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ABSTRACT

As of 2021, the world economic forum deems cyber-security failures as one of the most potent threats to the
world. According to a McAfee report, the cost of cyber crimes in 2020 reached nearly 1 trillion US dollars,
which was around 50 percent more than what it was in 2018. Exacerbating the already mammoth financial
implication of such a failure is the ever-growing diversity in cyber attacks. Side-channel analysis is one such
attack type wherein the information leaked via the implementation of a cryptographic algorithm is leveraged
to obtain secret data, rather than any weaknesses in the cryptographic algorithm itself. This leaked informa-
tion, amongst others, can be in terms of power, EM radiation, or the time taken to perform a cryptographic
operation. Countermeasures against such side-channel attacks aim at reducing the amount of information
leaked via the side channels or reducing the correlation between the secret operations and the information
leaked.

Manufacturing the chip is often a prerequisite for evaluating the efficacy of such countermeasures, which
is a costly and time-consuming process. Thus, the security evaluation of a design has a substantial impact on
the design cost and the time to market. In case the design does not meet minimum security requirements,
it has to be redesigned and manufactured, increasing not only costs but also the design time considerably.
Hence, there is a need for pre-silicon leakage assessment tools that can provide designers a sense of certainty
about the security aspects of their design. However, the existing pre-silicon leakage assessment tools are
either deemed unreliable or too slow to be used to perform power leakage assessment, which is the problem
this thesis aims to ameliorate.

This thesis explores the use of generative adversarial networks (GANs) for generating synthetic power
traces. Generative deep learning has been used in various domains like computer vision, audio, and even
for medical data like ECG. GANs have been introduced in the context of side-channel attacks to enlarge the
size of the profiling dataset for carrying out profiled side-channel attacks. In this work, we propose a robust
methodology to condition and train GANs to generate power traces that can be used to carry out leakage
assessment. This methodology can even be extended to support the design space exploration of counter-
measures by providing reliable leakage assessment at design time. The generated power traces are not only
indistinguishable but also as attackable as the real traces. The conditioning technique helps the GAN to
generalize to various scenarios and the proposed framework provides a speed-up of around 140 times over
traditional CAD methods to simulate power traces while maintaining their structure and accuracy.
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1
INTRODUCTION

This chapter will introduce the contents and the structure of this thesis. Section 1.1 describes the motivation
behind leakage assessment and the financial implication of not safeguarding against side channel analysis.
Section 1.2 briefly introduces the current available CAD tools to perform pre-silicon leakage assessment and its
shortcomings. Section 1.3 enumerates the research questions of this thesis and Section 1.4 describes the main
contributions. Finally, Section 1.5 outlines how this thesis is structured.

1.1. MOTIVATION
With the ever growing human reliance on cyber-physical systems, comes the fear of cyber attacks. Cyber-
physical systems, as the name suggests, is an agglomeration of the cyber and the physical domain. Unlike
the physical domain, the cyber domain is not tangible but has nevertheless proved to be an integral part of
human existence. The Internet of things paradigm is boosting this technology inclusion even further due to
recent advancements in networking [5] and AI [6]. This ubiquity of cyber physical systems is one of the major
contributing factors to why the world economic forum deem cyber attacks and IT breakdowns as potent risks
in their global risk perception report [7]. World economic forum specifies that the cyber-security infrastruc-
ture is often rendered obsolete due to ever increasing sophistication of cybercrimes which can not only have
large financial implications but can also lead to geopolitical tensions.
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Figure 1.1: Cost of cybercrimes

According to a McAfee report [8], the cost of cyber-crimes in 2020 reached nearly 1 trillion US dollars,
which is around 50 percent more than what it was in 2018. Figure 1.1 is inspired by [9] and highlights the
massive increase in the cost of cybercrimes in the recent past. These figures almost sound unreal until we
realize how intricately connected the entire digital ecosystem is. For example, in 2017 the WannaCry ran-
somware attack losses reached around 4 billion US dollars [10]. The reason the loss was so high is because
it impacted not only individuals but also big organizations, since the attack leveraged vulnerabilities in the
windows operating system affecting as many as 200,000 computers across the world [10]. This cyber-attack
also impacted healthcare services [11] and even halted chip production at TSMC [12]. This chain of impact
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4 1. INTRODUCTION

on seemingly unrelated domains is what makes cyber-attacks such a potent risk. To make the situation even
worse, these attacks can leverage vulnerabilities in the network, in the software and even in the hardware. A
classification of some different Cyber-Physical attacks can be seen in Figure 1.2.

Figure 1.2: Flowchart of Cyber-Physical attacks

In this work, we are concerned with attacks in the hardware domain. A few popular hardware attacks are
side channel analysis [13], fault injection [14] and hardware trojans [15]. Side channel analysis has gained a
lot of interest in the recent past because unlike other hardware attacks, side channel analysis does not require
modifications to the chip. Instead, they leverage the information leaked from the operation being executed
on the chip. The side channel information source can be in the form of acoustics [16], EM radiation [17],
power [18], time [19], photonic emission [20] and even through test infrastructure like scan chains [21].

Amongst the different kinds of side channels, power analysis has proven to be immensely popular due to
three reasons. The first is that power attacks are simple to carry out since they just require simple tools and
a low level of technical knowledge. Second is that they are much more robust to noise as compared to other
side channels like acoustics. Finally, unlike other side channels like time, which is reliant on the response
of the operation execution, power attacks allow the attacker to examine every stage of the secret operation.
Hence the chance of identifying the weakest point of attack increases.

With the increase in the number and sophistication of power based side channel attacks, the demand for
developing countermeasure against them has also increased. Developing countermeasure and evaluating
their efficacy is a complex task. Designing for security from a hardware perspective is much more complex as
compared to its software counterpart solely because in the event of discovering a vulnerability, just software
patches will not alleviate the problem. Any security vulnerabilities in a design on a hardware level can only
be addressed by changing the design and re-manufacturing, which can be immensely time consuming and
expensive. This means that safeguarding hardware against such attacks requires holistic analysis. From a
power-based side channel analysis point of view, this means that to test the security of a design a prototype
must be manufactured which can then be used to collect power traces. The evaluation is done using security
tools and equipment from companies like Rambus [22] and Riscure [23].

Manufacturing the prototype is a time consuming and expensive process. In a situation when the device
fails to pass the security assessment, the design needs to be changed before it can be manufactured and tested
again. This not only increases the R&D cost but also the design time. Hence, there is a requirement for a tool
that can robustly perform pre-manufacturing (pre-silicon) leakage assessment.

1.2. STATE-OF-THE-ART LEAKAGE ASSESSMENT TOOLS
Leakage assessment tools can be classified as pre-silicon and post-silicon. Pre-silicon leakage assessment
tools usually work under a white-box assumption, which means that there is full knowledge of the device
under consideration. Post-silicon leakage assessment tools, on the other hand, usually work with a black-
box/gray-box assumption. This means that there is very-minimal/some information available about the
physical target [24]. Post-silicon tools are employed by software developers aiming to write side channel
analysis resistent software. With a higher abstraction levels (as in black-box analysis), analyzing side chan-
nels are particularly difficult and require establishing high level leakage models. These models are limited
to relatively simple architectures (most common tools work on ARM-Cortex M0) and work by correlating in-
structions with power consumption, with the objective of grouping instructions that consume power in a
similar fashion. It is clear that there is an innate dependence on the micro-architecture details of a design
and porting to different micro-architectures is a complex task. Two examples of such post-silicon tools are
ELMO [25] and SAVRASCA [26].
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For pre-silicon leakage assessment (which is the focus of this thesis) there are quite a few existing meth-
ods. A detailed comparison of such pre-silicon methods also exists [24]. The authors of this comparison
call the state-of-the art pre-silicon tools as fragmented and non-reusable and highlight that they lack in ex-
ecution speed. These techniques can be broadly divided into three categories, formal verification [27] tools,
CAD tools [28] and functional simulation tools [29]. Formal verification mathematically analyzes the leakage,
whereas the CAD tools try to simulate the power behaviour of the implementation. Two examples of formal
verification are [27, 30]. Both [27] and [30], are targeted for performing leakage assessment for the mask-
ing countermeasure. Unfortunately, such solutions focus on analyzing randomness created by masks and is
limited to just a particular form of countermeasure, which is masking. An example of a CAD-based solution
is provided by Sadhukhan et al. [28] where they examine the leakage using both simulated and hypothetical
power traces. Another example suggested by Nahiyan et al [31] is that they reduce the number of power traces
needed to evaluate the leakage by improving the signal-to-noise ratio (SNR) algorithm. Unfortunately, cre-
ating simulated power traces is a time-consuming operation, and reducing the number of simulated traces
cannot validate the protection against real attacks such as CPA, which typically require a large number of
traces. Which is why in the industry it is common to see secure IPs being evaluated with a minimal of 10
million power traces [32]. Therefore, a CAD-based assessment solution can only be a viable solution if it can
generate millions of power traces in a reasonable amount of time. Unfortunately, the CAD-based tools are
known to be extremely slow and generating as many as 10 million power traces using them is not viable. For
example, the solution proposed by Sadhukhan et al. [28] takes 5.47 seconds to generate a single trace. Gen-
erating as many as 10 million power traces using this technique will take around 633 days. This is, of course,
not practical.

To obviate the need of using CAD-based tools for power trace generation, functional simulation tools
like RTL-PSC [29] have been introduced. Wherein, the functional simulation of a design is used to carry
out pre-silicon leakage assessment. This technique does not generate power trace as it is solely dependent
on the switching activity file. This dependence on the switching activity makes this methodology not fit for
modelling the design’s technological behaviour(e.g., CMOS), which is useful for various countermeasures and
is not visible using simply the switching activity. The switching activity also gives a rather ideal picture about
the power consumption since it does not model any non-idealities like timing violation. Hence, there is need
for a tool that can not only carry out pre-silicon leakage assessment in a reasonable amount of time, but can
also accommodate the device’s technological behaviour and non-idealities correctly so as to model its leakage
robustly.

1.3. RESEARCH QUESTIONS
Introduced in 2014, Generative adversarial networks (GAN) are neural networks that aim at generating sam-
ples that resemble the data they have been trained on. This characteristic has made GAN a popular choice for
a variety of data-based applications, such as images, audio, text, and videos. GANs may be used in a variety
of ways to improve the quality of these applications. For example, GANs have been proposed as means to re-
duce the scarcity of training data in the field of bioinformatics, like in medical imaging. Here, GANs have been
used to enhance the training data so as to train models that can accurately identify malignant tumors [33]. In
the entertainment sector, GANs have seen a lot success, namely in enhancing the quality of images [34] and
colorization [35] of monochrome images.

This research studies the ability to use GANs to generate reliable power traces using design simulation,
that can be used for security analysis against side channel attacks. Our goal is to build a framework that
simulates the switching activity of the target design and feeds this into a Generative Adversarial Network
(GAN). The GAN then analyzes the switching activity and generates power traces. Finally, The generated
power traces are then validated using well-known power attacks. This thesis tries to answer the following
research questions:

1. Can GAN generated traces be used for security evaluation of an IC at design time?

2. Do different GAN architectures impact the quality of the generated traces?

3. What evaluation metrics can be used to evaluate the GAN generated traces?

4. How much speed-up can this GAN methodology provide over the standard CAD tools?

5. How well do GANs generalize to different implementations?
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1.4. CONTRIBUTION
The objective of this thesis is to build a tool for pre-silicon power leakage assessment, which can quickly but
robustly perform the evaluation. A Generative adversarial network (GAN) is used so as to synthetically gener-
ate power traces that can be used for this task. Different GAN architectures and label options are evaluated so
as to determine the optimal architecture. The GAN is trained using 10000 power traces from FPGA evaluation
of an AES-128 design. However, it can also be trained with power traces generated from an ASIC or even traces
from CAD tools. To test that a trained GAN can generalize to different implementations of AES-128 (with and
without countermeasures), validation and test labels using those designs are computed and are used to gen-
erate power traces. These generated power traces are then compared with the real power traces using various
side channel analysis and signal processing metrics.

The main contributions of this thesis are:

• A novel methodology for pre-silicon power leakage assessment: this work, to the best of our knowl-
edge, is the first application of generative deep learning for the task of pre-silicon power leakage assess-
ment. GANs are trained on power traces corresponding to a specific implementation and their ability to
generalize to other implementations is successfully demonstrated using various side channel analysis
and signal processing metrics.

• A detailed comparison of various GAN architectures and labels for power trace generation: we ana-
lyzed and validated the impact of various GAN architectures, label options and hyperparameters on the
task of power trace generation with the aim of finding the most optimal model for the task of pre-silicon
power leakage assessment.

• A detailed analysis of the impact of conditional GAN labels on power leakage: we demonstrated that
the choice of labels for conditional GANs have a grave impact on the amount of information leaked
by the generated power traces. Various label options and conditioning techniques are explored so as
to fine-tune GANs to generate power traces that are indistinguishable from the real traces, not only
visually but also in terms of the information they contain.

• A successful demonstration of the similarity between real and generated power traces: using both
side channel analysis and signal processing metrics, the GAN generated traces are holistically com-
pared with the real traces to assess the ability of GAN to perform pre-silicon power leakage assessment.
Inference time traces generated using finely tuned GAN architectures and label options are demon-
strated to be indistinguishable from the real traces.

The contributions of this thesis have been condensed down into a research paper that has been attached as
appendix E.

1.5. THESIS ORGANIZATION
The report is split into six chapters. Background information is covered in the first three chapters. The next
two chapters provide a methodology for power trace generation using GANs as well as the associated results.
Finally, the last chapter concludes this thesis along with some light on future research avenues. Each chapter
contains the following information:

• Chapter 2: This chapter introduces the key concepts that form the foundation of modern day crypto-
graphic algorithms and gives an overview of popular symmetric and asymmetric algorithms.

• Chapter 3 : This chapter gives an overview of different side channel attacks, with an emphasis on power
based side channel attacks. Both profiled and non profiled attacks are explained in detail along with
the countermeasures against them.

• Chapter 4: This chapter explains the deep learning concepts that are a prerequisite for this thesis. Be-
ginning with the history of deep learning, the chapter slowly progresses towards modern-day genera-
tive deep learning models. It first covers fundamental neural networks and information on building,
training and tuning the models using Keras and PyTorch. Then, generative deep learning is explained
along with a comparison of state-of-the-art generative models.

• Chapter 5: This chapter describes the end to end methodology of generating power traces using GANs.
Beginning with possible label options, the chapter covers different GAN architectures and the impact of
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tuning the different hyperparameters associated with each architecture. The GANs are also compared
amongst themselves to identify the most promising architecture and label option.

• Chapter 6: This chapter describes the results associated with the GANs introduced in Chapter 5 along
with a detailed analysis of those results so as to propose a leakage assessment framework using VCD
conditioning.

• Chapter 7: This chapter concludes this thesis with a brief overview of the entire text as well as future
research avenues.





2
CRYPTOGRAPHIC ALGORITHMS

This chapter 1 gives a brief introduction to cryptography. First, a few key concepts which form the foundation of
modern day cryptographic algorithms are introduced in Section 2.1. Next, Section 2.2 explains the symmetric
cryptographic algorithms along with a few examples of both block and stream ciphers. Similarly, Section 2.3
explains asymmetric cryptographic algorithms along with a few examples of the different kinds of one-way
functions.

2.1. HISTORY AND OVERVIEW
Cryptography is defined as the science of hiding a message’s meaning. As a concept, it has been around for
thousands of years. One famous historic example is Histiaeus of Miletus [36] who used to shave the heads
of slaves and tattoo secret messages on them. He then waited for their hair to regrow before asking them to
travel. Another example is Caesar’s cipher [37] where each letter is shifted by a certain fixed offset. For this
cipher, the offset value serves as a key. There is also the Scytale cipher [37] where a parchment is wrapped
around a cylinder and then the secret message is written. For this cipher, the width of the cylinder serves a
key.

Every encryption algorithm has two main operations, encryption and decryption. In encryption the
sender encodes a message (plaintext) so as to obscure the meaning of that message (hence generating a
ciphertext). The encoded message is then sent over a channel to a receiver who then decrypts this ciphertext
back to the plaintext. The procedure of encryption and decryption is public knowledge, in accordance with
Kerckhoffs’ principle which states that "A system must remain secure if everything except the key is known to
the adversary" [38]. All strong encryption schemes utilize confusion and diffusion. Confusion ensures that the
relationship between the key and the plaintext is not obvious. Diffusion ensures that every plaintext symbol
has an impact on multiple ciphertext symbols, for example changing on bit in the plaintext should change
multiple bits in the ciphertext. The aim is to ensure the CIA criteria. Where the ’C’ comes from confidentiality,
which means that the attacker should not be able to observe messages between the sender and the receiver,
even in an un-secure environment. The ’I’ comes from integrity, which means that the message should not
be altered during encryption or transmission. Finally, ’A’ comes from authenticity, which means that the
message must come from the source it says it comes from.

Cryptographic algorithms can be further divided into 2 types, symmetric and asymmetric algorithms.
These algorithms can in turn be classified as stream ciphers and block ciphers. Stream ciphers work on each
bit of the plaintext individually whereas block ciphers work on blocks of plaintext bits. Crypto-algorithm
classification can be seen in Figure 2.1.

2.2. SYMMETRIC ALGORITHMS
In symmetric algorithms, both the sender and receiver use the same key. If the plaintext bits are processed as
blocks, the algorithm is known as block cipher. Some popular block and stream ciphers are as follows:

1heavily based on the book Understanding Cryptography by Christof Paar and Jan Pelzl [1]
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Figure 2.1: Cryptography Flowchart

2.2.1. DES
DES was introduced to the public by the National Security Agency in 1977 [39]. It encrypts 64 bits blocks with
a key of size 56 bits. It has a total of 16 rounds and has a Feistel network structure, which means that for every
input data block and subkey, the network outputs a block of the same size as that of the input data block.
Note that only half of the input data block is encrypted in any particular round and the other half is simply
xored. Also, the encryption and decryption in Feistel Networks are the same processes.. A flowchart of all DES
operations can be seen in Figure 2.2.

Figure 2.2: DES Flowchart

DES does the following operations:

• Pass the 64 bit plaintext block through an ‘initial permutation’ function. This step has no importance
on a cryptographic level and was solely made to assist the 8 bit hardware of mid 1970s.

• Next, this permuted input goes through 16 rounds of encryption, every round has its own subkey. All
subkeys are derived from a main key, hence a key generator is used.

• The output of the encryption round then goes through a ‘final permutation’. Since the initial and final
permutation are inverse functions, this step reverses the effect of the initial permutation.

According to the intial permutation table, the 58th input bit is mapped to 1st output position, the 50th input
bit is mapped to 2nd output position and so on. The final permutation would then inverse this effect. After
the initial permutation, there are 16 rounds of encryption. All the 16 rounds have the same structure. The 64
input bits of each round are split equally into a left and a right component. The left 32 output bits are simply
the right 32 input bits and the right 32 output bits are calculated using f function which takes a round subkey
and the right 32 input bits.The operations can be mathematically represented as follows:

Li = Ri−1

Ri = Li−1 ⊕ f (Ri−1,ki )
(2.1)

The f function works on the right 32 bits of the previous round and current round key. The right 32 bits
of the previous round are expanded to 48 bits using a so called E-box. Using this E-box, 16 of the 32 bits
are duplicated and the resulting 48 bits are XORed with the round’s key. The resulting 48 bit value is then
split into eight 6-bit values that are fed into 8 different S-Boxes. These S-Boxes are an integral component
to deter differential cryptoanalysis [40] since they introduce non linearity and increase the dependence of
every plaintext bit and every key bit with every ciphertext bit. In short, S-Boxes ensures that the DES input
and output can not be represented as a system of linear equations. If they were not part of the encryption
scheme, it would be possible to solve for key bits using this system of linear equations.
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The last thing to discuss about DES is the key schedule. The key schedule uses a 56-bit main key (out of
the 64 bits, 8 bits are used for parity) which generates sixteen 48-bit round keys. The 64 bits first go through a
permutation block labelled PC-1. Here, the 64 bits get converted to 56 bits, removing all the parity bits. The
resulting 56 bits are split equally and go through a 1-bit shift left rotate in rounds 1,2,9 and 16 and a 2-bit shift
left rotate for other rounds. The 56 bits after the shift left go through another permutation block labeled PC-2
to make the output 48 bits, which can thereafter be used as the round key. The decryption process of DES is
exactly the same as the encryption process and can be represented exactly as the encryption structure. Just
the key schedule changes wherein for the first round there is no shift right rotates, for round 2, 9 ,16 there
is a 1-bit shift right rotate and for the remaining there is a 2-bit shift right rotate. As is evident, the shifts in
decryption are the absolute anti of those in the encryption.

2.2.2. TRIPLE-DES
The primary security issue with DES was its key length. 56 bits key space is considered too small for an
algorithm to be deemed secure. This was the reason, 3-DES (pronounced triple DES) was introduced wherein
3 DES encryptions were carried out sequentially as can be seen in Figure 2.3. However, unlike the name
suggests, 3-DES offers security equivalent to a key space of 112 bits (56*2) and not 168 bits (56*3). The reason
for this is the meet in the middle attack. Simply put, since the encryption take place one after the other. Hence,
the encryption output of the second DES block is the encryption input of the third DES block. Meet in the
middle attack leverages this vulnerability by storing intermediate values of the encryption, with the aim of
finding a key pair such that encryption(plaintext, ke y1) = decryption(ciphertext, ke y3). where ke y1 and ke y3

are both 56 bits.

Figure 2.3: 3DES

Hence, instead of having to brute force 2168 possible keys, an attacker only need to brute force 256 +2112

possible keys.

2.2.3. AES
3-DES is strong enough even for today’s computationally standards. However, software implementation of
DES is slow and 3-DES is thrice as slow and works on just 64-bit blocks. AES was introduced to handle these
issues and became a United States federal standard in 2001. AES works on a block size of 128 and a key size of
128, 192 and 256 bits. The 128 bit key length version has a total of 10 rounds, 192 bits has 12 and 256 bits has
14 rounds. A block diagram of AES encryption can be seen in Figure 2.4. Note that every plaintext byte in AES
is processed as an element of Galois field 28. Concisely, Galois Fields can be defined as a finite set of elements
which can be added, multiplied, subtracted and inverted. The results of these mathematical operations result
in a number that still belongs to the finite set owing to modulo arithmetic. For example, for Galois field(2) or
GF(2), the operations are done modulo 2. If in GF(p) the value of p is prime, then the field is known as prime
field. However, AES works with an extension field : GF(28). This field has a total of 256 elements and all the
aforementioned mathematical operations are carried out using polynomial arithmetic.

Every AES encryption has four operations which can be seen visually in Figure 2.5. Note that since AES
works on a block size of 128, we can represent each block as a 4×4 matrix of bytes.

1. Substitute byte: This is a confusion layer and like DES, the substitute byte operation introduces a non
linearity which makes AES resilient against differential cryptoanalysis [40]. Also, AES has a single SBOX
as opposed to 16 SBoxes in DES. As represented in Figure 2.5a, each byte is substituted using the sbox.
Sbox can either be implemented using a lookup table or using matrix multiplication and affine trans-
form.

2. Shift Rows: As represented in Figure 2.5b, this is a Diffusion layer wherein bytes in every row are shifted
left and rotated using 0,1,2,3 shifts for row 1,2,3,4 respectively.
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(a) Encryption

(b) Decryption

Figure 2.4: AES

3. Mix columns: Mix Columns is implemented using a matrix vector product as represented in Figure 2.5c.
This is a Diffusion layer that combines all columns.

4. Add Round key: As can be seen in Figure 2.5d this is a confusion layer, where the input bytes are XORed
with the round key.

(a) SubBytes (b) ShiftRows

(c) MixColumns (d) AddRoundKey

Figure 2.5: AES Operations

The last thing that needs to be discussed is the key schedule. The key schedule depends on the key length
since that also decides the number of rounds. The 128 bits of the key are split into 16 parts, namely K0, K1, K2

.... K15. Our aim is to calculate a key expansion array which can be represented as W0, W1, W2 .... W43. K0 is
copied as is. For i in the range 1 to 10, the value of W is calculated as follows.

W [4i ] =W [4(i −1)]+ g (W [4i −1])
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For next 3 words, keeping i in the range 1 to 10 and j as 1,2 and 3. The value of W can be calculated as follows

W [4i + j ] =W [4i + j −1]+W [4(i −1)+ j ]

Note that g here rotates the input bytes, does a SBOX substitution and finally add a round coefficient.
This function is necessary since it adds non linearity. The decryption process is not exactly the same as
DES. Rather, the aim is to invert every operation carried out in the encryption phase. The two changes in
decryption are that the key schedule is reversed and the order of operation is reverse of that of encryption.
This can be seen in Figure 2.4.

2.2.4. CHACHA
ChaCha is a stream cipher, hence instead on working on blocks of plaintext bits like DES and AES it works on
each bit individually. As a overview, it uses a 256 bit key and a 64 bit Nonce to encrypt 512 bits of the plaintext.
In total there are 20 rounds, 10 column rounds and 10 diagonal rounds. All these rounds have just sum, XOR
and shift operation and hence make ChaCha much faster than AES [41].

2.3. ASYMMETRIC ALGORITHMS
In Asymmetric algorithms, also known as public key cryptography, the sender and receiver use pair of keys
known as public and private keys. They leverage one-way functions and do not depend on confusion and
diffusion for encryption. We can divide asymmetric algorithms using the class of these one-way function it
uses (as in Figure 2.1). Namely, factorization and discrete logarithm. If f(x) is a one-way function, calculating
f (x) is easy but calculating f −1(x) is computationally infeasible even using the state of the art algorithms and
computation resources. In detail, the one-way functions can be defined as follows:

1. Factorization Problem : Say that function f(x) computes the multiplication of two prime numbers. Cal-
culating f (x) is easy but calculating f −1(x) is computationally infeasible. This means that finding prime
multiplier and multiplicand corresponding to the output of f (x) is an extremely hard problem.

2. Discrete Logarithm : Given g, b and B such that all g ,b,B ∈ Zp
∗ where p is prime, calculating g b =

Bmod p is simple. However, using cyclic groups, calculating b when g and B are known is computa-
tionally infeasible.

Next, a few popular asymmetric algorithms will be discussed.

2.3.1. RSA
RSA leverages the factorization problem. Visually, the stepwise encryption and decryption process can be
seen in Figure 2.6. As is evident from the Figure, RSA operations are based on exponentiation. To perform
such large exponentiation operations, the square and multiply algorithm is used.

Square and multiply algorithm works bitwise on the binary representation of the exponent. Depending
on the bits, the operation is decided. Bit ‘1’ entails both square and multiply operations whereas bit ‘0’ just
requires the square operation. For example, if a value x is to be raised to the power of 5 (which is 101 in
binary). The first ‘1’ means that the value x is listed as is, the next bit ‘0’ means that the value x will be
squared to become x2. Finally, the last bit ‘1’ will mean that the value x2 will be squared and then multiplied
with the value x to become x5.

2.3.2. DIFFIE HELMAN
In itself, Diffie helman is only used to generate a shared secret. Diffie Hellman ensures that the shared secret
(key) is never communicated over the channel. Unlike RSA, Diffie Hellman leverages the Discrete logarithm
problem.

Visually, the Diffie Hellman approach for generating a shared secret can be seen in Figure 2.7. This serves
as an exchange scheme for symmetric encryption. For example, the shared secret can then be used for AES
encryptions wherein the shared secret serves as the key.

2.3.3. ELGAMMAL
Another popular use of the Discrete logarithm problem is ElGammal crypto algorithm. This algorithms makes
use of an ephemeral key and a masking key.
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Figure 2.6: RSA

Figure 2.7: Diffie Hellman

Visually, the ElGammal crypto algorithm can be seen in Figure 2.8. The advantage of using an ephemeral
key is that the same plaintext results in different ciphertexts since the ephemeral key is chosen by the sender
themselves.

2.3.4. ECC
A very popular use of the discrete algorithm (especially for resource constrained devices) is Elliptic Curve
Cryptography. Here, all the operations are done using points on an elliptic curve and an imaginary point
infinity.

The prerequisites for an Elliptic curve here is that it must be symmetric about the x axis. Also, any straight
line should not intersect the curve on more than three points. The addition of two points on the curve is
done using the intersection of the line drawn through the two points and then mirroring it with respect to the
x-axis. Adding a point to itself is done using tangents at that point to create a line.
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Figure 2.8: ElGammal

This addition process again and again such that the final point ends at the first point is a hard problem.
Hence for a two arbitrary point P and Q, computing the value of k such that k.P = Q is a hard problem. This
problem can be used to replace the discrete logarithm problem in Diffie Helman and ElGammal.

Figure 2.9: Elliptic curve ElGamal

The steps for ECC ElGammal can be seen in Figure 2.9. ECC is the preferred encryption scheme for em-
bedded applications [42]. This is because 160-256 bit ECC provides the same level of security as 1024-3072
bit RSA, substantially reducing the computational requirements and the size of ciphertexts [43].





3
SIDE CHANNEL ATTACKS AND

COUNTERMEASURES

Side channel attacks leverage the information leaked via the implementation of a cryptographic algorithm on
hardware or software, rather than any weaknesses in that cryptographic algorithm itself. This leaked infor-
mation, amongst others, can be in terms of power, EM radiation, or the time taken to perform a cryptographic
operation. Section 3.1 describes the type of side channel attacks and Section 3.2 gives an overview of the two
main kinds of power based side channel attacks, which are non-profiled and profiled. Section 3.3 explains non-
profiled attacks and section 3.4 explains profiled attacks. Finally Section 3.5 describes possible countermeasure
against such power based side channel attacks.

3.1. TYPES OF SIDE CHANNEL ATTACKS
Hardware attacks are classified in literature as in figure 3.1. Side channel attacks are a specific type of hard-
ware attacks that aim at obtaining secret data using information leakage via the implementation of a crypto-
graphic algorithm.

Figure 3.1: Classification of Hardware attacks

Every side channel attacks has four main components, as represented in Figure 3.2. First, the target of the
attack should be decided. In this case, the target is the data. Other targets can be to steal the IP of design
or to to hamper the functionality. Next, the technique is decided. Some of the attacks require removing the
package of the IC. If the die is tampered when the attack is carried out, the attack is called invasive. If the die
is not tampered but the package is removed, the attack is called semi-invasive. If the package is not required
to be removed at all, the attack is called non-invasive. These attacks happen after manufacturing and once
the device is in field hence the phase of the attack is field. Other attack phases can be during the design phase
or during the manufacturing phase, when the design is being manufactured.

