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We present a discrete-variable quantum teleportation scheme using pulsed optomechanics. In our proposal, we
demonstrate how an unknown optical input state can be transferred onto the joint state of a pair of mechanical
oscillators, without physically interacting with one another. We further analyze how experimental imperfections
will affect the fidelity of the teleportation and highlight how our scheme can be realized in current state-of-the-art
optomechanical systems.
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I. INTRODUCTION

The process of quantum teleportation describes the transfer
of an unknown input state onto a remote quantum system.
First outlined by Bennett et al. [1], it has since evolved into an
active area of research and is now recognized as an important
tool for many quantum protocols such as quantum repeaters
[2], measurement-based quantum computing [3], and fault-
tolerant quantum computation [4]. Experiments have been
realized first with photons [5], later with various systems such
as trapped ions [6,7], atomic ensembles [8], as well as with
high-frequency phonons [9] and several others [10]. Over the
past few years, optomechanical devices have emerged as an
interesting tool to explore quantum phenomena, both from
a fundamental perspective, showing the limits of quantum
mechanical rules on massive objects [11], as well as from
an applied view, promising to act as efficient transducers
connecting radio-frequency regime qubits to low-loss opti-
cal channels [12,13]. While continuous-variable teleportation
using an optomechanical system has been proposed [14,15],
an experimental realization of such a scheme remains beyond
reach.

Here we present a protocol that will enable the realization
of quantum teleportation of an unknown optical input state
onto a stationary mechanical quantum memory based on dis-
crete variables in the pulsed regime. The scheme is based
on a dual-rail encoding in which the polarization state of a
photonic input qubit is teleported onto two mechanical modes.
Current state-of-the-art optomechanics devices [16] should be
able to realize the proposed protocol. The optomechanical
interaction is used as a source of Einstein-Podolsky-Rosen
(EPR)-type entanglement between the memory and an op-
tical field, after which a successful Bell-state measurement
with the input field completes the teleportation. The mem-
ory state can be read out on-demand back onto the optical
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field directly at telecom wavelengths [17]. With the recent
progress in quantum storage in ultra-long-lived mechanical
oscillators and their on-chip integration, the system represents
progress towards scalable quantum networks using quantum
repeater schemes. We discuss the expected teleportation fideli-
ties when including experimentally relevant imperfections,
such as higher-order excitations from the optomechanical
interaction, a finite thermal background on the mechanical
mode, optical losses, and nonunity efficiency in the Bell-state
detection. We further discuss the feasibility of demonstrat-
ing quantum teleportation using weak coherent input states
instead of a single-photon source.

II. OPTOMECHANICAL INTERACTION

We start the discussion with a description of the optome-
chanical interactions which allow the generation of EPR-type
entanglement and retrieve the stored state from the stationary
memory after a successful teleportation trial. Our approach is
valid for general optomechanical devices; however, the tele-
portation protocol requires initialization of the modes in the
mechanical ground state which, to date, is most reliably done
by cryogenic cooling of nanobeam optomechanical resonators
[18–20]. The Hamiltonian for such systems reads [11]

H/h̄ = ωcâ†â + ωmb̂†b̂ − g0â†â(b̂ + b̂†)

+ i(Ee−iω0t â† − H.c.), (1)

where â and ωc (b̂ and ωm) are the annihilation operator
and resonant frequency of the cavity (mechanical) mode,
respectively, g0 is the single-photon optomechanical cou-
pling rate, and E = √

2κP/(h̄ω0) is the coupling between
the driving field with frequency ω0 and power P, and the
cavity with decay rate κ (HWHM). Pulsed optical driving
at a laser frequency ω0 = ωc ± ωm allows for the realiza-
tion of two different types of optomechanical interactions
in the resolved sideband limit κ � ωm, namely, the para-
metric down-conversion and the beam-splitter interaction
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FIG. 1. Sketch of a proposed setup to implement the telepor-
tation protocol. Two optomechanical devices forming a quantum
memory are placed in an optical interferometer in which the outgoing
fields are combined in cross polarization. Simultaneous driving of
the devices under blue detuning entangles the state of the mechan-
ical modes with optical fields at cavity resonance ωc. A Bell-state
measurement between this Stokes field and an optical state to be
teleported |ψ〉 is performed by mixing the fields on a 50/50 beam
splitter (BS2) and subsequent polarization analysis using two po-
larizing beam splitters (PBS). The teleported state is then retrieved
from the optomechanical system using red-detuned driving and can
be analyzed in the same Bell-state detection setup.

