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Physics-based Pre-conditioners for Large-scale
Subsurface Flow Simulation
G.B. Diaz Cortes* (Delft University of Technology), C. Vuik (Delft
University of Technology) & J.D. Jansen (Delft University of Technology)

SUMMARY
We consider deflation-based pre-conditioning of the pressure equation for large-scale reservoir models
with strong spatial variations in the permeabilities. The use of deflation techniques involves the search for
good deflation vectors, which usually are problem-dependent. We propose the use of proper orthogonal
decomposition (POD) to generate physics-based problem-specific deflation vectors. The use of POD to
construct pre-conditioners has been attempted before but in those applications, a snap-shot-based reduced-
order basis was used as pre-conditioner directly whereas we propose the use of basis vectors as deflation
vectors. We investigate the effectiveness of the method with numerical experiments using the conjugate
gradient iterative method in combination with Incomplete Cholesky preconditioning (ICCG) and POD-
based deflation (DICCG). We consider incompressible and compressible single-phase flow in a layered
model with large variations in the permeability coefficients, and the SPE10 benchmark model. We obtain
an important reduction for the number of iterations with our proposed DICCG method in comparison with
the ICCG method. In some test problems, we achieve convergence within one DICCG iteration.  However,
our method requires a number of preparatory reservoir simulations proportional to the number of wells and
the solution of an eigenvalue problem to compute the deflation vectors. This overhead will be justified in
case of a large number of subsequent simulations with different control settings as typically required in
numerical optimization or sensitivity studies.
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 Introduction

Often, most computational time in the simulation of multi-phase flow through porous media is taken
up by solution of the pressure equation. This involves primarily solving large systems of linear equations
as part of the iterative solution of the time and space discretized governing nonlinear partial differential
equations. The time spent in solving the linear systems depends on the size of the problem and the
variations of permeability within the medium. Solution of problems with extreme contrast in the grid
block permeability values may lead to very large computing times.
A potential approach to reduce the computing time for large-scale problems with the aid of Proper Or-
thogonal Decomposition (POD) is investigated in [1] and [5]. Astrid et al. [1] propose the use of a
POD-based preconditioner for the acceleration of the solution to the pressure equation. The precondi-
tioner is constructed from a set of snapshots, obtained from solutions to the pressure equation in previous
time steps. Once the snapshots are computed, the POD method is used to obtain a set of basis vectors
that capture the most relevant features of the system, which can be used to improve the simulation time
of the subsequent time steps. A similar approach is used in [5], where a set of POD-based basis vectors
is obtained from the initial time steps. However, in this case, the acceleration is achieved by only im-
proving the initial guess.
Problems with a high contrast between the permeability coefficients are sometimes approached through
the use of deflation techniques; see, e.g., [11]. The use of deflation techniques involves the search of
good deflation vectors, which are usually problem-dependent. In [11], subdomain based deflation vec-
tors are used for layered problems with a large contrast between the permeability coefficients. However,
these deflation vectors cannot be used if the distribution of the permeability coefficients is not structured
as is the case in, e.g., the well-known SPE 10 benchmark problem [3].
Following the ideas of [1] and [5], we propose the use of POD of many snapshots to capture the system’s
behavior. The basis obtained with POD is studied as an alternative choice of deflation vectors to accel-
erate the convergence of the pressure solution in a porous medium with high-contrast variations in the
permeability coefficients. As a first step, we consider incompressible single-phase flow through porous
media with large variations in the permeability coefficients for layered academic problems and the SPE
10 benchmark.

Method and/or Theory

Flow through porous media

We consider the semi-discretized form of the governing partial differential equations for single-phase
flow, resulting in the system of ordinary differential equations [4],

Vṗ+Tp = q, (1)

where p is a vector of grid block potentials, q is a vector of grid block source terms (wells), the dot
represents differentiation with respect to time, while T and V are the transmissibility and accumulation
matrices. If we neglect gravity, the potential reduces to pressure, and if we furthermore restrict the
analysis to slightly compressible flow, the system of differential equations (1) is linear. In case of large
compressibilities or multiphase-flow, the equations are nonlinear but can be solved iteratively using the
Newton-Raphson (NR) method.
To solve Equation (1) it is necessary to define initial conditions and boundary conditions. The latter
conditions can be prescribed pressures (Dirichlet conditions), flow rates (Neumann conditions), or a
combination of these (Robin conditions).
To represent the pressure drop resulting from sub-grid near-well flow convergence, and to allow for the
prescription of pressures (rather than flow rates) in the wells we use the well-known Peaceman well
model which changes Equation (1) into

Vṗ+Tp = J(p−pwell), (2)
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 where J is a matrix with well indices in the appropriate positions and pwell is a vector of well bore
pressures [4]. In case of incompressible flow, Equation (2) reduces to the system of algebraic equations

Tp = J(p−pwell). (3)

Iterative solution methods

Equation (2) can be numerically integrated, for which the implicit Euler formulation is the most
popular time discretization method in the reservoir simulation community. This results in a time stepping
sequence that requires the solution of a system of linear equations at each time step:

Ax = b, (4)

where the vector x = pk+1, and where A and b can be expressed in terms of pk, T, V, J and pwell [4].
In case of a mass-conservative time discretization scheme for single-phase flow, V will be a function of
pk+1, while in case of multi-phase flow also T and J become a function of pk+1. In those cases, system
(4) will be the result of a NR procedure, and multiple instances of it need to be solved during a single
time step until the NR procedure has converged. In case of incompressible flow, the linear system (4)
results directly from rewriting Equation (3).
System (4) can be solved with direct or iterative methods. Direct methods achieve a final solution, while
the iterative ones are stopped if the error is less than a given value. For realistically sized reservoir
problems the use of iterative solvers is usually the most efficient and often the only possible choice.
Some well-known iterative methods are: Jacobi, Gauss Seidel and, if the matrix is Symmetric Positive
Definite (SPD), the Conjugate Gradient (CG) method. Iterative methods can be preconditioned or de-
flated to accelerate the convergence. In the next section, we present the CG method, and we describe
preconditioning and deflation techniques for the acceleration of this method.

