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ABSTRACT

Intracranial vessel perforation is a peri-procedural complication during endovascular therapy (EVT).
Prompt recognition is important as its occurrence is strongly associated with unfavorable treatment out-
comes. However, perforations can be hard to detect because they are rare, can be subtle, and the inter-
ventionalist is working under time pressure and focused on treatment of vessel occlusions. Automatic de-
tection holds potential to improve rapid identification of intracranial vessel perforation. In this work, we
present the first study on automated perforation detection and localization on X-ray digital subtraction
angiography (DSA) image series. We adapt several state-of-the-art single-frame detectors and further pro-
pose temporal modules to learn the progressive dynamics of contrast extravasation. Application-tailored
loss function and post-processing techniques are designed. We train and validate various automated
methods using two national multi-center datasets (i.e., MR CLEAN Registry and MR CLEAN-NolV Trial),
and one international multi-trial dataset (i.e., the HERMES collaboration). With ten-fold cross-validation,
the proposed methods achieve an area under the curve (AUC) of the receiver operating characteristic of
0.93 in terms of series level perforation classification. Perforation localization precision and recall reach
0.83 and 0.70 respectively. Furthermore, we demonstrate that the proposed automatic solutions perform
at similar level as an expert radiologist.

© 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

1.1. Clinical background

strated the efficacy of endovascular therapy (EVT) in improving
acute ischemic stroke outcome by mechanically reopening oc-
cluded vessels (Goyal et al., 2016b; Berkhemer et al., 2015). How-
ever, EVT occasionally leads to peri-procedural hemorrhagic or is-

Ischemic stroke remains a world leading cause of death and chemic complications (e.g., vessel perforation or dissection, va-
long-term disability (WHO, 2018). Recent studies have demon- sospasm, intracerebral hemorrhage, subarachnoid hemorrhage).

* Corresponding author.

Intracranial vessel perforation refers to vessel wall rupture and
blood extravasation typically caused by catheter/guidewire move-
ment or stent retriever retraction. Fig. 1 visualizes some ves-

E-mail address: r.su@erasmusmc.nl (R. Su).
1 Code is available at https://gitlab.com/radiology/igit/q-maestro/
perforationdetection

sel perforation examples in X-ray digital subtraction angiography
(DSA) acquired during EVT procedures. Vessel perforation is a life-
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Fig. 1. Five perforation examples in digital subtraction angiography annotated in blue bounding boxes by an experienced neuroradiologist. Top row: lateral view. Bottom

row: anteroposterior view. (a)-(c): subarachnoid; (d): parenchymal; (e): AV-fistula.

threatening procedure-related complication that is strongly associ-
ated with poor functional treatment outcome (Akins et al., 2014;
Nogueira et al., 2012). When vessel perforation happens during an
EVT procedure, prompt and appropriate therapeutic actions must
be considered to prevent worsening of the clinical status of the pa-
tient. The effectiveness of such actions reduces rapidly over time;
thus early recognition of vessel perforation is essential.

In current clinical practice, vessel perforations are only recog-
nized by interventionalists by carefully inspecting the DSA images
during EVT procedures. EVT is often a challenging procedure which
is done under time pressure. As a result, perforations can poten-
tially be missed. An automatic approach may facilitate fast and ac-
curate perforation detection.

Automatic perforation detection, to the best of our knowledge,
has not been studied yet. We believe that the reasons largely lie in
the difficulties in collecting sufficient and representative data. First,
the reported incidence of vessel perforation is within the range of
1%-5% in EVT, which is rather low (Akins et al., 2014; Mokin et al.,
2017; Jovin et al., 2015). Besides, considering hospital data collec-
tion restrictions and variations in data quality and collection pro-
cedures, it is non-trivial to obtain sufficient perforation cases for
developing and validating algorithms. Third, there exists large het-
erogeneity in the appearance of vessel perforations in DSA images.
Based on the type of contrast extravasation, perforations can be
categorized into several types, e.g., subarachnoid, AV-fistula, intra-
mural, and parenchymal (Fig. 1). Even within the same type, con-
siderable diversity exists with regard to perforation location, size,
direction and contrast density.

In this work, we therefore investigate automated intracranial
vessel perforation using deep learning, and establish the first
benchmark on a large clinical perforation dataset. Specifically, we
aim to answer two questions from the clinical perspective: 1)
whether there is a perforation event in this DSA run; and 2) where
the perforation is located in the image. The answer to the former
question may serve as an alarm to interventionalists during EVT,
while automation of the latter helps to save time in locating the
actual perforation.

1.2. Related work

Perforation detection is intrinsically a pattern recognition task
in medical imaging. Object detection using convolutional neural
networks (CNN) has been well studied in the computer vision
community. General object detection methods can be summarized

into several categories: single-stage (e.g., RetinaNet (Lin et al.,
2017), SSD (Liu et al., 2016), YoLo (Redmon et al., 2016)), two-
stage (e.g., Faster R-CNN (Ren et al., 2015), Mask R-CNN (He et al.,
2017)) and multi-stage (e.g., Cascade R-CNN (Cai and Vasconce-
los, 2018), Hybrid Task Cascade (Chen et al., 2019a)) methods. In
recent years, such object detection methods have been increas-
ingly adopted in medical imaging applications (Shen et al., 2017;
Zhao et al,, 2021). For example, Liu et al. tailored Faster R-CNN
for polyp detection from colonoscopic images (Liu et al., 2021).
Wollmann and Rohr proposed to customize RetinaNet for object
detection in microscopy images (Wollmann and Rohr, 2021). To
avoid reinventing the wheel, we adapt representative methods per
category to our task with application-tailored loss functions and
further propose to leverage temporal information of DSA series to
pursue expert-level performance.

