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Introduction

In airline operations, disruptions are inevitable, and have a large influence on customer satisfaction and di-
rect profit. Costs due to disruptions account for 5-10% or airline revenue, or around $60billion globally.1 It
is possible to account for some disruptions when designing the airline network. This increases the chance of
being able to recover the network more effectively, reducing cost, and increasing passenger satisfaction. Sac-
rificing some flights may increase robustness of the schedule while reducing the total revenue opportunities.

Quantifying robust measures is a challenging task, since the schedule is designed around a year in ad-
vance, and there are still many unknowns. This research aims to assess and quantify robust scheduling mea-
sures, by simulating different robustness measures in an existing schedule.

This thesis report consists of two parts. The scientific paper is presented in Part I. The it includes a
detailed description of the research, case study and results. A more detailed analysis of supporting litera-
ture concerning airline planning and scheduling, disruption management, and robust scheduling is shown
Part II.

1https://www.wipro.com/content/dam/nexus/en/industries/travel-transportation-and-hospitality/offerings/from-chaos-to-
harmony-the-future-of-airline-disruption-management.pdf
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Proactive Airline Disruption Management: Increasing Schedule
Robustness by Simulating Flexibility Measures

J.M. Hinsenveld,∗

Delft University of Technology, Delft, The Netherlands

Abstract

Disruptions in airline operations significantly decrease passenger satisfaction, and have a large influence
on the profits of airlines, accounting for an estimated cost of 5 to 10% of yearly revenue. At the same time,
disruptions are inevitable and difficult to predict, so should be solved as efficiently as possible when they
occur. Solving disruptions and restoring the network to a feasible state requires options for Operations Control
of an airline. Options include reserve aircraft and crew, Free Fleet Space (FFS), or swapping opportunities.
When designing the timetable, these recovery options should be built in the schedule, and this research aims
to quantify the number of reserve aircraft, and the FFS required for robust operations. This was done by
building a tool that simulates the effects of extra reserves end FFS. Additional FFS and reserves at the hub
airport decreases the total delay times in case disruptions occur at the hub. There is no notable effect of FFS
and reserves at outstations. Other airline Key Performance Indicators (KPI’s) show little improvement in this
research.

1 Introduction
Airlines face many challenges in daily operations. In
order to operate all scheduled flights as planned, a
synthesis of multiple departments within the airline is
required. There should be well maintained aircraft,
sufficient cockpit and cabin crew, ground operations
such as catering, fuelling, baggage handling and
pushback should operate as clockwork, and Air Traffic
Control (ATC) should have enough capacity to handle
all flights. Furthermore, passengers should arrive at
the gate on time, so they must be well informed,
and not held up by security for too long. With so
many dependencies, delays are inevitable. On top
of this, the airline industry is still recovering from
the Covid panmdemic. While demand has risen to
pre-pandemic levels 1, many airlines face challenges
in increasing their capacity. Supply chains of spare
parts and new aircraft are disrupted, and there is a
shortage of aircraft mechanics 2 and cockpit crew.
The Operations Control Team (OCT) is responsible
for restoring the schedule if it is disrupted. To do
so effectively, the OCT requires options, which may
include spare aircraft, crew, or plenty of spare ground
time to absorb delays. Lack of options to recover the
schedule with, results in propagated delays throughout
the day, or cancelled flights. Not only is this undesir-
able from a financial point of view, but many delays or
cancellations may damage the reputation of the airline.

When designing the timetable for next seasons,
options for disruption management should be included

1https://www.iata.org/en/pressroom/2024-releases/2024-01-
10-01/

2https://www.flyingmag.com/the-aviation-mechanic-
shortage-is-worse-than-you-might-think/

in the schedule. The responsible scheduling team often
takes requirements and wishes from different airline
departments into consideration. Requirements are
hard and fixed, like the number of available aircraft
and slots. These wishes can be a bit more flexible,
but not granting them often leads to delays. These
include tugdriver capacity, or available maintenance
capacity for example. The OCT also delivers Design
Criteria to the scheduling department in the form of
options to restore the disrupted schedule. There is a
fine balance here. A reserve aircraft for example is
a cost effective solution if it is used, since there are
less cancellations. If it is not used however, it is an
expensive solution due to the missed revenue. Another
robustness measure could be Free Fleet Space (FFS),
which is the extra time on the ground on top of the
minimum turnaround. FFS in this reasearch is divided
in FFS at the hub airport, and FFS at outstations,
since they may be used for different purposes. The
aim of this research is to give insights in the effects
of different types of robust scheduling measures, to
simulate these effects on the airline schedule, and
to assess the airline performance using these robust
measures. The research question is: What design
criteria should be incorporated in the airline schedule
to improve operation robustness and meet the airline
Key Performance Indicators?

The remainder of this paper is divided into the fol-
lowing sections: section 2 gives an overview of relevant
literature concerning airline scheduling, disruption ma-
nagement, and robust airline scheduling. The research
gap is addresseed here as well. The methods used in
this research are described in section 3. This includes
an overview of the simulation program, and a detailed
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description of the used models. This simulation was
tested in a case study at a large European airline. This
case study is described in section 4. Results of the case
study are analyzed in section 5. Finally, the conclu-
sions of this research are presented in section 6.

2 Literature Review

This chapter gives a brief overview of the existing liter-
ature concerning (robust) airline planning, and disrup-
tion management. These are areas applicable to this
research. Models and insights in previous research give
a valuable basis. First, airline planning is discussed,
including some research on robust scheduling. This is
followed by literature about disruption management.

2.1 Airline Planning and Scheduling

There is existing literature concerning airline planning
and scheduling, robust scheduling, and disruption ma-
nagement. This section gives a brief overview of rele-
vant literature, and background for this research.

2.1.1 Airline Network Design

There are generally two types of airline network de-
signs. In the book by [Belobaba et al., 2009] two net-
work types are explained. The Hub-and-Spoke, and
point-to-point networks. Point-to-point networks are
the least complicated. A direct flight is offered from
one city to the next. The point to point network re-
quires sufficient demand between the two connected
cities, as there is no possibility for passengers to trans-
fer to another flight without buying two separate tick-
ets. Most low-cost carriers make use of the point-to-
point network.
The more traditional airlines make use of the hub-and-
spoke model. Most flights in this network fly to or
from one or a small number of large airports. This has
the advantage that it requires far less flights to con-
nect the same number of airports than in the point-
to-point network. Even very small airports may be
served, with the aim of feeding the large, more prof-
itable intercontinental flights, by enabling the passen-
gers to transfer at the hub airport. To be able to
transfer between flights, the connection time should be
sufficient, but not too long, as the transfer time adds
up to the total travel time. Therefore, the hub-and-
spoke network is often designed around ’banks’. In
a bank, flights operated by wide-body aircraft arrive
first, followed by narrow-body aircraft. After passen-
gers have transferred flights, the narrow-body aircraft
depart, followed by the wide-bodies. This is the order
because wide-body aircraft have a longer turnaround
time than narrow-body aircraft. Airlines have several
banks at their hub airport(s) every day. Airline net-
works are designed incrementally, improving the sched-
ule of the previous year [Belobaba et al., 2009].

2.1.2 Frequency Planning and Timetable De-
sign

The airline scheduling process is divided in parts.
First, the market is analyzed, the fleet is acquired, des-
tinations are determined, and the initial timetable is
constructed. The market share of a routs is mainly
dependent on the number of flights, and not necessar-
ily by the size of the used aircraft [Belobaba et al.,
2009, Wei and Hansen, 2005]. Designing the timetable
is not a simple process [Barnhart and Cohn, 2004], and
takes years of preparation.

The timetable is constructed after the destinations,
fleet, and frequency of flights is known. If there were
no restrictions, most flights would be scheduled at the
peak times (banks) to enable as many connections
as possible. However, there is always a trade-off to
be made between schedule convenience for passengers
and fleet utilization [Belobaba et al., 2009]. Additional
constraints, such as minimum aircraft TAT, capacity
of ground operations, ATC, and required ground
time for maintenance are considered in this phase.
According to [Belobaba et al., 2009], there is no
existent model which makes an optimal timetable,
taking into account all factors. The number of possible
flight times, combined with airport, aircraft, and crew
restrictions, and varying demand through the day is
too complex.
There may be new routes created if there is a viable
business case, all resources have enough capacity,
and there are slots available at both the origin and
destination airport.

2.1.3 Fleet Assignment and Aircraft Routing

In this research, the fleet, routes, flight frequencies,
and a demand are already known or estimated. As-
signing the fleet to the proper flights is one of the chal-
lenges. Mathematical optimizations are often used for
this, some of which are exact, while others make use of
(meta-)heuristics, or more recently, machine-learning.
[Abara, 1989] is one of the oldest, and one of the first
to use the time-space model. It covers only the flights,
and does not consider maintenance requirements, crew,
or passenger connections. Later attempts include more
of these additions, such as [Subramaninan et al., 1994]
who includes maintenance requirements, or [Rushmeier
and Kontogiorgis, 1997] who includes passenger con-
nection times. [Hane et al., 1995] makes use of a con-
nection network, and [Clarke et al., 1996] expands this
to include crew and maintenance requirements. The
models by [Barnhart et al., 2002] and [Lohatepanont
and Barnhart, 2004] allow the re-booking of passengers
in their itinerary-based fleet assignment model. [Rex-
ing et al., 2000] allows the re-scheduling of flights in
order to make use of resources more effectively.

To assign the flights to an aircraft tail, the Aircraft
Routing Problem is solved. This minimizes cost, and
assigns the most efficient tails to the longest flight,
while considering maintenance requirements of all air-
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craft in the fleet. In this research, assigning flights to
aircraft tails in a first-in-first-out manner suffices, be-
cause the specific tail characteristics are too complex
to predict a year in advance.

Traditionally, the crew is scheduled after the
timetable is designed, and the fleet is assigned.
More recent research is aimed at integrating multiple
scheduling phases into one single model. Some exam-
ples of this are integrated fleet assignment and crew
pairing models by [Özener et al., 2017] and [Cacchiani
and Salazar-González, 2020]. [Glomb et al., 2023] inte-
grates fleet and tail assignment, and [Ben Ahmed et al.,
2022] integrates fleet assignment, crew pairing, and tail
assignment including maintenance requirements.

2.1.4 Robust Airline Scheduling

Inevitably, disruptions occur in an airline network.
During the design phase, some measures are included
in the schedule to avoid some disruptions, or to de-
crease the effect on the network. [Kohl et al., 2007]
lists some techniques which could be used by airlines.
These include:

• Slack in the schedule: Increase the time on the
ground to be able to absorb delays.

• High speed flying: Try to make up for delays
by flying faster. This increases fuel consumption,
but decreases delays and crew cost.

• Crews stay with the aircraft: Crew does not
transfer aircraft. This leads to a decrease in delays
due to late crew.

• Short rotations: Aircraft fly short rotations, of
two flights. If there is a disruption, a maximum
of two flights is directly affected, and it is simple
to recover as the next flight from the hub is a new
rotation.

• Reserve aircraft and crew: A costly but effec-
tive solution for schedule recovery.

There is existing research in the use of extra buffer
in the schedule. [Wu, 2006] did research on how much
slack is required in the schedule, but it does not include
passenger connections, which is essential for the hub-
and-spoke network. Another approach is to re-allocate
the slack which is already present in the schedule. By
allowing flights to deviate from their originally sched-
uled departure time, [Aloulou et al., 2010], [Ahmad-
beygi et al., 2010], and [Ben Ahmed et al., 2017] inves-
tigated the effects on the airline robustness. Their so-
lutions are modelled differently, but the goal of their re-
search is comparable. [Burke et al., 2010] and [Ageeva
and Clarke, 2000] optimize for swapping opportunities.
By swapping two fleet lines, the propagation of delays
may be mitigated.

2.1.5 Design Criteria

For optimal airline operations, many departments
should operate like clockwork. Most departments have

limitations in their capacity, and this should be consid-
ered in the design phase. These design criteria include:

• Slots: A slot is the right to take-off or land once
from an airport, and is granted for the entire sea-
son. If the airline operates more than 80% of
flights, they keep the slot for next year. If they
don’t, they can re-apply for the slot lottery.

• Fleet availability: Aircraft have delivery times
of multiple years, so it is difficult to increase the
number of available aircraft. An expensive option
is a wet-lease, which is a bit more flexible, but not
an infinite source of aircraft.

• Crew availability: There should be plenty of
crew, considering the complex CLA’s of crew as
well.

• Maintenance requirements: Aircraft require
maintenance to stay airworthy. there should be
plenty of time scheduled to perform this mainte-
nance. There are strict regulations for how often
maintenance is required. If an aircraft is ’overdue’,
it can not be used until it is re-certified.

• Airport Operations: Airports have a maximum
capacity. Capacity of baggage handling, fuelling
services, pushback tugs, catering services, airport
security and ATC is limited, and this should be
considered.

• Turn Around Time: The minimum time it
takes for the aircraft from arriving at the gate
to the next departure should be included in the
schedule.

• Reserve Aircraft and Crew: For recovery op-
tions, reserve aircraft and crew are sometimes re-
quested by Operations Control.

2.2 Disruption Management
Disruptions occur daily for an airline. Reasons could
be due to airline errors such as one of the resources be-
ing late, or external factors like wind directions. There
are three main elements which could be disrupted: the
aircraft, passengers, or crew. There is existing litera-
ture on all three, but only passenger and aircraft dis-
ruptions are covered here. [Clausen et al., 2010] and
later [Hassan et al., 2021] did a literature review on
disruption management covering all three disruption
types. Disruptions include unavailable aircraft and de-
lays. If there is not enough slack in the schedule, delays
may propagate throughout the day or week [Wu, 2005],
[Wong and Tsai, 2012] and [Arikan et al., 2013] proved
this with their models. It is the task of the Operations
Control Team to avoid this as much as possible, and to
recover the schedule in the most efficient way, with the
least affected passengers. The most important tools for
disruption management are as follows:

• Delay the next flight: There are passengers af-
fected, but you could make-up some time if there
is sufficient buffer in the schedule.
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• Cancel flights: Cancel one flight to save more
delays or cancellations. This is only done if there
is no other option, since it is expensive and makes
passengers unhappy.

• Swap aircraft: Swap two fleet lines in order to
reduce delay propagation, save some money if a
cheaper flight is cancelled, or save slots if there is
a risk of losing the slot with a cancellation.

• Using reserve aircraft and crew: Effective so-
lution for an AOG or long delays, but expensive
if the reserves are not used due to the missed rev-
enue.

• Increasing flight speed: Fly faster to reduce
block time. More useful for long-haul flights, since
there is more distance to make up for lost time.

• Decrease Turnaround Time: Some ground op-
erations tasks may be performed faster in order ot
marginally decrease turnaround time.

• Ferry aircraft: Move an aircraft without pas-
sengers. Not preferred, as there is no revenue, but
sometimes unavoidable for maintenance or after
an AOG.

There are many models foound in literature which
solve disruptions. Many solve either disrupted air-
craft, crew, or passengers. There are more and more
integrated models as well. Models for aircraft recov-
ery include [Teodorovic and Guberinic, 1984], which
was the first. It was expanded to include cancella-
tions and airport curfews in [Teodorovic and Stojkovic,
1990] and included crew in [Teodorovic and Stojkovic,
1995]. Some other examples are [Yan and Tu, 1997],
[Argüello et al., 1998], [Thengvall et al., 2003], and
[Dunbar et al., 2012]. Later research integrates aircraft,
crew or passenger recovery. [Arikan et al., 2017] solves
the integrated recovery problem optimally. It includes
delays, cancellations, aircraft swaps, reserve aircraft,
ferrying, cruise control, crew recovery, and passenger
itinerary changes. [Vink et al., 2020] is another ap-
proach which could be used by an operations control
team, as it is a decision support tool. It recovers pas-
sengers and aircraft.

