
Delft Center for Systems and Control

Multiple Object Tracking in
Underwater Environment

Mallika Tripathi

M
as

te
ro

fS
cie

nc
e

Th
es

is

Multiple Object Tracking in
Underwater Environment

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Mallika Tripathi

August 26, 2024

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

While various tracking algorithms have demonstrated effectiveness in terrestrial and aerial
contexts, their performance in underwater settings remains unexplored. Object tracking in
underwater videos presents unique challenges due to variable lighting, water turbidity, and
unpredictable camera movement, all of which are likely to hinder the performance of tradi-
tional detection and tracking methods. Addressing this gap is crucial for applications such as
marine biology research, underwater surveillance, and autonomous underwater vehicles.

This thesis first evaluates existing tracking algorithms, Simple Online and Real-time Track-
ing (SORT), ByteTrack, and Bag-of-Tricks SORT (BoT-SORT), each incorporating motion
estimation and linear data assignment methods on a novel underwater video dataset with
a moving camera. The thesis then improves on the SORT algorithm by adopting velocity
estimation techniques, a formula-based and an optical flow-based, giving rise to two new
algorithms, SORT-V and SORT-OF. Furthermore, the thesis proposes a novel tracker that
utilises an Interacting Multiple Model (IMM) filter to estimate the location of the target
object. The evaluation focuses on finding a balance between specific metrics, such as tracking
accuracy, identity switches, and the number of tracked and lost trajectories. The results in-
dicate that using velocity estimation techniques improves the tracking accuracy by 11% and
tracks more objects by nearly halving the number of lost objects. Incorporating a constant
acceleration model in the IMM filter gives the best result, with the highest tracking accuracy
and with the least number of identity switches, all in real-time computational speed.

Master of Science Thesis Mallika Tripathi

ii

Mallika Tripathi Master of Science Thesis

Table of Contents

Acknowledgements v

1 Introduction 1
1-1 SeaClear . 1
1-2 Research Aim and Objective . 2
1-3 Thesis Organisation . 3

2 Overview of Object Tracking 5
2-1 Introduction . 5
2-2 Object Detection . 7
2-3 Object Initialisation and Localisation . 8

2-3-1 Motion Estimation . 9
2-3-2 Feature Matching . 10

2-4 Data Association . 11
2-5 Above-land Object Tracking Algorithms . 13

2-5-1 IOU Tracker . 13
2-5-2 SORT . 14
2-5-3 ByteTrack . 15
2-5-4 BoT-SORT . 15

2-6 Object Tracking Benchmarks . 16
2-7 Comparisons . 17
2-8 Summary . 18

3 Novel Dataset for Underwater Object Tracking 19
3-1 SeaClear Dataset . 19
3-2 Ground Truth Annotations . 20
3-3 Summary . 23

Master of Science Thesis Mallika Tripathi

iv Table of Contents

4 Novel Enhancements for Underwater Object Tracking 25
4-1 State-space Representation . 25
4-2 Velocity Estimation . 26

4-2-1 Analytical Formula . 26
4-2-2 Optical Flow . 27

4-3 Interacting Multiple Models . 31
4-4 Summary . 33

5 Experimental Results 35
5-1 Performance Parameters . 35
5-2 Above-water Object Tracking Algorithms . 38

5-2-1 IOU Tracker . 38
5-2-2 SORT . 41
5-2-3 ByteTrack . 44
5-2-4 BoT-SORT . 47

5-3 Proposed Algorithms for Underwater Object Tracking 49
5-3-1 Velocity Estimation . 49
5-3-2 Interacting Multiple Model Filter . 53

5-4 Comparisons and Conclusions . 57
5-5 Summary . 61

6 Conclusions and Future Recommendations 63
6-1 Conclusions . 63
6-2 Recommendations . 64

A Conference Paper Draft 67

B Python File for Ground Truth Annotation 77

Bibliography 81

List of Acronyms 85

Mallika Tripathi Master of Science Thesis

Acknowledgements

I would like to first thank my supervisor Prof.dr.ir. Bart De Schutter for his invaluable guid-
ance and support throughout this thesis. Our meetings provided me with both reassurance
about my work and profound insights into this field of research. Additionally, I am grateful
to him for imparting the importance of clarity in mathematical and technical writing, as
well as in academic presentations. Thanks to his mentorship, I now approach reports and
presentations with a new perspective.

A heartfelt thanks to my daily supervisor, Athina Ilioudi whose friendly and personal guidance
has been instrumental throughout this journey. Your support allowed me the freedom to
shape this thesis according to my interests and ambitions. I deeply valued the open dialogue
and the fresh, creative perspectives you brought to our weekly meetings. Additionally, I am
particularly grateful for the time and effort you dedicated to providing feedback on my work.

Divya and Kartikeya, thank you for being the greatest cheerleaders. A special thank you to
CineUs for being the funniest group of people ever.

I am immensely grateful to all the friends I’ve made during this master’s degree. A special
mention to Chris for the endless coffees and ensuring we took enough study breaks, and to
Bram and Nathan for making me feel right at home.

To my parents, I could not have made it this far without your never-ending support. To my
brother, thank you for the memes. Thank you, Sanket, for helping me maintain my work-life
balance. And a special mention to Simba, who brightens my life just by existing.

Lastly, I would like to thank 20-year-old Mallika, thank you for dreaming big and aiming
high. We did it, we made it.

Delft, University of Technology Mallika Tripathi
August 26, 2024

Master of Science Thesis Mallika Tripathi

vi Acknowledgements

Mallika Tripathi Master of Science Thesis

Chapter 1

Introduction

The Earth’s oceans play a crucial role in weather regulation and serve as the largest natural
carbon and heat sink. Maintaining the health of the oceans is synonymous with ensuring the
overall well-being of our planet. Yet, up to 12 million metric tons of plastic is dumped into
the oceans each year [19]. This is equivalent to more than 100000 blue whales every single
year. By 2050, it is estimated that ocean plastic will outweigh all of the ocean’s fish [29].
Plastics being synthetic polymers are notoriously durable and resistant to natural degradation,
which contributes to their persistence in the environment. Over time, they can be broken
down into smaller and smaller pieces by the sun, wind, and water but this then leads to
a bigger issue of microplastics. Microplastics are ingested by marine life and have also now
found their way into human lives. These can now also be found in the air and water around us,
have reached the deep sea [38], and are present in large quantities in the frozen Arctic sea [28].
An average adult consumes approximately 2000 microplastic particles per year through salt
alone [37].
Several organisations are actively engaged in efforts to retrieve plastic waste from the ocean,
with a primary focus on addressing floating plastics, but scientists estimate that 14 million
metric tons of ocean garbage rest on the seafloor [4]. To tackle this issue, an initiative funded
by the European Union under the Horizon Europe Programme (Grant Agreement 101093822),
SeaClear aims to eliminate seabed and floating marine pollution [34].

1-1 SeaClear

SeaClear — SEarch, identification, and Collection of marine Litter with Autonomous Robots
— is an initiative aimed at solving the problem of underwater litter [34]. The project employs a
fleet of autonomous, intelligent robots, including two underwater Remotely Operated Vehicle
(ROV), one Unmanned Surface Vehicle (USV), and one Unmanned Aerial Vehicle (UAV)
working collaboratively to monitor and collect marine litter.
Various devices, including cameras and forward-looking sonars, are employed on the observa-
tion ROV to detect litter and mark its location on a reference map. In the subsequent step,

Master of Science Thesis Mallika Tripathi

2 Introduction

Figure 1-1: Detecting trash underwater via SeaClear.

a larger collection ROV approaches each identified piece of litter on the map and re-detects
each of these pieces with high precision before collecting it using a gripper mechanism [34].

1-2 Research Aim and Objective

The SeaClear team has effectively incorporated the capability to detect different objects
underwater using a camera at this stage of development. The detection process utilizes a
Convolution Neural Network (CNN) trained on SeaClear-specific data. This trained network
can categorize objects into four distinct classes: plant, animal, trash, and ROV. The detection
result is illustrated in Figure 1-1. The subsequent phase involves initiating the collection pro-
cess for the detected trash. The collection ROV descends to collect the trash by continuously
aligning with it on the seabed. Challenges arise at this step, especially in situations where
multiple pieces of trash are clustered together. In such instances, the ROV is unable to pin-
point a specific target object for retrieval. Addressing this issue presents a set of intermediate
questions that we aim to tackle in this study.

Challenge 1 Determining the process by which the ROV should prioritise and select objects
for collection.

It is straightforward for us humans to retrieve multiple objects from the ground. After a
quick scan, our brain is capable of computing somewhat of an optimal course to retrieve the
objects. The easiest is to begin with the closest item and progressively continue picking up
objects in a sequential manner. But it is not that straightforward for an autonomous ROV to
navigate this task. The ROV needs various sensors, such as sonar, to understand the depth
and distance of objects from their current location. It must calculate distances from each
object every time it moves to identify the next target object for retrieval. Hence, it is easier
for the ROV to also sequentially pick up the objects if each one is assigned a unique identity.
A key aspect of this process involves ensuring that the ROV assigns a distinct identity to each

Mallika Tripathi Master of Science Thesis

1-3 Thesis Organisation 3

object it encounters. When the ROV moves to retrieve one object, others may temporarily
leave its field of view. Upon re-entering its view, the ROV must recognize these objects as
the same ones it previously observed, rather than assigning new identities. This ability to
consistently track and identify objects is crucial for the ROV’s motion planning, as it ensures
accurate and efficient retrieval operations in dynamic environments.

Challenge 2 Assigning unique identities to objects.

Assigning a unique identity to each detected object in an initial image frame is a straightfor-
ward task. However, the target object must be identified in each subsequent frame and the
same identity it had in the previous/initial frame must be allocated to it. This process must
be followed consistently, even in situations where an object is temporarily obstructed for a
few frames or exits and re-enters the frame.

The answer to this is tracking the objects continuously over time. The human mind effortlessly
performs this as it can associate objects even after temporary disappearances. However,
replicating this capability in a machine requires the application of various statistical and
image-processing algorithms. Currently there exist multiple State-of-the-art (SOTA) object
tracking algorithms, but all have been designed and implemented for conventional conditions
above sea level [6, 27, 33]. A few examples can be found when object tracking algorithms
were implemented underwater with stationary cameras for counting fish [42]. However, our
case is unique, involving a moving underwater camera, diverse detection classes (trash, plant,
animal, and ROV), and potential interruptions in object visibility due to the movement of
the ROV creating disturbances at the seabed like moving sand and bubbles.

This thesis aims to initially implement existing object tracking algorithms on underwater
data to evaluate their performance in this specific environment. Based on the results, the
next step will involve introducing adaptations to these algorithms to enhance their efficiency
and effectiveness in tracking underwater objects. This approach ensures that the algorithms
are tailored to the unique challenges posed by underwater conditions, leading to more accurate
and reliable tracking outcomes.

1-3 Thesis Organisation

In Chapter 2, a comprehensive overview of object-tracking techniques is presented, including a
detailed discussion of the key steps involved in these processes. This chapter also explores the
current SOTA methods for multiple object tracking. Chapter 3 introduces the novel dataset
developed specifically for this research, detailing the methodology used to establish ground
truth for the data. In Chapter 4, the focus shifts to the proposed modifications to an existing
object-tracking algorithm, along with the introduction of a new tracking algorithm that in-
corporates multiple motion models. Chapter 5 presents the experimental results, with a focus
on the specific use case, and provides a critical evaluation of the strengths and weaknesses of
each approach.

The thesis concludes by summarising the key findings and offering recommendations for future
research directions in Chapter 6.

Master of Science Thesis Mallika Tripathi

4 Introduction

Mallika Tripathi Master of Science Thesis

Chapter 2

Overview of Object Tracking

Object tracking focuses on the continuous identification and monitoring of a target object’s
spatial and temporal changes within a video or image sequence. The primary goal is to follow
the target’s movement and maintain its unique identity over time despite variations in scale,
orientation, lighting conditions, and occlusions [44]. This field has found widespread applica-
tions across diverse domains, ranging from surveillance and security to robotics, automotive
systems, augmented reality, and beyond. Object tracking is pivotal in extracting meaningful
information from dynamic scenes, enabling automated systems to make decisions, anticipate
future actions, and respond accordingly.

2-1 Introduction

Object tracking can be categorised into online and offline tracking based on when and how
the tracking algorithm processes the video data. Online tracking operates in real-time as the
video frames are captured. It continuously processes each incoming frame and updates the
object’s position on the fly. Offline tracking, on the other hand, processes the entire video
after it has been recorded. The algorithm analyzes the video as a whole rather than in real-
time. Online tracking algorithms need to be memory-efficient and computationally lightweight
to handle real-time constraints. They often prioritize speed over exhaustive analysis, while
offline tracking has more flexibility in terms of computational resources and memory usage. It
can afford to use more complex algorithms and analyze the video in greater detail since there
is no time constraint. It also utilizes a batch of frames to process the data, observations from
all the frames are required to be obtained in advance and are analysed jointly to estimate the
final output. The former method is crucial for applications where real-time decision-making
is essential, such as surveillance, robotics, and live video analysis while offline tracking is often
used in scenarios such as post-event analysis, video summarisation, or offline processing for
research purposes like tracking the yearly migration of animals and birds. Since the SeaClear
initiative aims to collect trash as it is detected, the focus of this literature review will be on
real-time algorithms for tracking.

Master of Science Thesis Mallika Tripathi

6 Overview of Object Tracking

Currently, real-time object-tracking algorithms can be divided into two groups based on the
methods used for tracking, these being detection-based tracking and detection-free tracking.
In the former, the system relies on an initial detection step to identify and locate objects
in the scene. This strategy is also commonly referred to as tracking-by-detection. First, an
object detector has to be trained in advance on specific kinds of targets, such as pedestrians,
vehicles or face. Detection-free tracking requires manual initialisation of a fixed number of
objects in the first frame, then subsequent tracking.

Feature Detection-based Detection-free
Initialisation Automatic, imperfect manual, perfect
No.of objects Varying Fixed at the start
Drawbacks Performance depends on object detector cannot handle new objects

Table 2-1: Comparing detection-based and detection-free tracking.

Detection-based tracking is more popular due to its ability to automatically handle the dis-
covery of new objects and the termination of disappearing objects—a task that detection-free
tracking struggles with. However, detection-free tracking is advantageous in that it does not
rely on pre-trained object detectors and hence there is no requirement for large datasets to
train a model for detection. SeaClear currently implements a trained neural network that
is capable of detecting various objects such as plants, animals, trash, and Remotely Oper-
ated Vehicle (ROV) in the underwater environment. Examples of the detections are shown
in Figure 1-1 and Figure 2-2. With the availability of a well-performing detection model,
tracking-by-detection is a better method to use than the detection-free method since the
drawback of the latter defeats the purpose of proposed object tracking. All the objects can-
not be initialised manually at the start because we will be unaware of how many objects the
ROV encounters. The detection and tracking of the objects will happen in real-time and
hence we will be focusing on algorithms suitable to this approach.

Tracking-by-Detection The majority of the State-of-the-art (SOTA) object tracking algo-
rithms are based on the tracking-by-detection method where the tracking is performed through
continuous detection and association of objects. This method encompasses multiple stages,
with each step employing a range of methods, including deep learning, signal processing, and
statistical modeling. The various steps are discussed below [1,44].

• Detection: Identifying the presence of an object in the initial frame of a video or im-
age sequence. This can be done using various object detection or feature detection
algorithms.

• Initialisation: Establishing a reference or model of the target object based on its ap-
pearance, features, or both by giving it a unique identity. This serves as the starting
point for subsequent tracking.

• Localisation: Continuously estimating the object’s position in subsequent frames, often
through methods like motion estimation or feature matching.

• Data Association: Linking the detected object in the current frame with the previously
identified target. This is a critical step in maintaining the object’s identity over time.

Mallika Tripathi Master of Science Thesis

2-2 Object Detection 7

Each of these steps can be addressed via different techniques depending on the ultimate use
case. In the subsequent subsections, the above steps will be discussed in more detail giving
examples of relevant work and keeping in mind an underwater, multi-class environment.

2-2 Object Detection

Object detection serves as a foundational step for object tracking when using the tracking-by-
detection method, providing initial information about the objects in a scene. It is imperative
to define the specific requirements for object detection by keeping in mind what needs to
be tracked. Various examples are illustrated in Figure 2-1, showcasing different forms of
detection. Different methods are suitable for each of these forms. The most commonly used
form is the bounding box shown in Figure 2-1(a). Deep learning-based approaches have
emerged as the predominant method for detecting objects in this format. A classic example
is using trained Convolution Neural Network (CNN) [30] to extract features from images and
hence detect objects. Subsequent advancements like the fast region-based (Fast R-CNN) [42]
have improved the speed and accuracy of object detection.

Figure 2-1: Illustration of object tracking forms. (a) bounding box, (b) ellipse, (c) contour, (d)
articulation block, (e) interest point, (f) silhouette.

One of the most popular real-time object detection algorithms is the You Only Look Once
(YOLO), known for its speed and efficiency. It processes the entire image in a single forward
pass through a neural network by dividing the input image into smaller grid cells. Object
detection is done on each of these smaller grids, making the process faster. A bounding box is
presented at each detected box with a confidence score indicating the model’s confidence that
the box contains an object. The low confidence scores are filtered out at the end. The current
detection model for SeaClear uses a YOLOv8 model, which is the latest iteration in the YOLO
series, trained on SeaClear data. The model performance can be seen in Figure 2-2 where
it detects fish close to the camera and a rope as trash. This image is from a video sequence

Master of Science Thesis Mallika Tripathi

8 Overview of Object Tracking

Figure 2-2: Detecting underwater objects in using the SeaClear YOLOv8 model on unseen data.

taken while scuba diving in Marseilles, France, and is not part of any dataset obtained or
used by the SeaClear team. This shows that the model performs quite well on unseen, new
data.

For contour or silhouette-type detection and tracking, the exact boundaries of the object
have to be extracted from an image. Even though deep-learning-based methods are widely
used, other traditional methods like optical flow or edge detection which uses colour and pixel
information generally give better results. Dalal et al. [9] use a locally normalised histogram of
gradient orientation features in a dense overlapping grid which is used for human detection.
The same has been used successfully to track humans via drone [13].

Detecting interest points, illustrated in Figure 2-1(e) also known as keypoint detection, serves
various purposes such as image stitching. It is instrumental in recognising specific big and
small human movements such as running, walking, and swimming, as well as smiling, crying,
and yawning [40]. A popular method in computer vision for detecting and describing local
features in images is the Scale-Invariant Feature Transform (SIFT). This involves identifying
distinctive key points and extracting descriptors to represent the local image structure. The
key points are invariant to image rotation and scale and are robust across a substantial range
of affine distortion, noise, and change in illumination [23]. The SIFT algorithm is discussed
further in Section 2-3-2.

For this research, employing bounding box detection seems to be a suitable method for both
object detection and tracking. This approach is preferred because it doesn’t necessitate the
identification of specific features of the trash. Additionally, the existing object detection
model for SeaClear effectively detects objects and provides bounding box outputs, making it
practical to focus on scenarios involving bounding boxes from now on.

2-3 Object Initialisation and Localisation

Once an object is identified, it must be assigned a unique reference or identity. This identity
must remain consistent across all subsequent frames to ensure that the object detected in

Mallika Tripathi Master of Science Thesis

2-3 Object Initialisation and Localisation 9

earlier frames is recognised as the same in later ones. Two primary methods are typically
employed for this purpose: motion estimation and feature matching. Motion estimation
involves predicting the object’s position and velocity using a motion model, while feature
matching relies on comparing the object’s appearance and key-points to track it. The choice
between these methods depends on the specific use case. For instance, if the objective is to
count the number of cars of different colors, feature matching would be more appropriate,
as cars with similar colors would share visual features and could be grouped. However,
this approach would be less effective for tracking the individual trajectories of each car.
The following sections will explore these different methods for object localisation in detail,
discussing their strengths and weaknesses in various scenarios.

2-3-1 Motion Estimation

In object tracking, motion estimation is crucial for predicting the future positions of objects,
enabling real-time monitoring and analysis [35]. This approach is especially useful in sit-
uations where an object’s appearance might change or when multiple objects share similar
features, making traditional methods like feature matching less dependable. In such cases,
motion estimation is more effective for tracking objects. The most widely used method for
motion estimation, Kalman Filters, will be discussed in detail next.

Kalman Filter Kalman filter is a mathematical algorithm that estimates the state of a system
in the presence of uncertainty and measurement noise. The filter achieves this by combining
predictions of the system’s state with actual measurements in an optimal way, considering
the uncertainties associated with both the system’s dynamics and the measurements [20].
The uncertainty related to the system dynamics, also known as the process noise, captures
factors that are not accounted for in the state transition model. Measurement uncertainty
accounts for the inaccuracies or disturbances present in the sensor measurements. It represents
the discrepancy between the true system state and the observed measurements. Both these
uncertainties are often modeled as a zero-mean random variable with a known covariance
matrix. For a system with state x, state transition matrix F , control input matrix B, and zk

as the measurement at k time, the prediction steps are defined as

x̂k|k−1 = F · x̂k−1|k−1 + Buk (2-1)

for the state prediction, where x̂ denotes the estimated state and the subscript k|k − 1 rep-
resents time step k given the state estimate at the previous time step k − 1. The covariance
prediction step is given as

Pk|k−1 = F · Pk−1|k−1 · F T + Q (2-2)

Here Q is defined as the process noise covariance matrix and P is the covariance of the state
estimate. The update step of the Kalman filter process comprises the Kalman gain update,
state update, and covariance update. The Kalman gain adjusts the predicted state estimate
based on the reliability of the measurements and the predicted state. It helps strike a balance
between the predicted state and the observed measurements, giving more weight to the more
reliable source. The Kalman gain is given by

Kk = Pk|k−1 ·HT · (H · Pk|k−1 ·HT + R)−1 (2-3)

Master of Science Thesis Mallika Tripathi

10 Overview of Object Tracking

where H is the measurement matrix, and R is the measurement noise covariance matrix. The
state update step is given by

x̂k|k = x̂k|k−1 + Kk · (zk −H · x̂k|k−1) (2-4)

and the covariance update as

Pk|k = (I −Kk ·H) · Pk|k−1 (2-5)

where I is an identity matrix.