[11]. For a blue-detuned pulse, ωb � ωc + ωm, the interaction
Hamiltonian Hb ∝ h̄g(â†b̂† + âb̂) results in optomechanical
parametric down-conversion, or two-mode squeezing, corre-
lating excitations in the mechanical mode and the Stokes
field at the cavity frequency ωc. Here, g = g0

√
nc is the

effective optomechanical coupling rate, with the intracavity
photon number nc. This entangling operation is used in the
teleportation scheme to generate optomechanical EPR-type
states. The success probability is given by gτ , where τ is the
interaction time or, experimentally, the pulse length. Using a
coherent laser drive to enable the interaction, double or even
multiple scattering events can occur with a probability of the
order of (gτ )n, which we include in the later discussion. For
a red-detuned pulse, ωr � ωc − ωm, the interaction Hamilto-
nian Hr ∝ h̄g(â†b̂ + âb̂†) results in an optomechanical state
swap where an anti-Stokes process annihilates a phonon while
emitting a photon at cavity resonance. In our scheme, this
interaction is used to read out the final mechanical state after
a successful teleportation of the initial optical state.

III. IDEAL CASE

We now describe the teleportation of a photonic qubit state
|ψ〉 in polarization encoding onto a memory element consist-
ing of two optomechanical devices, as shown in Fig. 1. The
two resonators are subject to a simultaneous excitation using
a blue-detuned drive after which a Bell-state measurement
of the input photon with the Stokes field from the optome-
chanical devices enables the teleportation. For simplicity, we
begin our protocol assuming, at most, single excitations in

all relevant modes and subsequently discuss the effects of
various expected experimental imperfections. In this ideal
case, a blue-detuned single-photon pulse is sent onto a 50/50
beam splitter (BS1) such that a path-entangled state is gen-
erated in its two outputs (which we call path A and B), i.e.,

1√
2
(|01〉 + |10〉)

AB
. In each path, the optical pulse interacts

with an optomechanical device. By selecting trials with suc-
cessful scattering events, the two-mode squeezing interaction
generates an entangled state of the form

|φ〉 = 1√
2

(|0101〉ABHV + |1010〉ABHV ), (2)

where the subscript A (B) denotes the mechanical mode in
path A (B). Here we distinguish the two optical fields in paths
A and B by encoding them in orthogonal polarizations, where
H (V ) denotes horizontal (vertical) polarization. This can be
realized by placing a half-wave plate in one of the two optical
paths. The optical fields from both paths are then filtered, such
that only the photons on-resonance with the optomechanical
cavities are transmitted to the Bell-state detection setup (cf.
Fig. 1). Note that in order to get the state (2), we have as-
sumed the ideal case that the two devices are identical and
that mechanical modes are initially in the quantum ground
state |00〉AB and neglected any heating effect due to light
absorption.

The initial optical state for the teleportation |ψ〉 is an ar-
bitrary superposition of two polarization modes of the form

|ψ〉 = cos θ |01〉HV + eiϕ sin θ |10〉HV , (3)

where ϕ is an arbitrary phase factor, which we choose as ϕ =
0. Such a state can be prepared by sending a single photon
with frequency ωc into a polarizing beam splitter (PBS) with
transmission (reflection) coefficient cos θ (sin θ ), for example.

This input photon is sent to port 1 of the Bell-state detec-
tion setup, whereas the output of the interferometer containing
the optomechanical devices is sent to port 2. Combining the
states of Eqs. (2) and (3) results in

|	〉 = |φ〉 ⊗ |ψ〉 = 1√
2
(cos θ |010101〉 + sin θ |010110〉

+ cos θ |101001〉 + sin θ |101010〉)ABH2V2H1V1 , (4)

where the subscripts 1 and 2 are used to distinguish the dif-
ferent input ports (see Fig. 1). The Bell-state detection setup
consists of a 50/50 beam splitter BS2 on which the input fields
are mixed. Each output is then routed to a polarizing beam
splitter with two single-photon detectors at their respective
outputs. A successful teleportation trial is heralded by a co-
incidence in two of the detectors corresponding to different
polarization states, realizing a detection of the input state of
Eq. (4) using

M̂± = (|0110〉 ± |1001〉)†
H2V2H1V1

. (5)

A coincidence measurement in the same output of
BS2 projects the optical modes onto the state (|0110〉 +
|1001〉)

H2V2H1V1
, for example, corresponding to M̂+. This can
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FIG. 2. Diagram of the Bell-state measurement M̂± for two po-
larization modes, which consists of a 50/50 beam splitter (BS2)
and four single-photon detectors placed after two polarizing beam
splitters (PBS).

be seen as follows:

(|0110〉 + |1001〉)H2V2H1V1

= (â†
V b̂†

H + â†
H b̂†

V ) |vac〉
= 1

2 [(ĉ†
V − d̂†

V )(ĉ†
H + d̂†

H )

+ (ĉ†
H − d̂†

H )(ĉ†
V + d̂†

V )] |vac〉
= (ĉ†

H ĉ†
V − d̂†

H d̂†
V ) |vac〉.