2.3 Research gap

There is much research in the areas of airline schedul-
ing, robust scheduling, and disruption management
separately. Schedule optimizations which re-allocate
scheduled slack for maximum robustness exist. So do
decision support tools, which restore a disrupted sched-
ule effectively. There is not much work on how much
extra slack is required in the schedule to be able to
solve disruptions, or how much reserve aircraft are re-
quired for the most robust schedule. This is where this
research aims to complement existing literature.

3 Methodology
The aim of this research is to simulate the effects of
robustness measures in the airline schedule. This chap-
ter explains the approach of this research. The high-
level overview of the simulation is explained in sec-
tion 3.1. This is followed by a more detailed explana-
tion of the separate simulation modules in section 3.2
to section 3.6.

3.1 Simulation Overview
In order to have a general overview of the methods and
simulation, Figure 1 shows a block scheme of the full
simulation program.

In Figure 1, the grey circles represent inputs to the
system, and the yellow circle represents an output. The
blue rounded rectangles represents modules in the com-
plete simulation. All of these modules are explained in
the upcoming sections of this chapter. The orange di-
amond shows a test if all schedule scenarios have been
tested, and the simulation stops if this is the case.
From left to right in Figure 1, the simulation starts
with two inputs. These are an existing base sched-
ule, and scenarios of design criteria for this schedule,
from the point of view of Operations Control. scenarios
could include reserve aircraft and crew at the hub, or
extra free fleet space in any of the fleet types operated
by the airline. In the first module of the simulation is
an optimization model the base schedule is adjusted to
adhere to the defined design criteria. This is done by
means of an optimization model, which optimizes for
airline profit and connecting passengers. The design
criteria are included as constraints for the optimiza-
tion, as is further explained in section 3.2. The created
schedule is then disrupted in the second module, using
delays of flights, cancellations, and unavailable aircraft.
These disruptions represent events that occur in real
life, as there is rarely a day without any delays. There
are multiple disruption scenarios, as explained in more
detail in section 3.3. The airline Operations Control
department is responsible for restoring the schedule to
its original form as much as possible when disruptions
occur, for the lowest cost possible. The disruption ma-
nagement module aims to do the same by means of
an optimization, which minimizes cost. Disruptions
in this simulation may be solved using delays, cancel-
lations, or aircraft swaps. See section 3.4 for more
details. The recovered schedule is compared to the
starting schedule, which yields Key Performance Indi-
cators (KPI’s). The KPI’s considered in this research
are the percentage of on-time departures, the percent-
age of scheduled flights which were actually operated,
the total delay minutes in the network. Schedules may
perform better for some disruption scenarios than oth-
ers. To be able to assess schedules, and determine how
much reserve and/or fleet space is best overall, the De-
termine Schedule Quality module was created. Is mul-
tiplies KPI’s with the probability of a disruption sce-
nario occuring, and sums all values for each schedule.
The result is a table of schedule performance KPI’s and
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Figure 1: Overview of the Simulation Program

a single metric to assess each schedule, as explained in
section 3.6. This result is stored. If there are more
design criteria to be tested, the simulation starts again
with the same base schedule, and new design criteria,
until there are none left.

3.2 Create Schedule Module

The first part of the simulation is made to adjust an
existing flight schedule to adhere to the additional de-
sign criteria. This represents the airline network plan-
ning and scheduling department, who usually create a
new timetable by adjusting a timetable for the previ-
ously scheduled year and season [Belobaba et al., 2009].
Airline schedules are usually created around a year in
advance, and are adjusted in case of major market or
political developments. This model assumes the sched-
ule does not change anymore once it is published. The
model is designed to assign the fleet to existing flights,
while optimizing departure times to ensure valid pas-
senger connections.

min

∑
i∈FN

∑
k∈K

OCk
i · fk

i

−
∑
p∈P

∑
r∈P

farer ∗ trp +
∑
p∈P

100 ∗ t0p

(1a)

s.t.∑
v∈Vi

∑
k∈K

fk
v = 1, ∀i ∈ F, (1b)

∑
n∈Nk

ykn+ +
∑

i∈O(k,n)

fk
i

−
∑

n∈Nk

ykn− −
∑

i∈I(k,n)

fk
i = 0

∀k ∈ K, (1c)

∑
ȧ∈NGk

fk
ȧ +

∑
a∈NGk

yka ≤ ACk, ∀k ∈ K, (1d)

∑
v∈Vi

∑
k∈K

sk · fk
v +

∑
p∈P

δpi · t0p ≥ Qi, ∀i ∈ FN, (1e)

Table 1: Sets for the change schedule model.

Set Description
P Set of Passenger Itineraries.
F Set of Flights.
Fstart Set of Flights at the start of the time win-

dow.
FN Set of Flight Variants, created by moving

the departure and arrival time of F.
Vi Set of variants of flight i.
K Set of aircraft types.

Gk Set of Ground Arcs.

NGk Set of flight and ground arcs intercepted
by the time cut.

N Set of airports.
O(k,n) Flight arcs of aircraft type k originating at

node n.
I(k,n) Flight arcs of aircraft type k terminating

at node n.
n+ Ground arcs originating at node n.
n− Ground arcs terminating at node n.
X(i,k) Set of aircraft types k which can not oper-

ate flight i.

Rk Set of maintenance arcs.
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Table 2: Parameters for the change schedule model.

Parameter Description

OCk
i Operational cost of flight i with aircraft

type k
farer Fare of itinerary r

ACk Number of aircraft in fleet of type k

sk Number of seats available in aircraft
type k

δpi 1 if flight i belongs to itinerary p, 0 oth-
erwise

Qi Unconstrained demand on flight leg i
FFSk Free Fleet Space in aircraft type k

Table 3: Decision Variables for the change schedule
module.

Decision Variable Description
fi,k ∈ {0, 1} 1 if flight i is assigned to aircraft

type k, 0 otherwise
ya,k ∈ N0 Number of aircraft of type k on

ground arc a
tp,r ∈ N0 Number of pax with itinerary p

who are re-allocated to itinerary
r

∑
p∈P

∑
r∈P

δri · trp ≤
∑
k∈K

sk · fk
i , ∀i ∈ FN, r ̸= 0,

(1f)∑
p∈P

∑
r∈P

trp ≤ Dp, ∀p ∈ P, (1g)

∑
v∈Vi

∑
k∈K

fk
v = 0, ∀{i, k} ∈ X(i,k),

(1h)
fk
i = 1, ∀{i, k} ∈ Ri,k,

(1i)∑
k∈K

fk
i = 1, ∀i ∈ Fstart,

(1j)∑
a∈A

ya,k = FFSk, ∀i ∈ P (1k)

The first module in the simulation assigns the
fleet, while optimizing departure times to ensure
valid passenger connections. The model is based on
the Itinerary Based Fleet Assignment model by [Lo-
hatepanont and Barnhart, 2004]. It deals with the ef-
fects of spillage and recapture in a different manner. It
does not re-assign passengers to a new itinerary with
alternate flights, but it re-schedules flights, and assigns
passengers to the corresponding itineraries. The objec-
tive function is shown in Equation 1a. The first part
minimizes the operational cost of flight variant i with

aircraft type k. Variants of the same flight are assumed
to have the same operational cost, as the expected
block time remains the same, and the departure and
arrival times only change by up to 15 minutes. There
could be a slight difference in crew cost due to a change
in departure times. The second part of the objective
function subtracts the fare of itinerary r multiplied by
the number of passengers re-allocated from itinerary p
to itinerary r from the minimization problem. If there
is no change in the flight times, the itineraries do not
change, and p and r are the same. The last part of the
objective function adds a penalty to the objective if
there are more passengers with the desire to travel on
itinerary p than seats on the aircraft. This is done to
penalize spillage effects, in order to transport as many
passengers as possible. Constraint Equation 1b ensures
that there is only one variant of each flight scheduled
with only one aircraft type, and that all flights are
scheduled. In pre-processing, an additional ’cancel’ air-
craft type is created, with a penalty to the objective
function. This ensures that the model is still feasible if
there are too many flights for the number of aircraft.
To make sure there is an equal number of flights ar-
riving at and departing from all airports, Equation 1c
enforces node-balance. At any point in time, there can
be no more aircraft in the air or on the ground than the
number of aircraft available. This is done using Equa-
tion 1d by checking the number of aircraft on flight and
ground arcs one minute after every node. To make sure
the number of transported passengers does not exceed
the capacity of the aircraft, Equation 1e spills passen-
gers exceeding the aircraft capacity to the 0 itinerary.
All passengers who want to travel on a flight, are either
transported on that flight or its variants, or are spilled
to the 0 itinerary. Passengers with the 0 itinerary do
not generate any revenue and a penalty is added to the
objective function for each spilled passenger. Equa-
tion 1f is required to re-assign passengers to a newly
created itinerary variant if flights are re-scheduled. To
limit the number of passengers on the itineraries in the
model, Equation 1g ensures the number of passengers
on any itinerary variant of p does not exceed the total
demand for itinerary p. All aircraft have performance
restrictions, and can not fly to all destinations within
the network. Destinations could be too far for the air-
craft range, the take-off performance could be insuf-
ficient for operations at some airports, or the aircraft
could be too large for some airports. Equation 1h pre-
vents flights from being operated by aircraft which can
not fly that route. In this model, maintenance slots are
assumed fixed, but this could be adjusted in further
research. Equation 1i makes maintenance slots fixed
for aircraft types, ground times, and locations. Equa-
tion 1j is created to make sure the departure time of
flights is not moved to a time before the time window.
This is required to improve model accuracy. Finally,
Equation 1k sets the minimum fleet space in time in-
terval.
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3.3 Create Disruptions Module

In an ideal world, all scheduled flights are operated as
planned. Unfortunately, this is rarely the case in re-
ality. Even on regular days with nice weather on the
majority of routes and destinations, fully staffed cock-
pit and cabin crew, a well maintained fleet, and ground
operations working at full capacity, disruptions in the
network occur. Disruptions include minor delays with
minimal impact on the network, but also larger dis-
ruptions like AOG’s where aircraft are unavailable for
a longer period of time until they are repaired. Rea-
sons for delays could be reductions in airport capacity,
reductions in ground operations capacity, shortage of
crew, delays of preceding flights, or late passengers to
name a few. This module creates disruption scenarios,
in which flights are delayed, cancelled, or aircraft are
unavailable for a period of time. It is possible to create
scenarios with combination of all types of disruptions.
To have a complete overview of different days of oper-
ations, scenarios differ from regular days of operations
with some minor delays and 1 or 2 AOG’s, to major
disruptions at the hub or at outstations in case of a
storm for example. For now, disrupted flights and air-
craft are selected manually to make to problem more
traceable, but this could be automated. In the airline
industry, changes in the schedule which occur no more
than three days before the day of operations are consid-
ered as disruptions. Therefore, this module represents
changes that occur in the last three days before the day
of operations.

3.4 Disruption Management Module

At most airlines, a dedicated Operations Control Team
is responsible to restore the disrupted network to a
state of feasibility. They have a couple of tools to use
to do so. The most important of which is to delay
flights, cancel flights, swap aircraft or increase the cost
index in order to reduce expected block time. To solve
the disruptions created in section 3.3, the optimization
model described in this sections is used. Its aim is to
restore the disrupted airline schedule to a feasible one.
The model has the capability to delay other flights, to
cancel them, to swap flights between aircraft tails, or
to use a combination of these three disruption mana-
gement measures. Block-time reduction is not possible
in this model to reduce complexity and improve CPU
times, but this could be added in follow-up research.
The model is based on work by [Vink et al., 2020]. To
speed up this part of the simulation with minimal ef-
fect on model accuracy, the selection algorithm used in
their research is used as well. Table 4 shows the sets
of the model, Table 5 the parameters, and Table 6 the
decision variables. The optimization model is show in
Equation 2a to Equation 2l.

Table 4: Sets for the disruption management model.

Set Description
P Set of Aircraft Registrations
F Set of Flights
Fp Set of flight arcs currently allocated to

aircraft p
Fdelayp,f,d

Set of delayed flights f of aircraft p with
d minutes

Fcanxf
Set of cancelled flights.

Funvp,f,d
Set of flights f, or delayed flights f,d af-
fected by unavailable aircraft p.

D Set of Delayed Flight Arcs
G Set of Ground Arcs
N Set of Nodes
R Set of Maintenance Activities
Rfix Set of Fixed Maintenance Activities
Rflex Set of Flexible Maintenance Activities
A Set of Airports in F
E Set of Aircraft Types in P
O(n,p) Arcs of aircraft p originating from node

n.
T(n,p) Arcs of aircraft p terminating at node

n.
Z(a, e) Number of aircraft of type e at airport

a at the end of the time interval.
X(p, f) Forbidden flight f and registration p

combinations.
U(r,p) Ground arcs corresponding to fixed

maintenance activity r of aircraft p.
V(r,p,m) Ground arcs corresponding to flexible

maintenance activity r of aircraft p,
starting at time m.
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Table 5: Parameters for the disruption management
model.

Parameter Description
OCp,f Operational Cost of flight f with aircraft

p.
DCf ,d Cost if flight f is delayed by d minutes
DCf ,d Cost if flight f is delayed by d minutes.
CCf Cost of cancelling flight f.
Bn,p Balances all nodes n with aircraft p.

1 at the starting node, 0 at all other
nodes.

Ka,e Number of aircraft of type e scheduled
to be at airport a at the end of the time
window.

Maea,e Big M number. Cost of missing an air-
craft of type e at airport a at the end of
the time window.

Mpp Big M number. Cost of changing the
routing of aircraft p.

Mrr Big M number. Cost of cancelling main-
tenance activity r.

Table 6: Decision Variables for the disruption manage-
ment module.