17
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Figure 3.2: Side-channel attacks

Finally, the location where the attack is to be carried out is decided. This location then decides the type of
the attack. If the attack targets the technology, the leakage can be in the form of Power[44], EM radiation[45],
Optical[46] or Acoustic[47]. If the attack targets the design, the attack can leverage the disparity in the time
taken to carry operations [48], memory access [49] and even the information in the scan chains [50]. In this
work, our focus is power based side channel attacks. In the next section, they are discussed in detail.

3.2. POWER BASED SIDE CHANNEL ATTACKS
Power analysis attacks leverage the difference between power consumption during encryption. As demon-
strated by Gu and Almasry [51], the power consumption depends on the switching activity of transistors.
This switching activity of the transistor is proportional to the change of input values to the transistor. The
ability to correlate the power with the secret inputs is the premise on which power side channel attacks are
based. The amount of correlation between power consumption and the value of encryption keys can define
the effectiveness of a side channel attack.

Figure 3.3: classification of side channel attacks

A taxonomy of the various kinds of power side channel attacks can be seen in Figure 3.3, this is inspired
by [52]. For profiled attacks, the attacker is expected to have access to a clone of the device they plan to
attack. Hence, the attacker has the liberty to perform all sorts of operations on the clone and make models
(profiles) that can then be used at attack time. Of course, while attacking the target device they would not
know the encryption key. However, the clone profiles obviate the need of taking a large amount of traces from
the target device since the profile usually identify points of interests which then reduces the amount of noise
in the target analysis by a substantial amount. As for the non-profiled attack, the attacker is expected to have
limited access to the device and no liberty in terms of making profile models.
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3.3. NON-PROFILED ATTACKS
In Non-Profiled attacks, the adversary can procure a limited amount of traces for a fixed unknown key using
plaintexts of their choice. The adversary leverage public knowledge about the implementation of the encryp-
tion process to carry out the attack.

3.3.1. SPA : SIMPLE POWER ANALYSIS
As the name suggests, this is the simplest of all attacks that will be discussed in this chapter. Here, the power
consumption during the execution of a cryptographic algorithm is constantly monitored. The aim is to map
certain operations of the encryption process to their corresponding power consumption so as to extract the
key.

Simple power analysis can be used against (unprotected) RSA’s square and multiply algorithm, as can be
seen in Figure 3.4. Taking this figure into account, it is easy to guess the exponent value. This is because, as
explained in Section 2.3, RSA exponentiation is done using a square and multiply algorithm which internally
uses the binary representation of the exponent to decide whether a square operation or a square and multiply
operation should be carried out. It can also be used AES’ key expansion phase and can be used to reduce the
key space for brute forcing the key [53].

Figure 3.4: Simple power analysis against RSA [1])

3.3.2. DPA : DIFFERENTIAL POWER ANALYSIS
Differential power analysis is done by splitting the power trace into groups on the basis of each bit of the
calculated intermediate value. In total there are 5 steps.

Figure 3.5: DPA against AES: Correct key guess [2])

Step 1: Select the intermediate value. SBOX output is chosen since SBOXs are non linear and hence are easily
identifiable.

Step 2: Procure power traces for a set of plaintexts. If there are t plaintext and each trace has n sample points,
the result of this step would be a vector of plaintexts and a t × n matrix with power traces.

Step 3: Formulate a hypothesis. Loop over all 256 keys and xor with the plaintext values. This xored value is
then fed into our selected intermediate value (as in step 1), which is the sbox.
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Figure 3.6: DPA against AES: Incorrect key guess [2])

Step 4: Partition traces on the basis of the hypothesis. This can be done in a number of ways. The LSB of
the intermediate value can be chosen to partition the traces. Hence, the traces after this step will be
partitioned into 2 sets. One where the LSB of the sbox output was 0 and one where the LSB of the sbox
output was 1. They can be represented as matrices of size t1 × n and t2 × n such that t1 + t2 = t .

Step 5: Finally, a differential trace is calculated using difference of means of the partitioned traces. This step is
repeated for all possible key hypothesis. A correct key guess results in large peaks (as can be seen in Fig-
ure 3.5) in the differential trace and incorrect key guess would result small/no peaks in the differential
trace (as can be seen in Figure 3.6). These peaks can hence be used to predict the most likely key.

Differential power analysis, as an attack, is pretty intuitive. However, it is not extremely robust and the ac-
curacy depends on the choice of partitioning. For example, in the explanation above the LSB of the inter-
mediate value was chosen for partitioning. It is possible that some other form of partitioning works much
better/worse. Also, working on just a single bit makes this attack lose out on information from the other bits.

3.3.3. CPA: CORRELATION POWER ANALYSIS
Correlation power analysis tries to address the drawbacks of Differential power analysis. It tries to take into
account all the bits of the intermediate value using the concept of leakage models. Some popular leakage
models are:

• Hamming weight : Number of set bits in the intermediate value is known as the hamming weight.

• Hamming distance : The difference between the number of set bits between the input and the output
of intermediate function (SBOX, for example).

In total, there are 5 steps.

Step 1: First step is to select the intermediate value. SBOX output is chosen since SBOXs are non linear and
hence are easily identifiable.

Step 2: Procure power traces for a set of plaintexts. If there are t plaintext and each trace has n sample points,
the result of this step would be a t × n matrix with power traces and a vector of plaintexts.

Step 3: Formulate a hypothesis. Loop over all 256 keys and xor with the plaintext values. This xored value is
then fed into our selected intermediate value (as in step 1), which is the sbox.

Step 4: Next, the leakage model is applied to the intermediate values. For every possible key, there will be t × 1
vector signifying the leakage model output. Since there are 256 possible keys, this step’s output can be
represented as a t × 256 matrix.

Step 5: Finally, Pearson correlation between the power traces and the leakage model output is calculated.
Hence, the output of this step is a 256 × n matrix. The row in this with the highest valued elements is
the key guess.

3.3.4. HIGHER ORDER DIFFERENTIAL POWER ANALYSIS
Unlike standard DPA, this attack aims at analyzing multiple cryptographic sub-operations on every sample
in a power trace. It is particularly effective against countermeasure like masking [54]. Simply put, with higher
order attacks both key-dependent and key-independent operations are analyzed. For example, in case of
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masking, the power trace is analyzed to not only obtain the key value but also the random mask value with
the aim of cancelling the mask. The steps in higher order attack stay similar to the standard attack with the
exception that signals collected from multiple sources with varied time offsets are considered [55]. Naturally,
the higher order attacks entail a substantial computational overhead. This is a major contributing factor to
why the higher order attacks are not as popular as other attacks introduced in this section.

3.4. PROFILED ATTACKS
In profiled attacks the attacker has access to a clone of the device that they plan to attack. Hence,they have the
ability to perform a plethora of operations on that clone so as to make profiles to be used at attack time. These
profiles obviate the need of procuring large amount of traces from the target device since the profile usually
identify points of interests(POI) which reduces the amount of noise in the actual analysis by a substantial
amount. These attacks are split across two phases: The first phase is for profiling and the second phase is
extraction.

3.4.1. TEMPLATE ATTACK
Originally introduced by Chari et al. [56], template attacks leverage multivariate Gaussian distributions to
model points of interest in the power traces from a cloned device. These multivariate Gaussians are then
used on the power traces from the target device to carry out the attack. The attack is carried out on a byte-by-
byte basis and the steps are as follows:

PROFILING

Step 1: The attacker needs to procure a clone device.

Step 2: Acquire power traces for a set of plaintexts. If there are t plaintext and each trace has n sample points,
the result of this step would be a t × n matrix with power traces and a vector of plaintexts.

Step 3: Formulate a hypothesis. Since the key for the clone device is known, there is no need to loop over all
256 keys. Instead the known keys can be xored with the plaintext values. This xored value is then fed
into our selected intermediate value (as in step 1), which is the sbox. Next, the leakage model can be
applied to these intermediate values.

Step 4: The traces are separated on the basis on the leakage model values. For example, the traces can be
separated into 9 group on the basis of hamming weight values. Note that these groups are not all of the
same size. This class imbalance has a detrimental impact on the attack performance and over-sampling
methods have be proven to enhance performance [57].

Step 5: A Mean vector is calculated for each of the groups. Difference between these mean vector are marked
as POI or points of interest.

Step 6: For m points of interest, a mean vector (m × 1 vector) and a covariance matrix (m × m matrix) are
calculated. This is for each group, so if hamming weight is used, 9 such vectors/matrices will be com-
puted.

EXTRACTION

Step 1: Procuring the target device

Step 2: Acquiring traces from the target device. The number of traces needs here are much less as compared
to the profiling phase.

Step 3: Applying the multivariate normal probability function to the acquired traces. If there are k categories
in the leakage model (for example, k=9 in case of hamming weight) and there are t traces: the output of
this step will be a matrix of size t × k.

Step 4: Similar to CPA, xor of all 256 keys with the plaintexts is calculated. This xored value is then fed into our
selected intermediate value, which is the sbox. Next, the leakage model is applied to the intermediate
values. For every possible key, there will be t × 1 vector signifying the leakage model output. Since
there are 256 possible keys, this step’s output can be represented as a t × 256 matrix.
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Step 5: The matrix obtained in step 4 is correlated with the matrix obtained in step 3. The output of this step
is a correlation matrix and logarithmic sum of every column in this matrix produces a 1 × 256 vector
whose argmax is the key guess.

3.4.2. DEEP LEARNING BASED ATTACKS
This attack is almost the same as the template attack. The only difference here is that instead of profiling
using a multivariate Gaussian, a deep neural network is used. The neural network can either be used to guess
the leakage model output or the actual key. For guessing the leakage model output, the attack steps are as
follows:

PROFILING

Step 1: The attacker needs to procure a clone device.

Step 2: Acquire power traces for a set of plaintexts. If there are t plaintext and each trace has n sample points,
the result of this step would be a t × n. matrix with power traces and a vector of plaintexts.

Step 3: A classifier is trained to classify the traces in to categories on the basis of leakage model’s output. For
example, if hamming weight is used as the leakage model, a classifier will be trained to classify power
traces into 9 categories. Since the output of xoring the plaintext and the key is 16 bytes, 16 neural net
classifiers need to be trained. It is also possible that the 16 bytes can be processed into a single value,
and using that just a single classifier needs to be trained.

EXTRACTION

Step 1: Procuring the target device

Step 2: Acquiring traces from the target device

Step 3: Applying the acquired traces to the trained classifiers (or a single classifier depending on the label pro-
cessing). If there are k categories in the leakage model (for example, k=9 in case of hamming weight) the
output of this step is the guessed leakage models for the 16 bytes (or a single processed leakage model
value).

Step 4: Finally, this guessed leakage model value can be used to make a key guess.

The same steps can be followed if the aim is to guess the key. For this, instead of the k categories of the
leakage model, the classifier aims at predicting a key byte’s value (which can be anything between 0 to 255).

3.5. COUNTERMEASURES
As the number of side channel attacks increased over the years, so have the countermeasures against them.
The countermeasures aim at reducing the amount of information leaked via the side channels.

The countermeasures against side channel attacks can be subdivided into the following four categories
[58] as can be seen in Figure 3.7.

1. Blinding : Blinding aims at reducing the information leaked by both the technology [59] and design [60].
On the technology front, using complementary logic is one of the blinding techniques. This technique
unavoidably entails an area overhead. From the design aspect, using constant timing operations is a
blinding technique. This technique entails a performance reduction since it often requires to avoid
optimizations.

2. Randomization : Side channel analysis is heavily dependent on alignment. The leaked information
is not of much use if it can not be correctly aligned with the cryptographic operations. The aim of
randomization is to introduce misalignment. Randomization can be introduced in the form of random
operations. From an AES perspective since the SBOX’s non-linearity is mostly leveraged in side channel
analysis, a technique called masking can be used to hide the leakage. Masking [61] works as follows: by
selecting two random 8-bit values (mask m and mask n) the SubByte function can be calculated using
Equation 3.1.

SBOX [P ⊕K ] = SBOX ′[P ⊕K ⊕n]⊕m (3.1)
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Figure 3.7: Countermeasures against side-channel attacks

In Equation 3.1, P denotes a byte of the plaintext, while K represents a byte of the secret key. To ensure
that the encryption output is correct, the SBOX also needs to be modified. Note that the SBOX performs
a non-linear transformation, hence for given plaintext P and mask n, the sbox output SBOX (P ⊕n) is
not equal to SBOX (P )⊕SBOX (n). This countermeasure aims to reduce the leakage by invalidating the
Hamming Weight and Hamming Distance leakage models.

Figure 3.8: SBOX with and without masking
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A simple example of the same can be seen in figure 3.8. In the example, mask pair (189,255) is used.
First, the SBOX is modified using the mask pair so as to become SBOX’. The impact of that is that the
same key and plaintext byte results in two different values, which are 228 and 130 for SBOX and SBOX’
respectively. So as to correct the output of SBOX’, mask1 and mask2 are needed. Mask1 will make sure
that the correct index is accessed in the SBOX look-up table and mask2 will undo the effect of masking
on the value contained in the look-up table.

3. Anti-tampering : To prevent the optical side channel analysis and micro-probing, metal shields or
probe sensors [62] can be used. On an architectural level, sensitive operations can be carried out in the
so-called trust zones [63] that prevents non secured software to access data from secured resources.

4. Secure test : Many side channel attacks use the information in the design’s test architecture like the
scan chains [50]. To make this information hidden from the attackers, the scan chains can either be
encrypted or the entire test infrastructure can be to destroyed after testing.



4
DEEP LEARNING

This chapter will give an overview about deep learning. Section 4.1 gives a brief account of the history of deep
learning. In Section 4.2, a few fundamental neural networks are explained. Section 4.3 covers generative deep
learning and gives a comparison of state-of-the-art generative models. Finally, Section 4.4 describes the process
of building and training neural networks along with background information on using PyTorch [64] and Keras
[65] as well as the process of hyperparameter tuning.

4.1. HISTORY OF DEEP LEARNING
Deep learning, as defined by GoodFellow et al. [3], is a kind of machine learning that learns nested hierar-
chical representation of the world wherein more abstract concepts are represented in forms of less abstract
ones.

Figure 4.1: History of deep learning [3]

On its own it is not a new concept, the history of artificial neurons goes back to 1943 when McCulloch and
Pitts made a mathematical model of an artificial neuron[66]. However, it must be stated that the term "Deep
learning" is fairly new. It was known as Cybernetics between 1950 and 1960 and Connectionism between 1980
and 1990, as depicted in Figure 4.1. The current ubiquity of deep learning can be attributed to cheaper com-
putation resources, cheaper memory storage and cheaper sensors all without compromising on the quality
[4]. This combination of readily available high quality data, cheap yet fast storage and strong computation
resources in form of GPUs is what makes Deep learning so popular.

Owing to the the artificial intelligence renaissance [67], machine learning is now ubiquitous. Deep learn-
ing is a sub domain of machine learning which depends on artificial neural networks to perform tasks with
accuracy comparable to or exceeding that of humans. As the name suggests, these artificial neural networks
take after the biological systems, with their constituent cells being neurons. The term "deep" in deep learn-
ing springs from the use of multiple layers of neurons. An example of a multi layer perceptron can be seen
in Figure 4.2. Deep learning and classical machine learning models differ in the way they learn. Deep neural
networks obviate the need of human intervention in feature extraction, hence rather than telling networks
how to do a task, it is shown examples of what is to be done.

25



26 4. DEEP LEARNING

4.2. FUNDAMENTAL NEURAL NETWORKS

4.2.1. LINEAR NEURAL NETWORKS

Artificial neural networks (ANNs), loosely speaking, architecturally take after the human brain. The basic
constituent of these networks is a neuron. Similar to how a biological neuron has dendrites, nucleus, axon
and axon terminals ANN neurons have input terminals, processing node, output wire and output terminals
respectively [4]. Biologically, information xi arriving from other neurons is received in the dendrites and this
information is scaled using the synaptic weights wi . In the nucleus, these scaled values are combined as a
weighted sum y =

∑
xi ∗ wi +bi , where bi is the bias added to the scaled information by the nucleus. The

output of this stage is processed by the axon, wherein it is first passed through some non linearity and finally
used. Analogously, for artificial neural networks the forward pass looks exactly the same.

Figure 4.2: Linear neural network [4]

In linear neural networks, every neuron in one layer is connected to every neuron in the adjacent layers.
The multi layer perceptron in Figure 4.2 is an example of linear neural networks. These networks are fairly
easy to interpret and build, but the fully connected architecture make the number of trainable parameters
extremely high for large networks.

4.2.2. CONVOLUTIONAL NEURAL NETWORKS

Unlike linear neural networks which flatten all inputs before a forward pass, convolution neural networks
maintain the input’s number of spatial dimensions as is. Instead of having connections between each pair of
neurons in adjacent layers, CNNs are known for parameter sharing wherein the same set of weights and biases
are used for the entire input. Also, using pooling, the CNNs are capable of focusing on the most important
part of the input.

Figure 4.3: CNN: LeNet5 [4]

CNNs are architecturally quite different from linear neural networks, as can be seen in figure 4.3. The two
main differences of the CNN as opposed to a linear neural network are: first, that it focuses on certain regions
of the input at a time as opposed to all the input at once and second, that precise location of a particular
feature in the input is not important. The first difference is a result of weight sharing and causes translational
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equivariance which helps the CNN perform better in feature detection at different locations in the input .
CNNs are equivariant, which implies that applying a transform and then convolving is the same as first con-
volving and then applying a transform. This is important since the same set of weights can detect a patterm
irrespective of its position in the input. The second difference is a result of the pooling operation and is called
translational invariance, which means that feature presence is more important then feature location. This
is because the pooling operation is able to reduce the output at a certain position in the feature map to a
summary statistic of the neighbouring outputs of that location in the feature map.

4.2.3. RECURRENT NEURAL NETWORKS
Recurrent neural networks are a class of artificial neural networks, that have the ability to understand se-
quential data. In essence, RNNs work as well with sequential information as the CNNs work with spatial
information. RNNs are able to do so since they do not make the i.i.d assumption, which is not true for most
data, especially for sequential data where there is strong dependency between subsequent samples. A good
example can be seismic data for earthquakes, such data is not only spatially correlated (proximity to epi-
center) but also temporally correlated (multiple small earthquakes succeed a major earthquake). Similarly,
say that stock prices need to predicted at time t. For an autoregressive model, stock price at time t can be
calculated as follows:

xt ∼ p (xt | xt−1, . . . , x1) (4.1)

However, to keep this calculation tractable xt can be calculated not using samples at all time steps but
just a few previous samples. If only the previous K timesteps are considered, the model will be called a K th

order Markov model, like in equation 4.2.

xt ∼ p (xt | xt−1, . . . , xK ) (4.2)

Unlike multilayer perceptrons or convolutional neural networks that can be represented as directed acyclic
graphs, RNN have self loops [4].

Figure 4.4: Simple RNN [4]

Hidden states in simple RNNs are computed as Ht = φ (X t Wxh +Ht−1Whh +bh) , as depicted in figure
4.4. The output for simple RNNs is calculated as Ot = Ht Whq +bq . Here, H is the hidden layer’s output, W
is the weight parameter, b is the bias and φ is the non-linear activation function. Since these hidden states
are same for all timesteps, the number of trainable parameters do not increase with the number of timesteps.
Unfortunately, standard RNNs suffer from the problem of vanishing and exploding gradients due to which
they can not maintain long range dependencies.

4.2.4. MODERN RECURRENT NEURAL NETWORKS
Modern recurrent neural networks introduce the concept of gates, namely: forget, input, reset and update
gates as a solution to the vanishing/exploding gradient problem in standard RNNs. These problems stem
from the innate architectural deficiencies in the standard RNNs. Unlike the MLP introduced in Section 4.2.1,
RNNs have self loops that signify a path for information to flow from one step to the next. Hence, every step
not only includes information fed in at a particular time step but also hidden information from the previous
time steps. This process, however, does not ensure that the RNN remembers all the information equally. This
is because while backpropogating, the gradients for the hidden state for a particular timestep depends on the
gradients of the hidden state after it. Hence, there is an exponential decrease/increase in the gradients while
moving further into the memory of the RNN, causing the RNN to not learn long range dependencies.
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(a) GRU [4] (b) LSTM [68]

Figure 4.5: Modern RNNs [4]

GRUs try to solve this problem by using the reset and update gate, as follows:

Reset gate Rt =σ (XtWxr +Ht−1Whr +br )
Update gate Zt =σ (X t Wxz +Ht−1Whz +bz )

(4.3)

The values of the reset and the update gate are then used to calculate the candidate hidden state and the
current state as follows:

H̃t = tanh(X t Wxh + (Rt ¯Ht−1)Whh +bh)
Ht = Ht−1 ¯Zt + (1−Zt )¯ H̃t

(4.4)

This can also be seen visually in Figure 4.5a. Here, H is the hidden layer’s output, W is the weight param-
eter and b is the bias. A LSTM, on the other hand makes use of the following gates:

Input gate It =σ (X t Wxi +Ht−1Whi +bi )
Forget gate Ft =σ

(
X t Wx f +Ht−1Wh f +b f

)
Output gate Ot =σ (X t Wxo +Ht−1Who +bo)

Candidate memory cell C̃t = tanh(X t Wxc +Ht−1Whc +bc )

(4.5)

Using the output of these gates, the LSTM calculates the memory cell state and the hidden state as follows:

Ct = Ft ¯Ct−1 + It ¯ C̃t

Ht =Ot ¯ tanh(Ct )
(4.6)

This can also be seen in Figure 4.5b. It must be noted that both GRU and LSTM are more computationally
complex than a standard RNN. However, they provide a substantial performance improvement over standard
RNN since they leverage the gate mechanisms to ensure that the vanishing gradient problem is solved. Also,
the gates serve as a medium to focus on the important information in the input, making the modern recurrent
networks much better than vanilla RNNs on tasks like language processing.

4.3. DEEP GENERATIVE MODELS
Deep generative models aim at approximating the underlying distribution of the training data. For example,
say that there is a dataset of images of human faces such as the CelebA dataset [69]. All the samples of this
dataset can be said to have been sampled from an underlying distribution pd at a . If a generative model is
trained on this dataset, the aim will be to approximate the distribution of human faces. To understand why
traditional neural networks are not used to perform this task, lets consider the following example. Lets say
that 255x255 colored pictures of human faces need to be generated. Since each colored picture has 3 chan-
nels: Red, Green and Blue, the total number of pixels in the images would be 195,075. Each of these pixels can
in turn take a value between 0 and 255. Hence, out of 256195,075 possible combinations, a few possible com-
binations that closely mimic actual human faces need to be chosen. Mathematically, this can be represented
as:

P (x | θ) = f (x | θ)∑
z f (z | θ)

(4.7)

Here the denominator term is the summation of 256195,075 possible combinations. x is the image classified
by a neural network f with parameters θ as real or fake. The problem doing so, other than the obvious compu-
tational infeasibility, is that procuring the amount of training data required for such a task is extremely tough.
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This is why the field of deep generative learning was created and off late has seen a number of advancements.
Since the inception of generative adversarial networks in 2014 [70], a lot of work has been done in the field of
generative models for images [71] [72] [73]. Researchers have explored a lot of other avenues like generative
models for audio [74] [75] [76] [77], ECG traces [78] [79], seismic data [80] and for time series data [81].

As a rule of thumb, generative models have three goals.

1. Density estimation : Unlike discriminative models that aim to find a class or a regressive value cor-
responding to the input, generative models aim at estimation the underlying distribution pd at a of a
particular dataset without overfitting on (memorizing) the training samples.

2. Generation: Once the generative model has been trained, it should be able to be used to generate sam-
ples that mimic the training data. Also, it should not output the same samples again and again.

3. Having latent variables : Since some parameters of the training data (like the thickness of pen strokes
while writing digits) can not be explicitly stated, its interesting to have the ability to tweak some of these
parameters in the generative model.

Some popular deep genrative models are as follows:

4.3.1. VAE
Variational autoencoder are an extension of the traditional autoencoder. For the sake of completeness, lets
first discuss what an autoencoder is. Autoencoders are two-part models, one part is the encoder that encodes
the input into a lower dimensional space and second part is the decoder that uses the lower dimensional
representation of the input to output something that is approximately equivalent to the input. Autoencoders
use reconstruction loss as the loss metric. An example can be autoencoder for images where the objective is to
learn a lower dimensional representation of the image for compression tasks. This idea can also be extended
to remove noise from the input, say that the training data consists of pairs of noisy and clean images. The
noisy image can be used as an input to the autoencoder and the output can be compared with the clean
image. Using pairs of such images for training can make the autoencoder a denoising autoencoder.

An autoencoder can not be used as is for the generative task since all it knows is to copy the input it has
been fed. Instead of mapping our input to a fixed latent space vector like in the case of autoencoder, if we map
the input to a normal latent space distribution (parameterized by mean and variance vectors), our model will
achieve the capability of generating different samples based on tweaking the values of the latent space. A
visual comparison can be seen in Figure 4.6.

(a) Autoencoder (b) Variational Autoencoder

Figure 4.6: Autoencoders

It is also intriguing to just change the value of the autoencoder’s latent space and see if it is able to generate
different samples that mimic the training data (but does not copy it). Unfortunately, since autoencoders
learn a fixed latent space representation, they do not perform well when these fixed latent space values are
changed. Variational autoencoders on the other hand are much more flexible given that they learn normal
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distributions instead of fixed values for the latent space. Mathematically, variational autoencoders aim at
estimating the actually density of the latent space conditioned on the input; i.e, p(z|x).

li (θ,φ) =−Ez∼qθ(z|xi )
[
log pφ (xi | z)

]+KL(
qθ (z | xi )‖p(z)

)
(4.8)

However, it is an intractable problem due to the absence of a closed form solution to p(x). Hence, an
approximation to it is found using variational inference where p(z|x) is compared to a simpler gaussian dis-
tribution q(z|x) and minimize the KL Divergence between them and both reconstruction and regularization
losses are taken into account. While using variational inference, minimizing the KL Divergence (as in equa-
tion 4.8) is equivalent to maximing an evidence lower bound (ELBO).

4.3.2. GENERATIVE ADVERSARIAL NETWORKS

Unlike Variational autoencoders, that try to maximize the evidence lower bound (ELBO), GANs implicitly de-
fine a probability function of the data. GANs leverage game theory to be able to do so, namely a two player
minimax game. For this, in addition to the generator network that accepts a noise vector as input and gen-
erates samples similar to the data that it was trained on, there is also a discriminator network that tries to
distinguish between real and fake samples. Generator aims to fool that discriminator, which means that it
wants the discriminator to think that the generated image is real. The discriminator on the other hand wants
to correctly tell which sample is a fake and which sample is real. If we think about the output of the Discrimi-
nator as probabilities, a probability of 0.5 is what we want to achieve which means that the generated samples
are indistinguishable from the samples that the GAN is trained on. Figure 4.3.2 shows a GAN similar to the
one originally proposed by Goodfellow et al. [70]. In the original paper the authors used binary cross entropy
loss, so the discriminator is trained exactly like a logistic classifier.

min
G

max
D

L(G ,D) = Ex∼pdata(x)[logD(x)]+Ez∼p(z)[log(1−D(G(z)))] (4.9)

GAN essentially computes the Jensen Shannon divergence between the generated data distribution and the
real data distribution. The generator wants to minimize the loss since that would mean that the discriminator
is confused between real and generated samples. The discriminator, on the other hand, wants to maximize
the loss since that would mean that the discriminator can successfully distinguish between real and generated
samples.

The original GAN architecture does not allow to input labels into the model and hence is unsupervised.
This simpler architecture however has its limitations since the GAN can not be told about the type of samples
it should generate. In order to do so, the label (y) must also a part of the loss function (as proposed by Mirza
and Osindero [82]).

min
G

max
D

L(D,G) = Ex∼pdata(x)[logD(x | y)]+Ez∼pz (z)[log(1−D(G(z | y)))] (4.10)

The non cooperative game makes training GANs hard and unstable. The standard GAN loss function; i.e,
the JS divergence is better than KL divergence since it is symmetric and is mathematically defined even if
there is no overlap between the two probability density functions being compared. However, it has its own
problems. Namely, the vanishing gradient problem wherein if the probability density functions don’t have
any overlap (when the distributions are disjoint), the loss value becomes a constant causing the gradients to
vanish. Other than this, one of the biggest issues with GANs is when the generator gets stuck at outputting
similar looking samples. This situation is known as mode collapse. Also, the discriminator gets good at dis-
criminating very easily making the gradient vanish and preventing the generator from learning anything. To
address these problems, a lot of work has been done to find better loss functions and better normalization
techniques.

A number of different GAN loss functions have been proposed in order to address its well known issues.
Some of the are:

1. Least Squares GAN (LSGAN) loss function [83] : LSGAN aims at increasing the quality of the generated
samples by not limiting the use of discriminator’s output. In equation 4.10, the discriminator’s purpose
is to distinguish between the real and fake samples, which is done using binary cross entropy loss. In
LSGAN, however, we are not only concerned with the classification but also with how close or how far
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(a) Generative adversarial network (b) Conditional Generative adversarial network

Figure 4.7: Generative adversarial networks

are the fake traces to the real ones. This can be seen in the loss function, as in equation 4.11.

min
D

LLSGAN(D) = 1

2
Ex∼pdata(x)

[
(D(x)−b)2]+ 1

2
Ez∼pz (z)

[
(D(G(z))−a)2]

min
G

LLSGAN(G) = 1

2
Ez∼pz (z)

[
(D(G(z))− c)2] (4.11)

In equation 4.11, while training the discriminator b is set to 1 to signify real traces and a is set to 0 to sig-
nify fake traces . While training the generator c is set to 1 since the objective is to fool the discriminator
.

2. WGAN loss function [84] : As mentioned before, the issue with JS Divergence is that when the distri-
butions are disjoint the loss value becomes a constant causing the gradients to vanish. To address this
issue Arjovsky et al. used the Wasserstein metric (also known as the earth movers distance) as a loss
function for GANs. Wasserstein metric, is a concept borrowed from transport theory and can be inter-
preted as the minimum amount of work required to transform one probability distribution to another.
However, in itself it is an intractable problem. Since Wasserstein distance is intractable, they use an
approximation to it known as the KR duality. The WGAN’s discriminator (known as the critic) tries to
model a function that approximates the EM distance and not just distinguish the real samples from the
generated ones. In its original implementation, the authors perform weight/bias clipping in a range
[-c, c] so as to enforce a Lipschitz contraint on the critic. The loss function for WGAN is as follows:

L
(
pr , pg

)=W
(
pr , pg

)= max
w∈W

Ex∼pdatax
[

fw (x)
]−Ez∼pz (z)

[
fw

(
gθ(z)

)]
(4.12)

The clipping method was criticized by the authors of the paper themselves and hence the gradient
penalty version gained popularity. The main difference between basic GANs and Wasserstein GANs
are:

• Loss function changes : As compared to the standard GAN loss, we remove the logarithmic func-
tion for WGANs.