(6)

Here, â†
H , â†

V , b̂†
H , b̂†

V are the creation operators for the optical
modes H2,V2, H1,V1 at the input ports of BS2. Furthermore,
ĉ†

H , ĉ†
V , d̂†

H , d̂†
V are the creation operators for the respective po-

larization output modes of BS2 (see Fig. 2) and |vac〉 denotes
the vacuum state.

Similarly, the measurement M̂− is realized by a co-
incidence in two detectors corresponding to orthogonal
polarizations at different sides of BS2 according to

(|0110〉 − |1001〉)H2V2H1V1= (ĉ†
V d̂†

H − ĉ†
H d̂†

V ) |vac〉. (7)

Additionally, the other two types of Bell measurements

(|0101〉 ± |1010〉)
†

H2V2H1V1
with coincidences in detectors cor-

responding to the same polarization require the detection of
two-photon states |2〉H/V . While this can be realized using
photon-number-resolving detectors, we will disregard these
cases here for simplicity and experimental feasibility.

A successful Bell-state measurement of the joint state |	〉
of Eq. (4) with M̂+ projects the two mechanical modes A and
B into a state of the form

|ψ ′〉 = sin θ |01〉AB + cos θ |10〉AB. (8)

Comparing this to the state in (3), we see that the only dif-
ference between the initial optical state |ψ〉 and the teleported
mechanical state |ψ ′〉 is that the probability amplitudes of the
two eigenstates are exchanged. For the measurement M̂−, the
two mechanical modes are projected onto the state

|ψ ′′〉 = sin θ |01〉AB − cos θ |10〉AB, (9)

which has a π -phase difference with respect to the state |ψ ′〉.
In order to verify the successful teleportation, the mechan-

ical state can be read out by sending a red-detuned pulse
(i.e., utilizing the optomechanical state-swap interaction de-
scribed in Sec. II) and the teleported state can be analyzed

in the Bell-state detection setup with a few additional opti-
cal components for fast polarization control. Alternatively, it
could be routed elsewhere using an optical switch, enabling
advanced quantum communication protocols. A phase differ-
ence in the final mechanical state from measurement with M̂−
can, in principle, be corrected in this readout step using a
feed-forward operation by applying a phase shift in the optical
interferometer.

IV. EXPERIMENTAL IMPERFECTIONS

A. Effect of residual thermal occupation

For high-Q mechanical oscillators, the typical timescale at
which our protocol can be realized is much shorter than the
mechanical lifetime [16,17,20]. Therefore, during a complete
experimental run, the mechanics can be assumed to have
negligible dissipation. In any real experiment, the mechanical
modes are not perfectly initialized in their quantum ground
state |00〉AB and, in addition, are heated through optical ab-
sorption from the pulses interacting with the devices [19–21].
We model these effects by assuming the mechanical modes are
initially in a thermal state with nonzero thermal occupation
n̄0 � 1. Note that to simplify the model, we thus include
the heating from the readout pulse into the initial residual
thermal occupation as well. We furthermore assume that the
two oscillators have equal thermal occupation n̄0, i.e., they are
in the same thermal state,

ρth = (1−s)
∞∑

n=0

sn |n〉〈n|, (10)

where s = n̄0
n̄0+1 < 1. For n̄0 < 0.2, s < 0.17, s2 < 0.03,

and s3 < 0.005, high-excitation terms |n〉 (n > 2) can be
safely neglected and we approximate ρth � (1−s) (|0〉〈0| +
s|1〉〈1| + s2|2〉〈2|). The density matrix of the two mechanical

modes can then be written as ρAB
th � ρA

th ⊗ ρB
th, which is a prob-

abilistic mixture of nine pure states | jk〉AB ( j, k = 0, 1, 2).
The eigenstate |00〉AB in ρAB

th corresponds to the initial ground
state assumed in Sec. III, which results in the mechanical
state |ψ ′〉 in (8) [|ψ ′′〉 in (9)] after the Bell-state measurement
M̂±. The remaining eight states eventually lead to unwanted
additional terms in the final mechanical state and thus reduce
the fidelity of the teleportation, which we will now analyze
more closely.

