). Recently, work on dynamic routing problems has focused on same-day and on-
demand delivery services, e.g., (Arslan et al., 2019; Arslan, 2019; Klapp et al., 2018a,b, 2020; Voccia et al., 2019; Ulmer et al.,
2018). Also, it has to dynamically adapt delivery plans to newly revealed requests considering that the system may benefit from
consolidation opportunities with pending visits. For example, assigning an order with pickup and delivery locations close to already
committed visits may only lead to a marginal increase in route duration.

Similar consolidation problems have also been studied in the context of order picking operations in warehouses (De Koster et al.,
2007; Van Gils et al., 2018). Here, this is often referred to as ‘order batching’ (Henn et al., 2012; Yu and De Koster, 2009). The
main difference is that while order pickers have fixed start and end points and move around in simple and structured warehouse
lay-outs, the personal shopper has to navigate between different stores and customer locations. This means that the underlying
routing problems are more challenging in our personal shopper context.

The concept of ‘zone picking’ (Jane and Laih, 2005) for warehouse order pickers is also related to the PSP. In zone picking, each
picker is responsible for a dedicated picking zone, while each order may be associated to multiple zones and split between multiple
pickers. The PSP has some similarities with zone picking and may be seen as a dynamic version in which zones are assigned in real
time.

If the service of orders can be split into two or more partial deliveries, the personal shopper operation also shares some features
of the Split Delivery Vehicle Routing Problem in which it is allowed to split the service of each customer into multiple visits (Archetti
and Speranza, 2008) and the Vehicle Routing Problem with Divisible Deliveries and Pickups (Nagy et al., 2015) in which customers
receive and send goods and pickups and deliveries can be performed by different vehicles. Archetti et al. (2008) shows in a setting
2

with vehicle capacity restrictions, that it is possible to reduce vehicle miles by visiting the same customer with multiple vehicles. For
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the Vehicle Routing Problem with Divisible Deliveries and Pickups, Jargalsaikhan et al. (2021) show that multiple visits to the same
customer can be advantageous even if vehicle capacity is not binding. Similar benefits arise in the context of Pickup and Delivery
problems (Nowak et al., 2008, 2009).

While these vehicle routing variants focus on obtaining ‘routing’ benefits from allowing split deliveries, our work is the first
to integrate routing decisions into an order pickup model that also exploits time savings when consolidating pickups of multiple
requests per location. This feature gives rise to economies of scale in pickup operations and brings out new trade-offs in terms of
which activities to split and which ones to combine that have not been explored in the extend literature.

As the PSP considers a service in which customer requests require products to be picked at multiple locations, it is related to the
multi-pickup and delivery problem (MPDP), see Naccache et al. (2018) and Aziez et al. (2020). Conceptually, this also relates the PSP
to the sequential ordering problem (SOP), that aims to find a minimum weight Hamiltonian path, subject to precedence relationships
among the nodes (Escudero, 1988; Guerriero and Mancini, 2003). The PSP also has some similarities with on-demand meal delivery
routing problems (MD) (Reyes et al., 2018; Steever et al., 2019; Ulmer et al., 2021; Yildiz and Savelsbergh, 2019). However, to
ensure warm and fresh food upon arrival, meal delivery operations dictate very short in-transit times. The difference in the objective
severally limits the length of the delivery routes and thus consolidation opportunities. From a methodological perspective, the tight
delivery deadlines result in simpler routing and dispatching decisions as compared to the personal shopper context. Steever et al.
(2019) consider a dynamic meal delivery problem with potential splitting of requests from multiple restaurants. Different from our
paper, they focus on a setting with soft time windows without in-store shopping related to the request pickups. Their experiments
suggest that splitting is not that beneficial in their specific setting.

Fig. 1 structures the most closely related literature across several dimensions, i.e., (i) dynamic versus static requests and (ii)
the number and characteristics of the pickup operations. Compared to dynamic (same-day) pickup and delivery problems, the
PSP involves multiple pickups per request. In contrast to the multi-pickup and delivery problems, the PSP considers a setting with
dynamic requests and pickup time-saving opportunities by consolidating the pickup of multiple tasks per store. In addition, it allows
for a single order to be served by multiple shoppers.

3. Personal shopper problem

In this section, we present the personal shopper problem and represent it as a Markov Decision Process model. Moreover, we
discuss a rolling horizon framework to compute dynamic policies.

3.1. Problem description

A personal shopper service offers an online platform where customers can shop for products at a set of local stores 𝑀 . A set
of customer requests 𝑅 ∶= {1,… , 𝑛𝑅} arrive during an operating period of 𝑇 time units. Request 𝑟 ∈ 𝑅 arrives at time 𝑒𝑟 ∈ (0, 𝑇 )
nd consists of a set 𝑂𝑟 of shopping tasks to be executed at one or more stores and delivered to a customer location 𝑁𝑟 before time
𝑟 ∶= 𝑒𝑟 + 𝐿. Deadline 𝐿 is the maximum ‘click-to-door’ time.

When a customer request arrives, the platform immediately decides whether to offer service or not and if so to accept the
orresponding order. If 𝑟 is offered service, then each task 𝑜 ∈ 𝑂𝑟 must be purchased at a specific store 𝑚𝑜 ∈ 𝑀 and dropped off at
𝑟 before 𝑙𝑟. The service area is defined by a directed graph  = ( ,), where  = {𝑁0 ⋯ , 𝑁𝑛} ∪𝑀 and  represent the set of

ll customer locations and arcs, respectively. Also, we assume a known travel time function 𝑡𝑎 for each 𝑎 ∈ 𝐴.
The personal shopper service coordinates a set 𝐾 = {1,… , 𝑛𝐾} of personal shoppers, who are assumed to be homogeneous delivery

mployees. Each shopper 𝑘 ∈ 𝐾 executes shopping and delivery tasks as instructed by the platform in real time, carries at most 𝑄
3

asks at a time and starts and ends each shift at a base store 𝑚 ∈ 𝑀 .
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Fig. 2. Example of a personal shopper service instance.