• No sigmoid layer at the output: Since problem is now regression and not classification

• The Discriminator (critic) is trained more than the Generator. Usually, it is trained almost five
times more.

3. WGAN-GP loss function [72]: The WGAN-GP comes from the family of Wasserstein GANs (WGAN). The
objective of WGANs is to minimize the earth mover (EM) distance. The EM distance represents the
level of dissimilarity between the distributions of the generated and real traces.Minimizing the EM dis-
tance leads to smoother gradients even when the generator outputs unsatisfactory traces. The WGAN’s
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Discriminator tries to model a function that approximates the EM distance and not just distinguish the
real samples from the generated ones. The loss function for WGAN-GP is as follows:

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]︸ ︷︷ ︸
Original critic loss

+λ E
x̂∼Px̂

[(‖∇x̂ D(x̂)‖2 −1
)2

]
︸ ︷︷ ︸

The gradient penalty

(4.13)

Calculating the earth mover (EM) distance is an intractable problem and the Kantorovich-Rubinstein
duality [85] can be used to make the problem simpler. The Kantorovich-Rubinstein duality is used to
transform the EM distance minimization problem in order to find a least upper bound. The trans-
formed loss function is required to satisfy K-Lipschitz continuity. The Lipschitz continuity limits how
fast a function can change. In the original WGAN paper [84], the Lipschitz constraint is enforced by
weight clipping. However, the weight clipping method is extremely sensitive to the clipping value
hyperparameter and quite often reduces the network’s ability to model complex functions. Instead,
WGAN-GP adds a gradient penalty term to enforce the K-Lipschitz continuity as shown in Equation 4.13.

Despite the advancements in the GAN loss functions, training them is not always straight forward. Often,
GANs suffer from mode collapse which means that the Generator outputs just a single (or a few) sample(s) that
is good enough to fool the discriminator. Hence, losing its ability to generate a variety of samples. Another
common problem with GAN is lack of convergence since with time, the discriminator’s feedback deteriorates
due to which the GAN’s convergence is often a fleeting, rather than stable, state [86]. These two problems are
also known as GAN’s failure modes.It is important to use evaluation metrics that can actually identify such
failures so that necessary changes can be made.

4.3.3. AUTOREGRESSIVE
Unlike GANs, Autoregressive models can compute exact likelihoods and is much stable to train as compared
to GANs. However, this ability comes with a cost. Autoregressive models are usually much slower than GANs.
Also, similar to GANs, autoregressive models do not have mechanism for learning a latent space represen-
tation.Mathematically, autoregressive models perform maximum likelihood estimation by decomposing the
likelihood into a product of conditional distributions as follows:

p(x) =
n∏

i=1
p (xi | x1, x2, . . . , xi−1) =

n∏
i=1

p (xi | x<i ) (4.14)

If the product of conditional distibution makes no conditional independence assumption then the model
is called autoregressive. This means that the prediction xi depends on x1, x2, x3...xi−1, in the same order. This
means that, unlike GANs, maximing the likelihood of data is possible in the case of autoregressive models by
minimization of the following objective function:

− ln p(x) =−
n∑
i

ln p (xi | x1, . . . , xi−1) (4.15)

What is evident is that for every new timestep, the entire sequence need to be evaluated so as to compute
the prediction. Hence, sampling from them is innately sequential and slow. To make this process faster, the
concept of causal convolutions was introduced by van den Oord et al. [74]. First, causal convolutions ensures
that the model does not look in the future while making predictions. Second, using dilated convolutions
predictions for an entire sequence can be calculated in a single forward pass in a very efficient manner. A
lot of research in this domain uses RNNs (those introduced in Section 4.2). However, a shift towards Self-
Attention [87] is on the rise after their immense success in NLP. Autoregressive models will be compared with
the other generative models in Section 4.3.6.

4.3.4. FLOW MODELS
Just like Autoregressive model flow models can compute exact likelihoods. However, they need a lot of layers
and hence have a lot of trainable parameters. Flow models are also known for taking extremely long to train.

pX (x) = pZ
(

f −1(x)
) | det

(
∂ f −1(x)

∂x

)
(4.16)
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There are two main steps in a flow models: First, we start with a simple Gaussian distribution. Next, we
transform the simple Gaussian distribution into a complex distribution using an invertible function. The
process of transforming the simple distribution into a complex distribution using a chain of transformation
is known as a normalizing flow. The prerequisite for this transformation is that the transformations must
be (easily) invertible. This invertible requirement mandates that the input dimension of the transformation
must be equal to the output dimension, making deep models very difficult to train. As an idea, flow models
have also been coupled with autoregressive models [88]. Sadly, despite the advantage of exact likelihood
computation as opposed to GANs, Flow models are very slow to train. Flow models lack in terms of parameter
efficiency and take an order of magnitude more GPU days to train as compared to progressive GAN models
[89].

4.3.5. ENERGY BASED MODELS
In energy based models the prerogative is to find an energy function which can equate realistic samples with
low energy and unrealistic samples with high energy. The basis of these models is that any probability distri-
bution function p(x) for x ∈RD can be written as

p(x) = e−E(x)∫
x̃∈X e−E(x̃)

(4.17)

However, computing the denominator of equation 4.17 is infeasible. Even with various computational tricks,
energy based models are slow at training and sampling time. Some energy based models are capable of
generating very high quality samples. Sampling from energy based models is usually time consuming since
they employ Markov Chain Monte Carlo using Langevin Dynamics. This computational issue [90] is one of the
reasons why such energy-based models have not gained a lot of popularity, as compared to its counterparts,
due to

4.3.6. COMPARISON
Table 4.8 is based on an extensive comparative review of deep generative models by Bond-Taylor et al. [91].
Every parameter score is out of 5 and is a combination of all the architectures compared in the review. Hence,
specific architecture might score higher (or lower) than the combined average. For example, in case of GANs
DCGAN ranks 5 on the ’training speed’ since the training time is very less as compared to other deep genera-
tive models and StyleGAN ranks 3 since it takes longer than a few other deep generative models.

Figure 4.8: Generative Model Comparison

This comparison was carried out for the computer vision domain and hence all the conclusion can not
be transferred as is to any other domain. For example, they rate the AR models low on quality. However, it
is well known that AR models have even been state-of-the-art models for TTS tasks [92]. Naturally, they have
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seen a lot of application in audio and text generation. However, they are extremely slow and definitely not the
preferred option for real-time tasks [77] and hence are rated very low on training and sampling speed.

For this work, the generative model has the following requirements:

1. Training speed: Most model training for this work was done on a modest MacBook Pro with an i5-8259U
coffee lake processor and 8GB of LPDDR3 SDRAM, with the exception of a few large models that were
trained on Google colab (with NVidia’s Tesla P100 GPU). Many models were practically infeasible to
train on the limited compute resources and it is reasonable to say that most end-users of this framework
will also not have GPU clusters at their disposal. Hence, high training speed is important not just for
practicality but also since it reduces the framework execution time, aiding in the potential speed-up
over existing leakage evaluation frameworks.

2. Sampling speed: Similar to training speed, high sampling speed is important because of the aforemen-
tioned reasons. High quality results with a very slow sampling speed would obviate the need of the
entire framework since it would negatively impact the potential speed up.

3. Parameter efficiency: Parameter efficiency plays a major role in the training speed. Models with mil-
lions of trainable parameters with a very minimal increase in the generated sample quality are not ideal
for this framework.

4. Quality: Good quality generated samples are an absolute must. However, it must be noted that if better
quality comes at the cost of extremely high training/sampling speed or very low parameter efficiency
then it is not an ideal option.

Keeping all the metrics in mind, GANs and VAEs seem to be very promising generative models for our use
case. In Chapter 5, GANs will be discussed in detail with the objective of power trace generation and a focus
on possible label options. In Chapter 6, VAE results using those label options will be compared with the GAN
results.

4.4. BUILDING AND TRAINING NETWORKS
Building and training machine learning models is a five step process. First, an architecture is defined. The
initial model definition is usually based on the application domain and empirically proven techniques. For
example, CNNs perform extremely well for computer vision related tasks and RNNs are the go-to for text data
/ NLP. Next, the loss function and optimizer is decided and the data is processed so as to make it ready for
model training. The model is then trained using backpropogation and the training metrics on a validation
dataset (like loss value, prediction accuracy etcetera) are analyzed. This training process can either go on
for a predetermined set of epochs or can be stopped on the basis of the training metrics. Finally, the trained
model can then be evaluated on a test dataset before it can be deployed. The final step can also be split into
two steps with one step involving testing and cross validation and the other step involving deployment.

4.4.1. WEIGHT INITIALIZATION
The first step of the training process is to initialize the weights and the biases of the network. This initializa-
tion can be done using constant values or random values. However, this initialization step has been shown to
have substantial implications on the training process and the network performance. There is also a detailed
study on the importance of this step for deep neural networks for side channel analysis [93]. However, even
the authors of this study could not decide on a particular initializer that works the best across all types of
power traces. A lot of initialization methods have been proposed with the objective of stabilizing the gradi-
ents during backpropogation. Some popular methods are:

1. random normal: initializing weights with a normal distribution

2. truncated normal : initializing weights from a normal distribution but values more than two standard
deviation from the mean are discarded and redrawn

3. he normal : truncated normal initialization with mean 0 and standard deviation= sqrt(2/fan_in + fan_out)

4. glorot normal : truncated normal initialization with mean 0 and standard deviation= sqrt(2/fan_in).
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All these methods also have their corresponding uniform counterparts, for example in glorot uniform
intialization the weights are initialized using a uniform initialization in the range [-limit,limit] where limit =
sqrt(6/fan_in). The fan_in and fan_out, as might be evident, corresponds to the number of inputs and the
number of outputs of the weight tensor.

4.4.2. LOSS FUNCTION
Much like other machine learning problems, the loss function or the cost function plays a pivotal role in
model training. Chronologically: a model is defined, the cost function is chosen and then that cost function
is minimized using gradient descent [94].

L0−1(y, t ) =
{

0 if y = t
1 otherwise

(4.18)

Lets now discuss what loss function should be chosen and why. For the purpose of this discussion lets
consider a binary classification problem. A simple loss function could be 0-1 loss, which means that only
when the output of a classifier is equal to a specific value the output is one otherwise it is zero (like in equation
4.18). The problem with this approach will be that the gradient will stay zero until the boundary of zero and
one is reached, making gradient descent ineffective.

y = w>x +b

LSE(y, t ) = 1

2
(y − t )2

(4.19)

Next, a squared error loss function can be tried like in equation 4.20. But in this case, if the model output’s
a value much larger than 1, the error will be huge. This is somehow not intuitive, since the model is very
certain of the category being not zero but still gets a large loss value. Hence, we need to squish the model’s
output between zero and one so that the aforementioned scenario does not happen.

z = w>x +b

y =σ(z)

LSE(y, t ) = 1

2
(y − t )2

(4.20)

To squish the output of the classifier between zero and one, we can use the logistic function on the model’s
output. This way even if we use the squared error loss function the value of loss does not increase when the
model gets confident of a particular category. But the catch here is that since we are squishing the output of
the model in the range of zero and one, even very wrongly classified instances will have minimal loss values
making the gradient descent process tougher since the difference of loss value between correct and incorrect
will be minuscule.

LCE(y, t ) =−t log y − (1− t ) log1− y (4.21)

As a solution to this, cross entropy loss as in equation 4.21 can be introduced. Cross entropy solves the
previous problem but it has one of its own. Namely, there can be numerical instability when the value of y
reaches zero since log (0) is undefined. To avoid this issue we can use the logistic cross entropy loss where we
employ the logistic function.

LLCE(z, t ) =LCE(σ(z), t ) = t log
(
1+e−z)+ (1− t ) log

(
1+ez)

(4.22)

The logistic cross entropy loss can be seen in equation 4.22. Finally, to extend this understanding for
binary classification to multi-class classification, a softmax function must be employed at the output of the
model. This softmax function converts the output of our model to probabilities over the multiple classes.

yk = softmax(z1, . . . , zK )k = ezk∑
k ′ ezk′

(4.23)

The binary cross entropy loss, as in equation 4.22, can then be extended to multiclass logistic regression as
follows.

z =W x +b

y = softmax(z)

LCE =−t>(log y)

(4.24)
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As the name suggests, the multi-class logistic regression is employed in multi-class classifiers. With this high
level idea of how loss functions are chosen, a HW classifier (which is particularly common in side channel
analysis) can be implemented. As will be explained in Chapter 5 and 6, a multi-class classifier will be useful
for evaluating the quality of the generated traces. Depending on the dataset under consideration, different
architectures perform differently. From a side channel perspective, CNN based classifiers have been very
popular [95] [96] [97]. In this work we use them for the purpose of classifying real and generated traces. The
accuracy of this classification then serves as an evaluation metric for the methodology.

An example classifier can be seen in Figure 4.9, here a trace is fed into one of the convolutional layers of
the classifier. The classifier consists of multiple convolutional and dense layers. It outputs the probability of
the trace belonging to one of the 9 HW classes. As can be seen in the final dense layer, a softmax activation
function is used that squishes the output values of the dense layer in the 0 to 1 range (as explained in Section
4.4.2).

Figure 4.9: Hamming weight classifier

Often, as means of reducing the computational requirements of such classifiers, dimensionality reduc-
tion is employed. This aim is to transform data from a high dimensional space to a lower dimension. This
transformation can be linear and non linear. Following is one example of each:

1. PCA : PCA is a linear dimensionality reduction method that involves mapping the high dimension data
into a lower dimension. This is done by calculating eigenvalues and eigen vectors corresponding to the
correlation matrix and then only using the first few (principle) components. This reduces the higher
dimension data into few dimensions (as big as the number of chosen components). Depending on the
amount of variance explained by these eigen vectors, the success of the dimensionality reduction is
determined [98].

2. tSNE : t-distributed Stochastic Neighbor Embedding is a non linear technique for visualizing higher
dimensional data [99]. It aims at reducing the Kullback-Leibler divergence between the higher dimen-
sional data and the lower dimension embedding. Often, the data is pre-processed using PCA and then
tSNE is applied.

Many other dimensionality methods exists. From a side channel analysis perspective, even autoencoders
(as have been explained detail in Section 4.3.1) are fairly popular [95].

4.4.3. TYPES OF LEARNING
Now that we know different types of models and the methodology behind training them, let me now discuss
the various ways a machine learning model learns to do its assigned task. This decides the data requirements
for model training and depending on these requirements and learning type we can classify the models into
different training schemes:

1. Supervised Learning: In supervised learning, we not only provide the model with a training sample but
also with a corresponding label. This type of learning is used for the tasks like:

• Regression : This is the kind of problem where our objective is to find How much? or How Many?
[4]. An example can be to find How much will it snow in a particular month given a few Meteo-
rological parameters. In this case the Meteorological parameters are the data and the amount of
snow is the label.

• Classification : This is the kind of problem where our objective is to find Which category?. Say
that we have images of cats and dogs and our objective is to train a model that can differentiate
between the two types. In this case our problem will be a classification problem.
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• Tagging : Similar to classification, a more complex computer vision problem can be image tagging
where given an image we need the ability to classify all types of animals in an image or all types
of objects in an image. This problem can also be extended to finding tags (keywords) of certain
articles/ research papers.

2. Unsupervised Learning: In unsupervised Learning, we do not have any label corresponding to the data
samples in our dataset. In such a case, our models are solely dependent on the data to solve the task
at hand. An example can be to group different types of similar looking training samples together, this
problem is known as clustering. A real world example is using clustering on railway track data, where
the objective is to group together risky zones on the basis of number of train slide accidents [100].

3. Reinforcement Learning: This learning technique is for machine learning models that take actions on
the basis of the stimuli in their immediate environments. The model keeps on observing the envi-
ronment and chooses what action should be performed for every stimulus. This action is then either
reprimanded or rewarded and on the basis of these rewards (reprimand can be represented as a neg-
ative reward), the model decided how to update its weight and biases to perform better. An example
for deep reinforcement learning is grasp for stacking. As the name suggests, the aim is to make a robot
able to grasp and stack objects [101].

4. Transfer learning: This form of learning happens when a model trained for one task is used as a be-
ginning model for another task. This idealogy is based on the premise that a trained model already
contains high level information that can then be fine-tuned to cater to the needs of another applica-
tion domain. Often, the training step in transfer learning involves freezing the learned parameters of
the trained model and only training the newly added layers. As a example, lets suppose that our ob-
jective is to build a binary image classifier. One option is to build and train a model from scratch. If
a limited dataset is available, the model is very likely to overfit on the training data. It is advised that
transfer learning should be used in such cases. First, a pretrained classifier model (for example a CIFAR-
10 [102] classifier) is taken. Next the 10 neuron output is fed into a Dense layer that outputs 2 values.
Now, while training, the weight and biases of the pretrained classifier will be frozen but the remaining
layers of the model will be trained. This process is called ’transfer’ learning since it involves transferring
the information learned by a particular model for a specific task to another model for a different (but
related) task. This methodology works since the information learned for one task can still be useful for
the other task, for example a classifier for trucks might be useful for classifying cars.

4.4.4. BACKPROPOGATION AND AUTOMATIC DIFFERENTIATION
The backpropogation technique is a version of chain rule where the aim is to share the computations that are
repeated, wherever possible. Formally, the chain rule can be represented as follows:

d

dt
f (x(t ), y(t )) = ∂ f

∂x

dx

dt
+ ∂ f

∂y

dy

dt
(4.25)

In backpropogation the derivative is calculated in reverse order and then chain rule is used to calculate the
remaining derivatives, hence going from the output layer to the hidden layers in a so-called computation
graph. The computation graph for equation 4.26 can be seen in Figure 4.10.

z = w x +b

y =σ(z)

L = 1

2
(y − t )2

R = 1

2
w2

Lreg =L +λR

(4.26)

Hence, while backpropogating for this equation, the derivative of Lr eg is first calculated with itself (which
will be 1), then the derivative of Lr eg with respect to R is calculated followed by derivative of Lr eg with respect
to L. This process will continue till the derivative of Lr eg with respect to b and w (which are the weights and the
biases) has been calculated. During this entire process since there is dependency between variables, chain
rule will be employed to reuse the computation that has been already done.
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Figure 4.10: Backpropogation Example

On a software level, this is done using the automatic differentiation package built into libraries like Tensor-
Flow and PyTorch. In Tensorflow-1.0, the graph is built node by node by the user before calling session.run()
whereas in PyTorch this is done implicity (and is known as eager execution). Tensorflow-2.0 removes the con-
cept of session.run() and takes after PyTorch by inclusion of eager execution. Also, the tf.function()
decorator has the ability to generate python indepedent dataflow graphs which are much faster than eager
execution. Let’s now discuss the automatic differentiation package of PyTorch, called autograd in a little more
detail.

Figure 4.11: Autograd : PyTorch

As can be seen in Figure 4.11, the process of calculating gradients for a simple multiplication example.
Tensor a and b is marked as a leaf node since no other tensor is used to calculate either of them. However,
since tensor c is calculated using tensor a and b, it is not a leaf node. Now, depending on the requires_grad
attribute the context manager maintains a list of tensors that, when processed, can yield the differentiation
result.

4.4.5. OPTIMIZATION ALGORITHMS
Our objective while training deep learning models is to optimize the loss function. This is done using gradient
based optimization. Here, we reduce the value of the loss function by calculating its gradient with respect to
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the parameters of the network and then updating the parameters using backpropogation. A toy example of
the this process can be seen in Figure 4.12. This technique was first introduced in [103]. Mathematically,
this process can be explained using the Jacobian and the Hessian matrices. The Jacobian matrix will contain
the partial derivatives of the loss function with respect to all network parameters and the Hessian matrix
will contain their second derivatives, whose eigenvalues can be used to determine local minima, maxima or
saddle points.

Figure 4.12: Gradients while optimizing [3]

In deep learning, the problems are not convex, which gives rise to issues like local minimas, saddle points
and vanishing gradients [4]. Lets now discuss a few popular optimization algorithms. Gradient descent is a
cornerstone of machine learning algorithms and is also a precursor to various advanced optimization algo-
rithms that we see in production in present day deep learning models. The concept behind the optimization
process in neural networks is pretty straight forward. Altogether there are four steps.

1. Do a forward pass through the model. If for example we have a binary classification problem for images,
the input to the model would be an image and the output of the model, depending on the architecture,
should be a value in the range 0 and 1.

2. Depending on the loss function we choose, a loss value will be calculated between the expected value
of the image and the actual value that the model outputs. For example if we want to classify a particular
image as cancerous or non-cancerous, we will set the label of cancerous images as 1 and that of non-
cancerous images as 0. After a forward pass of the image, the model will output a value: say 0.4. If
the image was non-cancerous and the loss value will be 0.5∗ (0−0.4)2 which is 0.08. Note that if the
model’s output was 0.99 for the same non-cancerous image, the loss value will be 0.5∗(0−0.99)2 which
is 0.49. This is expected behaviour since the model should output a high loss value for such strongly
miss-classified images.

3. Now that we have the loss value, the next step is to carry out backpropogation as described in subsec-
tion 4.4.4.

4. Finally, we get to the point of updating weights and biases and here the optimization algorithms come
into play.

Mathematically, gradient descent can be represented as follows. Say that fi (x) is the loss value for i th

sample in a dataset with a total of n samples. The loss function in this case will be:

f (x) = 1

n

n∑
i=1

fi (x)
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and the gradient of the loss function will be:

∇ f (x) = 1

n

n∑
i=1

∇ fi (x)

the parameters of the model (θ) can then be updated (θ′) using this gradient as follows (η is the learning rate):

θ′ = θ−η∇ f (x)

It is evident that this process is computationally expensive and scales linearly with the size of the dataset.
Since this is not desirable, we have another (more popular) variant of gradient descent called stochastic gra-
dient descent wherein we randomly choose samples from the dataset and calculate the gradient just on the
basis of those samples. This process is computationally less intensive but is known to be extremely noisy.
Also it is still not the most data efficient since it does not make full use of vectorization and caches in CPUs
and GPUs. As a solution to this, a middle ground between gradient descent and stochastic gradient descent
was proposed and was named batch gradient descent. Here the dataset is divided into multiple batches. Each
batch contains training samples is a random order. Each training sample only appears once every epoch.

Now lets discuss more advanced optimization techniques, which take after EWMA. EWMA stands for ex-
ponentially weighted moving average. Say for example that a particular value after a few time steps in a
particular time series needs to be predicted. Remebering all the values before the present time step can be
extremely memory intensive for large time series, here the concept of EWMA comes to the rescue. The idea is
to calculate weighted sums from the second to the last timestep. This way, when we have to predict a value, it
only depends on EWMA of the last time step. Mathematically, for value yt at time t and 0 ≤ ρ ≤ 1, the value of
Exponentially weighted moving average (EWMA) : St =

(
ρSt−1

)+ (1−ρ)yt . Optimization algorithms leverage
EWMA to update the weights and biases of the model in the following way:

• SGD with Momentum: The aim is to smooth the noisy gradients using EWMA. Just using gradient de-
scent can slowly ossicalte towards the minimum, preventing us from using a larger learning rate. When
usimg SGD with momentum, we compute moving averages as in equation 4.27.

vi = ρvi−1 + (1−ρ)∇θ
θ′ = θ−εvi

(4.27)

• RMSProp: The aim is to smooth the zero centered variance of noisy gradients using EWMA. This can be
seen in equation 4.28.

ri = ρri−1 + (1−ρ)∇2
θ

θ′ = θ−ε ∇θp
r i

(4.28)

• ADAM:This is a combination of momentum and RMSProp and can be seen in equation 4.29.

vi = ρ1vi−1 +
(
1−ρ1

)∇θ , ri = ρ2ri−1 +
(
1−ρ2

)∇2
θ

v̂i = vi(
1−ρi

1

) , r̂i = ri(
1−ρi

2

)
θ′ = θ−ε v̂ip

r̂ i

(4.29)

Even though exhaustive comparison studies on the efficacy of various optimizers exist [104], there is no
ideal optimizer that can be used across all application domains mainly because of the hyperparameter tuning
that it associated with them.

4.4.6. STANDARDIZATION AND NORMALIZATION
Standardizing and Normalizing features has a big impact on the optimization process and the training time.
As defined by Huang et al. [105], normalization is the process of applying a transformation on a dataset to
ensure that the dataset obeys certain statistical properties. Not normalizing features causes different features
to have a very different range of values. This in turn may cause the gradients to oscillate back and forth,
increasing the convergence time . After standardizing / normalizing the data, all features are in a similar
range and the convergence time reduces.

A few such techniques are as follows:
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1. MinMaxScaler [106]: This scaling technique, also known as min-max normalization, scales each feature
xi by subtracting the minimum value of that feature and dividing by the range of that feature before
being scaled to the desired range. Equation 4.30 lists these operations.

xi = xi −mi n(xi )

xstd = xi
max(xi )−mi n(xi )

xscaled = xstd ∗ (max −mi n)+mi n

(4.30)

2. StandardScaler [107]: This method is also known as z-score normalization, each feature is standardized
by removing the mean and then scaling to unit variance, as in equation 4.31.

xmean = 1
m

∑m
i=1 xi

xstd =
√

1
m

∑m
i=1 (xi −xmean) 2

xi = xi−xmean
xstd

(4.31)

3. MaxAbsScaler [108]: The max absolute scaler simply scales each feature by its maximum value. This
means that the maximum value for every feature ends up being 1.

4. RobustScaler [109]: This normalization technique is robust against outliers, as the name suggests. Each
feature is scaled using the median and the inter quartile range. This means that the scaling process can
be successful in case a particular feature has outlier. However, this technique is not completely resilient
to outliers.

xi = xi −xmedi an

x0.75 −x0.25
(4.32)

5. Batch normalization [110]: This normalization process is also essential for the hidden features of deep
neural networks. This is done using batch normalization, wherein for every layer mean and variance
are calculated and then used to normalize the layer’s output. Batch normalization is required to check
the problem of exploding gradients which usually occurs due to very large activation values of certain
layers of the models. Intuitively, lets assume that all layers of a model are books and are stacked one on
top of each other. Let us also assume that the task at hand is to carry the books from one place to the
other (analogy for training the model). If while carrying the books we are struck by a gust of wind, the
books at the upper level will shift a bit, making the pile unstable. This process will continue till the pile
collapses. This process is termed as covariate shift. To make sure that the pile does not collapse, we
must maintain the distribution of weight on the pile. Batch normalization does exactly this. For every
batch, the input is scaled by a parameter γ and shifted by a parameter β [111]. Mathematically, it can
be represented as follows.

µB ← 1

m

m∑
i=1

xi

σ2
B ← 1

m

m∑
i=1

(
xi −µB

)2

x̂i ← xi −µB√
σ2

B
+ε

yi ← γx̂i +β≡ BNγ,β (xi )

(4.33)

Here, for the mini batch x1..m we calculate the mean and the variance to normalize the values. However,
since this process might be a bit too harsh for training, hence the trainable parameters γ and β are
introduced, such that if the model wishes to, it can undo the normalization itself.

Batch normalization is a very popular normalization technique which is seen application in most state-of-
the art architectures across domains. Scaling techniques, like the ones discussed in this Section, are equally
popular. Many comparison reviews about the efficacy of these techniques exist [112]. As a rule of thumb,
it is recommended to use RobustScaler when there are outliers in the data. Since that is not the case for
power traces, it makes sense to experiment with different scaling techniques to empirically determine which
technique works best.
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4.4.7. REGULARIZATION
Deep neural networks can have parameters in the order of millions. Since training data, irrespective of the
purpose of the network is limited, it is highly likely that the model learns to do well on the training data but
performs very poorly on testing data. This situation is known as overfitting and it causes a model to not
generalize well to unseen data. Popular solutions to overfitting are as follows:

1. Parameter norm: The first way to reduce the complexity of the model is to reduce the parametric weight
of the model by scaling individual weights down using l1, l2 norm of the total weights.

2. Early stopping: Overfitting can also be caused by training the model for extended number of epochs.
This means that the model has adjusted its weights way too many times on the basis of a particular
dataset. Causing it to perform very well during training but poorly during validation and testing. To
make sure this situation does not arise, we can introduce early stopping. In Keras, this option can be
passed into the model.fit() API as a callback. In Pytorch, this can be done using a number of plugins like
Ignite and lightning.

Figure 4.13: Dropout [4]

3. Dropout: Srivastava et al. [113] proposed this regularization technique of randomly pruning nodes,
yielding many different subsets of a particular network. By training these sub-networks, a final net-
work can be produced by using all nodes. However, this networks exhibits far lower error rates than
an equivalent network trained as a single unit. This is because while training, the node availability is
highly unpredictable and each node can no longer rely on other nodes correcting them. This makes the
network much more robust and enhances its ability to generalize.

4.4.8. HYPERPARAMETER TUNING
Hyperparameters are very important components of the learning process and they indeed have a lot of in-
fluence over how well the trained model performs. Simply put, hyperparameters are the parameters of the
model that are chosen before hand and are not updated during backpropogation in the training loop. These
hyperparameters are tuned using a validation dataset.

Once the model has been defined, we need to decide the learning rate, batch size and the number of
epochs. Finding optimal hyperparameters for every model is not a trivial process. However, there are a few
methods for the task, like:

1. Manually Searching: The simplest method to find optimal hyperparameters is to manually change
them for different training runs and choosing the ones that give the most validation accuracy.

2. Grid Searching: Manually choosing hyperparameters can be cumbersome and hence we can loop over
a continuous range of hyperparameter values to find the one with best validation accuracy.

3. Random search: Instead of searching the hyperparameters over a continuous range of values, we can
randomly pick hyperparameter values in a range to find the one with best validation accuracy.

Hyperparameter tuning gets much tricky for generative deep learning since formulating the validation accu-
racy is a complex task. For computer vision and audio tasks, researchers use services like Amazon Mechanical
Turk to compare the generated samples with actual samples. As far as generative deep learning for hardware
security is concerned, we choose to depend more on side channel analysis metrics like guessing entropy and
success rate rather than other machine learning metrics, as suggested in this in-depth study [57].
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4.4.9. PYTORCH AND KERAS
Now that all details about building and training networks have been explained, the mechanism to build them
must be discussed. For different programming languages many machine learning frameworks exist. For C++,
there is Caffe [114]. For Java there is DL4J [115]. However, in this work only python deep learning libraries
are used; which are PyTorch [64] and Tensorflow [116] (with Keras [65] interface). Both of them are internally
implemented in C/C++ instead of pure python due to obvious performance benefits.