For the mechanical modes initially in the thermal state ρAB
th ,

we obtain the following final (unnormalized) mechanical state
after the Bell-state measurement M̂+:

ρAB
final � |ψ00〉〈ψ00| + s|ψ01〉〈ψ01| + s|ψ10〉〈ψ10|

+ s2|ψ11〉〈ψ11| + s2|ψ02〉〈ψ02| + s2|ψ20〉〈ψ20|
+ s3|ψ12〉〈ψ12| + s3|ψ21〉〈ψ21| + s4|ψ22〉〈ψ22|, (11)

where |ψ jk〉 is the final mechanical state corresponding to the
mechanical modes initially in the pure state | jk〉AB ( j, k =
0, 1, 2), and |ψ00〉 ≡ |ψ ′〉. The remaining eight states |ψ jk〉
are then given by

|ψ01〉 = sin θ |02〉 + cos θ |11〉,
|ψ10〉 = sin θ |11〉 + cos θ |20〉,
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FIG. 3. The fidelity of the teleportation of the initial state |ψ00〉
onto the final mechanical state ρAB

final (top, blue lines), as well as
the probability of unwanted additional terms (bottom, red lines) as
a function of the initial mechanical thermal occupation n̄0. Solid
(dashed) lines: approximation of neglecting |n〉, n > 2 (n > 1), terms
in the state (10). Gray (horizontal, straight) line: minimum threshold
of the state fidelity of 2/3 for quantum teleportation.

|ψ11〉 = sin θ |12〉 + cos θ |21〉,
|ψ02〉 = sin θ |03〉 + cos θ |12〉,
|ψ20〉 = sin θ |21〉 + cos θ |30〉,
|ψ12〉 = sin θ |13〉 + cos θ |22〉,
|ψ21〉 = sin θ |22〉 + cos θ |31〉,
|ψ22〉 = sin θ |23〉 + cos θ |32〉. (12)

For the Bell-state measurement M̂−, we obtain ρAB
final as in (11),

but with the “+” replaced with “−” in each component |ψ jk〉.
Clearly, the above eight states are all unwanted contributions,
as the total phonon number in the two mechanical modes is
greater than 1 due to the residual thermal excitations in the
initial state. These additional terms can be well suppressed if
n̄0 � 1 (thus s � 1), as the total probability of the additional
terms is given by

Padd = 2s + 3s2 + 2s3 + s4

1 + 2s + 3s2 + 2s3 + s4
. (13)

We plot the probability of these terms for increasing n̄0 as red
lines in Fig. 3. The probability of obtaining the ideal state
|ψ00〉, i.e., the fidelity of the state F = 〈ψ00| ρAB

final |ψ00〉 =
1 − Padd, thus decreases with increasing n̄0. A successful
quantum teleportation requires the fidelity to be above 2/3,
which is given by the maximum achievable value without
using entanglement as a resource [22]. For our optomechan-
ical teleportation scheme, this corresponds to a threshold of
n̄0 � 0.23. For n̄0 < 0.23, the total probability of the higher-
excitation terms |n〉 (n > 2) in the thermal state (10) is less
than 0.7%, highlighting that our earlier approximation is quite
good. In order to show optomechanical quantum teleportation,
n̄0 � 0.23 is therefore an upper bound in our present scheme.

B. Weak coherent-state input

So far we have studied the special, idealized case where
both optical input fields for the Bell-state measurement are
single photons. This assumption, however, is unrealistic for
devices in the optomechanical weak-coupling regime which
require blue-detuned pulses far above the single-photon level
to achieve practical scattering rates. Additionally, using a
weak coherent state (WCS) as the optical input for the tele-
portation enables greatly reduced experimental overhead and
can increase the rate of the experiment. While the single-
photon case can be a good approximation for the case of
low-excitation probabilities, we now include higher-excitation
terms |2〉 to the optomechanically entangled state, as well as
the initial optical state |ψ〉. These terms are consequently af-
fecting the final mechanical state, which results in corrections
to the achievable teleportation fidelity. The WCS |α〉 (|β〉) of
the blue-detuned (resonant) pulse can be approximately ex-
panded in the Fock-state basis as |R〉 � |0〉 + R|1〉 + R2√

2
|2〉,

which is a good approximation when |R| � 1, where R =
α, β.

We perform the analysis of the higher-order terms consid-
ering several cases individually. We begin with the one where
the resonant pulse |ψ〉in that is used to prepare the initial state
|ψ〉 is a WCS but no optomechanical scattering occurs, i.e.,
|φ〉 = |0000〉ABH2V2 . The single-photon component of |ψ〉in

will then not trigger any coincidences in the Bell-state detec-
tion, leading to unsuccessful trials for the teleportation. The
two-photon component |2〉, however, results in an extra term
in the final mechanical state. The joint state for the Bell-state
measurement in this case is of the form

|0000〉ABH2V2 ⊗
(

sin2θ |20〉 + cos2θ |02〉 + sin 2θ√
2

|11〉
)

H1V1

.