The shopping operations at the store involve picking goods from the store shelves and paying for them at the checkout. The
time it takes shoppers to perform these tasks depends on different factors, such as store size and layout, the number of products
per order, time spent in parking and waiting for the check-out. To simplify notation, we assume that the total shopping time at the
store is solely determined by the number of tasks. There will likely be economies of scale when a shopper can shop multiple tasks
of different customer orders in one single store visit. To represent these task consolidation economies at stores, we expect that the
total time spent in a store visit to be increasing and concave as a function of the number of tasks.

The shopper service dynamically assigns complete orders or separate tasks to shoppers. An order is said to be ‘split’ if it is
associated with multiple tasks that are assigned to multiple shoppers. Based on the order assignment decisions, the shopper service
maintains a delivery plan defining the trips of the shoppers, i.e., the sequence of store and customer visits, arrival and departure
imes to and from those visiting locations.

Splitting orders into tasks served by different shoppers, can have several benefits. It may help to increase the time and capacity
tilization, which is particularly relevant when shoppers have limited capacity and tight delivery deadlines. We refer to this as
he packing benefit. Fig. 2 illustrates an example in which a customer request 𝑟 demands delivery from two stores 𝑚1 and 𝑚2. Two
hoppers are located at 𝑘1 and 𝑘2. Travel and shopping times are displayed above the arcs and store nodes, respectively. Suppose that
ervice must occur within six time units. An on-time service is infeasible when one shopper must serve the order alone. However,
f the order is split into two separate store-tasks, then both shoppers can deliver to the customer by 𝑡 = 6.

When splitting is allowed, the platform also has a larger set of feasible routing options, i.e., the routing benefit . The example in
ig. 2 shows routing time reductions as a single shopper must travel at least 11 time units to serve 𝑟, while two shoppers spend 10
ime units. Also, one could save shopping time if multiple tasks originating from a common store are assigned to a single shopper,
hich we call shopping consolidation benefit.

In this work, we assume that the shopper service aims to maximize the total number of orders served at the end of the operating
eriod assuming a fixed fleet of shoppers and provided that it will immediately offer service to any customer request as long as it
inds a feasible option of adapting the current route plan to include.

.2. Markov decision process model

In this section, we formulate the PSP as a sequential decision making problem. We adapt the route-based Markov Decision
roblem terminology introduced by Ulmer et al. (2020) to a pure online problem setting without a priori knowledge of future
ustomer request information. In the following, we define the model components:
Decision epochs. A decision epoch occurs at the arrival of request 𝑟 ∈ 𝑅 at time 𝑒𝑟.
System states. The system state 𝑆𝑒𝑟 at each decision epoch 𝑒𝑟 is defined by a delivery plan 𝛬𝑒𝑟 = {𝜆1,… , 𝜆𝑛𝐾 } detailing the

elivery routes to serve all orders including the planned arrival and departure times at the different locations, and which tasks will
e shopped at the store locations. At each decision epoch 𝑒𝑟, a shopper 𝑘 ∈ 𝐾, is either positioned at a store (shopping) or customer
ocation (delivery) in 𝑗 ∈  or, alternatively, traveling between locations. We assume that shoppers cannot deviate from their route
fter they have started moving towards the next service location. In particular, shoppers are only available to receive updates to
heir planned trip after completing the activity that they started, i.e., shopping at a store or delivery at a customer. The moment
rom which a shopper’s plan can be modified is specified within the system state as 𝑒𝑘𝑟 ≥ 𝑒𝑟; it represents the earliest time after 𝑒𝑟
hat shopper 𝑘 is available at the corresponding location.

We consider all tasks that are not yet completed by decision epoch 𝑒𝑟 as active tasks. That is, we can ignore all tasks that are
lready completed or that are part of a rejected request. An active task is committed to shopper 𝑘, if this shopper will complete the
hopping activity for this task before 𝑒𝑘𝑟 .
Actions and rewards. An action is an update of the delivery plan that tries to feasibly serve all active orders and new request 𝑟.

his update can (re)assign uncommitted active tasks across shoppers and (re)sequence all active tasks within shopper trips as long
4

s it feasibly serves all active orders.
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Fig. 3. Rolling horizon framework.

If such a new plan exists, then it updates the delivery plan into 𝑆𝑥
𝑒𝑟

(i.e., a post-decision plan); otherwise, service is not offered
to request 𝑟, and the delivery plan remains unaltered; i.e., 𝑆𝑥

𝑒𝑟
∶= 𝑆𝑒𝑟 . Let 𝑆

𝑒𝑟
be the action space at the decision epoch 𝑒𝑟 and state

𝑆. 𝑆
𝑒𝑟

is defined by all feasible delivery plan updates.
As long as 𝑆

𝑒𝑟
≠ ∅, the platform can receive a unit reward 𝐼𝑒𝑟 defined as

𝐼𝑒𝑟 (𝑥) =

{

1, if 𝑥 ∈ 𝑆
𝑒𝑟

0, o/w

Transitions. After action 𝑥 is taken at time 𝑒𝑟, the system jumps to the next decision time at time 𝑒𝑟+1. The post-decision delivery
plan 𝑆𝑥

𝑟 will transition to state 𝑆𝑟+1; i.e., all previously executed shopping and delivery tasks are removed from the delivery plan.
Also, each shopper earliest available time is updated to 𝑒𝑘𝑟+1 according to the new decision time 𝑒𝑟+1.

Objective. The objective of the personal shopper platform is to maximize the total number of requests served

max
∑

𝑟∈𝑅
(𝐼𝑒𝑟 (𝑥(𝑆𝑒𝑟 ))). (1)

3.3. Rolling horizon framework

Due to the large state and action space of the PSP, enumerating all solutions is computationally prohibitive. Also, an optimal
solution to the PSP may not exist in the deterministic sense due to the online nature of the problem. Therefore, we propose a rolling
horizon framework that solves a deterministic routing problem each time a new customer request becomes available. Such a model,
may be understood as a snapshot solution approach that reacts to the new information disclosed at a decision point. This approach
is commonly used in the literature to model similar dynamic delivery operations, see Arslan et al. (2019), Srour et al. (2018).