Table 4.1: PyTorch and Keras APIs

Task PyTorch API TF2.0 / Keras API

Making the dataset

Subclassing the Dataset class
and overriding magic methods to
return samples. Finally, using DataLoader
to split data is batches

Either using the TF dataset class
or passing the data as arguments to
the model.fit API.

Build Model
Subclassing from the Module class
and overriding the forward method.

Either subclassing the Model class
or using model.compile and specifying
the input and output values (and
shapes).

Using loss function
and optimizer

Instantiating chosen loss function and
optimizer.

Specifying as arguments in the
model.compile API

Training
Manually looping over the dataloader,
computing loss (loss.backward) and
taking optimizer steps (optimizer.step)

Using model.fit API

Logging
Manual log statements in the train loop
conditioned on the epoch or batch count.

Specifying metrics in model.compile
and verbosity in model.fit API.
Can also be done using callbacks.

Saving Using the torch.save API
Using the model.save API or specifying
ModelCheckpoint as a callback.

Table 4.1 list the main ML operations and their corresponding Pytorch and Keras APIs. As a refresher,
every machine learning model has a few tasks associate with it . First, is to process the data and make a train,
validation and test dataset. Second, is to build the model. Third, is to decide the loss function and optimizer,
depending on the task that the model is supposed to carry out as well as the data that it is being trained on.
Fourth, is to train the model and log its performance. Finally, the last task is to deploy/save the trained model.





5
METHODOLOGY

This chapter presents the methodology for training GANs to generate power traces that can be used for security
analysis against power attacks. Firstly, Section 5.1 briefly explains the related work that has already been done
in the context of GANs for side channel analysis. Next Section 5.2 provides a comparison between the task of
generating images and generating power traces as most of the research for GANs has been dedicated to computer
vision tasks. Followed by lists of the evaluation metrics used for assessing the GAN’s performance in Section 5.3.
Then Sections 5.4 and 5.5 highlight the label options and GANs different architectures, respectively. Finally,
Section 5.6 tries to highlight the impact of the hyperparameters on GAN performance.

5.1. RELATED WORK
Most work in the field of generative deep learning has be been dedicated to images. Although very intuitive,
those models can not be applied as is to the task of generating power traces. Having said that, recently quite
a few researchers have ventured into audio waveform generation using generative deep learning. Notwith-
standing a few caveats, these models are much inline with our objective.

The field of using generative models for hardware security tasks is not unventured. Wang et al. [117]
recently demonstrated how generated traces can be used to enhance side channel attacks. However, in their
own words, their study was aimed as a proof of concept and not a robust methodology. The four main issues
with their design is as follows:

First, in their initial experiments they use a very limited training set of 500 traces. Details about the archi-
tecture are not completely disclosed, but for a dense GAN network with a 100 dimension latent vector, just
500 traces seem pretty small. Such a small training set is proven to generate substandard samples unless dif-
ferential augmentation is used [118]. Second, they only use dense generator and discriminator networks. The
problem with dense models is that the number of parameters quite easily go out of hand once the input/out-
put size of the dense layers are increased. Third, they limited their study to only a few label options, namely
least significant bit and Hamming weight of the SBOX output. In our study, we find how different label op-
tions can perform extremely well than by just using the LSB and Hamming weight. Finally, they use the basic
conditional GAN loss (proposed by Mirza and Osindero [82]) as explained in Section 4.3.2. The issue with that
loss formulation is that it is known to make generator stuck amongst a few categories, hence forgetting about
the remaining categories. As explained by Odena et al. [119], it is quite a potent issue in GANs which can be
resolved by making a few architectural changes.

In [120], the author uses GANs as a dataset augmentation technique for side channel analysis, similar
to [57]. The author proposes the use of nine convolutional unsupervised GANs (one for each hamming
weight). In addition to the GANs, a supervised classifier model is trained that is expected to ascertain that the
GAN generated traces actually belong the correct Hamming weight category. The impact of class distribution
on the performance of the side channel attacks as well as model performance is assessed and it is concluded
that class imbalance causes a serious detrimental impact on both.To make the per hamming weight training
possible, meaning that to segregate the traces on the basis of the leakage model, the proposed methodology
must make use of the known key and the plaintext in the data cleaning step. Hence, it was proposed as a data
augmentation technique, in the profiled side channel attacks. The author concludes that it is not sensible
to carry out dataset augmentation with GANs since they require more training data to perform well than is
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required to make good quality templates.

5.2. COMPARISON WITH COMPUTER VISION
Since most reference GAN models belong to the computer vision domain. As a first step, it is important
to compare the training data of such computer vision models and power traces. Figure 5.1 shows training
images from the MNIST [121] dataset corresponding to a few digit classes. Figure 5.2 shows power traces
corresponding to different hamming weight classes. What is particularly evident is that the MNIST can easily
be distinguished and the power traces can not.

(a) Number 1 (b) Number 2 (c) Number 3

(d) Number 4 (e) Number 5 (f) Number 6

Figure 5.1: MNIST images corresponding to different classes

(a) HW 1 (b) HW 2 (c) HW 3

(d) HW 4 (e) HW 5 (f) HW 6

Figure 5.2: Power traces corresponding to different mode(HW) classes

Although quite evident, it is also important to mention that the average of training samples corresponding
to these classes have very different visual properties. In Figure 5.3a, the average of MNIST classes produce
an image that clearly does not belong to any of the classes. The same is not true for the power traces, the
average of all HW classes produce a power trace that looks like a power trace corresponding to any other label
(as in Figure 5.3b). The key takeaway from this is that the average of all power traces can be used to guide
a generative model to generate power traces. In situations when the GAN outputs power traces that look
particularly different from the set of real traces, correction can be done using a model of the different features
of the power trace.
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(a) Average image of MNIST classes (b) Average trace of HW classes

Figure 5.3: Average of all classes

To give an exact explanation of the same, consider that the training data is scaled using any scaling tech-
nique and the feature wise statistics are calculated. For example if StandardScaler [107] is used, the mean
and the variance corresponding to all time samples in the power trace will be calculated. After GAN train-
ing, when the GAN is expected to generate power traces, these statistics can be used to correct the generated
traces. In sklearn [122], these two steps are done using the fit_transform() and the inverse_transform() APIs.

5.3. EVALUATION METRICS
Before the methodology is discussed, it is important that the evaluation metrics are decided. Evaluating a
GANs performance is a complex task. Evaluating GANs for side channel analysis is much more complex.
This is because unlike other domains where the generated samples can be evaluated visually or using mean
opinion scores [123], for side channel analysis the information leaked by the trace can not be determined by
visual appearance. In this section, various evaluation metrics for judging the quality of the generated traces
will be discussed.

To begin, we will discuss the traces evaluation using quantitative metrics such as dynamic time warp-
ing [124], power spectral density [125] and even Euclidean distance [126]. The simplest metric can be used to
evaluate the traces is Euclidean distance. The drawback of this approach is that even if the generated traces
are slightly misaligned (but look fairly similar), the Euclidean distance will be extremely high. Dynamic time
warping provides a solution to this problem and aims at finding the best alignment between signals and while
doing so, it calculates a distance matrix and outputs a distance measure. Dynamic time warping (DTW) [127]
finds an optimal alignment between two unmatched temporal sequences. This optimal alignment or the
‘warping path’ maps the two sequences such that the distance between them is minimized. The minimum
distance can be used as a measure for similarity between any such two sequences. Similarly, even the Power
spectral density (PSD) of two signals can be used as a measure for similarity between them. Power spectral
density (PSD) is the measure of power distributed across different frequency components that compose a sig-
nal [125]. For the real and the generated traces to be visually similar, the DTW distance should be low and
the PSD should be very similar. In all these three metrics, the issue is that if the GAN goes through a collapse
mode and outputs just a single trace again and again, the similarity in the traces is so high that the error
values will stay low. Hence, other metrics must be explored.

Another approach is to use the popular computer vision metrics for GANs such as Frechet inception dis-
tance [128] and Inception score [129]. Unfortunately both of them make use of the Inception classifier [130]
trained on Imagenet[131] and hence can not be applied as is to the side channel analysis domain, given the
obvious differences in the data representation discussed in Section 5.2. However, their idea can be slightly
tweaked so as to make a good evaluation metric. The idea is as follows. A HW classifier, like that introduced
in Section 4.4.2, can be trained on a AES traces for a set of random plaintext and random key. This is similar
to the methodology introduced in [95]. Next, the classifier can be tested on both real and generated traces.
Comparing the accuracy of the classifier can give a good insight on how similar the power traces are. Using
the classifier, classification similarity metrics can be defined which means that if a trained classifier classifies
both real and generated traces similarly, it can be concluded that the traces are almost indistinguishable.

Other than the classifier methodology, the traces can also be compared using side channel analysis met-
rics like guessing entropy. If a CPA attack is carried out on the real and generated traces, the similarity in the
number of attackable bytes (termed as attackability from here on) will suggest that the generated traces are
very similar to the real traces.
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Table 5.1: Evaluation metrics

Metric Definition Drawback

PSD
Comparing power in the frequency
components of real and generated
power traces

Similar PSD does not guarantee
similar attackability.

DTW

Comparing the real and generated power
traces temporally with the aim to find an
optimal alignment between the two. The
DTW distance gives an insight on how close
or far the real and generated traces are.

Similar DTW does not guarantee
similar attackability.

CPA
attack ranks

Comparing the attack ranks on the real
and the generated traces for the same set of
plaintext and keys. The aim is to find if
both sets of power traces leak information
equally.

Similar attackability does
not guarantee identical trace structure.

SNR

Comparing the signal to noise ratio of the
real and the generated power traces using
specific leakage models. Spikes in the SNR
plot give an insight on how attackable the
traces are.

Sensitive to the leakage model.

TVLA

Comparing the number of leakage points
for real and generated power traces using
Welch’s t-test. Similar number of leakage
points for both suggest that traces are
leaking similar amount of information.

Not robust. Proven to not quantify
side-channel vulnerabilities often.

Classifier
similarity

Comparing the performance of a pre-trained
HW classifier on the real and generated traces.
Aim is to find if both real and generated traces
have similar accuracy.

Class imbalance problem in the HW
label can give a false sense of similarity.

Finally, some conformance style testing can also be used to evaluate the amount of information leaked
by a particular design. For example, the signal to noise ratio can be used. SNR was introduced in the context
of side channel analysis by Messerges et al. [132] and since then has been very popular in the hardware
security domain. For example, it was used in [133] to evaluate the efficacy of countermeasure against side
channel attacks. The aim behind finding the SNR is as follows, the leakage from the power traces is said to be
constituted by three main components. First, is the exploitable component as a result of the cryptographic
operation being executed. Second, is a noise component which is said to follow a Gaussian distribution and
third, is a constant component which is not dependent on either the noise or the exploitable component.
In all, the total leakage is as in equation 5.1, where L(p, s) is the total leakage, ε ·V (p, s) is the exploitable
component, LN is the noise component and L0 is the constant which is nothing more than an offset being
caused by other unrelated parts of the cryptographic device [134].

L(p, s) = ε ·V (p, s)+LN +L0 (5.1)

The SNR is calculated as the ratio of the variance of the signal to variance of the noise. In the chipwhis-
perer [135] API, the segregation on the trace on the basis of the specified leakage model is done so as to
segregate the traces into different hamming weight categories before the SNR can be calculated. Another
popular form of conformance style testing like SNR is TVLA testing [136]. Based on Welch’s t-test, it is often
used in the side channel domain to determine if the power traces leak infomation about the key. The aim is
to compare two sets of power traces. One set with a fixed plaintext and the other set with random plaintexts.
The t-test leverages the mean and variance of these two sets, as in equation 5.2, to determine the t value
which is then compared with a predetermined constant to assess leakage. Here X̄1, S2

1, and N1 represents
the means, the variance, the total number of used fixed plaintext traces, respectively, while X̄2, S2

2, and N2

represents the means, the variance, the total number of used random plaintext traces, respectively. It must
be noted that although popular, TVLA results have been proven to not quantify side-channel vulnerabilities
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correctly in certain cases [137].

t = X̄1 − X̄2√
S2

1
N1

+ S2
2

N2

(5.2)

To sum it up, the GAN can be evaluated on the basis of the metrics presented in table 5.1. However,
extensive studies on the shortcoming of using of machine learning metrics for side channel evaluations have
been done [57] concluding that using side channel analysis metrics like guessing entropy is much better than
using ML metrics. Hence the generated traces will first be evaluated using side channel analysis metrics,
namely CPA attack ranks. For visual comparison of the traces, similar to some CAD simulator tools that aim
at power trace generation [138] [24], DTW distance will be used. In the discussion section, the remaining
evaluation metrics will be used.

5.4. LABELS FOR GAN
GANs were initially proposed [70] as unsupervised methods, which means that the training procedure did
not require labels associated with each training sample. Hence, even though GANs were proven to generate
good quality images, it was not possible to specify exactly what type/class of image it should produce since
the generator of the GAN only took random noise as input. To address this issue a conditional GAN variant
[82] was introduced soon after. Their proposed GAN took both random noise and a class label as input. The
class label was passed through an embedding layer which was then concatenated with the feature map before
being passed through the hidden layers. This technique made it possible to tell the GAN exactly what class of
image it should generate.

It is important to address the importance of labels in the context of GANs. A Multilayer perceptron GAN
(MLP-GAN), as can be seen in table 5.2, was trained using 10000 AES encryption traces and then 1000 traces
were generated using the GAN. A comparison of the real and the generated trace can be seen in Figure 5.4.

Table 5.2: MLPGAN

Generator Discriminator

Input Layer
Dense∗(noise dim, width//4), BatchNorm1d∗∗,
LeakyReLu(0.2), Dropout(0.3)

Dense(power trace length, width), BatchNorm1d,
LeakyReLu(0.2), Dropout(0.3)

Hidden Layer 1
Dense(width//4, width//2), BatchNorm1d,
LeakyReLu(0.2), Dropout(0.3)

Dense(width,width//2), BatchNorm1d,
LeakyReLu(0.2), Dropout(0.3)

Hidden Layer 2
Dense(width//2, width), BatchNorm1d,
LeakyReLu(0.2), Dropout(0.3)

Dense(width//2,width//4), BatchNorm1d,
LeakyReLu(0.2), Dropout(0.3)

Output Layer Dense(width, power trace length), Tanh Dense(width//4,1), Sigmoid

*parameter order is (input-size, output-size) ** number of features = output-size of Dense layer

(a) Real AES Power trace (b) Generated AES Power trace (c) Comparison

Figure 5.4: AES Traces generated using a MLPGAN

Table 5.3: CPA attack ranks : GAN

Trace Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15 Byte 16

Real 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Generated 100 184 35 251 107 63 195 175 60 18 249 165 122 148 192 28

As can be seen in Figure 5.4, the real and the generated traces are almost identical. However, the CPA
attack ranks in table 5.3 tell a different story. The generated traces are not attackable. This is expected since
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even though the GAN was able to learn the structure of the power traces, the lack of any label causes the GAN
to output power traces that can not be associated with the plaintexts and the keys. This lack of association
makes the CPA attack unsuccessful. An extension to the unsupervised GAN presented in this section is the
Information Maximizing GAN (InfoGAN) [139] wherein the GAN implicitly tries to learn a segregation be-
tween different classes by learning different categorical control variables for different label values. However,
correctly classifying the traces to their respective leakage model categories is a non-trivial task, unlike visu-
ally classifying the MNIST [140] digits that are used by the authors of the paper [139]. When using computer
vision datasets like MNIST it is very straightforward to vary the control variable and visualize the output of
the GAN so as to determine which control variable belongs to which class. However, power traces can not
be visually classified into their leakage model class and hence the categorical control variables learned by
the GAN can not be easily deciphered. Therefore, even if the GAN learned to distinguish between different
leakage models, just telling which categorical control variable corresponds to which leakage model label is
tricky. Using a trained classifier doesn’t make sense either since training the classifier is a profiling step and
would mean that we have access to a clone device and know both the plaintexts and keys. In that case, its
more straight forward to use the proposed supervised approach since training an InfoGAN implies training
not only the generator and the discriminator but also an additional neural network which aims at modelling
the distribution of the control variables (leakage model labels) given the power trace.

Since using GANs without any labels produce traces that incorrectly portray the leakage, in the following
Sections different label options for the GAN will be discussed.

5.4.1. HW/HD LABEL OPTIONS FOR THE GAN
Conditioning the GAN on informative labels is by far the most important component of the entire method-
ology. As discussed in Section 5.4, uninformative labels can cause the GAN to generate traces that look ex-
tremely similar to the actual traces, however these traces will not be attackable. The visual similarity stems
from the innate visual indistinguishability in the power traces. If a wrong label is used to generate the power
trace, the correlation between the power trace and the intermediate value will be incorrect, causing the guess-
ing entropy to stay high.

Let’s first consider generating power traces using just the Hamming weight for just one byte of the SBOX
output of plaintext and known key. The structure of this GAN will look like Figure 5.5. As indicated in the
Figure, once we compute the sbox output of the plaintext byte and the key byte, we need to process the
output somehow. This is where the leakage model (hamming weight) comes into place. We can also calculate
a hamming distance value. However, the power trace that we aim to generate (and have in our training set) is
not for a particular byte but for all 16 bytes. This puts us in a dilemma. If we just use one byte, conditioning
the GAN on a that byte’s hamming weight is pretty straightforward. However, we are wasting a lot of useful
information in that case. This has a substantial impact on the performance of the GAN.

Figure 5.5: Using processed HW as label

As can be seen in Figure 5.6, the generated traces are very close to the real traces, just like the unsupervised
GAN in Section 5.4. Where the change lies, is the cpa attack ranks. As can be seen in table 5.4, the first byte is
attackable. It must be noted the first byte’s HW was used as label in the training process and only that byte is
attackable using the GAN generated traces. Since most of the bytes are not attackable, it is evident that just a
single byte’s HW is not very informative. As a solution to this issue, the 16 HW values corresponding to each
power trace must be processed and associated with each power trace as a label during the GAN training. This
process can be done in a variety of ways.

The aforementioned process aims at reducing the 16 HW values into one single value which can then be
used as a label. The most viable option seems to take the mean of all the bytes’ HW. However, there is an issue
in that approach. Almost all GAN architectures use embedding layers for labels. These embedding layers are
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(a) Real AES Power trace (b) Generated AES Power trace (c) Comparison

Figure 5.6: AES Traces generated using HW of single byte as label

like look-up tables and hence expect a whole number as input. Mean values of course are not guaranteed
to be whole numbers, making the labelling process tricky. I will discuss a technique to condition the GAN
on mean values in Section 5.5.5. Till then, lets consider methods that process the 16 bytes’ HW and return a
whole number value. One option is to either take mode of hamming weight of the 16 bytes. Also, the mean of
HW of the 16 bytes can be processed using floor, round or ceil functions. A similar process can be carried out
using the hamming distance.

Table 5.4: CPA attack ranks for HW labels

Trace
Byte

1
Byte

2
Byte

3
Byte

4
Byte

5
Byte

6
Byte

7
Byte

8
Byte

9
Byte

10
Byte

11
Byte

12
Byte

13
Byte

14
Byte

15
Byte

16

Real 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Generated:
Single-byte
HW Label

1 191 209 199 236 172 66 166 168 7 220 164 6 107 191 57

Generated:
Mode of
HW Label

40 22 1 57 10 29 24 1 1 3 88 1 13 1 88 241

Generated:
Round of mean
of HW Label

1 1 1 1 1 1 1 1 1 1 1 9 1 1 1 2

Generated:
Ceil of mean
of HW Label

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Generated:
Floor of mean
of HW Label

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Generated:
HW template
Label

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Each processing technique, of course, yields different label values and also performs quite differently as
is evident in table 5.4. Using mode of HW label, the results are much different from the single HW byte label.
Visually, the traces still look identical as in Figure 5.7. However, CPA attack on the generated traces performs
better. As for taking the mean of the HW values: ceil, floor and round perform much better. The reason
behind this, according to me, can be derived from label count-plots as in Figure 5.9 wherein it is evident
that ceil, floor and round processing reduces the label into just two almost equal categories. This acts as a
solution to the HW class imbalance issue (as can be seen in the single-byte and mode plots) and enhances the
performance of the GAN. It must be mentioned that just like mode of hamming weight case, the generated
traces visually look similar to the validation set in the remaining label options.

This HW idea can further be extended to make template based labels. This label takes after the pre-
processing step of the template based attacks explained in Section 3.4. Point of interests can be calculated
using the sum of difference method. Traces can then be segregated on the basis of HW. For these segregated
traces, mean and covariance matrices can be made. These matrices can then be flattened out to be used as
an input vector for the generator. Visually, a flattened (and concatenated) mean and covariance matrix for
9 different hamming weights looks like Figure 5.8. However, the embedding layer in this case can naturally
not be used. Instead, a Dense layer is used and the output of this layer is then concatenated with the noise
dimension. This means that the architecture presented in table 5.5 is only slightly modified such that the
embedding layer is replaced with a dense layer followed by concatenation with the noise vector. This archi-
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Table 5.5: MLPCGAN

Generator Discriminator

Embedding Layer
Embedding(9,10)
Concatenate(noise, label embedding)

Embedding(9,10)
Concatenate(noise, label embedding)

Input Layer
Dense(noise dim + 10, width//4)∗,
BatchNorm1d∗∗, LeakyReLu(0.2),
Dropout(0.3)

Dense(power trace length + 10, width),
BatchNorm1d, LeakyReLu(0.2),
Dropout(0.3)

Hidden Layer 1
Dense(width//4, width//2), BatchNorm1d,
LeakyReLu(0.2), Dropout(0.3)

Dense(width,width//2), BatchNorm1d,
LeakyReLu(0.2), Dropout(0.3)

Hidden Layer 2
Dense(width//2, width), BatchNorm1d,
LeakyReLu(0.2), Dropout(0.3)

Dense(width//2,width//4), BatchNorm1d,
LeakyReLu(0.2), Dropout(0.3)

Output Layer Dense(width, power trace length), Tanh Dense(width//4,1), Sigmoid

*parameter order is (input-size, output-size) ** number of features = output-size of Dense layer

(a) Real AES Power trace (b) Generated AES Power trace (c) Comparison

Figure 5.7: AES Traces generated using mode of HW as label

tecture can also be extended to use the entire 16 bytes HW as labels for the GAN. The results for both cases is
impressive, as pointed out in table 5.4.

Figure 5.8: HW templates

All the results presented in this Section are for traces generated using the GAN architecture presented in
table 5.5. Conditioning the GAN on Hamming weight values gave good results. However, there are issues with
this methodology. First, we need the know the actual key. Generating the HW labels just using key guesses
between 0 to 255 does not work. This is because if we loop over all possible key values, the mean/mode of
hamming weight will become 4 for every plaintext that is encrypted. Second, the inherent class imbalance
in hamming weight seems to have an impact on the GAN performance. A plot of labels, while using mode of
HW of all 16 bytes can be seen in Figure 5.9. Ideally, there should be 9 categories (0 to 8), each with similar
number of samples. However, as is apparent form the Figure, that is clearly not the case here. This issue
becomes much more apparent once the number of generated traces is reduced. This will be highlighted in
chapter 6.

Using the known key to calculate labels for the GAN and then judging the GAN generated traces on the
basis of their attackability seems trivial. So as to make the GAN flexible, such that it can be used to task
independently generate power traces, value change dump (VCD) files need to be used as labels. VCD or value
change dump files are collections of the variables changes during simulation. Next, VCD conditioning will be
discussed in detail.



5.4. LABELS FOR GAN 53

(a) Single byte (b) Mode of HW (c) Mean of HW

(d) Ceil of Mean of HW (e) Floor of Mean of HW (f) Round of Mean of HW

Figure 5.9: Hamming Weight Label options for GAN

5.4.2. VCD LABEL OPTION FOR GANS
VCD or value change dump files are collections of the variables changes during simulation. These variable
changes during simulation is a good measure for power consumption. As demonstrated by Gu and Almasry
[51], the power consumption depends on the switching activity of transistors. This switching activity of the
transistor is proportional to change of the input values to the transistor. Also, since the VCD files are not
limited to any specific operation, they can innately make the GAN more flexible.

Using the VCD files as labels, however, is not as straight forward as using Hamming weight values. For
HW, an embedding layer was used. The embedding layer’s output is then concatenated with the input noise
vector and finally fed into the generator. The VCD files hence are required to be processed, so that it can be
concatenated with the noise vector. First, the VCD file must be converted into a transition lists. These lists
combine the number of transitions into an array, such that for every power trace in the training set there is a
corresponding transition list. The transition list must be processed so that it can be used as an input to the
generator. This can be done in the following ways:

1. Spectrogram of the transition array: A Spectrogram is said to be "a picture of sound". It represents all
the constituent frequencies of a signal with respect to time. To compute a spectrogram of the transition
array, we need to perform three steps. First, we need to perform short time fourier transform using
certain length of the windowed signal and hop-length. Second, the output needs to be squared so as to
remove the complex values. Finally, we need to convert the power spectrogram to the dB scale.

2. Mean and variance pairs of the transition array: The transition array can also be reduced to just their
corresponding mean and variance values. These mean and variance pairs can then be feed into the
network using continuous conditioning as explained in 5.5.5.

3. Using entire transition array: Finally, even the entire transition array can be used as an input vector to
the generator.

As will be explained in the chapter 6, the size of the transition array after processing is reasonably short
and hence just the transition array can be used as an input vector. In case of very long transition array length,
the aforementioned processing techniques can be very helpful. The mean and covariance method loses
out on a lot of information and due to the high inter-trace are almost indistinguishable. The spectrogram
methodology, depending on the choice of the number of channels and window length, can reduce the size of
the transition array. This spectrogram can then be flattened and used as an input to the generator to generate
attackable traces.

The VCD file is structured in a way that segregates the transitions in the wires and registers on the basis
of time. These VCD timestamps can then be correlated with the plaintexts that are encrypted at that instant.
Visually, the process can be seen in Figure 5.10. Our aim is to procure training data for the GAN using the VCD
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Figure 5.10: VCD parsing to get training data

Figure 5.11: Using VCD to generated power traces

file when the vec file (list of plainexts) is available. These plaintext and keys are then run on a chipwhisperer
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emulating the AES design to record power traces corresponding to those encryptions.
VCD files are human readable, since they are based on the ASCII standard, and contain the following

information [141]:

1. Header : Every VCD file contains a header portion to highlight the tool used to make the VCD file,
datetime of creation and the timescale used.

2. Scope : This corresponds to the scope to which the variables belong to. This term can be nested to
refer to nested scopes. For example, for a signal belonging to module which is in turn located within a
particular top level design will have nested scope entries in the VCD file.

3. Variable declaration: Every variable declaration has four components. First is the type of the variable,
which can be a register, a wire or a parameter. Next, is the size of the variable in bits. Third, is an
identification code corresponding to the variable. Finally, there is the user defined name (known as
reference) corresponding to the variable.

4. Data Section: Finally, the data Section contains a series of timestamps and operations corresponding
to variables on those timestamps.

Figure 5.11 explains the methodology to use VCD files as conditioning for GAN. The core idea behind this
methodology is to use the wire transitions to obtain a transition array that can be used as input to the GAN.
Since VCD transitions are application independent, this approach in theory can be extended to generated
power traces corresponding to any implementation. VCD conditioning in GANs does not pose any added
architectural requirements. If anything, it makes the architecture much more flexible since it removes the
need of an embedding layer. The generator and the discriminator can be implemented using dense or con-
volutional layers, similar to the MLPGAN and DCGAN as can be seen in table 5.6 and 5.7. Detailed diagrams
can be seen on page 95 and 96.

Once the VCD transitions are processed using the vcd translation engine, as in figure 5.11, the transition
array can be used as an input to the generator. The length of the vcd transition list is termed as vcd length in
table 5.6 and 5.7.

Table 5.6: MLPGAN : VCD Label

Generator Discriminator

Input Layer
Dense(vcd length, width//4)∗,
BatchNorm1d∗∗,
LeakyReLu(0.1), Dropout(0.3)

Concatenate(vcd, power trace),
Dense(vcd length + power trace length, width),
BatchNorm1d, LeakyReLu(0.1),
Dropout(0.3)

Hidden Layer 1
Dense(width//4, width//2),
BatchNorm1d,
LeakyReLu(0.1), Dropout(0.3)

Dense(width,width//2),
BatchNorm1d, LeakyReLu(0.1),
Dropout(0.3)

Hidden Layer 2
Dense(width//2, width), BatchNorm1d,
LeakyReLu(0.1), Dropout(0.3)

Dense(width//2,width//4),
BatchNorm1d, LeakyReLu(0.1),
Dropout(0.3)

Output Layer Dense(width, power trace length), Tanh Dense(width//4,1), Sigmoid

*parameter order is (input-size, output-size) ** number of features = output-size of Dense layer

Table 5.7: DCGAN : VCD Label

Generator Discriminator

Input Layer
Conv1d(1, width, 9, 4)∗,
Upsample(factor=2, mode=’nearest’)
BatchNorm1d∗∗, LeakyReLu(0.1)

Concatenate(vcd, power trace),
Conv1d(1, width, 9, 4, 2),
BatchNorm1d, LeakyReLu(0.1)
MaxPool1d(2,2)

Hidden Layer 1
Conv1d(width, width//2, 9, 4),
BatchNorm1d, LeakyReLu(0.1)

Conv1d(width, width//2, 9, 4, 2),
BatchNorm1d, LeakyReLu(0.1)
MaxPool1d(2,2)

Hidden Layer 2
Conv1d(width//2, width//4, 9, 4),
BatchNorm1d, LeakyReLu(0.1)

Conv1d(width//2, 1, 9, 4, 2),
BatchNorm1d, LeakyReLu(0.1)

Output Layer Conv1d(width//4, 1, 9, 4), Tanh MaxPool1d(2,2), Sigmoid

*parameters in order: in channels, out channels, kernel size, padding, stride **number of features = out-channels of Conv1d
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However, as pointed out in Section 4.4.8, scaling is an integral part of the framework while working with
a limited training set. This means that the generated traces, even for different VCD files will look very similar
to the training set. This is not ideal since for different implementations, the power traces might have very
different amplitude and frequency components which will not be modelled by the GAN. To address this issue,
in some cases an additional labels can be used to signify the different implementations. Otherwise the GAN
can either be completely trained again or transfer learning can be introduced. This will be explained in the
discussion section of chapter 6.