(14)
Such a state will trigger several different types of “double-
clicks”, in particular,

|0020〉H2V2H1V1 = 1

2
√

2

(
ĉ†2

H + d̂†2
H + 2ĉ†

H d̂†
H

) |vac〉,

|0002〉H2V2H1V1 = 1

2
√

2

(
ĉ†2

V + d̂†2
V + 2ĉ†

V d̂†
V

) |vac〉,

|0011〉H2V2H1V1 = 1

2
(ĉ†

H ĉ†
V + d̂†

H d̂†
V + ĉ†

H d̂†
V + ĉ†

V d̂†
H ) |vac〉.

(15)

Since successful Bell-state measurements of our protocol
require coincidence detection of photons with orthogonal po-
larization, the double clicks in the same polarization modes
induced by the states |20〉H1V1 and |02〉H1V1 can be identified
and thus disregarded. The coincidences caused by the state
|11〉H1V1 , on the other hand, cannot be distinguished from
those of M̂± for the ideal case and result in errors in the
final mechanical state. Fortunately, the mechanical modes
are projected onto |00〉AB, which cannot be read out by the
red-detuned pulse and thus has no actual impact on the mea-
surement result. Note that in this section we assume zero
thermal occupation of the mechanical modes and focus on the
effect of higher-order terms in the WCS of the blue-detuned
and resonant pulses.
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For the case where |ψ〉in is in a vacuum state |0〉, similarly,
the single-photon component in the blue-detuned pulse will
not trigger double clicks and thus have no impact on the
fidelity. The two-photon component |2〉 of this field, however,
can again yield false coincidences in the Bell-state measure-
ment and result in extra terms in the mechanical state. In this
situation, the joint state at the input ports of BS2 is

1
2 (|2020〉 + |0202〉 +

√
2|1111〉)ABH2V2 ⊗ |00〉H1V1 . (16)

Similar to state (14), this state also triggers several different
types of double clicks. The mechanical modes are then pro-
jected onto the states |20〉AB, |02〉AB, and |11〉AB for optical
modes being in |20〉H2V2 , |02〉H2V2 , and |11〉H2V2 , respectively.
Since |20〉H2V2 and |02〉H2V2 correspond to double clicks of the
same polarization, such events can be identified and discarded,
but |11〉H2V2 leads to double clicks that mix with those of
Bell-state measurements M̂± in the ideal case and result in
an additional term |11〉AB in the final mechanical state. The
probability of this event with respect to the ideal case of
the state |ψ ′〉 (|ψ ′′〉) is roughly | α2√

2
|2 : |αβ|2 = 1

2
|α|2
|β|2 . This

implies that the effect of this additional term on the telepor-
tation fidelity can be significantly reduced by using very weak
blue-detuned pulses and introducing a hierarchy according to
|α| � |β| � 1.

For the other situations, where either of the two initial
pulses is in |2〉, or one is in |1〉 and the other in |2〉, additional
unwanted terms in the final mechanical state appear. However,
their probabilities are much smaller compared to that of the
ideal state |ψ ′〉 (|ψ ′′〉) since WCSs |α|, |β| � 1 are used. The
ratio of the probabilities is |β|2

2 : |α|2
2 : |α|2|β|2

4 : 1 for the two
pulses in |12〉br, |21〉br, |22〉br, |11〉br , respectively, where the
subscript b (r) denotes the state of the blue-detuned (resonant)
pulse.

C. Photon loss and nonunity detection efficiency

An experiment typically suffers from various optical losses
including inefficient optical coupling to on-chip waveguides,
passing through filter cavities, and photon detection with
nonunity detection efficiency. These losses can be modeled
by a beam splitter (with transmittance T and reflectance R,
T + R = 1), where the reflection is treated as optical losses
[23]. Given the different roles of optical losses, we classify
them into two categories: detection losses and nondetection
losses.

We study the effect of nondetection or propagation losses
on the final mechanical state in detail in the Appendix, con-
sidering the EPR state (2) and the initial optical state (3).
We show that for the Bell-state measurement M̂+, the un-
normalized teleported state is of the form ρAB

loss = T |ψ ′〉〈ψ ′|,
where 0 < T < 1 and |ψ ′〉 is the final mechanical state (8)
in the ideal case without any losses. This implies that the
optical losses will not affect the teleportation fidelity, but only
increase the measurement time. This is also true for the other
Bell-state measurement M̂−. We have further studied the case
where the initial blue-detuned pulse is in a WCS, while the
resonant pulse is a single photon. When the former is in a
two-photon state |2〉, the final mechanical state ρ̃AB

loss is a mixed
state with eigenstates that are all unwanted with respect to

|ψ ′〉 (Appendix). The probability of this state is much smaller
than that of ρAB

loss as they result from the states |2〉 and |1〉 in
the expansion of WCS |α〉, respectively, and the amplitude
|α| � 1.