Temporal feature learning models have been proposed typi-
cally in processing natural languages, audio and time series, and
are also being actively explored for medical image sequence pro-
cessing. Qin et al. exploited the temporal correlations of MR se-
quences for dynamic image reconstruction using bidirectional re-
current neural networks (RNN) (Qin et al., 2018). In stroke imaging,
Neves et al. converted DSA series into 2D images by averaging over
time and employed 2D CNNs to classify DSA into low- and high-
grade treatment outcomes (Neves et al., 2021). Su et al. proposed
to split DSA series into three temporal phases (arterial, parenchy-
mal, and venous) using a CNN in a four-step automated TICI scor-
ing pipeline (Su et al., 2021). Nielsen et al. utilized gated recurrent
units (GRU) for end-to-end automatic TICI scoring (Nielsen et al.,
2020; 2021). As an alternative to RNNs, temporal convolution net-
works (TCN) were employed for stroke lesion outcome prediction
in 4D CT perfusion images (Amador et al., 2021). Besides, recently
proposed attention networks have also been adopted for temporal
feature representation (Li et al., 2020).

1.3. Contributions

In this work, we study the feasibility of automated perforation
detection and localization. For this purpose, we developed and ex-
tensively evaluated several spatial and spatio-temporal approaches,
equipped with application-tailored loss functions and series level
post-processing. The main contribution of this work is two-fold:

e we propose to use spatio-temporal deep learning, i.e., adapted
2D object detectors equipped with temporal modules, for au-
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Fig. 2. Overview of the perforation detection architecture. Given an input DSA series (a), perforations are first detected on each frame by taking neigboring frames as context
(b), and then optimized on the series level based on temporal consistency (c) (Section 2.4). The mostly likely perforation extravasation trajectory is selected as the final
output (d). The end-to-end network architecture for per-frame perforation detection consists of a feature extractor (e) (feature pyramid network based on ResNet50), a
temporal feature aggregator (f) (e.g., BIGRU, BiLSTM, temporal attention, Temporal convolution, see Section 2.3), and a perforation detector (g) (e.g., RetinaNet, Faster R-CNN,
Cascade R-CNN, see Section 2.1). Note that the two gray GRU/LSTM blocks do not play a role in the produced feature map.

tomatic intracranial vessel perforation detection in DSA image
series during EVT;

e we assess the proposed method variants on the largest clinical
perforation dataset so far collected from multiple national and
international clinical trials and registries, demonstrating expert-
level performance, and hence the feasibility for use during in-
terventions.

The remainder of this paper is organized as follows. First,
Section 2 details the proposed method components for perfora-
tion detection. Next, Section 3 describes the datasets for experi-
ments, including data statistics and the selection process. Experi-
mental results and analyses are reported in Section 4, followed by
qualitative analyses and further discussions in Section 5. Finally,
Section 6 summarizes the main conclusions of this work.

2. Methods

Due to large variations in perforation size ranging from small
perforations of a few mm? to larger perforations of more than
100 mm?, direct image level classification using CNN based models
may not well capture small relevant image parts, and hence may
be vulnerable to noise and irrelevant features. In this work, we ad-
dress perforation detection with a localize-to-classify strategy.

As shown in Fig. 2, the proposed approach consists of two
steps: per-frame perforation detection using an end-to-end spatio-
temporal network, and series level result optimization based on
temporal consistency. The end-to-end network comprises three
modules: spatial feature extraction, temporal feature aggregation,
and perforation detection based on spatio-temporal features. First,
the model takes as input the current frame together with a num-
ber of sequential frames as context. Subsequently, spatial textural
features are extracted independently using a shared backbone CNN.
Next, the spatial features of sequential frames are aggregated via
RNNs. Last, an object detection head, which consists of a classi-
fication subnet and a regression subnet, is applied on the aggre-
gated image features to obtain a set of perforation bounding boxes
on the current frame. On the series level, the obtained per-frame
bounding boxes are further optimized based on temporal consis-
tency of the perforation contrast extravasation. In this section, we
describe the tailored single-frame spatial networks, multi-frame
spatio-temporal networks, and the series optimization mechanism.

2.1. Single frame spatial networks

We first study the feasibility of automatic perforation detec-
tion on DSA images using single-frame spatial networks. Repre-
sentative single-, two-, and multi-stage methods are adapted for
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this purpose. Additionally, we propose a Distance-ReLu Intersection
over Union (DR-IoU) regression loss to cope with imperfectness in
ground truth bounding box annotation due to irregular and am-
biguous perforation borders.

2.1.1. Faster R-CNN: A two-stage strategy

The region-based CNN family (R-CNN (Girshick et al., 2014),
Fast R-CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015))
refers to a set of two-stage object detection meta-architectures,
which can build on various feature extraction backbones. Faster
R-CNN enables end-to-end training by introducing a region pro-
posal network (RPN) for generating candidate bounding boxes (i.e.,
anchors) that may contain an object. Spatial feature patches are
then cropped based on the region proposals, and fed into two head
subnets for object classification and bounding box refinement. The
network yields a set of object bounding box coordinates and their
corresponding probability scores. In contrast to traditional sliding
window based approaches, Faster R-CNN is not only much more
efficient by greatly reducing the number of patches per image, but
also more accurate by allowing various anchor ratios and sizes and
a controlled foreground-background sample ratio (Ren et al., 2015).

2.1.2. RetinaNet: A single-stage strategy

Different from two-stage solutions, single-stage methods do not
use region proposal networks and directly perform object classi-
fication and regression on feature maps in a fully convolutional
manner. Although more time efficient, single-stage methods usu-
ally exhibit inferior accuracy in comparison to two-stage methods.
Based on the hypothesis that the reduction in accuracy can be at-
tributed to the class imbalance, Lin et al. proposed RetinaNet, an
end-to-end meta-architecture equipped with a focal loss for fo-
cused training on a sparse set of hard training samples (Lin et al.,
2017). Focal loss has been demonstrated especially effective in
many medical image analysis applications (Lotter et al., 2021; Zhou
et al.,, 2020), where positive and negative sample imbalance is of-
ten naturally inherent. This imbalance also holds true in perfora-
tion detection. In each DSA series, only one perforation is gener-
ally expected while many non-perforation bounding boxes can be
extracted during training.