Krylov subspace Methods

If we have two subspaces Kk, Lk of Rn and we want to solve Equation (4), with A ∈ R
n×n we can

use a projection method onto Kk. This method allows us to find an approximate solution xk from an
arbitrary initial guess x0. This approximate solution lies in the Krylov subspace of dimension k of the
matrix A and residual r0,

xk ∈ x0 +Kk(A,r0),

with Kk(A,r0) defined as:

Kk(A,r0) = span{r0,Ar0, . . . ,Ak−1r0},
where the residual rk = b−Axk is orthogonal to the subspace Lk, with

xk+1 = xk +B−1rk, rk = b−Axk.

The subspace Lk is chosen depending on the Krylov subspace method that is used.

Conjugate Gradient Method

The Conjugate Gradient (CG) method is a Krylov subspace method for SPD matrices, such that

||x−xk||A1 (5)

is minimal, with x the solution of the system and xk the approximate solution after k iterations.
After k+1 iterations of the CG method, the error of the iteration is bounded by:

||x−xk+1||A ≤ 2||x−x0||A
(√

C2(A)−1√
C2(A)+1

)k+1

.2 (6)

1||x||A =
√

(x,x)A =
√

xT Ax.
2The condition number C2(A) is defined as C2(A) =

√
λmax(AT A)√
λmin(AT A)

. If A is SPD, C2(A) =
λmax(A)
λmin(A)

.
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 Algorithm 1 Conjugate Gradient (CG) method, solving Ax = b.

Give an initial guess x0.

Compute r0 = b−Ax0 and set p0 = r0.
for k = 0, ..., until convergence

αk = (rk,rk)
(Apk,pk)

xk+1 = xk +αkpk

rk+1 = rk −αkApk

β k = (rk+1,rk+1)
(rk,rk)

pk+1 = rk+1 +β kpk

end

Preconditioning

If we want to accelerate the convergence of an iterative method, we can transform the system into an-
other one containing a better spectrum, i.e, a smaller condition number. This can be done by multiplying
the original system (4) by a matrix M−1.

M−1Ax = M−1b. (7)

The new system has the same solution but provides a substantial improvement on the spectrum. For this
preconditioned system, the convergence is given by:

||x−xk+1||A ≤ 2||x−x0||A
(√

C(M−1A)−1√
C(M−1A)+1

)k+1

. (8)

M is an SPD matrix chosen such that C(M−1A)≤ C(A), and M−1b is easy to compute.

Deflation

Deflation is used to annihilate the effect of extreme eigenvalues on the convergence of an iterative
method ([11]). Given an SPD matrix A ∈ R

n×n, the deflation matrix P is defined as follows ([9]):

P = I−AQ, P ∈ R
n×n, Q ∈ R

n×n,

where
Q = ZE−1ZT , Z ∈ R

n×m, E ∈ R
m×m,

with
E = ZT AZ.

The matrix E is known as the Galerkin or coarse matrix that has to be invertible. If A is SPD and Z is
full rank then E is invertible. The full rank matrix Z is called the de f lation− subspace matrix, and it’s
l < n columns are the de f lation vectors or pro jection vectors.
Some properties of the previous matrices are ([9, pag. 27]):

a) P2 = P.

b) APT = PA.

c) (I−PT )x = Qb.

d) PAZ = 0n×m.
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 e) PA is SPSD3.

We can split the vector x as:

x = Ix−PT x+PT x = (I−PT )x+PT x. (9)

Multiplying the expression above by A, using the properties above, we have:

Ax = A(I−PT )b+APT x, Property :

Ax = AQb+APT x, c)
b = AQb+PAx, b),

multiplying by P and using the properties PAQ = 0n×n and P2 = P, properties d) and e), we have:

PAQb+P2Ax = Pb,
PAx = Pb, (10)

where PAx = Pb is the deflated system. Since PA is singular, the solution x can contain components of
the null space of PA. A solution to this system, called deflated solution, is denoted by x̂. The deflated
system for x̂ is:

PAx̂ = Pb. (11)

As mentioned above, the solution to Equation (10) can contain components of N (PA). Therefore, a
solution to Equation (11), x̂ can be decomposed as:

x̂ = x+y, (12)

with y ∈ R(Z)⊂ N (PA), and x the solution to Equation (4).
Note: If y ∈ R(Z), then

y =
m

∑
i=1

αizi,

PAy = PA(z1α1 + ...+ zmαm) = PAZα, (13)

from h) PAZ = 0n×l, then
PAy = 0. (14)

Therefore R(Z)⊂ N (PA).
Multiplying Equation (12) by PT we obtain:

PT x̂ = PT x+PT y,

combining Equation (14) with f), we have:

PAy = APT y = 0.

Therefore
PT x̂ = PT x. (15)

Substitution to Equation (15) and g) in Equation (9) leads to:

x = Qb+PT x̂, (16)

which gives us a relation between x̂ and x.

3Symmetric Positive Semi-Definite, (Ax,x)≥ 0, for all x.
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 Deflated CG Method

To obtain the solution to the linear system (4), we solve the deflated system:

PAx̂ = Pb. (17)

with the CG method, for a deflated solution x̂. Therefore, the solution x to the original system is obtained
from (16):

x = Qb+PT x̂.