Fig. 3 presents the outline of our rolling horizon framework. At each decision epoch 𝑒𝑟 the rolling horizon framework carries the
system’s state 𝑆𝑒𝑟 , which tracks the set of active tasks and the current delivery plan 𝛬𝑒𝑟 . When a new request 𝑟 arrives, the delivery
plan 𝛬 is revised and updated to include the shopping and delivery tasks within 𝑟. To perform this update, we solve a static Shopper
Routing Problem (SRP) to identify a feasible delivery plan covering both newly disclosed and active tasks; i.e., the SRP acts as task
assignment and shopper routing module.

As our overall objective is to maximize the number of served customer orders, the routing subproblem basically serves as a
feasibility check. However, to also steer towards ‘efficient’ solutions, we choose to minimize the total time required to serve all
orders in the SRP subproblem. This helps increasing shopper utilization and thus contributes to a higher service level. We discuss
the details of the operational strategies and the SRP in Section 4.

Furthermore, the platform dynamically decides if idle shoppers must be relocated calling an Idling module after the SRP is solved.
In the idling module, we assume that each shopper 𝑘 leaves a location as soon as possible if there exists subsequent visits scheduled
in trip 𝜆𝑘. Otherwise, the platform employs a nearest store strategy, i.e., relocates the shopper to the closest store. In preliminary
experiments, we also tested different shopper waiting strategies, but none of them produced time savings. It seems that waiting
strategies in this setting are not required. Probably, because the platform can always update a plan, even if a shopper is en-route.
The resulting delivery plan is executed and time is advanced to the next decision epoch.
5
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Fig. 4. Activity Representation: A shopper does shopping for Order 1 and Order 2 at the same store. Shopping and delivery activities are represented by
unique vertexes in below.

4. Shopper routing problem

In this section, we present the Shopper Routing Problem (SRP), which is called as a subroutine within the Personal Shopper Problem
to update the delivery plan. We formulate the SRP as a set partition problem and present exact and heuristic solution approaches.
Here, we consider the most flexible operational strategy, i.e., ‘Consolidation & Split (𝐶&𝑆)’. This allows to split orders into different
tore tasks that can be served by different shoppers in parallel. In Section 4.4, we present some simpler benchmark strategies.

.1. Problem formulation: Shopper routing problem

The SRP is defined over an activity graph 𝐺(𝑆𝑒𝑟 ) = (𝑉 ,𝐸) depending on the system state 𝑆𝑒𝑟 . The set of nodes 𝑉 includes all
ctive shopping and delivery activities for active tasks by time 𝑒𝑟 including the new tasks of request 𝑟, denoted by set 𝐵𝑒𝑟 . The set

represents the edges between nodes.
A customer order can consist of different tasks, where each task requires a shopping activity at a store node and a delivery

ctivity at its customer node. As the same location may be visited multiple times, we define an activity graph in which each node
epresents a store or customer delivery activity associated with a certain task. An example of an activity graph is presented in Fig. 4,
nd the formal definition of the activity representation and arc cost (𝑐𝑖𝑗) is given in Appendix.

In the activity graph, shopper 𝑘 trip is modeled as a sequence of activities (represented by a unique node) 𝜆𝑘 = {𝑣𝑘, 𝑣1, 𝑣2,… , 𝑣ℎ}
tarting from the current shopper location 𝑣𝑘. A shopper trip is feasible if it meets shopper carrying capacity and satisfies the delivery
eadlines of associated task. The total time required for all activities in trip 𝜆 is denoted by 𝑐𝜆.

Let 𝛬(𝑘) be the set of all feasible trips for shopper 𝑘 and 𝛬′(𝑜) be the set of shopper trips in which task 𝑜 ∈ 𝐵𝑒𝑟 is served.
urthermore, let binary decision variable 𝑤𝜆 take value 1 if 𝜆 is chosen. Then, the set partitioning formulation for the SRP is
ritten as follows:

min 𝑧𝑆𝑅𝑃 =
∑

𝑘∈𝐾

∑

𝜆∈𝛬(𝑘)
𝑐𝜆𝑤𝜆 (2)

s.t.
∑

𝑘∈𝑘

∑

𝜆∈𝛬′(𝑜)∩𝛬(𝑘)
𝑤𝜆 = 1, ∀𝑜 ∈ 𝐵𝑒𝑟 (3)

∑

𝜆∈𝛬(𝑘)
𝑤𝜆 ≤ 1, ∀𝑘 ∈ 𝐾 (4)

𝑤𝜆 ∈ {0, 1}, ∀𝑘 ∈ 𝐾,∀𝜆 ∈ 𝛬(𝑘).

The objective function (2) minimizes the total trip time required to fulfill all active tasks. Constraints (3) ensure that each task
s served by a shopper trip, and constraints (4) guarantee that each shopper is assigned to at most one trip. The chosen operating
trategy will determine the set of feasible trips 𝛬(𝑘).

