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ABSTRACT

This paper aims to present the extension of the non-hydrostatic wave-flow model SWASH with the co-
volume method to build discretization schemes on unstructured triangular grids. Central to this method
that is free of spurious pressure modes, is the use of dual pairs of meshes that are mutually orthogo-
nal, such as the Delaunay-Voronoi mesh systems. The approximants sought are the components of the
flow velocity vector normal to the cell faces of the primal mesh. In addition to the covolume approach,
a novel upwind difference scheme for the horizontal advection terms in the momentum equation is pro-
posed. This scheme obeys the Rankine-Hugoniot jump relations and prevents the odd-even decoupling
of the velocity field accordingly. Moreover, cases with flow discontinuities, such as steady bores and bro-
ken waves, are properly treated. In spite of the low-order accuracy of the proposed method, unstructured
meshes easily allow for local refinement in a way that retains the desired accuracy. The unstructured-grid
version of SWASH is applicable to a wide range of 2DH wave-flow problems to investigate the nonlinear
dynamics of free surface waves over varying bathymetries. Its efficiency and robustness is tested on a

number of these problems employing unstructured triangular meshes.

© 2020 The Author. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

A commonly encountered coastal engineering application in-
volves the simulation of dispersive waves in coastal waters. Waves
are usually present almost everywhere in the domain of interest,
while the wave dynamics can be dominant in a small part of the
entire domain, e.g. the surf zone due to wave breaking and gener-
ating currents. For many large-scale wave problems, the mesh only
needs to be concentrated in particular areas with strong wave fea-
tures and large current gradients. Local mesh refinement is there-
fore a suitable approach to offer sufficient grid resolution in other-
wise under-resolved areas (e.g. breaking zones, swash zones, wet-
lands, coastal flood defences).

The development to increase the flexibility of structured grid
methods to allow variable grid resolution and local mesh refine-
ment has a long history. Traditional ocean and coastal models usu-
ally employ curvilinear grids with domain decomposition tech-
niques. Such grids are typically orthogonal so that the coordinate
transformation offers advantages in solution algorithm efficiency,
whereas undesirable numerical artefacts arising from grid non-
orthogonality, high cell aspect ratio and skewness are avoided.
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Structured grids greatly facilitate the use of high-order dis-
cretization methods. Such methods provide a higher spatial ac-
curacy and hence reduce the number of grid cells required for a
given level of solution accuracy. Nevertheless, we argue that low-
order discretizations on locally fine grids might be more efficient.
Low-order upwind-biased schemes often exhibit desirable stability
properties but may suffer from numerical damping, especially at
relatively coarse grids, which can easily be counteracted by grid
refinements. Furthermore, they only require small discretization
stencils and often deliver a good scaling capability for high per-
formance computing (HPC). In contrast, high-order discretization
methods usually lack robustness as they have the potential to de-
stroy the stability of the underlying numerical approach. In partic-
ular, central and high-order upwind discretizations tend to display
non-physical oscillations and commonly result in instabilities.

On the other hand, when local mesh refinement is applied
to flow problems in water of finite depth, the accuracy is of-
ten limited by the error in topographic and forcing data rather
than the discretization error [1]. Hence, grid refinement substan-
tiates the benefit of low-order discretizations. Despite the fact that
low-order (upwind) methods are typically deprecated in the liter-
ature, we believe that such methods are considered adequate for
predicting wave processes including propagation, shoaling, refrac-
tion and wave breaking, provided that sufficiently fine meshes are
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employed. While such processes are governed by mass and mo-
mentum balances, this may not be true for the transport of con-
taminants in surface waters and variable density solute transport
(e.g. salinity, temperature, sediment). That is to say, high resolution
schemes are desired to avoid a detrimental loss of tracer concen-
trations [2].

A drawback of structured meshes is the inherent difficulties as-
sociated with the generation of appropriate boundary-fitted grids
and excessive grid refinement. The use of unstructured grids of-
fers a remedy to these problems as they are more flexible and eas-
ily provide highly variable grid resolution in complex geometries.
In this regard, the domain is commonly discretized into triangular
or tetrahedral elements with no implied connectivity. Unstructured
meshes have received great attention for the past several years in
the ocean and coastal modelling community. A general review on
this topic can be found in [3]. One principle feature of an unstruc-
tured grid is that advanced grid refinement techniques are easier
to implement. Unstructured grid methods are therefore particu-
larly suited for wave problems with complex geometries that re-
quire a reasonably non-uniform grid resolution. However, they do
not allow for ease of implementation of high-order discretizations.
Also, high-resolution schemes on unstructured grids usually do not
take the full advantage of higher order accuracy that can easily be
achieved on structured grids [2]. In fact, low-order methods for un-
structured meshes are still in use today in established codes [1]. In
spite of this lower order accuracy, we premise that a higher rate of
convergence is achieved by local grid refinement rather than use
of high-order (central) discretizations.