Deflated PCG Method

The deflated linear system can also be preconditioned by an SPD matrix M.
The deflated preconditioned system to solve with CG is [9, pag. 30]:

P̃Ã ˆ̃x = P̃b̃,

where:
Ã = M− 1

2 AM− 1
2 , ˆ̃x = M

1
2 x̂, b̃ = M− 1

2 b

This method is called the Deflated Preconditioned Conjugate Gradient DPCG method, and the error is
bounded by:

||x−xi+1||A ≤ 2||x−x0||A
(√

Ce f f (M−1PA)−1√
Ce f f (M−1PA)+1

)i+1

,

were Ce f f =
λmax(M−1PA)
λmin(M−1PA) is the effective condition number and λmin(M−1PA) is the smallest non-zero

eigenvalue of M−1PA.

Choices of Deflation Vectors

The deflation method is used to treat the most unfavorable eigenvalues of A. If the matrix Z contains
eigenvectors corresponding to the unfavorable eigenvalues, the convergence of the iterative method is
achieved faster. However, to obtain and to apply the eigenvectors is costly in most of the cases. There-
fore, a good choice of the matrix Z that does not contain the eigenvectors is essential for the acceleration
of the convergence.
A good choice of the deflation vectors is usually problem-dependent. Available information on the
system is, in general, used to obtain these vectors. Most of the techniques used to choose deflation
vectors are based on approximating eigenvectors, recycling ([2]), subdomain deflation vectors ([12]) or
multigrid and multilevel based deflation techniques ([10, 8]). A summary of these techniques is given
below.

Recycling Deflation. A set of vectors previously used is reused to build the deflation-subspace matrix
([2]). The vectors could be, for example, q−1 solution vectors of the linear system with different
right-hand sides or of different time steps. The matrix Z containing this solutions is:

Z = [x(1),x(2), ...,x(q−1)].

Subdomain Deflation. The domain is divided into several subdomains, each corresponding to one or
more deflation vectors. For each subdomain, there is a deflation vector that has ones for points in
the subdomain and zeros for points outside ([12]).

Multi Grid and Multilevel Deflation. For the multigrid and multilevel methods, there are matrices
called prolongation and restriction matrices that allow us to pass from one level or grid to an-
other. These matrices are used as the deflation-subspace matrices Z ([10]).
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 Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition (POD) method is a Model Order Reduction (MOR) method,
where a high-order model is projected onto the space spanned by a set of orthonormal basis vectors. The
high dimensional variable x ∈ R

n is approximated by a linear combination of l << n orthonormal basis
vectors [1]:

x ≈
l

∑
i=1

ziφi, (18)

where φi ∈ Rn are the basis vectors and zi are their corresponding coefficients. In matrix notation,
equation (18) is rewritten as :

x ≈ Φz,

where Φ = [φ1 φ2 .. φl], Φ ∈ Rn×l is the matrix containing the basis vectors, and z ∈ Rl is the vector
containing the coefficients of the basis vectors.
The basis vectors are computed from a set of ’snapshots’ {xi}i∈N, obtained by simulation or experiments
[5]. In POD, the basis vectors {φ j}l

j=1, are l eigenvectors corresponding to the largest eigenvalues

{λ j}l
j=1 of the data snapshot correlation matrix R.

R :=
1

m
XXT ≡ 1

m

m

∑
i=1

xixT
i , X := [x1,x2, ...xm], (19)

where X ∈ Rn×m is an SPSD matrix containing the previously obtained snapshots. The l eigenvectors
should contain almost all the variability of the snapshots. Usually, they are chosen as the eigenvectors
of the maximal number (l) of eigenvalues satisfying [5]:

∑l
j=1 λ j

∑m
j=1 λ j

≤ α, 0 < α ≤ 1, (20)

with α close to 1. The eigenvalues are ordered from large to small with λ1 the largest eigenvalue of R.

Results

Numerical experiments.

These experiments are performed in order to understand the behavior of the Deflated Conjugate Gra-
dient method preconditioned with Incomplete Cholesky (DICCG) and to find good deflation vectors for
the given problems. We propose the use of snapshots and the snapshots-based basis functions of POD
as deflation vectors.
In the present section, we give a general overview of the experiments that we perform, but the specifica-
tions are presented below for each problem separately. The reference solution is obtained with a direct
solution method. This solution is visually compared with the results obtained with the iterative solvers.
We observed that a good choice of snapshots, and therefore of deflation vectors, depends on the bound-
ary conditions of the problem. Hence, we study two cases with different boundary conditions. For the
first set of problems, Dirichlet boundary conditions are used for an academic layered model with various
contrasts in permeability between the layers. In the second set of problems, we used Neumann boundary
conditions (no-flux) for the previous academic layered problem and for the SPE 10 benchmark problem.
We investigate the behavior of the ICCG and DICCG methods with various contrasts between the per-
meability layers for both cases.
We study the influence of the size of the problem in the performance of the ICCG and DICCG methods
changing the grid size of the second layer of the SPE 10 benchmark. We also investigate the perfor-
mance of the above-mentioned methods with various tolerance values for the solvers. This study was
performed for the second layer and for the complete SPE 10 benchmark (85 layers). We also investigate
the influence of the accuracy of the snapshots in the performance of the DICCG method for the complete
SPE 10 benchmark.
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 The model
The experiments simulate flow through porous media with a constant porosity field of 0.2. An incom-
pressible single-phase model is studied for a fluid with the following properties:

• μ = 1cp

• ρ = 1014kg/m3

We model incompressible single-phase flow through porous media. The system of equations that de-
scribes this flow is given by Equation (4).
In these experiments, a Cartesian grid with different grid sizes is used. Wells or sources are added to
the system. Neumann and Dirichlet boundary conditions are imposed. For some problems, a pressure
drop is imposed in the y direction (Dirichlet boundary condition), and for others, the no-flux (Neumann)
boundary condition is used. More specifications are presented below for each problem. The matrices
corresponding to the linear systems A and right-hand sides b are obtained with MRST [6].