Decision Variable Description
δFp,f

∈ {0, 1} 1 if flight f is assigned to aircraft
p, 0 otherwise

δDp,f,d
∈ {0, 1} 1 if flight f is delayed by d min-

utes and assigned to aircraft p, 0
otherwise

δCf
∈ {0, 1} 1 if flight f is cancelled, 0 other-

wise
δGp,g ∈ {0, 1} 1 if aircraft p uses ground arc g,

0 otherwise
yr,m ∈ {0, 1} 1 if maintenance activity r starts

at time m, 0 otherwise
sa,e ∈ Z Slack variable to make sure the

number of aircraft of type e is the
same as expected at airport a at
the end of the time window

sr ∈ {0, 1} Slack variable, 1 if maintenance
activity r is cancelled, 0 other-
wise

sp ∈ {0, 1} Slack variable, 1 if the routing of
aircraft p is changed compared
to the original routing, 0 other-
wise

min

∑
p∈P

∑
f∈F

OCp,f · δFp,f
+

∑
f∈F

CCf · δCf

+
∑
p∈P

∑
f∈F

∑
d∈D

(OCp,f +OCf,d) · δDp,f,d

+
∑
a∈A

∑
e∈E

Ma,e · sa,e +
∑
r∈R

Mr · sr +
∑
p∈P

Mp · sp

(2a)
s.t.∑
p∈P

δFp,f
+

∑
p∈P

∑
d∈D

δDp,f,d
+ δCf

= 1, ∀f ∈ F,

(2b)∑
f∈F∩O(n,p)

δFp,f
−

∑
f∈F∩T (n,p)

δFp,f

+
∑

(f∈F,d∈D)∩O(n,p)

δDp,f,d

−
∑

(f∈F,d∈D)∩T (n,p)

δDp,f,d

+
∑

g∈G∩O(n,p)

δGp,g
−

∑
g∈G∩T (n,p)

δGp,g
= Bn,p

∀p ∈ P,

(2c)

∑
p∈(P⊂e)

∑
f∈F∩Z(a,e)

δFp,f

+
∑

p∈(P⊂e)

∑
(f∈F,d∈D)∩Z(a,e)

δDp,f,d

+
∑

p∈(P⊂e)

∑
g∈G∩Z(a,e)

δGp,g = Ka,e − saea,e

∀a ∈ A, ∀e ∈ E,

(2d)∑
f∈Fp

δFp,f
+

∑
f∈Fp

∑
dinD

δDp,f,d
≥ |Fp| · (1− sp), ∀p ∈ P,

(2e)∑
g∈U(r,p)

δGp,g
≥ |U(r, p)| · (1− sr), ∀r, p ∈ Rfix,

(2f)∑
g∈V (r,p,m)

δGp,g ≥ |V (r, p,m)| · yr,m, ∀r, p,m ∈ Rflex,

(2g)∑
m∈V (r,p,m)

yr,m = 1− sr, ∀r, p ∈ Rflex,

(2h)∑
f∈F∩X(p,f)

δFp,f
+

∑
(f∈F,d∈D)∩X(p,f)

δDp,f,d
= 0, ∀p ∈ P,

(2i)
δFp,f

+ δDp,f,d
= 0 ∀p, f, d ∈ Funv,

(2j)
δDp,f,d

= 1 ∀p, f, d ∈ Fdelay,
(2k)

δCf
= 1 ∀f ∈ Fcanx

(2l)
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The disruption management module minimizes cost.
The first part of the objective function in Equation 2a
represents the operational cost of an operated flight
without delay. The second part includes the delay cost,
while the third part adds the cost of a cancellation.
Only one of theese actually contributes to the objec-
tive function. The fourth part of the objective function
is to penalize the objective in case of missing aircraft
at the end of the time window. This may happen if
there is an unexpected AOG. The penalty represents
the cost to ferry the aircraft back to the hub. Simi-
larly, the fifth part includes a penalty if a maintenance
slot is missed due to delays or cancellations. Finally,
changing an aircraft routing has financial consequences
as well. It may for example be required to unload all
luggage or catering in case of a type swap. This is de-
pendent on the time before departure this change is
known. Because this is a model which looks up to a
year ahead in time, so disruptions do not occur on the
spot, this penalty is summarized into one single value.
This should be enough to discourage aircraft swaps if
it is not required. Constraints if the disruption mana-
gement model include flight coverage in Equation 2b.
This ensures all flights are either operated as sched-
uled, delayed, or cancelled. Only one option with one
aircraft type is valid. Equation 2c makes sure all nodes
have an equal number of incoming and outgoing air-
craft on regularly scheduled flight arcs, delayed flight
arcs and ground arcs. At the start of the interval, there
may already be an aircraft at one node. The right side
of Equation 2c makes sure this is possible. At the end
nodes, there may be an imbalance as well. Equation 2d
ensures that at the end of the time interval, the num-
ber of aircraft equals that of the initial schedule, or the
slack variable sa,e is activated, penalizing the objec-
tive. Slack variable sp is activated if the aircraft rout-
ing is changed. This is done by means of Equation 2e.
There are three constraints which enforce maintenance
requirements. Equation 2f makes sure the aircraft is
at the correct airport where the maintenance is per-
formed, by activating the ground arcs. If there is no
other option due to delays or cancellations, slack vari-
able sr is activated. Flexible maintenance activities
require two constraints. The first of which is Equa-
tion 2g. It links flexible maintenance activities and
start times to the associated ground arcs. Equation 2h
activates slack variable sr if there is no way of schedul-
ing the flexible maintenance activity due to delays or
cancellations. Not all aircraft are capable of flying to
every destination. This is sometimes even tail depen-
dent. Equation 2i makes sure aircraft are not assigned
to flights it is unable to perform. In the full simulation,
there are pre-defined delayed flights, cancellations, or
unavailable aircraft. Because the disruption manage-
ment model is based on a decision support tool, this
requires additional constraints. Equation 2j makes sure
that there are no flights performed by the unavailable
aircraft during its unavailability. Pre-defined delays
are enforced by Equation 2k, and cancelled flights are

enforced by Equation 2l.

3.5 Calculate KPI Module
After solving the imposed disruptions in the network,
the recovered schedule is compared to the undisrupted
schedule. The KPI’s considered are shown in Table 7.
For each KPI, a table is created with the performance
of each schedule for all disruption scenarios. See Ta-
ble 7 for an example of two schedules and three dis-
ruption scenarios. Each row represents the perfor-
mance of one schedule. The disruption scenarios are
the columns. The SQ column is explained in sec-
tion 3.6. It is worth noting that KPI’s resulting from
this simulation are subject to a lot of uncertainty due
to the program using data from previous years, and
the stochasticity of disruptions occuring in the future.
Hence the KPI’s from this simulation should not be
used as an accurate representation of reality. It can be
used to compare performance of multiple schedules for
multiple disruption scenarios.

Table 7: Key Performance Indicators used to assess the
schedule performance.

KPI Description
D0 [%] Percentage of flights departed

within one minute or before the
scheduled departure time at D-3.

CF [%] Percentage of scheduled flights at D-
3 which were actually operated.

Delay [min.] Total delay minutes in the network.

3.6 Determine Schedule Quality Mod-
ule

As the number of simulated schedules and disruption
scenarios grows larger, the comparison between sched-
ule performances becomes more complicated quickly.
To counter this, the performance of schedules is sum-
marized in one single metric, based on the probability
of disruption scenarios happening in reality, and the
schedule performance for each KPI. Equation 3 shows
the how this value for schedule quality is calculated.
SQ is the Schedule Quality, pj is the probability of
disruption scenario j occurring, and Si,j is the per-
formance of schedule i for disruption scenario j. This
method is similar to how the Expected Monetary Value
(EMV) is calculated for the Expected Value of Perfect
Information (EVPI) from decision theory.

SQ =
∑
j

pj · Si,j (3)

The schedule quality is determined for all schedules,
and this is added as a new column in the tables de-
scribed in section 3.5. The schedule with the best SQ
may perform the best overall in multiple disruption
scenarios. In the example of Table 8, this is schedule
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1. The outcomes of the best schedule may be different
for the different KPI’s. It is up to the airline to decide
which of the KPI’s are the most important.

Table 8: Example of performance assessment table for
the Completion Factor.

Schedule Sc1
(p=0.6)

Sc2
(p=0.2)

Sc3
(p=0.2)

SQ

1 1 0.99 0.99 0.996
2 0.98 0.96 0.97 0.974

4 Description of the Case Stud-
ies

This section describes a case study for a real a. This
case study was performed in collaboration with a major
European airline, who provided the data and insights
in the schedule development process and operational
challenges.

4.1 Data Used and Pre-Processing
The basis of this research is a schedule of the inter-
continental network as planned assuming all resources
operate at full capacity. There is some slack already
built in the schedule, including some reserve aircraft.
Overall there is no room for extra flights with the avail-
able fleet and there is a little, but not much FFS. This
is considered the base schedule, which is edited in the
simulation. In order to keep CPU times reasonable,
and not run into memory errors, only three days of the
full schedule are simulated, as the number of variables
and constraints grows exponentially.

4.1.1 Data and Assumptions for the Create
New Schedule Module

The Create New Schedule module re-schedules flights,
and optimizes for passenger revenue minus the oper-
ational cost. The basis for this model is an existing
schedule, with flights assigned to a fleet type. The
model is allowed to change flights to different aircraft
types, but only if flights to that destination are feasi-
ble with the selected aircraft type. Turnaround times
vary by aircraft type, and this is taken into account
in the model. Block times of all flights are assumes
constant, even though some aircraft are capable of fly-
ing at a higher cruise speed. This makes the schedule
more flexible on the day of operations, since more air-
craft can be used on routes without introducing extra
delays. The operational cost for each aircraft type on
each route was provided by the collaborating airline.
It is the average of operational cost in the current sea-
son. There are some new destinations in the schedule
for which there was no operational cost data available.
Operational cost for these destinations were estimated
based on destinations in the same area with similar

flight distance. Operational costs are not always pre-
cisely accurate for future operations, as flying times
may change due to airspace restrictions, crew may be-
come more expensive due to a new CLA, and fuel price
fluctuations. For the use of this model this introduces
some inaccuracy. This will not influence the model too
much however, since all flights are affected by cost rise,
and when creating the real schedule, not all changes in
airspace regulations are known in advance.
Data regarding the passenger numbers on all O&D’s
and the corresponding revenue was provided by the
collaborating airline as well. Again, this is data from
the current season, and passenger numbers of new des-
tinations were estimated using similar routes, or num-
bers of partner airlines. From this data, the passenger
itineraries were created. All intercontinental to inter-
continental connections at the hub airport are shown as
multi-flight itineraries. Intercontinental to European
and European to Intercontinental flights are assumed
to have a local origin or destination at the hub. This
is a valid assumption, since the European/Domestic
network is usually built around the more profitable in-
tercontinental network. Only connections at the hub
airport on flights operated by the airline providing the
data are considered, since these account for the major-
ity of passenger connections. In future research, con-
nections at the hubs of partner airlines, or passengers
travelling on code-share/interline flights could be con-
sidered as well. This will improve model accuracy, but
introduces a lot of extra complexity. Revenue is aver-
aged over an entire season. The effects of peaks in the
schedule, or other market effects are not considered.
As the airline schedule is for the largest part the same
on a weekly basis during an entire season, this is an
assumption with a small influence on the model out-
come. The result is a flight schedule which is assigned
to a fleet type, but not yet to an aircraft tail. This gen-
erally does not happen until a week to a day before the
day of operations. In this model, the aircraft routing
is done by assigning flights to aircraft tails in a first in
first out manner.

4.1.2 Data and Assumptions for the Disrup-
tion Management Module

The disruption management module uses the schedule
created in the first module of the simulation, and the
disruptions created in the second module. In order
to restore the disrupted schedule to a feasible sched-
ule Operational cost data is the same as used for the
Create Schedule module. Delay cost is in the form of
a large matrix with one row per flight, and a column
for the delay cost for an incremental delay of five min-
utes. Every five minutes of delay adds cost. There are
three main driving factors for this delay cost. The first
of which is a cost component to crew, who earn extra
time off when working longer than scheduled. The sec-
ond cost component is the future value, since delayed
passengers get a more negative sentiment towards an
airline if they are delayed, and may be inclined to book
a flight with a different airline. The last component
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is the missed connection cost. Sometimes this is not
much if there are few critical connections, but some-
times five minutes of delay may create many missed
connections, and this may be the difference between a
profitable and loss-generating flight. The model op-
timizes for this, by delaying other flights, swapping
flights between aircraft tails, or cancelling less prof-
itable flights. Delay data is an average of one week of
the current season, and considers missed connections in
the intercontinental network. This is all done in pre-
processing. To improve the accuracy of this model,
connections to and from European destinations could
be included. In their paper, [Vink et al., 2020] show an
example of how the delay costs are determined, which
is similar to the method used in this research. Can-
cellation costs are the average of one week of flights
during the summer peak. These numbers are represen-
tative of a busy week in the schedule. In this model,
if a flight is delayed by more than 180 minutes, it is
cancelled.

4.2 Scenarios for Schedule Design Cri-
teria

The provided schedule and underlying data are con-
stants in all the simulations. The only variable are the
OC design criteria. In this research, two types of de-
sign criteria are tested in the simulation. The first is
the effects of Free Fleet Space in the schedule on the
performance of an airline. In the base schedule, there
is some FFS at both the hub and outstations. In this
case study, the effects of increasing FFS at the hub by
10 to 100% in 10% increments are analyzed, and this is
distributed equally in all aircraft types. Secondly, the
effects of reserve aircraft and crew are tested in the sim-
ulation. These reserves are stand-by at the hub, and
can be used when required. This is generally an ex-
pensive solution, because of the missed revenue of the
reserve aircraft. In the base schedule, there is already a
reserve aircraft in the largest fleet type with long range.
This gives the most flexibility in operations, as it can
be used to replace most flights scheduled in other fleet
types. The extra reserves will be placed in different air-
craft types, from largest range to smallest. When the
range of two aircraft types is comparable, the aircraft
with the highest capacity is selected first as reserve. An
overview of all simulation inputs is shown in Table 9.
A total of 24 schedule scenarios are tested in this case
study.

4.3 Disruption Scenarios
In everyday operations, disruptions occur as a stochas-
tic process. In order to give a complete overview
of schedule performance, multiple disruption scenarios
were tested. In real life there could be an infinite num-
ber of disruption scenarios since everyday is different.
In this case study however, five scenarios were tested
which represent some of the most common types of
disruptions. In this case study, all disruptions are im-
posed on the first day of the simulation. The days fol-

Table 9: Design Criteria Scenarios for the Change
Schedule Module

Scenario Reserve
Aircraft +
Crew

Hub FFS
% of base

Outstation
FFS % of
base

Base 1 100% 100%
Hub+10% 1 110% 100%
Hub+20% 1 120% 100%
Hub+30% 1 130% 100%
Hub+40% 1 140% 100%
Hub+50% 1 150% 100%
Hub+60% 1 160% 100%
Hub+70% 1 170% 100%
Hub+80% 1 180% 100%
Hub+90% 1 190% 100%
Hub+100% 1 200% 100%
Out+10% 1 100% 110%
Out+20% 1 100% 120%
Out+30% 1 100% 130%
Out+40% 1 100% 140%
Out+50% 1 100% 150%
Out+60% 1 100% 160%
Out+70% 1 100% 170%
Out+80% 1 100% 180%
Out+90% 1 100% 190%
Out+100% 1 100% 200%
Reserve+1 2 100% 100%
Reserve+2 3 100% 100%
Reserve+3 4 100% 100%
Reserve+4 5 100% 100%
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lowing the disruptions are used to see what is required
to recover the schedule to a feasible state. The disrup-
tion scenarios, also listed in Table 10, include a regular
day of operations, scenarios with major disruptions at
the hub airport, maintenance delays, and AOG’s. The
first scenario is a regular day, without many irregu-
lar circumstances. So there is good weather, there are
no strikes whatsoever, staff is at normal capacity, and
there is nothing else out of the ordinary. In the simu-
lation, there is a seemingly high number of departure
and arrival delays, but most of these are 15 minutes or
less, as this occurs often. Total delay time is slightly
less than the average observed delay time per in the
first half of 2024. There are no unavailable aircraft in
this scenario. The second scenario represents a severe
arrival capacity reduction during the morning arrival
bank, due to a storm for example. Some flights are
diverted, and arrive at the hub with a delay of over 2
hours. In the intercontinental network, this is an ex-
treme scenario, since usually the domestic/European
network is more affected by capacity reductions. In the
third scenario, all departing flights in one bank are de-
layed severely. This could occur with dense fog, strikes,
or IT outages. Delayed departures at the hub lead to
delayed arrivals at outstations. This scenario therefore
tests the effects of delays at outstations as well. At the
time of writing, there are shortages in aircraft mechan-
ics and disrupted supply chains for spare parts. This
may influence the time it takes to perform the required
maintenance. Therefore the fourth scenario has some
maintenance slots exceeding the planned time. This
is modelled as the aircraft being unavailable directly
after the scheduled maintenance slot. The delays are
that of an average day. The final scenario includes five
unavailable aircraft at outstations, in addition to reg-
ular delays. When this happens, it is often unavailable
for a long time, since spare parts and a hangar in which
to perform the repairs are not always available at out-
stations. In this scenario there are a few quick repairs,
and a few more complex repairs.