.2. Exact approach: A smart enumeration

This section describes an exact solution approach for the Shopper Routing Problem capable of solving small instances.. In
articular, we enumerate all feasible and promising shopper trips at each decision epoch. To do so, we create all activity-to-shopper
artitions and subsequently determine minimum duration trip sequences for each shopper. Let 𝑝 = {𝑃1,… , 𝑃𝑛𝐾 } be a partition of
he set of nodes (activities) in 𝑉 in the auxiliary graph 𝐺(𝑆𝑒𝑟 ), where 𝑃𝑘 ⊂ 𝑉 is the set of tasks assigned to shopper 𝑘. Let P be the
ollection of all feasible partitions. The partition 𝑝 is feasible if and only if there exist a feasible trip for each shopper 𝑘 ∈ 𝐾 covering
ll nodes in 𝑃𝑘. For each shopper 𝑘, we solve a Hamiltonian path problem with Precedence Constraints and Deadlines to identify a
rip 𝜆𝑘 serving all nodes in 𝑃𝑘.So, the set of optimal trips for all shoppers in partition 𝑝, if exists, corresponds to an optimal delivery
6

lan for partition 𝑝.
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To identify which partition 𝑝 minimizes the total service time, we explore all partitions sequentially, but prune some unattractive
artitions a priori via bounding rules similar to a Branch and Bound tree search. At any moment, we store the best partition found
nd its objective value as an upper-bound to the optimal value, i.e., an incumbent solution. If the partial cost of a subset of already
ptimized shopper trips within partition 𝑝 already exceeds the incumbent solution cost, then we discard the partition and jump to
he next one. The approach terminates when all partitions are checked.

Each Hamiltonian path problem is solved by a forward labeling algorithm, similar to the one proposed by Tilk and Irnich (2016).
n this method, partial shopper trips are constructed and recursively extended via a resource extension function.

Let 𝑦𝑖 be a partial trip from a source node; e.g., shopper’s 𝑘 current location at 𝑒𝑘𝑟 , to a node 𝑖 ∈ 𝑃𝑘 with label (𝑌 , 𝑣, 𝑖), where
⊂ 𝑃𝑘 is the ordered subset of visited nodes in the partial trip, 𝑣 is the trip’s duration and 𝑖 is the last node in 𝑦𝑖. The initial

abel for shopper 𝑘 is (𝑌 = {𝜔𝑘}, 0, 𝜔𝑘), where 𝜔𝑘 is shopper 𝑘 starting location. A label extends to node 𝑗 ∈ 𝑃𝑘 and produces a
ew label (𝑌 ∪ {𝑗}, 𝑣 + 𝑐𝑖𝑗 , 𝑗). An extended (partial) trip can be infeasible, feasible but dominated, or non-dominated. We only keep
on-dominated partial trips.

Algorithm 1 describes the forward labeling algorithm for shopper 𝑘 over tasks 𝑃𝑘. Let 𝑙 be a collection of partial trips with
= |𝑌 | − 1 arcs. Subroutine 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘() evaluates whether or not an extension of the partial path to node 𝑗 meets delivery
eadlines and the capacity limit of the shopper. It is feasible to extend a partial trip if it is possible to reach node 𝑗 before its
eadline. Routine 𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐶ℎ𝑒𝑐𝑘() checks if the total duration of the partial plan for Partition 𝑃𝑘 exceeds the incumbent’s solution,

and if so, stops the algorithm and prunes the partition.

Algorithm 1 Forward labeling algorithm
1: Set 0 = {𝑌 = {𝜔𝑘}, 0, 𝜔𝑘}
2: for 𝑙 = 1⋯ |𝑃𝑘| − 2 do
3: for 𝑦 ∈ 𝑙 with label ((𝑌 , 𝑣, 𝑖)) do
4: for 𝑗 ∈ 𝑃𝑘, 𝑗 ∉ 𝑌 do 𝑣′ ← 𝑣 + 𝑐𝑖𝑗
5: if 𝐹𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘(𝑣′) then
6: if 𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝐶ℎ𝑒𝑐𝑘(𝑣′) then
7: Add 𝑦𝑗 to 𝑙+1 with label (𝑌 ∪ {𝑗}, 𝑣′, 𝑗)
8: end if
9: end if

10: end for
11: end for
12: 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝑅𝑢𝑙𝑒(𝑙+1),
13: end for
14: Find a path y with label (𝑃𝑘, 𝑣, ⋅) such that 𝑐 is minimal.

We eliminate partial trips according to the following dominance rule:

efinition 1. Let 𝑦 and 𝑦′ be two partial trips for the same shopper with labels (𝑌 , 𝑣, 𝑖) and (𝑌 ′, 𝑣′, 𝑖). Partial trip 𝑦 dominates 𝑦′ if
′ ⊂ 𝑌 and 𝑣 < 𝑣′.

We can further improve the performance of the forward label algorithm. Recall that as a result of activity graph 𝐺(𝑆𝑒𝑟 ), a
hopper may consecutively visit multiple nodes associated to the same physical location; such a structure leads to multiple node
artial sequences representing the same output. We exploit this fact in Observation 1 to reduce the search space.

bservation 1. Let 𝜆 = {𝑖−0 , 𝑖
+
1 , 𝑌 , 𝑖

−
1 ,…} and 𝜆′ = {𝑖−0 , 𝑖

+
1 , 𝑌

′, 𝑖−1 ,…} be trips such that both contain the same node sequences except
artial sub-sequences 𝑌 and 𝑌 ′. Also, let 𝑌 and 𝑌 ′ be two different permutations of a given set of nodes in 𝐺(𝑆𝑒𝑟 ) representing activities
within the same location. Then, 𝜆 and 𝜆′ have the same trip duration.

Observation 1 allows us to eliminate redundant partial paths by forcing a lexicographical order for nodes corresponding to the
ame location without loss of generality.

.3. Heuristic approach: ALNS

For larger instances, it is impossible or time-consuming to optimally solve the SRP. Therefore, we propose a fast solution approach
hat consists of the following steps: (i) Generate multiple initial feasible solutions and (ii) Improve each initial solution by adaptive
arge neighborhood search (ALNS). From the set of final solutions, we select the solution that minimizes our objective value.

To generate an initial solution, we use a randomized variant of cheapest insertion. That is, we sequentially insert the activities
orresponding to the different tasks at the best position of the shopper route plan. At each step, we randomly insert a task from a
et of potential candidates with low insertion costs. More precisely, the candidate set consists of tasks with an insertion cost not
xceeding 𝑐𝑚𝑖𝑛 + 𝜏 ⋅ (𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛), where 𝑐𝑚𝑎𝑥 and 𝑐𝑚𝑖𝑛 are the maximum and minimum insertion costs, respectively.