Similarly, the effect of detection losses in the Bell-state
measurement setup can be analyzed. We know from (6) and
(7) that without losses, M̂± projects the optical modes onto
Bell states (|0110〉 ± |1001〉)

H2V2H1V1
, which correspond to

different types of double-click events. Detection losses can
reduce them to either “single-click” or “no-click” events (see
Appendix), which then project the mechanical states onto
mixed states. Since only double clicks are valid Bell-state
measurements in our protocol, however, these can be disre-
garded such that there is no actual impact on the teleportation
fidelity. Detection losses thus also only reduce the probability
of obtaining the desired state, again implying longer measure-
ment time.

D. Additional imperfections

Experiments using the above protocol are expected to
suffer from additional imperfections. One of the hardest ex-
perimental challenges is to find identical optomechanical
devices. Apart from a few exceptions [24,25], most systems
to date have no in situ tuning mechanism, such that devices
with matching optical and mechanical frequencies have to be
found after the fabrication is completed. Residual frequency
offsets for devices which are well in the sideband-resolved
regime mainly reduce the success probability for the teleporta-
tion by reducing the optomechanical scattering probabilities.
Small additional offsets in the mechanical frequencies can be
compensated for through the optical driving [16,20]. Since the
scattered fields are furthermore filtered before the Bell-state
detection setup, such offsets do not affect the fidelity, but only
the success probability. Dark counts on the detectors can also
cause false detection events in the Bell-state measurement,
reducing the fidelity of the teleported state. However, by using
superconducting nanowire single-photon detectors with tens
of Hertz of dark-count rates and accounting for pulse lengths
of tens of nanoseconds, these typically play only a minor role.

V. CONCLUSION

We have presented a quantum teleportation protocol based
on an optomechanical system, which teleports an unknown
quantum state of an optical field onto a pair of massive
mechanical oscillators. The protocol consists of two central
steps: the generation of optomechanical EPR-type states and
Bell-state detection of the optical fields. We start from an ide-
alized case to illustrate the essence of the protocol, where the
optical pulses are single photons and the mechanical modes
are in their quantum ground states. We then study various
imperfections encountered in actual experiments. Specifically,
we have analyzed the effects of residual thermal occupation,
optical input of weak coherent states, photon losses, and
nonunity detection efficiency. This allows us to find an op-
timal parameter regime in a realistic situation where quantum
teleportation could be successfully demonstrated in a state-
of-the-art optomechanics experiment. Realization of such a
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FIG. 4. Modeling of linear optical loss with a beam splitter,
where the reflection is treated as the loss. ρtrans denotes the state of
an arbitrary quantum state ρin after experiencing linear loss.

teleportation scheme may find applications in various quan-
tum information subjects, such as quantum communication,
quantum repeaters, and quantum computing, as well as for the
fundamental study of macroscopic quantum phenomena.

Note added. Recently, we became aware of a related
manuscript [26].
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APPENDIX: EFFECT OF PHOTON LOSSES IN
OPTOMECHANICAL TELEPORTATION

It is known that the process of linear optical loss can be
modeled using a beam splitter (BS), where its reflection is
treated as the optical loss channel [23]. This model allows us
to conveniently obtain the state of an arbitrary quantum state
after experiencing some loss. In this Appendix, we first study
the effect of nondetection losses (such as loss in coupling
optical pulses to mechanical modes, an optical mode passing
through a filter, etc.) and derive the final mechanical state by
including these losses. We then continue to study the effect of
detection loss in a Bell-state measurement.

For an arbitrary quantum state, denoted by a density matrix
ρin, impinging on a BS and with vacuum entering through the
other input port (cf. Fig. 4), the state of the two outputs can be
expressed as [27]

ρout =
∞∑

m=0

∞∑
k=0

[
1

m!k!

(
R

T

)m+k] 1
2

× âmT
â† â

2 ρinT
â† â

2 (â†)k ⊗ |m〉〈k|, (A1)

where â and â† are the annihilation and creation operators
acting on the input state ρin, T and R are the transmittance
and reflectance of the BS, respectively, and T + R = 1 for a
lossless BS. As any quantum state ρ can be expanded in the
Fock-state basis,

ρ =
∞∑

n,s=0

Cn,s|n〉〈s|, (A2)

where Cn,s are coefficients, we can replace ρin with |n〉〈s| in
(A1) and trace over the lossy part (cf. Fig. 4). We then obtain
the density matrix of the transmitted component [28],

ρn,s =
min(n,s)∑

m=0

√
n!s!