5 Results

As described in section 4, there were two different types
of proactive disruption management tested. The first
is extra FFS, the second extra reserve aircraft and
crew. The results of the created schedules are analyzed
with three metrics, which are the Completion Factor,
D15, and total delay minutes. These metrics represent
some of the the most important KPI’s for passengers,
but there are more that could be considered, such as
arrival performance or the number of feasible/missed
PAX connections. In this research however, arrival per-
formance is equal to the departure performance since
the block times are unchanged. PAX connections are
represented in the departure performance to some ex-
tent.

5.1 Effects of Free Fleet Space and re-
seerve aircraft

Adding extra fleet space in the schedule could yield
some improvements in performance. As there is more
time on the ground, there is more time to recover de-
lays, which should result in a lower number of delays,
as well as less total delay minutes, and less cancella-
tions. This may come at the price of less scheduled
flights, which results in less revenue. This section de-
scribes the results of the case study with extra FFS.
Using reserve aircraft and crew is also a common way
of solving a disrupted network, as the reserve can be
used for flights on short notice. This is not a perfect
solution however, since there may be additional costs
for downgrading passengers, empty seats, or catering
issues.

5.1.1 Number of Flights

When looking at the number of flights, the results show
a predictable pattern. Figure 2(a) shows the trend for
the number of flights dependent for extra FFS scenar-
ios. With more FFS, there is less room for flights in
the schedule. This effect is greatest at the hub air-
port. This could be explained by the extra hours of
FFS already present at the hub, which is more than
the FFS at outstations. The initial schedule, without
additional FFS or reserves consists of 396 flight legs in
three days. These are all the intercontinental flights of
the collaborating airline in their five largest wide-body
aircraft (sub-)types. Extra reserve aircraft and crew
reduces the number of available aircraft for operations.
Figure 2(b) shows the number of flights in the net-
work for scenarios with additional reserves. The trend
is decreasing, although there was a decrease in flights
expected between the second and third reserve. The
reason for this could be that the simulation randomly
chose a registration as a reserve, which might have
been scheduled for maintenance. This avoids remov-
ing flights, but should be improved in future research,
as scheduled maintenance is essential for keeping the
fleet airworthy.

5.1.2 On Time Departure Performance

The results are less predictable when looking at the
D15. Figure 3(a) shows the effects on on time de-
parture for FFS design criteria schedules. This is the
weighted average of all five disruption scenarios. The
results show a lot of variability, but when looking at
the actual percentages, the differences are within 1.2%.
This accounts to approximately one daily flight. Re-
sults are even closer when looking at the reserve air-
craft schedules, with all schedules have an expected
D15 within 0.5%. This is shown in Figure 3.

So overall, there are no large differences in on time
departure, and this number does not change signifi-
cantly when looking at the individual disruption sce-
narios. Table 11 shows the full table of all schedules
and their performance for the five disruption scenarios.
For scenarios with disruptions at the hub (scenario 1
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Table 10: Disruption Scenarios to assess Schedule Performance

Scenario Disruption Hub Arrival Delays Hub Departure Delays Unavailable aircraft
1 Regular day of opera-

tions
18 delays of 5-40 min-
utes, 315 delay min-
utes total

16 delays of 5-40 min-
utes, 335 delay min-
utes total

None

2 Reduced capacity dur-
ing morning arrival
bank

20 delays, 1000 delay
minutes

0 additional delays 1 at hub after 1st ar-
rival for 20 hours

3 Reduced capacity dur-
ing morning departure
bank

0 additional delays 14 delays, 1050 delay
minutes

1 at outstation after
1st arrival for 20 hours

4 Maintenance exceeds
scheduled time

17 delays, 300 delay
minutes

15 delays, 325 delay
minutes

5 aircraft unavailable,
120 to 750 minutes

5 AOG’s at outstations 17 delays, 300 delay
minutes

15 delays, 325 delay
minutes

5 unavailable, 3 to 20
hours

(a) Number of flights for Free Fleet Space scenarios.

(b) Number of flights for reserve aircraft scenarios.

Figure 2: Number of flights for different network design
criteria.

(a) On time performance for Free Fleet Space scenarios.

(b) On time performance for reserve aircraft scenarios.

Figure 3: Flights departing within 15 minutes of the
schedule.
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and 2), additional reserve aircraft marginally improve
the on time departure, but this fluctuates, and does
not appear to improve with even more reserves. This
could be explained if swapping aircraft is more expen-
sive than propagating the delay to the next flight.

5.1.3 Total Delay Minutes

(a) Total delay minutes in the network Free Fleet Space
scenarios.

(b) Total delay minutes in the network for reserve aircraft
scenarios.

Figure 4: Flights departing within 15 minutes of the
schedule.

Figure 4(a) shows the weighted average of the total
propagated delay minutes in the network. The dis-
ruptions that were imposed on the network were sub-
tracted from this number, in order to better analyze the
effects of delays on consecutive flights. The weighted
average of total propagated delay time shows a lot of
variability for both FFS scenarios. When looking at
separate disruption scenarios, there are larger differ-
ences. Variability could be caused by the differences
in the schedule creation module. Flights are sched-
uled at a different time, or different flights are removed
from the schedule in order to find optimality. Not all
flights are scheduled in the same registration in each
schedule, since tails are assigned in a FIFO manner. If
a flight following a delayed flight has little connecting
passengers, or long transfer times, the impact of a delay
may not be that large compared to swapping fleet lines.
Therefore, the model will prefer delaying these flights,
leading to lower on time performance. The other way
around is also possible. If a flight with many short con-
nections is scheduled after a delayed flight, there will
most likely be a tail swap, and the total delay min-

utes decrease. In the model, a tail swap is penalized
to reflect the true cost of swapping aircraft at a late
stage, and this penalty is only assigned once. When
the routing changes, the following swaps are not pe-
nalized since there is plenty of time to prepare for the
next flight. Similarly, extra reserve aircraft also does
not show a trend, as shown in Figure 4(b). Considering
the variability in the data, there is no clear conclusion
of the effect of FFS on the total delay minutes. One
trend can be observed in the scenarios with delays at
the hub, which are DS1 and DS2. Then the FFS at the
hub becomes sufficiently large, the propagated delays
seem decrease. This is not clearly visible in the graphs,
but looking at the numbers in Table 12, which shows
the full table of schedules, and their performance when
disrupted.

5.1.4 Completion Factor

(a) Total delay minutes in the network Free Fleet Space
scenarios.

(b) Total delay minutes in the network for reserve aircraft
scenarios.

Figure 5: Flights departing within 15 minutes of the
schedule.

Cancellations remain nearly constant for these
schedules and scenarios. Figure 5(a) shows the number
of scheduled flights that were actually operated for the
FFS schedules. From the base scenario, all schedules
with extra fleet space improve the CF by around 0.1%,
which accounts for one flight in one disruption scenario.
All other scenarios have an equal number of cancel-
lations, but a slightly decreasing CF, since the total
number of flights decreases and the cancelled flights ac-
count for a larger percentage of the total. The same ef-
fect is observed for the extra reserve aircraft schedules,
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Table 11: On time performance of disrupted schedules with different design criteria

Schedule DS1 DS2 DS3 DS4 DS5 Weighted
Average

Base 92.4 93.8 91.8 91.2 89.3 92.0
Hub+10% 91.7 93.2 91.5 91.2 89.2 91.6
Hub+20% 92.0 94.0 90.3 90.8 89.7 91.3
Hub+30% 92.5 94.2 92.2 91.4 90.2 92.4
Hub+40% 92.8 93.6 91.0 91.3 90.1 91.8
Hub+50% 92.1 92.4 90.7 91.0 89.8 91.3
Hub+60% 91.8 93.5 91.2 90.6 90.3 91.6
Hub+70% 92.3 93.8 92.0 91.7 89.7 92.2
Hub+80% 92.3 93.8 92.3 91.7 90.2 92.3
Hub+90% 92.5 94.0 91.6 90.7 89.3 92.0
Hub+100% 92.8 94.6 91.9 91.9 90.1 92.4
Out+10% 92.3 92.0 91.2 90.0 88.6 91.2
Out+20% 91.1 92.3 91.7 89.4 90.0 91.3
Out+30% 91.7 92.6 90.8 90.5 88.3 91.1
Out+40% 91.7 92.6 91.7 91.1 91.1 91.7
Out+50% 92.8 93.7 92.0 91.4 91.1 92.3
Out+60% 92.6 93.7 91.4 92.3 90.0 92.0
Out+70% 93.1 92.8 92.6 91.7 90.8 92.5
Out+80% 92.0 94.6 92.0 91.4 89.1 92.1
Out+90% 92.2 93.7 91.4 91.4 90.2 91.9
Out+100% 92.2 93.4 91.4 91.4 88.5 91.7
Res+1 92.6 94.0 92.0 91.8 90.1 92.3
Res+2 96.9 94.0 89.8 91.5 90.9 92.3
Res+3 92.0 94.0 91.4 90.8 89.4 91.8
Res+4 92.8 93.9 92.2 90.5 90.2 92.3
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Table 12: Total delay minutes of disrupted schedules with different design criteria

Schedule DS1 DS2 DS3 DS4 DS5 weighted
Average

Base 470 190 1280 585 845 787
Hub+10% 450 230 1295 525 825 789
Hub+20% 475 145 1435 550 790 832
Hub+30% 505 105 1225 605 835 756
Hub+40% 490 250 1370 515 820 829.5
Hub+50% 510 255 1420 625 775 861
Hub+60% 565 175 1380 600 860 846
Hub+70% 485 110 1300 525 775 769
Hub+80% 510 210 1275 555 750 784.5
Hub+90% 510 135 1360 605 785 812
Hub+100% 370 40 1235 530 675 696.5
Out+10% 425 360 1340 670 1150 875
Out+20% 595 360 1365 760 790 892
Out+30% 505 235 1420 585 1245 899
Out+40% 480 285 1285 640 660 797
Out+50% 360 155 1305 575 660 748.5
Out+60% 475 170 1335 430 845 790.5
Out+70% 375 285 1240 520 705 750.5
Out+80% 515 100 1325 625 925 808
Out+90% 525 160 1400 555 865 839
Out+100% 540 190 1420 525 1160 882.5
Res+1 455 175 1235 535 765 750
Res+2 560 160 1515 645 610 875.5
Res+3 530 180 1355 630 815 828.5
Res+4 420 170 1210 585 620 722.5
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shown in Figure 5(b). One additional reserve lead to
one less cancelled flight for the chosen disruptions. For
schedules with more reserves, containing less flights,
the completion factor decreases more sharply than for
the extra FFS schedules. This can be explained by
the fact that extra reserve aircraft have a larger effect
on the number of flights in the schedule than increas-
ing the total FFS. Therefore the cancelled flights are
a larger percentage of the total scheduled flights. The
completion factor shown in Figure 5 are the completion
factor excluding the imposed cancellations in disrup-
tion scenarios.

6 Conclusions
The aim of this research is to give insights in the
effects of different types of robust scheduling measures,
to simulate these effects on the airline schedule, and
to assess the airline performance using these robust
measures in the schedule. Results of this research did
not highlight a clear best-performing strategy when it
comes to increasing robustness, but provided useful
insights and showcased potential for further research.

Increasing the number of reserves or FFS in the
schedule leads to a reduction in the number of sched-
uled flights. This does not necessarily lead to an im-
provement in performance. Results showed a lot of
variability in airline performance in all assessed KPI’s.
This represents reality, since there are many variables
contributing to disrupted operations. Scheduling for
the unexpected does not eliminate disruptions com-
pletely, but might decrease the propagation effects. If
scheduling extra FFS, adding it to the hub TAT ap-
pears to be the best for schedule robustness, as it is
easier to swap fleet lines for recovery. Improving the
simulation model presented in this paper could give
better recommendations to the airline.

There are a couple of ways the simulation model
can be improved. To start off, the extra FFS is now
randomly assigned as a percentage of the original FFS.
It could be interesting to analyze the effect of FFS
during the peak periods at the hub airport, as these
are the moments where most flights arrive/depart, and
many passengers transfer flights. A big opportunity
is to include medium-haul to long-haul transfers and
vice versa, since this is a large percentage of the
airport transfers. Effects of re-timing flights on crew
and ground operations were not considered, and all
maintenance is considered fixed. This could have a
large influence on model performance. The disruption
management model can be improved by including
crew requirements, re-assigning maintenance slots to
different tails, and medium-haul to long-haul passen-
ger transfers. Adjusting block time could improve the
model as well, and would make it a more realistic
simulation. Finally, re-booking passengers would
improve model performance as well. As there were
only five disruption scenarios, which were weighted
using quite some bias, there is room for improvement

here as well. Every day is different, so there could
be many more disruption scenarios. These scenarios
could be weighted using historic analysis of the airline
to give a realistic overview.

Based on the results of the case study, it would be
inadvisable to increase the FFS or the number of re-
serve aircraft in the schedule, There are no conclusive
benefits, and it comes with the price of scheduling less
flights, decreasing revenues. Based on existing litera-
ture however, there is most likely a connection between
FFS or reserves and the KPIs of the airline. Therefore,
improving this simulation model may result in a differ-
ent conclusion. This research gives a solid basis for
determining the FFS and reserves required for robust
operations. Improving this simulation to be even closer
to reality might show different results.
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1
Introduction

Since the Covid pandemic, air travel demand has grown, and is nearly back at the level of 2019 [46]. The pres-
sure on the fleet of the airlines has grown. Even though the number of flights is still a bit lower than in 2019,
airlines still face problems which are a result of the worldwide pandemic. The supply chain of components is
disrupted, which results in delays in the Maintenance, Repair an Overhaul (MRO) activities of airlines. Fur-
thermore, the aircraft manufacturers face the same problems in the supply chain for new aircraft, which leads
to delays in aircraft delivery dates. Not only fleet maintenance, but many other departments of airlines face
challenges. There is often a shortage of personnel in many departments, such as baggage handling, catering
services, cabin/cockpit crew, and engineering. In order to operate a route network without delays, all depart-
ments should have enough capacity to perform their task at the required moment, and all aircraft should be
available as planned. In reality however, the occurrence of disruptions in the airline network is inevitable.
The Operations Control Team (OCT) is responsible for minimizing the impact of disruptions, and restoring
the network when disruptions occur. To do so effectively, the OCT requires options to resolve delays. If there
are no options left, delays may propagate through the day, or flights have to be cancelled. Therefore, disrup-
tions have to be accounted for in the network planning phase. The average delay of all European flights in the
first quarter of 2023 was almost 15 minutes. The largest part of this was caused by previous delays, followed
by airline caused delays [37].

When designing the timetable for next season, the responsible team has to take into consideration the
requirement and wishes from other departments within the airline. For instance, maintenance is often re-
stricted in the available hangar space, or the number of mechanics available, and crew planning takes into
consideration the often complex regulations and agreements regarding crew rest times. There are hard, con-
straining requirements, such as the number of available aircraft, or the airport capacity. There are softer
requirements, or wishes as well, which likely cause delays or cancellations if ignored. An example could be
the capacity of the towing department. If there are too many flights scheduled in a short time window, this
could lead to delays due to late pushback. From the perspective of the OCT, requirements could be a num-
ber of reserve aircraft and crew, or buffer in the schedule. A reserve aircraft often has a significant effect on
the KPI’s of the airline, such as the Completion Factor (CF), departure at the scheduled time (D0), departure
within 15 minutes of scheduled time (D15), and consequently the on time arrival performance (A0 and A15).
Reserve aircraft are expensive, and an additional reserve may not be an attractive option from a commercial
point of view, and does not always result in the airline meeting the operational targets. In order to keep the
network controllable on the day of operations, additional network design criteria may be required. The aim
of this research is to define and substantiate these criteria. Aircraft routing and crew considerations are taken
into account in this literature review. Due to the size and complexity of the problem, maintenance constraints
are not considered in depth. The area is of importance to the airline operations, but detailed analysis is left
for future research.

