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Abstract

The Ampelmann system offers a safe and reliable solution for offshore access. As safety is a key
factor, an extensive safety and warning management system is employed which accommodates
for different fault types that may occur. Accommodation of sensor failure in the Ampelmann
system is currently done through switching to a redundant component. However, there are
several faults that are left undetected in the system. Detection only occurs when the faults
exceed a critical threshold. Exceeding this threshold immediately results in shut-down of
the system as safety is no longer guaranteed. For sensor equipment critical to the motion
compensation, this leads to a code black in the system. The occurrences of code blacks should
be limited where possible due to the fact that these lead to downtime.

A critical sensor for the motion control is the position transducer in the hydraulic cylinders.
The measured lengths are used for feedback purposes in the control system. The position
transducer is redundant in each cylinder. The redundant sensor is mainly utilized for checking
the main sensor. However, when the measurements from both sensors deviate too much from
one another the system will shut down.

Therefore, in this thesis, the possibility of a model-based fault detection method for the
position transducer in the hydraulic cylinder is explored. Firstly, an accurate model of the
hydraulic cylinder is derived and identified. Then, the model is combined with an observer to
generate accurate estimates of the cylinder lengths. Furthermore, the estimates are compared
with the actual measured cylinder lengths from the position transducer to generate residuals.
Finally, the residuals are evaluated in order to make a decision about the health of the sensor.

Three different fault types have been defined, which are expected to cause sensor degrada-
tion/failure. For each fault type, the residuals are evaluated. Prior to this a threshold has been
defined based on a fault-free case. The threshold determines whether the system is healthy
or not. Ideally, when there is no fault in the system, the residual is close to zero. Whereas,
when there is a fault present the residual will be much larger. Whenever the threshold is
exceeded, the detection system knows that there is a fault present, which allows it to sent
out a warning. There are three model-based fault detection estimators which generate three
different residuals. These three estimators are combined into one fault detection architecture.
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The results developed throughout this thesis have provided new insights for the fault moni-
toring system in the Ampelmann system. Currently it has only been applied for the position
transducer. However, it can be extended to other critical components in the system. Fur-
thermore, the work presented in this thesis is valuable for predictive maintenance purposes.
Finally, the detection estimators can be used for the implementation of fault tolerant control
in the system.
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Chapter 1

Introduction

Offshore structures such as offshore windmills and oil & gas platforms need regular access for
operations and maintenance. However, the accessibility of said structures depends largely on
the weather conditions. Transferring people from a vessel to a platform can become unsafe
due to vessel motion caused by rough weather conditions. In 2009, the Ampelmann system
offered a safe solution to offshore access; making it as easy as crossing the street [1]. They
designed a ship-based, self-stabilizing transfer platform with a gangway attached to it to
safely transfer people offshore, Figure 1-1.

Figure 1-1: Ampelmann E-type during offshore operation

In order to offer a safe solution for offshore access, a reliable system is required. Hence, the
system is closely monitored for any possible faults during operation. A monitoring and alarm
system will ensure that any detected failure or fault will trigger a corresponding warning
and action. Fault accommodation is done through switching to a redundant component.
However, in the current warning system, there are some alarms which will lead to immediate
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shut-down of the operation because safe operation is no longer guaranteed. The reason for
this is that both the main and redundant component are failing. Another reason is that no
proper decision can be made about the location of the fault, the main component or the
redundant one. For sensors critical to the motion compensation of the hexapod, this type of
alarm is referred to as a code black in the system. Ideally, the occurrence of these alarms
should be limited as they will lead to downtime.

A short introduction to the Ampelmann system and fault detection is presented in the fol-
lowing sections.

1-1 The Ampelmann System

The Ampelmann system that will be considered in this thesis is the Ampelmann E-type,
Figure 1-2. The Ampelmann E-Type, which is the largest system available, is especially
engineered for rough weather conditions and to be able to carry large weight.

Figure 1-2: The Ampelmann E-type System

The system can compensate for six Degrees of Freedom (DoF) using the Stewart platform.
The Stewart platform consists of six hydraulic actuators that are connected to a base and top
frame. On top of the top frame, a transfer deck and gangway are placed. The control system
will calculate the reference lengths and velocities for the six cylinders such that the transfer
deck will remain motionless.

The Ampelmann system has four different platform states to ensure safe operation [1]. When
an emergency condition occurs, the system will switch to safe mode from any of the other
three states, Figure 1-3. This happens within a matter of seconds. During a code black,
the motion is hardware controlled and thus the cylinders do not operate smoothly at equal
velocities. Therefore, when the system switches from engaged to safe mode this can feel
uncomfortable to people on the Ampelmann system.
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1-2 Fault Detection 3

Figure 1-3: The different states of the Ampelmann system [1]

Current alarm system

Currently, all critical sensors in the Ampelmann system are redundant. This physical redun-
dancy can give assurance on the proper operation of the sensors and thus increases reliability
of their measurements. Sensor faults can be categorized into three different categories:

• Broken wire: there is no incoming signal from the sensor.

• Out of range: the incoming signal is not realistic.

• Difference too big: the difference between the incoming signal and the redundant
signal exceeds a pre-defined threshold.

The first two can easily be checked and accommodated for with the redundant sensor. The
third type of fault, however, is where the real challenge lies. With the duplex physical
redundancy, no decision can be made about the reliability of the sensor measurement when
it differs too much from the redundant measured value. In order to make a decision, triplex
physical redundancy is required. As this fault cannot be accommodated with the redundant
sensor, the system will either give a code black or a code red and switch to safe mode: black
when it concerns a sensor critical to the motion compensation and red when the sensor is not
critical for the motion compensation.

1-2 Fault Detection

Fault detection and accommodation have gained a lot of interest over the past few decades
[5]. Detection concerns itself with the different approaches of detecting faults in a system.
Accommodation concerns itself with the redesign of control such that it becomes adaptable
to the fault. This thesis will solely focus on the detection part. As systems have become more
complex, monitoring every part has become a challenge on its own. One of the approaches used
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is a form of analytical redundancy. Analytical redundancy is a model-based fault detection
approach that relies on an accurate mathematical model to estimate the variables that need
to be checked. These estimates and the actual values generate residuals. The residuals will
be evaluated to make a decision on whether a specific component is healthy or faulty.

1-3 Problem Statement

During normal operation, the Ampelmann system will always go from engaged to neutral
to settled before going into safe mode. For that reason going immediately from engaged
mode to safe mode is not desired, and the number of times this happens should be limited if
possible. When the two position transducers that measure the cylinder length give the alarm
of "Difference too big", the system will give a code black and go into safe mode. In that case
the physical redundancy is not sufficient enough to guarantee safe operation. This can be
solved by implementing a third sensor. However, the downside of triple physical redundancy
is that it results in extra components, which means an increase in costs and complexity of
the system.

This means that, in order to increase measurement reliability, it is beneficial to investigate
an alternative solution.

1-4 Objectives

From the problem statement in Section 1-3 it follows that duplex physical redundancy for
the position transducers is not sufficient in all cases. Therefore, the main goal of this thesis
is to achieve an extra analytical redundancy measure for the position transducers in the
Ampelmann system.

Goal: Increasing reliability of the position measurements and thus reducing down-
time of the Ampelmann system by implementing a model-based fault detection
method.

In this thesis, the focus lies on one of the critical sensors in the system: the position transduc-
ers in the hydraulic cylinders that measure the lengths and velocities of the cylinders. The
relevance of this sensor to the system is that the control strategy relies on correct feedback of
the cylinder lengths. Thus a failure or fault in the position transducer will have a big impact
on the operation of the system.

In order to achieve this goal, the following three questions are posed to guide the research.

Question 1: Can an accurate model of the hydraulic cylinders be derived that can be used
for the model-based fault detection method? The model-based fault detection method
requires an accurate model. The model should be derived such that it captures the dynamics
of the hydraulic cylinder in terms of position and velocity.
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1-5 Outline of the Report 5

Question 2: Using the model from Question 1, can a model-based estimator be designed
such that it gives accurate estimates of cylinder lengths? This model-based estimator will
be used to generate residuals. The accuracy of the estimates determines with what accuracy
faults can be detected.

Question 3: What types of faults can be expected to occur in the sensor that will lead
to a "Difference too big"? There are different kinds of faults that can occur in the sensor
that will result in small changes in the measurements. Their effects on the residual may vary
and therefore should all be considered.