Snapshots
As mentioned above, for the DICCG method we need a set of deflation vectors. In a first series of exper-
iments, the deflation vectors are solutions of the system with various well configurations and boundary
conditions. These solutions, called snapshots, are obtained with ICCG, the tolerance used is given for
each problem. The configuration used to obtain each snapshot depends on the problem that we are solv-
ing. For each case, the configuration of the snapshots, as well as the configuration of the system to solve,
are presented.

The solver
The solution of the system is approximated with ICCG and DICCG.
For the DICCG method, we need a set of deflation vectors. For the first case (Dirichlet and Neumann
boundary conditions), snapshots are used as deflation vectors. For the second case (Neumann boundary
conditions only), snapshots and basis vectors of POD are used as deflation vectors. The tolerance or
stopping criterium is taken as the 2-norm of the residual for the kth iteration divided by the 2-norm of
the right-hand side of the preconditioned system:

||M−1rk||2
||M−1b||2 ≤ ε.

The stopping criterium is varied for each problem.

POD deflation vectors
The POD method requires a basis for the projection of the high-order model. This basis contains the
eigenvectors corresponding to the largest eigenvalues of the data snapshot correlation matrix R, as de-
fined in Equation (19).
In the second set of experiments (Neumann boundary conditions only), we use snapshots and the eigen-
vectors corresponding to the two largest eigenvalues of the matrix R as deflation vectors. The x′is of the
matrix R are the snapshots described in previous section. When we use POD deflation vectors for the
DICCG method, we use the subscript POD, i.e. the solver is DICCGPOD.
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 Case 1, Dirichlet and Neumann boundary conditions.
In the configuration of Case 1, four wells are positioned in a square at distances equal to one-third of the
reservoir length and width. Two wells have a bottom hole pressure (bhp) of 5 bars, and two have a bhp
of -5 bar. No-flux conditions are used at the right and left boundaries and a pressure drop in the vertical
direction. The pressure at the lower boundary (y = 1) is 0 bars, and at the upper boundary (y = ny)
is 3 bars. The first four snapshots (z1 − z4) are obtained setting only one well pressure different from
zero, taking no-flux conditions at the right and left boundaries and homogeneous Dirichlet conditions
at the other boundaries. A fifth snapshot is obtained setting all the wells pressures to zero and setting a
pressure drop in the vertical direction used for the original system. A summary is presented below.

Configuration 1:

System con f iguration

W1 = W2 = -5 bars.

W3 = W4 = +5 bars.

Boundary conditions :

P(y = 1) = 0 bars, P(y = ny) = 3 bars,
∂P(x=1)

∂n = ∂P(x=nx)
∂n = 0.

Snapshots

z1: W1 = -5 bars, W2 = W3 = W4 = 0,

z2: W2 = -5 bars, W1 = W3 = W4 = 0.

z3: W3 = +5 bars, W1 = W2 = W4 = 0.

z4: W4 = +5 bars, W1 = W2 = W3 = 0.

Boundary conditions for the first 4 snapshots:

P(y = 1) = P(y = ny) = 0 bars,
∂P(x=1)

∂n = ∂P(x=nx)
∂n = 0.

z5: W1 = W2 = W3 = W4 = 0.

Boundary conditions for the 5th snapshot:

P(y=1) = 0 bars, P(y=ny) = 3 bars,
∂P(x=1)

∂n = ∂P(x=nx)
∂n = 0.

Figure 1 Heterogeneous permeability.

As mentioned above, we studied flow through a porous medium with heterogeneous permeability 
layers. A grid of nx = ny = 64 elements is studied. We use 8 layers of the same size, 4 layers with one 
value of permeability κ1, followed by a layer with a different permeability value κ2. The permeability of 
one set of layers is set to κ1 = 1mD, the permeability of the other set κ2 is changed. Therefore, the 
contrast in
permeability between the layers (κ

κ
2

1 
= 

1
κ2

mD ), depends on the value of κ2.
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 We investigate the dependence on the contrast in permeability value between the layers for the ICCG
and DICCG methods. The permeability of one set of layers is κ1 = 1mD in all cases, whereas the
permeability of the other set of layers varies from κ2 = 10−1mD to κ2 = 10−7mD. Figure 1 shows these
layers. The tolerance is set as 10−11 for the snapshots as well as for the original problem.
Table 1 shows the condition number for the matrix A, the preconditioned matrix (M−1A) and the deflated
and preconditioned matrix (M−1PA) for various permeability contrasts between the layers.

κ2 (mD) 10−1 10−3 10−5 10−7

C(A) 2.6×103 2.4×105 2.4×107 2.4×109

C(M−1A) 206.7 8.3×103 8.3×105 8.3×107

Ce f f (M−1PA) 83.27 6×103 1×106 6×107

Table 1: Table with the condition number for the matrix obtained solving the layered problem with various permeability con-
trasts between the layers. Original system, preconditioned system and preconditioned and deflated system with five snapshots
as deflation vectors (DICCG). Grid size of 32 x 32, κ1 = 1mD.