In the case of object tracking, there is no control input, uk. A challenge in using the Kalman
filter for object tracking is the requirement for a precise discrete-time linear dynamic system.
This system must possess a state transition matrix that accurately relates the current state
and the subsequent state. Mathematically this is given as

xk+1 = Axk (2-6)

with A being the state transition matrix.

Another challenge is defining the state vector x. Vasuhi et al. in [39], defined the state vector
as [px, pv, vx, vy]T for a single human tracking with (px, pv) as the 2D coordinates of the object
and (vx, vy) the velocity in each direction. Bewley et al. in [6] defined the state vector as
[u, v, s, r, u̇, v̇, ṡ]T , where u and v represent the horizontal and vertical pixel location of the
center of the target, while the scale s and r represent the scale (area) and the aspect ratio of
the target’s bounding box respectively.

Creating a precise discrete-time linear state space model for entities like animals, fish, and
trash, as relevant to our context, presents a considerable challenge. Additionally, the util-
isation of Kalman filters is constrained by the necessity for the specified noise to follow a
Gaussian distribution, and for the object model to be linear. Usually, the motion of a fish
and floating trash along with the water current does not follow a linear motion. Finding an
accurate linearisation for the nonlinear motion is of utmost importance for the Kalman filter
giving satisfactory results.

2-3-2 Feature Matching

Feature matching is a widely used method for object localisation which focuses on the iden-
tification and correspondence of distinctive features between consecutive frames. The goal is
to find points or regions in one image that correspond to the same points or regions in the
previous image. These regions are generally features like corners, edges, or key points [36].
SIFT [23] is a widely used algorithm in computer vision for detecting and describing dis-
tinctive features in images. It is known for its robustness to changes in scale, rotation, and
illumination. It begins by creating a series of blurred versions, called scale levels, of the
original image using Gaussian smoothing [11]. In this process, the image is convoluted with
a Gaussian function kernel. A Difference of Gaussians is computed by subtracting adjacent
blurred images in the scale-space. Local extrema in the Difference of Gaussians images are
identified as potential keypoint locations. The algorithm assigns orientations to these iden-
tified key points based on local gradients, ensuring rotation invariance. A local image patch

Mallika Tripathi Master of Science Thesis

2-4 Data Association 11

(a) Strong water currents. Notice that the objects
in the background are not hazy.

(b) Illustrating the blueish-green tint in underwater
images, part of the SeaClear dataset.

Figure 2-3: Images from the SeaClear dataset.

around each key point is taken, and a descriptor is generated to represent the key point’s
appearance. Keypoint descriptors from two images are matched by comparing their feature
vectors. A common method is to use the Euclidean distance between the descriptors.

A major drawback of this method is that it needs stable SIFT features that persist throughout
the video, but this is unlikely to exist in underwater environments due to illumination changes
and most importantly occlusion. Also, I suspect that similar-looking trash, fishes, and plants
would have similar key points and descriptors confusing the algorithm and hindering tracking
in a multi-object scenario. In the underwater environment, the true colour of objects is not
captured by cameras and there is usually a blueish-green tint, as seen in Figure 2-3a and
Figure 2-3b, making the colour histogram very biased to that feature. These considerations
render the feature-matching technique unsuitable for this particular case, leading to a focus
on motion estimation techniques for the remainder of the research.

2-4 Data Association

Data association refers to the process of linking observations or estimates obtained from
sensors or algorithms to the corresponding real-world entities they represent. In the field
of object tracking, the goal is to associate the detected objects from frame to frame and
hence maintain a consistent identity for the object. For example, in the Kalman filter seen in
section 2-3-1, the prediction of each object is to be associated with the detection in the next
frame. This is done by a data association algorithm.

The simplest data association method is to associate each detection in the current frame with
the nearest detection in the previous frame based on a distance metric, such as Euclidean
distance or Mahalanobis distance [17]. The Euclidean distance is the distance between any
two points, P and Q given as

d(P, Q) =
√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pn − qn)2 (2-7)

Master of Science Thesis Mallika Tripathi

12 Overview of Object Tracking

and the Mahalanobis distance is a measure of the distance between a point P and a distri-
bution D. For a point P from a distribution D with mean µ and covariance matrix Σ, the
Mahalanobis distance is given by

DM (P) =
√

(P − µ)⊤Σ−1(P − µ). (2-8)

This is the multi-dimensional generalisation of measuring how many standard deviations away
P is from the mean of D. While Euclidean distance is appropriate for uncorrelated variables,
Mahalanobis distance is more suitable when there is a correlation between variables. It
reduces to the Euclidean distance when the covariance matrix is the identity matrix. Effective
data association for object tracking use cases ensures that the correct identity of objects is
maintained across frames, even in the presence of challenges such as occlusions, appearance
changes, and noise in complicated and crowded scenarios. For the case of object tracking, each
object prediction in the current frame is compared with every object present in the previous
frame and matched appropriately. This matching cannot be done with a distance metric but
needs to be solved optimally.

The Hungarian algorithm [22], also known as the Kuhn-Munkres algorithm, is a commonly
used method for data matching and solving multiple problems together. It is a combinatorial
optimisation algorithm [12] that deals with finding the optimal assignment of a set of tasks
to a set of agents, each with an associated cost or weight. In other words, the goal is to
minimise the total cost of assigning tasks to agents while ensuring that each task is assigned
to exactly one agent, and each agent is assigned to at most one task. This is mathematically
represented as a cost matrix, where the rows correspond to tasks, the columns correspond to
agents, and each matrix entry represents the cost of assigning a particular task to a specific
agent. A common combinatory optimisation problem is the traveling salesman problem. The
steps followed by the Hungarian algorithm are given below.

• Initialisation: Starting with a cost matrix that represents the costs or profits associated
with assigning tasks to agents.

• Row Reduction: For each row of the cost matrix, the minimum cost in that row is
subtracted from all the elements in the row. This ensures that at least one zero is
present in every row.

• Column Reduction: For each column of the cost matrix, the minimum cost in that
column is subtracted from all the elements in the column. This ensures that at least
one zero is present in every column.

• Cover Columns and Rows: All columns and rows containing zeros are covered with a
line. If the number of lines is equal to the size of the matrix, i.e. (n for a n*n matrix),
the algorithm is done. Otherwise, the algorithm proceeds to the next step.

• Update Costs: The smallest element that is not covered by a line in the previous step is
found and subtracted from all uncovered elements, and added to all elements that are
already covered.

• Repeat: The last two steps are repeated till an optimal solution is reached.

Mallika Tripathi Master of Science Thesis

2-5 Above-land Object Tracking Algorithms 13

In the case of data association for object tracking the cost matrix is computed for the Hun-
garian algorithm with different distance metrics such as the Euclidean distance, convolutional
cost, Mahalanobis distance, etc.

2-5 Above-land Object Tracking Algorithms

As evident from the preceding sections, object-tracking is a multi-stage process and the se-
lection of a specific algorithm at each step requires careful consideration. This section con-
solidates all the individual steps to engage in a discussion and comparison of diverse SOTA
object-tracking algorithms.

2-5-1 IOU Tracker

The Intersection-over-union (IOU) tracker is a very simple method based on the assumption
that the detector produces a detection per frame for every object to be tracked, i.e. there
are barely any few missing detections [7]. Furthermore, it is assumed that detections of an
object in consecutive frames have an unmistakably high overlap IOU which is commonly the
case when using sufficiently high frame rates. The IOU is a popular metric used in object
detection that calculates the amount of overlapping between two bounding boxes which are
usually a predicted bounding box and a ground truth bounding box. This metric is defined
as the ratio of the intersection of the two boxes’ separate areas’ to their combined areas.
Mathematically this metric is defined as

|A ∩ B|
|A| ∪ |B| (2-9)

where A and B are the two bounding boxes.

Figure 2-4: Visualising the IOU metric.

A simple IOU tracker continues tracking an object by associating it with the detection in the
previous frame that has the highest IOU score, provided that this score surpasses a specified

Master of Science Thesis Mallika Tripathi

14 Overview of Object Tracking

threshold, σIOU. In [7], the performance is further improved by filtering out all tracks with
a length shorter than a threshold, tmin, and the ones without at least one detection with
a confidence score above σh. Short tracks are removed because they usually root in false
positives and add clutter to the output. Requiring a track to have at least one high-scoring
detection ensures that the track belongs to a true object of interest while benefiting from
low-scoring detections for the completeness of the track. Only the best-matching, unassigned
detection is taken as a candidate to extend the track.

If the tracker is used online in conjunction with a state-of-the-art detector, the computational
cost compared to the detectors becomes negligible. Therefore, tracks can be obtained at
almost no additional computational cost from the detections. This algorithm outperforms
the SOTA in terms of object tracking in a simple, non-crowded environment with only a
fraction of the complexity and computational cost. With a good detection model available, a
simple IOU tracker may perform well on the SeaClear data.

2-5-2 SORT

Simple Online and Real-time Tracking (SORT) [6] is one of the most widely used object-
tracking algorithms. It is based on a tracking-by-detection framework which implies that the
tracking system relies on first detecting objects in each frame of a video or image sequence
and then associating those detections across frames to establish the trajectory of the object.
Wojke et al. in [6], adopt a straightforward approach that avoids incorporating appearance
features beyond the detection component. Object detection is achieved through a fast region-
based CNN, which produces bounding boxes around objects. SORT relies solely on the
bounding box’s position and size for both motion estimation and data association. Motion
estimation is then employed via a Kalman filter, utilising a linear constant velocity model
that approximates the inter-frame displacements of the objects and remains independent of
other objects and camera motion. The state of each object is characterised by a state vector
defined as

[u, v, s, r, u̇, v̇, ṡ]T . (2-10)

Here u and v represent the horizontal and vertical pixel location of the centre of the object,
while s and r represent the scale (area) and the aspect ratio of the objects’s bounding box
respectively.

Data association is done via the Hungarian algorithm where the assignment cost matrix is
computed as the IOU distance between each detection and all predicted bounding boxes from
the existing targets. A lower limit in the IOU is imposed to reject assignments where the
detection to target overlap is poor. After associating an object with its detection, the detected
bounding box is used to update the target state where the velocity components are solved
optimally via a Kalman filter framework as explained in Section 2-3-1. If no detection is
associated with the object, its state is simply predicted without correction using the linear
velocity model.

The most important part of the algorithm is creating identities. When objects enter or leave
the video, identities are assigned or removed. For new objects, the tracker is set up using the
size and position of the bounding box of the detected object. Since the speed of the object is
unknown at this point, it is assumed to as not moving and the velocity is set to zero. Hence the

Mallika Tripathi Master of Science Thesis

2-5 Above-land Object Tracking Algorithms 15

covariance of the velocity component is set to a large value indicating uncertainty. The new
tracker has a probationary period where it needs to be associated with additional detections.
This is done to gather enough evidence and avoid tracking false positives. If an object is not
detected for a certain number of frames tracking is terminated. to prevent the number of
trackers from growing indefinitely and reduce errors caused by making predictions without
corrections from the detector for an extended time. This parameter is set to 1 in [6]. This
decision is based on the fact that the method used for predicting the object’s future position
is not very accurate given the constant velocity model is a poor predictor of the true dynamics
and the main focus is on tracking from frame to frame. If an object that was previously lost
reappears, the tracking resumes with a new identity. This approach simplifies the tracking
process and is more concerned with short-term tracking rather than re-identifying objects
over a longer period.

The majority of motion estimation-based algorithms have been built on top of the SORT to
improve tracking performance by handling longer tracking and occlusion. Some of them are
discussed next.

2-5-3 ByteTrack

Zhang et al. in [43] introduces a simple, effective, and generic data association method,
Byte. In contrast to most algorithms that only utilize high-score detection boxes, here almost
every detection box is retained and separated into high-score ones and low-score ones. The
low-confidence detection boxes indicate occluded objects improving tracking performance.

Once objects are detected, the low-scoring and higher-scoring detections are segregated based
on a set threshold. After segregating, the Kalman filter is employed to predict the new
locations in the current frame for each track. The initial association involves applying the
Hungarian algorithm between the high-score detection boxes and all the tracks T , just like the
SORT algorithm. Tracklets that fail to match an appropriate high-score detection box, most
probably due to occlusion, motion blur, or size changes, are excluded and stored separately
in Tremain. A subsequent association is carried out between the low-score detection boxes and
these unmatched tracks. Following this second association, still unmatched low-score detec-
tion boxes are removed as they are now considered background. The tracks left unmatched
after the second association is placed into Tlost. For each track in Tlost, only when it exists
for more than a certain number of frames is deleted from the tracks T . This is to ensure if an
object re-enters the scene, it can be matched with a previous track in Tlost keeping its original
identity. This ensures there are minimum ID switches.

A simple and strong tracker named ByteTrack is designed in [43] by equipping the high-
performance detector YOLO [15] with the association method Byte.

2-5-4 BoT-SORT

Performance of the SORT-like approaches mainly depends on the quality of the predicted
bounding box of the tracklet. In many complex scenarios, predicting the correct location of
the bounding box may fail due to camera motion, which leads to low overlap between the two
related bounding boxes and finally to low tracker performance. BoT-SORT [2] builds on top of

Master of Science Thesis Mallika Tripathi

16 Overview of Object Tracking

ByteTrack by additionally handling camera motion compensation. This is done by adopting
conventional image matching to estimate the camera motion. The global motion compensation
(GMC) technique used in OpenCV’s [8] video stabilisation module with affine transformation
is followed. This image registration method is suitable for revealing the background motion.
First, the extraction of image key points [36] takes place, followed by sparse optical flow, which
focuses on tracking a subset of points instead of all the pixels/features for feature tracking.
The sparse matching techniques are leveraged to selectively focus on specific features in a
scene, excluding the influence of dynamic objects and thus estimating the background motion
more accurately.
Another variation of the algorithm is the BoT-SORT-ReID which enhances object tracking
by additionally combining appearance features with motion cues, providing a more robust
and accurate tracking system compared to traditional methods like SORT. BoT-SORT-
ReID does this by incorporating appearance embeddings extracted from a pre-trained object
reidentifying deep neural network. These embeddings are essentially unique visual signatures
that describe the appearance of an object, capturing details such as color, texture, and shape.
The appearance embeddings in BoT-SORT-ReID allow the algorithm to recognize and re-
identify objects when they reappear or change direction, ensuring that the same object is
tracked consistently throughout the sequence.
While appearance embedding is a valuable feature for tracking objects, it involves the complex
task of extracting and comparing detailed object features to ensure consistent identification
over time. This process is computationally demanding, particularly in real-time scenarios.
Algorithms must quickly handle and process large volumes of data in high-dimensional spaces,
which can strain computational resources and result in latency issues. Therefore, we have
opted not to use this algorithm in our research, as it does not meet the real-time processing
requirements we need.

2-6 Object Tracking Benchmarks

An object-tracking benchmark is a standardised evaluation framework used in the field of com-
puter vision to assess and compare the performance of different object-tracking algorithms.
These benchmarks typically consist of a set of video sequences with annotated ground truth
which provides information about the correct position and extent of the objects being tracked
in each frame. By using a common benchmark, researchers can objectively compare the
strengths and weaknesses of different tracking algorithms. Along with the datasets, different
benchmarks define different performance metrics based on specific use cases and requirements.
They also provide a common format for both the ground truth and the output generated by
tracking algorithms, facilitating straightforward comparisons.
There have been several object-tracking benchmarks for both single and multiple object track-
ing. The Object Tracking Benchmark (OTB) [41] and Visual Object Tracking (VOT) [21]
were some of the first to do so, but both are focused on single object tracking. The most
popular is the Multiple Object Tracking (MOT) benchmark [10], which has evolved into an
annual challenge in computer vision and tracking research, introducing increasingly complex
datasets each year. The challenge typically includes diverse scenarios, such as crowded scenes
and occlusions, to assess the robustness and accuracy of tracking algorithms in various real-
world conditions. Such benchmarks make it easier for researchers and developers to compare

Mallika Tripathi Master of Science Thesis

2-7 Comparisons 17

and advance the SOTA algorithms. In total 22 different datasets were published between 2015
and 2023 for the MOT Challenge. Of these 22, only one, 3D-ZeF [32] is remotely relevant to
the problem of underwater object tracking as it contains Zebrafish tracking in a laboratory
environment. A laboratory environment has good lighting and fish tanks are not deep enough
to accurately depict light distortion, and refraction that would occur in deep waters. There
is also an absence of dirt and water currents which contributes heavily in a real underwater
setting. Unfortunately, all the other existing tracking datasets are open-air and are based on
single-category tracking focusing on either pedestrians or vehicles.

Since no publicly accessible dataset for underwater object tracking exists, the aim is first
to develop a novel underwater multiclass multi-object tracking dataset. This dataset will
encompass a variety of object trajectories, both short and long, smooth and irregular. It aims
to represent diverse underwater conditions, including clear and murky water, and varying
water currents.

2-7 Comparisons

The SOTA object tracking algorithms are compared in Table 2-2, highlighting the difference
in the localisation and association steps and the advantages and disadvantages. Both the IOU
tracker and SORT are lightweight and computationally efficient, but the motion prediction in
SORT gives it an upper hand over the former. The association method is also optimal in SORT
rather than just matching with the highest IOU score, this improves performance in a crowded
scenario. When compared with SORT, ByteTrack gives a higher tracking accuracy and lesser
numbers of identities on the MOT17 dataset [26]. This result suggests that a simple Kalman
filter along with a long-range data association can achieve fewer identity switches when the
detection boxes are accurate enough. There is no need for any deep learning models to help
“remember” the object features to improve the tracking capabilities.

BoT-SORT and BoT-SORT-ReID give the best performance from all SORT-like algorithms
on MOT20 datasets containing above-the-sea datasets like pedestrian tracking, but they still
have several limitations. In scenes with a high density of dynamic objects, the estimation of
the camera motion may fail due to a lack of background key points. Wrong camera motion
may lead to unexpected tracker behavior. Another real-life application concern is the run
time. Calculating the global motion of the camera can be time-consuming when large images
need to be processed. With almost no underwater datasets for re-identification training a
neural network that gives an accurate feature embedding generation for BoT-SORT-ReID
is not feasible. Even if there were enough datasets, using appearance embeddings would
not be ideal. Unlike humans, fishes of the same species and the same kind of trash will
have the same features and similar feature embeddings. Despite these challenges, BoT-SORT
achieves tracking accuracy score 63.3% on the MOT20 dataset. In comparison, ByteTrack
is close behind, with a HOTA score of 61.3%. These metrics indicate that while BoT-SORT
slightly outperforms ByteTrack, both offer strong tracking accuracy and are efficient, making
them suitable for real-time applications. Meanwhile, the traditional SORT algorithm, though
faster and simpler, generally lags behind in these dense tracking environments. It achieves
a HOTA score of 45-50% on the MOT20 dataset, highlighting the advancements made by
newer methods like BoT-SORT and ByteTrack.

Master of Science Thesis Mallika Tripathi

18 Overview of Object Tracking

Hence the SORT, ByteTrack, and BoT-SORT seem like good candidates for a satisfactory
tracking performance along with less computation time. fish of the same species and similar
debris would likely produce indistinguishable features.

IOU SORT BoT-SORT
Detection CNN CNN CNN

Localisation Bounding box Kalman Filter with Kalman Filter with
No motion prediction scale and aspect ratio height and width of the

of the bounding box bounding box
Association IOU scores Hungarian Algorithm Byte - consider both

with IOU costs high and low scoring
detecting boxes

Advantages Computationally Lightweight Camera motion
efficient compensation

Disadvantage Performance dependent Poor performance in High image
on detection model occlusion and resolutions slow

nonlinear motion down the algorithm

Table 2-2: Comparing the SOTA object tracking algorithm based on motion estimation methods.

2-8 Summary

This chapter began by outlining the foundational steps in object-tracking algorithms, focusing
on the tracking-by-detection approach. In this approach, object detection, localisation, and
association are the primary stages, each with its own set of applicable algorithms. Localisation
techniques such as motion estimation and feature matching play a critical role, while the
Hungarian algorithm is highlighted for its effectiveness in solving linear assignment problems,
thereby optimising data association.
The discussion then delved into various SOTA tracking algorithms, starting with the IOU
tracker, which simplifies the tracking process by associating objects based solely on the high-
est IOU score. Following this, the SORT algorithm was explored. This algorithm enhances
object localisation through Kalman filtering and uses an IOU score-based cost matrix within
the Hungarian algorithm for more precise data association. The chapter then discussed Byte-
Track, which builds on SORT by incorporating the Byte association step, which improves
data association by considering both high-scoring and low-scoring detected bounding boxes.
Additionally, the chapter reviewed BoT-SORT and BoT-SORT-ReID, which introduce motion
compensation to address camera stabilisation issues. These methods leverage OpenCV’s video
stabilisation module, using background key points to enhance the robustness of ByteTrack.
The latter also incorporates an object re-identification neural network to enhance performance
in occluded scenarios.
The chapter concluded by highlighting the limitations and challenges within the current
object-tracking methodologies and set the stage for the next chapter. The forthcoming chap-
ter will explore existing datasets for object tracking, evaluate their suitability for the specific
use case, and develop a novel underwater dataset for future research and implementation
steps.

Mallika Tripathi Master of Science Thesis

Chapter 3

Novel Dataset for Underwater Object
Tracking

This research primarily aims to implement and compare the tracking performance of several
State-of-the-art (SOTA) algorithms, with a subsequent focus on enhancing object tracking in
underwater environments. A substantial dataset is essential to conduct a fair evaluation of
the algorithms. Since the objective is to track the objects, a collection of sequential images
or videos is required. The model for detecting objects in SeaClear currently has four different
classes, namely, animal, plant, Remotely Operated Vehicle (ROV), and trash. So we also
want to achieve multi-class multi-object tracking underwater.