1-5 Outline of the Report

This thesis is structured in such a manner that the questions in Section 1-4 are answered
in a logical sequence. However, firstly in Chapter 2, the Ampelmann system and its control
strategy will be explained. In order to answer Question 1, in Chapter 3 and Chapter 4, an
accurate mathematical model is derived, identified, and validated. Next, in Chapter 5, the
answers to Question 2 and 3 will be provided by introducing a model-based fault detection
strategy for the position transducer. Finally, Chapter 6 synthesizes the work presented in
this thesis. Furthermore, recommendations for future research are presented.
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Chapter 2

The Ampelmann System

In this chapter, the Ampelmann system will be discussed, with a predominant focus on its
safety design. The Ampelmann system is designed to be fail-operational [1]. This means that
when a single component fails, it should be able to continue operation by using a redundant
component. Thus when looking at the motion control loop in Section 2-1 it will be shown
that all safety-critical components are redundant. Furthermore, in Section 2-2, the current
Ampelmann Safety Management System (ASMS) is explained.

2-1 The Control System

As previously mentioned in Chapter 1, the system can compensate for the six Degrees of
Freedom (DoF) of a vessel. The six DoF of a ship are defined as shown in Figure 2-1.

Figure 2-1: The six degrees of freedom of a vessel

Vessel motions are measured and translated into desired reference lengths and velocities of the
six Stewart platform cylinders in such a way that the top platform stays virtually motionless.
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8 The Ampelmann System

A Motion Reference Unit (MRU) measures the vessel motions. The MRU measurements are
sent to a controller. The controller computes the desired cylinder positions from the MRU
measurements. The reference signal is combined with the feedback from the sensors in the
cylinders and translated into a control signal for the actuators. The control signal is such
that the platform on top of the actuators stays motionless.

In Figure 2-2 a simplified block scheme of the different components that measure (red), control
(blue) or actuate (green) the system is given. Furthermore, it shows all the safety critical
components as redundant components.

Octans PLC Valves Cylinders

Position
Transducers

HPU

PTA
Control
Panel 1

Control
Panel 2

Redundant

Figure 2-2: Simplified block scheme of the system and its redundant components.

Octans Motion Sensor

The vessel motions are measured using an Octans Fibre Optic Gyroscope produced by iXSea.
The Octans motion sensor measures the rotational velocities - ϕ̇, θ̇, ψ̇ - using three fibre
optic gyroscopes. These rotational velocities are integrated to determine the rotations - ϕ,
θ, ψ. Using three accelerometers, the translational accelerations of the vessel are measured,
- ẍ, ÿ, z̈. Integrating the accelerations once gives the translational velocities - ẋ, ẏ, ż - and
integrating twice gives the translations - x, y, z.

Position Transducers

The position transducers measure the lengths of the cylinders. These measurements are re-
quired for control purposes and should therefore always be available. The position transducers
are placed inside the hydraulic cylinders. For this reason, replacing such a sensor is difficult,
because the entire cylinder needs to be taken out of the system.
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2-1 The Control System 9

Programmable Logic Controller

The Programmable Logic Controller (PLC) receives the measurements from the Octans, the
position transducers and the operator input from the control panels. In Figure 2-3, a schematic
overview of the control module for a single actuator in the PLC is shown.

Reference
Generator

x, y, z,
ϕ, θ, ψ

ẋ, ẏ, ż,
ϕ̇, θ̇, ψ̇

∑+l̇ref

-

l̇cyl

∑+lref

-

lcyl

∑+p̂bot

-
psup

Kv

Kp

K∆p

∑
∑ Lookup

table
l̇ctrl xv

Figure 2-3: Control module for a single hydraulic actuator

The reference generator will calculate the desired reference lengths and velocities for the
hydraulic cylinders such that the Ampelmann system compensates for the vessel motions.
The lengths and velocities can be found through solving the Inverse Kinematics (IK) problem.
If the Stewart platform is assumed in a certain pose and the position and orientation of both
the top and bottom platform are known, it is possible to calculate the corresponding actuator
lengths using IK [6]. Furthermore, when the rotational and translational velocities of the
top and bottom platform are known, then the actuator velocities can be calculated as well
using IK. For a more elaborate explanation of the IK problem see Appendix A. Moreover,
the lengths and velocities of the cylinders are limited due to the workspace of the system
[7]. The control module employs a combination of velocity feed-forward as well as position,
velocity and pressure feedback [8]. This results in a control speed l̇ctrl. This control signal is
sent through a look-up table to obtain the corresponding valve spool position. The lookup
table maps the desired control velocity of the cylinder to the corresponding valve position. It
accounts for the non-linearities in the valve. Motion tests are completed in order to acquire
data. This data is then used to fit the mapping of the look-up table onto.

Hydraulic Servo System

The spool position of the valve will determine the oil flow into the cylinder. The working
principles of the Hydraulic Servo System (HSS) will be further explained in detail in Chapter 3.

Hydraulic Power Unit

The Hydraulic Power Unit (HPU) supplies the hydraulic power that the system needs. The
Piston Type Accumulator (PTA) is added to accommodate for any peak flow when the HPU
is insufficient. The PTA is an additional oil reservoir pressurized by a set of nitrogen tanks.
The PTA can also accommodate for failure of both HPUs by providing enough flow to keep
the system operational for 60 seconds.
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10 The Ampelmann System

Control Panel

The system is operated by two operators, hence the two control panels. One is positioned on
the transfer deck, whereas the other is placed on the vessel. The operators can control the
platform and gangway. The operators have no influence on the motion compensation done
by the Stewart platform.

2-2 Ampelmann Safety Management System

As previously stated, the Ampelmann system is designed to be fail-operational. An ASMS is
employed to monitor all parts fo the system and accommodate for any faults and failures in
the system. The ASMS is independent of the motion control system.

2-2-1 Operational States

The Ampelmann system has four operational states:

• Safe Mode

• Settled State

• Neutral State

• Engaged State

When the system pressure is turned on, the system will start in safe mode. The springs in
the valves are configured such that the equilibrium of the spool is at −10 % to keep the
cylinders retracted. Thus during safe mode the cylinders are not controlled by the motion
compensation control loop as pictured in Figure 2-3.

The PLC will perform a pre-starting check. After checking if everything is OK, the system
will automatically go from safe mode to settled. In settled mode, the cylinders are still kept
at their minimal lengths, however, now they receive the same negative control signal from
the motion control loop. The operator on the transfer deck is now able to switch between
settled, neutral and engaged as shown in Figure 2-4. When the platform is in neutral state,
all cylinders are at half their maximum length. When the system is in engaged state, the
actual motion compensation is done.

The operator will be notified of any warnings and alarms that the system gives. All possible
failures and faults are classified and connected to one of the alarm levels as given in Table 2-1.

When a code yellow occurs, the operator can continue operation as normal. During a code
orange, the operator needs to finish operation within one minute and then go back into
settled state. However, during a code red or black, the alarm will be relayed to all crew. The
system will automatically go into safe mode as this is an emergency condition. This can be
commanded through the PLC (software) or by switching on timed relays (hardware).
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2-3 Summary 11

Figure 2-4: Sequence of platform states [1]

Table 2-1: Different levels of alarms for the Ampelmann system

Level Cause Action
Code Yellow Minor Warnings Continue Operation
Code Orange Non-critical Failure Finish Operation in 60 seconds
Code Red Critical Failure System shut down through software in 5 seconds
Code Black Critical Failure System shut down through hardware in 5 seconds

2-3 Summary

To conclude this chapter, the Ampelmann system already has a safety management system
which monitors and accounts for all possible failures. Safety-critical components are redun-
dant in the system to accommodate single component failure. There are still occasions when
the system goes into safe mode as result of an emergency condition. This predominately
occurs due to double component failures.
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Chapter 3

Modelling of the Hydraulic Servo
System

In this chapter the focus will be on deriving a mathematical model for the Hydraulic Servo
System (HSS) in the Ampelmann system. This mathematical model will be based on first
principles. In Section 3-1, the HSS for the Ampelmann system will be introduced. In Sec-
tion 3-2, the different subsystems of the HSS are discussed which will then be combined into
a non-linear and linear mathematical model for the HSS in Section 3-3.

3-1 The Hydraulic Servo System in the Ampelmann System

The motion compensation of the Ampelmann system is accomplished through actuating six
hydraulic cylinders, Figure 3-1. The actuator is an asymmetric, two-way operated hydraulic
cylinder with a three-stage servo-valve.

Each cylinder is closed-loop controlled, based on calculations from the reference generator
and measurements from the sensor equipment on the HSS as briefly explained in Chapter 2.

Hydraulic Cylinder

Figure 3-1: HSS in the Ampelmann system
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14 Modelling of the Hydraulic Servo System

The sensor equipment consists of a position transducer and several pressure transducers.
The position transducer is of special interest as it is a safety-critical component and will be
considered for the Fault Detection (FD) in Chapter 5.