5.4.3. IMPORTANCE OF POWER TRACES IN GAN TRAINING
Now that we know the importance of labels in GAN training. It is important to explore how important power
traces are in the same context. Of course, there is a visual aspect. If this tool is used in tandem with an existing
simulation framework, it is important that the generated traces visually look very similar to what the end user
would expect. However, since the assessing criteria for our framework till now also includes CPA attack ranks,
it is possible that the dependence on the power trace structure is not paramount.

To analyze this in greater detail, CPA attack ranks of the generated power traces will be juxtaposed with
an additional metrics like power spectrum [142] and dynamic time warping [124].

Table 5.8: Comparing real and generated traces

trained using real traces trained using random noise

DTW 0.525 63.539
Attackable bytes 16 16

(a) Trained using actual power trace (b) Trained using random noise

Figure 5.12: DTW of real vs generated

(a) Trained using actual power trace (b) Trained using random noise

Figure 5.13: PSD of real vs generated

Despite the visual disparity between the generated traces in the two cases (as in Figure 5.12) as well as
the DTW and PSD inequality, all the bytes are attackable using a CPA attack (as in table 5.8). With this, we
can conclude that the power traces are necessary for the visual appearance of the generated traces. However,
they do not have any substantial impact on the attackability of the power traces. This is because the labels are
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computed using the known key and implictly categorize the traces into their respective leakage model bin,
making the GAN capable of generating traces that leak information which can be leveraged by a CPA attack.
Of course, the noise has a detrimental impact on the generated traces which is very apparent when only a
limited number of traces are generated. In table 5.8 the attackable bytes are a result of using 4000 generated
traces. If the number of traces is reduced to 1000, the attackable bytes when using the real traces to train will
become 11. However, the attackable bytes when using random noise to train will become 8. This is because
using noise hinders the CPA attack, which is sensitive to amount of noise in the trace.

5.5. CHOOSING THE RIGHT GAN ARCHITECTURE
The previous Sections discussed possible label options as well as the importance of labels in GAN training.
This Section will introduce and compare the architectures which can accommodate those different label val-
ues. These architectures vary substantially depending on the label value and power trace length.

5.5.1. POSSIBLE OPTIONS

Before deciding on the best architecture for the task of power trace generation, it is important to discuss a few
possible GAN architectures. These architectures will mainly be classified on the basis of the layers and labels
they use. As presented in Section 5.4.1, GAN architectures can simply be made using Dense layers. GANs can
also be made using convolutional layers as well as RNN layers, in tandem with the Dense layers. For whole
number labels, an embedding layer can be used.

Figure 5.14: Auxiliary classifier GAN

On a high level, these GANs can have structure like that shown earlier in Figure 5.5 or have an auxiliary
classifier attached to the discriminator’s output [119] like Figure 5.14. The length of the power trace has a big
impact on the choice of the GAN architecture. A basic conditional GAN architecture like the one proposed by
[117] works fairly well with shorter traces (around 60-100 samples). To make the GAN more robust across all
label categories, an auxiliary classifier can be attached to the discriminator’s output. This auxiliary classifier
adds a classification loss in addition to the traditional binary cross entropy loss of the GAN. The classification
loss forces the GAN to learn the difference between different classes. In either case, different type of layers
can be used. For example, if convolutional layers are used, the resulting GAN will have a structure like table
5.9. Such a GAN is known as deep convolutional GAN [143] (DCGAN).

The structure of DCGAN is similar to that of a dense GAN. However, the difference is that the number
of trainable parameters decrease. This is because convolutional layers innately have lesser parameters than
dense layers because of weight sharing. Using convolutional layers, also provides the GAN all the advantages
stated in Section 4.2.2. Similar to the DCGAN, a LSTM based GAN can be made. LSTM layers can been used
in either one of the generator or the discriminator or both the generator and discriminator like in [144] and
[145]respectively. An example of a CNN-LSTM GAN is as in table 5.10.

Now that the most common GAN architectures have been introduced, other possible architectures like
an architecture for generating really long power traces (greater than 1000 samples) and an architecture for
using real number labels (also known as regression labels) will be explained in Section 5.5.2 and Section 5.5.5
respectively.

5.5.2. GANS FOR SHORT TRACES

With short traces, we have the liberty of using any type of GAN architecture discussed till now. This means
that all conditional MLPGAN [117], ACGAN [119], DCGAN [143], CNN-LSTM GAN [144] perform well as will
be highlighted later in chapter 6.
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Table 5.9: DCGAN

Generator Discriminator

Embedding Layer
Embedding(9,10)
Concatenate(noise, label embedding)

Embedding(9,10)
Concatenate(noise, label embedding)

Input Layer
Conv1d(1, width, 9, 4)∗,
Upsample(factor=2, mode=’nearest’)
BatchNorm1d∗∗, LeakyReLu(0.1)

Conv1d(1, width, 9, 4, 2),
BatchNorm1d, LeakyReLu(0.1),
MaxPool1d(2, 2)∗∗∗

Hidden Layer 1
Conv1d(width, width//2, 9, 4),
Upsample(factor=2, mode=’nearest’)
BatchNorm1d, LeakyReLu(0.1)

Conv1d(width, width//2, 9, 4, 2),
BatchNorm1d, LeakyReLu(0.1),
MaxPool1d(2, 2)

Hidden Layer 2
Conv1d(width//2, width//4, 9, 4),
Upsample(factor=2, mode=’nearest’)
BatchNorm1d, LeakyReLu(0.1)

Conv1d(width//2, width//4, 9, 4, 2),
BatchNorm1d, LeakyReLu(0.1),
MaxPool1d(2, 2)

Output Layer Conv1d(width//4, 1, 9, 4), Tanh
Conv1d(width//4, 1, 9, 4, 2),
MaxPool1d(2,2), Sigmoid

*parameters in order: in channels, out channels, kernel size, padding, stride
**number of features = out-channels of Conv1d ***parameters in order: kernel size, stride

Table 5.10: CNN-LSTM GAN

Generator Discriminator

Embedding Layer
Embedding(9,10)
Concatenate(noise, label embedding)

Embedding(9,10)
Concatenate(noise, label embedding)

Input Layer
Conv1d(1, width, 9, 4)∗,
Upsample(factor=2, mode=’nearest’)
BatchNorm1d∗∗, LeakyReLu(0.1)

Reshape(batch-size, seq-length, input-size)
LSTM(input-size, hidden-size, num-layers)

Where:
trace length = seq-length x input-size
hidden-size = width

Hidden Layer 1
Conv1d(width, width//2, 9, 4),
Upsample(factor=2, mode=’nearest’)
BatchNorm1d, LeakyReLu(0.1)

Hidden Layer 2
Conv1d(width//2, width//4, 9, 4),
Upsample(factor=2, mode=’nearest’)
BatchNorm1d, LeakyReLu(0.1)

Output Layer Conv1d(width//4, 1, 9, 4), Tanh Dense(width,1)∗∗∗, Sigmoid

*parameters in order: in channels, out channels, kernel size, padding
**number of features = out-channels of Conv1d ***parameters in order: (input-size,output-size)

Using LSTM layers in both generator and discriminator does not work as well as the other GANs. It is
possible that finetuning the implementation results in better results. However, it is also possible that just
binary cross entropy loss might not be sufficient for LSTM GANs to model the entire temporal dynamics in
the training data as stated by Yoon et al. [81]. This result is inline with [97] where the authors find that LSTM
based classifiers are sub optimal as compared to other deep learning techniques when used for attacking the
power traces for an AES hardware implementation. LSTM based classifiers have been shown to perform well
on software traces, that are much longer than the hardware traces. LSTM GAN might perform better on such
long traces.

A large variety of GANs work well for short trace length. From a leakage assessment point of view, when
working with short traces the labels and associated conditioning techniques are much more important that
the complexity of the GAN.

5.5.3. GANS FOR LONG TRACES

A progressive GAN approach works much better for long traces. Originally proposed by Karras et al. [71],
these architectures grow during training and gently fade in the activations from previous layers while growing.
This methodology is proven to work for generating large high quality images. Hartmann et al. [78] used a
progressive architecture to generate EEG signal of length 768 samples. Harell et al. take after the EEG-GAN
architecture to generate appliance power signatures. For making conditional variants of progressive GANs,
the authors had access to very informative labels. For example, in PowerGAN, Harell et al. use the appliance
type as the label. Appliance power traces for different appliances have a stark difference, hence making it
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easier for the GAN to distinguish for different labels.
A conditional progressive GAN can not only incorporate the label options discussed in Section 5.4.1 but

can also maintain the quality of the generated traces as the trace length increases. Visually, this can be seen
in Figure 5.15.

Figure 5.15: Progressive GAN for generating longer traces

Progressive GAN performs well due to the following reasons:

• Iterative increase in the size of generated traces : This architecture is termed as the Multi-scale archi-
tecture. First, the generator generates traces of 24 time samples and there after the output size doubles
after a set number of epochs/iterations. The discriminator’s input size is also adjusted accordingly. This
process continues till we reach the desired output size. This process assists the training process since
generating good quality smaller traces purely from a random noise vector is an easier than generating
good quality larger traces. During the training process, when we double the output size of the generator
the smaller output and the larger output are blended together in a weighted fashion using a parameter
α. This process can be seen in Figure 5.16.

Figure 5.16: Progressive GAN combining outputs

• Equalized Learning rate: Progressive GANs use an equalized learning rate to scale the weights of the
network by a constant value such that the weights stay in a similar scale.

• Mini-batch standard deviation: To increase the diversity of images, standard deviation over all features
is calculated for every minibatch and is averaged and concatenated to all spatial locations in a feature
map towards the end of the discriminator.

• WGAN-GP loss function: Progressive GAN uses the WGAN loss function along with gradient penalty.
Refer Section 4.3.2 for a detailed explanation of the same.
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(a) 100 Original RSA traces (b) 100 Generated RSA traces

Figure 5.17: RSA Traces generated using progressive GAN

(a) Original AES traces (b) Generated AES traces

Figure 5.18: AES Traces generated using progressive GAN

The results can be seen in Figure 5.17. Each trace has 3072 samples. As for AES traces, the results are
equally good, as can be seen in Figure 5.18. Each trace here had 1560 samples. However, it must be noted
that there are noticeable spikes in the traces. These spikes should be a result of the fading in process in the
progressive GAN. In this work, since we are mostly concerned with hardware AES implementation and its
associated traces, the use of progressive GANs is an overkill. However, when using the same methodology
with software AES traces or power traces for other encryption algorithms like RSA (like in Figure 5.17), it
makes sense to use the progressive GAN methodology.

(a) 100 Orginal traces (b) 100 PoI Traces

Figure 5.19: Reducing long traces using Point of Interests

To bypass the idea of using progressive GANs, even if the power traces under consideration are quite long,
the concept of calculating point of interests must be used. This idea is based on the point of interest (PoI)
calculation step in the template based attacks. PoIs are calculated using a specific leakage model and make
use of the known key. Once the PoIs are known, the trace array can be reduced to just those point of interests
and this reduced length power trace can be used while training the GAN. Despite the obvious impact on the
structure of the trace, both the training and generated traces are attackable. An example of the same can be
seen in Figure 5.19.
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5.5.4. GANS FOR A LIMITED TRAINING SET
Till now, all of the GANs were trained using thousands of traces. Acquiring these traces is not a complicated
process. However, it may be possible that only a limited number of traces could be extracted given that the
time spent on trace acquisition is noticeable. GANs can be trained using limited amount of training data if
differentiable augmentation is used.

Zhao et al. [118] propose the importance of differentiable transforms in GAN training (specifically for
computer vision applications) by using only a 100 images to train large GAN models like Style-GAN and Big-
GAN. Without the differentiable augmentation the quality of the generated samples is significantly worse,
empirically proving the importance of this technique. The transformation is applied on both the generated
and the real images, as can be seen in Figure 5.20. These invertible transforms are essentially means for

Figure 5.20: Data efficient GAN

data augmentation, which on its own is quite a common practice to prevent overfitting. However, applying
data augmentation on GANs was not a common until this paper was presented. Zhao et al. propose a few
differentiable transforms and provide a framework for applying them while training the GAN.

Figure 5.21: Translation differential augmentation

Since the technique was proposed for images, transforms like color,translation and cutout are not meant
for power traces. Naively using the transforms does not help in the training process and in some cases even
deteriorates the attackability of the generated traces. This is evident from Figure 5.21. Such zero padded
shifts introduce misalignment which in turn acts as a countermeasure against the attack. Hence, the differ-
ential augmentation technique did not provide any enhancement in terms of attack ranks or training stability.
Detailed experiments with other forms of differential augmentations might result in better performance even
with much less training data. This, however, is an avenue for future work.

5.5.5. GANS FOR REGRESSION LABELS
All architecture discussed till now used embedding layers for the labels. One disadvantage of using embed-
ding layers is that they expect whole numbers as input. This is because they are implemented as simple
look-up tables. However, this simple look-up mechanism makes the embedding layers computationally ef-
ficient. Unfortunately, due to the whole number requirement, the label options for the GAN were slightly
limited.

As a solution to this problem, continuous conditioning can be used [146]. Unlike traditional CGAN or
ACGAN, this technique (known as CCGAN) assumes that each label is actually a float (the authors of [146] call
such labels as regression labels). While using regression labels, the overarching problem is that the number
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Figure 5.22: Continuous conditional GAN

of possible labels in infinite. In the continuous conditioning method, kernel density estimation is used to
estimate the marginal label distributions. Hence, while training, the GAN is conditioned on traces that are
in vicinity of the actual label value. This technique is really helpful in situations where the GAN does not
have training samples corresponding to particular label values while training. In other words, this training
technique helps the GAN generalize much better. Since this conditioning technique does not involve embed-
ding layers, the authors propose a novel conditioning method as can be seen in Figure 5.22. Of course, just
Dense/Linear layers can also be used in tandem with this conditioning method.

5.6. TUNING GAN HYPERPARAMETERS
Usually, there is no rule of thumb to find the best set of neural network hyperparameters in one go. Evalu-
ation metrics play an important part in hyperparameter tuning. As discussed in Section 5.4.3, quantitative
metrics do not have a direct impact on the attackability of the generated power traces. Since the attackability
is of paramount importance while assessing leakage of any design, CPA attack ranks will be the main evalu-
ation metric for the hyperparameter tuning. Having said that, it is essential to address the importance of the
trace structure. If this framework is employed along with existing tools, the generated traces must not be too
different visually from actual power traces. Hence, DTW will also be assessed.

Unfortunately, traditional grid search / random search APIs from sklearn [122] do not fit the purpose as
is. This is because GAN’s two model training process doesn’t implicitly fit into any popular hyperparameter
searching APIs.

Hence, the hyperparmeter tuning has been implemented using a self made scorer function to assess
GAN’s performance on the CPA attack ranks while randomly looping over various hyperparameter values.
Needless to say, given the random optimization process, better hyperparameter values might exist. Hence,
instead of presenting some hyperparameter values as ideal, this Section discuss the implication of changing
a few aspects of the design on the basis of the trace structure (DTW) and attackability.

The initial configuration was made as a combination of the "GAN Hacks" proposed by quite a few GAN
researchers [147] and the tuning process was done for the following hyperparameters:

1. Normalization : One of the the most prominent GAN hacks revolve around normalization and scaling.
Of course, on its own it is not a novel technique invented just for GANs. The rational behind using nor-
malization in machine learning is to bring all features on a similar scale so as to stabilize and accelerate
training as well as increase the generalization ability of the model [105]. With the use of scaling the
attackability increases and the DTW distance decreases. As can be seen in Figure 5.23, the generated
trace do have a stark visual difference from the validation set with / without scaling. It was observed
that batch normalization [110] enhanced the performance of the models. Weight normalization [148]
gave an almost comparable performance to batch normalization [149]. However, it must be mentioned
that the choice of normalization technique is dependent on the GAN architecture, for example in the
ACGAN [119] architecture the authors do not use any form normalization within the networks. Spec-
tral normalization [150] is said to outperform both batch normalization and weight normalization as
proposed by Kurach et al. [151] wherein they propose using spectral norm over other normalization
techniques when training complex GANs. However, since in this thesis we are limited to relatively short
traces, just using Batch Normalization in both generator and discriminator works very well.

2. Activation function: Compared to Softplus, Softsign, ReLU and Tanh, LeakyReLu with a slope coef-
ficient of 0.2 performs much better on both attackability and DTW distance. In all cases, the Tanh
activation is used at the generator’s output and Sigmoid is used at the discriminator’s output. With
DCGAN, the authors propose using ReLU activation function in the generator and LeakyReLU in the
discriminator.
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(a) Trained on Scaled data (b) Trained on Unscaled data

Figure 5.23: Effect of Scaling

Table 5.11: Hyperparameters for GAN Training

Hyperparameter Details

Input Noise Vector Must not be disproportional to the width of the hidden layers.

Batch size 128 for smaller traces. 32 when using progressive GAN for long traces.

Scaling

Scaling power traces using Standard scaler [107].Other scaling techniques
like MinMaxScaler [106], Robust Scaler [109] do not perform much worse.
The effect of the transformation is reversed using inverse transform
during trace generation.

Normalization
Using batch normalization in both Generator and Discriminator.
Spectral normalization when using WGAN [84].

Activation function
Using Tanh at the generator’s output and Sigmoid at the Discriminator’s
output. Using LeakyReLU everywhere else with a slope of 0.1.

Weight initialization
All model weights shall be randomly initialized from a
Normal distribution with mean=0, stddev=0.02, like that proposed by the
DCGAN [143] authors, performs better than other tested initialization methods.

Number of hidden layers
Depends on the trace length or available training data. Need to be
conscious of overfitting. Using 2 to 3 hidden layers usually gives
good results with different architectures.

Width of hidden layers
Same as before, it depends on the trace length or available training
data. Need to be conscious of overfitting.

Optimizer
Adam with learning rate 0.0002 and β values (0.9, 0.999) works better
than other optimizers in most cases.

3. Weight Initialization: Using random initialization from a Normal distribution with mean=0, stdev=0.02,
like that proposed by the DCGAN [143] authors performs equal-to or better-than other tested initial-
ization methods.

4. Epochs : The number of epochs have an impact on the DTW value and the attackability. However, it
must be pointed out that GAN training is quite unstable and different runs do give different results.
This, of course, is also dependent on the available training data. Very limited training data can have
detrimental effects on GAN training as highlighted in [118].

5. Batch size : Both [152] and [153] suggest the use of larger mini-batches to reduce the variance in gra-
dient calculations. Yazici et al. [152] demonstrate that GANs can overfit when using large batch sizes
and GANs are more susceptible to mode collapse when trained with small batch sizes. Hence there is
a trade-off that needs to be considered. Additionally, batch sizes also have a substantial impact on the
training time. Therefore, as a trade-off a batch size of 128 was chosen. With different training data, this
choice might need to be changed (when using progressive GANs for long power traces, the batch size
must be reduced in accordance with the available computational resources).
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6. Number of hidden layers : The number of hidden layers has a direct impact on the evaluation metrics
of the generated traces. If a model is too simple, the generated traces are noticeably different from
the validation/training set. A complex model with too many layers performs noticeably worse on both
DTW distance and attackability if limited training samples are used. Naturally, with more training data
the model performance gets better.

7. Width of layers : The wider the layers, the more the number of trainable parameters. This is why the
wider GANs perform well only when sufficient training data is available. Using very complex GANs
with limited training data gave substantial worse results as compared to using simpler GANs on the
same training set. Also complex GANs seemed to overfit on the training data, in the sense that the
attackability on the training set was much higher than that on the validation set.

8. Size of input noise vector : The size of the input noise vector must not be disproportional to the size
of the hidden layers. Extremely large noise vectors give sub-optimal results. For VCD conditioning,
just modulating the amplitude of the VCD transition list so as to introduce stochasticity is sufficient.
This is analogous to the MelGAN [77] architecture, where the authors randomly modulate the mel-
spectrogram (which acts as an input to the GAN) for audio generation.

9. Optimizer : For most popular GAN models, the de facto optimizer is Adam [154]. When comparing the
results with SGD with momentum [155] and RMSprop [156], Adam outperformed the other optimizers
in both DTW distance and attackability.

To sum it up, GAN architectures for power trace generation should have hyperparameters as in table 5.11.
In addition to the discussed hyperparameters, the impact of loss function on GAN training is also substantial.
As introduced in Section 4.3.2, substantial research has been done in the context of loss functions for GANs.
Wasserstein GAN with gradient penalty is perhaps the most popular GAN loss function currently. However,
it has also been claimed that the quality of the GAN generated samples are not substantially dependent on
the loss functions [157]. Although there was some visual difference in the traces generated by the GAN when
different loss functions were used, the attackability of the traces was very much comparable.

(a) JS Divergence loss (b) Least square GAN loss

(c) WGAN loss (d) WGAN-GP loss

Figure 5.24: Generated traces for different loss functions

As can be seen in Figure 5.24, the LSGAN, WGAN-GP and JS Divergences loss functions perform very
similarly. However, the WGAN loss function seems to give sub-optimal results. This might be as a result of the
clipping hyperparameter chosen while training the WGAN. So as to highlight the visual dissimilarities in the



5.6. TUNING GAN HYPERPARAMETERS 65

traces, the scaler inverse_transform was not carried out. Given the results in this subsection, it is clear that the
impact of loss function, as far as such short traces are concerned is minimal. Hence, all the results presented
in the next chapter will be for the original JS divergence GAN loss [70].





6
RESULTS AND ANALYSIS

This chapter explains the process of procuring the training data and details about training and testing the
GANs. Section 6.1 explains the experimental setup needed to obtain the power traces used for training. Section
6.2 analyzes the results when GANs are conditioned on HW based labels for power trace generation. Similarly,
Section 6.3 analyzes results for VCD conditioning. Finally, Section 6.4 discusses the results in further detail
while highlighting the advantages and shortcomings of this framework.

6.1. EXPERIMENTAL PLATFORM
Despite the existence of deep learning libraries for almost all major programming languages, python has
emerged as the de facto langauge for most deep learning research in the recent history. This trend is due to
two main factors. First, is the obvious ease of use of python over other languages and second is the ever grow-
ing library support. Challenging tasks like GPU programming through CUDA [158] have been substantially
eased using libraries like PyCuda [159] and Numba [160]. Integeration of C/C++ using Cython [161] has also
accounted for a big boon to python’s success. All these factors have made it possible for libraries like PyTorch
and Tensorflow to provide amazing performance along with the high level of abstraction. In this work, all
the models have been trained using PyTorch [64] and Tensorflow 2.0 (with Keras interface) [116]. The rea-
son why both of the libraries were used and not just a single one was simply to stay as close to the original
implementations as possible. Most of the models made as a part of this work are based on existing popular
implementations from the computer vision domain. Since the authors of these papers did not have a con-
sensus on using a particular framework, the reference implementation were either in PyTorch or Tensorflow.
For the sake of reproducibility, all the models in this chapter will be available in the ONNX format [162] so
that they can be imported to any framework without any hassle.

Figure 6.1: Implementation flowchart

A visual representation of the experimental platform can be seen in Figure 6.1. All models were written as
python scripts and Jupyter notebooks were used in plenty. Whenever possible, both training and inference
were performed on a MacBook Pro with 8259U coffee lake processor and 8GB of LPDDR3 SDRAM. For larger
models, Google colab [163] was used. The implementation, as shown in Figure 6.1, is split into 5 phases. Each
phase will be explained in detail next:

Phase 1: Hardware implementation. In this phase, a 128-bit AES is implemented using HDL. Since we also want
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the GAN to generalize to different implementations, various different implementations are made with
changes predominantly concerning the SBOX.

Phase 2: Design simulation. In this phase, the design is simulated using Vivado (this can also be done using
ModelSim or QuestaSim) for a set of random plaintexts and a fixed key. These simulations are recorded
in the form of a VCD file which is then processed and used as labels for the GAN.

Phase 3: FPGA evaluation. In this phase the implemented design is evaluated on a FPGA. Using Vivado, the
bitstream of a selected design is generated. Next, the generated bitstream is used to program a chip-
whisperer board and real power traces for training/validation/test datasets are recorded using the chip-
whisperer python APIs. As the name suggests, the real traces for training are used for training the GAN.
The real traces for validation and test dataset are only used for comparison with the GAN generated
traces.

Phase 4: Building and training GANs. In this phase the GAN is made using PyTorch / Keras. The real power
trace and labels (either leakage model labels or VCD labels) are used to train the GAN.

Phase 5: Power trace generation. In this phase, The trained GAN is used to generate power traces corresponding
to validation / test labels. CPA analysis is done on the generated power traces. The evaluation metrics
presented in Section 5.3 are also used to compare the generated power traces with the real ones.

(a) Training (b) Validation (c) Test (d) Comparison

Figure 6.2: Long Power traces

(a) Training (b) Validation (c) Comparison

Figure 6.3: Short power traces

The dataset used for our experiment will be as follows: The training set is of 10,000 samples. The valida-
tion set is 1,000 samples and the test set is 1,000 samples as well. The trace length is 120 time samples for
the long traces (see Figure 6.2) and 60 time samples for the short traces (see Figure 6.3). Traces upto 300 time
samples are also tested and some associated results will be discussed in the later sections. The training and
validation set will consist of traces corresponding to the same implementation and the test set will have traces
for a different implementation. As can be seen in figure 6.2 and figure 6.3, all three sets have visually indis-
tinguishable traces. However, the amount of information leaked in the validation and test implementations
is substantially different.

Next, each phase in figure 6.1 will be explained in detail.

Phase 1 Hardware Implementation

Step 1: Implement an unprotected AES-128 using any hardware description language so as to use for training
the GAN.

Step 2: Implement AES-128 along with countermeasures against power side channel attacks, so as to use for
testing and validation of the GAN.
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Step 3: Generate a bitstream for every implementation using Vivado.

The output of this step are the designs and bitstreams corresponding to various AES implementations.
Both protected and unprotected implementation are made so as to ascertain that the GAN can train on either
of them and still at inference time generalize to the other implementation.

Phase 2 Design Simulation

Step 1: Decide a fixed key for the implementation and loop over a set of random plaintext values.

Step 2: Simulate the implemented AES-128 designs using Vivado for the fixed key and random plaintexts.

Step 3: Record a VCD file corresponding to the simulation of the AES-128 design.

Step 4: Process the recorded VCD file so as to obtain the transition list as explained in section 5.4.2.

Step 5: Repeat step 1 through to step 4 for all the implementations and segregate VCD transition lists on the
basis of training, validation and test datasets on the basis of design type.

The output of this step are the VCD files corresponding to the AES implementations made in phase 1. This
step is only required if the VCD transition list labels are used with the GAN. If the GAN is trained only using
the leakage model labels, this step can be safely skipped.

Phase 3 FPGA evaluation

Step 1: Using the bitstream generated in phase 1, program a chipwhisperer CW305 board using chipwhisperer
python APIs [135].

Step 2: Using the chipwhisperer python APIs again, record power traces for the same set of random plaintexts
and fixed key as in phase 2.

Step 3: Repeat step 1 and step 2 for all the AES-128 designs and segregate them as training, validation and test
datasets.

The output of this step are real power traces. Traces for one AES-128 design are used for training the GAN.
Traces for the other designs are simply used for comparison with the generated traces.

Phase 4 Building and Training

Step 1: Scale the power traces using StandardScaler [107].

Step 2: Get labels associated with each power trace. Can either be leakage model labels. Can also be in VCD
transition list labels.

Step 3: If the leakage model labels are used: for every batch, input random noise drawn from a normal distri-
bution with zero mean and unit standard deviation into the generator, along with the label values. If
the VCD transition list labels are used, modulate the transition list using a random value between 0.85
and 1 and feed the modulated VCD into the generator. This step yields the generated traces.

Step 4: Set validity labels as one for real traces and zero for generated traces. Pass generated traces through the
discriminator and save the output. Do the same for real traces.

Step 5: Use the saved discriminator outputs and the validity labels to compute binary cross entropy loss for the
discriminator. Backpropagate the loss and take an optimizer step for the discriminator parameters.

Step 6: Flip validity labels, such that the labels for generated traces are one. Pass the generated traces through
the discriminator and use discriminator’s output to compute binary cross entropy loss again. Back-
propagate the loss and take an optimizer step for the generator’s parameters.

Step 7: Continue Step 3 to Step 6 till the epochs are completed, or the evaluation metrics get to a satisfactory
level. Note that the results presented in this section are all for GANs trained for a maximum of 100
epochs.
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A code-first introduction of these training steps can be found in appendix B. The output of this step is a
trained GAN network. The generator part of the GAN can then be used to generated power traces.

Phase 5 Power trace generation

Step 1: Input a batch of random noise drawn from a normal distribution with zero mean and unit standard
deviation into the generator, along with a batch of validation labels. Repeat this process until the de-
sired number of traces are generated. Of course, the number of traces is limited by the number of labels
available when using supervised GAN.

Step 2: Use inverse_transform to reverse the effects of StandardScaler on the generated traces and then com-
pare them to the real traces.

(a) Without scaling (b) With scaling

Figure 6.4: Effect of Scaling on GANs

Scaling the power traces before training (and the corresponding inverse-transform during inference) serves
as a correction step for the generated traces). For example, in figure 6.4a it can be seen that the generated
traces without any scaling is definitely not as close to the real traces as compared to that in figure 6.4b.

(a) HW 1 (b) HW 2 (c) HW 3

(d) HW 4 (e) HW 5 (f) HW 6

Figure 6.5: Power traces corresponding to different mode(HW) classes

For our use-case this scaling procedure is ideal, given that the inter-trace difference is minimal for differ-
ent leakage model classes (as can be seen in figure 6.5). This minimal difference is what is leveraged by the
side channel attacks. Hence, unnecessary variations in the traces is not required. If anything, it can intro-
duce more noise in the traces which can have a detrimental impact on the cpa attack ranks as highlighted in
Section 5.4.3. Next, we discuss the metrics to compare the real and the generated traces as well as metrics to
compare different GANs.
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Compare Traces

Step 1: Attackability: It is the number of attackable bytes out of 16 using a CPA attack. The aim will be to
be as close to the real power traces’ attackability as possible. Calculating these attack ranks is very
time consuming especially since most open source APIs are written natively in python [135]. Hence, to
accelerate the attack process, Numba [160] acceleration is used. Appendix D explains this in detail.