(m!)2(n − m)!(s − m)!

× RmT
n+s

2 −m|n − m〉〈s − m|, (A3)

and therefore we can express an arbitrary state ρ after experi-
encing linear optical loss as

ρloss =
∞∑

n,s=0

Cn,s ρn,s. (A4)

For a single-photon state |1〉, we have

ρ
|1〉
loss = T |1〉〈1| + R|0〉〈0|, (A5)

and for |0〉〈1| and |1〉〈0|, we obtain

ρ
|0〉〈1|
loss =

√
T |0〉〈1|, ρ

|1〉〈0|
loss =

√
T |1〉〈0|. (A6)

1. Nondetection losses

By placing a BS (which we call BS0) before the input port
of BS2 in the main text (Fig. 1), we now include nondetection
losses into the ideal case considered in Sec. III. The optical
components (i.e., two polarization modes H2 and V2) of the
EPR state |φ〉 in (2) independently pass through BS0, and
after tracing over the reflection, we hence obtain the follow-
ing transmitted state, i.e., the state |φ〉 after the inclusion of
nondetection losses:

ρ
|φ〉
loss = 1

2 [|01〉AB〈01| ⊗ |0〉H2〈0| (T |1〉〈1| + R|0〉〈0|)V2

+ |10〉AB〈10| ⊗ (T |1〉〈1| + R|0〉〈0|)H2 |0〉V2〈0|
+ |01〉AB〈10| ⊗ (

√
T |0〉H2〈1|) (

√
T |1〉V2〈0|)

+ |10〉AB〈01| ⊗ (
√

T |1〉H2〈0|) (
√

T |0〉V2〈1|)]. (A7)

Combining this with the initial state |ψ〉 in (3), we therefore
have the joint state at the input ports of BS2,

ρ
|	〉
loss = [

ρ
|φ〉
loss

]
ABH2V2

⊗ [|ψ〉〈ψ |]H1V1 . (A8)

After performing the Bell-state measurement M̂+ on the opti-
cal modes, consequently the mechanical modes are projected
onto the unnormalized state,

ρAB
loss = M̂+ ρ

|	〉
lossM̂

†
+

= T

(
sin2 θ |01〉〈01| + cos2 θ |10〉〈10|

+ sin 2θ

2
|01〉〈10| + sin 2θ

2
|10〉〈01|

)
AB

= T |ψ ′〉〈ψ ′|, (A9)
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FIG. 5. Beam-splitter model of detection losses in the Bell-state
measurement. The reflection of the hypo-BS in each arm of the
outputs of BS2 models the detection loss. A single-mode operator
is used to represent the two polarization modes, i.e., Ô ≡ ÔH (V ).

where |ψ ′〉 is the projected mechanical state (8) in the ideal
case without any losses. By comparing ρAB

loss with |ψ ′〉, we
see that there is only a difference of a factor “T ”, 0 < T < 1,
which means that the optical losses will not degrade the final
mechanical state but only reduce its probability, implying
longer measurement time.

The above analysis is for the ideal case of the optical pulses
being single-photon states. We now assume that the blue-
detuned pulse is a WCS and derive the final mechanical state if
this pulse is in a two-photon state |2〉, while the resonant pulse
is still in |1〉. Following the same procedures, after extensive
calculations, we obtain

ρ̃AB
loss = 1

4

{
cos2 θ [(T 2 + 2RT )|20〉〈20| + 2RT |11〉〈11|]

+ sin2 θ [(T 2 + 2RT )|02〉〈02| + 2RT |11〉〈11|]
+ sin 2θ

2
[T 2|20〉〈02| + 2RT (|20〉〈11| + |11〉〈02|)]

+ sin 2θ

2
[T 2|02〉〈20|+ 2RT (|02〉〈11|+ |11〉〈20|)]

}
AB

.

(A10)

This state contains eigenstates that are all unwanted with
respect to the ideal state |ψ ′〉. The probability of this state is
much smaller than that of the state ρAB

loss as they result from the
states |2〉 and |1〉 in the coherent-state expansion, respectively.
Therefore, a WCS |α| � 1 must be used in order to reduce the
probability of those unwanted terms in the final mechanical
state.