The stroke length of the cylinders is 1.5 meters from its neutral position, where the neu-
tral position of the hexapod is defined as all cylinders at half their maximum heave length.
However, they are limited by the workspace of the Ampelmann and will not exceed 1 meter
[7]. Due to the fact that the gangway can change position and length, the load mass on the
cylinders can be considered variable.

3-2 Subsystems of the Hydraulic Servo System

According to [2], the HSS can be divided into four different subsystems. The four different
subsystems are the servo-valve, hydraulic cylinder, power supply and the pipelines in between
the first three subsystems. As each HSS is different in its application, there is not a standard
model that works equally well for all applications.

Not all subsystems will be of equal importance for the derivation of the final model. This
section will mostly treat the servo-valve and the hydraulic cylinder as they have the biggest
influence on the dynamics of the piston. The reason for this is that the inflow of oil is
controlled by the servo-valve which is the main cause for the movement of the piston.

Pbot

Prod

Ap

ap
l, l̇

PS

PT
φbot

φrod

Fext

Ffr

xm

Hydraulic Cylinder Valve HPU

Figure 3-2: Schematic drawing of the Hydraulic cylinder

Figure 3-2 shows a schematic drawing of the hydraulic cylinder and the servo-valve. The
hydraulic cylinder consists of the cylinder with two chambers - bottom-side and rod-side -
and a piston. The movement of the piston - l, l̇ - depends on the pressure difference between
the two chambers. The pressures in the chambers -Pbot, Prod- are controlled by oil flows - φbot,
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3-2 Subsystems of the Hydraulic Servo System 15

φrod - from the servo-valve. The spool position - xm - of the servo-valve determines which
port is connected to which chamber. This can be either the high pressure port - PS - or the
low pressure port - PT from the Hydraulic Power Unit (HPU). The definitions of all variables
included in Figure 3-2 are given in Table 3-1.

Table 3-1: Definitions of important variables for the HSS

Variable Definition Units
l Piston position m
l̇ Piston velocity m/s

Pbot Pressure in bottom chamber bar
Prod Pressure in rod-side chamber bar
Ap Piston area bottom side m2

ap Piston area rod side m2

φbot oil flow in and out bottom chamber m/s3
φrod oil flow in and out rod-side chamber m/s3
xm Spool Position percentage
PS Supply pressure bar
PT Tank/return pressure bar
Ffr Friction force in cylinder N
Fext External force on piston N

3-2-1 Servo-valve

The servo-valve is a three-stage, four-way operated valve. It consists of a pilot spool and a
main spool, Figure 3-3. The input of the servo-valve is generally a voltage or a current. The
equations describing the dynamics of the pilot spool and the main spool are given in [2]. For
the final model of the cylinder, the main area of interest is that of the piston dynamics, which
are mainly influenced by the oil flow in and out of the cylinder. For that reason, the relation
between oil flow φ and the spool position xm is of most importance to the final model.

Figure 3-3: Three-stage Servo-valve
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16 Modelling of the Hydraulic Servo System

Figure 3-4: (a) Definition of centre types and their corresponding (b) flow-signal graphs and (c)
leakage flow curves [2]

Oil Flow

The oil flow is determined by the spool position xm in the valve. If the valve opens, there will
be a turbulent flow from the high pressure port to the low pressure port [3]. The flow has a
square-root dependence on this pressure difference. Furthermore, it depends on the type of
spool, Figure 3-4.

Figure 3-4 shows that the relation between flow and valve input is non-linear unless it has a
critical centre. However, in practice a critically centred spool valve is not ideal because the
chance of leakage flows is much higher. Thus to reduce leakage flows, a closed centre spool
valve has been designed. However, in that case there is an overlap region which results in
a jump when reversing direction of control signal. To reduce this effect a progressive spool
has been implemented, Figure 3-5. Nonetheless, the oil flow should be considered as a non-
linearity in the system. A non-linear flow function can be identified, such that it can be
modelled as a non-linear input.

The oil flow can be given by the following equation:

φ = CdAv(xm)
√

2(P1 − P2)
ρ

(3-1)

where Cd is the discharge coefficient, Av(xm) is the valve area dependent on the spool position,
P1 the pressure at the high pressure port, P2 the pressure at the low pressure port and ρ the oil
density. This relation can describe the oil flowing into either chamber, (3-2) (3-3), depending
on the spool position. The function fNL describes the non-linearities of the spool as well as
any leakages. The non-linear function can be identified from experimental data.
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Figure 3-5: A progressive spool [3]

φbot =
{
fNL(xm)

√
PS − Pbot if xm ≥ 0

fNL(xm)
√
Pbot − PT if xm < 0

(3-2)

φrod =
{
fNL(xm)

√
Prod − PT if xm ≥ 0

fNL(xm)
√
PS − Prod if xm < 0

(3-3)

To reduce the order of the final model, it is useful to describe the oil flow with one single
equation. In order to achieve this, the concept of load pressure PL can be introduced. For an
asymmetric actuator, the load pressure is defined as the difference between the pressures in
the two chambers but taking into account the difference in piston area [9].

PL = Pbot − α · Prod (3-4)

where
α = ap

Ap
(3-5)

This relationship can be used to simplify the oil flow functions into one single equation for
the load flow φL.

φL = φbot + φrod

2 (3-6)

φL = fNL(xm)
√
PS − sign(xm)PL (3-7)

This concludes the servo-valve for the final model, in which the oil flow has the most relevance.
It can be seen as the input for the hydraulic cylinder.

3-2-2 Hydraulic Cylinder

As the goal of the final model is to model the dynamics of the piston, the dynamics of the
hydraulic cylinder are of most interest. The dynamics depend on the pressure dynamics as
well as the equations of motion for the piston. The hydraulic cylinder model can be described
by a 3rd order state-space model.
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18 Modelling of the Hydraulic Servo System

The pressure dynamics can be given in terms of load pressure [2, 9]. The oil flow has a
direct influence on the way the pressure changes. Thus it can be modelled as the input of the
hydraulic cylinder model:

ṖL = −αẋ− βPL + fNL(xm)
√
PS − sign(xm)PL (3-8)

The load pressure dynamics depend on a change in volume of the cylinder chambers as defined
by the piston velocity, cylinder volume, piston area and the effective bulk modulus. These
four factors are incorporated into parameter α. Furthermore, the cylinder volume, piston
area, effective bulk modulus and a leakage coefficient are incorporated into parameter β in
order to determine the influence of the load pressure on the load pressure dynamics.

The equation of motion for the piston is given by:

mẍ = −kx+ApPL − Ffr(ẋ) (3-9)

where m is the load mass and k is the actuator stiffness. The main non-linearities are present
in the friction force Ffr.

Friction Force

The friction force plays an important role in the dynamics of the hydraulic cylinder piston and
depends on the velocity of the piston. The friction force can be described by a combination
of static, viscous and Coulomb friction.

Fstatic =
{
sign(Fext ·min(Fs,max, Fext)) ẋ = 0
0 ẋ 6= 0

(3-10)

FCoulomb =
{

0 ẋ = 0
sign(ẋ) · Fc0 ẋ 6= 0

(3-11)

Fviscous = µv · ẋ (3-12)

These equations can be combined into one friction curve which is usually referred to as the
Stribeck friction curve, Figure 3-6. With the Stribeck friction curve, the static friction jump
is described more realistically. The Stribeck friction curve is given in the following equation:

Ffr = µv · ẋ+ sign(ẋ)(Fc0 + Fs0 · e(− |ẋ|
cs

)) (3-13)

where µv is the viscous friction coefficient, Fc0 the parameter for Coulomb friction, Fs0 the
parameter for static friction and cs is called the Stribeck velocity.

The parameters of the friction function can be identified experimentally. This is done by
carrying out constant velocity experiments. However, it should be noted that the cylinder is
not attached to a rigid body, i.e. the ship is moving. Thus dynamic forces may be significantly
larger than the friction force.
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Figure 3-6: Velocity-dependent friction force (Stribeck curve) [2]

3-2-3 Power Supply

The HPU is said to supply a high pressure of 250 bar. However, in practice this is not exactly
the case. In Figure 3-7, the supply pressure when the system is in engaged mode is shown.
It is evident from the graph that the supply pressure that arrives at the hydraulic cylinder is
neither constant nor 250 bar.

3-2-4 Pipelines

All subsystems are connected by pipelines. Pipelines can be modelled as an inefficient volume
of the respective cylinder chamber. However, for the Ampelmann HSS, the servo-valve is

Figure 3-7: Supply pressure while in operation.
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20 Modelling of the Hydraulic Servo System

placed directly onto the cylinder, thus the effect is negligible.

3-3 Mathematical Model

By integrating all the knowledge introduced in the previous sections, a non-linear model can
be derived. Furthermore, additional assumptions are made which will result in a linear model
that can be identified from experimental data. For both the non-linear and linear model, the
same states are assumed:

x =

 l

l̇
PL

 (3-14)

Both models will be represented in observer canonical form.