3-1 SeaClear Dataset

As seen in the previous chapter, the Multiple Object Tracking (MOT) Challenge serves as a
significant collaboration among researchers worldwide, contributing groundbreaking efforts to
improve object-tracking algorithms. However, the datasets available through the MOT bench-
mark comprise only of open-air conditions. An alternative dataset, UOT100 [31], includes
104 underwater video sequences with over 74000 annotated frames derived from both natu-
ral and artificial underwater videos, featuring a diverse range of distortions. While lacking
trash-related content, this dataset includes videos with ground truth information for marine
animals. Most sequences depict single objects in a frame, and the videos have been sourced
from platforms like YouTube and National Geographic, with manual annotations provided

While this dataset can be used initially, it does not provide an ideal match for our purposes.
For instance, SeaClear stands out with the challenge of tracking four different classes and
a moving camera, which we have not yet come across while looking for datasets since even
open-air datasets are based on fixed CCTV camera footage. Also, the image sequences in the
UOT100 dataset are close to the surface, captured with good large camera equipment and
hence have good quality with lots of light. The SeaClear team has conducted extensive tests
using their ROV in diverse locations. The dataset derived from these tests will serve as the

Master of Science Thesis Mallika Tripathi

20 Novel Dataset for Underwater Object Tracking

(a) Light distortion underwater. (b) Bubbles caused due to water currents.

Figure 3-1: Various characteristics specific to an underwater dataset.

(a) Multiple trash objects together in murky water. (b) Single trash in clear water, with bounding box.

Figure 3-2: Different scenarios for trash collection from the SeaClear dataset.

definitive benchmark for evaluating algorithm performance in this research. SeaClear goes to
the ocean floor to collect trash where light reaches very scarcely and after lots of refractions
and reflection. As seen in Figure 3-1, light distortion, water currents, and additional motion
due to these currents bring more uncertainty and challenges in this environment.

3-2 Ground Truth Annotations

Collecting and processing videos for tracking is not enough to make a dataset capable of
being used for object tracking. The video sequences need to be annotated with ground truth
information to compute performance metrics ensuring a definitive and comparable result
rather than relying on intuition and the human eye. To ensure a consistent comparison, the
videos will undergo a self-annotation process.
Instead of manually annotating all frames, the existing detection model, is coupled with a
Python script, to generate initial ground truth annotations. While this automated process
will be flawed, inaccuracies will be corrected through manual annotation after this. The
subsequent steps for this process are outlined below.

• Detecting objects with their classes, confidence percentage, and bounding boxes using
the existing You Only Look Once (YOLO) detecting model.

Mallika Tripathi Master of Science Thesis

3-2 Ground Truth Annotations 21

Figure 3-3: Ground truth and expected tracking results.

• Using the output from the detector, unique and consistent identities will be assigned to
the objects. This will be done by comparing the class and bounding box location and
size from the previous frame.

• Errors and missed detections will be corrected by hand after this process.

These ground truths will be stored in a .txt file and can be changed to any other format like
.JSON if and when required. The format of the ground truths will be given as,

<Frame number><ID><Class number><left><top><width><height><Confidence>.

Each video will have a separate .txt file containing the ground truth annotations. <left>
and <top> represent the x and y coordinates of the left-top corner of the bounding box
respectively while the width and the height of the bounding box are represented by <width>
and <height> respectively. After annotating the ground truth, the result is expected to be
as seen in Figure 3-3.

The Python script for automatic annotations is given in Appendix B. After the annotation
process, the different kinds of object trajectories seen in the dataset are given in Figure 3-4.
Each subfigure corresponds to one video sequence. The pixel coordinates of the top left corner
of the bounding box are plotted illustrating the two-dimensional location of the object and its
corresponding trajectory. The trajectories in the third subfigure are illustrated in Figure 3-5
with the frame numbers on the x-axis. This 3D plot helps to see the gaps in the trajectories.
The trajectories shown in Figure 3-4 are only from four of the videos. In total, 82 different
object trajectories are annotated, with different length and motion characteristics.

Master of Science Thesis Mallika Tripathi

22 Novel Dataset for Underwater Object Tracking

0 500 1000 1500 2000
Pixel coordinate x

0

500

1000

1500

2000
Pi

xe
l
co

o
rd

in
a
te

 y

GT

0 500 1000 1500 2000
Pixel coordinate x

0

500

1000

1500

2000

Pi
xe

l
co

o
rd

in
a
te

 y

GT

0 500 1000 1500 2000
Pixel coordinate x

0

500

1000

1500

2000

Pi
xe

l
co

o
rd

in
a
te

 y

GT

0 500 1000 1500 2000
Pixel coordinate x

0

500

1000

1500

2000

Pi
xe

l
co

o
rd

in
a
te

 y

GT

Figure 3-4: Ground truth trajectories in the 2D space. The pixel coordinates are plotted on the
x and y-axis.

Figure 3-5: Ground truth trajectories of the third subfigure in Figure 3-4 in the 3D space. The
pixel coordinates are plotted on the y and z-axis and the frame number on the x-axis.

Mallika Tripathi Master of Science Thesis

3-3 Summary 23

3-3 Summary

This research aims to implement and compare the performance of various SOTA object-
tracking algorithms, with a focus on enhancing tracking in challenging underwater environ-
ments. A key aspect of this study is the creation and annotation of a dataset crucial for fair
algorithm evaluation. While the MOT20 benchmark is widely used for above-land tracking,
particularly for vehicles, it is limited to open-air conditions and lacks relevance for underwater
scenarios. Similarly, the existing UOT100 dataset, while containing useful underwater data,
falls short in several aspects, including the absence of trash-related content and limitations
in multi-class, multi-object scenarios. To address these gaps, the SeaClear project provides
a custom dataset captured by an ROV on the ocean floor, presenting unique challenges such
as low light, light distortions, and water currents. An initial automatic annotation process,
using an existing YOLO detection model, will be refined manually to ensure accurate ground
truth data for evaluating tracking performance. This annotated data will serve as the bench-
mark for the study, offering diverse object trajectories and scenarios that reflect real-world
underwater tracking challenges.

Master of Science Thesis Mallika Tripathi

24 Novel Dataset for Underwater Object Tracking

Mallika Tripathi Master of Science Thesis

Chapter 4

Novel Enhancements for Underwater
Object Tracking

4-1 State-space Representation

As seen in the current State-of-the-art (SOTA) for object tracking, the state space is repre-
sented using the bounding box coordinates and speed of the object. The location of the object
is represented using the center pixel, the aspect ratio, and the area of the bounding box. This
was done keeping in mind the motion of a pedestrian or a car, both of which generally move
in a two-dimensional plane similar to the camera setup. A CCTV camera is mounted on
a building, capturing cars and pedestrians moving along the road. The spatial relationship
between the cars or pedestrians remains constant, meaning that their aspect ratio— the ratio
of the bounding box’s width to its height—stays the same. Because the cars and pedestrians
do not move vertically and the camera does not rotate, they appear as two-dimensional ob-
jects. The aspect ratio remains unchanged since the only variation is in their distance from
the camera, which affects the width and height of the bounding box but not their ratio.

When a camera is in motion, it can move in any direction, particularly in the fluid environment
of water, where objects like fish and debris can float and rotate freely. This means that the
two-dimensional projection of an object, represented by a bounding box around it, will not
maintain a consistent shape or structure. For example, a fish swimming toward the camera
will appear with a different aspect ratio than the same fish swimming sideways. Similarly,
even with stationary debris on the seabed, the camera’s perspective changes as it moves above
it.

Keeping this in mind, the first proposed change is to change the state vector of the object in
the Kalman Filter. In the Simple Online and Real-time Tracking (SORT) algorithm and the
following algorithms built on it, ByteTrack, BoT-SORT, the state space is defined as

[u, v, s, r, u̇, v̇, ṡ]T . (4-1)

Master of Science Thesis Mallika Tripathi

26 Novel Enhancements for Underwater Object Tracking

Here u and v represent the horizontal and vertical pixel location of the centre of the object,
while s and r represent the scale (area) and the aspect ratio of the objects’s bounding box
respectively.
We now propose a change, not taking into consideration the aspect ratio and the area of the
bounding box, but just the width and the height. Also instead of taking the centre pixel
location, the pixel location of the top left corner of the bounding box is considered. This
makes the state vector an 8-variable vector defined as

[x, y, w, h, ẋ, ẏ, ẇ, ḣ]T . (4-2)

with (x,y) defined as the top left pixel coordinate of the bounding box, and w and h are
the width and the height of the bounding box respectively. This is also the output of the
convolutional neural network-based detection model used in SeaClear.

4-2 Velocity Estimation

Since the algorithms were designed keeping in mind pedestrian and vehicle movement, it is
assumed to follow constant velocity. But this is not the case for objects underwater. The
Remotely Operated Vehicle (ROV) does not move with a constant velocity and the water
disturbances make this motion more unpredictable. For more accurate tracking of the object,
improving the motion model is the focus.
The position and velocity estimates obtained using the Kalman filter are inaccurate because
the object’s motion does not follow a constant velocity model. During the update step of the
Kalman Filter, the position estimates are corrected using measurements of the actual object
position from the bounding box. However, since no velocity data is available, this correction
only applies to the position estimates. As a result, the velocity estimates remain inaccurate,
which can lead to errors in the overall estimates.
Two different velocity estimation methods are proposed and the result from these will be
assumed to be the actual velocity. These estimates will be used as "sensor data" in the
Kalman filter for the update step.

4-2-1 Analytical Formula

We start with considering the simplest definition of velocity, - the rate of change of position.
No matter the motion of the object, linear, nonlinear, circular, etc, the velocity of a point
mass can be described as

ẋk = xk − xk−1
dt

, (4-3)

where dt is the time difference. This can be extended to the single pixel describing the top
left corner of the bounding box.
The aim is to use this velocity value as a sensor measurement in the update step of the
Kalman filter. The update step does not occur at every frame, but only when a successful
data association is achieved. The velocity estimates are hence calculated as

ẋest = xcurr − xprev

time since update
, ẏest = ycurr − yprev

time since update
, (4-4)

Mallika Tripathi Master of Science Thesis

4-2 Velocity Estimation 27

with the time since update variable being the number of frames between two update steps
of the same object identity and xprev and yprev being the x,y pixel locations of the bounding
box at the last update step. The time since update variable is incremented by 1 at every
predicted step of the Kalman filter. The pseudo-code for this method is given in Algorithm 1.

Algorithm 1 Formula-based velocity estimation with the Kalman filter update step.
bbox← bounding box
kf ← Kalman Filter instance
xprev ← initial x position
yprev ← initial y position
time since update← 0
while tracking do

x← bbox[0]
y ← bbox[1]
if bbox matched with object then

xdot ← (x− xprev)/time since update
ydot ← (y − yprev)/time since update
kf.update(bbox, xdot, ydot)
xprev ← x
yprev ← y
time since update← 0

else
kf.predict()
time since update← time since update + 1

end if
end while

4-2-2 Optical Flow

Optical flow [18] is an algorithm that estimates the motion of pixels and key points between
consecutive frames by analysing the intensity changes. Optical flow is often represented
by a vector field, where each vector component represents the horizontal and vertical motion
(direction and velocity) of the pixel [25]. In optical flow, the brightness consistency assumption
is used. This assumption states that the intensity of pixels does not change across consecutive
frames. The intensity of a pixel in a frame at time step t at location (x, y) is equated to the
intensity of a pixel at the next frame at a slightly different location and represented as

I(x, y, k) = I(x + ∆x, y + ∆y, t + ∆t) (4-5)

From the Taylor-series expansion of Equation 4-5, assuming the movement to be small we get

I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) + ∂I

∂x
∆x + ∂I

∂y
∆y + ∂I

∂t
∆t + H.O.T. (4-6)

Ignoring the higher-order terms and equating Equation 4-5 to Equation 4-6, an initial optical
flow equation is derived as

∂I

∂x
∆x + ∂I

∂y
∆y + ∂I

∂t
∆t = 0 (4-7)

Master of Science Thesis Mallika Tripathi

28 Novel Enhancements for Underwater Object Tracking

Dividing Equation 4-7 by ∆t gives the optical flow equation

Ix · vx + Iy.vy = −It (4-8)

Equation 4-8 is also known as the gradient constraint with two unknowns (vx, vy), the veloci-
ties in the x and y direction, respectively. Under the assumption of constant brightness, other
constraints are brought into play to solve Equation 4-8 to obtain the pixel velocities. Cur-
rently, two widely used algorithms are the Lucas-Kanade method and Horn-Schunck method
which can be found in detail in [25].

We want to see if optical flow can be used to estimate the general velocity of motion and
used with the Kalman filter. We will be discussing and analysing two popular methods to
implement optical flow.

Sparse Optical Flow The first and most commonly used method is to start with finding
good features to track and then calculate the optical flow of these features. An advantage of
this method is that the features would be ideally persistent in the video or image sequence.
When using this method, we use the built-in function in OpenCV, goodFeaturesToTrack.
The optical flow of these features is calculated by solving for the displacement by minimising
the difference in intensity values between corresponding patches in successive frames. This
method is also known as the sparse optical flow [3].

(a) Frame 189 (b) Frame 199

Figure 4-1: Image Frames from a video sequence of the SeaClear dataset. The above are 10
frames apart.

This method is applied to the SeaClear dataset to evaluate its performance. In Figure 4-1,
two images from a video sequence 10 frames apart are illustrated. The optical flow of the
identified good features to track is shown in Figure 4-2. Notably, only two pixels are selected
as good features to track, represented by the two blue lines. Aside from the text on the frame,
these selected features do not correspond to any significant object of interest, such as the tire
depicted in the frame.

Mallika Tripathi Master of Science Thesis

4-2 Velocity Estimation 29

(a) Frame 189 (b) Frame 199

Figure 4-2: Sparse Optical flow output of the image frames. The motion trajectories are shown
in green line from the pixels of interest.

Dense Optical Flow Unlike sparse optical flow, which tracks a limited number of distinct
feature points, dense optical flow aims to compute a motion vector for each pixel, providing a
comprehensive view of how objects in the scene are moving. The cv2.calcOpticalFlowFarneback
function in OpenCV implements the Farnebäck [14] dense optical flow algorithm, which is a
robust and efficient method for computing dense optical flow. It employs polynomial expan-
sion to approximate local pixel neighborhoods and utilizes a multi-scale approach with image
pyramids to handle varying levels of detail and large displacements.

Implementing a dense optical flow on the same frame has no noticeable results yet again as
seen in Figure 4-3. The actual image frame is converted to its grey variant and small green
dots represent the motion vectors of the pixels. At the bottom right in Figure 4-3a, below the
tire the optical flow gives some velocity arrows. We also check other frames of the same video
with some more motion. In Figure 4-4 we see the dense optical flow gives a good result of the
movement of pixels. A reason for this can be a faster motion and clearer difference in pixels.
For example in frame 318, there are more “white” pixels from the plastics trash as compared
to frame 189, in other words, this frame is closer to the trash, making the boundaries more
clear, and giving more difference between adjoining pixels. Figure 4-4a shows the direction
and intensity of the motion using green arrows and Figure 4-4b shows only the optical flow
vectors, with the cooler colours being small in intensity and warmer colours more intense.

(a) Frame 189 with dense optical flow indicated by
green dots and small green motion vectors.

(b) Frame 189 dense optical flow mask. No colours
indicate a lack of motion.

Figure 4-3: Dense Optical flow and mask of image frame 189 of the same video sequence.

Master of Science Thesis Mallika Tripathi

30 Novel Enhancements for Underwater Object Tracking

(a) Frame 318 with dense optical flow. The green
vectors illustrate the motion of the pixels.

(b) Frame 318 dense mask. The colours indicate the
direction of the motion.

Figure 4-4: Dense Optical flow and mask of frame 318 of the same video sequence.

With this, we can conclude that even though we cannot get motion information on specific
features and pixels in a video sequence, more general optical flow information can be received
using the dense optical flow method. This also confirms that using feature-based object-
tracking algorithms would not work on underwater data.

The aim now is to use this general velocity information as the sensor data in the Kalman
filter update step, just as we did in the previous subsection instead of using formula-based
framework.

Algorithm 2 Using optical flow for velocity estimation with the Kalman filter update
step.

bbox← bounding box
kf ← Kalman Filter instance
imgp ← previous gray image frame
img← current gray image frame
s← space between dense points
fps← 25 {no. of frames per second}
if bbox matched with object then

flow← cv2.calcOpticalFlowFarneback(imgp, img)
h, w ← img.shape[: 2]
y, x← mesh grid[s/2 : h : s, s/2 : w : s]
fx, fy ← Transpose(flow[y, x])
xdot ← fx.mean ∗ fps {Estimate velocity in x direction}
ydot ← fy.mean ∗ fps {Estimate velocity in y direction}
kf.update(bbox, xdot, ydot)
time since update← 0

else
kf.predict
time since update← time since update + 1

end if

Mallika Tripathi Master of Science Thesis

4-3 Interacting Multiple Models 31

4-3 Interacting Multiple Models

The Interacting Multiple Model (IMM) filter is a probabilistic algorithm used for state es-
timation to handle situations where the dynamics of a system can change over time. It is
beneficial when multiple possible models can describe the evolution of a system and the true
model is not known beforehand or changes dynamically [16]. The IMM filter maintains mul-
tiple dynamic models, each representing a different hypothesis about the system’s behavior.
These models could correspond to different modes of operation, such as constant velocity,
turn, or other complex maneuvers. Since we are unaware of the exact motion model of the
ROV using the IMM filter seems suitable.

Each model in an IMM filer has an associated probability that reflects how likely it is that
the system is currently following that particular model with µj

k being the probability of the
jth model at time step k. These probabilities are updated over time based on the sensor
measurements. This model probability is initialised by µj

0 for each model j. There is also a
mixing probability, µ

i|j
k−1 for when the system was in mode i at time k − 1 given that it is in

mode J at time step k defined as

µ
i|j
k−1 =

µi
k−1πij∑M

l=1 µl
k−1πlj

, (4-9)

where πij is the transition probability from model i to model j and
∑M

l=1 µl
k−1πlj is the

normalising factor. The mixed state estimate and covariance are calculated as

x̂0j
k−1|k−1 =

M∑
i=1

µ
i|j
k−1x̂i

k−1|k−1 (4-10)

and

P̂ 0j
k−1|k−1 =

M∑
i=1

µ
i|j
k−1

[
P̂ i

k−1|k−1 +
(
x̂i

k−1|k−1 − x̂0j
k−1|k−1

) (
x̂i

k−1|k−1 − x̂0j
k−1|k−1

)T
]

(4-11)

respectively, with x̂i being the estimated state vector of model i and P i the covariance.
Predictions are made independently using each model, j. The initial mixed state estimate,
x̂0j

k−1|k−1, is passed forward in time, based on the model dynamics, outputting the model state
prediction and covariance update as

x̂i
k|k−1 = A(i)x̂0i

k−1|k−1 (4-12)

and
P i

k|k−1 = A(i)P 0i
k−1|k−1AT(i) + Q (4-13)

respectively. Sensor measurements are then used to update the state estimates for each
model. The update process includes calculating the likelihood of the measurements given
other models and this is defined as

Λj
k = 1√

(2π)m
∣∣∣Sj

k

∣∣∣ exp(−1
2(Zj

k)T · (Sj
k)−1 · Zj

k), (4-14)

Master of Science Thesis Mallika Tripathi

32 Novel Enhancements for Underwater Object Tracking

with innovation Zj
k and innovation covariance Sj

k of model j at time step k. The innovation
and its covariance is defined as

Zj
k = zk −H · xj

k (4-15)

and
Sj

k = Hj · P 0j
k · (H

j)T + R (4-16)

respectively. Here zk is the measurement from the sensor at time step k, Hj is the measure-
ment matrix of model j, and R is the measurement noise matrix. The mode probabilities are
then updated using the likelihood as

µj
k =

Λj
k

∑M
i=1 µi

k−1πij∑M
l=1 Λi

k

∑M
i=1 µi

k−1πil

. (4-17)

After the update step, the IMM filter combines information from all models to produce a
final estimate of the system’s state. This combination is weighted by the probability of each
model, reflecting how likely it is that the system is following that particular model.

Models Up until now, we have been applying the widely used constant velocity model.
However, we can confidently state that an underwater object would not adhere to this motion.
Therefore, the aim is to implement the IMM filter to introduce another model, the constant
acceleration model, to introduce variation and evaluate how well it describes the motion.
In this approach, the model will have no constraints on estimating the object’s velocity.
This would increase the number of states in the system. The state vector for the constant
acceleration model is,

[x, y, w, h, ẋ, ẏ, ẇ, ḣ, ẍ, ÿ]T (4-18)

The width and the height are not considered here for the constant acceleration and are still
considered to change with constant velocity. We are more interested in making sure that the
top left corner of the bounding box follows different motions. and that the width and the
height of the bounding box do not contribute to the overall trajectory of the object.

This motion model for a constant acceleration model is

xk+1
yk+1
wk+1
hk+1
ẋk+1
ẏk+1
ẇk+1
ḣk+1
ẍk+1
ÿk+1

=

1 0 0 0 dt 0 0 0 1
2dt2 0

0 1 0 0 0 dt 0 0 0 1
2dt2

0 0 1 0 0 0 dt 0 0 0
0 0 0 1 0 0 0 dt 0 0
0 0 0 0 1 0 0 0 dt 0
0 0 0 0 0 1 0 0 0 dt
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

xk

yk

wk

hk

ẋk

ẏk

ẇk

ḣk

ẍk

ÿk

(4-19)

We will be using an IMM filter with two different motion models, constant velocity and
constant acceleration, and evaluate the outcome.