Step 2: Visual similarity: To quantify visual appearance, mean dynamic time warping [124] distance will be
used. Ideally this distance should be zero.The lesser the distance the closer the generated traces are to
the real traces

Step 3: Conformance style testing: Both signal to noise ratio (SNR) and test vector leakage assessment (TVLA)
will be used to compare the real and the generated traces. Ideally, the SNR peaks for both the real and
the generated traces should follow the same trend. Similarly, the number of points failing the leakage
assessment should follow a similar trend in both real and generated traces.

Step 4: Classifier similarity : As stated in Section 5.3, the aim of this evaluation metric is to compare the test
accuracy of a HW classifier on the real traces and the generated traces. If the classification accuracy
is similar for both real and generated traces and if the classifier correctly classifies the traces to their
corresponding HW category, it can be said that both the set of traces are indeed very similar. This
similarity is not just in terms of the visual appearance but also in terms of the information contained in
them.

Compare GANs

Step 1: Compare GAN generated traces with the real traces using the aforementioned metrics.

Step 2: Compare the training time. Since one of the aims of this study is to speed up the process of evaluating
countermeasures, it is critical that the model does not only perform well but can also be trained in a
reasonable amount of time.

Step 3: Compare the Inference time. Similar to the training duration, the inference duration or the time taken
to generate power traces should be as low as possible

Step 4: Compare the number of trainable parameters. The probability of a network to overfit on given training
data increases with a growing number of trainable parameters. As a result more training data is re-
quired. In the context of GANs, Zhao et al. [118] demonstrated that without differential augmentations
complex GANs perform very poorly if a limited training set is used. However, a very simple generative
model might have a large bias and hence might not be able to model the characteristics of power traces
well. Hence there is a trade off that must be considered when designing GAN architectures.

Of course, the value of each of these evaluation metrics will change as the amount of training data changes.
For some use cases, there might not be any restriction on the amount of training data and in some cases, there
might be. Hence, using 10,000 training samples is a good middle point to evaluate the performance. Some
scenarios, where increased training set substantially improves the performance, will be highlighted in the
text. ONNX diagrams of all the models are plotted in appendix A. These models have been plotted using
Netron [164].

6.2. GANS WITH HW BASED LABELS
In this section, results for GANs with HW based labels will be discussed. Calculating labels for HW based
conditioning involves using the known key value, which makes it somewhat trivial to evaluate the attacka-
bility of the generated traces. However, from the perspective of the template making step in template based
attacks (TBA) (as in Section 3.4), it makes a lot of sense. While a template is populated for TBA, the attacker
has access to not only a similar device as the one they are supposed to attack, but also have complete access
to plaintexts and keys.

Tables 6.1 and 6.2 presents the results of long and short trace models, respectively. The first row of both
tables lists the evaluation metrics on real traces. When comparing traces with themself, the Dynamic Time
Warping (DTW) distance is zero. For the sake of comparison, when a power trace was compared with random
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Table 6.1: GAN model comparison for HW label and long traces

Model Label DTW
Validation
attackability

Test
attackability

Train
time

(s)

Inference
time

(s)

Generator’s
trainable
parameters

Discriminator’s
trainable
parameters

Real traces - 0.0 15 0 - - - -
MLPGAN - 1.04 0 0 107.5 0.028 26,584 25,857

INFOGAN

mode 0.92 4 3 141.5 0.033 26,560
d = 26,081
q = 31,819

round 1.16 15 14 131.7 0.041 26,560
d = 26,081
q = 31,819

ceil 1.18 16 16 135.6 0.039 26,560
d = 26,081
q = 31,819

floor 0.91 16 16 138.5 0.037 26,560
d = 26,081
q = 31,819

single 0.95 1 1 121.1 0.034 26,560
d = 26,081
q = 31,819

MLP-CGAN

mode 1.169 3 2 201.536 0.043 26,994 27,675
round 1.099 13 12 208.422 0.047 26,994 27,675
ceil 1.108 16 16 207.437 0.042 26,994 27,675
floor 1.101 16 16 201.546 0.030 26,994 27,675
single 1.104 1 1 200.047 0.030 26,994 27,675

ACGAN

mode 1.105 3 2 160.82 0.034 26,994 26,154
round 1.043 11 10 157.25 0.029 26,994 26,154
ceil 1.093 15 15 161.61 0.036 26,994 26,154
floor 1.077 15 15 168.83 0.031 26,994 26,154
single 1.109 1 1 163.65 0.028 26,994 26,154

DCGAN

mode 1.081 4 3 612.8 0.081 13,843 13,843
round 1.095 15 14 615.6 0.078 13,843 13,843
ceil 1.118 16 16 612.8 0.070 13,843 13,843
floor 1.165 16 16 613.5 0.073 13,843 13,843
single 1.177 1 1 602.2 0.075 13,843 13,843

CNN-LSTM
GAN

mode 1.078 3 3 621.6 0.0806 13,843 14,203
round 1.001 16 16 611.1 0.0855 13,843 14,203
ceil 1.001 16 16 602.8 0.0855 13,843 14,203
floor 1.002 16 16 609.2 0.0872 13,843 14,203
single 1.012 1 1 603.5 0.109 13,843 14,203

CCGAN mean 1.089 14 15 187.6 0.0379 25,048 25,889

noise in Section 5.4.3, the DTW distance was 63.539. The attackability of the validation traces is 15 and that
of the test traces is zero. All other rows list evaluation metrics on the generated traces of different Models
(using different label processing options). The mean (DTW) distance of the generated traces from the real
traces is in the range of 0.9 to 1.2. A low DTW distance (like that in the range 0.9 to 1.2) helps us conclude that
all the architectures are successful in learning the structural characteristics of the power trace. However, just
learning that does not guarantee that these traces carry information that can be leveraged by side channel
attacks. For example, the mode and single label processing for all the Models have low DTW distance like
other label processing options, however the validation and test attackability is much lower than the other la-
bel processing options. For ceil, floor and round, the validation and test attackability is much higher than that
in the real traces. This means that the information being leaked by the generated traces is much more than
that of the real traces. This is expected behaviour since we are feeding the generator with the same value that
we are trying to obtain using the side channel attacks, albeit in a processed form. The number of trainable
parameters for both generator and discriminator are fairly similar for all GANs except those that use con-
volutional layers. The trainable parameters are higher in the dense architectures since unlike convolutional
layers, there is no weight sharing in dense layers. The convolutional GANs take longer to train than the others
since convolutional layers are slower to train that dense layers. The inference time is almost comparable for
all the architectures. The Information maximizing GAN (INFOGAN) takes much less time to train as opposed
to the other GANs even though it clearly has more parameters. This is because it was trained using Tensorflow
which was able to leverage some advanced vector extensions, like the avx2 fma acceleration and certain other
mlir graph optimizations to speed up the training process. It must be mentioned that the timing information
mentioned in this chapter is not very reliable, since it was not measured multiple times due to computational
constraints. Also, as might be evident due to GANs stochasticity, both attackability and DTW can have mi-
nor variations when trying to reproduce results. Having said that, of the seven architectures compared in the
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Table 6.2: GAN model comparison for HW label and short traces

Model Label DTW
Validation
Attackability

Train
time
(s)

Inference
time
(s)

Generator’s
trainable
parameters

Discriminator’s
trainable
parameters

Real traces - 0.0 0 - - - -
MLPGAN - 0.376 0 117.5 0.019 18,844 18,625

INFOGAN

mode 0.429 2 110.1 0.025 18,880
d = 18,401
q = 24,139

round 0.431 14 112.1 0.021 18,880
d = 18,401
q = 24,139

ceil 0.435 16 113.6 0.030 18,880
d = 18,401
q = 24,139

floor 0.429 16 110.9 0.028 18,880
d = 18,401
q = 24,139

single 0.431 1 119.1 0.031 18,880
d = 18,401
q = 24,139

MLP-CGAN

mode 0.452 1 136.8 0.015 14,806 17,755
round 0.461 14 142.1 0.014 14,806 17,755
ceil 0.441 16 139.7 0.016 14,806 17,755
floor 0.472 16 133.2 0.017 14,806 17,755
single 0.492 1 131.8 0.015 14,806 17,755

ACGAN

mode 0.453 1 140.2 0.022 17,622 16,714
round 0.453 14 138.2 0.019 17,622 16,714
ceil 0.453 15 135.3 0.022 17,622 16,714
floor 0.450 16 130.4 0.017 17,622 16,714
single 0.451 1 134.8 0.015 17,622 16,714

DCGAN

mode 0.471 4 453.8 0.088 11,323 13,734
round 0.421 16 470.2 0.085 11,323 13,734
ceil 0.418 16 490.2 0.088 11,323 13,734
floor 0.465 16 481.1 0.089 11,323 13,734
single 0.477 1 480.8 0.081 11,323 13,734

CNN-LSTM
GAN

mode 0.463 3 483.8 0.086 11,323 12,601
round 0.459 14 490.2 0.081 11,323 12,601
ceil 0.459 14 484.6 0.087 11,323 12,601
floor 0.460 15 489.3 0.089 11,323 12,601
single 0.450 1 490.1 0.085 11,323 12,601

CCGAN mean 0.312 16 183.1 0.021 17,308 18,209

table 6.1 and 6.2, the following conclusions can be drawn:

1. Conditioning the GAN is important. Completely unsupervised GANs fail to generate attackable traces.
This is expected since the side channel attacks are heavily dependent on alignment and leverage corre-
lation between the power traces and the leakage model to guess key values. If the power traces do not
correspond to the encryption that it is supposed to represent, side channel attacks will fail. Hence even
for the INFOGAN (even though it is an unsupervised GAN) at inference time the correct label values
were required to make sure that the power trace corresponds to the correct plaintext and key. This is
because, unlike computer vision, the power trace can not just be visually distinguished into their cor-
responding class. Even if that was possible, knowing the correct leakage model is an absolute necessity
so that the correlation between the power traces and the leakage model can be leveraged to guess key
values.

2. Different architectures and label options have different training data requirements. Just going by the
results in the table, it is clear that some label options perform better than the others. The same can
also be said about some architectures. However, it must be pointed out that as the amount of training
data increases, the performance difference between many label options and architectures decreases.
For example, in other experiments the mode of HW label gave very impressive results. However it was
trained with 40,000 samples and around the same number were generated. It was also observed that the



74 6. RESULTS AND ANALYSIS

gap between ceil, floor and mode label performance reduces as the amount of training data increases.
The single byte HW label did not perform much better as the amount of training data increased. Hence,
certain architectural modifications, data augmentation or increase in the amount of training data will
effect the performance of each architecture / label. There is a noticeable increase in the stability of the
GAN results once more training data is available. Also, the power trace length has implications on the
GAN performance, this can be attributed to the change in trainable parameters when the power trace
length is changed. Keeping the results of both table 6.1 and table 6.2 in mind, it can be concluded that
given the amount of training data and the power trace length, the label option choice will play a critical
role in the GAN performance.

3. Visual similarity does not guarantee attackability: Comparing the DTW distance of an unsupervised
GAN to that of other supervised GANs, it is quite evident that the DTW score does not seem to have
a stark effect on the attackability of the traces. This is also because the power traces corresponding to
different label options are structurally very similar. However, attackable power traces must have certain
minor variations that play a role in leaking the information required by the side channel attacks. That
task is performed by the labels used during training / inference.

4. HW labels fail to portray an accurate leakage assessment: For the implementation used for longer traces:
the generated traces (as in table 6.1), should have a validation attackability of around 12 out of 16 bytes
and test attackability of 0 out of 16, when using 1000 traces. As for the shorter traces (as in table 6.2), the
validation attackability should be 0 out of 16, meaning that the implementation is very hard to attack.
Instead, in some scenarios all of the bytes are attackable meaning that the traces are leaking much more
information than they otherwise should and in some cases the attackability is very low meaning that
the traces are leaking less information that they should.

Now that a few GAN models that perform well on both the evaluation metrics are available, a detailed
study on their leakage assessment can be done. The aim, as stated before, is to be as close to the actual
leakage as possible. The methodology for the same is as follows.A DCGAN is trained on a unprotected AES-
128 implementation. For inference, an AES-128 implementation with masking is considered. The value of the
mask-pairs is changed, while the same set of random plaintexts and fixed key is used. For each of the mask
pairs, traces are collected and a CPA attack is carried out. Inference labels for the masked implementation are
also collected and using them and the trained GAN, power traces are generated. If the number of attackable
bytes (attackability) for the real traces is similar to that of the generated traces, it can be concluded that the
generated traces can be a replacement for the leakage assessment of the design.

The 10 masks used for this experiment as well as the attackability of the real and the generated traces can
be seen in table 6.3. From the table, it is evident that for a GAN conditioned on processed HW labels, the
attackability is inline with the actual traces. In this case, the label is computed and the effect of the mask
is taken into account before deciding the modified label value. The disparity between the actual and the
masked labels is what impacts the attackability of the traces.

Table 6.3: masking evaluation : unknown masks

Mask Pair Mask 1 Mask 1 HW Mask 2 Mask 2 HW attackability : real attackability: generated
1 163 4 39 4 0 0
2 228 4 105 4 0 0
3 172 4 142 4 0 0
4 240 4 184 4 0 0
5 114 4 154 4 0 0
6 133 3 2 1 0 0
7 110 5 233 5 0 0
8 208 3 17 2 0 0
9 213 5 118 5 0 0

10 189 6 255 8 0 0

As explained in Section 3.5, the masking countermeasure involves two mask values. The purpose of the
first mask is to add an offset to the location in the SBOX table, whereas the purposed of the second mask
is to change the contents of the SBOX table. . A GAN can only outputs power traces that are similar to the
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ones it has been trained on. The label values govern the generator’s output and the GAN fails to introduce
misalignment that comes from the added operations when masking is used. Meaning that evaluating the
efficacy of countermeasures only using the HW label is not a robust technique.

To explain the same in more detail, consider the results in table 6.3. Both the real and the generated traces
are not attackable when masking is used. However, as stated before, this is only true for the generated traces
since the HW labels get transformed with masking.

Table 6.4: masking evaluation : known masks

Mask Pair Mask 1 Mask 1 HW Mask 2 Mask 2 HW attackability : real attackability: generated
1 163 4 39 4 0 16
2 228 4 105 4 0 16
3 172 4 142 4 0 16
4 240 4 184 4 0 16
5 114 4 154 4 0 16
6 133 3 2 1 0 16
7 110 5 233 5 0 16
8 208 3 17 2 0 16
9 213 5 118 5 0 16

10 189 6 255 8 0 16

As in table 6.4, if the labels are corrected using the mask values, the attackability of the generated traces
will be as much as the unprotected traces. This is because by using the values of mask1 and mask2, the effect
of masking on the labels in undone. This is not ideal from a leakage assessment point of view due to two
reasons. First, is the overarching dependence on the HW labels. This means that this technique is, at best,
capable of evaluating the efficacy of countermeasure that impact the the SBOX (and hence the labels). Unfor-
tunately, that makes this technique unfit for majority of the countermeasures. Second, is with regards to the
inability to add misalignment that is caused by masking. The lack of attackability of the generated traces (as
in table 6.3) is only because of the fact the the mapping between the leakage model and their corresponding
power traces is impacted and not due to any change in the power traces themselves. Any added operation,
irrespective of it being a countermeasure against side channel analysis or not, will have some implication on
the structure of the power trace, which is sadly not the case here. This can be proved as follows, when the
masks are used to correct the label (as in figure 3.8), the traces generated using the corrected labels are as
attackable as the traces without any countermeasure. Table 6.5 lists the number of labels changed when the
masks are unknown and when the masks are known. Of course once the known mask is used to correct the
label values corresponding to every trace, the labels changed field become zero since the labels are exactly as
they should be. However, without knowing the mask the labels can not be corrected. This means that for a
power trace that should have a HW label 4, gets a HW label 2 (as in figure 3.8). Being a simple xor operation,
there are also cases where the mask does not impact the value of the HW this is why in table 6.4 most of the
labels change when masking is used but still some of the labels stay unchanged.

Hence, even though the HW based labels perform well as far as generating power trace close to the real
traces are concerned, they fail to model the leakage behaviour of the power traces well. Depending on the
labels used, the leakage is either way too much or way too less. The information presented in this Section
indicates the importance of labels in the context of conditional GANs. Non informative labels cause the GAN
to generate traces that although similar to the training set do not include information that can be leveraged
by side channel attacks.

6.3. GANS WITH VCD LABELS
Now that the importance of the labels is discussed, it is clear that the labels used to condition the GAN must
be correlated with the amount of the information leaked by the traces. Otherwise, the generated traces will
fail to model the leakage behaviour of the power traces well. As a solution to this problem, value change
dump files can be used. As explained in Section 5.4.2, these VCD files record all transitions in the design’s
wires, registers and parameters. As stated earlier in section 6.1, when using the VCD transition list labels,
we do not make use of an additional noise vector. Instead, an architecture similar to the MelGAN [77] is
used. Hence, the noise vector is removed and just the VCD transition is used as an input to the generator. To
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Table 6.5: Impact of masking on HW labels

Mask Pair Mask 1 Mask 1 HW Mask 2 Mask 2 HW
unknown mask:
labels changed∗

known mask:
labels changed∗

1 163 4 39 4 3434 0
2 228 4 105 4 3369 0
3 172 4 142 4 3507 0
4 240 4 184 4 3380 0
5 114 4 154 4 3417 0
6 133 3 2 1 3573 0
7 110 5 233 5 3490 0
8 208 3 17 2 3652 0
9 213 5 118 5 3510 0

10 189 6 255 8 3703 0

*out of 5000

introduce stochasticity, the VCD transition list is multiplied by a random constant value between 0.85 and 1.
For a trained GAN network, two main operations are carried out. Namely, GAN Validation and GAN testing.
For GAN validation, it is tested using VCD transition list corresponding to the same design but with different
plaintexts. For GAN testing, it is tested using VCD transition list corresponding to the same design but with
different key and with a different AES-128 implementation (with masking countermeasure).

GANs discussed in section 5.4.2, namely MLPGAN and DCGAN, will be discussed in this section. The
generated traces for both the cases can be seen in figure 6.6. The DCGAN generates traces that are almost
indistinguishable from the validation data. The MLPGAN is not too far off, however the DCGAN seems to
performs a bit better. Careful hyperparameter tuning might change these results in favor of either of the
architectures.

Table 6.6: GAN Validation: CPA Key Rank for 1000 Traces

BYTE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Real 1 1 1 1 1 1 1 9 1 1 1 1 1 2 1 1
MLPGAN 1 1 1 1 1 1 1 1 1 28 24 1 5 1 5 41
DCGAN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 11

From the attackability point of view, again, the DCGAN produces traces where all but two bytes (byte
15 and 16) are not attackable. However, for the MLPGAN generated traces byte 10,11,13,15 and 16 are not
attackable. This can be seen in table 6.6.

Table 6.7: GAN Testing

GAN type Traces
Attackable bytes

(out of 16)
Design resource

utilization

MLPGAN

Generated: Masking 0 Uses 2511 LUTs
and 3364 FFsReal: Masking 0

Generated: Unprotected 11 Uses 2430 LUTs
and 3363 FFsReal: Unprotected 13

DCGAN

Generated: Masking 0 Uses 2511 LUTs
and 3364 FFsReal: Masking 0

Generated: Unprotected 14 Uses 2430 LUTs
and 3363 FFsReal: Unprotected 13

So as to test both the MLPGAN and DCGAN, VCD files corresponding to the same implementation (but
different plaintext and key) as well as a different AES implementation (with the masking countermeasure) are
used. As can be seen in table 6.7, for both of the scenarios the attackability of the real and the generated traces
is not exactly similar for the MLPGAN. For the DCGAN, the attackability of the real and the generated traces
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(a) MLPGAN : Trace length 120 (b) DCGAN: Trace length 120

(c) MLPGAN: Trace length 300 (d) DCGAN: Trace length 300

Figure 6.6: Real vs Generated traces : VCD Label

for both of the scenarios are very similar. Since the GAN generated traces follow the leakage trend of the real
traces not just on the training set but also on the validation and test set, such a GAN based methodology using
VCD labels can be extended to do design space exploration of different countermeasures.

Inline with the HW label methodology, DCGAN takes longer to train as compared to the MLPGAN. Train-
ing the DCGAN on 5000 samples takes 737 seconds for 100 epochs. The MLPGAN, on the other hand, takes
420 seconds for the same amount of training data and epochs. However, given that VCD processing step is
much more time consuming than either of the training times , this is not the most important differentiat-
ing point between the architectures. There was also a noticeable difference in the training stability as the
complexity of the GANs increased. Less complex GANs (on the basis of width for MLP GAN and number of
filters for DCGAN) were also able to generate decent results. However, for the same GAN hyperparameters
and training data, the attackability showed variations. This might be attributed to underfitting, which is a
potent issue in GANs. Adlam et al. [165] prove that increasing the GAN complexity leads to reduction in the
generalization gap.

6.4. DISCUSSION
In this section, the results presented in the previous two sections will be discussed with the aim of highlighting
the advantages and disadvantages of using the GAN methodology of generating synthetic power traces as well
as finding the similarity between the real and the generated traces.

6.4.1. DRAWBACKS OF AUTOENCODERS

Since the disparity among power traces is almost minimal, the autoencoder architecture seems very capable
for the task of power trace generation. Hence, it is important to address why autoencoders (or just the decoder
network) were not used to generate power traces. Since the latent space is not of paramount importance for
our use case, just using decoder-like architecture taking embedding of labels as input and outputing power
traces is also an interesting idea. It is true that both such architectures can also be used to generate power
traces on the basis of either HW or VCD label values. However, the autoencoders failed to generalize well to
different implementations when using the VCD methodology. When using the HW labels, the results were
exactly inline with those of the conditional MLPGAN in table 6.1. This is expected behaviour since even at
inference time, the possible labels can not be different from the ones that the model has been trained on.
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Table 6.8: Comparison between GAN and modified AE

Model Loss function Test Attackability
Real Generated : ceil-HW label Generated : VCD label

Modified autoencoder∗ MSE 13 16 5
Decoder-only∗ MSE 13 16 4
VAE∗∗ MSE + KL Div 13 16 7
DCGAN BCE 13 16 13

*ONNX diagrams on page 98 **ONNX diagram on page 99

However, using the VCD labels the results were not comparable to the GANs. This is because at infer-
ence time there are variations in the VCD transition list as compared to to the training transition lists. The
autoencoder model can not accommodate these changes well. The conditional VAE model, just like other
deep generative models, can be applied to the task of generating power traces even with VCD label. Since
the VAE was not rigorously tuned like the GAN, it gave suboptimal results. The tuned GAN showed good re-
sults for both HW and VCD labels. This can be seen in table 6.8. Thorough experiments with the VAE and its
ensembles should yield equivalent results to GAN.

6.4.2. THOROUGH EVALUATION OF TRACES

To begin with analyzing the results, there is the discrepancy in GAN performance when using different pro-
cessing functions for processing the HW labels. In other words, when using the processed HW labels some
processing functions perform better than the others. The difference is even more pronounced when using
lesser number of traces. As stated in section 5.9, the reason behind this is can attributed to the innate class
imbalance problem of hamming weight/hamming distance leakage models. It is possible that since the GAN
is being shown much more traces of a particular class label (HW 4), it might output traces that look more
like that specific class label even if other labels are used. In table 6.2, the ceil, floor and round labels per-
form better than the others since they are able to split the traces into two equal size classes. A solution to
the class imbalance problem, to some extent, is using SMOTE to process the training data for the GAN. The
ACGAN actually performs much worse when SMOTE is not used. This is because the loss function also has a
classification component, which perhaps hampers the ACGAN ability to produces traces corresponding to all
classes well. For example, if there is binary classifier that is trained on an imbalanced dataset such that one
class constitutes 90 percent of the data and the second class only constitutes 10 percent of the data, it is likely
that the classifier just classifies everything to be of the first class. Since even in that case the classification
accuracy will be 90 percent.

Next comes the question of the similarity in real and generated traces. Till now, we used evaluation-style
comparison between the real and the generated traces. The similarity in the traces can also be quantified
using conformance style testing like signal to noise ratio. The SNR of the real traces can be compared with
the SNR of the generated traces. The peaks in the SNR signifies the amount of information that is leaked.
From the SNR plots in figure 6.7 the noise (termed as leakage noise by Wang et al. [117]) is quite evident , but
the peaks seem to be just like in the real traces. All three plots are for different trace lengths so as to highlight
that the GAN performs quite similarly even for quite different trace lengths. These SNR plots of course change
on the basis of the byte used and also in between runs because of GAN’s stochastic nature. Hence, in order
to compare the real and the generated traces for all bytes, the SNR plot in figure 6.7c was made. Here, the
different colors represent different bytes. It is evident that the generated traces leak more information than
the real traces causing the generated traces to be much more attackable than the real traces (as in table 6.2).
When comparing the performance of the MLPGAN and DCGAN on the basis of the SNR plots, the MLPGAN
generates traces wherein the ‘leakage noise’ is much more prominent as compared to the DCGAN (compare
figure 6.7aand 6.7b to figure 6.7c )

Just like SNR, even TVLA can be used for conformance style testing. When using the VCD label and com-
paring the MLPGAN and the DCGAN architectures, the number of leakage points are as in table 6.9. In all
the cases the number of leakage points are lesser in the masked implementation, than in the unprotected
implementation. Exactly as it should be.

However, it is evident that for the MLPGAN the number of leakage points are more for both the unpro-
tected and the masked implementation. I attribute this to the ’leakage noise’ which was also prominent in
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(a) HW label

(b) VCD Label

(c) HW Label : all 16 bytes

Figure 6.7: SNR plots of real (left) and generated (right) traces

Table 6.9: Comparing TVLA leakage points

Traces Unprotected Masked
Generated Traces : DCGAN 22 19
Generated Traces : MLPGAN 74 57
Real Traces 15 13

the SNR plots of the MLPGAN generated traces. Just like the SNR results, even these results change between
runs however the leakage trend is almost always, correctly depicted.

Now that the real and generated traces have been compared using both evaluation and conformance
metrics, as a final step, classifier similarity can be checked. If we compare the real and the generated traces
using a trained HW classifier, it will be interesting to see how similarly does the classifier act on real and
generated traces. A visualization of the classifier can be seen in figure 6.8.

Figure 6.8: HW Classifier

Table 6.10 lists the results for classification similarity and accuracy. For the sake of clarity, consider that
there are 100 traces in the test set. If the classifier correctly outputs 50 percent of the hamming weights, the
classification accuracy is 50%. Classification similarity, on the other hand, aims to compare the percentage
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Table 6.10: Classifier results

Generated power trace Real Power trace

Classification Accuracy 53.1% 53.5%

Classification similarity 87.1 %

of real and generated samples that were similarly classified. Hence the classification results for both real
and generated traces are compared. If 80 percent of the real and generated traces are similarly classified, the
classification similarity is 80 percent. The idea is to input real and generated traces corresponding to different
HW labels and comparing the classification results from the classifier. If the classifier outputs the same HW
values for both the real and the generated traces, the real and the generated traces are indeed very similar.
The classifier was trained using the ceil(mean(HW)) label and SMOTE [166] upsampling was used so as to
counter the class imbalance problem [57]. Different label options give different accuracy results. However
from the point of view of similarity between the classifier’s performance on real traces and on the generated
traces, the difference is quite minimal. This is because even if the accuracy is low, similar values for both real
and generated power traces on the classification accuracy and classification similarity metrics is sufficient
for comparing the real and generated traces. Looking at the classifier’s almost identical performance for both
the real and the generated traces, we can be even more certain of the design leakage assessment ability of the
generates traces.

6.4.3. VCD’S INABILITY TO OBVIATE GANS
Looking at the results presented in Section 6.3, specifically the information contained in the VCD transition
list makes one feel why is the processed VCD not used on its own for leakage evaluation? The reason behind
this is that the VCD transition array is innately much more cleaner than a power trace since it does not model
any non-idealities as timing violations and hence is always much more attackable. This gives a false sense of
weakness in the design. For example, if the generated traces have an attackability of 14 and the real traces
have an attackability of 13, the VCD transition array has an attackability of 16. Just by depending on the VCD
transition array attack ranks, it seems that the design is absolutely insecure. However, it is only using the
GAN generated traces that a reasonable evaluation of the design can be made. Secondly, the GAN technique
has the capacity to imitate the design’s technological behaviour of the circuit, which is useful for various
countermeasures and is not visible using simply VCD.

6.4.4. POTENTIAL SPEED-UP
One of the most promising features of the GAN methodology for generating power traces is that it guaran-
tees a very high speed up. To quantify the exact value of the speed-up, the time for generating traces using a
GAN can be compared to the time required to procure power traces using the chipwhisperer platform. Not
accounting the time taken to generate the AES bitstream and the time taken to program the chipwhisperer
FPGA; the time taken to procure 10 Million power traces using the chipwhisperer APIs is around 9.6 days
whereas the time taken to generated the same number of traces using the GAN (including the compute heavy
VCD processing step) is around 4.6 days. This means that even with an un-optimized line by line process-
ing python script for VCD processing, the GAN methodology is 2.1 times faster than traditional power trace
procurement. As compared to the CAD based power trace generation, as in [167], the GAN methodology is
around 150 times faster.

6.4.5. LIMITATIONS IN GENERALIZING
Talking about leakage assessment, the test implementation considered till now had power traces that al-
though similar to the training set had very different attackability (using a masking countermeasure). However,
if the implementation is drastically changed the structure of the power trace also changes and so does the the
VCD transition list. If there is no change in the vcd / power trace length, the changed VCD transition list can
be accommodated using three techniques. First, it is possible to categorize the multiple power traces using
different label values. Here, in addition to the VCD conditioning, there is an extra embedding layer for labels
(used for categorizing the power trace types). Second, transfer learning can be employed and third, the GAN
can be retrained on the new set of training data. If there is a change in the vcd / power trace length as well,
then the architecture must be changed so as to accommodate the new power trace length. In such a case
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transfer learning can be or the GAN can be completely retrained.
Using labels for denoting the type of VCD/Power trace work well as far as the visual appearance of the

different traces are concerned. ONNX diagram for the architecture used for this experiment is available on
page 97. In Figure 6.9, generated power traces for different implementations can be seen. Here, the afore-
mentioned conditioning is used and the GAN is able to generate power traces corresponding to different
implementation just using the power trace category label. However, the attackability seems to take a hit in
this case if Standard scaler [107] is used for scaling the VCD. This is be because, even when scaled using stan-
dard scaler, different VCD transitiona list will have a different range that has an impact on the GAN training
/ performance. Hence, if multiple such VCD transition lists are to be used using MinMaxScaler [106] gives
better results.