3-3-1 Non-linear Representation

For the non-linear model, the friction force is modelled as the Stribeck friction curve given in
(3-13). Furthermore, the non-linear function which is found from experimental data is defined
as the non-linear input of the model. Combining (3-8) and (3-9) into one model, it follows
that:

ẋ(t) = f(x(t), u(t)) =

 x2(t)
− k

mx1(t)− 1
mFfr(x2(t)) + Ap

m x3(t)
−αx2(t)− βx3(t) + fNL(u(t))

√
PS − sgn(u(t))x3(t)

 (3-15)

y(t) =
[
1 0 0
0 1 0

]
· x(t) (3-16)

Non-linear Flow Function

The function fNL(xm) describes the non-linearities of the servo-valve due to shape of the
spool and leakage flows. The function has been approximated by using a singleton fuzzy
model. In Figure 3-8 it can be observed that the flow is different for each cylinder, especially
for positive valve openings. Hence the function needs to be identified individually for each
cylinder.

The non-linear flow function is approximated using a singleton fuzzy model with 20 mem-
bership functions. The choice for using a singleton fuzzy model is motivated by [4] where it
has been done for the smaller Ampelmann A-type. The flow φ is approximated by using the
following relation:

φ =
{
Ap · ẋ if xm > 0
αAp · ẋ if xm < 0

(3-17)
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Valve position [%]

Figure 3-8: Inflow cylinder with respect to the valve position for all six cylinders

The function can then be approximated by:

fNL(xm) = φ√
PS − sign(xm)PL

(3-18)

The approximation of the non-linear flow function for Cylinder 1 is presented in Figure 3-9.

Friction Force

It is presumed that the friction force is equal to the external force minus the load force:

Ffr = Fext −ApPL (3-19)

However, when plotting the expected friction force versus the velocity from experimental data
there is no apparent relation between the calculated force and velocity, Figure 3-10.

This could be due to the fact that the cylinder is not attached to a rigid body. Thus it is
difficult to identify the friction due to high dynamic forces in the system, since the cylinder
is attached to the ship and the platform which are both not rigid.

To obtain data for a friction curve compared to the one presented in Figure 3-6, a constant
velocity experiment can be carried out. However, this is not considered in this thesis. Because
the non-linearity in the friction force is not easily identifiable, the next section will explore
the option of identifying a linear model.
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Valve position [%]

Figure 3-9: Approximation of the non-linear flow model using Singleton Fuzzy model

3-3-2 Linear Representation

For the linear model, additional assumptions have been formulated. When looking at the
control scheme, Figure 3-11, it can be observed that the control signal from the controller
is sent to a look-up table which transforms the control signal to a spool position. For the
non-linear model, the spool position was considered as the input. The non-linear function
fNL is similar to the look-up table. When considering a model of everything inside the dashed
line in Figure 3-11, the non-linearity of the spool can be taken out.

The input of the linear model can be considered the same as the control input l̇ctrl. The
next assumption for the linear model is that only viscous friction occurs in the system. That
reduces the friction force to:

Ffr = µv · x2 (3-20)

Taking all of this into account, it results in the following linear state-space model:

ẋ(t) = Ax(t) +Bu(t) =

 0 1 0
− k

m µv
Ap

m
0 −α −β

x(t) +

 0
γ1
γ2

u(t) (3-21)

y(t) =
[
1 0 0
0 1 0

]
· x(t) (3-22)

It is assumed that the control input influences both the pressure dynamics and the piston
dynamics. The exact influence is not determined yet but γ1 and γ2 can be identified from
experimental data.
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Figure 3-10: Experimental data for friction identification
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Linear Model

Figure 3-11: Block scheme for linear model

3-4 Summary

In this chapter, a model based on first principles of the HSS has been derived. However, due
to the number of unknown and uncertain parameters, this model alone is not sufficient to be
used for fault detection. It does, however, give some insight into the dynamics of the HSS.
The main non-linearities in the system are the pressure dependencies of the oil flow and the
friction force. As the friction force cannot be identified with the current data, a non-linear
representation is undesirable. For that reason, a linear model will be identified in Chapter 4.
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Chapter 4

System Identification

In this chapter, the identification of the model for the Hydraulic Servo System (HSS) will
be discussed, which is based on the mathematical model from Chapter 3. The model is a
grey-box model whose the parameters are identified by solving a linear least squares problem.
In Section 4-1 the data that is used for identification and validation of the model is studied.
In Section 4-2, the identification of the grey-box model using linear least squares is analysed.
Finally, the validation of the identified model is explored in Section 4-3.

4-1 Identification Data

For the identification and validation of the model, data has been gathered during offshore
operation of the E-08. The data has been logged with a sampling frequency of 50 Hz. From
Chapter 3 it follows that the relevant signals for the identification procedure are the control
speed - l̇ctrl -, the cylinder position - l -, the cylinder speed - l̇ - and the load pressure - pL-,
Figure 4-1.

The velocity signal, Figure 4-1c, and the load pressure signal, Figure 4-1d, are noisy. These
signals will be pre-filtered before being used for identification. The signals are filtered by
applying a moving average filter to smooth the signal, Figure 4-2. The moving average filter
will ensure that there is no phase-shift when filtering the data.

The dataset can be split up into six different sets, one set per cylinder. Hence, dataset 1 will
correspond to Cylinder 1, dataset 2 to Cylinder 2 and so forth. It should be noted that the
data shown in Figure 4-1 and Figure 4-2 is the data that correspond with Cylinder 1.

The validation of the model is done with a different dataset. For the validation, the velocity
signal is smoothed. Load pressure is only used for identifying parameters and is thus not used
for the validation.
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(a) (b)

(c) (d)

Figure 4-1: Identification Data

(a) (b)

Figure 4-2: Smoothed signals

4-2 Grey-box Identification

The Least Squares (LS) approach is used for identifying the model. The assumption made for
using this approach is that the model can be described by a linear-in-the-parameters model.
For this, the discretized linear state-space representation is used which follows from Section 3-
3-2. The identified model is a dark grey-box model as there cannot be any conclusions made
about the values of the identified variables with respect to the real-life variables explained
in Chapter 3. However, there are some zeros, and Ts is defined beforehand. Therefore, the
model that will be identified will be of the following form:

x(k + 1) =

 1 Ts 0
θ1 1 + θ2 θ3
0 θ4 1 + θ5

x(k) +

 0
γ1
γ2

u(k) (4-1)

Thus it follows that there are seven parameters that need to be identified. The model will be
rewritten as a linear-in-the-parameters form:

y = φT θ (4-2)
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x(k + 1) = (A+ I)x(k) +Bu(k) (4-3)

x(k + 1)− x(k) = Ax(k) +B(k) (4-4)

Hence y = xi(k+ 1)−xi(k) for i = 2, 3 and φ =
[
x1(k) x2(k) x3(k) u(k)

]
lead to θ which

contains the unknown parameters. There are no assumptions made on process or measurement
noise. For that reason, the LS approach will give a biased estimate of the parameters. The
LS approach will now find a parameter estimate θ̂ using:

θ̂ = (φTφ)−1φT y (4-5)

Which gives the LS estimate that minimizes the quadratic cost function of the prediction
error:

V (θ̂) = 1
N

N∑
k=1

(y(k)− φT (k)θ̂)2 (4-6)

The LS problem will be solved for two separate linear regression models: one for x2 and one
for x3.

X2(k + 1)−X2(k) =
[
X1(k) X2(k) X3(k) U(k)

] 
θ1
θ2
θ3
γ1

 (4-7)

X3(k + 1)−X3(k) =
[
X2(k) X3(k) U(k)

] θ4
θ5
γ2

 (4-8)

where X1, X2, X3 and U are the data vectors containing N − 1 data points that have been
gathered during operation.

As mentioned in Section 4-1, the data that has been gathered can be split up into six sets. One
set will be used for identification whereas the other five can be utilized to cross validate the
identified model across the other cylinders. There are, however, more sets available from other
operations which can also be used for validation. Hence the identified model can be cross-
validated using six different sets. From Figure 4-3 it can be seen that not all sets are equally
capable in identifying the model. Datasets 2, 4, 5 and 6 can be discarded as identification
sets as the model identified with these sets has a low Variance Accounted For (VAF) score
when validating with a validation set for Cylinder 3. The models identified using datasets 1
and 3 both perform well, however, when cross-validated, the model identified with dataset 3
performs slightly better. It would be expected that a model identified and validated on its own
set would have a higher VAF value than any other validation with a random set. However,
when observing Figure 4-3 this is not the case. This will be explored in more detail in the
next paragraph.
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Figure 4-3: Variance Accounted For per identified model validated with all six sets

The model identified with data from Cylinder 3 has the best overall performance when vali-
dating the model. It is known that the demand of performance is not equal on all cylinders
during operation. The external force exerted on all cylinders is not equally divided as the
masses of the platform, gangway and personnel are not equally distributed. Especially the
position of the gangway has an influence on the unequal distribution of mass. The model
should be able to generalize this variation. The varying mass distribution will influence the
pressure in the cylinder chambers and thus influence the load pressure.