Mallika Tripathi Master of Science Thesis

4-4 Summary 33

A constraint of the IMM filter is that the number of states in all models should be the same,
for consistent mixing of state estimates. To make sure this is the case, we have to make
changes in the constant velocity model to incorporate the states ẋ and ẏ. This is done by
making all the entries of the last two columns and rows of the state transition matrix 0. This
gives a modified constant velocity model given as

xk+1
yk+1
wk+1
hk+1
ẋk+1
ẏk+1
ẇk+1
ḣk+1
ẍk+1
ÿk+1

=

1 0 0 0 dt 0 0 0 0 0
0 1 0 0 0 dt 0 0 0 0
0 0 1 0 0 0 dt 0 0 0
0 0 0 1 0 0 0 dt 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

xk

yk

wk

hk

ẋk

ẏk

ẇk

ḣk

ẍk

ÿk

(4-20)

4-4 Summary

In this chapter, several modifications to existing object-tracking algorithms are proposed to
enhance performance in underwater environments. The first modification involves altering
the state vector used in the state space representation of an object. Instead of relying solely
on area and a fixed aspect ratio, the state vector is expanded to include the width and height
of the bounding box. This allows the bounding box to dynamically adjust to any rectangular
shape.

The next proposed modification introduces velocity estimation techniques to improve sensor
measurements during the update step of the Kalman filter. Two methods are utilised for
velocity estimation. The first method calculates velocity using an analytical formula based
on the rate of change in position, derived from the previous pixel location, current position,
and the time interval between measurements. The second method employs dense optical flow
applied to the image sequence, capturing the overall motion across the frame. Optical flow is
a technique in computer vision that calculates the motion of objects in a scene by analysing
the changes in pixel intensity between consecutive video frames. It provides a vector field
representing the direction and speed of motion for each pixel.

To support a wider range of motion models without restricting velocity, an IMM filter is
implemented. An IMM filter is an advanced estimation algorithm that combines multiple
models to predict and update the state of a dynamic system. It switches between different
motion models, weighting them based on their likelihood, to improve accuracy in tracking
targets with varying motion patterns. This research combines two distinct motion models:
constant velocity and constant acceleration. This approach is necessary due to the uncertainty
associated with the nature of underwater motion.

The next chapter will provide a detailed illustration and discussion of the algorithms’ perfor-
mance.

Master of Science Thesis Mallika Tripathi

34 Novel Enhancements for Underwater Object Tracking

Mallika Tripathi Master of Science Thesis

Chapter 5

Experimental Results

In this chapter, we will begin by implementing various State-of-the-art (SOTA) object tracking
algorithms, originally designed for above-land conditions, on an underwater dataset. Follow-
ing this, we will evaluate the performance of the newly proposed algorithms using the same
dataset and conduct an extensive comparison. Prior to discussing the results, it is crucial
to comprehend the mathematical metrics employed to evaluate the performance of object-
tracking methods.

5-1 Performance Parameters

While it is desirable to condense the performance of object-tracking algorithms into a single
metric for straightforward comparison, this approach is not feasible. Evaluating the perfor-
mance of a tracking algorithm involves considering several aspects. First, it is important to
determine how many objects the algorithm can track. However, this raises further consid-
erations: Does this refer to the total number of objects tracked, regardless of whether they
are tracked for just a second or for an extended period? Or does it pertain to how many
objects are accurately tracked for the longest duration? Additionally, one must consider how
frequently the algorithm switches the identity of an object or fails to track the object across
frames. In a multi-class scenario, another factor is whether all classes are tracked equally, or if
the algorithm excels in tracking one class while performing poorly with another. These varied
aspects cannot be encapsulated by a single numerical value. One might want to provide more
informative performance estimates by detailing the types of errors the algorithms make, which
precludes a clear ranking. Hence various metrics need to be taken into consideration when
looking at the overall performance of a tracking algorithm. Some of the various performance
metrics used in object tracking are discussed below with a ↑ or ↓ symbol indicating if a higher
or a lower score means better performance.

Intersection-over-union (IOU)(↑) As discussed in Equation 2-9, IOU between two bound-
ing boxes is the ratio of the area of intersection of the boxes to the total area covered by the

Master of Science Thesis Mallika Tripathi

36 Experimental Results

boxes. A higher IOU implies better object detection as it implies that the area of the union
of the two bounding boxes is closer to the area of the intersection. This metric is widely used
in object detection and data association. It is usually also used to calculate the cost matrix
in the Hungarian algorithm.

True Positive(TP)(↑) In the context of object tracking, true positive refers to a situation
where the tracking system correctly identifies and associates a tracked object with its corre-
sponding ground truth or actual object in the video frames.

False Positive(FP)(↓) A false positive occurs when the tracking system erroneously iden-
tifies and associates a region or object as a target object when in reality, there is no corre-
sponding object or the object is different from what was identified.

False Negative(FN)(↓) A false negative represents a failure in the tracking system to iden-
tify an existing object. A good result is expected to have as few false positives and false
negatives as possible.

Precision(↑) Precision assesses the accuracy of positive predictions generated by a model.
From all the instances predicted as positive, it quantifies the proportion which are genuinely
positive. Mathematically this is defined as

Precision = True Positives
True Positives + False Positives . (5-1)

Recall(↑) Recall quantifies a model’s effectiveness in capturing all relevant instances. It
signifies the model’s capability to accurately identify genuine positive instances among the
entire set. This is defined as

Precision = True Positives
True Positives + False Nagatives . (5-2)

Though it is desirable to have high precision and recall, there is generally a trade-off between
the two. A tracker with high precision and low recall is cautious. It is confident about the
positive instances it tracks but might miss a substantial number of actual positives. On the
flip side, a tracker with high recall and low precision casts a broader net. It tracks most of
the actual positive instances but is prone to false positives.

Identity switches(↓) This metric is defined by the number of times the identity of a target
object changes to a different previously tracked object or a new identity. The number of
identity switches from henceforth is denoted as IDSW.

Mallika Tripathi Master of Science Thesis

5-1 Performance Parameters 37

MOTA(↑) Multi-object Tracking Accuracy (MOTA) is the most widely used figure to eval-
uate a tracker’s performance [5]. The main reason for this is its expressiveness as it combines
three sources of errors defined above, false negative, false positive, and identity switches. This
is numerically calculated using

MOTA = 1−
∑

t (FNt + FPt + IDSWt)∑
t Gt

(5-3)

formula. The ground truth is defined as G. The variable t is the frame index.

Detection Accuracy(↑) Detection Accuracy (DetA) measures the alignment between the set
of all predicted detections and the set of all ground-truth detections. A localisation threshold,
α, is defined above which two detections are considered to intersect. Detection accuracy at a
localisation threshold is defined as

Det Aα = |TP|
|TP|+ |FN|+ |FP| . (5-4)

Associaltion Accuracy(↑) Association measures how well a tracker links detections over
time into the same identities, given the ground-truth tracks. The intersection between two
tracks is measured as the number of True Positive matches between the two tracks, called
True Positive Associations (TPA). Any remaining detections in the predicted track, which are
either matched to other ground-truth tracks or none at all, are False Positive Associations
(FPA), and any further remaining detections in the ground-truth track are referred to as
False Negative Associations (FNA). Just as for detection accuracy, a localisation threshold
is defined above which the tracks are considered to match. The association accuracy at a
certain localisation threshold α is given by

AssAα = 1
|TP|

∑
c∈{TP}

|TPA(c)|
|TPA(c)|+ |FNA(c)|+ |FPA(c)| . (5-5)

HOTA(↑) Higher Order Tracking Accuracy (HOTA) is the geometric mean of the detection,
association and localisation accuracy. HOTA at a certain localisation threshold is given as

HOTAα =
√

DetAα ·AssAα. (5-6)

It is the only monotonic metric as opposed to metrics such as MOTA, which overemphasizes
detection [24]. Integrating this value over all localisation thresholds from 0 to 1 as

HOTA =
∫

0<α≤1
HOTAα (5-7)

gives the final value which can be used to look at tracking performance without looking at
other metrics.

Mostly Tracked(↑) This is the number of ground-truth tracks that have the same label for
at least 80% of their life span.

Master of Science Thesis Mallika Tripathi

38 Experimental Results

Mostly Lost(↓) This is the number of ground truth tracks having the same identity for at
most 20% of their respective life spans.

Fragmentation(↓) Defined by the number of times a ground truth track is interrupted by
missed detections.

Depending on the use case, a trade-off between accuracy and speed has to be chosen since
the speed of most accurate trackers is considered too slow for real-time applications. For
the SeaClear use case, a preference is given to the HOTA metric as that is the only single
metric that reflects a good balance between detection accuracy, localisation accuracy, and
association accuracy. With this, the number of identity switches and mostly tracked and
mostly lost trajectories will be seen when comparing the performances of various trackers.
For a deeper comparison of performance, the recall and precision metrics will be taken into
consideration.

5-2 Above-water Object Tracking Algorithms

The SOTA object tracking algorithms discussed in Chapter 2 will be implemented using the
novel dataset created. Based on the metrics discussed above, the performance of these trackers
will be compared. Different parameters will be chosen and tuned to optimise the performance
of each algorithm. By adjusting these parameters, the goal is to enhance HOTA, reduce iden-
tity switches, and improve the overall tracking consistency. This process of parameter tuning
will involve a systematic exploration of various settings to identify the optimal configuration
that yields the best results on the novel dataset created for underwater object tracking.

5-2-1 IOU Tracker

The IOU tracker is the simplest tracker of all. Only detections given from the SeaClear
detection module are used to track the objects without any motion estimation techniques.
The detections are compared in each frame with the previous frame using the IOU score. The
algorithm waits for successful associations of Tmin frames to start the tracking process, this
is done to reduce false positives. It is also required that the track has at least one detection
with a confidence score above σh, which ensures that it belongs to a true object of interest
while also benefiting from low-scoring detections for the completeness of the track. There is
also a matching threshold, σIOU . Only an IOU score above this threshold is considered to be
a match. Detections below a certain confidence score σl are not considered.

These parameters can be tuned according to the use-case requirements and in order to improve
the performance. Starting with initial parameters as σh = 0.8, σiou = 0.5, σl = 0.35 and tuning
the Tmin parameter. This means that only detections with confidence scores above 0.35 will
be considered. For a successful match, the IOU score has to be larger than 0.5 and each
object track should have one detection confidence score over 0.8. The tracking results with
these parameters are shown below.

As seen from Table 5-1, with an increase in Tmin the detection accuracy decreases but the
association accuracy increases. Keeping the value of Tmin above 0 would mean that the first

Mallika Tripathi Master of Science Thesis

5-2 Above-water Object Tracking Algorithms 39

Tmin HOTA DetA AssA LocA IDs IDSW MT ML Frag
10 57.804 71.719 46.589 99.966 101 58 18 43 25
20 57.67 70.5 47.174 99.965 87 49 18 45 23

Table 5-1: IOU tracker results with σiou = 0.5.

0 500 1000 1500 2000
x Pixel coordinate

0

200

400

600

800

1000

1200

1400

1600

1800

2000

y
 P

ix
e
l
co

o
rd

in
a
te

Ground Truth

0 500 1000 1500 2000
x Pixel coordinate

0

200

400

600

800

1000

1200

1400

1600

1800

2000

y
 P

ix
e
l
co

o
rd

in
a
te

IOU tracker

Figure 5-1: Ground truth and IOU tracker results for a video sequence with multiple object
trajectories.

Tmin occurrences of an object will always be missed since the track is not initialised as of
yet, but keeping this parameter is important to filter out false positive detections. So it is
obvious that as Tmin increases the detection accuracy will always decrease. Additionally, it
is also observed that the identity switches decrease along with an overall number of total
identities, while the number of mostly lost trajectories increases. This is another consequence
of increasing Tmin, when more detections will be missed, there will be more lost trajectories.
Next, the σiou parameter is decreased to 0.3, to make the matching criteria more lenient and
see how the tracking performance changes.

Tmin HOTA DetA AssA LocA IDs IDSW MT ML Frag
10 59.168 72.815 48.079 99.971 101 56 21 41 24
20 59.022 71.576 48.67 99.97 87 46 21 43 22

Table 5-2: IOU tracker results with σiou = 0.3.

On decreasing σiou, the value of HOTA increases along with mostly tracked (MT) trajectories
even though the number of identities remains the same when compared to Table 5-1. The
number of identity switches decreases with an increase in all three, detection, association,
and localisation accuracy. Even though with a decrease, overall tracking performance is
improved, the IOU matching parameter will not be decreased further as this would mean
that even smaller IOU scores would lead to matches. Next, we tune the parameter σl for the

Master of Science Thesis Mallika Tripathi

40 Experimental Results

detection threshold. This parameter is reduced to 0, again making the overall tracker more
lenient.

σl Tmin HOTA DetA AssA LocA IDs IDSW MT ML Fragments
0.35 10 59.168 72.815 48.079 99.971 101 56 21 41 24

20 59.022 71.576 48.67 99.97 87 46 21 43 22
0.0 5 60.912 74.328 49.917 99.96 105 52 24 38 38

10 60.887 73.907 50.161 99.96 94 46 23 41 36
25 60.659 72.473 50.772 99.963 77 37 22 44 34

Table 5-3: IOU tracker results on tuning σl and Tmin, keeping σiou = 0.3.

In general, the tracking performance improves with a decrease in σl, which was unexpected.
Typically, detections with lower confidence scores are prone to being incorrect. The only
observed decrease in performance is in localisation accuracy and fragmentations. This suggests
that most detections with low scores are still valuable and do not significantly increase false
positives.

However, the increase in fragmentations indicates that these low-scoring detections may not
maintain a consistent trajectory. In this instance, we adjusted the Tmin parameter to 25
instead of 20 to ensure the object remains consistently associated for at least one second
before initiating tracking. Given a frame rate of 25 frames per second, a Tmin value of 25
is more appropriate. Although the HOTA score was highest for Tmin = 5, the number of
identity switches was significantly lower for Tmin = 25. Therefore, we selected the optimal
parameters as σl = 0.0, σh = 0.8, σiou = 0.3, and Tmin = 25. The tracking performance is
also visually shown for some object trajectories in Figure 5-1 and Figure 5-2. Each of these
figures represents one video and each unique object trajectory is represented with a different
colour.

0 500 1000 1500 2000
x Pixel coordinate

0

200

400

600

800

1000

1200

1400

1600

1800

2000

y
 P

ix
e
l
co

o
rd

in
a
te

Ground Truth

0 500 1000 1500 2000
x Pixel coordinate

0

200

400

600

800

1000

1200

1400

1600

1800

2000

y
 P

ix
e
l
co

o
rd

in
a
te

IOU tracker

Figure 5-2: IOU tracker result for a single object trajectory.

Mallika Tripathi Master of Science Thesis

5-2 Above-water Object Tracking Algorithms 41

Figure 5-3: IOU tracker result for the single object trajectory shown in Figure 5-2 in a 3-D plot
with the frame numbers on the x-axis, and the pixel coordinates on the y-z plane.

Since the IOU tracker is only dependent on the detection model and there is no motion
estimation or prediction, whenever a detection is missed it is unable to continue to track the
object. This is also visible in Figure 5-1, where the tracker is only able to track consistent,
continuous object trajectories. For trajectories with missed detections in between, there are
many identity switches. This can also be seen in the 3-D plot, Figure 5-3, with the frame
numbers being on the x-axis and the image space on the y-z plane. The dot represents the
ground truth, and the circle represents the IOU tracker. This 3-D graph is the same trajectory
illustrated in Figure 5-2 but now also includes the frame numbers. With more gaps in the
ground truth, the tracker is unable to follow the trajectory, the identity keeps changing, and
towards the end of the trajectory when there are more gaps, because of the parameter Tmin

the tracker waits for a certain amount of successful association to start tracking and miss a
big chunk of the trajectory and eventually is unable to track at all.

5-2-2 SORT

The Simple Online and Real-time Tracking (SORT) is the basis of a majority of the current
SOTA object tracking algorithms. Here the motion estimation of the object is done using
a Kalman Filter. The min hits parameter, just like the case for Tmin for the IOU tracker
helps to reduce the number of false positive tracks by requiring a new object to be detected
consistently over a number of consecutive frames before it is considered a valid track. Another
parameter here is the max-age, the number of frames for which an existing track is kept alive
and predicted even without having any successful associations. In real-world scenarios, objects
might temporarily disappear from view due to occlusions or missed detections by the object

Master of Science Thesis Mallika Tripathi

42 Experimental Results

Figure 5-4: SORT algorithm illustrated in steps.

detection algorithm. The max-age parameter allows the tracker to maintain these objects for a
few frames even when they are not detected, thereby providing robustness against short-term
occlusions or detection failures. If a detection is not associated with a track in a given frame,
the counter for that track is incremented. When the counter exceeds the max-age value, the
track is considered lost and is subsequently deleted from the tracking system. Like the IOU
tracker, there is an IOU threshold below which a match is not considered. An overview of
the SORT algorithm is given in Figure 5-4.

The tuning of the parameters starts with IOU threshold = 0.3, min hits = 15. The same IOU
threshold is set to the same as the one considered for the IOU tracker.

Max Age HOTA DetA AssA LocA IDs
3 58.273 68.195 49.829 95.521 133
10 59.544 66.548 53.307 95.529 110
20 59.458 66.415 53.259 95.555 107
30 59.464 66.466 53.229 95.555 106

Table 5-4: SORT results with IOU threshold = 0.3, min hits = 15.

There is barely any noticeable change in performance when increasing the max-age. Hence the
next set of metrics is looked at, the identity switches and mostly tracked and lost trajectories.
When comparing identity switches, there are 59 switches with a max age of 3, while this
number decreases to 36 with increasing the max age to 30. Although the number of mostly
tracked (15) and mostly lost (33) remains the same in both cases, the reduction in identity
switches is evident in the smaller total number of identities. This reduction in identity switches
is attributed to the fact that since the trajectories are kept alive and predicted for a longer
time, objects undergoing occlusion can be re-associated to the same identity again if the
motion estimation is accurate.

Keeping the max-age constant at 30, the min hits parameter is tuned. As seen in Table 5-5,
lower value of min-hits give the best performance. The first three rows correspond to the max-
age of 30. As the min-hits increase, the HOTA score decreases, along with a significant drop
in detection accuracy. This outcome was anticipated because a longer initialisation period for
tracks results in more missed detections. Consequently, there is a substantial number of lost

Mallika Tripathi Master of Science Thesis

5-2 Above-water Object Tracking Algorithms 43

500 1000 1500 2000
x pixel coordinate

200

400

600

800

1000

1200

y
 p

ix
e
l
co

o
rd

in
a
te

Ground Truth

500 1000 1500 2000
x pixel coordinate

200

400

600

800

1000

1200

y
 p

ix
e
l
co

o
rd

in
a
te

Max Age = 3, min hits = 15

500 1000 1500 2000
x pixel coordinate

200

400

600

800

1000

1200

y
 p

ix
e
l
co

o
rd

in
a
te

Max Age = 30, min hits = 15

500 1000 1500 2000
x pixel coordinate

200

400

600

800

1000

1200

y
 p

ix
e
l
co

o
rd

in
a
te

Max Age = 75, min hits = 10

Figure 5-5: Comparing SORT tracker with varying parameters with the ground truth for multiple
object trajectories, overlapping each other.

tracks (39) despite a reduction in fragments.

Min hits HOTA DetA AssA LocA IDs IDSW MT PT ML Frag
10 62.127 71.127 54.298 95.42 122 44 18 35 29 70
15 59.464 66.466 53.229 95.555 106 36 15 34 33 56
25 55.978 60.147 52.123 95.739 93 34 11 32 39 50

min hits = 10 61.838 70.515 54.26 95.43 117 39 19 32 31 69
max age = 75

Table 5-5: SORT results with IOU threshold - 0.3, changing the min hits, max age = 30 if not
mentioned otherwise.

The max-age is increased to 75 while keeping the minimum hits at 10. This adjustment
ensures that the algorithm can continue tracking an object even if it is occluded or leaves the
scene and re-enters after three seconds. The performance with a max-age of 75 is comparable
to that with a max-age of 30, with a decrease in identity switches. This is a good tradeoff
between the identity switches and the HOTA.
The tracking results are also depicted visually in Figure 5-5 and Figure 5-6. The scenario
with a max-age of 75 demonstrates the ability to track objects for a longer duration while
preserving the same identity. This is chosen to be the best performing point of the SORT
algorithm. But there is still a large scope for improvement as seen from Figure 5-6. For
trajectories with more gaps, the algorithm is unable to track successfully even though the
object is kept alive. This issue can be attributed to an inaccurate motion model, which
results in predictions of the object’s location that are not close to the actual position.

Master of Science Thesis Mallika Tripathi

44 Experimental Results

1000 1500 2000
x pixel coordinate

0

200

400

600

800

y
 p

ix
e
l
co

o
rd

in
a
te

Ground Truth

1000 1500 2000
x pixel coordinate

0

200

400

600

800

y
 p

ix
e
l
co

o
rd

in
a
te

Max Age = 3, min hits = 15

1000 1500 2000
x pixel coordinate

0

200

400

600

800

y
 p

ix
e
l
co

o
rd

in
a
te

Max Age = 30, min hits = 15

1000 1500 2000
x pixel coordinate

0

200

400

600

800

y
 p

ix
e
l
co

o
rd

in
a
te

Max Age = 75, min hits = 10

Figure 5-6: Comparing SORT tracker with varying parameters with the ground truth for multiple
object trajectories, with more missed gaps.

5-2-3 ByteTrack

ByteTrack builds up on the SORT algorithm by using a different association method, Byte.
In this case, low and high detection scores are utilised differently. Once objects are detected,
the low-scoring and higher-scoring detections are segregated based on a threshold, the track
threshold. After segregating, the Kalman filter is employed to predict the new locations in
the current frame for each track. The initial association involves applying the Hungarian
algorithm between the high-score detection boxes and all the tracks, just like the SORT
algorithm. A subsequent association is carried out between the low-score detection boxes
and the unmatched tracks from the first association. Following this second association, still
unmatched low-score detection boxes are removed as they are now considered to be part of
the background. Same as for SORT, the tracks without successful associations are kept alive
for a max-age number of frames and are assumed to be lost afterward and hence deleted.

The max-age will be kept at a constant of 75 throughout the tuning process based on the
results of SORT. First, the tracking confidence threshold is tuned keeping the match threshold
constant at 0.9.