2.1.3. Cascade R-CNN: A multi-stage method

Cascade R-CNN has been proposed as a multi-stage meta-
architecture with a set of sequentially connected detectors (Cai and
Vasconcelos, 2018). It is designed to address the dilemma of noisy
detection when training with low IoU thresholds and overfitting
when using high IoU thresholds for training. Cascade R-CNN trains
detectors progressively with gradually increased IoU thresholds us-
ing previous detector outputs as input. The high-level architecture
is shown in Fig. 2.

2.2. Distance-ReLu IoU regression loss (DR-IoU)

For perforation bounding box regression during training, exist-
ing loss functions are mostly based on either ¢;,—norm functions
or IoU. Compared to ¢;—norm functions, which are sensitive to
scale variance, IoU loss is scale invariant. However, IoU loss suf-
fers from gradient vanishing in case of no overlap between tar-
get and ground truth boxes. In 2019, Rezatofighi et al. proposed
Generalized IoU (GloU), which overcomes this drawback while
still suffering from slow convergence and inaccurate regression is-
sues (Rezatofighi et al., 2019). Later, Distance-loU (DIoU) loss was
proposed with superior regression accuracy and optimized conver-
gence (Zheng et al., 2020).

IoU-based losses can be generally expressed as in Eq. 1a. For
DIoU, the penalty term R (B, B) is based on the Euclidean distance

Medical Image Analysis 77 (2022) 102377

d(bpg, bgt) as in Eq. 1b, where b,y and bg are the center of bound-
ing box B,y and By respectively, and c is a normalization factor
defined as the diagonal of the smallest box containing B,y and
Bgt. The subscripts "pd” and "gt” refer to "predicted” and "ground
truth” respectively.

Liou=1-1oU+ R(de, Bg[) (1&)

d?(b,q, bgt)
R(Bpg. Bgr) = Ig <

(1b)
Unlike other object detection tasks where the object border is
obvious (e.g., pedestrian, head, tumor), the perforation border is
ambiguous and irregular when visually inspecting the extravasated
contrast in DSA. As a result, a certain level of uncertainty at the
borders is expected in the annotated ground truth bounding boxes.
Therefore, pursuing a zero DIoU loss would lead to overfitting dur-
ing bounding box regression. To overcome this issue, we propose
DR-IoU to suppress small distance loss values (Lp <= 8) by a rec-
tified linear unit (ReLu) function in case of sufficiently good pre-
dictions as expressed as
dz(bpd, bgt)
C2

Lpr-1ou = ReLu(1 —IoU + -8)). (2)

2.3. Multi-frame spatio-temporal networks

To exploit the temporal characteristics of DSA image series, we
propose to incorporate a temporal module in the end-to-end net-
work. This idea is inspired by the visual perforation inspection pro-
cess, where radiologists rely on previous and subsequent frames to
confirm the existence of contrast extravasation. With the goal of
detecting a perforation directly after a DSA run (rather than during
acquisition), several temporal information aggregation methodolo-
gies are studied in this work.

2.3.1. Convolutional recurrent units

Recurrent neural networks have been widely used in learning
sequential dependencies. State-of-the-art examples are GRU and
Long Short Term Memory (LSTM), which were proposed specifi-
cally to handle both long and short term memories using a gate
mechanism to regulate the information flow. The recent concept of
convolutional recurrent units (Ballas et al., 2015; Shi et al., 2015)
leads to a module that can easily be combined with fully convo-
lutional neural networks. These units inherit the strength of both
convolutional layers and recurrent layers. That is to represent spa-
tial and temporal features simultaneously while keeping the entire
network end-to-end trainable.

The architectures of LSTM and GRU are illustrated in Fig. 3.
For detailed information, please refer to Shi et al. (2015) and
Ballas et al. (2015) respectively. In this work, we tailor both the
convolutional LSTM and GRU modules to be bi-directional (Fig. 2),
in which the outputs of forward and backward layer are concate-
nated along the channel dimension. In such a way, the model
learns both the past and future temporal contrast extravasation
characteristics. The output of bidirectional GRU/LSTM module is
five feature maps of size T x 2C x % X % x C, where the number of
channels C = 256 and the down-sampling factor R < [2, 4, 8, 16, 32].
H, W, T denote the frame height, frame width, and frame length
respectively.

2.3.2. Temporal convolution

A temporal convolution network (Lea et al., 2016) (TCN) is an
alternative to RNN networks for learning sequential data charac-
teristics in a fully convolutional manner. Examples of successful
application of TCNs have been presented in (Yan et al., 2020; Dai
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Fig. 3. Illustration of a LSTM block, a GRU block and an attention block. X;: input feature maps; H;: output feature maps; f;: forget gate; i: input gate; o;: output gate; G:
candidate cell state; C;:cell state; r;: reset gate; z;: update gate; h;: candidate hidden state; *: convolution; o: dot product; H: feature map height; W: feature map width; C:
number of channels; T: number of sequential frames; q: queries; v: values; k: keys; [..., X;_1, X, X¢41, ...]: context feature maps.

et al., 2020; Bai et al., 2018). The architecture of the temporal con-
volution module is shown in Fig. 2. Unlike the classical TCN, which
uses causal convolutions via masking, we perform temporal convo-
lutions on both previous and future frames. Via a Tx1x1 (T: frame
length) convolution kernel, the model outputs features aggregated
along the temporal dimension (i.e., the time intensity curve of each
pixel).

2.3.3. Temporal attention

Temporal attention can similarly be an effective way to dis-
till perforation progression in time. It allows the network to fo-
cus more on relevant frames in determining the presence of a ves-
sel perforation. Fig. 3 illustrates the details of our implementation
of a visual temporal attention module. The module takes as input
the feature maps of the current frame (X;) and neighboring frames
(Xivi»i€[1,k]), and aggregates temporal context features of each
feature point across all frames along the time axis. The resulting
feature map is an aggregated feature map with the same size as a
single frame feature map, which is then fed into the head subnets
for bounding box classification and regression.