In Figure 4-4 it can be observed that there are large differences between the load pressure in
the cylinders. When the system is in engaged mode and compensating for the vessel motions,
this is normal behaviour. However, the difference shown in the first half of the graph is when
the system is in neutral state, meaning all cylinders are at half their maximum length. If the
mass would be equally distributed, the load pressures should not differ much here. However,
due to the position for the gangway the mass is unevenly distributed.

Figure 4-4: Arbitrary section of data of the load pressure for each Cylinder

When looking at the dataset from Cylinder 3, it can be observed that, while in neutral state,
the load pressure comes closest to the average load pressure of all cylinders. This could be a
reason that the model identified using Dataset 3 works equally well for all the cylinders.

The parameters estimated using dataset 3 are given in Table 4-1. The estimated model will
be validated in the next section.
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Table 4-1: Estimated parameters

Parameter Value
θ1 −0.0101
θ2 −0.1231
θ3 −1.6891 ∗ 10−5

θ4 −10.7104
θ5 −0.0023
γ1 0.0926
γ2 6.5427

4-3 Model Validation

The model identified using the linear least squares approach needs to be validated in order to
ensure that the obtained model is a good model. The previous section already briefly touched
upon the subject of validation when cross-validating the models using a different dataset.
In the previous section, the model was cross-validated using a validation dataset across all
six cylinders. The VAF values were all above 90%, which is satisfactory. In Figure 4-5 and
Figure 4-6 the simulated response is presented for Cylinder 1 using the identified model.

Figure 4-5: Simulated Cylinder position for Cylinder 1

Simulation errors of about 15 cm and 7.5 cm/s still occur for the position and velocity respec-
tively. However, this can be accounted for by using an observer or Kalman filter, Figure 4-7.
The spikes that are observed on the error are due to missing data points. Assuming the filter
will get the measurements from the transducer when running, the Kalman filter can be used
to accurately estimate the position.

The model can be further validated using residual tests [10]. It should be noted that the
identification is done using data from a closed loop experiment i.e. the input for the next
step depends on the output of the previous step.
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Figure 4-6: Simulated Cylinder velocity for Cylinder 1

Figure 4-7: Simulated Cylinder position with a Kalman filter

Residual tests inspect whether the error sequence can be considered a zero-mean white noise
sequence and whether the error sequence is statistically independent from the input. This
error sequence follows from the prediction error from the Kalman Filter equations:

x̂(k + 1, θ̂) =
(
A(θ̂ −K(θ̂)C(θ̂)

)
x̂(k, θ̂) +

(
B(θ̂)−K(θ̂)D(θ̂)

)
u(k) +K(θ̂)y(k) (4-9)

ε̂(k, θ̂) = y(k)− C(θ̂)x̂(k, θ̂)−D(θ̂)u(k) (4-10)

The auto-correlation of the error sequence should approximate a unit pulse if the error se-
quence is a zero-mean white noise sequence, whereas the cross-correlation of the error sequence
and input should be approximately zero if they are statistically independent. The residual
auto-correlation for the position does indeed approximate a unit pulse, Figure 4-9a, which
means that the residuals of the position estimation are white, i.e. uncorrelated. The residual
auto-correlation for the velocity estimates does not approximate a unit pulse, Figure 4-9b.
The error sequence cannot be considered white, which is in accordance with the error sequence
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Figure 4-8: Simulated Cylinder velocity with a Kalman filter

as shown in Figure 4-8. However, the model will only be used to estimate the position of the
Cylinder thus the result of the residual test for the velocity can be neglected.

The cross-correlation plots, Figure 4-9c and Figure 4-9d, show the correlation between the
input signal and the residuals. This tests the independence of the residuals with the past
inputs. As mentioned earlier in this section, the identification is done with data from a closed-
loop experiment. From the fact that it is closed-loop, it follows that there is a dependence on
past inputs as there is a form of feedback. Thus the model cannot pass the auto-correlation
test [10].

When observing the auto-correlation test it can be concluded that the model is good for
estimating the position, which is what it will be used for. However, it is not as good for
estimating the velocity as the auto-correlation test is not passed. The cross-correlation test is
not passed which can be explained by the fact that the data is from a closed-loop experiment.
Thus the output is dependent on past inputs.
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(a) Auto-correlation for the residual of the first output l

(b) Auto-correlation for the residual of the second output l̇

(c) Cross-correlation for the residual of the first output l and the input l̇ctrl

(d) Cross-correlation for the residual of the second output l̇ and the input l̇ctrl

Figure 4-9: Auto- and Cross-correlations for the residuals

E. M. Claassen CONFIDENTIAL Master of Science Thesis



4-4 Summary 33

4-4 Summary

In summary, the data that has been used for identification and validation of the model was
gathered during offshore operation of the Ampelmann E-08. The velocity and pressure signal
are noisy and therefore pre-filtered before further use. A linear model is identified by solving
the linear least squares problem. As it is a dark grey-box model, nothing can be said about
the values of the found parameters. The identified model is validated using residual tests.
From the residual tests it follows that a good model is obtained for the position estimation
as the residuals can be considered uncorrelated and white. Due to the fact that the data was
obtained from a closed-loop experiment, the cross-correlation test cannot be checked. The
residuals will be dependent on past inputs as there is a feedback loop in the system.
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Chapter 5

Fault Detection

In this chapter a model-based Fault Detection (FD) Architecture for the position transducer
in the hydraulic cylinders will be presented. The FD scheme consists of a bank of Fault
Detection Estimators (FDEs). Both abrupt changes as well as slowly developing changes
in the sensor can be detected with the bank of FDEs. The method used is a model-based
estimation method. In the first section, different fault types are considered and explained.
In Section 5-2 the sensor data that comes from the position transducer will be studied. In
Section 5-3 the model-based fault detection and residual generation principles are explained.
The generated residuals are evaluated in Sections 5-4 and 5-5.

5-1 Faults

The literature defines a fault as a change in a component such that the operation or perfor-
mance of said component changes in an undesired way [5]. They can occur within any part
of a system such as the actuators, sensors or the plant itself. In this thesis, a distinction is
made between fault and failure. A failure describes the inability of a system or component
to accomplish its function. It should be noted that not all literature distinguishes this.
Throughout this chapter, three different types of faults will be referred to, Table 5-1. The
faults considered are all additive sensor faults. It is assumed that the fault only influences
the output from the sensor. Even though the input of the model depends on feedback from
the sensor, this effect is not considered.

Table 5-1: Different fault types

Fault Type
Type I Abrupt changes
Type II Increased noise
Type III Incipient

Abrupt changes can be modelled with a step-like time profile [11]:
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β(k − k0) =
{

0 if k < k0

1 if k ≥ k0
(5-1)

Incipient faults are characterized by an exponential-like time-profile:

β(k − k0) =
{

0 if k < k0

1− (1 + b)−(k−k0) if k ≥ k0
(5-2)

where k0 is the unknown index of the fault occurrence time, b ≤ 1 is the unknown fault-
evolution rate. In Figure 5-1 a few examples of said time-profiles are shown. They determine
how a fault will develop over time.

Figure 5-1: Different fault time-profiles

These time-profiles are multiplied with a fault-vector φ(y(k), u(k)) which represents the de-
viation on the state equation due to the fault [12].

All faults occur in the position transducer and will thus affect the measured values. A broken
wire, or a value out of range is already accounted for in the system thus the focus will lie on
those faults that will fall in the category difference too big.

5-2 Sensor Data

The Programmable Logic Controller (PLC) receives the measurements from the position
transducer as integers which range from 1 to 27648. The PLC will transform these integers
to the corresponding lengths in meters.

ym = yint

27648 · 3− 1.5 (5-3)

The range of the cylinder in meters is between−1.5 and 1.5, where−1.5 meters is the retracted
state and when the cylinder is at 0 meters, it is in neutral state.

The system has a hardware redundancy and thus gets measurements from two position trans-
ducers: the main one, C1, and the redundant one, C2. The allowable tolerance before the
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system gives a difference too big is 5 centimetres. The system will run on the measurements
from C1 and will only switch to C2 when C1 is identified as faulty. Thus C2 is primarily used
for checking C1.