Each initial solution is later improved by an adaptive large neighborhood search. The neighborhoods are defined by the following
destroy and repair operators.
7
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Fig. 5. Layout of the service region in our experiments.

Destroy operators. For a given number of 𝑛𝑎𝑠 uncommitted tasks and 𝑛𝑎𝑟 orders in the incumbent solution, the following five
operators removes activity nodes according to criteria that defines. We set a noise rate 𝜂 ∈ [0, 1] that controls the amount of tasks
and orders will be removed from the solution at each iteration; i.e., 𝑞𝑠 = 𝜂 ⋅ 𝑛𝑎𝑠 tasks or 𝑞𝑟 = 𝜂 ⋅ 𝑛𝑎𝑟 orders.

• Random task removal. Randomly remove the activity nodes of 𝑞𝑠 uncommitted tasks.
• Random order removal. Randomly remove the activity nodes of 𝑞𝑟 orders.
• Most time-consuming task removal. Remove the activity nodes of 𝑞𝑠 most time-consuming tasks from the current solution. The

time-consumption of a task is defined as the time savings generated if the task is ejected from the trip.
• Most time-consuming order removal. Remove the activity nodes of 𝑞𝑟 most time-consuming orders.
• Shaw Removal. Randomly remove associated activities of a task 𝑜, and then also remove the 𝑞𝑠 − 1 closest tasks to 𝑠 in terms

of the euclidean distance.

Repair operators Removed tasks are sequentially inserted back into the delivery plan based on the following operators: (i)
heapest insertion: tasks are inserted from low to high insertion cost. (ii) Non-split insertion: All removed tasks from the same
rder are inserted into the trip of one shopper. (iii) Regret insertion. Tasks are inserted in decreasing order of regret, defined as the
ifference between the cheapest and the second cheapest insertion cost.

Within the ALNS framework, the incumbent solution is destroyed and repaired by a pair of above operators until the stopping
riteria is met. This is a common approach in the literature (Ropke and Pisinger, 2006; Pisinger and Ropke, 2010) After each ALNS
teration, we use local search to further improve the different shopper trips, i.e., by applying 2opt and 1-point moves.

The destroy and repair operators are selected according to their weights and a roulette wheel selection principle. The weights are
ontinuously updated based on their performance. That is, our procedure increases the weight of an operator after an iteration if
t finds (i) the overall best solution, or (ii) a solution that has not been visited before. A solution is accepted if it is better than the
ncumbent solution. Also, we set a 20 s time limit for the iterations to make our method suitable for our dynamic setting.

.4. Benchmark strategies

In this section, we discuss two simpler benchmark strategies to assess the relative benefits of our flexible 𝐶&𝑆 approach.

• One by one (1𝐵1): This strategy assumes that each shopper serves one customer order at a time, i.e., a shopper cannot start
shopping for a new order before delivering the previous one. It emulates the pick-by-order strategy in warehouse order picking
operations.

• Consolidation (𝐶): This strategy allows to consolidate multiple shopping tasks from different orders before delivering these in
each shopper trip. Nonetheless, all tasks of a single order must be served in one single delivery visit.

Both the exact approach and heuristic can be easily adapted to simpler operational strategies such as 𝐶 and 1𝐵1. These only
imit the set of feasible trips and partitions and therefore simplify the search space.

. Computational study

In this section, we present computational experiments to assess the quality of our solution approach and explore the potential
enefits of different operational strategies for the Personal Shopper Service. Next, we describe the experimental setting and instances
or the base-case experiments.
8
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Table 1
Base case parameters.
Number of arriving requests 100
Shopper speed 30 km/h
Fixed time per store visit 𝑓 9 min
Variable shopping time per task 𝑝 1 min
Lead-time 120 min
Shopper capacity 10 tasks
Fleet Size 8 Shoppers

Fig. 6. Heuristic performance 2 shoppers, L:120 min.

5.1. Experimental setup

For our experiments, we designed a set of instances inspired by the geographical location of grocery retailer stores in the
metropolitan area of Amsterdam (the Netherlands). Thai (2016) empirically observes that stores are concentrated towards the city
center. The distribution of stores like Amsterdam is very common in many urban areas around the world (Roig-Tierno et al., 2013;
Han et al., 2019). Thus, we define a circular service area with a 10 km radius and five stores: one in the center and four located at
equal intervals of an inner circle with a 5 km radius (see Fig. 5). The customers are uniformly spread throughout the service region.

The base case experiment considers instances with 100 customer requests that arrive over a ten hour service period. We consider
exponential request inter-arrival times and, thus, realizations are uniformly distributed within the service period.

Each accepted request results in an order that requires to be shopped at one or more store locations. In particular, we assume
the number of tasks per request to be uniformly distributed between 1 and 4. To simplify the interpretation of the results, we also
assume that a shopping task is standard in size and volume, and that each shopper can carry up to 𝑄 = 10 of them at the same time.
Shoppers are assumed to travel at a speed of 30 km/h.

At each store, we consider a shopping time 𝑐𝑚(𝑛) ∶= 𝑓 + 𝑝 ⋅ 𝑛, meaning that a store visit spends a fixed time of 𝑓 = 9 min and a
variable shopping time of 𝑝 = 1 minute per task. Table 1 summarizes all parameter values used in the base case experiment.

5.2. Heuristic solution quality

In this section, we evaluate the performance of our heuristic solution approach for the Shopper Routing Problem (SRP). In
particular, we apply our exact approach (Section 4.2) and our ALNS heuristic approach (Section 4.3) to multiple snapshot problems
for the most complex assignment and routing operating strategy: 𝐶&𝑆. We ran experiments for ten random streams of 25 requests
arrivals (63 tasks on average) and 33 requests arrivals (average of 83 tasks). The requests are randomly chosen from the base
instances as described in the previous section. Fig. 6 shows the number of accepted requests and time per order per SRP solution
method.