2.4. Temporal consistency based series level optimization

With the fully end-to-end deep learning network, perforation
bounding boxes can be detected on each frame of a DSA se-
ries, each assigned with a probability score. To further exploit the
temporal consistency of a vessel perforation, we propose to use
a post-processing step to integrate the per-frame detection re-
sults by enforcing temporal consistency on the DSA series level.
Similar to the concept of non-maximum suppression (NMS) and
Seq-NMS (Han et al., 2016) for suppressing overlapping bounding
boxes, we propose an application tailored step to determine the
most likely bounding box trajectory awarded by temporal consis-
tency (see Fig. 4), based on the assumptions that there is maxi-
mum one vessel perforation in a DSA series and that the vessel
perforation should be temporally persistent.

Given a series of DSA frames with detected bounding boxes and
corresponding probability scores, all possible temporal trajectories
across the series are determined. Two bounding boxes in consec-
utive frames are on the same trajectory if the center of one box
falls into another. Subsequently, the accumulated probability score
is calculated along each trajectory, which is further multiplied by

Frame 3

Fig. 4. Illustration of temporal consistency weighted series level bounding box op-
timization. Blue indicates the trajectory with the highest weighted accumulative
score. The scores along the blue trajectory are then reassigned to the trajectory av-
erage score (0.8).

the temporal duration of the trajectory; this is to allocate extra
rewards to temporally persistent detections. Ultimately, only the
bounding boxes along the trajectory with the highest score survive.
Via this series level optimization step, a set of temporally inconsis-
tent false positives can be suppressed, leading to further improved
perforation detection precision.

3. Data

We collected the largest perforation DSA dataset so far from
three clinical studies, namely the MR CLEAN registry (Jansen et al.,
2018), the HERMES collaboration (Goyal et al., 2016a), and the MR
CLEAN NolV Trial (Treurniet et al., 2021)2. The data selection pro-
cess and statistics are summarized in Fig. 5.

2 For data sharing policies, please refer to Jansen et al
Goyal et al. (2016a); Treurniet et al. (2021)

(2018);
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Fig. 5. An overview of data selection and distribution. n denotes the number of patients; s refers to the number of DSA series.

The MR CLEAN Registry is an observational cohort study which
included patients with acute ischemic stroke from sixteen centers
in the Netherlands between March 2014 and December 2018. For
the current work, we used data from all patients registered until
November 2017.

The HERMES (Highly Effective Reperfusion Using Multiple En-
dovascular Devices) collaboration (Goyal et al., 2016a) pooled data
from seven major randomized trials: MR CLEAN (Berkhemer et al.,
2015), ESCAPE (Goyal et al., 2015), REVASCAT (Jovin et al., 2015),
SWIFT PRIME (Saver et al., 2015), EXTEND IA (Campbell et al.,
2015), PISTE (Muir et al., 2017) and THRACE (Bracard et al., 2016),
which were conducted between 2010 and 2017.

The MR CLEAN-NO 1V trial (Treurniet et al., 2021) is a na-
tional multicenter randomized clinical trial conducted by the Col-
laboration of New Treatments of Acute Stroke (CONTRAST) consor-
tium in the Netherlands. The main purpose of the trial is to study
the added benefit of intravenous alteplase prior to intra-arterial
thrombectomy in stroke patients with an intracranial occlusion of
the anterior circulation.

From the above databases, we pooled a total of 4429 patients,
out of which 105 patients with intracranial vessel perforation were
initially identified based on the annotations from either the inter-
vention operators or an imaging core laboratory. For this study,
an experienced radiologist (hereafter referred to as expert 1) thor-
oughly reviewed the DSA images for all perforation cases and an-
notated the perforation locations with bounding boxes (see exam-
ples in Fig. 1). Besides, patients with a reported subarachnoid hem-
orrhage (SAH) were also checked for visible perforations in DSA
by expert 1. As a result, a total of 85 patients (233 series) were
confirmed to include perforations, out of which approximately 80%
were subarachnoid perforations. This ground truth is based on
the knowledge of intervention operators, core-lab neuroradiologists
and expert 1. To obtain a balanced negative data sample counter-
part, a comparable subset of patients was randomly selected from
the non-perforation patients of each dataset. No stratification was
performed. Patients were excluded if they are labelled with per-
foration according to intervention operators, core-lab neuroradiol-
ogists or expert 1. From the randomly selected negative patient
subset, one DSA series was randomly chosen from each patient. In
summary, 85 perforation patient cases (233 DSA series, 2193 perfo-
ration bounding boxes) and 233 non-perforation patient cases (233
DSA series) were used in our experiments.

The DSA series were obtained during EVT by various acquisition
systems, including Philips, GE and Siemens, with an average of 13

(standard deviation: 9) series per patient. These images are of size
1024 x 1024 pixels with time length varying from 1 to 50 frames.
The temporal resolution varies from 0.5-4 frames per second both
during acquisition and across acquisitions and the spatial resolu-
tion is approximately 0.18 x 0.18 mm?.

4. Experiments and results
4.1. Implementation details

The described models were developed in Python using Py-
Torch (Paszke et al., 2019). The spatial and spatio-temporal models
were trained on an NVIDIA 2080 Ti with 11 GB of memory.