Table 2 shows the number of iterations required to achieve convergence for ICCG and DICCG, for vari-
ous permeability contrasts between the layers.4

The solution is not reached when the value of permeability is greater than κ2 = 10−3 for both methods
(ICCG and DICCG). For the ICCG method the solution is completely different from the solution ob-
tained with a direct solver, whereas for the DICCG the solution is similar, but not the same. The plot of
the residual and the solution to the problem are presented in Figures 2 and 3 for a value of permeability
κ2 = 10−3.
As long as the correct solution is achieved (κ2 = 10−1,10−3), we note that the number of iterations in-
creases when the contrast between the permeability layers increases for ICCG. For DICCG, we observe
that we only need one iteration despite the change in permeability contrast between the layers.

κ2 (mD) 10−1 10−3 10−5 10−7

ICCG 75 110 22* 22*

DICCG 1 1 10 4**

Table 2: Table with the number of iterations for different contrasts in the permeability of the layers for the ICCG and DICCG
methods.

Figure 2 Convergence for the heterogeneous 
problem, 64 x 64 grid cells, κ2 = 10−3mD.

Figure 3 Solution of the heterogeneous problem, 
64 x 64 grid cells,κ2 = 10−3mD.

4The * means that the solution is not achieved (from the plot of the solution). Meanwhile, ** means that the solution is
close to the solution obtained with a direct solver.
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 To better understand the cases when the solution has not been achieved, we study the error of the approx-

imations. If we want the relative error e = ||x−xk||2
||x||2 , with x the true solution and xk the approximation, to

be less than 10−7, we need to choose a stopping criteria (tol) so that tol = e/C2(M−1A) for the precon-
ditioned system, and tol = e/Ce f f (M−1PA) for the deflated and preconditoned system (see Appendix
1).
The tolerance is presented in Table 3 for the ICCG and DICCG methods. We observe that the required
tolerance (tol) when κ2 = 10−5mD,10−7mD is smaller than our choice (tol = 10−11). As a consequence,
we cannot expect to find a correct solution for these cases.

κ2 (mD) 10−1 10−3 10−5 10−7

tol = e
C(M−1A) 5×10−9 1×10−10 1×10−12 1×10−14

tol = e
Ce f f (M−1PA) 1×10−8 2×10−10 1×10−12 2×10−14

Table 3 Table with the tolerance for various permeability contrasts between the layers, grid size of 32 x 
32, κ1 = 1mD.

As we see from Table 3, the tolerance required when κ2 = 10−5mD is in the order of 10−12. Therefore, if 
we use this tolerance we can find the solution. Tolerance for the snapshots as well as for the solver is 
varied. We study 3 cases, in the first case, the tolerance of the snapshots and the solvers is 10−12. In the 
second case, the tolerance of the snapshots is reduced to 10−14. Finally, in case 3 the tolerance of the 
solvers is reduced to 10−13. Table 4 shows the number of iterations necessary to achieve convergence for 
ICCG and DICCG for a given tolerance (Tol solver). The solution obtained with all the methods is 
visually compared with the solution obtained with a direct solver.
For ICCG, the solution obtained in the first two cases is similar to the expected solution but it is not the 
same which indicates that a tolerance of 10−13 is necessary to find the solution. For DICCG, in the first 
case, the solution is reached after eleven iterations. If we increase the accuracy of the snapshots (Case 2) 
we reach the correct solution for DICCG in one iteration (the dependence on the accuracy of the 
snapshots for the DICCG method is studied for the SPE 10 model in the next section). If we increase the 
accuracy of the solvers (Case 3), the solution is also achieved, but we note that for the deflation methods 
the number of iterations increases.

Case 1 2 3

Tol snapshots 1×10−12 1×10−14 1×10−14

Tol solver 1×10−12 1×10−12 1×10−13

ICCG 55∗∗ 55∗∗ 94

DICCG 11 1 2

Table 4 Number of iterations for ICCG, DICCG for a layered problem, κ1 = 1mD, κ2 = 10−5mD, 
grid size of 64x 64.
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 Case 2, Neumann boundary conditions only.
In this case, four wells are positioned in the corners and have a bhp of -1 bar. One well is positioned in
the center of the domain and has a bhp of +4 bars (see Figure 4). We set Neumann boundary conditions
in all boundaries. The snapshots (z1 − z4) are obtained giving a value of zero to one well and non zero
values to the other wells. A summary of the configurations is presented below.

Configuration 2:

System con f iguration

W1 = W2 = W3 = W4 = -1 bar.

W5 = +4 bars.

Boundary conditions :

∂P(y=1)
∂n = ∂P(y=ny)

∂n = ∂P(x=1)
∂n = ∂P(x=nx)

∂n = 0.

Snapshots

z1: W1 = 0 bars, W2 = W3 = W4 = -1 bars, W5 = +3 bars.

z2: W2 = 0 bars, W1 = W3 = W4 = -1 bars, W5 = +3 bars.

z3: W3 = 0 bars, W1 = W2 = W4 = -1 bars, W5 = +3 bars.

z4: W4 = 0 bars, W1 = W2 = W3 = -1 bars, W5 = +3 bars.

Boundary conditions

∂P(y=1)
∂n = ∂P(y=ny)

∂n = ∂P(x=1)
∂n = ∂P(x=nx)

∂n = 0.

Heterogeneous permeability layers
As in the previous case, single-phase flow through a porous medium with heterogeneous permeability
layers is studied. A grid of nx = ny = 64 elements is investigated. The deflation vectors used in this case
are the 4 snapshots (z1-z4) and two basis vectors obtained for the POD method.
The snapshots and the solutions are obtained with a tolerance of 10−11.