5-3 Model-based Fault Detection

This thesis focusses on an observer-based approach for fault detection. The model as identified
in Chapter 4 is used. This leads to the following equations when there is no fault occurring:

x̂healthy(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− ŷ(k)) (5-4)
ŷhealthy(k) = Cx̂(k) (5-5)

An optimal observer gain L is found by computing the optimal gain through the Linear
Quadratic Regulator (LQR) design. The optimal gain minimizes the following quadratic cost
function:

J = xT
NQxN +

N−1∑
k=0

(xT
kQxk + yT

k Ryk + 2xT
kNuk) (5-6)

The matrices Q and R are tuned by hand to find an observer gain for which the residual in
the fault-free case is as small as possible.

The fault as defined in Section 5-1 is additive to the sensor output. Thus the observer
equations when the fault has occurred will be as follows:

x̂faulty(k + 1) = Ax̂(k) +Bu(k) + L(y(k) + β(k − k0)φ(y(k), u(k))− ŷ(k)) (5-7)
ŷfaulty(k) = Cx̂(k) (5-8)

The estimates and measurements are used to generate a residual. The residual will be evalu-
ated in order to make a decision about the health of the sensor.

r(k) = |y(k)− ŷ(k)| (5-9)

where in the healthy state,

r(k) = |y(k)− ŷhealthy(k)| < δ (5-10)

and after a fault has occurred,

r(k) = |y(k)− ŷfaulty(k)| > δ (5-11)

where δ is a pre-defined static threshold. This threshold should be defined such that it will
improve the detection before a difference too big alarm is given.
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Figure 5-2: Obtaining the residuals

5-3-1 Residual Generation

Three different residuals can be defined based on two position transducers and an observer
model, Figure 5-2.

R1 = |yC1 − ŷC1| (5-12)

R2 = |yC2 − ŷC2| (5-13)

R3 = yC1 − yC2 (5-14)

The residuals R1 and R2 are obtained in a similar manner. Thus only R1 is discussed as it
is assumed that the method for obtaining the results for R2 is the same. Obtaining residual
R3 is done differently and the reason for this will be discussed in Section 5-5.

The model that was obtained in Chapter 4 is used in combination with an observer gain L to
obtain an estimate of the position of the cylinder.

The additive fault will result in a deviation which is not immediately accounted for by the
observer. Thus a spike in the residual is expected. When this peak exceeds a pre-defined
threshold, the system can give an alarm and switch to the redundant sensor.

In the next few sections, different residuals will be generated and analysed based on the indi-
vidual fault types. From those results a threshold will be defined. Finally, all estimators that
generate residuals will lead to a fault detection architecture that will generate and evaluate
these residuals.

5-4 Evaluation of the Residuals for R1 and R2

To make a decision about the health of the sensor the residuals are evaluated. Firstly, the
fault-free case is considered, Figure 5-3. Then the different fault types discussed in Section 5-1
are evaluated.
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Figure 5-3: Residual for fault-free case.

5-4-1 Fault-free Case

Figure 5-3 shows an arbitrary section of data when the system is in engaged mode. The
residual that is generated can be considered small as it stays well below 1 · 10−3 meters. A
lower threshold is defined at δl = 7.5 · 10−4 m and an upper threshold at δh = 1 · 10−3 m.
These thresholds will be used for evaluating R1 and R2 for all three fault types.

5-4-2 Fault Type I

Fault type I is modelled as a block signal added to the measurement signal. Different sizes
have been considered, ranging from 0.05 m to 0.001 m. These values have been chosen because
the current threshold before a difference too big happens is 0.05 m while, 0.001 m corresponds
to the upper threshold defined in the previous section. Six different sizes are considered, which
can be found in (5-15).

φ =



0.001
0.0025
0.005
0.01
0.025
0.05


m (5-15)

The fault that will be added over time is shown in Figure 5-4. After the addition of each
size, the fault is reduced to zero again. This results in the residual generating a peak for a
negative additive fault. Thus it can be shown that these are also detectable.

The results are shown in Figure 5-5. The upper figure shows the signal from the position
transducer under normal conditions, with the added fault profile and the estimated signal
from the observer. In this figure it is not immediately evident that there are faults present,
especially when considering that the fault-free signal would not be available when a fault is
present. However, when inspecting the residual plot, a statement can be made about the
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Figure 5-4: Additive Step-like fault profile

added faults. Whenever the signal deviates from the norm, a peak appears in the residual
plot. This peak exceeds the thresholds, the dashed red line, as previously defined for all cases
except the smallest one of 0.001 m.

0.001 m

0.0025 m 0.005 m 0.01 m 0.025 m 0.05 m

Figure 5-5: Residual for fault type I

So further inspection is executed on fault sizes between 0.001 m and 0.0025 m, Figure 5-6.

φ =



0.001
0.00125
0.0015
0.00175
0.002
0.0025


m (5-16)

In the upper plot in Figure 5-7, no evident changes are seen as the added faults are small.
When inspecting the residuals, again peaks are identified for all faults larger than 0.001 m.

This means that detection is possible for additive faults as small as 0.00125 m. While looking
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Figure 5-6: Additive Step-like fault profile

 0.001 m

 0.00125 m  0.0015 m  0.00175 m  0.002 m  0.0025 m

Figure 5-7: Residual for fault type I

at fault sizes between 0.001 and 0.00125 m, Figure 5-8 , it can be seen that the peaks do
not always exceed the threshold. Thus it can be concluded that for faults with a magnitude
between 0.001 and 0.00125 m are not always detected.

For Fault type I, detection of faults as small as 0.00125 m in step-size can take place. This is
a big improvement from the alarm threshold currently defined at 0.05 m. Both the C1 and
the C2 sensor can be checked individually with this observer model. All the results shown
are done with sensor data from C1 but it is assumed that the results for fault detection are
similar for C2.

5-4-3 Fault Type II

The second fault type that is considered is an increase in noise of the signal. Sensor degrada-
tion may lead to noisier signals. The noise is modelled as a vector with random integer data
points between −1 and 1, which is then multiplied with the magnitude of the noise σ.

When inspecting the raw data, it can be observed that there are some fluctuations on the
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0.001

0.00105 0.0011
0.00115

0.0012 0.00125

Figure 5-8: Residual for fault type I

4.34e-04

Figure 5-9: Arbitrary section of raw data from the position transducer

measured data of 4.34 · 10−4 m, Figure 5-9. The residual that is generated for Fault type II
should consider raw data in order to make a decision whether the size of the noise exceeds
normal conditions.

Thus σ = 4.34 · 10−4 will be considered normal. Next, the residuals for multiples of σ will be
considered, Figure 5-10.

φ =



σ
2 · σ
3 · σ
4 · σ
5 · σ
6 · σ


(5-17)

It should be noted that the fluctuation as shown in Figure 5-10 are more frequent than shown
in Figure 5-9. In this case it is assumed that the frequency has less influence on the residual
evaluation in comparison to the size.
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Figure 5-10: Increase in noise Step-like fault profile

Figure 5-11 shows the residual plot for the added noise on the signal. For σ it does not cross
the upper threshold thus the normal situation should not lead to a false detection. For the
larger values the residual does cross the upper threshold and thus a correct detection takes
place.

2 3
4 5 6

Figure 5-11: Residual for fault type II

5-4-4 Fault Type III

The last fault type is the most difficult to detect because the fault slowly develops over time,
which creates the risk that the observer will adjust to the faulty measurement before detection
is possible. The fault development profile in Figure 5-12 increases to 0.07 m in about 10 s.
This appears to be fast and relatively large when comparing it to the step-like profiles in
Section 5-4-2. However for comparison, the step-size of 0.00125 m is modelled as a ramp.
From Figure 5-12 it can thus be concluded that the incipient fault develops slower.
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Figure 5-12: Residual for Incipient fault profile

The fault profile that has been chosen is of the following form:

β(k − k0) =
{

0 if k < k0

1− (1 + b)−(k−k0) if k ≥ k0
(5-18)

fault(k) = β(k − k0) ∗ φ (5-19)

with b = 1 and φ = 0.07.
The fault profile in Figure 5-12 results in the residual as shown in Figure 5-13. Detection
happens nearly immediately after introduction of the fault. The parameters b and φ can be
varied. However, to ensure detection, if b is decreased, φ has to be increased. This results in
fault profiles that have a similar development profile in the first few seconds which will lead
to a similar residual.