Track Threshold HOTA DetA AssA LocA IDs IDSW MT PT ML Frag
0.5 65.94 75.101 59.734 89.831 157 59 28 25 29 107
0.6 64.811 72.414 58.067 94.015 106 46 25 28 29 83
0.7 62.111 65.024 59.369 94.348 72 25 15 27 40 71

Table 5-6: ByteTrack performance metrics with varying track threshold.

Mallika Tripathi Master of Science Thesis

5-2 Above-water Object Tracking Algorithms 45

0 500 1000 1500 2000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

Ground Truth

0 500 1000 1500 2000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

ByteTrack - track thres - 0.5

0 500 1000 1500 2000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

ByteTrack - track thres - 0.6

0 500 1000 1500 2000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

ByteTrack - track thres - 0.7

Figure 5-7: Object tracking using ByteTrack with varying track threshold. A tradeoff between
accurate tracking and false positives is required.

Increasing the track threshold leads to decreased tracking performance. A threshold of 0.5
yields the best HOTA but significantly reduces localisation accuracy, and gives more identity
switches and increased fragmentation. This can be attributed to more false positives, this is
also illustrated in Figure 5-7, Figure 5-8 and Figure 5-9. A threshold value of 0.6 provides a
balanced performance, offering a tradeoff between false positives and effective tracking.

In Figure 5-8, the lower threshold of 0.5 tracks the ground truth perfectly without any identity
switches but also detects and tracks another object which in reality is not present, while the
higher threshold of 0.7 misses most of the true detections. Finding a mid-ground with the
threshold of 0.6, we see that the true object trajectory is tracked but with an identity switch.
There is still a false positive detection but very smaller compared to the 0.5 case. In Figure 5-9
we again see the lower threshold having larger false positives while 0.6 does not.

Since the 0.6 gives a midway we choose this to be the best performing. Next keeping a
constant track threshold = 0.6, the match threshold is varied to see how the performance
changes.

Match Threshold HOTA DetA AssA LocA IDs IDSW MT PT ML Frag
0.7 61.463 73.581 51.421 94.046 135 74 24 30 28 88
0.8 63.048 74.118 53.706 94.003 121 59 25 29 28 86
0.9 64.811 72.414 58.067 94.015 106 46 25 28 29 83

Table 5-7: ByteTrack results

Increasing the match threshold increases the tracking performance consistently, with a very

Master of Science Thesis Mallika Tripathi

46 Experimental Results

400 600 800 1000 1200
x pixel

200

400

600

800

1000

y
 p

ix
e
l

Ground Truth

400 600 800 1000 1200
x pixel

200

400

600

800

1000

y
 p

ix
e
l

ByteTrack - track thres - 0.5

400 600 800 1000 1200
x pixel

200

400

600

800

1000

y
 p

ix
e
l

ByteTrack - track thres - 0.6

400 600 800 1000 1200
x pixel

200

400

600

800

1000

y
 p

ix
e
l

ByteTrack - track thres - 0.7

Figure 5-8: Object tracking using ByteTrack with varying track threshold. The results show high
false positives.

1000 1500 2000
x pixel

0

200

400

600

800

y
 p

ix
e
l

Ground Truth

1000 1500 2000
x pixel

0

200

400

600

800

y
 p

ix
e
l

ByteTrack - track thres - 0.5

1000 1500 2000
x pixel

0

200

400

600

800

y
 p

ix
e
l

ByteTrack - track thres - 0.6

1000 1500 2000
x pixel

0

200

400

600

800

y
 p

ix
e
l

ByteTrack - track thres - 0.7

Figure 5-9: Object tracking using ByteTrack with varying track threshold. With lower false
positives, there are also lower true positives.

Mallika Tripathi Master of Science Thesis

5-2 Above-water Object Tracking Algorithms 47

big increase in association accuracy. The detection accuracy does decrease because a higher
matching threshold would mean some lower detections would be missed as background. So
the match threshold would be kept at 0.9 for detections with higher confidence scores, giving
the best performance with a track threshold of 0.6.

5-2-4 BoT-SORT

The BoT-SORT algorithm enhances ByteTrack by incorporating camera motion compensa-
tion. This is performed by extracting and matching features between consecutive frames,
estimating the camera’s movement using a transformation matrix, and then warping the
frames to neutralize this movement. This process was introduced to accurately track objects
by isolating their motion from the camera’s motion.

0 1000 2000
x pixel coordinate

300

400

500

600

700

800

900

1000

1100

1200

y
 p

ix
e
l
co

o
rd

in
a
te

Ground Truth

0 1000 2000
x pixel coordinate

300

400

500

600

700

800

900

1000

1100

1200

y
 p

ix
e
l
co

o
rd

in
a
te

ByteTrack

0 1000 2000
x pixel coordinate

300

400

500

600

700

800

900

1000

1100

1200

y
 p

ix
e
l
co

o
rd

in
a
te

BoT-SORT

Figure 5-10: Tracking performance of BoT-SORT compared with ByteTrack. BoT-SORT has
more detections but is unable to associate them with the same object.

This algorithm introduces no new parameters. The same parameters that yielded the best
results for ByteTrack are used to ensure the technique is applied effectively.

Algorithm HOTA DetA AssA DetRe DetPr AssRe AssPr LocA IDs
ByteTrack 64.811 72.414 58.067 75.76 92.698 59.488 94.67 94.015 106

BoT- SORT 67.754 79.79 57.537 82.398 95.981 58.276 97.719 97.149 165

Table 5-8: Comparing tracking metrics of BoT-SORT with ByteTrack.

Just from looking at the HOTA value of the two trackers, BoT-SORT does indicate an im-
proved performance. Notice that the association recall has decreased while the association

Master of Science Thesis Mallika Tripathi

48 Experimental Results

1000 1500 2000
x pixel coordinate

0

100

200

300

400

500

600

700

800

y
 p

ix
e
l
co

o
rd

in
a
te

Ground Truth

1000 1500 2000
x pixel coordinate

0

100

200

300

400

500

600

700

800

y
 p

ix
e
l
co

o
rd

in
a
te

ByteTrack

1000 1500 2000
x pixel coordinate

0

100

200

300

400

500

600

700

800

y
 p

ix
e
l
co

o
rd

in
a
te

BoT-SORT

Figure 5-11: Tracking performance of BoT-SORT compared with ByteTrack. Data association
is worse with BoT-SORT.

precision increases. This indicates that the algorithm is more conservative in making as-
sociations. It is more accurate with the associations it makes (higher precision), but it is
also more likely to miss some true associations (lower recall). This trade-off implies that the
algorithm is tuned to reduce false positives at the expense of missing some true positives.
Another important observation is the significant increase in the overall number of identities.
Looking more in-depth in Table 5-9, we see there is no difference in the number of trajecto-
ries tracked and lost between ByteTrack and BoT-SORT. However, there is an increase in the
number of identity switches and fragmentation which leads to an overall increase in identities.
This shows that even though more objects are detected, there is not a consistent association
between them.

By utilising visual trajectories, we observe and analyse the results in more detail. In Fig-
ure 5-10 and Figure 5-11, objects in a trajectory are detected for longer by BoT-SORT than
ByteTrack, but the identities keep switching rapidly. There is a higher number of detections
that can also be observed from the detection accuracy value in Table 5-8, but association
accuracy is reduced which is clear from the visual trajectories. In other cases like Figure 5-12
there is no noticeable change when compared to ByteTrack.

Algorithm HOTA IDs IDSW MT PT ML Frag FPS
ByteTrack 64.811 106 46 25 28 29 83 2112.8
BoT-SORT 67.754 165 80 26 27 29 92 23.2

Table 5-9: Comparing number of trajectories tracked between BoT-SORT and ByetTrack.

A critical consideration is the computational time of the algorithm. The inclusion of additional
image processing and optical flow calculations for camera motion compensation results in a

Mallika Tripathi Master of Science Thesis

5-3 Proposed Algorithms for Underwater Object Tracking 49

0 1000 2000
x pixel coordinate

100

200

300

400

500

600

700

800

900

1000

1100

1200

y
 p

ix
e
l
co

o
rd

in
a
te

Ground Truth

0 1000 2000
x pixel coordinate

100

200

300

400

500

600

700

800

900

1000

1100

1200

y
 p

ix
e
l
co

o
rd

in
a
te

ByteTrack

0 1000 2000
x pixel coordinate

100

200

300

400

500

600

700

800

900

1000

1100

1200

y
 p

ix
e
l
co

o
rd

in
a
te

BoT-SORT

Figure 5-12: Tracking performance of BoT-SORT compared with ByteTrack. A similar result is
seen, with no improvement by BoT-SORT.

computational speed that is approximately 100 times slower than ByteTrack. Consequently,
BoT-SORT is not suitable for real-time or online tracking applications.

5-3 Proposed Algorithms for Underwater Object Tracking

After implementing the existing above-water object tracking algorithms on the underwater
dataset, the goal is now to determine if the proposed algorithms perform better. The expec-
tation is that there should be higher HOTA with more mostly tracked trajectories. If the
proposed algorithms are suitable for underwater tracking, there should also be an increase in
the association accuracy.

5-3-1 Velocity Estimation

Both the formula-based and the optical flow-based velocity estimation techniques are applied
to the SORT algorithm, giving two new algorithms namely, SORT-V and SORT-OF respec-
tively. From Table 5-10, there is a clear increase in performance when velocity estimation
is implemented. The localisation accuracy almost reaches 99%. This can also be seen from
Figure 5-13. The SORT algorithm when tracking the object in orange in the ground truth
tracks an approximate linear version of the actual trajectory. When velocity estimation tech-
niques are introduced the true nature of the trajectory is tracked, increasing the localisation
accuracy.
The formula-based velocity estimation technique is also implemented with ByteTrack to give
rise to a new algorithm ByteTrack-V. Comparing this new algorithm to ByteTrack, we see

Master of Science Thesis Mallika Tripathi

50 Experimental Results

200 400 600 800 1000 1200
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

GT

200 400 600 800 1000 1200
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT

200 400 600 800 1000 1200
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-V

200 400 600 800 1000 1200
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-OF

Figure 5-13: Visual ground truth trajectories with tracking results from SORT, SORT-V, and
SORT-OF.

Algorithms HOTA DetA AssA DetRe DetPr AssRe AssPr LocA IDs
SORT 61.838 70.51 54.26 72.56 95.26 55.118 96.729 95.43 117

SORT-V 67.445 81.738 55.651 83.421 97.591 55.936 98.798 99.866 171
SORT-OF 68.619 81.525 57.757 83.197 97.594 58.119 98.791 99.845 156
ByteTrack 64.811 72.414 58.067 75.76 92.698 59.488 94.67 94.015 106

ByteTrack-V 67.106 80.971 55.615 83.106 96.917 56.056 98.072 98.768 120

Table 5-10: Comparing results of the proposed velocity estimation based trackers with SORT
and ByteTrack.

an improvement in the tracking performance, and higher detection accuracy but a lower
association accuracy. The association precision increasing indicates that the model’s positive
predictions are becoming more accurate. It means fewer false positives are being made. In
other words, when the model does associate a positive result, it is more likely to be correct.
But there is also a decrease in association recall meaning that the model is identifying fewer of
the actual positive instances. It misses more true positives, which translates to an increase in
false negatives. So ByteTrack-V is missing more true positives, but the ones that it associates
are going to be correct.

Mallika Tripathi Master of Science Thesis

5-3 Proposed Algorithms for Underwater Object Tracking 51

0 500 1000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

GT

0 500 1000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT

0 500 1000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

ByteTrack

0 500 1000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

BOT-SORT

0 500 1000
x pixel

200

400

600

800

1000

1200
y
 p

ix
e
l

SORT-V

0 500 1000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-OF

Figure 5-14: On comparing with SOTA object tracking algorithms, proposed velocity estimation
techniques successfully resolve false positives.

When comparing SORT-V and ByteTrack-V, the HOTA scores and the number of mostly
tracked trajectories are similar for both, but there is a significant difference in the number of
mostly lost trajectories. This discrepancy is evident in Table 5-11, which shows the number
of partially tracked (PT) trajectories. While ByteTrack-V exhibits fewer identity switches
and less fragmentation compared to SORT-V, this is partly due to ByteTrack-V’s inability to
track 28 trajectories, whereas SORT-V fails to track only 14. The detection, association, and
localisation accuracy of ByteTrack-V are all lower than SORT-V. From this point forward, we
will focus solely on SORT-V and not ByteTrack-V. Despite the use of an improved association
method in ByteTrack-V, it has not yielded better results.

Algo HOTA DetA AssA LocA IDs IDSW MT PT ML Frag
SORT-V 67.445 81.738 55.651 99.866 171 69 30 38 14 110

ByteTrack-V 67.106 80.971 55.615 98.768 120 50 26 28 28 82

Table 5-11: Comparing number of tracked trajectories with SORT-V and ByteTrack-V.

Compared to ByteTrack and BoT-SORT, the performance of velocity estimation techniques
shows significant improvement. Both formula-based and optical flow-based velocity estimation
methods effectively eliminate false positives. This can be visually seen in the below figures.
All algorithms are also compared numerically in Table 5-12. The HOTA score increases
gradually, but it is also crucial to consider additional performance metrics from the table.

Master of Science Thesis Mallika Tripathi

52 Experimental Results

500 100015002000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

GT

500 100015002000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT

500 100015002000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

ByteTrack

500 100015002000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

BOT-SORT

500 100015002000
x pixel

200

400

600

800

1000

1200
y
 p

ix
e
l

SORT-V

500 100015002000
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-OF

Figure 5-15: Velocity estimation techniques tracking for longer and correctly associating those
trajectories.

200 600 1000
x pixel

200

400

600

800

1000

y
 p

ix
e
l

GT

200 600 1000
x pixel

200

400

600

800

1000

y
 p

ix
e
l

SORT

200 600 1000
x pixel

200

400

600

800

1000

y
 p

ix
e
l

ByteTrack

200 600 1000
x pixel

200

400

600

800

1000

y
 p

ix
e
l

BOT-SORT

200 600 1000
x pixel

200

400

600

800

1000

y
 p

ix
e
l

SORT-V

200 600 1000
x pixel

200

400

600

800

1000

y
 p

ix
e
l

SORT-OF

Figure 5-16: Velocity estimation techniques compared with SOTA object tracking algorithms.

Specifically, when examining the mostly tracked (MT) and mostly lost (ML) trajectories, the

Mallika Tripathi Master of Science Thesis

5-3 Proposed Algorithms for Underwater Object Tracking 53

velocity estimation algorithms reduce the number of mostly lost trajectories by nearly half.
This represents a substantial performance improvement.

Algorithm HOTA DetA AssA LocA IDs IDSW MT PT ML Frag
SORT 61.838 70.51 54.26 95.43 117 39 19 32 31 69

ByteTrack 64.811 72.414 58.067 94.015 106 46 25 28 29 83
BoT-SORT 67.754 79.79 57.537 97.149 165 80 26 27 29 92

SORT-V 67.445 81.738 55.651 99.866 171 69 30 38 14 110
SORT-OF 68.619 81.525 57.757 99.845 156 65 29 38 15 111

Table 5-12: Comparing novel SORT-V and SORT-OF to other SOTA object tracking algorithms.

5-3-2 Interacting Multiple Model Filter

To account for different motion models, the Interacting Multiple Model (IMM) filter is imple-
mented with the SORT algorithm, resulting in a novel tracker, SORT-IMM. The IMM filter
is implemented with two different models, a constant velocity and a constant acceleration
model. The parameters of the SORT algorithm remain the same, but the transition proba-
bilities have to be defined. These are the probabilities of switching from a constant velocity
model to a constant acceleration model and vice versa. The probability of not transitioning,
ie. continuing in the same model is defined as α, and hence the probability of transitioning
to another model is defined as 100− α. The transition probability matrix is defined below.

p =
[

α 100− α
100− α α

]
(5-8)

Different initial transition probabilities were assigned to the two models to see how the per-
formance varied.

α HOTA DetA AssA DetRe DetPr AssRe AssPr LocA IDSW MT ML Frag
50 68.71 81.64 57.82 83.33 97.58 58.22 98.69 99.85 62 30 13 112
75 68.93 81.06 58.62 82.73 97.56 59.01 98.75 99.86 52 30 13 114
95 68.50 81.47 57.60 83.18 97.54 57.99 98.67 99.87 60 29 16 102

Table 5-13: Object tracking performance of SORT-IMM with different transition probabilities.

From all the performance parameters, the best-performing tracker is when the value of α = 75,
meaning that starting from a constant velocity model, the probability of staying in a constant
velocity model is 75% and transitioning to a constant acceleration model is 25%. The same is
true for the starting in a constant acceleration model, staying there would be 75% probable,
and transitioning to constant velocity is 25% probable. There is a noticeable increase in
the association performance, which is desirable. There are fewer identity switches, with the
highest number of mostly tracked trajectories. An example can be seen in Figure 5-17, where
the object indicated with orange colour in the ground truth is tracked the furthest as compared
to the other IMM-based trackers with different α value.
Another parameter of the IMM filter is the model probability. The model probabilities in the
IMM filter represent the likelihood that the system is operating under each model at any given

Master of Science Thesis Mallika Tripathi

54 Experimental Results

Figure 5-17: Ground truth vs SORT-IMM tracker with different transition probabilities.

time. These probabilities are updated at each time step based on the measurement likelihoods
and the transition probabilities between models. The initial model probabilities are set to
50-50 because, in practice, the exact motion of the Remotely Operated Vehicle (ROV) is
unknown, and there is no preference for one model over the other. For both trajectories in
Figure 5-17, we see in detail how the model probabilities change with the likelihood throughout
the tracking in Figure 5-18b and Figure 5-19b.

In Figure 5-18 the x-axis represents frame numbers, while the y and z axes represent the
pixel coordinates x and y, respectively. The model probabilities are depicted in Figure 5-18b,
starting at 0.5, fluctuating, and then returning to 0.5. A similar pattern is observed for the
second object’s trajectory in Figure 5-19b. This indicates that neither the constant velocity
nor the constant acceleration model accurately describes the true motion throughout the life
of the object, as the probabilities linger around the 0.5 value consistently.

This is not always the case. Another object trajectory with the ground truth and the SORT-
IMM output is illustrated in Figure 5-20. The tracker closely follows the ground truth and
the model probability of the constant acceleration model remains at 1 for multiple frames.
This indicates that this model consistently describes the actual motion of the object, resulting
in continuous tracking.

The same can be seen in other object trackers, Figure 5-21a shows the tracking result and
Figure 5-21b shows the probability of the tracker, we see that the model probability for the
constant acceleration model is consistently higher than that of the constant velocity model
implying that this model describes the actual motion more accurately over the constant
velocity model, though still not fully accurate. Another tracking result from the SORT-IMM
is shown in Figure 5-22a with the corresponding model probabilities in Figure 5-22b. Here

Mallika Tripathi Master of Science Thesis

5-3 Proposed Algorithms for Underwater Object Tracking 55

(a) SORT-IMM tracking result with the ground truth
for a single trajectory.

0 10 20 30 40 50 60

Frame number

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

P
ro

b
a
b

ili
ty

MU

Prob CV
Prob CA

(b) Model probability values throughout the tracking
duration.

Figure 5-18: SORT-IMM tracking results along with model probabilities for the blue trajectory
in the ground truth in Figure 5-17.

(a) SORT-IMM tracking output with the ground
truth

150 200 250 300 350 400 450 500

Frame number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b

ili
ty

MU

Prob CV
Prob CA

(b) Model probability values throughout the tracking
duration.

Figure 5-19: SORT-IMM tracking result along with model probabilities for the orange trajectory
in the ground truth in Figure 5-17.

Master of Science Thesis Mallika Tripathi

56 Experimental Results

(a) SORT-IMM tracking output with the ground
truth.

200 210 220 230 240 250 260

Frame number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b

ili
ty

MU

Prob CV
Prob CA

(b) Model probabilities throughout the tracking hori-
zon.

Figure 5-20: SORT-IMM tracker consistently tracking the ground truth.

the tracking is not consistent and the model probabilities linger around the 0.5 value meaning
that none of the motion models is preferred over the other.

(a) SORT-IMM tracking output with the ground
truth.

150 200 250 300 350

Frame number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b

ili
ty

MU

Prob CV
Prob CA

(b) Model probabilities throughout the tracking hori-
zon.

Figure 5-21: SORT-IMM tracker consistently tracking the ground truth. In the end, due to
more gaps, tracking performance is not exact.

In conclusion, the constant acceleration model emerges as a superior choice over the constant
velocity model for certain trajectories, particularly in dynamic environments where motion
patterns are complex and variable. The constant velocity model, while useful in some scenar-
ios, often oversimplifies motion dynamics, leading to potential inaccuracies. In contrast, the
constant acceleration model captures changes in velocity over time, providing a more accu-
rate representation of an object’s movement. When integrated into IMM filters, the constant

Mallika Tripathi Master of Science Thesis

5-4 Comparisons and Conclusions 57

acceleration model further enhances the system’s ability to adapt to uncertain or changing
motion models, making it a valuable tool for underwater motion estimation.

(a) SORT-IMM tracking output with the ground
truth.

100 150 200 250 300 350

Frame number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b

ili
ty

MU

Prob CV
Prob CA

(b) Model probabilities throughout the tracking hori-
zon.

Figure 5-22: SORT-IMM tracker consistently tracking the ground truth. The constant acceler-
ation model is preferred till frame number 220, after which both models are equally probable.

5-4 Comparisons and Conclusions

In this section, the performance of all the previously mentioned trackers will be compared us-
ing the performance parameters. First, the comparison of HOTA, detection, association, and
localisation accuracy metrics reveals that the newly proposed SORT-IMM gives the highest
HOTA value at 68.93. This high score results from its superior association and localisa-
tion accuracy. While its detection accuracy is not the highest, it is only 0.7 less than the
top-performing tracker. From this, it can be concluded that object tracking algorithms rely
heavily on the optimal performance of all sub-algorithms, detection, association, and locali-
sation equally.