Figure 4 Heterogeneous permeability.

Table 5 shows the number of iterations required to achieve convergence for ICCG, DICCG with four 
snapshots as deflation vectors and DICCGPOD with 2 POD basis vectors as deflation vectors. The plot 
of the residual and the solution of the problem are presented in Figure 5 and 6 for the ICCG and DICCG 
methods.
As in Case 1, we note that the solution is not achieved when the permeability coefficient κ2 is smaller
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 than 10−3 for all the solvers. We can also observe that the performance of DICCG and DICCGPOD
is similar. Therefore, in the analysis of the results, we will refer only to DICCG for both solvers.
Studying solely the correct solutions for ICCG, the number of iterations increases as the contrast in the
permeability increases. For the DICCG method, convergence is reached within one iteration.

κ2 10−1 10−3 10−5 10−7

ICCG 90 131 65* 64*

DICCG 1 1 1* 1*

DICCGPOD 1 1 1* 1*

Table 5 Table with the number of iterations for different contrast in the permeability of the layers for 
the ICCG, DICCG and DICCGPOD methods, tolerance of solvers and snapshots 10−11.

Figure 5 Convergence for the heterogeneous 
problem, 64 x 64 grid cells, κ2 = 10−3.

Figure 6 Solution of the heterogeneous problem, 
64 x 64 grid cells, κ2 = 10−3.

To better understand the utility of POD we present an example with a larger number of snapshots, and
we use the POD basis vectors to reduce this number. We solve the heterogeneous layered case with
layers of permeability κ1 = 1mD and κ2 = (10−1,10−3) mD. In this case, we use 15 snapshots that are
not linearly independent. These snapshots are the following:

Snapshots

z1: W1 = W2 = W3 = W4 = -1 bars, W5 = +4 bars.

z2: W1 = 0 bars, W2 = W3 = W4 = -1 bars, W5 = +3 bars.

z3: W2 = 0 bars, W1 = W3 = W4 = -1 bars, W5 = +3 bars.

z4: W3 = 0 bars, W1 = W2 = W4 = -1 bars, W5 = +3 bars.

z5: W4 = 0 bars, W1 = W2 = W3 = -1 bars, W5 = +3 bars.

z6: W1 = W2 = 0 bars,W3 = W4 = -1 bars, W5 = +2 bars.

z7: W2 = W3 = 0 bars, W1 = W4 = -1 bars, W5 = +2 bars.

z8: W3 = W4 = 0 bars, W1 = W2 = -1 bars, W5 = +2 bars.

z9: W1 = W3 = 0 bars, W2 = W4 = -1 bars, W5 = +2 bars.

z10: W2 = W4 = 0 bars, W1 = W3 = -1 bars, W5 = +2 bars.

z11: W1 = W4 = 0 bars, W2 = W3 = -1 bars, W5 = +2 bars.
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 z12: W1 = -1 bars, W2 = W3 = W4 = 0 bars, W5 = +1 bars.

z13: W2 = -1 bars, W1 = W3 = W4 = 0 bars, W5 = +1 bars.

z14: W3 = -1 bars, W1 = W3 = W4 = 0 bars, W5 = +1 bars.

z15: W4 = -1 bars, W1 = W2 = W3 = 0 bars, W5 = +1 bars.

Boundary conditions

∂P(y=1)
∂n = ∂P(y=ny)

∂n = ∂P(x=1)
∂n = ∂P(x=nx)

∂n = 0.

With these snapshots, we compute the data snapshot correlation matrix R = XXT , where the rows of
X are the snapshots presented above. We compute the eigenvalues of the correlation matrix, they are
presented in Figure 7. We observe that the first four eigenvalues are close to 108 orders of magnitude
larger than the rest of the eigenvalues. Our deflation vectors are the eigenvectors corresponding to these
four eigenvalues. The number of iterations necessary to achieve convergence is presented in Table 6

Figure 7 Eigenvalues of the snapshot correlation matrix R = XXT , 15 snapshots used.

for the ICCG and the deflated method. For the deflated method, 15 snapshots were used as deflation 
vectors DICCG15, and the eigenvectors corresponding to the 4 largest eigenvalues of the matrix R (see 
Figure 7). We observe that for the deflated method, when we use the 15 snapshots, the correct solution is 
not achieved after 500 iterations, the maximum number of iterations allowed for this problem. For this 
problem we have a linearly dependent set of snapshots, causing that the Galerkin matrix (E = ZT AZ) 
is close to singular such that it cannot be accurately inverted, a requirement for a good performance of 
the deflation method. As a result, the deflation method does not work properly. However, when we use 
4 of the basis vectors of POD, we achieve the solution within one iteration. In this example, we reduce 
the number of snapshots from 15 to 4 using the basis vectors of POD, selecting in this way the dominant 
features of the system.