The same feature pyramid network (FPN) backbone based
on ResNet50 (He et al, 2016) pre-trained on ImageNet
data (Deng et al., 2009) was used as feature extractor for all
models. The FPN outputs five feature maps of size # x % xC,
where the down-sampling factor Re[2,4,8,16,32] and the
number of channels C =256. H and W denote the image height
and width respectively. The usage of an FPN facilitates multi-
level feature extraction for various sized object detection. The
backbone architecture is illustrated in Fig. 2. For bounding box
regression, DR-IoU was adopted in all the networks, unless oth-
erwise stated. For box classification, focal loss was utilized in
RetinaNets and cross entropy (CE) loss was used in Faster R-CNN
and Cascade R-CNN. A number of adaptations were made from
Faster R-CNN (Ren et al., 2015), Cascade R-CNN (Cai and Vas-
concelos, 2018), and RetinaNet (Lin et al, 2017) based on the
application needs. The number of object classes was set to one as
the only foreground object is perforation. Based on the assumption
that maximum one perforation would exist in a DSA series, the
maximum number of detections per image was also set to one.
Non-perforation series were included in the training process for
robust negative sample learning and false positive reduction. All
spatio-temporal networks were based on RetinaNet due to its
superior performance over Faster R-CNN and Cascade R-CNN. We
adopted the default setting with 256 channels in the detection
head of RetinaNet. For a fair comparison, this setting was kept
consistent for RetinaNet and all spatio-temporal models.

The models were trained with a batch size of 2 images with
the SGD optimizer (momentum: 0.9, weight decay: 0.0001). The
networks configurations followed the standard setting of MMDe-
tection (Chen et al., 2019b) and Detectron2 (Wu et al., 2019) with
12 epochs. Each epoch runs over the entire training set, result-
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ing in approximately 27,000 iterations. A cosine annealing learn-
ing rate scheduler was used with an exponential warm up period
of 1500 iterations and a minimum learning rate being 0.001 of
the base learning rate 5 x 104, The B for DR-IoU regression loss
was set to 0.25. Besides, the input images were down-sampled
to 640x640 pixels, converted to RGB, and normalized using Im-
ageNet (Deng et al., 2009) mean ([123.675, 116.28, 103.53]) and
standard deviation ([58.395, 57.12, 57.375]) for both training and
inference. While training, we randomly applied the following aug-
mentation techniques with a probability of 0.5: horizontal flip-
ping, horizontal/vertical shifting (ratio € (0, 0.0625]), scaling (fac-
tor € [-0.1,0.1]), and rotation (angle  [-10°, 10°]).

Our quantitative and qualitative analyses were based on a strat-
ified ten-fold cross-validation procedure with all patients randomly
grouped into ten even subsets as shown in Fig. 5, ensuring bal-
anced positive and negative DSA series per subset. Each of the sub-
sets served in turns as validation set for models trained on the re-
maining subsets. Such a data split was kept consistent when eval-
uating various models.

4.2. Evaluation metrics

The model performance can be studied from two aspects:
perforation/non-perforation classification on DSA series level and
perforation localization. Accordingly, evaluation metrics are defined
to address both aspects.

4.2.1. DSA series level perforation classification

The area under the curve (AUC) of the receiver operating char-
acteristic (ROC) curve is reported as the main metric for evaluating
the overall classification accuracy. Besides, we report the average
specificity and sensitivity, where true positives refer to DSA se-
ries in which both the algorithm and radiologist identify a perfora-
tion. As the value of these three metrics vary along the probability
threshold of the classification model, we report the values at the
threshold with maximized Youden'’s ] statistic (Youden, 1950):

J = sensitivity + specificity — 1. (3)

Due to the low occurrence rate of perforation, low false alarm rate
is rather important in clinical practice. Therefore, the average sen-
sitivity at 95% specificity (mSensgs) is also reported, which reflects
the true alarm ratio while ensuring < 5% false alarm ratio.

4.2.2. Perforation localization

The performance of perforation localization is benchmarked us-
ing the average precision (AP) and average recall (AR). As perfo-
rations are localized in rectangular boxes, true positives were de-
fined in two ways: 1) IoU > 0.5 and 2) center-overlapping (i.e., the
prediction center falls in the ground truth box or vice versa). As
reported in Table 1, AP50 and AR50 define the average precision
and recall based on the former definition of true positions; AP_cin
and AR_cin are based on the latter. The rationale of introducing
the second true positive definition is illustrated in Fig. 7, where
the detections (in orange box) should be considered as true pos-
itives despite their small loU with reference annotations (in blue
boxes). Considering the ambiguous perforation borders and their
large variations in appearance, we introduce the center-overlapping
criterion to emphasize the correctness of detection rather than the
accuracy of boundary matching.

4.3. Quantitative evaluation

In this section, we assess the performance of both spatial
(single-frame) and spatio-temporal (multi-frame) models using
stratified ten-fold cross-validation. The performance of all model
variants is visualized in Fig. 6, and quantitatively summarized in
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Table 1. Fig. shows the precision-recall curves for perforation lo-
calization, while the ROC curves for series level perforation classi-
fication is shown in Fig.

Among the three single-frame based models, RetinaNet showed
superior performance over Faster R-CNN(P<0.001) and Cascade R-
CNN (P<0.001) in a DeLong test (DeLong et al., 1988), achieving a
series level classification AUC of 0.862(%£0.007).

For the spatio-temporal models, we integrated the temporal
modules as discussed in Section 2.3 into the architecture of Reti-
naNet. All the spatio-temporal models demonstrated statistically
superior performance (P<0.001, DeLong test) to single-frame Reti-
naNet, archiving an AUC of 0.91 when followed by series level box
optimization (SO). The performance difference between the spatio-
temporal models were not statistically significant (P=0.986, one-
way ANOVA). In principle, these models are similar in a sense that
they all aggregate a sequence of feature maps along the time axis
into one feature map with a fixed temporal window size. The infer-
ence speed of each model was above 5 frames per second, which
is fast enough in clinical practice. Note that in the following exper-
iments, a spatio-temporal model is randomly chosen if not all are
reported.

4.4. Choosing the number of sequential frames

The reported spatio-temporal models in Table 1 take five frames
as input: the current frame (t) and four neighboring frames (t —
2,t—1,t+1,t+2). We hypothesize that the temporal progression
is better modelled with more sequential frames. To validate this
and determine the optimal number of input frames, we compared
the performance of spatio-temporal models with regard to a differ-
ent number of input frames. Table 2 confirms this hypothesis that
a larger number of frames improves performance. A higher frame
number could not be investigated due to the GPU memory limit.