2. Detection losses

The nonunity detection efficiency in Bell-state measure-
ments can be modeled by putting a BS in each arm of the
two outputs of BS2, as depicted in Fig. 5. The reflections
of the two hypothetical BSs (hypo-BSs) are used to model
the detection losses, and the transmitted fields represent the
optical fields after such losses and are measured by detectors

with unity detection efficiency. We assume identical hypo-
BSs given the symmetry of the Bell-state detection. The two
output fields of BS2 then become the input fields of the
hypo-BSs with vacuum entering the other input ports, and
the transmitted fields of each hypo-BS are then measured by
two detectors placed after a PBS, which measure orthogonal
polarizations. Note that the transmitted fields contain two
polarization modes and we use operator ÔH (V ) to denote the
H (V ) polarization mode, where Ô = a, b, c, d, e, f , g, h, j, k;
see Fig. 5.

In the ideal case without detection losses, we know from
(6) and (7) that the Bell-state measurements M̂± project the
optical modes onto the state (|0110〉 ± |1001〉)

H2V2H1V1
, which

correspond to different types of double clicks in the four
detectors shown in Fig. 2. We now study the effect of detection
losses and see if the double clicks can still characterize the
Bell-state measurements M̂±.

The Bell-state measurement M̂+ projects the optical modes
onto the state,

(|0110〉 + |1001〉)H2V2H1V1

= (ĉ†
H ĉ†

V − d̂†
H d̂†

V ) |vac〉
= [(

√
T f̂ †

H −
√

Rĝ†
H )(

√
T f̂ †

V −
√

Rĝ†
V )

−(
√

T k̂†
H −

√
R ĵ†

H )(
√

T k̂†
V −

√
R ĵ†

V )] |vac〉
= (T |1100〉 + R|0011〉 −

√
T R|0110〉

−
√

T R|1001〉) fH fV gH gV− (T |1100〉 + R|0011〉
−

√
T R|0110〉 −

√
T R|1001〉

)
kH kV jH jV

≡ |�out〉. (A11)

Considering the detection losses, we trace over the output
modes gH (V ), jH (V ) (which denote losses; see Fig. 5) and ob-
tain

ρ f k = Trgj[|�out〉〈�out|]
= (T 2|11〉〈11| + R2|00〉〈00|

+ T R|01〉〈01| + T R|10〉〈10|) fH fV

+ (T 2|11〉〈11| + R2|00〉〈00|
+ T R|01〉〈01| + T R|10〉〈10|)kH kV . (A12)

Clearly, the detection losses lead to the emergence of ad-
ditional states, which correspond to either single-click or
no-click events. Since we record only the event of double
clicks, we actually measure the following state:

ρ ′
f k = T 2(|11〉 fH fV 〈11| + |11〉kH kV 〈11|), (A13)

which corresponds to double clicks in the two detectors at the
same side of BS2. This is the same as in the case without
losses [see (6)], but detection losses reduce the probability of
successfully measuring the state as T 2 < 1.

Similarly, for the other measurement M̂−, we actually mea-
sure

ρ ′′
f k = T 2(|11〉 fV kH 〈11| + |11〉 fH kV 〈11|), (A14)
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which corresponds to double clicks in the two de-
tectors at two sides of BS2 that measure orthogo-
nal polarizations. Comparing with (7) for perfect de-
tectors, the probability of the successful double-clicks
event is reduced, again, resulting in longer measurement
times.

As before, the above analysis is for the ideal case of the
pulses being single-photon states. For the practical situation of
pulses being WCSs, the components of high-excitation states
will also lead to double clicks (errors) in the presence of
detection losses. Nevertheless, when the coherent states are
sufficiently weak, |α|, |β| � 1, these errors are negligible.

[1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[2] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev.
Mod. Phys. 83, 33 (2011).

[3] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

[4] D. Gottesman and I. L. Chuang, Nature (London) 402, 390
(1999).

[5] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H.
Weinfurter, and A. Zeilinger, Nature (London) 390, 575
(1997).

[6] M. Riebe, H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm,
G. P. T. Lancaster, T. W. Körber, C. Becher, F. Schmidt-
Kaler, D. F. V. James, and R. Blatt, Nature (London) 429, 734
(2004).

[7] M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano,
J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J.
Wineland, Nature (London) 429, 737 (2004).

[8] J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K.
Hammerer, I. Cirac, and E. S. Polzik, Nature (London) 443,
557 (2006).

[9] P.-Y. Hou, Y.-Y. Huang, X.-X. Yuan, X.-Y. Chang, C. Zu, L. He,
and L.-M. Duan, Nat. Commun. 7, 11736 (2016).

[10] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L.
Braunstein, Nat. Photon. 9, 641 (2015).

[11] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.
Phys. 86, 1391 (2014).

[12] M. Forsch, R. Stockill, A. Wallucks, I. Marinković, C. Gärtner,
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Aspelmeyer, S. Hong, and S. Gröblacher, Nature (London) 556,
473 (2018).

[21] S. Hong, R. Riedinger, I. Marinković, A. Wallucks, S. G. Hofer,
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