To be able to plan ahead for inevitable disruptions and network recovery options, more knowledge is re-
quired about the network scheduling process, the disruptions in airline networks, and possible measures to
improve the network reliability. Therefore, this literature review consists of three subjects. In Chapter 2, the
design process of an airline network is explained. This includes route and frequency planning, fleet assign-
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ment, aircraft routing, and crew assignment. Chapter 3 explains airline network disruptions, and how airlines
recover from these disruptions. Finally, the proactive measures which could be taken by airlines in order to
increase network robustness are discussed in Chapter 4.



2
Airline Network Design, Planning and

Scheduling

In order to design an airline network effectively, an airline first defines its business model, then makes other
strategic decisions concerning destinations and fleet. This is used to create the schedule, which is divided
in four consecutive steps (Barnhart and Cohn, 2004). The first step is Schedule Design. In this step, a mar-
ket analysis is performed, and used to determine the routes, flight frequency, and flight schedule to fly these
frequencies. The second step is the Fleet Assignment, in which the fleet of an airline is assigned to the de-
signed flight schedule, taking into account the aircraft performance characteristics, and maximizing profit.
The third step is the aircraft maintenance routing. This ensures that all aircraft meet all maintenance re-
quirements. The final step is crew scheduling, where cabin and cockpit crew is assigned to all flights with a
minimum cost objective. In this chapter, the airline network design, planning and scheduling is explained.
In Section 2.1, the types of networks used in the airline industry are explained. This is followed by the steps
of network planning and scheduling in Section 2.2. The final part of Section 2.2 integrates the different steps
in airline network design. Section 2.3 summarizes the findings in this chapter.

2.1. Airline Network Design
There are generally two types of airline network designs. Hub-and-Spoke, and point-to-point networks.
Point-to-point networks are the simplest. A direct flight is offered from one city to another. No transfer
options are given, and if a passenger would like to transfer, two separate tickets have to be acquired. If the
second flight is missed due to a delay of the first flight, there is no compensation or rebooking policy by
the airline. The point-to-point network is only profitable if there is sufficient demand for travel between the
origin and destination airports. Low-cost carriers exclusively make use of the point-to-point network, some-
times creating demand by offering very low fares.
The hub-and-spoke (H&S) network is more complex, offering passenger transfer services, which includes
moving luggage from one aircraft to another at the transfer airport. In case of a missed connection due to de-
lay, the passenger is rebooked to the next available flight, usually at no additional cost for the passenger. The
main advantage of the H&S network, is that more markets are connected with the same number of flights.
Not all routes have to be profitable, since there is value in the feeder function from less dense routes in order
to fill the more profitable larger aircraft. The H&S network only works when the passenger connections at the
hub airport are not too long. Therefore, H&S carriers design their network around "banks", in which first the
wide-bodies (which have a longer TAT) arrive, followed by the arrival of narrow-bodies. After a short transfer
period, the narrow bodies depart, followed by the wide-bodies. Airlines have multiple banks in a day. Legacy
carriers like Delta Airlines, Lufthansa or KLM mainly use the H&S network, but have a few point-to-point
routes for destinations with exceptionally high demand.
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2.2. Airline Network Planning and Scheduling
The airline scheduling process is traditionally divided in parts (Belobaba et al., 2009). Fleet planning is the
first step, followed by route and frequency planning. To determine the flight routes, an important element is
the balance of demand and supply between an Origin-Destination (O-D) pair, where parallel markets are
taken into account (Lohatepanont and Barnhart, 2004). Airlines generally use an incremental approach,
building on the network of the previous year.

2.2.1. Frequency Planning and Timetable Design
Airline schedules are designed with a maximum profit objective, and designing a schedule is very complex
(Barnhart and Cohn, 2004). Schedule development begins over a year before the flight departures (Belobaba
et al., 2009). According to Belobaba et al. (2009) and Wei and Hansen (2005), the market share of an airline is
strongly dependent on the frequency share of the route, so flying more frequently with smaller aircraft leads
to a higher market share than flying once with a large airplane. With the fleet, routes, and frequency known,
the timetable is designed. An airline prefers to plan departures at the peak periods, but a trade-off is made
between maximum fleet utilization, and schedule convenience for passengers (Belobaba et al., 2009). Addi-
tional constraints, like minimum aircraft turnaround time, capacity of ground services, Air Traffic Control,
and maintenance requirements are taken into account in this step. According to Belobaba et al. (2009), there
is no existent model which makes an optimal timetable, taking into account all factors. The number of possi-
ble flight times, combined with airport, aircraft, and crew restrictions, and varying demand through the day
is too complex.

For most airlines, there is a summer, and winter schedule. With the exception of rare cases, like fleet con-
straints observed by some Embraer E2 operations (e.g. by KLM Cityhopper and Air Astana), or by the 737-Max
fleet grounding in 2019 (e.g. by American Airlines and Southwest), schedules are designed by adjusting the
schedule from previous years. The current schedule serves as a basis for the new schedule. It is common for
airlines to divide the network in sectors, and each sector has its responsible scheduler. The scheduler ana-
lyzes the flights in the sector, and checks whether it is beneficial to adjust the departure and/or block times.
Reasons to do so may be to accommodate an additional connection, to reduce operating costs, or a slight
change in airport slot times. New routes may be created when there is a viable business case, slot availability
is checked with the slot coordinators, and other resource restrictions are taken into account.

2.2.2. Fleet Assignment
Generally, fleet is assigned to flights after the timetable is made. The objective is to capture as much demand
as possible, while minimizing the operational costs. Most airlines use a mathematical optimization model
such as Abara (1989), which is often expanded to represent the timetable as a closed-loop time-space net-
work (Hane et al., 1995, Subramaninan et al., 1994). Rushmeier and Kontogiorgis (1997) presents the Fleet
Assignment Model including the connect time rules.

Abara (1989) is one of the first works to solve the fleet assignment problem. The objective is to maximize
the benefits of flights minus the costs of e.g. airports, or fuel usage. It has five constraints. The first is flight
coverage, which ensures all flights are covered exactly once. Continuity of equipment makes sure that air-
craft can be in only one place at a time. Schedule balance is included in order to make sure that all stations
have an equal number of inbound and outbound flights per aircraft type. Cost minimization was considered
by constraining the number of aircraft used. There are possibilities to add extra operational constraints for
purposes like limits on the number of slots, number of overnight stays at outstations, operating costs and
more. In the model, all aircraft turn combinations are decision variables. Abara (1989) models the network as
a time-space model, and it is capable of solving full size airline networks.

Similarly, Subramaninan et al. (1994) model the airline network as a time-space model. In this model, all
later departures from an airport can be paired with an arriving airplane. This model may be expanded with
maintenance arcs, crew requirements. The objective is to minimize operating cost, spill cost, and applicable
penalties. Operating cost depend on the aircraft type used, crew, landing fees, etc. Spill cost is the number
of passengers which can not be transported due to a fully booked flight. The authors report an a large cost
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saving, but note that the difference in revenue is hard to predict due to the variance in demand, and the lack
of record of spill and recapture. Contrary to Abara (1989), Subramaninan et al. (1994), which make use of a
time-space network model, Hane et al. (1995) make use of a connection network. The work describes a daily,
short to medium haul network, and describes methods to solve the fleet assignment problem more efficiently.
Rushmeier and Kontogiorgis (1997) expand the time-space model with passenger connection requirements,
and includes an estimation for profits generated by allowing transfers.

Clarke et al. (1996) expand the model of Hane et al. (1995), and include maintenance and crew consid-
erations. Maintenance requirements are included by adding a constraint that makes sure all aircraft stay
overnight at an airport with maintenance facilities, and maintenance arcs for longer maintenance checks.
Crew requirements are included by adding constraints for the minimum rest times of the crew. This may
either be done by having the aircraft remain with the crew, or using midday breakouts, in which the crew is
switched halfway the day. This minimizes the time the crew is away from base.

The Itinerary-based Fleet Assignment Model, created by Barnhart et al. (2002), integrates passenger itineraries
with spilling and recapture rates with the fleet assignment model. The authors concluded that their model
improved profits compared to the fleet assignment model without the effects of passenger recapture. Includ-
ing this improved the model further, but the actual recapture rate is difficult to quantify, making the exact
improvement from the complete model hard to predict. This has no large effect on the fleet assignment. Lo-
hatepanont and Barnhart (2004) extend this model by assuming markets are independent, which gives the
capability to adjust demand for all individual markets. The model takes an existing schedule, evaluates some
new flights with pre-defined candidates for deletion, creates the net flight schedule, and assigns the fleet.
The authors make some assumptions compromising the model accuracy, but results from the model may be
compared with other models using the same assumptions. Integrated Schedule Design and Fleet Assignment
Model is computationally expensive. Therefore, the authors created an Approximate Schedule Design and
Fleet Assignment Model, where the interaction between supply and demand is approximated. This runs sig-
nificantly faster, and may be used for full-size airline schedules.

Kenan et al. (2018) combines the Flight Scheduling and Fleet Assignment Problems. The authors create a
time-space model with a two-stage objective function which maximizes profit. To reduce the problem size,
a Sample Average Approximation algorithm is used. The authors perform a trade-off between the problem
size, and accuracy. After analyzing the results, the optimality gap was less than 1% using 100 scenarios. De-
mand, spill and recapture rates are not included in the model, and neither are crew pairing and scheduling,
and maintenance requirements.

Rexing et al. (2000) extended a simple version of the fleet assignment model, and added time windows
by creating copies of flight arcs within a specified window. This allows departure times to change slightly, in
order to give a more optimal use of resources. The the model takes a long time to run, but compared to the
standard fleet assignment model, less aircraft were required to fly the existing network, and fleet assignment
costs were reduced. The model did not take into account crew considerations, or maintenance requirements,
so the model results are most likely a bit overestimated.

2.2.3. Aircraft Routing Problem
The aircraft routing problem, or maintenance routing problem (Belobaba et al., 2009) is solved after the fleet
assignment problem, and before the crew scheduling problem. In the fleet assignment problem, the aircraft
type was assigned to flights, and in the ARP, the registration is appointed to a sequence of flights. Mainte-
nance slots are assigned to aircraft as well.

There is vast literature about the aircraft routing problem. Earlier research optimized considering main-
tenance opportunities, such as Abara (1989), Barnhart et al. (1998) and Sriram and Haghani (2003). Later,
more aircraft-specific requirements were investigated by Lagos et al. (2020), Sarac et al. (2006) and Sanchez
et al. (2020). The aircraft routing problem is integrated with the fleet assignment problem frequently in liter-
ature, see for example Barnhart et al. (1998), Li and Wang (2005) and Shabanpour et al. (2023). Integration of
robust measures are a common area of interest as well (Eltoukhy and Mostafa, 2022, Froyland et al., 2014, He
et al., 2023). Since the scope of this project is to plan in advance for disruptions, the aircraft routing problem
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is of less relevance. It is therefore not considered in depth, but the references stated in this section give an
overview of the current state of the art.

2.2.4. Crew Scheduling
After the timetable is designed, and the aircraft are assigned to flights in the timetable, the crew schedules are
constructed. There are many rules which have to be taken into account, such as work and rest times. Further-
more, the airline takes crew requests into account, such as holidays, and consistency in the flight times. Crew
is usually scheduled in two steps: crew pairing, in which the schedules are created, and crew assignment,
in which pairings are assigned to crew members (Belobaba et al., 2009). Most earlier research make use of
a linear relaxation and column generation algorithm, with a minimum crew cost objective. See for example
Hoffman and Padberg (1993), Klabjan et al. (2001) and Barnhart et al. (1998). Constraints include coverage of
all flight legs exactly once. Flights in pairings are sequential in time and space, and subsequent flights take
into account the required connection time. In the model in Belobaba et al. (2009), this column generation
algorithm is solved repeatedly to find the optimal subset of variables for the column generation algorithm.

Barnhart and Cohn (2004) explain the discussed models, and suggest research in combining the sequen-
tial models in order to improve model results. Models become large, and take a long time to solve. To reduce
the problem size, there are a few options. Variable elimination is one of the options. Many constraints are
redundant in the model. These do not contribute to the model outcome, but are used in the model any-
ways. Removing these redundant constraints is possible by node consolidation or arc consolidation. Another
problem reduction method is exploitation of dominance. Some variables are dominated by others, hence
they have a little to no influence on the model results. Variable disaggregation is another possibility. Some
variables may be disaggregated into other variables with fewer decisions. Many of these variables may be
eliminated, resulting in a smaller problem. Another approach to reduce the problem size is the use of heuris-
tics. Cohn and Barnhart (2003), Levine (1996) or more recently Azadeh et al. (2013).An exact solution can not
be guaranteed in these approaches. Cohn and Barnhart (2003) compares their heuristic model with an exact
solution, and give flexibility to trade-off solution time and quality of the results.

Recent developments show more research in using machine learning techniques for the crew pairing and
scheduling problems. Yaakoubi et al. (2020) for example used ML to create clusters of flights which are likely
to be performed by the same crew, which were later assembled and modified to form pairings. Morabit
et al. (2021) and Tahir et al. (2021) used ML to improve the column generation algorithm by selecting the
most promising columns. There is relevant literature from other research area’s related to transport, such as
Gattermann-Itschert et al. (2023) who included a ML model to learn preferences of a railway crew planner.
This could work for airline crew planning as well.

2.2.5. Integrated Models
To integrate the fleet assignment and crew pairing problems, Özener et al. (2017) created an integrated fleet
assignment and crew pairing model. To be able to do so, the fleet assignment and tail assignment problems
were integrated. The objective function has two parts, where flight profit minus crew cost is maximized.
Compared to a sequential and iterative optimization, the integrated model of Özener et al. (2017) showed
significantly faster CPU times, while giving an overall lower cost, and higher profit. The model disregards
maintenance constraints.

Cacchiani and Salazar-González (2020) present four models which retime flights in a schedule. Fleet as-
signment, aircraft routing, and crew pairing is considered. The authors make use of heuristics, and column
generation algorithms. The first model considers all flight retiming and rerouting options while the second
model keeps the routing fixed, but does allow all retimings. The third model selects a subset of the flight
copies, which limits the set of retiming options. The fourth model also selects a subset of flight copies, but
uses a column generation algorithm to select the flight retiming options. The first model is the slowest, but
gives the best improvement overall. The authors conclude that the best performing model in the improve-
ment vs CPU-time trade-off is the fourth model which uses column generation for selecting flight copies.

Ben Ahmed et al. (2022) integrates the fleet assignment, maintenance routing, and crew scheduling prob-
lems in one single model. In the model, all flights are covered exactly once, the schedule is periodic, mainte-
nance constraints are taken into account, crew pairings comply with all regulations, the number of crew used
does not exceed the available crew, and there are robustness measures incorporated (see Chapter 4). The
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model objective is to maximize the overall profit, which is given by revenue minus fleet assignment cost mi-
nus some non-robustness penalties given to critical connections, critical crew connections, and connections
where crew do not follow the aircraft. The constraints ensure route feasibility, itinerary feasibility, pairing
feasibility including duty, and short connections. It is a non-linear model, which is linearized. To solve it, a
restricted master problem was constructed bu dropping the robustness constraints and variables. A relaxed
version was solved, and the problem decomposed. A reduced aircraft routing and crew pairing problem was
solved for each aircraft family. Finally, a proximity search algorithm was used, which searches for an improved
solution. This model takes a long time to run, if solved exactly, with one instance taking 10 hours, while still
not optimal. The decomposed method is considerably faster, but still not very fast. The proximity search is in
many instances the fastest. The decomposed and proximity search methods are accurate, with most results
being within 1% of the optimum.