The results suggest that the ALNS heuristic performs well. That is, it leads to the same number of accepted orders as our exact
approach for the smaller instances (25) and only slightly less (i.e., 4%) for the larger instances (33). Preliminary experiments show
9
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Table 2
Average base case results, 100 requests, L: 120 min, 8 shoppers.

𝐷𝐼𝑌 1𝐵1 𝐶 𝐶&𝑆

Accepted requests 100.0 81.4 97.5 100.0
Time per order (min) 71.4 57.1 36.0 31.8
Shopping time per order (min) 25.2 21.7 13.2 8.9
Travel time per order (min) 46.3 35.4 22.8 22.9
Orders per shopper(#) NA 10.2 12.2 12.5
Click-to-door (min) 71.4 92.2 93.2 92.2
Orders split (%) NA NA NA 54.0
Delivery interval (min) NA NA NA 36.7

that simpler heuristics, i.e., cheapest insertion, perform worse than our ALNS approach. This suggests that good routing is indeed
important.

5.3. Base-case results

Table 2 presents the results for the proposed strategies averaged over 100 random streams of 100 request arrivals. The platform
as a fleet of eight shoppers. We report the following performance indicators: (i) Accepted requests: The number of requests that

are served. (ii)Time per order: total shopper time over the number of orders. We further break this value down into two: Shopping
time per order and Travel time per order. (iii) Orders per shopper : the number of orders over the available number of shoppers. (iv)
Click to door (CtD): the average time between an order’s arrival and the delivery of its latest task. (v) Delivery interval: the average
time between the earliest and latest delivery of a split order, measured as the sum of all time intervals divided by the total number
of split orders. (vi) Orders split : the percentage of split orders over all orders.

The results show that we can consistently serve more requests for a given fleet in the Consolidation (𝐶) and Consolidation and
Split (𝐶&𝑆) strategies as compared to the One by one (1𝐵1) strategy. While we can serve all request using the 𝐶&𝑆 strategy, we
can only serve 81.4% of the requests, on average, when using the simple 1𝐵1 strategy.

The main reason for this better performance is that consolidating shopper trips significantly decreases the time required to serve
n order. For strategy 𝐶, the time per order is 37% smaller than for 1𝐵1, due to savings in both shopping and travel time. Splitting
llows for additional time savings (11.6%) as it enables more consolidation opportunities by reducing task granularity and increasing
he packing benefits. Moreover, we also observe a smaller shopping time per order, which indicates shopping consolidation benefits.
onversely, there is a slight increase in travel time per order, i.e., from 22.8 to 22.9. This relates to the fact that some customers
re now visited by multiple shoppers.

We observe that the average click-to-door time is similar for the different operating strategies, i.e., between 92 and 93 min.
evertheless, for 𝐶&𝑆, we see that on average 54.0% of the orders are split and thus served by multiple shoppers. For these orders,

he average time between the first partial delivery and the final partial delivery, i.e., the delivery interval, is 36.7 min.
Besides our operational strategies described in Section 4.4, we generate a setting in which customers carry out shopping activities

y themselves, referred to as the Do-it-Yourself (DIY) benchmark. Here, we assume that each customer chooses the fastest route to
isit all stores that are part of the shopping request. Also, we assume that each customer leaves her home at the time when she
ould otherwise place a delivery request online.

The results show that personal shopper services can provide substantial savings as compared to the 𝐷𝐼𝑌 benchmark. Even for
he simple 1𝐵1 policy, we see savings of 20.0% and 23.6% in the total time and travel time spent, respectively. These savings
re possible as personal shoppers can efficiently link the start and end points of consecutive single customer trips. Note that this
fficiency gain only leads to slightly higher click-to-door times for 1𝐵1 as compared to 𝐷𝐼𝑌 , i.e., , 71.4 versus 92.2 min.

In the following, we evaluate the sensitivity of the three operating strategies: 1b1, C, 𝐶&𝑆 to a fleet size number varying between
and 19.

Fig. 7 shows the number of accepted requests for the different strategies averaged over 100 random streams of request arrivals.
he results show that both the Consolidation and Consolidation and Split strategies significantly outperform the One to one policy.
or example, with 7 shoppers and equipped with the C and C&S strategies we can already serve 94.4% and 99% of the requests,
espectively. Instead, only 75.3% is served via 1B1.

As we see from the previous experiments, each strategy requires a different number of shoppers to serve all requests. In the
emaining set of experiments, we are interested in comparing our strategies under similar service levels. So, we will use the smallest
leet size required to serve all customer requests for each instance and operating strategy.

To do so, we run the simulation of our dynamic system and increase the number of shoppers each time that we would have
o reject a request. For each instance, we keep track of the total number of required shoppers and report the average number of
equired shoppers for each strategy.
10
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Fig. 7. Accepted requests, 100 requests, L:120 min.

5.4. Impact of shopping economies of scale 𝛼

In this section, we study the impact of the relative weight of the fixed part of the shopping time on the performance of the different
proposed strategies. To do so, we set the fixed and variable shopping time parameters equal to 𝑓 = 10 ⋅ ℎ𝑎 and 𝑝 = 10 ⋅ (1 − ℎ𝑎),
respectively, and vary parameter ℎ𝑎 ∈ [0.5, 1]. A value of 𝛼 = 0.5 indicates that the fixed visit duration for a store visit is equivalent
to the pickup duration per task. This represents the case with the economies of scale is relatively minimum. Conversely, a value of
𝛼 = 1 represents a situation with the highest possible economies of scale, in which store shopping times are fixed and independent of
the number of tasks shopped at the store. Also, the total store shopping time per visit is independent of 𝛼 if no shopping consolidation
occurs.

Fig. 8 presents the performance for the different values of 𝛼 over all strategies. Fig. 8(a) reports that the average time per order
decreases with 𝛼 for strategies 𝐶 and 𝐶&𝑆. This is intuitive as the value of consolidating, in terms of economies of scale for shopping,
increase with 𝛼. As expected, 𝛼 does not affect the performance of the 1𝐵1 strategy as it does not allow consolidations.