(a) Generated power trace: category 1 (b) Generated power trace: category 2

Figure 6.9: Using category labels for power traces

The second option in such scenarios is transfer learning. The idea of transfer learning in the context of
GANs is not immensely researched, however fairly recently there have been some papers addressing this is-
sue. Wang et al. [168] propose the use of transfer learning by using pretrained Generator and Discriminator
networks for use cases with limited training data. Figure 6.10 presents the real vs generated traces with and
without transfer learning. For both cases only 100 traces were used to train. In the transfer learning case,
pretrained generator and discriminator networks (on 5000 training samples) were used. In both cases, in-
verse_transform() was not used so as to fairly highlight the impact of transfer learning.

(a) Without transfer learning (b) With transfer learning

Figure 6.10: Real vs Generated traces

Using this methodology the generated traces visually look much more similar, although the generated
trace is definitely not as good as in the previous experiments. For both the cases, the attackability was zero,
just like the real traces. This of course does not mean that the GAN learns the leakage behaviour correctly
since the zero attackability can also be attributed to one of the GAN’s failure modes. However, it must be
pointed out that this technique is only worth considering when just a few hundred power traces can be taken
from the new implementation. Exactly similar results, if not better, can be obtained if the GAN is completely
retrained without any transfer learning, albeit with more training data as highlighted earlier in Section 6.3.
Transfer learning might be useful when using very large GAN models for very long power traces like those
presented in Section 5.5.3, however for the trace length and implementations considered in this work just
retraining the GAN is probably much more intuitive.





7
CONCLUSION

This chapter summarizes the work presented in this thesis along with a few future research avenues. Section 7.1
gives a chapter wise summary and Section 7.2 gives answers to the research questions presented at the beginning
of the thesis. Finally, section 7.3 presents possible future research that can be carried out using this work as a
baseline.

7.1. SUMMARY
Chapter 1 introduced the impact of hardware attacks in the cyber-security domain with a focus on side chan-
nel analysis, specifically power-based side channel analysis. The chapter briefly introduced existing leakage
assessment frameworks and highlighted their shortcomings. These shortcomings became the motivation
behind this thesis, i.e, requirement for a tool that can robustly perform pre-silicon leakage assessment.

Chapter 2 of this thesis explained the prerequisite cryptography concepts. Starting with a brief history
of the domain and progressing towards different kinds of cryptographic algorithms, namely symmetric and
asymmetric. Many popular algorithms were discussed in detail.

In chapter 3, a classification of the side channel attacks against cryptographic algorithms was presented.
The focus here was, again, power-based side channel attacks. Countermeasures against such side channel
attacks were also explained.

Chapter 4 covered the prerequisite deep learning concepts. Starting with a note on the history of deep
learning, the chapter explained different kinds of neural networks along with information on building, train-
ing, testing and tuning them. Generative deep learning was also explained and a comparison between popu-
lar deep generative models was made.

In chapter 5, the methodology for training GANs for power trace generation was proposed. Every com-
ponent of the GAN architecture was discussed so as to posit a set of architectures that can accommodate
different power trace lengths and different label options.

Chapter 6 presented the results associated with the two forms of GAN conditioning, namely HW-based
and VCD-based. The shortcomings of HW-based conditioning were highlighted and a robust framework for
leakage assessment was proposed using the VCD-based approach. In the chapter discussion, the method-
ology is assessed in detail. The impact of using different implementations / technologies is also discussed
along with highlighting the required architectural and training changes in such scenarios.

7.2. REFLECTION ON RESEARCH QUESTIONS
Analyzing the results presented in this thesis, the following answers to this thesis’ research questions can be
made:

1. Can GAN generated traces be used for security evaluation of an IC at design time?
Yes. Given that the used labels carry sufficient information about the implementation (like the VCD
label) it is possible to use GAN generated traces for leakage analysis and hence to carry out security
evaluation of an IC at design time.

2. Do different GAN architectures impact the quality of the generated traces?
Yes. Carefully tuning hyperparameters presented in chapter 5, it is possible to use GANs for power trace
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generation. However different GAN architectures and different labels have an impact on the "quality"
of the generated traces. If we are solely concerned with generating visually indistinguishable traces, it
can be safely said that most GAN architectures will be able to generate good quality power traces. Since
the word ’quality’ is also concerned with the amount of information contained in the power traces, the
methodology is heavily dependent on the labels that are used in the training process. Informative labels
help in generating attackable power traces which contain sufficient information so as to be called good
quality.

3. What evaluation metrics can be used to evaluate the GAN generated traces?
The generated power traces can be compared to the real power traces using side channel analysis met-
rics like CPA attack ranks, TVLA and SNR. However, to accurately compare the visual appearance of the
two, it is important to employ signal comparison metrics like dynamic time warping.

4. How much speed-up can this GAN methodology provide over the standard CAD tools?
The answer, of course, depends on the type of CAD tool used for generating the synthetic power traces.
However, as a rule of thumb, the CAD tools take at least a few seconds to generate every power trace
([167] takes 5.47s). The GAN methodology, with the compute heavy VCD procurement and processing
step, can generate the same number of traces in 4.62 days . This means, for generating 10 Million traces
(as is required for robust leakage assessment [22]) the speed up is around 140 times.

5. How well do GANs generalize to different implementations?
Passably. In the experiments presented in chapter 6, only when both the VCD transition list and the
traces for different implementations are similar, does the GAN perform well. To accommodate ex-
tremely different VCD transition lists and power traces, architectural changes are required. If the length
of the VCD and the power trace are similar and only certain characteristics (like amplitude) change, an
extra embedding layer can be used to signify different power trace types. However, if their length also
changes, the GAN must be structurally changed before either being completely retrained or being re-
trained with transfer learning.

7.3. FUTURE WORK
In this section, future research avenues for enhancing the work presented in this thesis will be discussed.

• Encoding power traces as images: Hettwer et al. [169] demonstrated that encoding traces as images
using techniques like Gramian Angular Field transformation [170] can increase the efficiency of deep
learning based side channel attacks, especially for desynchronized and noisy traces. The generative
models presented in this work can be extended to work on the image representation of the traces so as
to enhance the profiling set.

• Experimenting with other models and ensembles: Generative deep learning is a very active research
space and a number of new models and ensembles are being proposed quite frequently. Many of these
existing generative models might fit in very well with the task of power trace generation and might
outperform the GAN on metrics like training stability, quality and ability to generalize to different im-
plementations. For example, some energy based models [171] have recently been shown to outperform
GANs on many computer vision metrics. Similarly, deep generative ensemble methods might also be
able to outperform the GANs presented in this work.

• Quantization and Inference time acceleration: Despite the immense speed up that the GAN method-
ology guarantees, there is still room for improvement for large GAN models. Specifically models with
a Resnet [172] like architecture (for example MelGAN [77]). Since CUDA enabled GPUs are not ubiqui-
tous, accelerating the GAN inference procedure is an interesting research avenue. Appendix C discusses
the FINN compiler by Xilinx for inference time acceleration from a GAN perspective.

• Differential augmentation techniques : Proposed by Zhao et al. [118], differential augmentations for
GANs are augmentation techniques for images like color,translation and cutout that help even large
GANs perform very well on limited training data. The proposed transforms, as is, are not meant for
power traces. Naively using the transforms does not help in the training process and in some cases
even deteriorates the attackability of the generated traces. This is because the zero padded shifts, as a
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result of the transforms like translation, introduce misalignment which in turn acts as a countermea-
sure against the attack. Detailed experiments with other forms of differential augmentations might
result in better performance even with much less training data.





A
ONNX DIAGRAMS

The diagrams in this section have been generated using Netron [164]. Models were first saved into the ONNX
format and then processed using Netron. ONNX or Open Neural Network Exchange aims to act as a frame-
work independent medium for storing and exchanging neural network models. It does so by utilizing a com-
mon set of operators that act as building blocks for the neural networks. Different frameworks have dif-
ferent APIs to convert models to their corresponding models. For PyTorch, the API is torch.onnx.export()
and it takes the model definitions, input names and dummy inputs as parameters. For Tensorflow, the API
is tf2onnx.convert.from_keras and it also takes model definition and inputs as parameters.Once the ONNX
models are available, they can be passed as arguments to the Netron app. Netron internally uses HTML and
JavaScript to parse through the ONNX and generate a visual representation of the model. Before these visual
representation are presented, a short introduction to some of the ONNX operators must me made. This is be-
cause all the models will be represented in terms of these operators. Although most of the operator names are
very straightforward to understand, there are some operators that must be mentioned for the sake of clarity.
A list of these can be found in table A.1.

Table A.1: ONNX operators

ONNX operator Usage

Cast
Converting the datatype of a particular tensor. Used whenever there is any
discrepancy in datatypes within the model.

Concat
Combining a list of tensors into one tensor. Will be used to combine the
noise vector with the embedding layer output.

Expand
Broadcasting a tensor into a desired shape. Will be used only for the
CCGAN architecture for accommodating the label repeat operation.

Gather
Combining the contents of a tensor for a given axis. Will be used to
signify embedding layers.

Gemm General Matrix multiplication. Will be used to signify dense layers.

ReduceSum
Calculating the sum of the tensor along a particular axis. Used in CCGAN
to accommodate label inclusion in the discriminator.

Tile
Similar to numpy, used to create a tensor by repeating another tensor a
number of times. Use in tandem with ’expand’ operator for CCGAN.

Unsqueeze
Expanding the tensor dimension by inserting single dimension entires
to the tensor’s shape.

Next, ONNX models corresponding to all GAN architectures will be presented from page 88 to 99.
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(a) Generator (b) Discriminator

Figure A.1: Multi Layer Perceptron GAN - Unsupervised
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(a) MLP Generator (b) MLP Discriminator

Figure A.2: Multi Layer Perceptron GAN - HW Label
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(a) AC Generator (b) AC Discriminator

Figure A.3: Auxiliary classifier GAN - HW Label
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(a) DC Generator (b) DC Discriminator

Figure A.4: Deep convolutional GAN - HW Label
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(a) DC Generator) (b) LSTM Discriminator)

Figure A.5: LSTM GAN - HW Label
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(a) CC Generator (b) CC Discriminator

Figure A.6: Continuous Conditional GAN - HW Label



94 A. ONNX DIAGRAMS

(a) Generator (b) Discriminator (c) Recognition Network

Figure A.7: INFOGAN - HW Label
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(a) MLP Generator (b) MLP Discriminator

Figure A.8: MLPGAN for VCD Label
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(a) DC Generator (b) DC Discriminator

Figure A.9: DCGAN for VCD Label
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(a) DC Generator (b) DC Discriminator

Figure A.10: DCGAN for VCD Label with Trace Choice
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(a) MAE Encoder (b) MAE Decoder (c) Just Decoder

Figure A.11: Modified Autoencoders
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(a) HW Label (b) VCD Label

Figure A.12: Variation Autoencoder





B
END-TO-END FLOW

The aim of this appendix is to provide a code-first introduction to the end to end flow of power trace gen-
eration using GANs. It is easy to be overwhelmed by the numerous GANs introduced in this thesis. Hence,
for the sake of clarity, an absolute basic end-to-end flow will now be discussed. The endToend python script
can be found in the appendix section of the code repository. The entire process can be split into 5 steps as in
figure B.1.

Figure B.1: Coding steps

The first step is to load the power traces, plaintexts and key. It is critical that the power traces are aligned
with the plaintexts since any misalignment can have a grave impact on the working of the entire methodology.

1 f = np.load(’./ fixed_key_traces .npz ’)
2 traces = f[’trace_array ’]
3 textin_array = f[’textin_array ’]
4 known_keys = f[’key_array ’]
5 assert traces . shape [0]== textin_array . shape [0]== known_keys . shape [0] , " unequal number of

traces , pt , keys"
6 print (f’* loaded { traces . shape [0]} traces , pt , keys!’)

Once the training data is loaded, the next step is to calculate the labels for the GAN using the known key
and the plaintexts. If the VCD transition list is used as a label, this step can be omitted. Instead the VCD
transition list can be standardized/normalized and used as an input vector to the GAN (along with some
random modulation for stochasticity). The SBOX look-up table is omitted in the code for conciseness. When
calculating the labels, the plaintext and the known-key are first used to calculate an intermediate value, which
in this case is the hamming weight of the SBOX output. Since there are 16 plaintext bytes, a DataFrame with
16 columns is made. The number of rows in this DataFrame is, of course, same as the number of number of
traces in the training set. Now, every row in the DataFrame is processed to yield a single value that can be
used as a label for the conditional GAN.

1 # choose a leakage model wisely
2 def intermediate (pt , keyguess ):
3 return sbox[pt ^ keyguess ]
4

5 hw = [bin(x). count ("1") for x in range (256) ]
6

7 intermediateValue = []
8 for i in range ( traces . shape [0]):
9 temp = []

10 for j in range (16):
11 temp. append (hw[ intermediate ( textin_array [i][j], known_keys [i][j]) ])
12 intermediateValue . append (temp)
13 df_hw = pd. DataFrame ( intermediateValue , columns =[f’{i}’ for i in range (16) ])
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14 print (f’* made a hw dataframe with { df_hw . shape [0]} rows and 16 columns ’)
15

16 # choosing mode of hw. can be changed to floor , round or ceil of mean of hw
17 labels = []
18 for i in range ( traces . shape [0]):
19 labels . append ( df_hw .loc[i]. mode () [0])
20 labels = np. array ( labels ). astype (np. int64 )
21 print (f’* made a label array using the mode of 16 HW values in each dataframe row.’)

Now that the traces and labels are available, these traces and labels can be used to create a Dataloader.
However, for the Dataloader to be made it is important to make a Dataset class. The Dataset class takes the
traces and associate labels as input and the Dataloader splits them into random batches depending on the
batch-size that is provided to it. This is done as follows:

1 class PowerTracesDataset ( Dataset ):
2 def __init__ (self ,traces , labels ):
3 super (). __init__ ()
4 self. traces = traces
5 self. labels = labels
6 self. n_samples = traces . shape [0]
7 def __len__ (self):
8 return self. n_samples
9 def __getitem__ (self , index ):

10 return torch . tensor (self. traces [ index ], dtype = torch . float32 ), torch . tensor (self.
labels [ index ], dtype = torch . int64 )

11

12 dataloader = DataLoader ( PowerTracesDataset ( train_traces , train_labels ),batch_size ,
shuffle =True)

Now that the dataset is ready, we can build a GAN model. So as to keep this example at a bare minimum, a
simple MLP GAN can be made as follows. An embedding layer is used for the labels ( it is like a simple look-up
table for the 9 possible hamming weight values). The output of this embedding layer is concatenated to the
noise input to the generator (as in line 9) as well as to the input trace to the discriminator (as in line 22). The
device variable in this case is set to ’cpu’. If a cuda enable GPU is available, the variable can be set to ’cuda’ to
leverage the performance of the GPU.

1 class Generator (nn. Module ):
2 def __init__ (self):
3 super (Generator , self). __init__ ()
4 self. embedding_layer = nn. Embedding (9 ,10)
5 self. layers = nn. Sequential (nn. Linear (22+10 ,128) ,nn. BatchNorm1d (128) ,nn. LeakyReLU

(0.1) ,nn. Dropout (0.3) nn. Linear (128 ,64) ,nn. BatchNorm1d (64) ,nn. LeakyReLU (0.1) ,nn.
Dropout (0.3) ,nn. Linear (64 ,60) ,nn.Tanh ())

6

7 def forward (self ,x, labels ):
8 embedVal = self. embedding_layer ( labels )
9 value_to_feed = torch .cat ([x, embedVal ] ,1)

10 output = self. layers ( value_to_feed )
11 return output .to( device )
12

13

14 class Discriminator (nn. Module ):
15 def __init__ (self):
16 super ( Discriminator , self). __init__ ()
17 self. embedding_layer = nn. Embedding (9 ,10)
18 self. layers = nn. Sequential (nn. Linear (60+10 ,128) ,nn. LeakyReLU (0.1) ,nn. Linear

(128 ,64) ,nn. LeakyReLU (0.1) ,nn. Linear (64 ,1) ,nn. Sigmoid ())
19

20 def forward (self ,x, labels ):
21 embedVal = self. embedding_layer ( labels )
22 value_to_feed = torch .cat ([x, embedVal ] ,1)
23 output = self. layers ( value_to_feed )
24 return output .to( device )
25

26 netG = Generator ().to( device )
27 netD = Discriminator ().to( device )

If the VCD transition list is used, the embedding layer is not required since we feed the scaled transition
list as is to the generator. For the discriminator, the scaled transition list is concatenated with the power trace
and then fed through the remaining layers. After building the GAN, it can be trained using the aforementioned
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Dataloader for a defined number of epochs (100 in this case). The training process is carried out alternatively
for the discriminator and the generator. In both the cases, validity labels are used to signify real and generated
traces. Ideally, the real traces should have a validity label of 1 and the generated (or fake) traces should have
a validity label of 0. Therefore, when training the discriminator, the discriminator’s output on generated
traces are coupled with the validity label 0 and the discriminator’s output on real traces are coupled with the
validity label 1 (as on line 11/12). Since GANs play the so-called minimax game, when training the generator
the discriminator’s output on generated traces are coupled with the validity label 1 (as on line 17). This no-
cooperative game has been theoretically explained in section 4.3.2.

1 loss = nn. BCELoss ()
2 print (’* Training !’)
3 for i in tqdm( range (100) ):
4 for trace , label in dataloader :
5 batch_size = trace . shape [0]
6 noise = torch . normal (mean =0, std =1, size =( batch_size , 22)).to( device )
7 #netD
8 netD_optim . zero_grad ()
9 d_r = netD( trace .to( device ),label .to( device ))

10 d_f = netD(netG( noise .to( device ),label .to( device )),label .to( device ))
11 d_total_loss = (loss(d_r , torch .ones( batch_size ,1)) + loss(d_f , torch . zeros (

batch_size ,1))) / 2
12 d_total_loss . backward ()
13 netD_optim .step ()
14 #netG
15 netG_optim . zero_grad ()
16 d_f = netD(netG( noise .to( device ),label .to( device )),label .to( device ))
17 g_loss = loss(d_f , torch .ones( batch_size ,1))
18 g_loss . backward ()
19 netG_optim .step ()

The output of this step is a trained GAN model. At inference time, we are only concerned with the gener-
ator model. The weights and biases of the generator model can be saved as a .pt file. The trained generator
must be set to evaluation mode before it can be used to generate power traces, as follows:

1 netG = netG.eval ()
2 generator_traces_list = []
3 start = 0
4 end = batch_size
5 for i in range (10):
6 z = torch . normal (mean =0, std =1, size =( batch_size , 22)).to( device )
7 val_label_list = torch . from_numpy ( val_labels [ start :end ]).to( torch . int64 )
8 generatedTraces = netG(z, val_label_list )
9 for trace in generatedTraces . detach (). numpy ():

10 generator_traces_list . append ( trace )
11 start = start + batch_size
12 end = end + batch_size
13 generator_traces_list = np. array ( generator_traces_list )

The process of generating power traces, as explained here, clearly depends on the known key since the
labels (either training/validation) can not be calculated without them. However, that is not the case with
the VCD Label GAN, wherein the embedding layer is replaced by a simple Linear layer that takes the VCD
transition list as an input.





C
BREVITAS AND FINN

All the GANs presented in this thesis were trained using either Pytorch or Tensorflow. Internally these libraries
provide options for specifying the datatype of tensors. However, most functionalities work best with 32 bit
float datatype for tensors. All MLP-GAN architectures are fast at inference time and can generate traces almost
instantaneously. The same can not be said about other complex GAN architectures since for larger trace
length, the time taken to generate trace increases substantially.

As a solution to this issue, the FINN compiler can be used. The FINN compiler works on an ONNX rep-
resentation of neural networks. This ONNX representation is generated using quantized brevitas layers. Bre-
vitas is a PyTorch library for quantization aware training. The FINN compiler tranforms the quantized layers
into a dataflow style architecture which can be deployed on a PYNQ board. The FINN framework was orig-
inally made for inference time acceleration for binary neural networks [173]. Till date, it is presented more
like a research project from Xilinx rather than a fully functional concrete framework.

Naturally, it lacks a tight integration with PyTorch and hence most models can not be ported into their
corresponding dataflow architecture through it. Most notably, architectures requiring multiple inputs are
still not implicitly supported by brevitas’ ONNX API. Since a conditional GAN requires two inputs, one for
the noise vector and one for labels, using FINN is complicated. Add to that, the scarcity of synthesizable
descriptions of model layers for certain architectures makes generating IP blocks arduous.

The process of synthesizing a dataflow architecture for brevitas models is fairly straightforward, given that
FINN supported layers are used. The FINN supported layers are those brevitas layers that have a correspond-
ing FINN HLS implementation. Since multiple inputs are not supported at the time of writing this thesis, I
will be providing an end to end example of accelerating the hidden layers of the generator. This idea can then
be extended for other GAN architectures.

The FINN compiler involves a total of 5 steps.

1. Exporting brevitas model into ONNX : The GAN is trained using brevitas layers, just like any other py-
torch model. The model is then converted into its corresponding ONNX representation. ONNX is a
format built specifically for standardized representation of machine learning models.Most popular ML
libraries provide APIs for converting models into the ONNX representation.

2. Preparing the network : Next, the ONNX network representation is tweaked in a way such that it is a
better fit for the finn-hls layers. This preparation includes the following transformations:

• Tidy up : Ensures unique tensor names and calculates tensor shapes after every layer output. Any
unused tensors are also removed.

• Streamlining: This step involves collapsing multiple nodes into a custom nodes that can then be
converted into their corresponding HLS implementation.

3. Exporting to HLS: After preparing the ONNX network, the network is transformed into its correspond-
ing streaming dataflow architecture using FINN-HLS layers.

4. Hardware Build : The HLS IP layers are stitched together to create a Vivado HLS project. This project is
then used to generate a PYNQ driver.
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5. Deployment: The deployment files generated using FINN are copied onto the PYNQ board and used
for inference time acceleration.

As a proof of concept, the brevitas implementation for a MLP conditional GAN was made. The brevi-
tas implemetation of the same has been made available in the code repository. Once FINN compiler starts
supporting an extended number of layers and model architectures, most designs can be ported into their
corresponding data-flow architectures and deployed on PYNQ boards for inference time acceleration.



D
NUMBA ACCELERATED CPA

Chipwhisperer [135] side channel analysis APIs are extensively used in side channel analysis research. Most
attack scripts are implemented natively in python along with some cython modules. Although very intuitive
and easy to use, the native chipwhisperer APIs are slow. So as to be able to do hundreds of CPA attacks for
the purpose of evaluating GAN performance in this thesis, it was imperative that the CPA attack script was
accelerated.

The simplest way to do so was using NUMBA [160]. The accelerated CPA script is available in the code
repository. The main changes were as follows:

• Adding the njit decorator for all the methods used in the traditional script. Numba is then able to
translate the method to optimized machine code at runtime using the LLVM compiler library [174].

• The njit decorator only works when all the numpy/pandas functions used inside of the methods have
corresponding ufuncs implemented. Not all numpy/pandas functions have their corresponding ufuncs,
however from the purpose of the CPA attack: np.mean() np.where(), np.sort(), np.sqrt() and np.argmax()
are needed.These ufuncs are just functions that work on numpy ndarrays and are implemented in com-
piled C code. Functions can be converted into its corresponding ufunc using the np.frompyfunc() func-
tion.

• The accelerated script can be made with minor changes in the existing chipwhisperer CPA implemen-
tation, such that only the aforementioned numpy functions are used.

Figure D.1: Numba: comparison of CPA attack time

As can be seen in figure D.1, the Numba acceleration provides an immense speed up. Using Numba gives
a better speed-up when a large number of traces are used, since numba adds an computation overhead while
translating the decorated methods. This overhead is much more pronounced as compared to the baseline
(unoptimized) attack time when only a few traces are used.
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RESEARCH PAPER

In this thesis, I explored the use of generative adversarial networks (GAN) for power trace generation. The
objective of the GAN framework was to speed up the power trace generation as compared to traditional CAD
tools. The requirement for a high speed-up was that the power traces generated using the CAD tools, although
accurate can not be used for the task of security evaluation. This was because security evaluation takes place
on a minimum of 10 million power traces and the CAD tools take at least a few seconds to generate every
trace. Hence, the CAD tools would take years to generate the required number of traces. Using the VCD
transition list label and the DCGAN architecture presented in section 5.4.2 a pre-silicon power leakage as-
sessment framework was proposed, which provides 140x speed-up over traditional CAD tools. The proposed
framework can be used for

1. Security evaluation of designs at design time.

2. Evaluating the efficacy of countermeasures at design time.

3. Design space exploration of the countermeasures.

Since the training power traces in this work have been procured using an FPGA evaluation of a design,
specifically using the chipwhisperer board [135], the framework can not factor in the technology behaviour
of the design and hence can not be used to evaluate circuit level countermeasures [175] or technology level
countermeasures [176]. So as to factor in the technology behaviour of the design, GANs can be trained on a
few thousand power traces generated by the CAD tools. Then, the GAN framework can be used to generate
the remaining amount of power traces so as to successfully carry out the security evaluation of the design.
Ofcourse the speed up in this case will be less than 140x. However, there will still be an extremely large speed
up since generating a few thousand training power traces will only take a couple of hours using the CAD tools.
The contributions of this thesis have been condensed down into a research paper that has been attached in
this appendix.
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Abstract—Today, security is an important feature that every
system must provide. Depending on the application and environ-
ment of the target device, different threats should be considered
at design time. However, the attack space is vast and hence, it
is difficult to decide what components to protect, what level of
protection they require and how efficient they are in the field.
Only experienced designers are able to make good decisions and
the level of protection the countermeasures provide can only be
validated after the chip is manufactured. This paper tries to
close this validation gap for power based side-channel attacks
by providing a fast and reliable leakage assessment at design
time that can be used to perform design space exploration for
security. To accomplish our goal, we use Generative Adversarial
Networks (GANs) to generate reliable power traces for hardware
implementations at design time that are subsequently used to
assess the leakage of the design. We tested our framework using
masked and unmasked AES implementations. The generated
traces were validated against real traces using the correlation
power attack (CPA) and Test vector leakage assessment (TVLA).
Our results show that both generated and real traces have
very similar behavior in terms of leakage. Using Generative
adversarial networks for the task of power trace generation yields
a very high speed-up of around 140 times as compared to popular
CAD tools.

Index Terms—side-channel analysis, countermeasures, gen-
erative adversarial networks, symmetric cryptography, design
exploration

I. INTRODUCTION

There is no doubt that security has become a critical
component of microelectronic devices. Nowadays, software
protection solutions are being complemented by hardware
security solutions (e.g., ARM TrustZone [1] and Intel Boot
Guard [2]), which are more resilient and perform better in
terms of speed and power consumption [3]. However, de-
signing a hardware protection scheme is quite challenging
as new vulnerabilities arise and, differently from software,
they cannot be updated after deployment. One set of popular
hardware attacks exploit the power consumption. For example,
a malicious adversary can take advantage of power behavior
to deduce secret information through side-channel attacks [4].
Currently, in the industry power-based vulnerabilities are only
verified after the chip is manufactured, using off-the-shelf
security tools and equipment (e.g., equipment of Rambus [5]
and Riscure [6]). Consequently, this verification adds extra
steps in the design process which increases the production
cost. Even worse, when the minimal security is not met the

chip has to be redesigned and manufactured, affecting not only
costs but also the design time considerably. Therefore, a pre-
manufacturing power leakage assessment solution is needed.

There are currently a few options to evaluate countermea-
sure designs prior to manufacturing. These options can be
divided into three categories: formal verification [7], CAD
tools [8] and functional simulation tools [9]. The aim of formal
verification-based solutions is to mathematically analyze the
leakage of an implementation. Formal verification examples
can be found in [7, 10]. In [7] the authors use formal verifi-
cation to verify hardware masking countermeasures. In [10],
the authors present an SMT-solver (SMT stands for satisfia-
bility modulo theories) for software masking countermeasures.
Unfortunately, such solutions focus on analyzing randomness
created by masks. As a result, they only operate on one type
of countermeasure, i.e., masking countermeasures. CAD-based
solutions, on the other hand, tend to produce the power be-
havior of the targeted implementation. An example of a CAD-
based solution is provided by Sadhukhan et al. [11] where they
examine the leakage using both simulated and hypothetical
power traces. Another example suggested by Nahiyan et
al [12] is that they reduce the number of power traces needed
to evaluate the leakage by improving the signal-to-noise ratio
(SNR) algorithm. Unfortunately, creating simulated power
traces is a time-consuming operation, and reducing the number
of simulated traces cannot validate the protection against real
attacks such as CPA, which typically require a large number
of traces. Additionally, we see in industry that secure IPs are
evaluated with a minimal of 10 million power traces [13].
Therefore, a CAD-based assessment solution would be an
interesting solution only if it can generate millions of power
traces in a timely manner. Unfortunately, the CAD-based tools
are known to be extremely slow and generating as many as 10
million power traces using them is not viable. For example, the
solution proposed by Sadhukhan et al. [11] takes 5.47 seconds
to generate a single trace. Generating as many as 10 million
power traces using this technique will take around 633 days.
This, of course, is not practical.

To obviate the need of using CAD-based tools for power
trace generation, functional simulation tools like RTL-PSC [9]
have been introduced. Wherein, the functional simulation of
a design is used to carry out pre-silicon leakage assessment.
This technique does not generate power trace as it is solely



dependent on the switching activity file. This dependence
on the switching activity makes this methodology not fit for
modelling the design’s technological behaviour(e.g., CMOS),
which is useful for various countermeasures and is not visible
using simply the switching activity. The switching activity
also gives a rather ideal picture about the power consumption
since it does not model any non-idealities like timing violation.
Hence, there is need for a tool that can not only carry out pre-
silicon leakage assessment in a reasonable amount of time, but
can also accommodate the device’s technological behaviour
and non-idealities correctly so as to model its leakage robustly.

This paper presents a novel methodology to obtain reliable
power traces at design time in a much faster way than using
standard CAD-tools. Our methodology uses the simulated
switching activity of the target design and feeds this into a
Generative Adversarial Network (GAN). The GAN analyzes
the switching activity and generates power traces. The gener-
ated power traces are then validated using well-known power
attacks. We use our methodology to build a framework which
cannot only verify the security of a component at design time
but also perform a complete design space exploration to find
the most secure solution. Therefore, we present a case study,
where several hardware implementations of AES algorithm are
explored. In summary, the contributions of this paper are:
• Proposal of a novel methodology to generate power traces

and a leakage assessment framework that can be used at
design time.

• Proposal of evaluation metrics to measure the quality of
the generated traces.

• Evaluation of the framework by performing security eval-
uation of different implementations using power-based
attacks on various AES hardware implementations.