Figure 5-13: Residual for fault type III

The fault is introduced at k0 = 259.98 s. Detection, i.e. when the residual exceeds the upper
threshold, takes place at kd = 260.06 s. This is well before the error exceeds 0.05 m thus the
detection time is sufficient.
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5-5 Residual Generation for R3

As there are two sensor readings available, a third residual can be generated based on the two
measurements. This is already happening in the current Ampelmann Safety Management
System (ASMS) to check whether the readings are within range. This can still be used to
monitor the health of the sensors. It is expected that the difference between the readings from
C1 and C2 are relatively small under normal conditions, though Figure 5-14 shows a different
picture. Shown is the difference between the raw measurements from C1 and C2 per cylinder.
It can be seen that the error becomes nearly 0.008 m for some cylinder measurements and
appears to follow the dynamics of the piston. This could be justified by the fact that the
sensors are calibrated differently and thus give different measurement for the same cylinder
length.

Figure 5-14: Difference between the measurements of C1 and C2 under normal conditions

The black lines in Figure 5-14 show the desired boundaries of 1.5 · 10−3. It has been assumed
that the measurements of C1 are leading. Thus a simple linear model of the following form
has been identified in order to reduce the error between C1 and C2 under normal conditions.

Ĉ2 = a ∗ C2 + b (5-20)

The parameters a and b have been identified by solving the Least Squares (LS) problem. This
results in six sets of a and b, one for each set of cylinder sensors. The first part of the data is
used for the identification of these parameters. Figure 5-15 represents the error between C1
and Ĉ2 for the second part of the data.

The error signal stays bounded between [−1.5 · 10−3, 1.5 · 10−3] during normal conditions for
all cylinders. When a small increasing fault is added to C1, the residual will eventually cross
the threshold, Figure 5-16.

Even though no decision can be made about whether the fault occurs in C1 or C2, the
evaluation of this residual can lead to a premature warning. No decision can be made about
C1 and C2 because a positive fault on C1 gives the same kind of results as a negative fault
on C2. However, it does give an improved way to monitor the health of the system. Any
faults that are too small to be picked up by the estimator designed in Section 5-4 can be
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Figure 5-15: Difference between the measurements of C1 and C2 using an LS model for C2

Figure 5-16: Slowly developing fault on C1

detected by monitoring the residual between the measurements. A warning can be given that
maintenance is required for one of the sensors when it exceeds 0.0015 m. However, the system
can finish operation as long as it does not exceed the critical threshold of 0.05 m.

5-6 The Fault Detection Architecture

All the results from this chapter can be combined into one Fault Detection Architecture,
Figure 5-17. The estimator from Section 5-4 corresponds to FDE1 and FDE2. FDE1 and
FDE2 check the sensors individually based on the model and observer. All three fault types
can be detected using these FDEs, however, the detection does depend on the size of the
fault.

FDE3 is similar to the current monitoring system which checks two measurements. However,
the residual evaluation is improved by implementing a simple linear model to minimize the
error between C1 and C2 when no faults are present. While this FDE cannot make a decision
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Figure 5-17: Fault Detection Architecture

on the location of the fault, it can give an early warning that maintenance on one of the
sensors is required before it exceeds the code black threshold of 0.05 m.

5-7 Summary

The FD architecture designed in this chapter distinguishes between three different sensor
fault types, namely step-like, increase in noise and incipient. A model and observer estimate
the cylinder lengths which are then compared to the actual measurements. The difference
between the measurements and estimates are called residuals. The generated residuals are
evaluated for each different fault type. A threshold δ is considered which should separate
normal behaviour from faulty behaviour. The threshold is set at δ = 0.001 m. With this
threshold, faults with a step size of 0.00125 m can be detected. Detection time is almost
immediately after the introduction of the fault. This FDE can be used for each individual
sensor without relying on the redundant sensor.

Another check is completed when comparing the readings from both sensors. The error
between C1 and C2 does not give a decision on the location of a fault but it can give an early
warning that something is going wrong.

All the different estimators can all be combined into one FD architecture to create an extra
analytical redundancy measure for the position transducers in the hydraulic cylinders.
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Chapter 6

Conclusions and Recommendations

A Fault Detection (FD) strategy for the position transducer has been designed to reduce
the occurrence of a code black in the Ampelmann system. Limiting the occurrence of a code
black means less downtime for the system. An analytical redundancy measure based on an FD
architecture has been given in this thesis. This chapter will synthesize the results and review
to what extent the questions posed in Chapter 1 are answered. Finally, recommendations for
future research are proposed.

6-1 Conclusion

As indicated in this thesis, the current alarm system still has room for improvement. When it
concerns the position transducer, small faults are left undetected by the physical redundancy.
This can be solved by adding a third sensor. However, that would increase costs, complexity
and components.

This thesis provides an alternative method which uses the concept of analytical redundancy
has been explored. A model-based fault detection architecture has been designed to detect
different fault types for the position transducer.

Question 1: Can an accurate model of the hydraulic cylinders be derived that can be used
for the model-based fault detection method? In Chapter 4, a linear third order model has
been identified based on the mathematical model derived in Chapter 3. The identified model
exhibited good results on the estimation capabilities for the cylinder lengths even in open-loop
setting. Thus the answer to this question is yes, an accurate model of the hydraulic cylinder
that will be used for model-based fault detection can be derived.

Question 2: Using the model from Question 1, can a model-based estimator be designed
such that it gives accurate estimates of cylinder lengths? In Chapter 5, an observer has
been added to the model to estimate the cylinder lengths. This observer is sufficiently accurate
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to estimate the cylinder lengths. The error between the measured and estimated values is
below 7.5 ∗ 10−3 which is deemed accurate enough. So yes, a model-based estimator can be
designed such that it gives accurate estimates of the cylinder lengths.

Question 3: What types of faults can be expected to occur in the sensor that will lead
to a difference too big? Three different fault types have been identified in Chapter 5,
namely, step-like, an increase in noise and incipient. All three are assumed to indicate sensor
degradation or sensor failure. All three are detectable using the model-based estimator from
Question 2.

Goal: Increasing reliability of the position measurements and thus reducing down-
time of the Ampelmann system by implementing a model-based fault detection
method.

Starting off with the implementation of a model-based fault detection method, it has been
shown that the goal is achievable and leads to improvement on the detection front when
compared to only using physical redundancy. Rather than leaving small faults undetected
until a difference of 0.05 m has been reached, faults with a size of 0.00125 m or larger can be
detected. This detection process will lead to better use of the redundant sensor.

6-2 Recommendations for Further Research

Based on the results developed throughout this thesis, there are several recommendations for
future areas of research related to this problem.

• The proposed FD strategy should be implemented in the software to test whether de-
tection occurs. In the software, a fault signal can be added to the measured signal. This
should be picked up by evaluating the residuals and then result in a warning from the
system.

• The influence of incorrect position feedback on the control signal has not been consid-
ered. It was assumed that this influence is negligible. However, to ensure that this is
indeed the case, tests should be executed in order to check the dependence of incorrect
feedback from the position transducer on the residual analysis for fault detection.

• The system considered in this thesis is the Ampelmann E-type. A similar strategy
can be designed for the Ampelmann A-type by following the approach that this thesis
employed for the Ampelmann E-type.

Furthermore, this thesis has delivered insights which can be used for future research on Fault
Detection, Fault Tolerant Control and predictive maintenance.

• Fault Detection is not limited to only sensor faults. It can be extended to actuator
faults and process faults. Leakages in the cylinder or servo-valve can be considered as
actuator faults.
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• A different approach to estimate the lengths of the cylinders is to approach the problem
from the heaxpod point of view. This would require a model of the hexapod and the
assumption that five out of six measurements are correct. However, it can lead to a
solution in which only one sensor is required for detection and accommodation.

• The FD forms a basis for Fault Tolerant Control (FTC). If the size and location of the
fault are known, rather than switching to the redundant component, the controller can
accommodate for the fault leading to a FTC system.

• The detection of incipient faults can lead to more insights for predictive maintenance.

The findings of this study can be used to gather more knowledge about the health of one
specific sensor in the system. The results for the position transducer are very promising,
therefore, the knowledge on how to design an FD architecture for one sensor can be extended
to other components in the Ampelmann system. For less critical sensors which are not
redundant, it can offer an additional check without needing the extra components.