κ2 10−1 10−3

ICCG 90 131

DICCG15 500* 500*

DICCGPOD 1 1

Table 6 Table with the number of iterations for different contrast in the permeability of the layers for 
the ICCG, DICCG15 and DICCGPOD methods, tolerance of solvers and snapshots 10−11.
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 SPE 10 model (1 layer)
This model has large variations in the permeability coefficients. It contains 60 x 220 x 85 cells, in
this section only one layer (2nd) is used (60 x 220 x 1 cells). This model has 5 sources or wells, four
producers in the corners (negative) and one injector in the center (positive).
The snapshots are obtained solving the system with different well configurations (Configuration 2).
Four snapshots are used as deflation vectors. As before, we simulate single-phase incompressible flow.
The dependence of the DICCG method on the accuracy of the snapshots is investigated. Snapshots are
obtained with different accuracy, the values of tolerance used are 10−1, 10−3, 10−5, and 10−7. The
original system is solved with an accuracy of 10−7. In the first experiment with the deflation method,
the four snapshots are used as deflation vectors (DICCG). In the second, 2 vectors of the POD basis are
used as deflation vectors (DICCGPOD).
Different grid sizes are studied: 16 x 56, 30 x 110, 46 x 166 and 60 x 220.
Permeability is upscaled averaging the permeability in each grid using the harmonic-arithmetic average
algorithm from MRST. The permeability of the coarser grid (16 x 56 cells) is shown in Figure 8. The
permeability contrast for the diverse grid size problems is shown in Table 7. From this table, we observe
that the contrast in the permeability for different grid sizes varies slightly, but that the order of magnitude
remains the same for all the cases.
The condition number for the coarse grid problem (16 x 56) is studied in Table 8 for the original system,
the preconditioned system and the deflated and preconditioned system with four snapshots as deflation
vectors. In this table we observe an important reduction in the condition number for the preconditioned
the system and a further reduction when the system is deflated.

(a) 16 x 56 grid cells (b) 60 x 220 grid
cells

Figure 8 Permeability field, 16 x 56 and 60 x 220 grid cells.

Grid size 16 x 56 30 x 110 46 x 166 60 x 220

Contrast (×107) 1.04 2.52 2.6 2.8

Table 7 Table with the contrast of permeabilities for different grid sizes.

The number of iterations required to achieve convergence with the ICCG, DICCG and DICCGPOD meth-
ods for various grid sizes and various accuracy values of the snapshots is presented in Table 9.
As in the previous experiment, the number of iterations is similar for the DICCG and DICCGPOD meth-
ods, therefore we will analyze only the solutions obtained with DICCG, as the same analysis holds for 
DICCGPOD.
The convergence and the solution to the ICCG and DICCG methods with a tolerance of the snapshots of 
10−7 are presented in Figure 9 and Figure 10. For ICCG, the required iterations to reach convergence 
increases as the size of the grid increases. We note that the accuracy of the snapshots is important for the
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 Condition
number

Value

C(A) 2.2×106

C(M−1A) 377

Ce f f (M−1PA) 82.7

Table 8 Table with the condition number of the matrix obtained for the SPE 10 model. Original system, 
preconditioned system and preconditioned and deflated system with four snapshots as deflation vectors 
(DICCG). Grid size of 16 x 56.

DICCG method. When the accuracy is low, the DICCG method behaves almost as the ICCG method, as 
the accuracy increases, the number of iterations diminishes. We observe that, if we use the same 
accuracy for the snapshots and the solver, 10−7, the solution is reached within one iteration.

Tol Method 16 x 56 30 x 110 46 x 166 60 x 220

ICCG 34 73 126 159

10−1 DICCG 33 72 125 158

DICCGPOD 33 72 125 158

10−3 DICCG 18 38 123 151

DICCGPOD 21 40 123 153

10−5 DICCG 11 21 27 55

DICCGPOD 11 21 27 48

10−7 DICCG 1 1 1 1

DICCGPOD 1 1 1 1

Table 9 Table with the number of iterations for ICCG, DICCG and DICCGPOD, various tolerance 
for the snapshots, various grid sizes.

Figure 9 Convergence for the SPE 10 problem, 16 x 
56 grid cells, accuracy of the snapshots 10−7.

Figure 10 Solution of the SPE 10 benchmark, 
16 x 56 grid cells, 2nd layer, accuracy of the 
snapshots 10−7.



 

 

 
ECMOR XV - 15th European Conference on the Mathematics of Oil Recovery 

29 August – 1 September 2016, Amsterdam, Netherlands 

 SPE 10 complete
We approximate the solution for the complete SPE 10 benchmark (60 x 220 x 65) with the ICCG and
DICCG methods (see Figure 11). The contrast in permeability between the layers for this problem is
3× 10−7. We use four deflation vectors, z1 − z4 (Con f iguration 2). The accuracy of the snapshots is
varied from 10−2 to 10−11 in steps of 10−3. For the solution, accuracy is varied from 10−5 to 10−11 in
steps of 10−3. Results are presented in Table 10. The convergence plot is presented in Figure 12 and the
solution in Figure 13 for an accuracy of the snapshots and solvers of 10−11.
We observe from Table 10, that the number of iterations necessary to achieve convergence is the same
for ICCG and DICCG if the accuracy of the snapshots is low (tol 10−2). When the accuracy improves,
the number of iterations is reduced for DICCG. Convergence is achieved within one iteration for DICCG
when the accuracy of the snapshots is 10−11. This is a significant improvement with respect to ICCG
which needs 1029 iterations to achieve the solution.
We also observe that, if the accuracy of the solver is not good enough, the correct solution is not reached.
This should be linked to the condition number of the matrix of the problem, and the required accuracy
for the solvers. As the problem is very large in this case, an analysis of the condition number is not
possible. However, we know that the contrast between the permeability layers is of the order of 10−7,
and from the heterogeneous problem we can see that in this case, it is possible that the reduction of the
condition number is not large enough, and therefore, the required accuracy is not reached.