A common feature of the traditional numerical models employ-
ing unstructured meshes is the application of the finite volume
method, which is a widely used approach in the CFD community.
This method directly utilizes the integral formulation of conserva-
tion laws in divergence form which are subsequently discretized
by means of flux approximations applied on non-overlapping con-
trol volumes in either primal or dual grids. Standard finite volume
schemes thus have the benefit to discretely conserve unknowns of
PDEs on arbitrary meshes. In the context of the solution of shallow
water problems, such schemes typically involve the vertex-centred
or cell-centred discretization of the conserved variables, i.e. the
water depth and the depth-integrated velocity vector, on colocated
and semi-staggered grids.

Yet, low-order vertex-centred finite volume schemes are known
to be rather inaccurate or even inconsistent on irregular grids (for
details see, e.g. [4-6]). Such schemes require polygon-shaped du-
als that typically provoke highly distorted volumes. For instance, a
detailed analysis of Svdrd et al. [4] reveal that vertex-centred fi-
nite volume approximations yield order of accuracy less than one
for non-smooth mixed grids of triangles and quadrilaterals. In par-
ticular, the non-uniformity in the size of dual mesh polygons re-
sults in a loss in discretization accuracy of one order. The cause is
the differences in fluxes on opposite sides of the control volume
that do not cancel in pairs when the mesh is non-uniform. It is
likely that their capacity to achieve desired physical accuracy on
irregular grids is rather restricted. On the other hand, the solution
quality of a cell-centred finite volume scheme, operating on primal
cells, can easily be greater than that of a vertex-centred scheme.
However, cell-centred schemes incur larger overheads than vertex-
centred schemes as they involve approximately twice as many un-
knowns. Therefore, we argue that low-order finite volume methods
using unstructured meshes is less tractable for robust and efficient
large-scale simulations of wave dynamics requiring high accuracy.

Another class of numerical methods involves the use of stag-
gered grids. In such grids the velocity components are staggered
with respect to the pressure. The pressure is placed in the centre of
the grid cells, while the velocities are stored at the cell faces. Con-
trary to colocated and semi-staggered grid schemes, staggered grid
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methods prevent the well-known odd-even decoupling between
velocity and pressure which is typically the key ingredient to the
development of robust and efficient incompressible flow models.
Staggered finite difference methods were first developed by Har-
low and Welch [7] for incompressible flows on Cartesian grids' and
has a long history of successful achievements in coastal and ocean
modelling (see, e.g. [9-11]).

A fruitful extension of the classical staggered grid approach to
unstructured triangular and tetrahedral meshes is the covolume
method [12,13]. This method is designed as a low-order method
that does not encounter spurious pressure modes. The covolume
method makes use of two dual orthogonal grids to approximate
the flow velocity and pressure. In this respect, the Delaunay tri-
angulation (primal grid) and the corresponding Voronoi diagram
(dual grid) are the natural choice. Only the normal velocity com-
ponents are defined on the faces of the primal mesh, whereas
the pressure is stored at the vertices of the dual grid, i.e. the
circumcentres of the primal cells. The accuracy of the covolume
scheme is generally first order in space but can be second or-
der accurate for a regular mesh [14]. However, more importantly,
covolume techniques usually respect underlying physical princi-
ples due to a range of fundamental properties, such as topology,
conservation and symmetry, leading to the development of high-
fidelity discretization methods for incompressible Navier-Stokes
and Maxwell’s equations [15,16]. The effect of discretization error
originated from such discretization approximations is thus limited,
in that the numerical solution is merely influenced by the mesh
resolution and mesh quality.

Over the past two decades, the covolume method, frequently
referred to as the unstructured C-grid discretization, has been
successfully employed for the modelling of large-scale ocean and
coastal flows. See, for instance, Perot and Nallapati [17], Stuhne and
Peltier [18], Kramer and Stelling [19] and Kleptsova et al. [20]. Ad-
ditionally, regional coastal and estuarine ocean models like UnTRIM
[21], SUNTANS [22] and D-Flow FM [23] are widely used by many
researchers. Both UnTRIM and SUNTANS can also be applied to in-
clude non-hydrostatic dynamics for environmental flow problems
(e.g. internal waves and oceanic fronts).

SWASH is a non-hydrostatic wave-flow model developed at
Delft University and exploits the finite difference method on stag-
gered Cartesian grids [24]. This phase-resolving model has been
subjected to extensive benchmarking and has been successfully ap-
plied to a numerous wave and flow applications. Recent examples
can be found in [25-28]. The present work describes the exten-
sion of SWASH to unstructured triangular grids. To this purpose,
we adopt the covolume strategy because of the wish to maxi-
mize the physical accuracy, stability and efficiency of the numerical
wave simulation. The focus of the present study is on tailor-made
discretizations suitable for the simulation of wave dynamics. They
ensure the correct handling of discontinuities and shocks as mani-
fested in bores, hydraulic jumps and broken waves.