Fig. 8(b) also shows that for strategies with consolidation (𝐶 and 𝐶&𝑆), the total travel time per order decreases with 𝛼 as each
hopper visits less stores. Furthermore, we see in terms of travel time 𝐶&𝑆 is less reactive to 𝛼, shopping consolidation than the
olicy 𝐶 is.

Both Figs. 8(a) and 8(b) present the major benefit of order splits in shopping time. With consolidation (𝐶 and 𝐶&𝑆), the average
hopping time per order decreases as 𝛼 increases. By simultaneously shopping multiple tasks in a store, it is possible to reduce the
hopping time per task; this reduction is higher when orders can be split.

Similarly, we observe in Fig. 8(c) that for strategies 𝐶, and 𝐶&𝑆 the required fleet size decreases with 𝛼. This is a consequence
f the decreasing time per order associated with the consolidation and split strategies. Fig. 8(d) shows that splitting increases with
. This is intuitive as the potential shopping benefits increase with 𝛼 which makes it more beneficial to split.

.5. Impact of the number of tasks per request

To study the impact of the number of tasks per request in isolation, we consider instances in which all requests have the same
umber of tasks. Recall that each task corresponds to a shopping activity at a specific store and its delivery. To allow for comparison,
e use the same stream of requests in each of the different scenarios, only varying the number of tasks per request.

Our results are summarized in Fig. 9. Fig. 9(a) shows the time per order for each strategy and a varying number of tasks per
rder. As expected, the time per order increases with the number of tasks. However, we observe that the increase is less steep for
trategies 𝐶 and 𝐶&𝑆 as compared to 𝐷𝐼𝑌 and 1𝐵1.

The reason for this is that these strategies allow shoppers to combine multiple tasks that are associated with a specific store.
&𝑆 has more opportunities to do this than 𝐶, which leads to additional benefits.

Fig. 9(b) presents the travel time per order for each strategy and a varying number of tasks per order. In line with the time per
rder, the travel time per order grows with the number of tasks. Here, we see not much difference between 𝐶 and 𝐶&𝑆, which
uggests that most benefits of splitting are in terms of shopping time.

Fig. 9(c) reports the average number of shoppers required to serve all orders throughout the day. As expected, the number of
hoppers increases with the number of tasks per request for all strategies. However, we observe that the increase is less pronounced
or the strategies with consolidation (𝐶 and 𝐶&𝑆) as compared to the simple 1𝐵1.

The box plots in Fig. 8(d) insights into the solutions for the 𝐶&𝑆 strategy as it shows that the number of orders with at least
ne split increases with the number of tasks per order. These results are intuitive as the number of splitting options increases with
11

he number of tasks. We see that the majority of the orders are split in the instances with four tasks.
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Fig. 8. Impact of shopping consolidation factor 𝛼, 100 orders, L: 120 min.

5.6. Impact of order split preferences

In practice, not all customers may accept split deliveries as it may be perceived as inconvenient. Therefore, the retailer may
allow customers to specify their delivery preferences. Amazon, for example, allows customers to specify their preferences to ‘receive
as few deliveries as possible’ or ‘I want my items sooner’.

In the next set of experiments, we study the impact of these preferences by generating instances in which we cannot split the
deliveries for all customers. To create these instances, we introduce parameter 𝜌 ∈ [0, 1] that representing the expected fraction of
customers that agrees to a split delivery. For example, 𝜌 = 0.2 means that the likelihood that any given customer will accept a split
is 20%. Or, in other words, that on average across instances 20% of the customers allow splits.

Fig. 10 reports the time per order and the required number of shoppers for different 𝜌 values. Note that 𝜌 = 0 corresponds to
the consolidation strategy without splitting and 𝜌 = 1 corresponds to the earlier 𝐶&𝑆 results without split restrictions. As expected,
the performance of the system decreases with 𝜌. That is, we see that we require more shoppers (and more time per order) to serve
all customers when some orders cannot be split. This performance impact appears to be proportional in 𝜌.

In Section 5.3, we saw that, on average, 54% of the orders were split in the base case in which all orders can be split. In this
experiment, we see that the number of required shoppers increases even when 60%–80% of the customers allows splitting. This
suggest that it is not just about the fraction of customer that allow splitting but also about which specific customer can be split.

5.7. Impact of lead-time, store and customer density

In this section, we study the impact of varying the customer densities, store densities and delivery lead-time. Instead of locating
all stores on a circle, in this set of experiments we explore uniformly distributing different numbers of stores across the service
region.

Fig. 11 presents the results for 5, 10 and 20 different stores. In particular, we present the time per order and the number of
number of shoppers for each operational strategies. We observe that the store density has little impact on the performance of the
𝐷𝐼𝑌 benchmark and the 1𝐵1 strategy. However, an increasing number of stores in the system (and store density) deteriorates
strategies with consolidation (𝐶 and 𝐶&𝑆). That is, Fig. 11a shows roughly a 10 min increase in the time per order for both
12

onsolidation strategies when comparing the 20 store setting to the 5 store stetting. Similarly, we see that the number of required
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Fig. 9. Impact of request size, 100 orders, 𝛼 ∶ 0.9, L: 120 min.

Fig. 10. Impact of delivery preferences 𝜌, 100 orders, L: 120 min.

hoppers increases in Fig. 11b. With more stores it is less likely to have two orders sharing the same store and thus less possibilities
o consolidate orders.

In the next set of experiments, we extend the lead-time from 120 min (base case) to 150 and 180 min. Fig. 12 reports average
ervice time per order and orders per shoppers throughout the service period. As expected, we observe that the performance of
trategies having consolidation options increases as lead-time increases. That is, the time per order decreases for strategies 𝐶 and
&𝑆 with a higher lead-time possibly because more time is available to consolidate shopping orders at stores and while routing.

nterestingly, a longer lead-time also benefits 1𝐵1, as stated in Fig. 12b. The reason for this is that we can better utilize the existing
hopper time over the day with a more flexible routing operation. In the same vein, we see that strategies 𝐶 and 𝐶&𝑆 benefit even
13
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Fig. 11. Impact of store numbers, 100 orders, L:120 min.