Master of Science Thesis CONFIDENTIAL E. M. Claassen



52 Conclusions and Recommendations

E. M. Claassen CONFIDENTIAL Master of Science Thesis



Appendix A

Inverse and Forward Kinematics

A-1 Inverse Kinematics

In Figure A-1 the relevant coordinate systems and vectors for the Stewart platform are shown.
The three important reference frames are: Ot, local reference frame for the top platform,
Ob, local reference frame for the bottom platform and Of , the inertial reference frame. In
Figure A-1a, the vectors x and xs are shown. They denote the translations and rotations of
the top and bottom platform respectively to the inertial reference frame Of . Considering the
bottom frame, in (A-1) the translations and rotations are defined by a translation vector cf

b ,
see Figure A-1b, and a rotation vector Φf

b from base frame to inertial reference frame. Where
the rotations ϕ, θ and ψ are around the local reference frame. For the top frame x can be
written in the same way but with subscript t.

xs =
[

cf
b

Φf
b

]
=



x
y
z
ϕ
θ
ψ


(A-1)

Actuator Lengths

Now to determine the actuator lengths, the Euler transformation matrix needs to be defined.
It can be defined by the rotations around the three axes:

Rx(ϕ) =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 , Ry(θ) =

cos θ 0 −sinθ
0 1 0

sin θ 0 cos θ

 , Rz(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


(A-2)
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54 Inverse and Forward Kinematics

(a) Coordinate System of Stewart platform (b) Relevant IK vectors for Stewart platform

Figure A-1: The Stewart platform [4]

As rotations are not commutative, the order in which they are applied is of importance [13].
In accordance with the Octans motion sensor and from [1, 3], the order of rotation should be
first yaw, then pitch and at last roll. Hence it follows for the bottom frame that:

Rf
b (Φf

b ) = Rz(ψ)Ry(θ)Rx(ϕ) = R̄b (A-3)

The notation R̄b is used for simplicity. This is the rotation martrix which describes the
rotation from bottom frame to inertial reference frame. It can be used to transform the
position of any bottom platform gimbal bb

i from its respective coordinate system Ob to the
inertial frame coordinate system Of .

bf
i = R̄bbb

i + cf
b (A-4)

where bb
i is the coordinates of the i-th bottom gimbal in its local reference frame and bf

i the
coordinates of the i-th gimbal in the inertial reference frame. Similarly, any top gimbal tf

i

can be described in Of :

tf
i = R̄ttt

i + cf
t (A-5)

with its relative position x denoted by:

x =
[

cf
t

Φf
t

]
(A-6)

Now to determine the length of each actuator, it can be defined as the line between a point
on the top and bottom platform. This can be defined as a gimbal pair i. Then for each i-th
actuator the length is defined as follows:

lfi = tf
i − bf

i (A-7)
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Note that to determine the lengths between the two gimbal points, the gimbal points need to
be defined in the same reference frame, Of in this case. The length, `, and direction, z, are
then defined as follows:

`i = ‖tf
i − bf

i ‖ (A-8)

zi = lfi
`i

(A-9)

The reference length can then be determined by subtracting the neutral cylinder length from
(A-8).

ri = `i − l0 (A-10)

The neutral cylinder length is defined as the cylinder length when the platform is at half its
maximum heave displacement.

Actuator Velocities

As for the velocities, a transformation can be made between the actuator velocities l̇ and
platform velocities ẋ and ẋs. The Jacobian relates the actuator velocities with the platform
velocities [4]. However the term Jacobian is not precise as it is not the partial derivative of a
vector but a set of velocities as a function of another set of velocities [14].

J =


zT

1 (R̄b
tt

f
1 × z1)T

...
...

zT
6 (R̄b

tt
f
6 × z6)T

 (A-11)

where R̄b
t is the transformation matrix from Ot to Ob. As the Jacobian defines the kinematics

of the Stewart platform, it is the same from both the bottom and top perspective.

Now to define the relationship between the actuator velocities and the platform velocities,
first the bottom platform is considered fixed. The actuator velocities as result of the top
platform velocities can be defined using the Jacobian:

l̇t = Jẋ (A-12)

Next the top platform is considered to be fixed to determine the actuator velocities as result
from the bottom platform velocities.

l̇b = −Jẋs (A-13)

Combining (A-12) and (A-13), the total actuator velocity can be found. It is defined as the
sum of both: Hence the total actuator velocity is:
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l̇ = l̇t + l̇b
= J(ẋ− ẋs) (A-14)

This concludes the IK problem for finding the actuator lengths and velocities.

A-2 Forward Kinematics

The Forward Kinematics (FK) problem is used to find the orientation of the top and bottom
platform relative to each other given the lengths and direction of the six actuators. This
results in solving the following kinematic equation:

`2i = ‖tb
i − bb

i‖2 (A-15)

which is an analytical way of describing the placing of the top rigid body such that six given
points lie on six given spheres which are fixed to the base rigid body. However solving this,
is considered a difficult problem due to the large number of complicated constraints [15].
There are 30 non-linear algebraic equations that need to be solved simultaneously. Large
computational powers are required to solve this, furthermore at most 40 solution (including
complex) can be found [1]. It can however be solved numerically using a Newton Rhapson
(NR) iteration method. The general NR iteration solves for f(x) = 0 according to the
following scheme:

xn+1 = xn − [f ′(xn)]−1f(xn), n = 0, 1, ... (A-16)

where f(xn) has to be defined so that it is applicable to the Stewart platform. If (A-15) needs
to be solved then it follows that:

fi(x) = lTi li − `2i (A-17)

should be solved for 0. Where x is the position and orientation of the top platform. Hence
this results in:

xn+1 = xn − [∂f(xn)
∂xn

]−1f(xn), n = 0, 1, ... (A-18)

where f(x) =
[
f1(x) f2(x) ... f6(x)

]T
as to include all six actuators. For on-line control,

it is important that only the correct solution is picked and that the solution is fast enough
for real-time implementation. For the Ampelmann system, the NR method converges within
a few iteration steps.
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Glossary

List of Acronyms

ASMS Ampelmann Safety Management System

DoF Degrees of Freedom

FD Fault Detection

FDEs Fault Detection Estimators

FK Forward Kinematics

FTC Fault Tolerant Control

HSS Hydraulic Servo System

HPU Hydraulic Power Unit

IK Inverse Kinematics

LS Least Squares

LQR Linear Quadratic Regulator

MRU Motion Reference Unit

NR Newton Rhapson

PLC Programmable Logic Controller

PTA Piston Type Accumulator

VAF Variance Accounted For
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List of Symbols

Φf
b Rotational position bottom platform in Of

α Parameter which determines influence of piston velocity on Pressure dynamics
R̄b Rotation matrix from bottom frame to inertial frame
β Parameter which determines influence of Load Pressure on Pressure dynamics
ẍ Translational acceleration for surge [m/s2]
ÿ Translational acceleration for sway [m/s2]
z̈ Translational acceleration for heave [m/s2]
δ Threshold for fault detection [m]
ψ̇ Rotational velocity for yaw [rad/s]
θ̇ Rotational velocity for roll [rad/s]
ϕ̇ Rotational velocity for pitch [rad/s]
l̇ Velocity of Cylinder [m/s]
l̇ctrl Control speed for Cylinder [m/s]
ẋ Translational velocity for surge [m/s]
ẏ Translational velocity for sway [m/s]
ż Translational velocity for heave [m/s]
γ1 Parameter which determines the influence of the input on the piston dynamics
γ2 Parameter which determines the influence of the input on the pressure dynamics
θ̂ Estimated parameter vector
l̇ Cylinder velocity [m/s]
ẋ Top platform velocity [m/s]
ẋs Bottom platform velocity [m/s]
bb

i Position of the i-th gimbal in the bottom frame
cf

b Translational position platform in Of

tf
i Position of the i-th gimbal in the top frame

x Position top platform in Of

xs Position bottom platform in Of

µv Viscous friction coefficient
φ Oil flow into Cylinder [m/s3]
φL Load oil flow [m/s3]
φbot Oil flow into bottom chamber [m/s3]
φrod Oil flow into rod-side chamber [m/s3]
ψ Rotation for yaw [rad]
ρ Oil density [kg/m3]
σ Parameter for noise [m]
θ Parameter vector
θ Rotation for roll [rad]
ϕ Rotation for pitch [rad]
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a Identifiable parameter
Av(xm) Spool position dependent valve area [m2]
b Identifiable parameter
Cd Discharge coefficient
cs Stribeck velocity
Fc0 Parameter for Coulomb friction
Ffr Friction Force in Cylinder [N]
Fs0 Parameter for static friction
k Actuator stiffness [N/m]
k0 Time index of fault occurence
L Observer gain
l Position of Cylinder [m]
m Load mass [kg]
Ob Local reference frame of bottom platform
Of Inertial reference frame
Ot Local reference frame of top platform
P1 High Pressure [bar]
P2 Low Pressure [bar]
PL Load Pressure [bar]
PS Supply pressure [bar]
PT Return Pressure [bar]
Pbot Pressure in bottom chamber of Cylinder [bar]
Prod Pressure in rod-side chamber of Cylinder [bar]
Q Matrix for LQR Control for the state
R Matrix for LQR Control for the input
R1 Fault detection residual 1
R2 Fault detection residual 2
R3 Fault detection residual 3
U Data vector for input
x Translation for surge [m]
X1 Data vector for x1

X2 Data vector for x2

X3 Data vector for x3

xm Spool position [%]
y Translation for sway [m]
z Translation for heave [m]
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