Glomb et al. (2023) integrated the fleet assignment and tail assignment problems, and alternately solved
the model with a model that optimizes turnaround handling. The objective of the first model is to minimize
the assignment cost of fleet and flight combinations. It is modeled as a connection network. The second
model minimizes aircraft assignment cost, and cost for delays and turnaround options. This model takes
into account all ground operations between flights, and ensures that subsequent activities start after the pre-
vious activity is completed. Post-flight processes which are considered are taxi, deboarding, cargo unloading,
and cleaning. This is followed by the pre-flight processes: Fuelling, catering, boarding, cargo loading, final-
isation, de-icing, and taxi. The integrated model takes into account scarce resources. It is solved using an
island decomposition approach. This approach shows faster, and more accurate results compared to other
methods such as benders decomposition, waterfall or lbf.

2.2.6. Design Criteria
When designing the network, many aspects have to be considered. In addition to the hard constraints of
finite resources, such as the number of available aircraft, there are different "design criteria" which are set up
by all departments. Constraints and design criteria include:

• Airport Capacity/Slots: Many airports have capacity constraints for ATC, runway capacity, or gate ca-
pacity. Therefore the number of arrivals and departures is often regulated. Most large European air-
ports are level 3 slot regulated, meaning that an airline needs the rights to land and take-off at a certain
time. If more than 80% of the scheduled flights are performed in a season, the airline keeps the slot
rights for the next year. Otherwise slots are assigned randomly to interested parties. Slots are the most
important assets of airlines operating in slot constrained airports. Slots may be traded with other air-
lines, but acquiring new slots is often difficult.

• Aircraft availability: The number of available aircraft is known in advance. It is difficult to acquire
more aircraft in a year, although it is possible to wet lease to capture seasonal demand.

• Crew availability: Aircraft require cockpit and cabin crew. Especially cockpit crew is currently a scarce
resource, so this could be considered as a hard constraint.

• Maintenance requirements: To keep their airworthiness, aircraft are required to undergo maintenance
after a number of days/flight cycles/flight hours. Maintenance checks are traditionally divided in A-,
B-, C-, and D-checks. A- and B-checks are frequent, relatively quick checks which are planned a few
weeks in advance. It is possible to defer these maintenance checks to some (limited) extent, so they
could be considered as soft constraints. C- and D- checks are complex, occur once in a few years, and
are planned years in advance. Due to their complexity and the large amount of resources required, C-
and D-Checks are considered as hard constraints.

• Ground Operations: There is a maximum capacity of all airport ground operations. There is a limited
capacity of pushback tugs/crew, baggage handling, fuelling services, and catering services.

• Turn Around Time: There is a minimum time required to unload and load the aircraft between flights.
The time depends on the type of aircraft, and to some extent the ground equipment used (using two jet
bridges, or extra stairs speeds up the minimum TAT slightly).

• Reserve Aircraft and Crew: In order to have options to recover the network in case of disruptions, there
are reserve aircraft and crew scheduled.
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2.3. Concluding Remarks
The different parts of airline network design: route and frequency planning, fleet assignment, maintenance
routing, and crew scheduling has been researched extensively. To reduce computational time in the models,
column generation is widely used. Due to the sequential nature of the scheduling process, the final solution
is not likely to give the highest operating profit. Therefore, recent research is more focused on the integration
of the different scheduling parts. If all variables of all scheduling parts are taken into account, there are too
many variables to give reasonable solutions within reasonable time. Hence, an optimal solution does not ex-
ist yet. There are existing models which make use of (meta-)heuristics, in order to give an approximation with
a small expected gap to the optimal solution. Another more recent development is the increase in research
about robust scheduling, where disruptions in the network, which inevitably occur, are taken into account.
Robust airline scheduling is explained in Chapter 4. Most of the airline network is the same as the year before.
Since many airports, especially in Europe and Asia, are heavily slot constrained, slots are the most important
consideration when creating new routes, extending existing routes, or changing departure times.
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Disruption Management

If all scheduled flight depart and arrive exactly on time, there are not many challenges to operating the net-
work. In reality however, this is rarely the case. There are a couple of reasons a flight might be delayed or
cancelled. Su et al. (2021) classifies flight disruption sources in two categories: Airline Resource Disruption,
and External Environmental Disruption. The main factors for airline resource disruptions are the availability
of aircraft, and crew. There might be a mechanical breakdown, in which case the aircraft can not be used,
and needs unplanned maintenance. Planned maintenance could take longer than expected, due to short-
ages in personnel, or a disrupted supply chain for components. Other reasons for aircraft disruptions could
be fuel shortages, personnel shortages/strikes. Flight crew could be absent due to illness, personal emergen-
cies, or due to disrupted flights. This chapter discusses the disruptions of the airline network in Section 3.1,
the recovery of aircraft in Section 3.2.2, crew in Section 3.2.4, and Section 3.2.6 discusses integrated recovery
methods.

3.1. Disruptions in Airline Schedules
The airline network may be disrupted by external, environmental factors such as wind direction and strength
at the hub or outstation, en-route head wind for longer flights, extreme cold, fog, or snow at the hub or an
outstation. Other external factors include Air Traffic Control (ATC) capacity reductions, runway closure due
to maintenance.

3.1.1. Types of disruptions
Since the use of airline resources is optimized using the models described in Chapter 2, the impact of a dis-
ruption may be severe for the continuity of the network. Filar et al. (2001) describes causes for air traffic delays
due to airport, and airspace capacity. When the weather conditions require Instrument Flight Rules (IFR), the
airport capacity is significantly lower compared to Visual Flight Rules (VFR). The airspace has a maximum
capacity as well, which is usually, but not always higher than the airport runway capacity. Aircraft are some-
times delayed at the originating airport because of airspace or destination airport capacity. This is easier to do
for short- to medium-haul flights, as they are often still on the ground when capacity issues become evident.
Long-haul flights are often already flying when capacity issues occur. Filar et al. (2001) discusses the papers by
Teodorovic and Guberinic (1984), Teodorovic and Stojkovic (1995) which aim to find circumstances in which
aircraft are suddenly not available, and to minimize the number of cancelled flights. These are limited models
in the sense that the problem is made small, and ferry movements are not allowed. In the model of Jarrah et al.
(1993), this is included. Filar et al. (2001) discusses more research on aircraft unavailability, such as Argüello
et al. (1997), Yan and Tu (1997), Yan and Yang (1996), Yan and Young (1996). These models make use of a time
space network, and do not take into account crew requirements. Teodorovic and Stojkovic (1995) consider
the challenges of crew planning, and suggests a first in first out (FIFO) approach for the completion of crew
rotations and aircraft schedules, but better solutions could be found with a dynamic programming heuris-
tic. Filar et al. (2001) discusses models from Richetta and Odoni (1993), Terrab and Odoni (1993), Terrab and
Paulose (1992) about solutions for reduced airport capacity, and discusses the effects of ground delays due to
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the arrival slot regulation (Luo and Yu, 1997, Vasquez-Marquez, 1991). Kohl et al. (2007) investigated airline
disruption management. Airline Disruption Management is an ongoing process, with several goals: deliver
customer promise, minimize excess costs, and get back to the original schedule as quickly as possible. Dis-
ruption management is complex, and human experience is required to solve some cases. This may be done
by planning for disruptions in early stages, avoiding operational complexity, exploiting probability of events
occurring, and planning for alternative scenario’s. This is called "Robust Scheduling" and it is explained in
Chapter 4.

Summarizing, there are three main subjects considering airline disruptions, which are all connected: air-
craft disruptions, crew disruptions, and passenger disruptions. Disruptions include delays, and unavailability
of resources.

3.1.2. Delay Propagation
Delays propagate, because multiple resources, such as aircraft, crew, and passenger connections have to by
in synchronization (Wu, 2012). Models were created to identify the causes and impact of delay propagation,
such as Wu (2005). This paper suggests that delays are inherent, and have stochastic causes. Hence, there
should be buffer time embedded in the network schedule to ensure network robustness.

Wu (2005) uses a model to simulate operations, which models aircraft turnaround operations, and en-
route operations in separate modules. The turnaround operations model was developed by Wu and Caves
(2002, 2004). It is a combination of a Markov Chain algorithm, and discrete-event simulation. Passenger
processing, and cargo processing were modelled as parallel Markov chains, and this was simulated using a
Monte Carlo simulation. Processes which are independent from passenger and cargo processing were mod-
elled using a discrete-event simulation, because of the uncertainty of these processes. To model the delay of
a flight, the en-route module uses random variables for the departure time, and block time of a flight. When
compared to the data from a real airline, the model of Wu (2005) shows lower delays than they actually were
in real life. The model is capable of following trends, but underestimates propagated delay, even in the case
where a longer TAT (Turn Around Time) was planned.

The delay propagation model of Wong and Tsai (2012) uses a model for the survival of delays. A Cox pro-
portional hazards model is used to model flight delays. This delay is used in a survival function to model how
long the delay will last. For departure delays, cargo mail handling has the highest influence on delays, as the
chance of recovery is lowest. This is followed by flight operations and crewing, passenger and baggage han-
dling, and aircraft type. ATC restrictions have the lowest influence. Weather also has a high impact, but this is
beyond control of airlines. For arrivals delays, the block buffer time, and weather have the highest influence.

The models of Wong and Tsai (2012), Wu (2005) both are focused on individual aircraft rotations, and do
not take into account the entire network. Arikan et al. (2013) models delay propagation in a stochastic model.
It determines the actual block time, and compares this to the scheduled block time, by using a log-Laplace
distribution. This is used for the delay propagation model.

The concluding remark of this section is that delays occur in the airline industry, and they should be solved
to avoid delay propagation. There are several methods of doing so, which are explained in upcoming sections.

3.2. Airline Network Recovery
When a disruption in the airline network has occurred, the objective of an airline is to minimize the impact
of the disruption. Disruptions include flight delays, airport disruptions, crew disruptions, or aircraft unavail-
ability due to an AOG (Aircraft On Ground) for example. Clausen et al. (2010) did a literature review about
airline disruption management. Until the year of writing, most research was done in the area of aircraft re-
covery, with some papers describing passenger, crew, or integrated models (Hassan et al., 2021). Hassan et al.
(2021) did a literature review more recently, and found that research attention shifted more towards inte-
grated models. However, aircraft recovery is still the most researched topic.
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Delays are not the only form of network disruption. There may be aircraft or crew unavailability due to
other reasons such as mechanical failures, illness, or airport closures. When it is not possible to absorb dis-
ruptions in a schedule, airlines try to recover the network to the planned schedule. Previous research makes
the distinction in three area’s: Aircraft Recovery, Crew Recovery, and Passenger Recovery. Combinations, and
integrated recovery has been researched as well. This section deals with the methods used for network recov-
ery.

3.2.1. Network Representation
In the findings of Clausen et al. (2010), the airline network is most commonly represented in three different
ways: a connection network, time-line network, and a time-band network.
In the connection network, flight legs correspond to nodes in the network, and connections between flight
legs correspond to the arcs between the nodes. The origin and destination nodes represent the possible air-
ports at which an aircraft is located in a set time window. The path between origin and destination nodes
shows the feasible paths of an aircraft as part of a rotation. Advantages are that maintenance is easily incor-
porated, but the drawback is that the number of nodes grows exponentially, hence larger models are compu-
tationally expensive.
In the time-line network, all airports are listed vertically, and time horizontally. Nodes are the times that ei-
ther a departure or and arrival occurs at an airport. The edges are the flights between airports. There are
ground arcs as well, which represent aircraft which stay at the airport overnight for example. A direct path
is a feasible rotation for an aircraft. Arguello (1998) proposes the time-band network, in which the activities
at an airport within a certain time band are represented in a node. This model is constructed dynamically
whenever a disruption occurs.

3.2.2. Recovery Options
An airline OCT has several options to restore the network. These strategies include:

• Flight delay: Delays propagate in the network, but this may be mitigated if there is buffer time in the
network

• Flight cancellation: An expensive but effective solution for network recovery. Passengers are unhappy,
and may have to be compensated.

• Aircraft swaps: This might be a good option if there is buffer time, or when it is cheaper to cancel a
different flight, which is not fully booked, or less slot constrained.

• Reserve aircraft and crew: Generally, a reserve aircraft is expensive, since it does not generate revenue
when it is not used, but this is preferred over flight cancellation.

• High speed flights: To reduce flight block time, an airline may chose to fly faster. The aircraft uses more
fuel, but delays in the network may be mitigated. This is more effective for longer flights, since the
flying time is a larger percentage of the total block time.

• Faster ground operations: Sometimes, TAT mat be reduced when some ground operations are exe-
cuted faster. A lighter catering product reduces loading time for example.

• Ferry flights: To move an aircraft from an outstation back to the hub without passengers. This is only
done to fly an aircraft back after unplanned maintenance at an outstation, or in order to perform the
required maintenance at the hub airport where facilities are better.

Delays are not the only form of network disruption. There may be aircraft or crew unavailability due to
other reasons such as mechanical failures, illness, or airport closures. When it is not possible to absorb dis-
ruptions in a schedule, airlines try to recover the network to the planned schedule. Previous research makes
the distinction in three area’s: Aircraft Recovery, Crew Recovery, and Passenger Recovery. Combinations, and
integrated recovery has been researched as well. This section deals with the methods used for network recov-
ery.
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3.2.3. Aircraft Recovery
Early research in disruption management was mainly about aircraft recovery. Teodorovic and Guberinic
(1984) first investigated aircraft recovery. In this model, one or more aircraft are unavailable, and the flights
may be re-assigned or re-timed. Maintenance is ignored in their model. This model was extended to include
cancellations as a possible solution, and airport curfews as constraint (Teodorovic and Stojkovic, 1990). The
same authors extended the model with crew considerations (Teodorovic and Stojkovic, 1995). These models
make use of a connection network, generated data, and a single fleet type.

Jarrah et al. (1993) created network models for cancellation and delaying of flights. They are separate
models, and do not allow for a trade-off between the two options. Rakshit et al. (1996) reports the effects of
the models of Jarrah et al. (1993). Cao and Kanafani (1997a,b) extend these models, and allows for a solution
of combining delays and cancellations. Ferry flights and options for aircraft swapping are also included in
their model. Mathaisel (1996) created a model which uses cancellations and re-timing, but does not discuss
crew considerations, and multiple fleet types. It gives an interactive tool which shows re-routing alternatives.
All models mentioned in this paragraph make use of a Network Flow Model.

A second approach is the modelling with a time-line network, introduced by Yan and Yang (1996). The
time-line model was completed with ferrying arcs, and time-shifted copies of arcs to allow for delays. Mainte-
nance and crew are not taken into account, and a single fleet type is used. The constraints in some models in
Yan and Yang (1996) were relaxed, and heuristics were used to speed up the algorithm significantly, while still
giving near-optimal results. Yan and Tu (1997) presents a similar model, with the inclusion of a multi-type
fleet. Yan and Lin (2005) includes temporary closures of airports, and Yan and Young (1996) includes multiple
stops for aircraft. The modelling of perturbations in these papers is slightly different, but solution methods
are similar. They are time-line modelled networks using real-life data. Thengvall et al. (2000) extends previ-
ous models with the addition of protection and through-flight arcs, which enables the model to deviate from
the original schedule. Aircraft delays, swaps and cancellations are permitted. Crew and maintenance are dis-
regarded, and a single fleet type is used. LP relaxation is used to speed up the model, but it gives near-optimal
solutions. Thengvall et al. (2001, 2003) extend the earlier work with the addition of hub closure, and multiple
fleets. Three models were created, of which the first two had a maximum profit objective, and one a minimal
delay and cancellation cost.