4.5. Ensemble modeling

Ensemble methods strategically combine diverse models to im-
prove the performance of a machine learning task, such as clas-
sification, prediction. Similar to the idea of accepting manuscript
submissions based on reviews from multiple domain experts, en-
semble methods may help in reducing single model errors based
on majority voting. In this work, we combined the classification
results of the four ST+SO models by taking the median value of
series level classification probabilities. No information assembling
was performed on the bounding box level. Similar to all other
models, the reported classification performance was also based on
the threshold with maximized Youden’s ] statistic (Youden, 1950).
As shown in Table 1, the ensemble approach significantly outper-
forms all individual ST+SO models by 2% (P<0.05, DeLong test) in
terms of series level classification, demonstrating its effectiveness
in suppressing detection errors from single models.

4.6. Method versus human expert

To evaluate the performance of the proposed automatic meth-
ods against human expert raters, a second experienced radiologist
(hereafter referred to as expert 2) annotated a randomly selected
subset (63 patients, 97 DSA series out of which 52 series from 18
patients are with perforations). This subset was also tested using
a model trained on the remaining part of the whole perforation
dataset.

The method-vs-human-expert experiment, as the name sug-
gests, aims to evaluate the performance of the methods against
an expert radiologist, rather than to evaluate interobserver vari-
ability. To this end, expert 1 and 2 performed annotation with dif-
ferent purposes and thus under different settings. Expert 1 aimed



Table 1

Performance overview on perforation localization and classification. AP_cin, AR_cin and AUPRC are the average precision, recall and precision-recall AUC under the center-overlapping criterion; AP50 and AR50 are based on the
IoU > 0.5 criterion. mSens and mSpec are the mean sensitivity and specificity for series level classification. All these values are reported based on maximized Youden’s ] statistic. mSensgs refers to the mean sensitivity at the
specificity of 95%. The reported performance numbers are based on five runs of each experiment. ST: spatio-temporal; RN: RetinaNet; TCM: temporal convolution module; TAM: temporal attention module; BiGRU: bidirectional
convolutional GRU; BiLSTM: bidirectional convolutional LSTM; SO: series level bounding box optimization based on temporal consistency; std: the standard deviation of AUCs in five runs. The ensemble modeling performance
is based on all ST+SO models.

Method Perforation localization Series level classification
Analysis AP_cin AR_cin AUPRC AP50 AR50 mSpec mSens mSenses AUC(<std)
Ten-fold Spatial Faster R-CNN 0.86 0.41 0.17 0.53 0.26 0.78 0.72 - 0.819(+0.006)
Cross models Cascade R-CNN  0.87 0.41 0.23 0.55 0.26 0.84 0.73 0.56 0.832(+0.010)
validation RetinaNet (RN) 0.88 0.45 0.50 0.57 0.29 0.83 0.74 0.59 0.862(-+0.007)
ST models RN+TCM 0.84 0.60 0.52 0.54 0.38 0.83 0.83 0.63 0.900(+0.008)
RN+TAM 0.86 0.58 0.51 0.53 0.36 0.85 0.83 0.63 0.904(-0.009)
RN+BiLSTM 0.83 0.61 0.59 0.47 0.34 0.81 0.86 0.62 0.901(+0.008)
RN+BiGRU 0.85 0.58 0.52 0.53 0.37 0.85 0.81 0.64 0.900(+0.011)
ST+SO models RN+TCM+SO 0.82 0.69 0.63 0.48 0.41 0.86 0.80 0.67 0.906(+0.011)
RN+TAM+SO 0.84 0.69 0.63 0.49 0.39 0.88 0.81 0.69 0.911(+0.007)
0.83 0.70 0.67 0.43 0.37 0.86 0.82 0.67 0.909(-£0.008)
RN+BiLSTM+SO
RN+BiGRU+SO 0.83 0.66 0.63 0.49 0.39 0.88 0.78 0.66 0.905(+0.014)
Ensemble modeling - - - - - 0.88 0.83 0.70 0.929(+0.006)
Generalizability* RN+BiLSTM+SO 0.88 0.70 0.68 0.46 0.37 0.87 0.82 0.64 0.908(+0.007)
Method RN+TCM+SO 0.86 0.76 0.64 0.49 0.44 0.92 0.85 0.70 0.922(+0.005)
vs human* Ensemble modeling - - - - - 0.93 0.88 0.73 0.935(+0.003)
Expert 2 0.96 0.68 - 0.63 0.45 1.00 0.71 - -

* Note that different data splits are used for cross validation (Section 4.3), generalizability test (Section 4.8), and the method-versus-human test (Section 4.6).
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(a) Precision-recall curve for perforation localization with center overlapping metric.
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(b) ROC curve for series level perforation classification.

Fig. 6. Performance overview of all model variants using cross validation. Note that values in this figure and in Table 1 sightly differ. Table 1 reports average values of five
runs of cross validation, while this figure show results of one run. We picked one run of which the AUCs are close to the average numbers reported in Table 1.

(a)

Fig. 7. Examples of true detections according to the center-overlapping criterion with IoU < 0.5. Blue: reference annotation; orange: detected perforation box.

Table 2

Series level classification AUC of spatio-temporal models with respect to
number of sequential frames. The p-values were obtained via DelLong
test (DeLong et al., 1988).

ST models Number of input frames
1 3 5
RN+TCM 0.862 0.875(+0.010) 0.900(+0.008)
(4+0.007) 3vs1: P=0.325 5vs3: P<0.001
5vs1: P<0.001
RN+TAM 0.888(+0.006) 0.904(+0.009)
3vs1: P<0.001 5vs3: P<0.05
5vs1: P<0.001
RN+BiLSTM 0.885(+0.007) 0.901(+0.008)
3vs1: P<0.05 5vs3: P<0.05
5vs1: P<0.001
RN+BiGRU 0.892(+0.008) 0.900(+0.011)
3vs1: P<0.001 5vs3: P=0.087

5vs1: P<0.001

at defining the reference standard for perforation detection while
expert 2 served as a competitor to the proposed methods. Ex-
pert 1 was provided only with patients that were known to in-
clude perforations or SAH (according to intervention operators and
core-lab neuroradiologists) and was made aware of this fact. Non-

(©)

perforation cases were not assessed by expert 1. In contrast, ex-
pert 2 was provided with patients out of which approximately 50%
were with perforations and was only told that the dataset included
mixed patients.