Tracker HOTA DetA AssA LocA IDSW MT ML Frag FPS
IOU 60.66 72.47 50.77 99.6 37 22 44 34 155604

SORT 61.83 70.52 54.26 95.43 39 32 31 69 2694.9
ByteTrack 64.81 72.41 58.07 94.02 46 25 29 83 4489.9
BoT-SORT 67.75 79.79 57.54 97.15 80 26 29 92 23.2

SORT-V 67.44 81.74 55.65 99.8 69 30 14 110 3158.3
SORT-OF 68.62 81.52 57.76 99.84 65 29 15 111 1.8

ByteTrack-V 67.10 80.97 55.61 98.77 50 26 28 82 4517.6
SORT-IMM 68.93 81.06 58.62 99.86 52 30 13 114 966.4

Table 5-14: Comparing performance metrics of SOTA tracking algorithms with the newly pro-
posed.

Master of Science Thesis Mallika Tripathi

58 Experimental Results

Considering other performance metrics, the SORT-IMM tracker does not exhibit the lowest
number of identity switches, instead, the IOU and SORT trackers give the fewest identity
switches. This is unexpected given their lower association accuracy. This reduction in identity
switches can be attributed to both these trackers missing approximately 44 and 31 objects,
respectively. As a result, instead of tracking the original 82 ground truth identities, they
only managed to follow around 38 and 51 trajectories, respectively. Hence it is important
to consider that the IOU tracker has 37 identity switches when tracking 38 objects, and
the SORT tracker has 39 identity switches when tracking 51 objects. In this context, the
SORT-IMM provides the best overall performance, with the highest number of mostly tracked
objects at 30, the fewest mostly lost trajectories at 13, and 52 identity switches. Although the
algorithm ByteTrack-V shows fewer identity switches, it misses nearly 28 trajectories. The
algorithm SORT-OF also gives great tracking performance with the second highest HOTA
only 0.3 behind the SORT-IMM tracker and the second highest mostly tracked trajectories,
only 1 less than the SORT-IMM. This performance can be seen in Figure 5-25, with other
algorithms giving identity switches and false positives, the SORT-OF gives the same result
as the SORT-IMM tracker.

Another important metric is the computational speed of the algorithms. This is an important
metric to keep in mind to be able to achieve online and real-time tracking. The metric is only
for the tracking algorithm and does not include the computational time to detect objects. All
algorithms were run using the Nvidia GeForce MX570 GPU. Both methods using optical flow
are not suitable to be used in an online, real-time setting. BoT-SORT can be used with a
more powerful computing system, but the SORT-OF is just at 1.8 frames per second. So even
though it has good performance and is close to the SORT-IMM tracker, the computational
speed is very slow. These two algorithms will hence not be taken into consideration.

When examining detailed performance metrics, competition emerges between the SORT-IMM
and the SORT-V. The latter demonstrates slightly higher detection recall and precision, with
margins of 0.3 and 0.03, respectively, compared to the IMM-based tracker. However, the
IMM tracker excels in association recall, achieving 59.01 compared to 55.94 for SORT-V.
Association recall measures how well predicted trajectories cover ground-truth trajectories; a
low association recall indicates that a tracker splits an object into multiple predicted tracks.
The higher association recall of the SORT-IMM tracker suggests it consistently associates
objects without identity switches, resulting in fewer false negatives.

Association precision, which measures how well-predicted trajectories adhere to tracking the
same ground-truth trajectories, relates to the number of false positives. Introducing velocity
estimation or a different motion model significantly impacts detection accuracy, leading to
increases in both recall and precision, thereby reducing false negatives and false positives.

The performance of all algorithms implemented and discussed is also visually compared. The
SORT-IMM tracker is most capable of tracking non-linear motion as seen in Figure 5-23.
It is the only algorithm consistently able to track the loop starting approximately at pixel
coordinate (2000, 1000). Similarly also seen in Figure 5-24, the SORT-IMM and the SORT-V
trackers are the only ones able to track the ground truth trajectories shown in the ground
truth graph in yellow and maroon. This shows that having the constant velocity model is not
enough to describe the motion and additional information about the velocity or more defined
motion model is required. It can also be concluded that the constant acceleration model can
help describe the object trajectories better though not perfectly.

Mallika Tripathi Master of Science Thesis

5-4 Comparisons and Conclusions 59

500 1500
x pixel

0

200

400

600

800

1000

1200

y
 p

ix
e
l

GT

500 1500
x pixel

0

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT

500 1500
x pixel

0

200

400

600

800

1000

1200

y
 p

ix
e
l

ByteTrack

500 1500
x pixel

0

200

400

600

800

1000

1200

y
 p

ix
e
l

BoT-SORT

500 1500
x pixel

0

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-OF

500 1500
x pixel

0

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-V

500 1500
x pixel

0

200

400

600

800

1000

1200

y
 p

ix
e
l

ByteTrack-V

500 1500
x pixel

0

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-IMM

Figure 5-23: Illustrating the superior capabilities of the SORT-IMM tracker when tracking non-
linear trajectories.

As presented in Table 5-16, all implemented algorithms have different advantages and dis-
advantages over each other. One can start adding various different motion models to an
IMM-based tracker, but the more models added, the computational time increases. Though
the ByteTrack algorithm has the lowest identity switches, it has a large number of false
positives. This is also why it has the lowest association precision. The choice of algorithm
depends on the user’s needs and the specific requirements of the use case. If minimising
identity switches is a priority and false positives are less of a concern, ByteTrack would be a
suitable option. Meanwhile, if high detection and precision are required then SORT-V is the
algorithm to go for. In conclusion, it is not possible to develop a single algorithm that will
be universally effective for tracking across various environments.

In Table 5-15, the last two rows have the metrics of the best performing multiple object
tracking algorithm part of the Multiple Object Tracking (MOT) Challenge. As discussed
earlier, this dataset includes pedestrian and vehicle data captured by a fixed camera. The
proposed algorithms in this thesis—SORT-V, ByteTrack-V, and SORT-IMM—demonstrate
higher HOTA values. However, the association accuracy does not match that of the bench-
mark algorithms. Examining these benchmark values reveals that the overall performance of
SOTA object tracking algorithms in the research community remains relatively low, indicating
substantial room for research and improvement. Most algorithms rely on a linear constant
velocity motion model, whereas real-world objects can move in various unpredictable ways.
The three novel algorithms that account for real velocity and multiple models proposed in
this thesis, result in significantly improved performance and include more accurate object
tracking and higher localisation accuracy.

Master of Science Thesis Mallika Tripathi

60 Experimental Results

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

GT

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

ByteTrack

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

BoT-SORT

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-OF

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-V

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

ByteTrack-V

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-IMM

Figure 5-24: Comparing tracking performance of all implemented algorithms. SORT-IMM and
SORT-V both give equally good results.

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

GT

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

ByteTrack

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

BoT-SORT

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-OF

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-V

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

ByteTrack-V

500 1500
x pixel

200

400

600

800

1000

1200

y
 p

ix
e
l

SORT-IMM

Figure 5-25: Comparing tracking performance of all implemented algorithms. SORT-IMM and
SORT-V both give equally good results.

Mallika Tripathi Master of Science Thesis

5-5 Summary 61

Tracker HOTA DetA AssA LocA DetRe DetPr AssRe AssPr
SORT 61.83 70.52 54.26 95.43 72.57 95.26 55.12 96.73

ByteTrack 64.81 72.41 58.07 94.02 75.76 92.70 58.29 94.67
SORT-V 67.44 81.74 55.65 99.8 83.42 97.59 55.94 98.80

ByteTrack-V 67.10 80.97 55.61 98.77 83.11 96.92 56.06 98.08
SORT-IMM 68.93 81.06 58.62 99.86 82.73 97.56 59.01 98.75

MOT-20 BEST 63.0 64.0 62.2 84.2 69.4 79.5 67.7 78.4
MOT-20 Online 62.7 63.5 62.2 84.1 69.5 78.4 67.3 78.9

Table 5-15: Comparing tracking metrics of implemented algorithms with the benchmark.

SORT ByteTrack BoT-SORT SORT-V SORT-OF IMM
Advantages Lightweight Lowest Camera Highest Measure Incorporate

identity stabilisation detection actual pixel multiple
switches accruacy velocity motion models

Disadvantage Poor High false Not suitable High Not suitable More models
performance positives for realtime identity for realtime increase
in complex tracking switches tracking computational
scenarios time

Table 5-16: Comparing the SOTA object tracking algorithm based on motion estimation.

5-5 Summary

In this chapter, first different metrics used to compare the performance of various object-
tracking algorithms are discussed. The HOTA metric is highlighted as it is unbiased towards
any specific sub-algorithm used in object tracking and, therefore is used for performance
comparison. Additionally, HOTA is the only monotonic metric, meaning that an increase in
the metric always indicates improved tracking. HOTA combines detection, localisation, and
association accuracy into a geometric mean. Metrics such as the number of mostly tracked
and mostly lost trajectories are also considered, corresponding to trajectories tracked for at
least 80% and at most 20% of their duration, respectively. Furthermore, identity switches are
taken into account.

The IOU tracker which does not have any motion modeling and localisation gives the poorest
performance. It is entirely dependent on the detection model and hence whenever a detection
is missed the tracker cannot associate the object with the same identity anymore. The SORT
algorithm gives good results when the trajectories are linear and not crowded. ByteTrack
algorithm has the lowest identity switches but gives many false negatives. BoT-SORT has
additional camera motion compensation capabilities on top of ByteTrack, but this is only
suitable for stabilising the vibrations in a stationary camera and not for a fully moving
camera. It has higher identity switches when compared with ByteTrack and lower association
accuracy, which is an important metric we want to improve. Implementing velocity estimation
techniques and changing the state-space representation, two new tracking algorithms, SORT-
V and SORT-OF improve on all metrics. Both track almost 30 object trajectories and bring
down the number of missed trajectories from 29 to 15. Even though more trajectories are
being tracked, the number of identity switches is reduced.

Master of Science Thesis Mallika Tripathi

62 Experimental Results

Finally, the SORT-IMM tracker gives the best overall tracking result especially when tracking
complex trajectories, giving the highest HOTA score at 68.93%, giving a rise of 11% when
compared to the SORT algorithm and 13.5% when compared to the IOU tracker. The IMM
tracker also has the highest association and localisation accuracy, and second highest detection
accuracy, only 0.6 behind the highest. When compared to the current best performing above-
water object realtime object tracking algorithm, the HOTA score is increased by almost 10%.

Mallika Tripathi Master of Science Thesis

Chapter 6

Conclusions and Future
Recommendations

With little to no public research on multiple object tracking in underwater scenarios, the aim
of this thesis was to first develop a novel dataset to facilitate more research on this topic. The
next objective was to implement existing State-of-the-art (SOTA) object tracking algorithms
on this new dataset. Additionally, two newly proposed velocity estimation techniques were
implemented, and a new multi-model tracker was introduced.

6-1 Conclusions

Making the new dataset for underwater videos was important to take into consideration the
special problems faced in this uncertain environment. This dataset contained strong water
currents, occluded objects, and various motions of the Remotely Operated Vehicle (ROV).

Velocity Estimation All SOTA object tracking algorithms followed a constant velocity model
for motion estimation since they were used for above-water tracking, but such a motion is
not followed underwater. The algorithms used Kalman Filters to predict the location of
the object. Positions were used as measurements during the update step of the Kalman
Filter. This update step made sure the variance matrices were updated using the correct
location of the object but only for the position parameters. This inadequacy highlighted the
need for more robust velocity estimation techniques tailored to the unique characteristics of
underwater motion. To address this, three novel trackers are proposed: SORT-V, SORT-OF,
and ByteTrack-V. These trackers incorporate advanced velocity estimation methods to more
accurately capture the erratic and non-linear motion of underwater objects.

SORT-V and ByteTrack-V used formula-based velocity calculation at each update step of
the Kalman Filter. This calculated velocity served as a sensor measurement to update both
velocities and positions during the update step. In contrast, SORT-OF utilised optical flow to

Master of Science Thesis Mallika Tripathi

64 Conclusions and Future Recommendations

calculate pixel velocities. Dense optical flow provided pixel velocities, and the average value
was taken to determine the general flow of motion. This average velocity measure was then
used in the Kalman Filter update step, leading to the proposal of a new algorithm, SORT-OF.

SORT-V and SORT-OF gave improved tracking results when compared to Simple Online
and Real-time Tracking (SORT), ByteTrack, and BoT-SORT with the least number of lost
trajectories and higher Higher Order Tracking Accuracy (HOTA) scores, but SORT-OF had
a very low computational speed of 1.8 fps. ByteTrack-V on the other hand did not give any
improved performance, with still missing around 28 trajectories and giving a low association
accuracy of 55%.

Motion Models No matter how much we can improve the update step, an incorrect mo-
tion model will always lead to inaccurate tracking. So Interacting Multiple Model (IMM)
filter was used instead of the normal Kalman Filter in the SORT algorithm. The IMM filter
maintains multiple dynamic models, each representing a different hypothesis about the sys-
tem’s behavior. These models could correspond to different modes of operation. Since we are
unaware of the exact motion model of the ROV using the IMM filter seems suitable. Two
different motion models were implemented in the IMM filter the constant velocity model and
the constant acceleration model. Initial model probabilities were set at 50% for each, indicat-
ing no preference between the models. The best performance was achieved with a transition
probability of 25% between models and 75% within the same model. This was implemented
with the SORT algorithm and a new algorithm SORT-IMM is proposed. This gave the best
tracking result, with the highest HOTA, the most number of trajectories tracked, and the
least number of lost trajectories.

With this result, it can be concluded that using above-water trackers for underwater tracking
is not suitable and needs to be adjusted. Using a constant velocity with a constant aspect
ratio motion model does not describe the motion well. Even getting a correct velocity measure
during the Kalman filter update step can improve the tracking performance a lot.

In summary, this thesis presents a significant advancement in the field of underwater object
tracking. By moving beyond the limitations of linear constant velocity models and integrating
novel velocity estimation techniques, we have developed trackers that offer reliable and precise
tracking performance in challenging underwater environments. These contributions lay the
groundwork for further research and development in underwater video analysis, with potential
applications in marine biology, underwater robotics, and environmental monitoring.

6-2 Recommendations

With the rapid pace of technological advancement, there is a growing temptation to employ
increasingly complex, learning-based algorithms that can adapt and learn in real-time. How-
ever, incorporating such techniques as deep neural networks which usually use optical flow
calculations, and feature extraction, often leads to significant increases in computational load
and processing time, which may not be practical or efficient for this application. This suggests
that simply making algorithms more complicated is not necessarily the best path forward.
Looking ahead, it is crucial to direct research efforts toward refining the motion model within
the Kalman filter, rather than developing a new algorithm from scratch.

Mallika Tripathi Master of Science Thesis

6-2 Recommendations 65

Enhancing the accuracy and reliability of the motion model is essential for achieving bet-
ter performance and more accurate predictions. The SORT algorithm is capable of giving
good tracking performance for an accurate motion model. Future studies should prioritize
developing more sophisticated and precise motion models that can improve overall system per-
formance without unnecessarily complicating the algorithm. Incorporating additional sensors
on the ROV, such as high-precision accelerometers and gyroscopes, will give accurate data
on the motion of the ROV. The data from these sensors can be used as real measurements
for the Kalman filter update step instead of using velocity estimation techniques. This will
improve real-time velocity estimations by providing more comprehensive motion data.

Once a larger dataset has been collected, the ground truth trajectories can also be leveraged
to develop a more accurate motion model through offline learning. This refined motion model
can then be integrated with the commonly used constant velocity model within the IMM
filter. By doing so, it would be possible to significantly enhance the filter’s ability to predict
and adapt to the dynamic and often unpredictable nature of underwater environments. This
approach could lead to more robust and reliable predictions, ultimately improving the overall
performance of the system in challenging conditions.

By concentrating on improving the motion model, future research can lead to more efficient
and effective solutions that maintain a balance between complexity and computational effi-
ciency.

Master of Science Thesis Mallika Tripathi

66 Conclusions and Future Recommendations

Mallika Tripathi Master of Science Thesis

Appendix A

Conference Paper Draft

A draft conference paper has been written on the research presented in this MSc Thesis. The
paper is written in the format of IEEE Oceanic Engineering Journal format.

Master of Science Thesis Mallika Tripathi

1

Multiple Object Tracking in Underwater
Environment

Mallika Tripathi, Athina Ilioudi, Bart De Schutter Fellow, IEEE

Abstract—While various tracking algorithms have demon-
strated effectiveness in terrestrial and aerial contexts, their
performance in underwater settings, which presents unique chal-
lenges due to variable lighting, water turbidity, and unpredictable
camera movement, remains unexplored. Addressing this gap
is crucial for applications such as marine biology research,
underwater surveillance, and autonomous underwater vehicles.
This research first evaluates existing tracking algorithms on a
novel underwater video dataset with a moving camera and then
proposes velocity estimation techniques, a formula-based and
an optical flow-based, to enhance tracking performance giving
rise to two new algorithms. Furthermore, the thesis proposes a
novel tracker that simultaneously utilizes multiple motion models
to estimate a target object’s location. The results indicate that
using velocity estimation techniques improves tracking accuracy
by 11%, and tracks more objects by nearly halving the number
of lost objects. Incorporating another motion model, a constant
acceleration model, gives the best result, with the highest tracking
accuracy, and the least number of identity switches all in real-
time computational speed.

Index Terms—Multiple Object Tracking, Kalman filter, Veloc-
ity Estimation, Optical Flow, Interacting Multiple Models.

I. INTRODUCTION

The Earth’s oceans play a crucial role in weather regulation
and serve as the largest natural carbon and heat sink [18].
Maintaining the health of the ocean is synonymous with
ensuring the overall well-being of our planet. Yet, up to 12
million metric tons of plastic is dumped into the oceans
each year [9]. To tackle this issue, an initiative funded by
the European Union, SeaClear aims to eliminate seabed and
floating marine pollution [15]. The project employs a fleet
of autonomous, intelligent robots working collaboratively to
monitor and collect marine litter. Various devices, including
cameras and forward-looking sonars, are employed to detect
litter before collecting it using a gripper mechanism. The
SeaClear team has effectively incorporated the capability to
detect different objects underwater using a camera at this stage
of development. The detection process utilizes a Convolutional
Neural Network (CNN) trained on SeaClear-specific data.
This trained network can categorize objects into four distinct
classes: plant, animal, trash, and ROV. The detection result is
illustrated in Figure 1. The subsequent phase involves initiating
the collection process for the detected trash.

The ROV descends to collect the trash by continuously
aligning with it on the seabed. Challenges arise at this step,

This work was supported by SeaClear, European Union’s Horizon 2020
Research and Innovation Programme under Grant 871295 and by SeaClear2.0,
European Union’s Horizon Europe innovation action programme under Grant
101093822.

Fig. 1. Detecting trash underwater with the SeaClear system.

especially in situations where multiple pieces of trash are
clustered together. In such instances, the ROV is unable to
pinpoint a specific target object for retrieval. To address this
issue, the proposed solution is for the ROV to sequentially
collect the objects. For this, it is imperative to assign a unique
identifier to each detected object. A key aspect of this approach
is object tracking, where the ROV ensures that every item it
encounters is given a distinct identity, allowing for continuous
monitoring and precise retrieval over time.

Currently there exist multiple state-of-the-art (SOTA) object
tracking algorithms, but all have been designed and imple-
mented for conventional conditions above sea level [4], [12],
[16]. A few examples can be found when object tracking algo-
rithms were implemented underwater with stationary cameras
for counting fish [20]. However, the scenario under study
is unique, involving a moving underwater camera, diverse
detection classes, and potential interruptions in object visibility
due to the movement of the ROV creating disturbances at the
seabed like moving sand and bubbles.

In this paper, we address the need to develop object-tracking
algorithms specifically for the unique challenges of underwater
tracking. Specifically, the contributions of this paper are the
following:

• We present a novel dataset for underwater multiple-object
tracking.

• We incorporate velocity estimation techniques with the
existing SOTA object tracking algorithm using analytical
formula and optical flow.

• We employ multiple motion models for more accurate
state estimation.

This paper is structured as follows. Section II offers an
overview of the essential preliminary knowledge of object
tracking. In Section III, various SOTA object tracking algo-
rithms are discussed with their advantages and disadvantages,
along with the rationale for developing a novel dataset for

2

underwater tracking. Section IV details the proposed method-
ologies, introducing optical flow and Interacting Multiple
Model (IMM) filters. Section V covers the implementation
and results. Finally, Section VI presents the conclusions and
potential avenues for future work.

II. PRELIMINARIES

The majority of the SOTA object tracking algorithms are
based on the tracking-by-detection method where tracking is
performed through continuous detection and association of
objects. This method encompasses multiple stages, with each
step employing a range of methods, including deep learning,
signal processing, and statistical modeling. The various steps
are discussed below [1], [21].

• Detection: Identifying the presence of an object in the
initial frame of a video or image sequence. This can be
done using various object detection or feature detection
algorithms.

• Initialisation: Establishing a reference or model of the
target object based on its appearance, features, or both
by giving it a unique identity. This serves as the starting
point for subsequent tracking.

• Localisation: Continuously estimating the object’s posi-
tion in subsequent frames, often through methods like
motion estimation or feature matching.

• Data Association: Linking the detected object in the
current frame with the previously identified target. This
is a critical step in maintaining the object’s identity over
time.

One of the most popular real-time object detection algorithms
is the You-Only-Look-Once (YOLO) [7], known for its speed
and efficiency. It processes the entire image in a single
forward pass through a neural network by dividing the input
image into smaller grid cells. A bounding box is presented
at each detected box with a confidence score. The current
detection model for SeaClear uses a YOLOv8 model, trained
on SeaClear data. Once the object is identified, it must be
given a unique reference or identity. In all subsequent frames,
it is crucial to consistently assign the same initial identity to
the object, affirming that it is the same object detected in the
preceding frames. In the context of object tracking, motion
estimation serves as a foundation for predicting the future
positions of objects and hence enabling real-time association
[17]. This process is particularly valuable in scenarios where
the appearance of the object may change, or where multiple
objects with similar features are present, making traditional
methods like feature matching less reliable.