Arguello (1998) introduced the time-band model. Bard et al. (2001) used this model to discretize the time
line, and create a minimum cost model to reassign aircraft. The constraints in the model ensure all aircraft
can be at one place at a time, minimum TAT is adhered to, recovery extends to the end of the day, at the
end of the day all aircraft are positioned for the next day, airport curfew is adhered to, and no changes to the
maintenance schedule are allowed. The model is initialized by using the current schedule, identifying the
grounded and delayed aircraft, and setting the time-band length for all stations. The network is transformed
to a time-band network, and the mathematical program is created. It solves the LP relaxed program, and use
it in the MILP solver. Finally the schedule is created and checked for feasibility. Eggenberg et al. (2007) uses a
column generation algorithm, where each aircraft has an independent recovery network. Maintenance arcs
are introduced in be able to incorporate maintenance requirements.

Rosenberger et al. (2003) shows another approach to the aircraft recovery problem, and models it as a set
partitioning model on a connection network. For all disrupted aircraft, the feasible swaps are determined by
a preprocessing heuristic. Flight legs in the new routes are used as columns for the set partitioning problem.
This is a fast algorithm as reported by Rosenberger et al. (2002). Andersson and Värbrand (2004) also makes
use of a set partitioning problem in a connection network, with a shortest path problem as subproblem with
linear node costs and time windows. Program run time with a Lagrangian relaxation-based heuristic is man-
ageable, and the results are comparable to the results of the Dantzig-Wolfe based decomposition.

Some models make use of (meta-)heuristics. The first of which was Argüello et al. (1997). Their model
uses a greedy approach to reconstruct the network when one or more aircraft are grounded. This initial ap-
proach is then altered by changing the flight routes, swapping aircraft, or cancellation. It is built for a single
fleet type, and disregards maintenance.
Løve et al. created a heuristic to generate a feasible revised flight schedule. Delays, cancellations, and aircraft
swaps and fleet swaps are possible solutions. The model makes a trade-off to find the best solution. Weights
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for this trade-off may be changed if required. According to Kohl et al. (2007) confirmed the results of Løve
et al.. Andersson (2006) uses tabu search and simulated annealing meta-heuristics. The heuristics use a tree-
search algorithm to find new aircraft schedules, and tries to relink paths between different solutions. It allows
delays, cancellations and aircraft swaps. The tabu search method often produces better results, and both
methods give good solutions in a short time. The model by Andersson (2006) is capable of using a multiple
type fleet. The model by Liu et al. (2006) allows delays and aircraft swaps, but uses a single fleet type, and
does not allow cancellations. It was extended for multiple fleet type use (Liu et al., 2008).

In order to decrease delay propagation, Ahmadbeygi et al. (2010) suggests re-allocating scheduled slack
to flights which are often delayed. Propagated delays are not modeled perfectly, and are sometimes over- or
underestimated.
Similarly, Wu (2006) suggests a sequential modelling approach to ensure network robustness, in which only
flight times were adjusted, while routing remained the same. In this model, a significant cost saving was
achieved. The drawback of a sequential approach is that the solution might be sub-optimal, since results or
constraints of one problem might restrict feasible solutions later in the process.

Weide et al. (2010) attempts to counter this, and concludes that the integrated aircraft routing and crew
pairing is computationally expensive. Therefore it uses an iterative approach. First the crew pairing problem
is solved, followed by a the aircraft routing problem, in which the number of restricted connections that are
operated by the crew pairing solution are maximized. The next step is to minimize the number of restricted
aircraft changes in the crew pairing problem. This is done until a crew penalty exceeds the maximum value.

Lan et al. (2006) created models to minimize passenger disruptions, by rerouting aircraft, or changing de-
parture times, based on a stochastic delay distribution. Their model does not take into account the effects of
crew and passenger connections on delay propagation.

Dunbar et al. (2012) aims to improve the models from Ahmadbeygi et al. (2010), Lan et al. (2006), Weide
et al. (2010), in which simplified delay propagation models from Wu (2005, 2006) are used. Results show an
improvement of the routing and crewing Integrated, Propagated Delay model compared to the routing and
crewing Sequential, Propagated Delay model.

Where previous mentioned models make use of Independent and Identical Distribution assumptions, Wu
and L. (2019) researched the delay propagation effects of multiple resource connections in an airline network,
without using this assumption. It uses the Delay Propagation Tree models from earlier research (Ahmadbeygi
et al., 2010, Dunbar et al., 2012, Lan et al., 2006), and combines this with a Bayesian Network model. Bayesian
Network models were used before by Cao et al. (2008), Liu and Ma (2008), Liu et al. (2008), Xu et al. (2005) for
limited problems.

Lee et al. (2022) applied a reinforcement learning approach for the aircraft recovery problem. Multiple
fleet types are considered. The only disruption considered is the temporary closure of airports. In reality,
there may be many more disruptions. Recovery options are delaying and swapping aircraft. Options for
cancellation and ferrying are not included in the model. Compared to a more traditional method, the rein-
forcement learning method was faster, but gave overestimated results. The model is designed in such a way
that it does not avoid unnecessary aircraft swaps. Unnecessary swaps may have consequences for the crew
scheduling, in addition to ground operations such as gate availability and catering.

3.2.4. Crew Recovery
With disrupted flights, the crew schedules are inevitably disrupted as well. To recover crew schedules, airlines
have a few options, including re-assignment, dead heading, and cancellation. Since crew schedules have to
adhere to strict regulations, union agreements, and airline-specific policies, the crew recovery problem is
considered more difficult than aircraft recovery (Hassan et al., 2021).

Crew schedules may be disrupted by flight delays, cancellations, and crew unavailability. Castro and
Oliveira (2007, 2009) consider crew unavailability as a disruption, and apply a multi-agent system to the crew
recovery problem. They report significantly faster, and better solutions compared to manual recovery opera-
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tions. There is no sample size reported. The model uses sub models, which optimize parts of the problem.

(Meta-)heuristics are also used to solve the crew recovery problem. Chang (2012) created a Genetic Algo-
rithm for the crew recovery problem. The objective is to minimize the number of deadheads, unconnected
flights, schedule changes and number of affected crews due to schedule changes. The algorithm has reason-
able run time, giving results in 10 minutes when analyzing over 650 flights, with 70 crews and 18 recovery
days. The model takes into account rest time regulations, and connection feasibility. Since heuristics are
used, it is not an optimal solution, and the author does not state the optimality gap.

Liu et al. (2013) created an interfleet and intrafleet model, which were solved using different methods.
For difficult models, a simulated annealing algorithm was created. Costs were not taken into account, as the
objective is to cover all flights. Hence, when taking into account costs, solutions may be very different. The
problem size was limited by using a time window of 24 hours, and crew size of 6. The interfleet model gives
consistently better results than the intrafleet model. The authors take into account both delays and crew un-
availability as disruption types.

The approach by Novianingsih et al. (2015) is to identify all possible crew swaps, and apply this if possible.
If this is not possible, a new crew schedule is created with the use of heuristics. This schedule is then improved
with another module. The model was applied to a network with 214 flights and 48 crews. The model gives fast
results with a maximum tested run time of under three minutes, but it only takes into acocunt disruptions
due to delays. By only considering legal pairings, all regulations are taken into account. The model optimizes
for minimum cost of crew changes.

Zhu et al. (2014) use a constraint programming model, minimizing recovery cost. Constraints include
temporal-spacial requirements, deadheading and time legalities. Their model is applied to a small problem
with a two-pilot flight crew on a single day of operations (Hassan et al., 2021). This is a small representation of
a complete airline schedule, so it might be interesting to see how the model performs in a large-scale airline
network, with multiple days.

3.2.5. Aircraft and Crew Recovery
There are a few papers which research the integration of aircraft and crew recovery, the first of which was
Aguiar et al. (2011). The authors use multiple meta-heuristic approaches such as a genetic algorithm, hill
climbing and simulated annealing. The genetic algorithm outperforms the others in the case study of the au-
thors, although the other heuristics perform well. The simulated annealing and hill climbing methods were
applied to the crew recovery problem as well, with the simulated annealing having a slight edge. Aguiar et al.
(2011) only take into account disruptions due to aircraft unavailability. Solutions of the models are not com-
pared to the global optimum. Therefore, it can not be determined whether the results of these heuristics are
of sufficient quality.
Le and Wu (2013) use an iterative tree growing algorithm with node combination. A time-space network
is used to describe the heuristic method. Maintenance requirements, and crew scheduling regulations are
taken into account.

Zhang et al. (2015) use a two-stage heuristic algorithm for aircraft and crew recovery. The first stage is the
integrated aircraft recovery and flight re-scheduling with crew consideration. This is followed by integrated
crew recovery and flight-rescheduling with partial aircraft consideration. For the aircraft recovery model,
constraints for maintenance, slots, and crew satisfaction are included. The use of reserve aircraft is a possible
schedule recovery method. Crew regulations and connection feasibility are included in the second model.
Although the model is a bit slower than the model of Abdelghany et al. (2008), the results are better, with a
lower overall cost.

Maher (2016) used a column-and-row generation algorithm to solve the integrated recovery problem. It
builds on existing column generation models, and allows delays and cancellations as recovery options. Crew
regulations are taken into account, but aircraft swaps are not. The results is a faster model than a standard
column generation model, and it was tested on both a P2P and H&S network.
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Shortcomings to the models in this section is that none of the models take into account all common
disruptions. Crew unavailability was not considered as a disruption, and the use of reserve crew was not pos-
sible. Future research could improve in these areas.

3.2.6. Integrated Recovery
Modelling for aircraft, crew, and passenger recovery simultaneously is challenging, but there are some papers
addressing integrated recovery. Some papers consider two of the three recovery options while modelling the
third one indirectly by applying penalties. Vink et al. (2020) for example, solves the aircraft recovery problem
including maintenance requirements and passenger itineraries, and penalizes solutions which might have
crew implications.

An exact method of solving the integrated recovery problem was created by Arikan et al. (2017). In the
model, all disruption types are considered, except crew unavailability. Recovery options include flight delays,
cancellations, aircraft swaps, use of reserve aircraft, aircraft ferrying, cruise speed control, crew deadheading,
and itinerary changes. Is is therefore a complete model, and gives solutions within 20 minutes in their case
study.

Vink et al. (2020) created a model which is suitable for operational use. There are four solutions to the
aircraft recovery problem given in the paper. The first and quickest one is the trivial solution, which only
takes into account the disrupted aircraft. The selection algorithm gives solutions in about 20 seconds, and
tries to improve the trivial solution by considering more aircraft iteratively. The third solution is the static
global solution. This is the optimal solution if all disruptions for the day are known in advance. The dynamic
global solution gives the global optimum for the entire fleet in the dynamic environment. The static and
dynamic global solutions are not suitable for operational use, since CPU times are too long (in the order of
10-20 minutes). In the worst case scenario, the selection algorithm presented a solution which was 39% more
expensive than the dynamic solution. In this scenario, there was unexpected maintenance required. In most
other cases, the results were the same, or within a few percent. The model by Vink et al. (2020) uses a parallel
time-space network, in which all aircraft are modelled in a separate network, but flight arcs of other aircraft
are included to be able to swap flights.

3.3. Concluding Remarks
Recent development show an increase in research about models that integrate aircraft, crew, and passenger
recovery. Furthermore, recent models have more recovery options such as aircraft type swaps, or cruise speed
control. The main challenge in disruption management is the required CPU time for optimal solutions. The
airline OCT requires solutions to network disruptions within a few minutes, and models lose their usefulness
if this is not guaranteed. By making use of heuristics or large servers, models which solve disruptions ac-
curately in an operational environment already exist, however there is no model that gives an exact solution
which considers all possible disruption scenarios, with all possible recovery strategies within reasonable time.





4
Robust Airline Network Planning

In the design process of the airline network, airlines try to plan for the unexpected. Kohl et al. (2007) list a few
techniques which are used by airlines. These include:

• Slack in the schedule: Add some time to the minimum TAT, in order to be able to absorb delays.

• High speed flying: Increase speed, and therefore fuel costs, in order to decrease passenger delays, and
crew costs. This is an effective way to absorb delays, especially on longer flights.

• Crews follow the aircraft: Crew stays with the aircraft. This eliminates transfer times for the crew, and
makes for easy monitoring of the operations.

• Out and back: Aircraft fly to a destination, and directly back to the same hub airport. In case of a
disruption, only two flight legs are directly affected, so delay absorption and recovery is straightforward.

• Stand by crews and aircraft: May be used in case of a disruption. Effective for recovery, but costly.

This chapter explains the possible actions airlines may take to improve network robustness. Section 4.1
explains measures which may be taken to absorb delays, and avoid delay propagation. Section 4.2 explains
measures which are required in case of more severe disruptions. Finally, Section 4.3 explains the proactive
measures to recover the crew in case of disruptions.

4.1. Schedule Absorption Capacity
The schedule of airlines is often disrupted by delays or cancellations. In the network planning phase, small
disruptions are taken into account, and should not have a large impact on the network. By including more
buffer in the schedule, more disruptions are resolved with a minor impact. However, when the buffer is not
used, there is more ground time, so the resources are used less efficient, which leads to an increase in cost
(Clausen et al., 2010).

4.1.1. Retiming of Flights and Buffer
According to Clausen et al. (2010), there are two challenges in absorption robustness planning: how much
slack should be incorporated in the schedule, and where should this slack be scheduled. The first who ad-
dresses this issue in literature is Wu (2006). He follows a sequential approach, In which the schedule is first
created, and then fine-tuned. Flights are modelled with two modules: the turnaround, and enroute modules.
In these modules, the time taken for all airport and flight operations are simulated using stochastic disrup-
tions, and a Monte-Carlo simulation with 1,000 runs to reduce simulation noise levels. The turnaround mod-
ule includes all airport ground operations such as passenger (de)boarding, cargo and baggage (un)loading,
catering (un)loading, and fuelling. Because many activities should be performed sequentially, and disrup-
tions are stochastic, semi-Markov Chains are used to model the ground operations, and disrupting events
are modeled as disrupting states in the Markov model. The enroute module also uses stochastic functions to
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simulate the total block time. It considers airport layout, runway congestion, queues on taxiways, and ATC
delays, and historic flight block times between airports. In the following step, all flight rotations in the sched-
ule were analyzed for delays, and the flight and buffer times were adjusted in order to have an expected delay
of less than 15 minutes. The use of the model resulted a reduction in departure delays of 30%. The overall
schedule reliability increased form 37% to 52%. The model does not take into account airport restrictions due
to slots for example. Furthermore, passenger connections are not included in the model, which reduces the
usefulness for for H&S airlines.

The second challenge defined by Clausen et al. (2010) is where to implement a buffer in the schedule.
Aloulou et al. (2010) tries to allocate the scheduled slack to flights by allowing flights to deviate from their
planned departure time slightly. The model takes into account the required time between flights, and the
time required for passenger connections. Fleet and crew assignment does not change in their model. The
model objective is to maximize robustness, with constraints which ensure passengers are able to make their
connection, in addition to the network flow conservation, and the coverage of all flights exactly once. The
model selects flights from a set of possible departure times. Multiple scenario’s were tested with different
discretization times, and different departure time windows. The most accurate simulation with the smallest
discretization of 5 minutes, and largest time window of 15 minutes resulted in a 35% lower number of delays,
and a 30% reduction in total delay time.