Fig. 8 and Table 1 demonstrate the comparison between the au-
tomated methods and expert 2 versus the ground truth. The an-
notated perforation boxes from expert 2 (AP50: 0.63, AR50: 0.45)
show better alignment to the ground truth than the detected boxes
(AP50: 0.49, AR50: 0.44) based on the IoU > 0.5 criterion, they
are nevertheless comparable under the center-overlapping criterion
(AP_cin: 0.96 versus 0.86, AR _cin: 0.68 versus 0.76). With respect
to series level perforation classification, the automated method
(i.e., RN+TCM+SO0) is on par with expert 2 (specificity: 0.92 vs 1.00,
sensitivity: 0.85 vs 0.71). With ensemble modeling using the four
ST+SO models, the automated method achieve 0.93 and 0.88 in
specificity and sensitivity respectively.

4.7. Ablation study

The proposed solution consists of three components: a spa-
tial module (RetinaNet) for frame textural feature representation,
a temporal module (e.g., BiGRU) for temporal feature aggregation,
and a series level box optimization module (SO) for further false
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Table 3
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Ablation study on the proposed methods measured by perforation localization precision-
recall AUC under the center overlapping criterion (AUPRC), average sensitivity at 95% speci-
ficity (mSensgs) and AUC for series level classification. The reported values are averaged
over five runs. RN: RetinaNet; DR-IoU: Distance-ReLu regression loss; BiLSTM: Bidirectional
LSTM; SO: series level bounding box optimization.

Components Metrics
RN DR-loU BiLSTM SO  AUPRC mSensgs AUC
v x x x  0.504(£0.006)  0.562(+0.035)  0.855(0.007)
v v x x  0.510(£0.009)  0.590(+0.028)  0.862(+0.013)
v v x v 0.640(+£0.016)  0.642(+0.038)  0.875(+0.014)
v v v x  0.588(£0.007) 0.619(+0.032)  0.901(<0.008)
v v v v 0.671(£0.015)  0.671(+£0.027)  0.909(+0.008)
1.0 Table 4
' Model performance of the generalizability test using RN+BiLSTM+SO measured
by perforation localization precision-recall AUC under the center overlapping
081 criterion (AUPRC), average sensitivity at 95% specificity (mSensgs) and AUC for
1] : series level classification. The reported values are averaged over five runs.
©
24 Train MR CLEAN+HERMES MR CLEAN+NolV
2 0.61 Data Test NolV HERMES
=
'g Metrics AUPRC 0.724(40.039) 0.604(+0.031)
T 0.4/ mSensgs  0.717(+0.029) 0.660(+0.082)
e AUC 0.929(+0.017) 0.879(+0.018)
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2 —— RN+TAM+SO (area = 0.92) 0.9 0.844 0-866 0.869 0'88_3__;.__--I
s . __-}—---I“
Re W Expert 2 0.81 _I___—“"
0.0k ' , , , osl 0.785__&--~
0.0 0.2 0.4 0.6 0.8 1.0 ‘ JE-
False Positive Rate . 0.698
7 1
Fig. 8. Method versus human expert: ROC curve of perforation classification on se- 0. 604 24 szs
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positive reduction. To assess the added value of each component, 0. 94"
we report the results of various module combinations using cross G 0.336.T
validation in Table 3. The added value of DR-loU regression loss is . f -F- AUC
also reported in comparison to DIoU loss. ~ pR28 ~F+ mSens95
The results demonstrate consistent performance gain when o2l 1

adding any of the components. Specifically, it can be seen that
RN+DR-IoU is slightly better than RN+DIoU with mSensgs of
0.59 vs 0.56 and AUC of 0.862 vs 0.855 (P=0.6, DeLong test). Reti-
naNet (RN) equipped with a temporal module (e.g., BiLSTM) out-
performs the RetinaNet alone, with an average margin of 4% in
terms of AUC (P<0.001, DeLong test). Besides, with the add-on of
SO, the mSensgs gains a consistent boost of 2%-5% and the AUC in-
creases by approximately 1% (P<0.001, DeLong test) for both spa-
tial and spatio-temporal models, revealing its effectiveness in false
positive reduction.

4.8. Generalizability test

With the goal of investigating the generalization capability of
the proposed solution, we assess the performance across different
clinical trials with the model trained on the remaining datasets. As
shown in Table 1, an average AUC of 0.908 (+0.007) is achieved
by the RN+BiLSTM+SO model in term of series level classification,
which is in line with the cross validation AUC (0.909+0.008). More
specifically, Table 4 shows separated cross dataset testing results.
When tested on NolV or HERMES, the series level AUC tested on
NolV is slightly higher than that of the HERMES dataset (0.929 vs
0.879). This is likely due to the fact that NolV is a national trial
similar to MR CLEAN while HERMES is a heterogeneous mixture of
multiple international trials. This strong cross dataset performance
demonstrates the applicability of the methods in generalized clini-

10

1 2 3 a 5 6 7 8 9
train_size/test_size

Fig. 9. Series level classification AUC and mSensgs with respect to training/test data
size ratio. mSensgs: average sensitivity at 95% specificity over five runs.

cal scenarios. Note that MR CLEAN was not selected as testset due
to limited size of remaining training data.