III. RELATED WORK

A. Object Tracking Algorithms

Simple, Online, and Realtime Tracking (SORT) [4] is one of
the most widely used object-tracking algorithms. SORT relies
solely on the bounding box’s position and size for both motion
estimation and data association. Motion estimation is em-
ployed via a Kalman filter, utilizing a linear constant velocity
model that approximates the inter-frame displacements of the
objects and remains independent of other objects and camera

motion. Zhang et al. [19] introduced a simple and effective
data association method, Byte. In contrast to most algorithms
that only utilize detection boxes with high confidence scores,
here almost every detection box is retained and separated
into high-score ones and low-score ones. Utilizing this data
association method with SORT gives another SOTA object
tracker ByteTrack. BoT-SORT [2] builds on top of ByteTrack
by additionally handling camera motion compensation. This
is done by adopting conventional image matching to estimate
the camera motion.

Since the current object tracking algorithms were designed
keeping in mind pedestrian and vehicle movement, it is as-
sumed to follow constant velocity. However, the ROV does not
move with a constant velocity and the water disturbances make
this motion more unpredictable. The effectiveness of SORT-
like tracking methods is heavily influenced by the accuracy
of the predicted bounding box for the tracklet. If the motion
model is not accurate, this results in a reduced overlap between
corresponding bounding boxes, subsequently diminishing the
tracker’s overall performance. So it is imperative to develop
a precise discrete-time linear motion model for entities like
animals, fish, and trash, which poses significant challenges.
In practice, the movement patterns of fish and floating de-
bris, driven by water currents, cannot be modeled using first
principle equations. Therefore, employing a range of velocity
estimation techniques and integrating multiple motion models
is the proposed approach of this paper.

B. Datasets

There have been several object-tracking benchmarks for
both single and multiple object tracking. The most popular
is the Multiple Object Tracking (MOT) benchmark [5], which
has evolved into an annual challenge in computer vision and
tracking research, introducing increasingly complex datasets
each year. In total, 22 different datasets were published be-
tween 2015 and 2023 for the MOT Challenge. Of these 22,
only one, 3D-ZeF [13] is remotely relevant to the problem of
underwater object tracking as it contains Zebrafish tracking
in a laboratory environment. A laboratory environment has
good lighting and fish tanks are not deep enough to accurately
depict light distortion, and refraction that would occur in
deep waters. There is also an absence of dirt and water
currents which contributes heavily in a real underwater setting.
Unfortunately, all the other existing tracking datasets are open-
air and are based on single-category tracking focusing on
either pedestrians or vehicles.

IV. METHODOLOGY

A. Dataset Synthesis

Since no publicly accessible dataset for underwater object
tracking exists, the aim is first to develop a novel underwater
multi-class multi-object tracking dataset to represent diverse
underwater conditions, including clear and murky water, and
varying water currents. The SeaClear team has conducted
extensive tests using their ROV in diverse locations. The
dataset derived from these tests will serve as the definitive

3

Fig. 2. Light distortion underwater.

Fig. 3. Bubbles caused due to water currents leading to occlusion.

benchmark for evaluating algorithm performance in this re-
search. SeaClear goes to the ocean floor to collect trash
where light reaches very scarcely after refracting and reflecting
multiple times. As seen in Figure 3, light distortion, water
currents, and additional motion due to these currents bring
more uncertainty and challenges in this environment.

Collecting and processing videos for tracking is not enough
to make a dataset capable of being used for object tracking.
The video sequences need to be annotated with ground truth
information to compute performance metrics ensuring a defini-
tive and comparable result rather than relying on intuition
and the human eye. To ensure a consistent comparison, the
videos will undergo a self-annotation process. Instead of
manually annotating all frames, the existing detection model
is coupled with a Python script, to generate initial ground
truth annotations. While this automated process will be flawed,
inaccuracies will be corrected through manual annotation after
this. In total, 82 different object trajectories are annotated, with
different length and motion characteristics. The characteristics
of the trajectories after annotation are given in Table I.
Trajectories are categorized as short if they are less than 3
seconds, medium if they range between 3 and 7 seconds, and
long if they exceed 7 seconds. The long trajectories are also
the only objects in the video sequence, while most short and
medium trajectories have other objects in their surroundings.

B. Velocity Estimation

For more accurate tracking of the object, improving the
motion model is the focus. The motion model in the Kalman

TABLE I
OVERVIEW OF THE OBJECT TRAJECTORIES IN THE NEWLY CREATED

DATASET.

Trajectory length Number of objects
Short (≤ 3s) 43

Medium 32
Long (≥ 7s) 7

Fig. 4. Bounding box coordinates in an image.

filter is defined as

Xk+1 = A ·Xk (1)

with X as the state vector and A matrix as the system matrix or
state transition matrix. This matrix follows a constant velocity
model. The position and velocity estimates obtained using this
model can be inaccurate as the real motion of the ROV does
not adhere to a constant velocity model. However, during
the update step of the method, the position estimates are
corrected using data or measurements of the actual object
position, using the bounding box. However, since there is no
data about the velocity, this correction step does not apply
to the velocity estimates, leading to persistent inaccuracies in
the velocity estimates which can lead to inaccuracies in the
overall estimates. Two different velocity estimation methods
are proposed and the result from these will be assumed to be
the actual velocity. These estimates will be used as “sensor
data” in the Kalman filter for the update step.

1) Formula Based: We start with considering the simplest
definition of velocity, the rate of change of position. No matter
the motion of the object—whether linear, nonlinear, circular,
or otherwise—the velocity of a point mass can be described
as

ẋk =
xk − xk−1

dt
, (2)

where dt is the time difference. This can be extended to the
single pixel describing the top left corner of the bounding box.
The aim is to use this velocity value as a sensor measurement
in the update step of the Kalman filter. The update step does
not occur at every frame, but only when a successful data
association is achieved.

The velocity estimates are hence calculated as

ẋest =
xcurr − xprev

time since update
, (3)

ẏest =
ycurr − yprev

time since update
, (4)

4

with the time since update variable being the number
of frames between two update steps of the same object identity
and xprev and yprev being the x, y pixel locations of the
bounding box at the last update step. The time since
update variable is incremented by 1 at every predicted step
of the Kalman filter. The pseudo-code for this method is given
in Algorithm 1.

Algorithm 1 Formula-based velocity estimation with the
Kalman filter update step.

bbox← bounding box
kf ← Kalman Filter instance
xprev ← initial x position
yprev ← initial y position
time since update← 0
while tracking do
x← bbox[0]
y ← bbox[1]
if bbox matched with object then

xdot ← (x− xprev)/time since update
ydot ← (y − yprev)/time since update
kf.update(bbox, xdot, ydot)
xprev ← x
yprev ← y
time since update← 0

else
kf.predict()
time since update← time since update + 1

end if
end while

2) Optical Flow: Optical flow [8] is an algorithm that esti-
mates the motion of pixels and key points between consecutive
frames by analysing the intensity changes. Optical flow is often
represented by a vector field, where each vector component
represents the horizontal and vertical motion (direction and
velocity) of the pixel [11]. In optical flow, the brightness
consistency assumption is used. This assumption states that the
intensity of pixels does not change across consecutive frames.
The optical flow equation is given as

Ix · vx + Iy.vy = −It, (5)

where Ix and Iy are the partial derivatives of the image
intensity I(x, y, t) of the spatial coordinates x and y. It is
the partial derivative of the image intensity with respect to
time, t. Equation 5 is also known as the gradient constraint
which has two unknowns (vx, vy), the velocities in the x and y
direction, respectively, in one equation. Under the assumption
of constant brightness, other constraints are brought into play
to solve Equation 5 to obtain the pixel velocities. Currently,
two widely used algorithms are the Lucas-Kanade method and
Horn-Schunck method presented in [11]. The aim now is to
use this general velocity information as the sensor data in the
Kalman filter update step, just as we did in the previous section
instead of using the formula-based framework.

Algorithm 2 Using optical flow for velocity estimation with
the Kalman filter update step.

bbox← bounding box
kf ← Kalman Filter instance
imgp ← previous gray image frame
img← current gray image frame
s← space between dense points
fps← 25 {no. of frames per second}
if bbox matched with object then

flow← cv2.calcOpticalFlowFarneback(imgp, img)
h,w ← img.shape[: 2]
y, x← mesh grid[s/2 : h : s, s/2 : w : s]
fx, fy ← Transpose(flow[y, x])
xdot ← fx.mean ∗ fps {Estimate velocity in x direction}

ydot ← fy.mean ∗ fps {Estimate velocity in y direction}

kf.update(bbox, xdot, ydot)
time since update← 0

else
kf.predict
time since update← time since update + 1

end if

C. Interacting Multiple Model

The Interacting Multiple Model (IMM) filter [6] is a proba-
bilistic algorithm used for state estimation to handle situations
when multiple possible models can describe the evolution
of a system and the true model is not known beforehand
or changes dynamically. Each dynamic model represents a
different hypothesis about the system’s behavior. Since we
are unaware of the exact motion model of the ROV, using
the IMM filter is suitable. Each model in an IMM filer has
an associated probability that reflects how likely it is that
the system is currently following that particular model at the
time step. These probabilities are updated over time based
on the sensor measurements. After the update step, the IMM
filter combines information from all models to produce a final
estimate of the system’s state. This combination is weighted
by the probability of each model.

The aim is to implement the IMM filter to introduce another
model, the constant acceleration model, and evaluate how
well it describes the motion. This would increase the number
of states in the system. The state vector for the constant
acceleration model is

X = [x, y, w, h, ẋ, ẏ, ẇ, ḣ, ẍ, ÿ]T . (6)

with (x,y) defined as the top left pixel coordinate of the
bounding box, and w and h are the width and the height
of the bounding box respectively. The width and the height
are not considered here for the constant acceleration and
are still considered to change with constant velocity. We are
more interested in making sure that the top left corner of the
bounding box follows different motions and that the width
and the height of the bounding box do not contribute to the
overall trajectory of the object. We use an IMM filter with

5

two different motion models, constant velocity and constant
acceleration, and evaluate the outcome.

The motion model for a constant acceleration model is

Xk+1 = A ·Xk (7)

with the A matrix defined as

1 0 0 0 dt 0 0 0 dt2

2 0

0 1 0 0 0 dt 0 0 0 dt2

2
0 0 1 0 0 0 dt 0 0 0
0 0 0 1 0 0 0 dt 0 0
0 0 0 0 1 0 0 0 dt 0
0 0 0 0 0 1 0 0 0 dt
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

(8)

and X being the state vector as defined in Equation 6. The
constant velocity model follows the same structure, except the
double differential term in the last two columns of the first
two rows is 0.

V. IMPLEMENTATIONS AND RESULTS

The Higher Order Tracking Accuracy (HOTA) [10] metric
is a comprehensive evaluation measure used in multi-object
tracking tasks. It aims to provide a balanced assessment of
both detection and association accuracy, addressing some of
the limitations of traditional metrics like MOTA (Multi-Object
Tracking Accuracy) [3] and IDF1 (Identity F1 Score) [14].
To compare performance, the HOTA metric is considered
alongside the number of mostly tracked (MT) and mostly lost
(ML) trajectories.

200 400 600 800 1000 1200
x pixel

200

400

600

800

1000

1200

y
pi

xe
l

GT

200 400 600 800 1000 1200
x pixel

200

400

600

800

1000

1200

y
pi

xe
l

SORT

200 400 600 800 1000 1200
x pixel

200

400

600

800

1000

1200

y
pi

xe
l

SORT-V

200 400 600 800 1000 1200
x pixel

200

400

600

800

1000

1200

y
pi

xe
l

SORT-OF

Fig. 5. Ground truth trajectories with tracking results from SORT, SORT-V,
and SORT-OF.

A. Velocity Estimation

Both the formula-based and the optical flow-based velocity
estimation techniques are applied to the SORT algorithm,
giving two novel algorithms namely, SORT-V and SORT-
OF respectively. From Table II, there is a clear increase in
performance when velocity estimation is implemented. The
localization accuracy reaches 99%. This can also be seen
in Figure 5. The SORT algorithm when tracking the object
in orange in the ground truth tracks an approximate linear
version of the actual trajectory. When velocity estimation
techniques are introduced, the true nature of the trajectory
is tracked, increasing the localization accuracy and overall
tracking accuracy.

Even when compared to ByteTrack and BoT-SORT, the
performance of velocity estimation techniques shows sig-
nificant improvement. Both formula-based and optical flow-
based velocity estimation methods effectively eliminate false
positives. This can be seen visually in the Figure 6. All
algorithms are also compared numerically in Table III. The
HOTA score increases gradually, but it is also crucial to
consider additional performance metrics. Specifically, when
examining the mostly tracked and mostly lost trajectories, the
velocity estimation algorithms reduce the number of mostly
lost trajectories by nearly half. This represents a substantial
improvement in tracking performance.

0 500 1000
x pixel

200

400

600

800

1000

1200

y
pi

xe
l

GT

0 500 1000
x pixel

200

400

600

800

1000

1200

y
pi

xe
l

SORT

0 500 1000
x pixel

200

400

600

800

1000

1200

y
pi

xe
l

ByteTrack

0 500 1000
x pixel

200

400

600

800

1000

1200

y
pi

xe
l

BOT-SORT

0 500 1000
x pixel

200

400

600

800

1000

1200

y
pi

xe
l

SORT-V

0 500 1000
x pixel

200

400

600

800

1000

1200

y
pi

xe
l

SORT-OF

Fig. 6. Velocity estimation techniques can resolve false positives.

B. IMM

To account for different motion models, the IMM filter
is implemented with the SORT algorithm, resulting in a
novel tracker, SORT-IMM. The IMM filter is implemented
with two different models, a constant velocity and a constant
acceleration model. The probabilities for switching between
a constant velocity model and a constant acceleration model,
and vice versa, must be defined. The probability of remaining
in the same model is denoted as α, and the probability of

6

TABLE II
COMPARING RESULTS OF THE PROPOSED VELOCITY ESTIMATION-BASED

TRACKERS WITH SORT.

Algorithms HOTA DetA AssA LocA IDs
SORT 61.838 70.51 54.26 95.43 117

SORT-V 67.445 81.738 55.651 99.866 171
SORT-OF 68.619 81.525 57.757 99.845 156

transitioning to a different model is given by 100 − α. This
leads to the following transition matrix:

p =

[
α 100− α

100− α α

]
. (9)

When implementing the SORT-IMM with various values
of α, the best performance is achieved when α = 75. This
means that if the tracker starts in a constant velocity model,
there is a 75% probability of remaining in that model and
a 25% probability of transitioning to a constant acceleration
model. Similarly, if the tracker starts in a constant acceleration
model, there is a 75% probability of staying in that model and
a 25% probability of switching to the constant velocity model.
Another parameter of the IMM filter is the model probability
which represents the likelihood that the system is operating
under each model at any given time. These probabilities
are updated at each time step based on the measurement
likelihoods and the transition probabilities between models.
The initial model probabilities are set to 50-50 because, in
practice, the exact motion of the ROV is unknown, and there
is no preference for one model over the other.

Comparing the HOTA, detection, association, and localiza-
tion accuracy metrics in Table III, it can be seen that the
newly proposed SORT-IMM gives the highest HOTA value
at 68.93. This high score results from its superior association
and localization accuracy. While its detection accuracy is not
the highest, it is only 0.7 less than the top-performing tracker.
From this, it can be concluded that object tracking algorithms
rely heavily on the optimal performance of all sub-algorithms,
detection, association, and localization equally.

Fig. 7. SORT-IMM tracking output with the ground truth.

Object trajectories with the ground truth and the SORT-
IMM output are illustrated in Figure 7. The IMM-based tracker
closely follows the ground truth. The model probability of
the constant acceleration model remains at 1 for multiple
frames as seen in Figure 8. This indicates that this model
consistently describes the actual motion of the object, resulting
in continuous tracking.

200 210 220 230 240 250 260
Frame number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty

MU

Prob CV
Prob CA

Fig. 8. Model probabilities throughout the tracking horizon.

Considering other performance metrics, the SORT-IMM
tracker does not exhibit the lowest number of identity switches,
instead, the SORT tracker gives the fewest identity switches.
This is unexpected given the lower association accuracy. This
reduction in identity switches can be attributed to the tracker
missing approximately 31 objects. As a result, instead of track-
ing the original 82 ground truth identities, it only managed
to follow around 51 trajectories. Hence, it is important to
consider that the SORT tracker has 39 identity switches when
tracking 51 objects. In this context, the SORT-IMM provides
the best overall performance, with the highest number of
mostly tracked objects at 30, the fewest mostly lost trajectories
at 13, and 52 identity switches. The algorithm SORT-OF
also gives good tracking performance with the second highest
HOTA only 0.3 behind the SORT-IMM tracker and the second
highest mostly tracked trajectories, only 1 less than the SORT-
IMM. This performance can be seen in Figure 10, with other
algorithms giving identity switches and false positives, SORT-
OF gives the same result as the SORT-IMM tracker.

Another important metric is the computational speed of the
algorithms. This is an important metric to keep in mind to
be able to achieve online and real-time tracking. The metric
is only for the tracking algorithm and does not include the
computational time to detect objects. All algorithms were run
using the Nvidia GeForce MX570 GPU. Both methods using
optical flow are not suitable to be used in an online, real-time
setting as seen from the computation time in Table III. BoT-
SORT can be used with a more powerful computing system,
but the SORT-OF is just at 1.8 frames per second. So even
though it has good performance and is close to the SORT-

7

IMM tracker, the computational speed is very slow and not
suitable for real-time tracking.

When examining detailed performance metrics, competition
emerges between the SORT-IMM and the SORT-V. The latter
demonstrates slightly higher detection recall and precision,
with margins of 0.3 and 0.03, respectively, compared to
the IMM-based tracker. However, the IMM tracker excels
in association recall, achieving 59.01 compared to 55.94
for SORT-V. Association recall measures how well predicted
trajectories cover ground-truth trajectories, a low association
recall indicates that a tracker splits an object into multiple
predicted tracks. The higher association recall of the SORT-
IMM tracker suggests it consistently associates objects without
identity switches, resulting in fewer false negatives.

500 100015002000
x pixel

0

200

400

600

800

1000

1200

y
pi

xe
l

GT

500 100015002000
x pixel

0

200

400

600

800

1000

1200

y
pi

xe
l

ByteTrack

500 100015002000
x pixel

0

200

400

600

800

1000

1200

y
pi

xe
l

BoT-SORT

500 100015002000
x pixel

0

200

400

600

800

1000

1200

y
pi

xe
l

SORT-OF

500 100015002000
x pixel

0

200

400

600

800

1000

1200

y
pi

xe
l

SORT-V

500 100015002000
x pixel

0

200

400

600

800

1000

1200

y
pi

xe
l

SORT-IMM

Fig. 9. Comparing tracking performance of all implemented algorithms.
SORT-IMM tracking nonlinear trajectories the best.

The performance of all algorithms implemented and dis-
cussed is also visually compared. The SORT-IMM tracker is
most capable of tracking non-linear motion as seen in Figure
9. It is the only algorithm consistently able to track the loop
starting approximately at pixel coordinate (2000, 1000). This
shows that having the constant velocity model is not enough
to describe the motion and additional information about the
velocity or more defined motion model is required. It can also
be concluded that the constant acceleration model can help
describe the object trajectories better though not perfectly.

VI. CONCLUSIONS AND FUTURE WORK

With little to no public research on multiple object tracking
in underwater scenarios, this research aims to first develop
a novel dataset to facilitate more research on this topic. In
addition, existing SOTA object tracking algorithms are imple-
mented on this new dataset. Additionally, two newly proposed
velocity estimation techniques are implemented, and a new
multi-model tracker is introduced. Two novel trackers are
proposed, SORT-V and SORT-OF, both incorporate advanced
velocity estimation methods to more accurately capture the
erratic and non-linear motion of underwater objects. SORT-V

uses formula-based velocity calculation at each update step of
the Kalman Filter. In contrast, SORT-OF utilizes optical flow
to calculate pixel velocities. This calculated velocity serves as
a sensor measurement to update both velocities and positions
during the update step. Both give improved tracking results
when compared to SORT, ByteTrack, and BoT-SORT with
the least number of lost trajectories and higher HOTA scores,
but SORT-OF had a very low computational speed of 1.8 fps.

No matter how much we can improve the update step, an
incorrect motion model will always lead to inaccurate tracking.
So IMM filter is used instead of the normal Kalman Filter in
the SORT algorithm. Two different motion models are imple-
mented in the IMM filter the constant velocity model and the
constant acceleration model. Initial model probabilities are set
at 50% for each, indicating no preference between the models.
The best performance is achieved with a transition probability
of 25% between models and 75% within the same model.
This gives the best tracking result, with the highest HOTA,
the most number of trajectories tracked, and the least number
of lost trajectories. With this result, it can be concluded that
using above-water trackers for underwater tracking is not
suitable and needs to be adjusted. Using a constant velocity
with a constant aspect ratio motion model does not describe
the motion well. Even getting a correct velocity measure
during the Kalman filter update step can improve the tracking
performance a lot. In summary, this paper presents a significant
advancement in the field of underwater object tracking. By
moving beyond the limitations of linear constant velocity
models and integrating novel velocity estimation techniques,
we have developed trackers that offer reliable and precise
tracking performance in challenging underwater environments.
These contributions lay the groundwork for further research
and development in underwater video analysis, with poten-
tial applications in marine biology, underwater robotics, and
environmental monitoring.

Enhancing the accuracy and reliability of the motion model
is essential for achieving better performance and more accurate
predictions. Future studies should prioritize developing more
sophisticated and precise motion models to improve overall
system performance without unnecessarily complicating the
algorithm. Incorporating additional sensors on the ROV, such
as high-precision accelerometers and gyroscopes, will give
accurate data on the motion of the ROV. The data from these
sensors can be used as real measurements for the Kalman filter
update step instead of using velocity estimation techniques.
This will improve real-time velocity estimations by providing
more comprehensive motion data.