In a similar approach, Ahmadbeygi et al. (2010) presented a model which minimized delay propagation
by re-allocating the slack already present in the schedule. Connecting passenger itineraries are unaltered,
and flight times do not change significantly in order to keep projected demand levels accurate. One of the
limitations of the model is that recovery decisions, which could have a high impact on delay propagation, are
not considered. Furthermore, interactions from two delays are not taken into account, but are both counted
as a delay. Ahmadbeygi et al. (2010) present two models: a single- and multi-layer model. The single-layer
model considers the effects of delays on a flight’s immediate connections. The multi-layer model takes into
account propagated delays, until the delay is completely absorbed. The delay propagation tree is introduced,
which shows propagated delays over the entire routing. Both models were tested with different optional time
windows, and gave fast results. The most accurate model gave a reduction in delay propagation of around
50%. With this model however, some crew connections may become infeasible, because the time between
flights becomes too short. The model does not allow changes to the aircraft routing.

Ben Ahmed et al. (2017) first solves the aircraft routing problem. Flights in the network are then retimed,
with a maximum On Time Performance objective. Delays are simulated using a Monte-Carlo simulation.
Results show an increase in on time performance of 9.8-16%, a reduction in total delay of 25-33%, and a re-
duction in delayed passengers of 8-21%. The average change of flight departure time was between 13.5 and
15%. This is the average, so there are larger time changes. These changes in departure time have a significant
impact on the network, and since the aircraft routing problem is usually performed at most a week before a
flight, this is not always feasible as tickets are sold way in advance.

A drawback of buffer scheduling and retiming is that research in this area is focused on maximizing slack
in order to increase the robustness of the network. This is not always possible however, since the already
scheduled slack is often there to make the schedule feasible. Ben Ahmed et al. (2017) suggests research in the
direction of integrated flight retiming, aircraft maintenance routing, and crew pairing in a single model.

4.1.2. Routing for Flight Delays
Lan et al. (2006) created two models. The first model solves the aircraft routing problem, and incorporated
robust measures by optimizing aircraft and maintenance routing. The objective is to minimize propagated
delay of selected aircraft routings. The delays are taken from historic data, or created using stochastic meth-
ods. Aircraft routings are all possible sequences of flights a single aircraft registration may fly. The problem
is solved with the branch-and-price algorithm. By using these robust measures, the simulated number of
propagated delays of the case studies reduced by 27 to 54%, or 44% on average. Furthermore, the on time
performance increased by a few percent. The second model by Lan et al. (2006) uses an existing schedule
and retimes flights in order to reduce passenger missed connections. The objective is to minimize the ex-
pected number of delayed passengers. There are additional constraints that enable the current routings and
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itineraries. This model is solved with the branch-and-price algorithm as well. The model creates copies of
flights, and chooses the most optimal for the smallest number of passenger disruptions. The number of
copies was varied from one every minute, and one every five minutes, with time windows from 5 to 15 min-
utes before and after the originally scheduled time. The effect of a larger time window was larger than the
effect of more copies, while the extra copies increased the size of the problem by at least 10 times. It would
be interesting to see the integration between the two models.

4.2. Schedule Recovery Capacity
In case of a more severe disruption, the network is usually not recoverable by absorption. To be able to re-
cover from severe disruptions, due to technical issues for example, multiple recovery measures may be incor-
porated in the schedule. Examples are: swapping opportunities, station purity, use of short cycles, and the
use of sub-networks. Increasing recovery capacity generally leads to a reduction in maximum revenue, but a
reduction in total cost due to recoveries.

4.2.1. Swapping Opportunities
Swapping opportunities may be used by airlines to switch aircraft rotations, in order to decrease delay propa-
gation further in the network. An aircraft which has more buffer in the schedule may be assigned to a delayed
flight. Due to the additional buffer, the delay is absorbed, rather than propagated to the next flight.

Burke et al. (2010) used a multi-objective approach, in which botch schedule reliability and flexibility are
optimized. The model is built on a time-space network simulating a week of operations. Flexibility in the
flight times of the model is created by constructing copies of the flight arcs in a predefined time window,
which is small enough to have a negligible effect on passenger demand, and a small effect on passenger con-
nections. The schedule reliability is modeled by simulating stochastic delays which results in the probability
a a flight departs on time. The flexibility of the schedule is modeled by simulating the probability a flight
departs on time which used one of the three types of swapping opportunities. The methodology is based on
genetic algorithms combined with local search. The model was applied to data from KLM, and achieved an
improvement in on time performance in nearly all cases. A drawback of the model by Burke et al. (2010) is
that while it is capable of swapping aircraft of the same type, it is unable to simulate aircraft type changes.
This is more expensive and complex than a singe type aircraft swap because different aircraft types require
different crew, and different aircraft types usually have a different passenger and cargo capacity and perfor-
mance. It is still used sometimes to for the continuation of the network. The swapping of maintenance slots
is also not included in this model.

Ageeva and Clarke (2000) researched robust airline schedule planning, and concentrated on subroute
switching. An initial set of routings was created, which was used to generate multiple alternatives. Alterna-
tive solutions were created by adding constraints. When applied to the test data, the author concluded that
in some cases a 35% increase in robustness could be achieved. The model gave the best results when two
aircraft were allowed to depart within 30 to 40 minutes of each other. This results in a maximum delay of 40
minutes, which may be acceptable. This model does not take into account crew considerations, which might
result in infeasible, or very expensive solutions.

4.2.2. Station Purity
Smith and Johnson (2006) suggests applying station purity to the network. Station purity ensures that the
number of fleet types, which serve an airport, does not exceed a specified limit. This makes it easier to move
up crew assignments to cover operational disruptions. The model of Smith and Johnson (2006) is a standard
fleet assignment model, with extra constraints which ensure station purity. This extra constraints increased
program run time significantly, especially using scenario’s with more flights and fleet types. The authors de-
veloped methods to reduce the required computation time. When assuming there are only flights between
hub airports, or between hub and spoke airports in the H&S network, computation time is reduced. Spoke
airport are modelled as hubs, or grouped with other spoke airports, which is easier to solve. Results showed
a lower profitability, but a faster computation time. This station decomposition method is further improved
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by using dual stabilization. The station decomposition method is faster with station purity, but it sometimes
gives higher MIPgaps. This was solved using a fix-and-price heuristic. Crew costs are reduced by using station
purity, but Smith and Johnson (2006) does not elaborate on the effects of station purity on recovery opera-
tions, such as swapping opportunities.

4.2.3. Hub Isolation and Short Cycles
By applying hub isolation and reducing the size of cycles, the number of cancellations is reduced, since less
consecutive flights have to be canceled in case of one cancellation. Rosenberger et al. (2004) use the fleet
assignment model in a time-space network, and use this to create two separate models. One constrains hub
connectivity and minimizes cost, and the second constrains cost, and minimizes hub connectivity. Results
from the models show an improvement in on time performance, a reduction in cancellations, and a reduction
in aircraft swaps in most cases. The model by Rosenberger et al. (2004) is only applicable for multiple hub
airlines.

4.2.4. Reserve Aircraft
An additional measure for schedule recovery is the scheduling of reserve aircraft. Airlines do this regularly in
its operations. This is an expensive solution, but it gives the freedom to use the reserve immediately when
a flight is very late, or in case of technical problems. Varenna (2023) investigated the effects of an additional
reserve, and results showed that it is commercially not an attractive option, as the missed revenues exceed
the cost of a cancellations.

4.3. Proactive Crew Recovery
When disruptions occur in the airline network, there may be an additional challenge in rescheduling or repo-
sitioning the crew.

In order to increase the robustness in the crew schedules, Ehrgott and Ryan (2002) created a model which
is a bi-criteria optimization. It minimizes costs, and maximizes robustness at the same time. These two mea-
sures are usually in conflict. The authors assign a non-robustness measure to all "Tours of Duty", and penalize
crews which have to switch aircraft. The size of this penalty is based on the transfer time, and expected de-
lay. Ehrgott and Ryan (2002) conclude that for a small increase in cost, there is a significant gain in schedule
robustness. The increase in cost is mainly in the form of increased number of overnights, while the increase
in robustness is due to a reduction in aircraft switches. For some cases the median ground time tends to de-
crease. This bay be because of the decreased number of aircraft switches, or the increase in overnights.

Schaefer et al. (2005) present a model which creates crew schedules, while remaining traceable. The
model determines the expected pairing costs, based on the assumption that planes are always available, and
all flights are delayed until crew is available. This means the model is restricted in the recovery options, since
airlines have more options to recover the schedule than only delaying flights. The pairing costs are estimated
using a Monte Carlo simulation. Crew rest, and transfer times are included in the model. To ensure the model
is able to absorb delays without recovery actions, there are penalties given to the crew schedules if there are
short sits, or short rest times. The best set of penalties is found using local search. The penalties are used to
create an objective functions, which is solved using a set partitioning approach. The problem is solved by LP
relaxation over the generated parings, and a random column generation algorithm.

Schaefer and Nemhauser (2006) use an existing airline schedule, and create perturbations. These pertur-
bations do not alter crew paring or route feasibility. In the model, the assumptions of aircraft availability, and
push-back recovery were made, similarly to the model of Schaefer et al. (2005). By introducing perturbations,
the authors define lateness, and prove that with a larger perturbation, the lateness decreases. This means
there is a better on time performance. Furthermore, larger perturbations lead to lower operational crew costs,
since the planned cost, and operational flying time remain the same, and duty time, and the lateness are not
larger than the original schedule. Results from the model show an increase in operational performance, while
not increasing crew costs. The assumption of push-back recovery limits the model severely, since airlines use
more tools to recover the schedule.
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Yen and Birge (2006) try to solve the crew assignment problem with a stochastic model in stead of a more
traditional deterministic model. The objective is to minimize the cost of crew parings, and delay costs due
to crews switching planes. The model augments crew schedules, allows or disallows crew switches between
flight pairs, and uses a branching approach. Yen and Birge (2006) restrict the problem by making plane as-
signment static, having a homogeneous ground time for aircraft and crew, and bounding the delay times. All
crew members fly the scheduled flights regardless of delay circumstances. In reality this gives legal issues.
The authors conclude that the model finds solutions with fewer plane changes, and an increase in connec-
tion times in case of a plane change. This leads to less costly schedule disruptions. In reality, the assumptions
made are not completely realistic. The plane assignment is not static, and different planes may have a differ-
ent ground time. The operations control team may also chose to reduce TAT. Furthermore, the actual delay
may exceed the maximum delay as used in this model. Taking all these factors into account may lead to a
more expensive solution. However, this approach can be used in comparison to reality, and gives some in-
sights.

While Schaefer et al. (2005) and Schaefer and Nemhauser (2006) minimize the costs associated with crew
swaps, Shebalov and Klabjan (2006) try to maximize swapping opportunities in addition to minimizing crew
costs. This has two advantages: the possibility of a crew to cover one of a few flights, and the opportunity for
an airline to chose which flight to cancel in case of a disruption. The only pairing feasibility rules which are
taken into account by the model are that crews start at the same base, and have the same number of days
left in the pairing. This might give issues with crew work and rest times in reality. The model of Shebalov
and Klabjan (2006) has two steps. The first step is to solve the crew pairing problem for minimum cost. Then
the number of move-up crews is maximised, with a constrained increase in crew cost. The problem is solved
by Lagrangian relaxation and column generation. In most cases, the model gives lower operational flight
time credit, and uncovered flight legs. Number of deadheads (crew flying as passengers) and reserve crew
decreased in all test cases. The trade-off between robust and traditional solutions should be made carefully,
but a robust solution within 1% of the optimal solution may reduce total crew cost.

Previous described models try to minimize crew cost, and maximize swapping opportunities. Sohoni et al.
(2006) researched the effects of reserve crew for airlines. Demand of reserve crew is estimated by evaluating
the bidding-invoked conflicts, and demand for daily operations. The model succeeds in increasing reserve
availability. Improvements could be made in simulating the daily network, to forecast disruptions.

The model of Ben Ahmed et al. (2022), explained in Chapter 3 has robustness measures incorporated in
the objective function. A penalty is applied if resource connections are short. This applies to both crew and
aircraft. Schedules where the crew follow the aircraft are promoted bu restricting the number of crew changes.
In the relaxed versions of the model, there is a fixed penalty whenever crew changes aircraft. Ben Ahmed et al.
(2022) analyze their models, and compare the results of the model with and without robustness measures
incorporated. Robustness measures resulted on average in 88% reduction in short crew connections, 81%
reduction in critical crew connections, 55% reduction in critical aircraft connections, and the crew followed
the aircraft more often. Aircraft assignment cost increased with 0.17%, and passenger revenue decreased with
0.01%. This reduction in profit is most likely offset by the reduction in delays on the day of operations.

4.4. Concluding Remarks
The largest part of robust scheduling takes an existing schedule, and improves this by adding robustness
measures. This always leads to a decrease in potential operating profit compared to the schedule without ro-
bustness measures. Recent developments integrate robust measures in the scheduling phase, decreasing this
additional cost effect. Initially, research focused on the performance improvement in one area. Similar to the
trend of the "regular" airline scheduling research, recent and future developments focus on the integration of
multiple areas. A robust aircraft schedule may have costly implications for crew. By integrating these areas,
both may be optimized.





5
Conclusion

This aim of this literature review is to give an overview the methods which are used to create the airline net-
work and schedule, how disruptions are countered, and what measures may be taken to plan for disruptions.
Analysis of the airline planning and optimization papers indicates that exact methods exist for the classical
sequential approach in frequency planning, fleet assignment, maintenance routing, and crew scheduling.
Some models integrate two or more of these. No exact methods exist which integrate all four parts, as the
number of variables is too large, even for relatively small airlines, but the trend in operations research is the
increase in research about integrated models.

Solving a disrupted airline network is often a challenging task. Originally, most research was focused
on aircraft recovery, followed by passenger recovery, and crew recovery. Following the same trend as airline
schedule design, recent research focuses more on integrated models. As the OCT often has to make decisions
within minutes, models which aid in making recovery decisions have to give fast results. There are existing
models which consider most disruption and recovery types and give exact solutions. These models however,
take a long time to give results. Therefore more and more models make use of heuristics, multi-agent sys-
tems, and there is potential for research using machine learning models.

The airline network schedule is designed with a maximum profit objective. This usually means flying as
much as possible, and reducing ground time to a minimum. To avoid many cancellations on the day of op-
erations due to inherent delays, the schedule should be robust. Most research about robust scheduling is
focused on aircraft routing, but robust crew and passenger scheduling is also covered in literature. Similar to
the trend of the other research areas, there is more research about integrated robust scheduling.

When looking at the existing literature, most robustness assessment models are aimed at the effect of
robustness measures. There are tools that re-allocate existing slack, but there are no tools that asses the
actual slack that is required to achieve predefined KPI’s. When creating a schedule for a new season, it is
useful to determine the required slack and reserve aircraft/crew before creating the schedule. There is a gap
in literature for a simulation tool which assesses the performance of schedules with different operational
design criteria from the OCT point of view. Therefore the MSc thesis has the following objective:

To develop a network scheduling simulation model which adheres to, and evaluates design criteria such as
schedule buffer, swapping opportunities, and reserve aircraft, in order to improve airline performance on the

day of operations.

The main, and supporting research questions which aid in meeting the MSc thesis objective are listed
below:

What design criteria should be incorporated in the airline schedule to improve robustness and meet the airline
Key Performance Indicators?

1. How is the airline schedule currently created?
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2. To what extent is it possible to model the airline scheduling process, considering design criteria of all
airline departments?

3. What options does the Operations Control Team have to solve network disruptions?

4. How is a disruption management tool used to solve disruptions?

5. What are the current design criteria from all airline departments?

6. How will a tool help in improving the OCT design criteria?

7. What Key Performance Indicators are important to the airline, and what are the targets?
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