Fig. 12. Impact of lead-time, 100 orders, 10 stores.

ore in terms of orders per shopper from having more time flexibility. This is related to the additional packing and routing benefits
hat can be achieved.

Fig. 13 shows the performance for 100, 200 and 400 customer requests. We see that the performance in terms of the time per
rder and the number of required number of shoppers increase with the number of orders. A relatively larger number of requests
reates more consolidation opportunities. This means that the strategies with consolidation benefit more from the increased customer
ensity. While we only see minor benefits for 1𝐵1, strategies 𝐶 and 𝐶&𝑆 do significantly better. For example, doubling the number
f requests from 100 to 200 leads to only 1.7% less time per order for 1𝐵1 but 18.3% less time for 𝐶&𝑆. A similar pattern is observed
n the required number of shoppers. If no shopping consolidation is allowed, the growth rate of required fleet size is approximately
roportional to the number of requests. Nevertheless, the required fleet size grows relatively slower for strategies 𝐶 and 𝐶&𝑆. The
eason for this is that these strategies can exploit shopping benefits in addition to the packing and routing benefits.

. Concluding remarks

The paper focuses on the assignment and routing strategies for the personal shopper service that provides on-demand delivery
rom local brick and mortar stores. The service provider uses a fleet of shoppers to serve all customer requests while aiming at
aximizing customer service. We model the problem as a sequential decision problem and present a rolling horizon approach to

olve it. Particularly, we present and evaluate three operational strategies for the personal shopper service with varying levels of
rder consolidation and service splitting flexibility.

We have conducted an extensive computational study to compare the performance of the different operational strategies and
lso benchmark against a setting in which customers go to the store to shop themselves. Our results provide the following insights:
i) Personal shoppers can save time and resources over customers shopping by themselves, even when shoppers serve customers one
y one. (ii) Shopping and travel times per order are significantly further reduced by consolidating requests in shopper trips. (iii) It
s possible to further enhance the performance of the system by splitting requests that require shopping at multiple stores.

Numerically, the benefits of shopping consolidation significantly differ with the instance setting. These time savings increase as
14

function of the fixed shopping time, delivery lead-time and the number of requests over the day, and decrease with the number of
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Fig. 13. Impact of customer density, 10 stores, lead-time: 150 mins.

tores. These consolidation benefits are partially obtained by splitting requests, which is particularly important when fixed shopping
imes, number of tasks per request or delivery lead-times are relatively higher.

As this is one of the first papers that studies the personal shopper business model, there are many avenues for future research.
ne natural extension is to consider a setting in which we plan decisions considering probabilistic information on the placement,

ocation and size of future customer requests. Such information could help us to estimate the expected cost of present decisions
n future states of the PS service operation. It can be valuable knowledge when the volume of future request realizations per unit
f time changes significantly throughout the day with a considerable fraction of predictable stationary. This would be the case of
onsolidated PS services with well-known demand patterns.

Another interesting research avenue involves incorporating both splits and transfers between personal shoppers. This means
llowing transfers of shopped tasks between shoppers to consolidate delivery operations and enhance customer service while utilizing
he part of request split benefits. In addition, one could study the concept of multiple pickups and splits in the context of meal
elivery.
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ppendix. Activity graph representation

Fig. 14 illustrates the how we can derive an activity graph from a location-based graph with an example with one shopper,
wo stores and two orders. Order 1 consists of one task that involves shopping at store 𝑚 and delivering to customer 𝑑1. Request 2
onsists of two tasks, requiring shopping from store 𝑚 and 𝑚′ respectively and delivering to customer 𝑑2. The path displayed above
he line, physically represents a shopper trip visiting stores (rectangles) and customer locations (pentagon). Below the line, that
hopper trip is represented in an activity graph, where each task shopping operation and each task delivery is represented by a
ode. Here, 𝑠1+1 represents shopping task 1 within order 1 from store 𝑚, 𝑠2+1 represents shopping task 1 within order 2 from store 𝑚,

and 𝑠2+2 represents shopping task 2 within order 2 from store 𝑚′. Analogously, 𝑠2−1 , 𝑠2−2 and 𝑠1−1 represent task deliveries to customer
ocations.

In the activity graph, the cost of an arc consists of multiple components (e.g., parking time, task picking time, and, travel time
etween different locations.), as this value depends on the source and sink nodes of the arc.

In Eq. (5), we formally define arc costs on the activity graph, defined in Section 3. Let 𝑡𝑖𝑗 be the average travel time from node

and 𝑗. We incur travel time only if node 𝑖 and 𝑗 maps to two physical location. The logical operator 𝑖
L
≠ 𝑗 checks whether 𝑖 and 𝑗

re two different physical locations. In addition we can integrate the total shopping duration at store 𝑚 into arc cost as follows:

𝑐𝑖𝑗 ∶= 1
( L )

𝑡𝑖𝑗 + 1(𝑗∈𝑆+
𝑚 ) ▵ 𝑐𝑚(𝑛), (5)
15
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Fig. 14. Location-based and activity graphs for a particular shopper’s route. Pentagons and squares indicate customer and store locations, respectively. Circles
represent shopping and delivery nodes.

where ▵ 𝑐𝑚(𝑛) ∶= 𝑐𝑚(𝑛) − 𝑐𝑚(𝑛 − 1),∀𝑛 ≥ 1, represent the incremental shopping time for additional task picking. Notice that ▵ 𝑐𝑚(1)
considers the fixed cost for visiting store 𝑚. Also, 1(⋅) is an indicator function that takes value one if the statement in (⋅) is true, and
𝑆+
𝑚 denotes set of shopping task at store 𝑚.
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