Once a larger dataset has been collected, the ground truth
trajectories can also be leveraged to develop a more accurate
motion model through offline learning. This refined motion
model can then be integrated with the commonly used constant
velocity model within the IMM filter. By doing so, it would be
possible to significantly enhance the filter’s ability to predict
and adapt to underwater environments’ dynamic and often
unpredictable nature. This approach could lead to more robust
and reliable predictions, ultimately improving the system’s
overall performance in challenging conditions.

By concentrating on improving the motion model, future

8

TABLE III
COMPARING PERFORMANCE METRICS OF SOTA TRACKING ALGORITHMS WITH THE NEWLY PROPOSED.

Tracker HOTA DetA AssA LocA DetRe DetPr AssRe AssPr IDSW MT ML Frag FPS
SORT 61.83 70.52 54.26 95.43 72.56 95.26 55.19 96.73 39 32 31 69 2694.9

ByteTrack 64.81 72.41 58.07 94.02 75.76 92.70 57.49 94.67 46 25 29 83 4489.9
BoT-SORT 67.75 79.79 57.54 97.15 82.40 95.99 58.28 97.72 80 26 29 92 23.2

SORT-V 67.44 81.74 55.65 99.8 83.42 97.60 55.94 98.78 69 30 14 110 3158.3
SORT-OF 68.62 81.52 57.76 99.84 83.20 97.59 58.12 98.79 65 29 15 111 1.8

SORT-IMM 68.93 81.06 58.62 99.86 82.73 97.56 59.01 98.75 52 30 13 114 966.4

0 500 1000
x pixel

0

200

400

600

800

1000

1200

y
pi

xe
l

GT

0 500 1000
x pixel

0

200

400

600

800

1000

1200

y
pi

xe
l

ByteTrack

0 500 1000
x pixel

0

200

400

600

800

1000

1200
y

pi
xe

l
BoT-SORT

0 500 1000
x pixel

0

200

400

600

800

1000

1200

y
pi

xe
l

SORT-OF

0 500 1000
x pixel

0

200

400

600

800

1000

1200

y
pi

xe
l

SORT-V

0 500 1000
x pixel

0

200

400

600

800

1000

1200

y
pi

xe
l

SORT-IMM

Fig. 10. Comparing tracking performance of all implemented algorithms.
SORT-OF and SORT-V both give equally good results.

research can lead to more efficient and effective solutions
that maintain a balance between complexity and computational
efficiency.

REFERENCES

[1] Abdul Rajjak, S. & Kureshi, A. Recent Advances in Object Detection and
Tracking for High Resolution Video: Overview and State-of-the-Art. 2019
5th International Conference On Computing, Communication, Control
And Automation (ICCUBEA). pp. 1-9 (2019)

[2] Aharon, N., Orfaig, R. & Bobrovsky, B. BoT-SORT: Robust Associations
Multi-Pedestrian Tracking. (arXiv,2022)

[3] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking
Performance: The CLEAR MOT Metrics. EURASIP J. Image Video
Process.. 2008 pp. 1-10 (2008)

[4] Bewley, A., Ge, Z., Ott, L., Ramos, F. & Upcroft, B. Simple Online
and Real-time Tracking. 2016 IEEE International Conference On Image
Processing (ICIP). pp. 3464-3468 (2016)

[5] Dendorfer, P., Osep, A., Milan, A., Schindler, K., Cremers, D., Reid,
I., Roth, S. & Leal-Taixé, L. MOTChallenge: A Benchmark for Single-
Camera Multiple Target Tracking. Int. J. Comput. Vis.. 129, 845-881
(2021,4)

[6] Genovese, A. The Interacting Multiple Model Algorithm
for Accurate State Estimation of Maneuvering Targets.
(https://secwww.jhuapl.edu/techdigest/Content/techdigest/pdf/V22-
N04/22-04-Genovese.pdf), Accessed: 2024-7-22

[7] Ge, Z., Liu, S., Wang, F., Li, Z. & Sun, J. YOLOX: Exceeding YOLO
Series in 2021. (arXiv,2021)

[8] Horn, B. & Schunck, B. Determining Optical Flow. Artif. Intell.. 17, 185-
203 (1981,8)

[9] Jambeck, J., Geyer, R., Wilcox, C., Siegler, T., Perryman, M.,
Andrady, A., Narayan, R. & K. L. Law Plastic Waste In-
puts from Land Into the Ocean. Science. 347, 768-771 (2015),
https://www.science.org/doi/abs/10.1126/science.1260352

[10] Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-Taixe, L.
& Leibe, B. HOTA: A Higher Order Metric for Evaluating Multi-Object
Tracking. (2020,9)

[11] Mahdavi, H. Optical Flow Based Moving Object Detection and Tracking
for Traffic Surveillance. (Zenodo,2013,9)

[12] Mirunalini, P., Jaisakthi, S. & Sujana, R. Tracking of Object in Occluded
and Non-Occluded Environment using SIFT and Kalman filter. TENCON
2017 - 2017 IEEE Region 10 Conference. (2017,11)

[13] Pedersen, M., Haurum, J., Bengtson, S. & Moeslund, T. 3D-ZeF: A 3D
Zebrafish Tracking Benchmark Dataset. ArXiv:2006.08466[cs]. (2020),
https://arxiv.org/abs/2006.08466, arXiv: 2006.08466

[14] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Perfor-
mance measures and a data set for multi-target, multi-camera tracking.
(arXiv,2016)

[15] SeaClear Website. (https://seaclear-project.eu/about-main/about-
seaclear), Accessed: 29-11-2023

[16] Salhi, A., Moresly, Y., Ghozzi, F., Yengui, A. & Fakhfakh, A. Modeling
from an Object and Multi-object Tracking System. 2016 Global Summit
On Computer And Information Technology (GSCIT). pp. 80-85 (2016)

[17] Shariat, H. & Price, K. Motion Estimation with More than Two Frames.
IEEE Transactions On Pattern Analysis And Machine Intelligence. 12,
417-434 (1990)

[18] United Nations The ocean – the world’s greatest ally against climate
change — United Nations. (United Nations)

[19] Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu,
W. & Wang, X. ByteTrack: Multi-object Tracking by Associating Every
Detection Box. (arXiv,2021)

[20] Zhang, X., Zeng, H., Liu, X., Yu, Z., Zheng, H. & Zheng, B. In Situ
Holothurian Noncontact Counting System: A General Framework for
Holothurian Counting. IEEE Access. 8 pp. 210041-210053 (2020)

[21] Zhao, Y., Shi, H., Chen, X., Li, X. & Wang, C. An Overview of
Object Detection and Tracking. 2015 IEEE International Conference On
Information And Automation. pp. 280-286 (2015)

76 Conference Paper Draft

Mallika Tripathi Master of Science Thesis

Appendix B

Python File for Ground Truth
Annotation

1
2 import os
3 import configparser
4 from ultralytics import YOLO
5 import pickle
6 directory = "Video8_00021983"
7 gt_file = "gt.txt"
8 det_file = "det.txt"
9 requirement = "Seaclear"

10 save_path = "predictions.pickle"
11
12 # if requirement == "Seaclear":
13 # model = YOLO(’best.pt’)
14 # video_path = video
15 # else:
16 # video_path = 0
17 # model = YOLO("yolov8n.pt")
18
19 # Parent Directory path
20 parent_dir = "C:/Users/malli/Desktop/Systems and control/THESIS/Data"
21 folder_path = os . path . join (parent_dir , directory)
22 if not os . path . exists (folder_path) :
23 os . makedirs (folder_path)
24 gt_path = os . path . join (folder_path , gt_file)
25 det_path = os . path . join (folder_path , det_file)
26 # result=model.predict(video)
27 with open (save_path , ’rb’) as file :
28 result = pickle . load (file)
29 file . close ()
30 frame = 0
31 id_prev ={}

Master of Science Thesis Mallika Tripathi

78 Python File for Ground Truth Annotation

32 frame_prev = None
33 unique_id = 0
34 prev_frame_id ={}
35 det_file = open (det_path , ’w’)
36 with open (gt_path , ’w’ , newline=’’) as out_file :
37 for r in result :
38 frame = frame + 1
39 box =0
40 for b in r . boxes :
41 matching_boxes =[]
42 cls = int (b . cls . item ())
43 conf = b . conf . item ()
44 print (’%d,%d,%.2f,%.2f,%.2f,%.2f,%.2f,%d,%d,%d’%(frame , −1 ,b .

xywh [0] [0] . item () , b . xywh [0] [1] . item () , b . xywh [0] [2] . item () ,
b . xywh [0] [3] . item () , conf , cls , 1 , 1) , file=det_file)

45 if conf < 0.35 :
46 break
47 bb_left = b . xywh [0] [0] . item ()
48 bb_top = b . xywh [0] [1] . item ()
49 bb_width = b . xywh [0] [2] . item ()
50 bb_height = b . xywh [0] [3] . item ()
51 bb_area = bb_height∗bb_width
52 if frame == 1 :
53 new_object = True
54 else :
55 for prev_b in frame_prev . boxes :
56 if cls == int (prev_b . cls . item ()) :
57 matching_boxes . append (prev_b)
58 if matching_boxes == [] :
59 new_object = True
60 for matched_b in matching_boxes :
61 bb_left_diff = abs (bb_left − matched_b . xywh [0] [0] .

item ())
62 bb_top_diff = abs (bb_top − matched_b . xywh [0] [1] . item

())
63 bb_width_diff = abs (bb_width − matched_b . xywh [0] [2] .

item ())
64 bb_height_diff = abs (bb_height − matched_b . xywh

[0] [3] . item ())
65 #bb_area_diff = abs(bb_area - (bb_width_match*

bb_width_match))
66 # new_object = False
67 if bb_left_diff < 100 and bb_top_diff < 100 and

bb_width_diff <100 and bb_height_diff < 70 and
matched_b . conf . item () in prev_frame_id . keys () :

68 id = prev_frame_id [matched_b . conf . item ()]
69 new_object = False
70 break
71 else :
72 new_object = True
73 if new_object == True :
74 unique_id = unique_id + 1
75 id = unique_id

Mallika Tripathi Master of Science Thesis

79

76 # id =1
77 print (frame , " " , id , " " , bb_left , " " , bb_top , " " ,

bb_width , " " , bb_height , " " , conf , " " , cls , " " , 1 , " "
, 1)

78 print (’%d,%d,%.2f,%.2f,%.2f,%.2f,%.2f,%d,%d,%d’%(frame , id ,
bb_left , bb_top , bb_width , bb_height , conf , cls , 1 , 1) , file=
out_file)

79 seq_len = frame
80 id_prev . update ({ conf : id })
81 frame_prev = r
82 prev_frame_id = id_prev
83 id_prev ={}
84 out_file . close ()
85 det_file . close ()

Master of Science Thesis Mallika Tripathi

80 Python File for Ground Truth Annotation

Mallika Tripathi Master of Science Thesis

Bibliography

[1] S. S. Abdul Rajjak and A. K. Kureshi. Recent Advances in Object Detection and
Tracking for High Resolution Video: Overview and State-of-the-Art. In 2019 5th In-
ternational Conference On Computing, Communication, Control And Automation (IC-
CUBEA), pages 1–9, 2019.

[2] N. Aharon, R. Orfaig, and B.-Z. Bobrovsky. BoT-SORT: Robust Associations Multi-
Pedestrian Tracking. 2022.

[3] S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying framework. Interna-
tional Journal of Computer Vision, 56(3):221–255, 2004.

[4] J. Barrett, Z. Chase, J. Zhang, M. M. B. Holl, K. Willis, A. Williams, B. D. Hardesty,
and C. Wilcox. Microplastic Pollution in Deep-Sea Sediments from the Great Australian
Bight. Front. Mar. Sci., 7, Oct. 2020.

[5] K. Bernardin and R. Stiefelhagen. Evaluating Multiple Object Tracking Performance:
The CLEAR MOT Metrics. EURASIP J. Image Video Process., 2008:1–10, 2008.

[6] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Simple Online and Real-time
Tracking. In 2016 IEEE International Conference on Image Processing (ICIP), pages
3464–3468, 2016.

[7] E. Bochinski, V. Eiselein, and T. Sikora. High-Speed Tracking-by-detection Without
using Image Information. In 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS). IEEE, Aug. 2017.

[8] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[9] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 886–893 vol. 1, 2005.

Master of Science Thesis Mallika Tripathi

82 Bibliography

[10] P. Dendorfer, A. Osep, A. Milan, K. Schindler, D. Cremers, I. Reid, S. Roth, and L. Leal-
Taixé. MOTChallenge: A Benchmark for Single-camera Multiple Target Tracking. Int.
J. Comput. Vis., 129(4):845–881, Apr. 2021.

[11] J. P. F. D’Haeyer. Gaussian Filtering of Images: A Regularization Approach. Signal
Processing, 18(2):169–181, Oct. 1989.

[12] D.-Z. Du, P. Pardalos, X. Hu, and W. Wu. Introduction. In Introduction to Combi-
natorial Optimization, Springer optimization and its applications, pages 1–11. Springer
International Publishing, Cham, 2022.

[13] O. Escobar Díaz, A. Sánchez López, M. B. Bernábe Loranca, and R. González Velázquez.
Real Time Drone Object Tracking Using Histograms of Oriented Gradients and Particle
Filters. In 2016 Fifteenth Mexican International Conference on Artificial Intelligence
(MICAI), pages 35–40, 2016.

[14] G. Farnebäck. Two-Frame Motion Estimation based on Polynomial Expansion. In Image
Analysis, Lecture notes in computer science, pages 363–370. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

[15] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun. YOLOX: Exceeding YOLO Series in 2021.
2021.

[16] A. F. Genovese. The Interacting Multiple Model Algorithm for Accurate State Esti-
mation of Maneuvering Targets. https://secwww.jhuapl.edu/techdigest/Content/
techdigest/pdf/V22-N04/22-04-Genovese.pdf. Accessed: 2024-7-22.

[17] H. Ghorbani. Mahalanobis Distance and its Application for Detecting Multivariate Out-
liers. Facta Univ. Ser. Math. Inform., page 583, Oct. 2019.

[18] B. K. P. Horn and B. G. Schunck. Determining Optical Flow. Artif. Intell., 17(1-3):185–
203, Aug. 1981.

[19] J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady,
R. Narayan, and K. L. Law. Plastic Waste Inputs from Land Into the Ocean. Sci-
ence, 347(6223):768–771, 2015.

[20] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. J. Basic
Eng., 82(1):35–45, Mar. 1960.

[21] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder, G. Fernandez, G. Nebehay,
F. Porikli, and L. Čehovin. A Novel Performance Evaluation Methodology for Single-
Target Trackers. IEEE Transactions on Pattern Analysis and Machine Intelligence,
38(11):2137–2155, Nov 2016.

[22] H. W. Kuhn. The Hungarian Method for the Assignment Problem. Nav. Res. Logist.
Q., 2(1-2):83–97, Mar. 1955.

[23] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput.
Vis., 60(2):91–110, Nov. 2004.

Mallika Tripathi Master of Science Thesis

https://secwww.jhuapl.edu/techdigest/Content/techdigest/pdf/V22-N04/22-04-Genovese.pdf
https://secwww.jhuapl.edu/techdigest/Content/techdigest/pdf/V22-N04/22-04-Genovese.pdf

83

[24] J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixe, and B. Leibe. HOTA:
A Higher Order Metric for Evaluating Multi-Object Tracking. Sept. 2020.

[25] H. Mahdavi. Optical Flow Based Moving Object Detection and Tracking for Traffic
Surveillance. Sept. 2013.

[26] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler. MOT16: A Benchmark for
Multi-Object Tracking. arXiv:1603.00831 [cs], Mar. 2016. arXiv: 1603.00831.

[27] P. Mirunalini, S. M. Jaisakthi, and R. Sujana. Tracking of Object in Occluded and Non-
Occluded Environment using SIFT and Kalman filter. In TENCON 2017 - 2017 IEEE
Region 10 Conference. IEEE, Nov. 2017.

[28] R. W. Obbard, S. Sadri, Y. Q. Wong, A. A. Khitun, I. Baker, and R. C. Thompson.
Global Warming Releases Microplastic Legacy Frozen in Arctic Sea Ice. Earths Future,
2(6):315–320, June 2014.

[29] Ocean Conservation. Ocean Pollution and Conservation. https://www.conservation.
org/stories/ocean-pollution-facts#references. Accessed: 22-01-2024.

[30] K. O’Shea and R. Nash. An Introduction to Convolutional Neural Networks. 2015.

[31] K. Panetta, L. Kezebou, V. Oludare, and S. Agaian. Comprehensive Underwater Object
Tracking Benchmark Dataset and Underwater Image Enhancement With GAN. IEEE
Journal of Oceanic Engineering, 47(1):59–75, 2022.

[32] M. Pedersen, J. B. Haurum, S. H. Bengtson, and T. B. Moeslund. 3D-ZeF: A 3D
Zebrafish Tracking Benchmark Dataset. arXiv:2006.08466[cs], 2020. arXiv: 2006.08466.

[33] A. Salhi, Y. Moresly, F. Ghozzi, A. Yengui, and A. Fakhfakh. Modeling from an Object
and Multi-object Tracking System. In 2016 Global Summit on Computer and Information
Technology (GSCIT), pages 80–85, 2016.

[34] SeaClear. Seaclear website. https://seaclear-project.eu/about-main/
about-seaclear. Accessed: 29-11-2023.

[35] H. Shariat and K. Price. Motion Estimation with More than Two Frames. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 12(5):417–434, 1990.

[36] J. Shi and Tomasi. Good Features to Track. In 1994 Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 593–600, 1994.

[37] UNDP. Microplastics on Human Health: How Much do they
Harm Us? –undp.org. https://www.undp.org/kosovo/blog/
microplastics-human-health-how-much-do-they-harm-us#:~:text=Recent%
20evidence%20indicates%20that%20humans,such%20as%20beer%20and%20salt.
[Accessed 22-01-2024].

[38] L. Van Cauwenberghe, A. Vanreusel, J. Mees, and C. R. Janssen. Microplastic Pollution
in Deep-Sea Sediments. Environ. Pollut., 182:495–499, Nov. 2013.

Master of Science Thesis Mallika Tripathi

https://www.conservation.org/stories/ocean-pollution-facts#references
https://www.conservation.org/stories/ocean-pollution-facts#references
https://seaclear-project.eu/about-main/about-seaclear
https://seaclear-project.eu/about-main/about-seaclear
https://www.undp.org/kosovo/blog/microplastics-human-health-how-much-do-they-harm-us#:~:text=Recent%20evidence%20indicates%20that%20humans,such%20as%20beer%20and%20salt.
https://www.undp.org/kosovo/blog/microplastics-human-health-how-much-do-they-harm-us#:~:text=Recent%20evidence%20indicates%20that%20humans,such%20as%20beer%20and%20salt.
https://www.undp.org/kosovo/blog/microplastics-human-health-how-much-do-they-harm-us#:~:text=Recent%20evidence%20indicates%20that%20humans,such%20as%20beer%20and%20salt.

84 Bibliography

[39] S. Vasuhi, M. Vijayakumar, and V. Vaidehi. Real Time Multiple Human Tracking using
Kalman Filter. In 2015 3rd International Conference on Signal Processing, Communi-
cation and Networking (ICSCN), pages 1–6, 2015.

[40] S. Wu, O. Oreifej, and M. Shah. Action Recognition in Videos Acquired by a Mov-
ing Camera using Motion Decomposition of Lagrangian Particle Trajectories. In 2011
International Conference on Computer Vision, pages 1419–1426, 2011.

[41] Y. Wu, J. Lim, and M.-H. Yang. Object Tracking Benchmark. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 37(9):1834–1848, 2015.

[42] X. Zhang, H. Zeng, X. Liu, Z. Yu, H. Zheng, and B. Zheng. In Situ Holothurian Noncon-
tact Counting System: A General Framework for Holothurian Counting. IEEE Access,
8:210041–210053, 2020.

[43] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and X. Wang.
ByteTrack: Multi-object Tracking by Associating Every Detection Box. 2021.

[44] Y. Zhao, H. Shi, X. Chen, X. Li, and C. Wang. An Overview of Object Detection and
Tracking. In 2015 IEEE International Conference on Information and Automation, pages
280–286, 2015.

Mallika Tripathi Master of Science Thesis

List of Acronyms

CNN Convolution Neural Network
DetA Detection Accuracy
IMM Interacting Multiple Model
IOU Intersection-over-union
HOTA Higher Order Tracking Accuracy
MOT Multiple Object Tracking
MOTA Multi-object Tracking Accuracy
ROV Remotely Operated Vehicle
SIFT Scale-Invariant Feature Transform
SORT Simple Online and Real-time Tracking
SOTA State-of-the-art
YOLO You Only Look Once

Master of Science Thesis Mallika Tripathi

86 List of Acronyms

Mallika Tripathi Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Acknowledgements

	Main Matter
	Introduction
	SeaClear
	Research Aim and Objective
	Thesis Organisation

	Overview of Object Tracking
	Introduction
	Object Detection
	Object Initialisation and Localisation
	Motion Estimation
	Feature Matching

	Data Association
	Above-land Object Tracking Algorithms
	IOU Tracker
	SORT
	ByteTrack
	BoT-SORT

	Object Tracking Benchmarks
	Comparisons
	Summary

	Novel Dataset for Underwater Object Tracking
	SeaClear Dataset
	Ground Truth Annotations
	Summary

	Novel Enhancements for Underwater Object Tracking
	State-space Representation
	Velocity Estimation
	Analytical Formula
	Optical Flow

	Interacting Multiple Models
	Summary

	Experimental Results
	Performance Parameters
	Above-water Object Tracking Algorithms
	IOU Tracker
	SORT
	ByteTrack
	BoT-SORT

	Proposed Algorithms for Underwater Object Tracking
	Velocity Estimation
	Interacting Multiple Model Filter

	Comparisons and Conclusions
	Summary

	Conclusions and Future Recommendations
	Conclusions
	Recommendations

	Appendices
	Conference Paper Draft
	Python File for Ground Truth Annotation

	Back Matter
	Bibliography
	List of Acronyms