Tol. sol 10−5 10−8 10−11

Tolerance of snapshots 10−2

ICCG 165* 610* 1029

DICCG 163* 604* 1029

DICCGPOD 164* 551* 1029

Tolerance of snapshots 10−5

ICCG 165* 610* 1029

DICCG 1* 467** 878

DICCGPOD 8* 465* 872

Tolerance of snapshots 10−8

ICCG 165* 550* 1030

DICCG 1* 1* 564

DICCGPOD 1* 1* 475

Tolerance of snapshots 10−11

ICCG 165* 572* 1029

DICCG 1 1 1

DICCGPOD 1 1 1

Table 10 Table with the number of iterations for different accuracy in the snapshots and the solution 
obtained with the ICCG, DICCG and DICCGPOD methods.

For this problem, we also study the behavior of the DICCG method with 15 linearly dependent 
snapshots. The snapshots used are the same as the snapshots used for the heterogeneous permeability 
case (with 15 snapshots). The accuracy for the snapshots and the solvers is 10−11.
The eigenvalues of the data snapshot correlation matrix R = XXT are presented in Figure 14. The 
number of iterations necessary to achieve the desired tolerance for the ICCG and DICCG methods is
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Figure 11: SPE 10 benchmark, permeability field. Figure 12 Convergence for ICCG and DICCG, 
SPE 10 model, 85 layers, accuracy of the 
snapshots 10−11.

Figure 13 Solution to the SPE 10 model (85 layers) with ICCG and DICCG, tolerance of the snapshots 
and solvers 10−11.

ICCG 1011

DICCG15 2000

DICCGPOD 2

Table 11 Table with the number of iterations for different contrast in the permeability of the layers for 
the ICCG, DICCG15 and DICCGPOD methods, tolerance of solvers and snapshots 10−11.

presented in Table 11. For the deflated method we use 15 snapshots as deflation vectors (DICCG15), and 
the eigenvectors corresponding to the four largest eigenvalues (1-4) of the matrix R.
We observe in Table 11 that for the deflated method, when we use the 15 snapshots, the correct solution

Figure 14 Eigenvalues of the snapshot correlation matrix R = XXT , 15 snapshots used.

is not reached after 2000 iterations, the maximum number of iterations allowed for this problem. As 
mentioned for the layered problem with Neumann boundary conditions, this behavior is caused by the 
dependence of the snapshots. If we use 4 of the basis vectors of POD, we reach the solution within two 
iterations. As in the heterogeneous permeability problem, we reduce the number of snapshots from 15 
to 4 using the basis vectors of POD and we reach the solution after a small number of iterations.
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 Conclusions

Single-phase flow of an incompressible fluid through porous media with high-contrast in the permeabil-
ity field is studied. We study an academic layered problem and the SPE 10 benchmark. For the solution
of these problems, we propose a selection of physics-based deflation vectors to be used with the Deflated
Conjugated Gradient preconditioned with Incomplete Cholesky (DICCG) method.
Results show that the choice of deflation vectors is important for a good performance of the method and
that the correct choice depends on the boundary conditions. The proposed deflation vectors are based on
snapshots, solutions of the system with some variations on the right-hand side.
Snapshots are selected taking into account the sources, wells in this case, and the boundary conditions.
When Dirichlet boundary conditions are used, vectors related to the wells and a vector related to the
boundary conditions should be used. In the case of Neumann boundary conditions, only snapshots re-
lated to the wells are used. Snapshots are used as deflation vectors in the case of Dirichlet and Neumann
boundary conditions.
For the case with Neumann boundary conditions only, snapshots and basis vectors of POD are used as
deflation vectors. For the first set of experiments with the layered and SPE 10 problems, the number of
snapshots depends on the number of wells; in these examples four snapshots are used. Results show that
the performance of the DICCG method is similar when we use four snapshots or two basis vectors of
POD as deflation vectors in all the studied examples with Neumann boundary conditions only. Although
the number of snapshots is not large, in problems that require a larger number of snapshots to capture
the dynamics of the system, POD vectors could be useful to reduce this number. As an example, we
solve the heterogeneous layered problem and the complete SPE 10 problem with a larger number of
snapshots. We reduce the original set of 15 snapshots to 4 basis vectors using POD.
Results also show that the accuracy of the snapshots used as deflation vectors is essential for the correct
performance of the DICCG method. For an academic layered problem, we note that the contrast between
the layers modifies the condition number and demands a higher accuracy for the solvers.
We also observe that if the accuracy of the snapshots is not ’good’ enough, the solution of the original
system with the deflated method is reached, but the number of iterations is large, in some cases is the
same as for the ICCG method. As the accuracy of the snapshots is improved, the number of iterations is
reduced for the deflated method. For the cases when the correct accuracy is used for the snapshots, the
DICCG method reaches the solution within one iteration.
Results also show that the performance of the solver DICCG does not depend on the grid size (SPE 10
example with one layer) or on the contrast between permeability layers (academic layered problem),
when a correct accuracy for the snapshots and the solver is used.
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 Appendix 1. Stopping criteria

When we use an iterative method, we always want that our approximation is close enough to the exact
solution. In other words, we require that the error [7, pag. 42]:

||ek||2 = ||x−xk||2,
or the relative error:

||x−xk||2
||x||2 ,

is small.
When we want to chose a stopping criteria, we could think that the relative error is a good candidate, but
is has the disadvantage that we need to know the exact solution to compute it. What we have instead is
the residual

rk = b−Axk,

that is actually computed in each iteration of the CG method. There is a relationship between the error
and the residual that can help us with the choice of the stopping criteria.

||x−xk||2
||x||2 ≤ C2(A)

||rk||2
||b||2 .

With this relationship in mind, we can choose the stopping criteria as an ε for which

||rk||2
||b||2 ≤ ε.

But we should keep to have in mind the condition number of the matrix A, because the relative error will
be bounded by:

||x−xk||2
||x||2 ≤ C2(A)ε.
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