4.9. Impact of data size

We identified perforation cases in multiple large clinical
databases, resulting in 85 perforation patient cases (233 DSA se-
ries). Due to low occurrence rate of perforation and its high hetero-
geneity, a further extended dataset may help deep learning mod-
els better represent visual perforation characteristics. To study the
impact of training data size, we assessed the performance of the
RN+TCM model trained with randomly reduced number of patients
in training set by various ratios in [1/9, 9/9], which approximately
correspond to [1,9] times the size of test set in ten-fold cross val-
idation. The test set was kept consistent during the experiment.
Fig. 9 shows that both the AUC and the sensitivity (at 95% speci-
ficity) of series level classification gradually increase as the train
data size grows, approaching saturation at train/test ratio of 9. The
method may still benefit from a further enlarged dataset, but a
substantial increase would be required for likely only a minor gain.
However, given the variation in perforation appearances, it may
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Fig. 10. Visualization of perforation detection results. Blue: ground truth annotations; orange: detected objects by the spatio-temporal model RN+TAM.

still be worthwhile to construct a larger dataset, as it would lower
the chance of certain perforation characteristics not being seen by
the model (see example 2d in Figure. 10).

5. Discussion

In this work we proposed spatio-temporal networks for fast au-
tomatic detection of vessel perforations during EVT, establishing
the first benchmark using data from multiple national and interna-
tional clinical trials and registries. Furthermore, we showcased the
model generalizability and its competitive performance via cross-
dataset testing and comparisons against a human expert.

To delve deeper into the results, we qualitatively assessed the
detected perforations. Fig. 10 contains some true positive (TP), false
positive (FP) and false negative (FN) examples using the RN+TAM
model. The TPs in the top row showcase the capability of the pro-
posed method in capturing relevant perforation appearance fea-
tures. The second row exemplifies scenarios where the automated
solution fails to locate perforations (FNs), including small object
size (2a), inadequate contrast between perforation and its sur-
rounding pixels (2b, 2c), and uncommon perforation types (2d).
While successfully identifying true perforations, the model also
generates some false positives, shown in the bottom row. The ap-
pearance of such false positives is hardly distinguishable from true
perforations. Wide venous structures may appear similar to ex-
travasated contrasts; thus they occasionally trigger false alarms
(3d).

The benefit of temporal modules is demonstrated in Fig. 11 via
visual examples of the spatial model (RetinaNet) and one of the
spatio-temporal models (RN+TAM). It is noticeable that the tempo-
ral feature aggregation helps in stabilizing detections in consecu-
tive frames in terms of both bounding box localization and classi-
fication scores in case (a) and (b).

It may be valuable to gain insights into the model performance
with respect to perforation types. The number of patients in this
study is however insufficient to provide a meaningful analysis at
the perforation type level. Approximately 80% of the perforations
are subarachnoid.

n

In comparison with the automated perforation detection solu-
tion, expert 2 achieved a high specificity in identifying DSA series
with perforations. It is expected that although human experts are
confident on recognized perforations (high specificity), they may
overlook perforations (low sensitivity) due to time pressure and
the low occurrence rate of perforation. In addition, it is worth to
note that this performance does not fully represent the clinical
practice due to the fact that expert 2 was explicitly asked to look
for perforations and was not under time pressure as in an endovas-
cular intervention.

Unlike online video processing tasks, temporal causality is not
necessary in this application. Perforation detection from DSA series
is intrinsically an offline action, as DSA images are acquired be-
tween retrieval attempts to check the intervention results, in which
a perforation could have occurred, rather than is happening. There-
fore, this application aims to detect perforations promptly after a
DSA acquisition. If integrated in Angio Suites, this application can
provide fast feedback to operators between retrieval attempts in
stroke thrombectomy.

Due to the low occurrence rate of intracranial vessel perfora-
tion, high specificity is desired in clinical practice to avoid un-
wanted false positives. Additional false positive reduction tech-
niques may further improve the model specificity. We noticed that
some venous vessel structures can occasionally fool the model.
Due to the fact that the occurrence of perforation is in the arte-
rial phase, it would be practical to automatically exclude the ve-
nous phase frames (Su et al,, 2021) for perforation detection. An-
other potential improvement is to embed the prior knowledge of
the catheter location in the detection model, which can guide the
model attention and suppress false positives in irrelevant brain re-
gions.

The clinical value of the proposed automatic perforation detec-
tion can be reflected in the following aspects: 1) improved detec-
tion: intra-operative vessel perforations can be overlooked. This is
evidenced from our experiment in Section 4.6. Such missed perfo-
rations may have detrimental clinical consequences (Salsano et al.,
2020). An automatic diagnostic solution can help in reducing such
false negatives; 2) time is brain: time is key to the rescue of
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Fig. 11. Visual comparisons between spatial network RetinaNet (RN) and spatio-temporal network (RN+TAM) on two DSA series. Blue:

model predictions. The numbers are the detection probability scores.

brain tissues in stroke (Powers et al., 2019; Saver, 2006), also in
case of a perforation (Jadhav et al., 2018). Early notice of the oc-
currence would avoid further peri-procedural manipulation of the
affected vessel and allow to assess the need of therapeutic res-
cue actions (Jadhav et al., 2018), e.g., balloon tamponade, immedi-
ate reversal of anticoagulants, and lowering of arterial blood pres-
sure (Ryu et al.,, 2011; Akpinar and Yilmaz, 2016; Leishangthem
and Satti, 2014), to prevent clinical deteriorating. Automated so-
lutions can detect perforation events directly after DSA acquisition,
thus enabling optimal intra-procedural decision making. 3) clinical
research: an automatic approach would also facilitate large scale
clinical dataset processing and perforation related analyses. Such
clinical insights could help in studying the effects of therapeutic
decisions on functional outcomes.

6. Conclusion

In this work we presented the first study which addresses au-
tomatic intracranial vessel perforation detection during EVT using
spatio-temporal networks. Evaluated on three multi-center clin-
ical databases, we demonstrated the generalization capability of
the model and established the benchmark for this task. Moreover,
leveraging the temporal progression feature of perforation in se-
quential DSA frames, the proposed solution achieves expert-level
performance with an AUC of 93% for series level classification, re-
vealing its potential value in assisting therapeutic decision making
in clinical practice.
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