• Validation of the generated traces by comparing them to
actual collected power traces.

The remainder of the paper is organized as follows. Sec-
tion II describes the related work. Section III provides a
background on AES, side-channel attacks, and generative
adversarial networks. Section IV explains the proposed leak-
age assessment framework. Section V validates the proposed
framework against different AES implementations. Section VI
discusses the advantages and limitations of proposed design.
Finally, Section VI concludes this paper.

II. RELATED WORK

Generative deep models have already been applied to nu-
merous applications like images [14], audio [15], video [16]
and medical data like ECG [17]. In addition to the Genera-
tive Adversarial Networks, there are also other methods that
could be used to generate fake traces such as Variational
autoencoders [18], Flow [19] and Auto-regressive [20] based
models. Ofcourse a number of ensemble models also exist,
however for the sake of brevity we only experimented with
the vanilla models. Variational autoencoders, are an extension
of traditional autoencoders. An autoencoder can not be used
as is for the generative task since all it knows is to copy
the input it has been fed. Instead of mapping the input to

a fixed latent space vector like in the case of an autoencoder,
the input can be mapped to a normal latent space distribution
(parameterized by mean and variance vectors). In such a case,
the model is able to generate different samples based on
tweaking the values of the latent space. Such a model is known
as a Variational autoencoder or VAE. Although much more
stable to train than GANs, VAEs are known for generating
lower quality samples. On the other hand, Flow models use
a sequence of invertible transformations to learn the exact
data distribution. Despite their impressive ability to compute
exact likelihoods, Flow models usually have manifold times
more trainable parameters and require an order of magnitude
more processing (in GPU-based platforms) for the training
as compared to progressive GAN models [21]. Finally, Auto-
regressive models decompose the likelihood into a product
of conditional distributions. However, since the prediction at
every time-step is dependent on all previous predictions, these
models are implicitly slow. Hence, for this work we prefer
GANs over other deep generative models as GANs can be
trained relatively faster, have a reasonable number of trainable
parameters, and have been empirically proven to produce
really good quality results. From the perspective of modelling
power leakage behavior, a GAN based model is ideal since
not only is it known for generating good quality samples but
is also known for being very quick at inference time and thus
can produce power traces swiftly. The existing CAD based
power trace simulation tools are extremely slow and hence
employing GANs for this task can potentially lead to a large
speed-up.

Generative adversarial networks have recently been intro-
duced in the side-channel analysis domain. Wang et al. [22]
proposed the usage of conditional GANs to enlarge the size
of the profiling dataset for carrying out profiled side-channel
attacks. They use a traditional CGAN architecture with dense
layers and train it using the Jensen-Shannon Divergence
approach as proposed by Mirza and Osindero [23]. In the
author’s own words, their study was aimed as a proof of
concept and not a robust methodology. Hence their proposed
methodology has a few limitations. First, they only use dense
layers in their architecture. Such multi-layer perceptron GANs
are best suited for shorter trace lengths since the number of
trainable parameters grows substantially as the input/output
size of the GAN’s layers increases. Second, they condition the
GAN on only a few labels, namely the least significant bit and
Hamming weight of the SBOX output. Finally, they only use
the Jenson-Shannon Divergence loss and do not experiment
with other loss functions. Since the inception of GANs, many
architectural changes and loss functions have been proposed
that help in alleviating various problems associated with GANs
as well as enhancing the training stability.

III. BACKGROUND

This section provides the background needed for this paper.
It first describes Advanced Encryption Standard. Thereafter, it
presents the masking and hiding countermeasures. Finally, it
discusses generative adversarial networks.



Fig. 1: Random Masking

A. Advanced Encryption Standard (AES)

AES, also known as Rijndael Cipher, has become the current
standard for symmetric cryptographic algorithms. The AES
algorithm consists of four main functions: AddRoundKey,
SubByte, MixCoulmns, and ShiftRows, and it supports three
different keys length variants 128, 196, and 256 bits. For more
details regarding AES we refer the reader to [24]. Among all
AES functions, the SubByte leaks the most information, and
hence is often targeted by side-channel attackers. The Sub-
Byte function (or so-called SBOX ) is an essential nonlinear
substitution function that attempts to obfuscate the correlation
between the key and the plaintext/ciphertext. The SubByte
function works as follows: the multiplicative inverse of an
8-bit input representing a polynomial is calculated using the
finite Galois Field GF(28) and the irreducible polynomial
p(x) = x8 + x4 + x3 + x + 1 followed by an affine
transformation. To optimize the SubByte in terms of perfor-
mance, a pre-calculated look-up table (LUT) containing all
the possible values (256 values) of the 8-bit input is used, can
be used which replaces the computation of the multiplicative
inverse and affine transformation. In addition to the two naive
implementations already described (i.e., Non-LUT and LUT-
based), the SubByte can be also implemented in a variety of
different ways mainly to prevent information leakage [25].

B. Masking Countermeasure

For the past two decades, several countermeasures have
been proposed to thwart power attacks. These countermeasures
vary based on their implementation (i.e., software, hardware
design, circuit implementation) and technique (i.e., obfuscat-
ing or balancing the power consumption). One of the famous
examples of obfuscating the power consumption is masking.
Masking can be implemented in software [26], by modifying
the hardware design [27] or using masked logic cells (i.e.,
masked dual-rail pre-charged logic) at circuit level [28].

In this paper, a simple form of masking implementation is
used in addition to the naive implementations. The counter-
measure, as shown in Figure 1, works as follows: by selecting
two random 8-bit values (mask m and mask n) the SubByte
function can be calculated using Equation1. In Equation 1, P
denotes a byte of the plaintext, while K represents a byte of
the secret key. To ensure that the encryption output is correct,
the SBOX also needs to be modified [29] (the modified SBOX
is depicted as SBOX’ in equation 1). Note that the SBOX
performs a non-linear transformation, hence for given plaintext
P and mask n the sbox output SBOX(P ⊕ n) is not equal

Fig. 2: Impact of masking on SBOX
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to SBOX(P ) ⊕ SBOX(n). This countermeasure aims to
reduce the leakage by invalidating the Hamming Weight and
Hamming Distance leakage models.

SBOX[P ⊕K] = SBOX ′[P ⊕K ⊕ n]⊕m (1)

A simple example of the same can be seen in Figure 2. In
the example, mask pair (189,255) is used. First, the SBOX is
modified using the mask pair so as to become SBOX’. The
impact of that is that the same key and plaintext byte results
in two different values, which are 228 and 130 for SBOX and
SBOX’ respectively. So as to correct the output of SBOX’,
mask1 and mask2 are needed. Mask1 will make sure that the
correct index is accessed in the SBOX look-up table and mask2
will undo the effect of masking on the value contained in the
look-up table.

C. Generative Adversarial Networks (GANs)

GANs are used to generate new data with similar char-
acteristics as the training set. GANs try to approximate the
dataset’s distribution and consist of two main components, i.e.,
the generator G and discriminator D. The generator’s objective
is to generate samples with a similar distribution to the actual
dataset distribution p(x). The discriminator’s objective is to
differentiate between the real and fake traces, namely x and
G(z). Hence, the training process of a GAN takes place in an
adversarial setting wherein the discriminator and the generator



play a minimax game. The Loss function L can be expressed
as follows:

min
G

max
D

L(G,D) = Ex∼pdata(x)[logD(x)]

+ Ez∼p(z)[log(1−D(G(z)))]
(2)

This loss function corresponds to the original GAN archi-
tecture as proposed by Goodfellow et al. [30]. However, since
the training is completely unsupervised, there is no control
over what the GAN generates at inference time. To have
control over what the GAN generates, it should be conditioned
on a categorical label corresponding to each encryption. The
label y (which for example can correspond to the hamming
weight/distance of the SBOX output) must also be a part of
the loss function. Such conditional GAN loss function was
originally proposed by Mirza and Osindero [23] and can be
expressed as:

min
G

max
D

L(D,G) = Ex∼pdata(x)[logD(x | y)]

+ Ez∼pz(z)[log(1−D(G(z | y)))]
(3)

The non-cooperative game is what makes training GANs
hard and unstable. To address this problem, a lot of research
has been performed to find better loss functions and normal-
ization techniques.

In this work, in addition to the loss function presented in
Equation 3, we experimented with the Least Squares GAN
(LSGAN) [31], the Wasserstein GAN (WGAN) loss and the
Wasserstein GAN with Gradient penalty (WGAN-GP) loss
function [32]. The LSGAN aims at increasing the quality
of the generated samples by improving the discriminator’s
output by not only looking at the binary output decision but
also quality of the generated traces. Note that in the GAN
proposed by Mirza and Osindero, the discriminator’s purpose
is to distinguish between the real and fake samples as shown in
Equation 3, which is realized using binary cross entropy loss.
In LSGAN, however, in addition to binary classification, the
concern is also how close or how far the fake traces are from
the real ones. This can be seen in the loss function presented
in Equation 4.

min
D

LLSGAN(D) =
1

2
Ex∼pdata(x)

[
(D(x)− b)2

]

+
1

2
Ez∼px(z)

[
(D(G(z))− a)2

]

min
G

LLSGAN(G) =
1

2
Ez∼px(z)

[
(D(G(z))− c)2

]
(4)

During the training of the discriminator, b is set to 1 to
signify real traces and a is set to 0 to signify generated traces.
As the objective of the Generator is to create fake traces that
look real, while training the generator c is set to 1.

An issue with JS Divergence is that when the distributions
are disjoint, the loss value becomes a constant causing the
gradients to vanish. To address this issue Arjovsky et al. [33]
used the Wasserstein metric (also known as the earth mover’s
distance) as a loss function for GANs. Minimizing the earth

mover’s distance leads to smoother gradients even when the
generator outputs unsatisfactory traces. The WGAN’s Discrim-
inator tries to model a function that approximates the EM
distance and not just distinguish the real samples from the
generated ones. Wasserstein metric, is a concept borrowed
from transport theory and can be interpreted as the minimum
amount of work required to transform one probability distribu-
tion to another. However, computing the earth mover’s distance
is an intractable problem and the Kantorovich-Rubinstein du-
ality [34] is used to make the problem simple by transforming
the EM distance minimization problem in order to find a least
upper bound. The transformed loss function is required to
satisfy K-Lipschitz continuity. The Lipschitz continuity limits
how fast a function can change. In its original implementation,
the authors perform weight/bias clipping in a range [-c, c] so as
to enforce a Lipschitz contraint on the critic. The loss function
for WGAN is as follows:

L(pr, pg) = maxw∈W Ex∼pdatax [fw(x)]− Ez∼pz(z) [fw (gθ(z))] (5)

The clipping method was criticized by the authors of the
paper themselves and hence the gradient penalty version
gained popularity. The gradient penalty version, known as
WGAN-GP also aims at minimizing the earth mover (EM)
distance. However, the Lipschitz constraint is enforced not
enforced by weight clipping.

L= E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]

︸ ︷︷ ︸
Original critic loss

+λ E
x̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)

2
]

︸ ︷︷ ︸
gradient penalty

(6)

The weight clipping method is extremely sensitive to the
clipping value hyperparameter and quite often reduces the net-
work’s ability to model complex functions. Instead, WGAN-
GP adds a gradient penalty term to enforce the K-Lipschitz
continuity as shown in Equation 6.

IV. PROPOSED FRAMEWORK

This section presents our proposed framework. We first
introduce the methodology at high level and then each step
is explained in detail.

A. Methodology

Our proposed framework can be used to evaluate the effi-
cacy and efficiency of countermeasures against side-channel
attacks without the need of procuring actual power traces for
an ASIC design. The methodology to create this framework
consist of five major steps as shown in Figure 4. In the
first step, Generate Inputs, the targeted circuit (e.g., AES
implementation) is simulated and used to generate the required
inputs. Next, in the Process training data step the VCD are
transformed into labels for the GAN and real power traces are
collected by evaluating the design on an FPGA. In the third
step, called Build GAN Model, the GAN model is constructed
and trained. Thereafter, in the Validate GAN model step, the
GAN model is evaluated under different inputs for the same
design and the quality of the generated traces is analyzed.



Fig. 4: Framework Methodology

Lastly, in the Evaluate Framework step the GAN model is
evaluated for different inputs potentially for different hardware
designs to check if it can generate reliable data independently
of the input configuration (e.g., different plaintext or different
key during an AES encryption). In the following subsections,
we describe each step in more detail.

B. Generate Inputs

To successfully generate reliable power traces (i.e, traces
that are similar to the actual power traces), we use the
switching activity of a target circuit as the GAN’s input. One
of the most common representation of the switching activity is
the value change dump (VCD) file. VCD files can be generated
during RTL or netlist simulations. In this step AES encryptions
are simulated with randomly selected plaintext and a fixed key.
The result is a large VCD file. Additionally, to train the GAN
we also need to collect real power traces with inputs matching
to the simulated ones. This is accomplished by emulating the
design in a FPGA and collecting power traces. Note however
that the VCD file cannot be used directly to train the GAN,
which bring us to the second step (i.e., Process training data).

C. Process training data

Our framework includes a VCD translation engine, which
contains a set of scripts that process the VCD file, organize its
content in a standard format (i.e., pre-defined timestamps, size
of switching array, etc.), and create labels from them. For each
encryption, all wire / register transitions are recorded in the
VCD file. Therefore, the VCD can be used to extract a signal
transition list for each encryption. The VCD translation engine
ensures that the switching information is correctly processed
independent of the target design. Extremely important for this
step is that the label conveys a holistic picture about the power
trace which is solely provided by the VCD transitions. In
theory, as VCDs are application independent, the generative
model has the ability to produce accurate power traces for
a wide range of applications at inference time. Through
our initial experiments, we observed that the usage of non-
informative labels (such as Hamming Weight and Hamming

Distance of the SBOX output) resulted in generated traces that
were visually similar to the actual traces but did not convey
the leakage characteristics correctly. A visual representation
of the VCD translation engine can be seen in Figure 5.

D. Build GAN model

In this step, we build the GAN model. Unfortunately,
using the switching activity as labels prevent us from using
embedding layers in the GAN’s architecture, as the embedding
layers expect integer numbers as input. The reason for this is
that they are implemented as simple look-up tables. In our
framework, we remove the embedding layer as well as the
noise vector and instead just use the VCD transition as an input
to the GAN. A similar architectural choice was also made by
Kumar et al. in their MelGAN architecture [35], wherein they
observe little perceptual difference in the generated waveforms
when additional noise is fed to the generator. Even Mathieu
et al. [36] and Isola et al. [37] demonstrate the noise vector’s
redundancy when using highly informative conditioning.

E. Validate GAN model

In this step, the GAN model is tested on a similar VCD
file that it was trained on, which means that the key and the
implementation of the AES algorithm are still the same and
only the plaintexts are modified. The aim here is to observe if
the generated traces are able to portray the information from
the VCD transition labels correctly.

F. Evaluate Framework

The evaluation of the framework is performed through a
generalization test. Hence, we evaluate if our model can pro-
vide reliable power traces independently of the input configu-
ration of the target circuit. In this step, not only the plaintext
varies, but also the key value. In each scenario, the quality
of the generated power traces is verified through two leakage
assessment techniques, evaluation-test (i.e., Correlation Power
Attack) and conformance-test (i.e., Test Vector Leakage As-
sessment (TVLA) and Signal to Noise Ratio (SNR)). Finally,
both collected and generated power traces are compared. In



Fig. 5: VCD translation engine

addition, for various different implementations traces can also
be generated and evaluated . In this context, the framework can
be used to perform a design space exploration to find the most
secure solution for a certain algorithm by quickly generating
and evaluating traces for VCD files belonging to different
design. We limit our tests to three implementations only, which
are: unprotected AES implementation, AES implementation
with masking and AES implementation with blinding.

When the framework is completed, designers can generate
as many traces as they need. For example, according to secu-
rity standards, security components (i.e., Intellectual Property
blocks) used in the industry require for their vulnerability as-
sessment 10 million, 100 million or 1 billion power traces [13].

V. EXPERIMENTAL RESULTS

This section presents the experiments setup, performed
experiments and evaluates the obtained results.

A. Setup

This subsection describe the set of tools and equipment used
in our five-step methodology (see Subsection IV).
Generate Inputs and Process training data In the first
two steps, generated VCD files and real power traces of the
target design are collected. Thereafter, we simulate the design
using Questasim simulator [38], which is used to generate
the required VCD files. We emulate the AES in an FPGA
and collect actual power traces from it. To realize this we
use Chipwhisperer CW305 equipment [39], which contains a
Xilinx FPGA and an power ADC to sample power traces.
Build GAN model: In the third step, a GAN model is built
and trained. Our target computer was a MacBook Pro with
8259U coffee lake processor and 8GB of LPDDR3 SDRAM.
Athough most popular GAN models are extremely compute
heavy and make excessive use of GPUs, we wanted to limit
the computation resources since we believe that most end-
users of this framework will also not have GPU clusters at

their disposal. All computations were performed using the
python programming language, where the GAN model was
made using the PyTorch [40] deep learning library.
Validate GAN model: In this step the generated traces of the
GAN model are compared and validated against real power
traces. We evaluate the similarity between them by performing
a popular evaluation-style leakage assessment. The used metric
is detailed later in subsection V-B
Evaluate Framework: To verify the accuracy of the frame-
work we test our findings using various implementations with
different keys to ensure that our approach works regardless
of the input or target design. There are two unprotected LUT-
based SBOXes, one for training and the other for validation of
the GAN model; each use different keys and plaintext values.
In addition, the GAN is used to generate traces based on a
VCD belonging to a protected masked SBOX implementation
as well as a protected blinding implementation which are
validated against corresponding measured traces. Note that the
GAN is only trained using a non-protected implementation.

B. Evaluation Metrics and Performed Experiments

In this subsection we first present the three metrics used
to evaluate our results, namely evaluation-style, conformance-
style and signal-processing based metrics. Thereafter we de-
scribe to which experiments these metrics have been applied.
Evaluation-style Metric: In evaluation-style testing, power
traces are tested using actual side-channel attack scenarios.
They show whether the implementations are resistant to these
attacks or not. The attacks can be performed in a profiled
or unprofiled manner. Examples of profiled side-channel at-
tacks are template-based [41] and deep learning attacks [42].
Differential power analysis (DPA) [43] and correlation power
analysis are two examples of unprofiled side-channel attacks
(CPA) [44]. In this paper we limit our analysis to CPA as it
is one of the most popular unprofiled techniques.



The correlation side-channel attacks work as follows for
AES: given a number of recorded traces N of an AES im-
plementation, the used key can be retrieved using the Pearson
coefficient correlation which is calculated in Equation 7.

ri,j =

∑N
(hk,i − µhi

)(̇tk,j − µtj )√∑N
(hk,i − µhi)

2∑̇k
(tk,j − µtj )

2
(7)

Note that the key is retrieved one byte (i.e., subkey) at
time. In Equation7, hk,i represents the hamming weight of the
ith intermediate operation (e.g., Hamming Weight of SBOX
output of the first round), k the hypothetical assumed subkey of
the encryption/decryption execution and tk,j the sample point
j within the sub-trace k. The subkey with highest correlation
is most likely the correct key value.
Conformance-style Metric: On the other hand, conformance-
style testing examines traces for compliance with specific
leakage criteria without taking actual attacks into account. Test
Vector Leakage Assessment (TVLA) [45] and signal-to-noise
ratio (SNR) analysis [46] are two examples of this form of
analysis.

As the purpose of this study is to show the visibility
of applying this style of testing and not to validate de-
veloped countermeasures, we decided to select one of the
two methods without any preference, i.e., TVLA analysis.
TVLA is based on Welch’s t-test, which examines whether
two populations have similar means. Welch’s t-test is used in
the side-channel domain to see whether the power traces of
an encryption/decryption algorithm execution leak information
about the secret key. The leakage is measured using two sets of
power traces, one with fixed plaintext/ciphertext and the other
with random plaintext/ciphertext. Note that the key value is
the same in both sets. Equation 8 shows the equation used to
perform this test.

t =
X̄1 − X̄2√
S2
1

N1
+

S2
2

N2

(8)

In the equation, X̄1, S2
1 , and N1 represents the means, the

variance, the total number of used fixed plaintext/ciphertext
traces, respectively, while X̄2, S2

2 , and N2 represents the
means, the variance, the total number of used random plain-
text/ciphertext traces, respectively.
Signal processing metrics: So as to compare the similarity
between the real and the generated traces, certain signal pro-
cessing metrics like dynamic time warping and power spectral
density can be used. Dynamic time warping (DTW) [47]
finds an optimal alignment between two unmatched temporal
sequences. This optimal alignment or the ‘warping path’ maps
the two sequences such that the distance between them is
minimized. The minimum distance can be used as a measure
for similarity between any such two sequences. Similarly, even
the Power spectral density (PSD) of two signals can be used as
a measure for similarity between them. Power spectral density
(PSD) is the measure of power distributed across different
frequency components that compose a signal [48]. For the
real and the generated traces to be visually similar, the DTW

distance should be low (the lowest it can be is zero) and the
PSD should be very similar.
Performed Experiments: In this work, we performed two
different experiments:

1) GAN Model Validation: This experiment shows the re-
sults for the fourth step of our methodology. It evaluates
the GAN under different plaintext using evaluation-style
and signal processing metrics.

2) Framework Evaluation: The last experiment investigates
the generalization of our resulted GAN model, by apply-
ing different plaintext, keys and even using different AES
implementations. The evaluation use all evaluation-style,
conformance-style and signal processing testing.

Note that both the experiments were performed using the
GAN architecture shown in Figure 6. Hyperparameter tun-
ing for GANs is much more complex than hyperparameter
tuning for other machine learning models since the two-
model architecture of GANs does not easily fit into the
popular hyperparameter search APIs. Our initial architecture
was inspired by a popular GAN implementation [49] and then
we randomly searched for optimal hyperparameters. For this
work: the batch-size is 128, the VCD length is 60 samples,
the power-trace length is 120 samples and the kernel size for
the convolutional layers is 9. The idea of using a slightly
larger kernel size was inspired from [50], where the author
demonstrates that deep learning based power side-channel
attacks using a convolutional neural network (CNN) with
larger kernel sizes perform much better than CNNs with small
kernel sizes. As for the loss function, the visual appearance of
the traces as well as the leakage behaviour has minor variations
for different loss functions as in Figure 7. The sub optimal
performance on the WGAN loss function might be attributed
to lack of tuning of the clipping hyperparameter. For the most
part, the minor impact of loss functions on the generated traces
is inline with [51] where the authors state that the quality of
the GAN generated samples are not substantially dependent
on the loss functions.

C. GAN Model Validation

To validate the trained GANs, we use both evaluation-style
and signal processing metrics.
Evaluation-Style: Let’ now analyze the GAN generated traces
in detail. The generated power traces are extremely similar
to the original power traces as can be seen in Figure 7.
To ascertain that the generated power traces are also as
informative as the original power traces, their attackability can
be analyzed. A similar ratio for attackable and non-attackable
bytes for real and generated traces can prove that the generated
traces can be used as a substitute for the actual traces for
evaluating the efficacy of a countermeasure. In this step we
compare the attackability on the same AES implementation
but on different plaintexts.

Table I compares the CPA attack ranking analysis of gener-
ated traces and actual power traces. From the table it can be
clearly seen that the key ranks for the GAN generated traces
are exactly the same as the real traces, except for byte 8 and



Fig. 6: GAN architecture

TABLE I: Comparison - CPA Key Rank for 1000 Traces

BYTE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Real 1 1 1 1 1 1 1 9 1 1 1 1 1 2 1 1
GAN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 11

Fig. 7: Impact of Loss functions

TABLE II: GAN Framework Evaluation - CPA Rank

Traces Att. Non-att. Resource utilization

Generated: Masking 0 16 Uses 2511 LUTs and
3364 FFsReal: Masking 0 16

Generated: Different pt/key 14 2 Uses 2430 LUTs and
3363 FFsReal: Different pt/key 13 3

16. Note that for byte 8 the GAN performed better than the
actual traces. This means that this approach can be used as
well to advance side-channel attacks. An attack would only be
able to apply such an attack if the hardware implementation is
publicly available as VCD’s are required. On the other hand,
for byte 16 the GAN performs this. We believe this to be a
statistical discrepancy.
Signal processing metrics: The mean DTW distance between



Fig. 8: Comparison of Power Spectral Density

TABLE III: Number of failing t-test points

Unprotected Masked Ratio
Generated traces 22 19 1.15
Real traces 15 13 1.15

the real and the generated traces was 1.02. This distance was
calculated using FastDTW [52] which is an approximate DTW
calculation algorithm and we used Euclidean distance as the
distance measure for DTW. In Figure 8 Power spectral density
(PSD) for the real and generated traces can be seen. Note that
both the PSD plots are almost indistinguishable.

D. Framework Evaluation

The framework is evaluated using all evaluation-style,
conformance-style and signal processing metrics.
Evaluation-Style: As described in the Evaluate Framework
step (see Figure 4), we again compare the attackability of the
generated traces with respect to the actual power traces. How-
ever, here the generative model’s generalization ability is tested
on VCD files corresponding to the same AES implementation
but with a different key. Also, a different AES implementation
with masking countermeasure is tested. As can be seen in
Table II, the GAN generated traces behave similar to the real
traces when we look at CPA ranking analysis. For example,
in the case of the unprotected implementation, the number of
attackable bytes was 13, which very close to the 14 attackable
bytes when real traces were used. Similarly, in the mask-
protected implementation, the number of the attackable was
zero for the GAN generated traces, which is the same as the
results obtained from real traces. This testifies the generative
model’s ability to generalize to different VCD inputs.
Conformance-Style: For conformance style testing, we com-
pare the number of t-test points that fail for both generated
and real. Given that GANs are innately stochastic, the number
of points in the generated traces will be different from the real
power traces. However, the generated traces follow a similar
trend when compared to the actual traces. Table III shows
that the real and generated traces follow a similar pattern for
the number of t-test fail points. The table shows that for the
unprotected implementation (with different key) and masked
implementation how many test points failed for both designs
with their ratio (e.g., 22/19 = 1.15). Although the protected
implementation could not be attacked with CPA, TVLA shows

that leakage is present. This means that more advanced attack
could still lead to a successful attack. Note that we only
applied a basic form of TVLA to study the accuracy of
our proposed framework. Although popular, TVLA results
have been proven to not quantify side-channel vulnerabilities
correctly in certain cases [53]. Advanced TVLA techniques
might provide a more accurate leakage assessment.
Signal processing metrics: The mean DTW distance between
the real and the generated traces for the unprotected implemen-
tation was 1.08 and for the masked implementation was 1.21.
As before, the distance was calculated using FastDTW [52]
and we used Euclidean distance as the distance measure for
DTW. The Power spectral density (PSD) for the real and
generated traces were almost identical, exactly like in Figure
8.

VI. DISCUSSION & CONCLUSION

Our generative models were able to not only generate vi-
sually indistinguishable power traces from the training set but
were also able to learn the characteristics of the VCD transition
array which made the traces attackable using correlation power
analysis. Through our experiments, we conclude that even
using a few hundred VCD transition traces our GAN models
were able to generate good quality power traces. However, we
did not observe any substantial increase in performance when
experimenting with different loss functions for either of the
two GANs.

Since we conditioned the GAN on VCD transitions corre-
sponding to the AES encryptions, we saw that the generated
traces at times were more attackable than the actual power
traces (like byte 8 in Table I). This is because the VCD is
processed in a way that makes it much cleaner as opposed to
the actual power traces. Also, due to the GAN’s stochasticity,
the generated power traces are not exactly identical to the
actual power traces. This means that even though the synthetic
power traces provide a good insight on the countermeasures
efficacy and are a good substitute for the actual power traces,
they are not a complete replacement for them.

Our framework has the ability to perform an early evaluation
of secure IPs. This evaluation procedure usually requires as
many as 10 million, 100 million or 1 Billion traces [13].
Using GANs, we were able to generate 1 million traces in
10.7s without any GPU support. Hence with enough RAM, the
trace generation step can be performed on a standard desktop
as quickly as 1.35 minutes, 13.5 minutes and 2.25 hours
for 10 million, 100 million and 1 billion traces, respectively.
In addition to the trace generation time, VCD generating
and processing is a compute heavy part of this framework
which will take 40 seconds for 1000 traces on a single
CPU. The existing implementation makes use of line by
line VCD processing and can be very easily be parallelized.
Our current non-optimized VCD generation and translation
engine is running on a common computer that requires about
4.62 days to process 10 million traces. These results have
been obtained without any optimizations or usage of high-
performance servers. Note that the collection of 10 million



real power traces would take approximately 9 days when the
ChipWhisperer platform is used. Hence the GAN based power
trace generation technique gives a 2x speed-up as compared
to even real time trace acquisition. The speed-up as compared
to the CAD tools of course depends on the type of CAD tool
used. As a rule of thumb such CAD tools usually take a few
seconds to generate every power trace (the solution proposed
by Sadhukhan et al. [11] takes 5.47 seconds to generate a
single trace). Generating as many as 10 million power traces
using this technique will take around 633 days. Hence the
speed-up offered by the GAN methodology is 140x.

After manufacturing, evaluation of real power traces will
still be necessary to meet certain standards or certification.
However, designers can be highly confident about the design
at an early stage when a framework like this is used. It
gives the designer quick ways to check if certain key values
are more leaky and it additionally allows them to evaluate
multiple designs simultaneously without the need to emulate
or manufacture them.

Our experiments with differential augmentations, like those
proposed by Zhao et al. [54] did not provide any enhancement
in terms of attack ranks or training stability. Detailed exper-
iments with other forms of differential augmentations might
result in better performance even with much less training data.
This, however, is an avenue for future work.
Limitations: Evaluation of GANs: Lack of well known
evaluation metrics for generative models for non-image data
[55] made us dependent on hardware security metrics like
the CPA attack rank to evaluate the efficacy of our models.
Being an active research avenue, we believe better evaluation
metrics will soon be introduced that can be more proficient in
evaluating the quality of the power traces.
Other crypto algorithms: Our framework is designed such
that it can be extended to other crypto algorithms. However,
since the trace length increases significantly for asymmetric
algorithms like RSA or even software implementation of AES,
a progressively growing convolutional architecture [56] like
that proposed by Harrold et al. [57] must be used.
Hardware implementation: Different hardware implemen-
tations could end up with VCD files that have a different
size. In our training process, we sliced the transition array
for all implementation into the same size (60 samples). In
some cases, when the VCD input was of shorter length, we
can use padding to increase the vector size. To make the
framework accommodate different size transition lists and
power traces, the GAN architecture needs to be changed. The
changed architecture can either be retrained completely or
transfer learning can be used.
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