In what follows, the shallow water equations including non-
hydrostatic pressure are introduced in Section 2. In order to facil-
itate transparency on discretization schemes, the governing equa-
tions are presented in a depth-averaged form. Next, the concept
of the covolume approach and its numerical implementation are
treated in Section 3. Special attention is paid to the discretiza-
tion of momentum advection based on a genuinely upwind-biased
approach that guarantees conservation of momentum flux locally.
The key contribution of the present study is to demonstrate the
efficiency and robustness of the proposed method for wave-related
simulations. In Section 4 a number of test cases are presented for

1 Historically, the use of a staggered grid for the solution of the shallow water
equations was first proposed by Richardson [8] in 1922.
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validation purposes and the results are discussed. Conclusions are
provided in Section 5.

2. Governing equations
The governing two-dimensional, primitive variable equations

for the depth-averaged, non-hydrostatic, free surface flow of an in-
compressible fluid over a bed topography d(x, y) are given by

¢ _
dhu ¢
Ge+V-@ow+ghve —— [ Vpdz—culu| (2)

with the coordinate directions x, y and z aligning in the east, north,
and vertical directions, respectively. The bed level d(x, y) is mea-
sured from the reference level z = 0 (positive downwards), whereas
¢(x, y, t) is the surface elevation with respect to the reference
level (positive upwards). The water depth is given by h(x,y,t) =
£ (x,y,t) +d(x,y). Furthermore, u = (u, v) is the flow velocity with
the depth-averaged components u(x, y, t) and v(x, y, t) along the
x and y coordinates, respectively, q = hu is the mass flux, p(x, y,
z, t) is the non-hydrostatic pressure (normalised by the density), g
is the gravitational acceleration, and ¢ is the dimensionless bottom
friction coefficient. The shallow water equations (1) and (2) are de-
rived from integrating the mass conservation and the momentum
balance over the depth, respectively, whereas the total pressure is
decomposed into its hydrostatic and non-hydrostatic components
(see, e.g. [21,22,24]). In the case of a hydrostatic pressure distri-
bution, i.e. p = 0, these equations can be reformulated as a set
of nonlinear hyperbolic equations, and may thus generate discon-
tinuous solutions featuring shock waves [29]. Such solutions can
readily be understood as weak solutions in the variational context.

Using Leibniz’ rule, a conservative expression for the gradient
of non-hydrostatic pressure is obtained [30]

¢
[ Vpdz= 3V hpy) - v
—d

with p, the non-hydrostatic pressure at the bed. This pressure is
associated with the vertical motion that is governed by the follow-
ing equation

dws  2p, Ow,

ot ~ h ot

where ws is the velocity in the z—direction at the free surface. This
equation is derived using the Keller-box method to further improve
the dispersive behaviour of the waves [24,30]. The vertical velocity
at the bed wj, can be found by means of the following kinematic
condition

wy, =—u-Vd at z=—d

Finally, the system of equations is complete with the following
equation
s —Wp

V.u_,.WT_O (3)

which ensures conservation of local mass.

The momentum equation (2) is symbolically written in vector
form which is not the most natural form to describe the underly-
ing physics in wave-dominated regimes. Instead, we consider the
following momentum balance characterizing the flow below a free
surface in water that moves in a nominal downstream direction
defined by the unit vector ny,
ath

T+[V‘(Q®“)]'nf+ghnf‘vf

1
=_Enf'V(hpb)+anf'Vd—Cf”f||“” )
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with uy =u-n; the local streamwise, depth-averaged flow veloc-
ity. Vector ny is assumed to be slowly varied such that pressure
gradients redirect momentum through bends whereas the flow ve-
locity uy is aligned with the direction of the pressure forces. Fur-
thermore, the lateral variability in the free surface slope is neg-
ligible on the scale of flow induced motion, especially in coastal
regions [31].

The depth-integrated momentum equation (4) essentially de-
scribes a local balance between flow acceleration, frictional decel-
eration and the pressure force acting on an element of fluid along
streamlines, and governs momentum per unit volume normalised
by the density, i.e. ur. The mass flux q is the transport velocity of
momentum and the second term of Eq. (4) represents the advec-
tive acceleration of the flow field with a nonlinear spatial effect
on uy. For instance, it causes the change in the momentum in an
open channel due to expansion or contraction, i.e. slowing down
or speeding up the fluid locally. Such flow transitions are typically
rapid and frequently arise in hydraulic jumps, dam breaks, tidal
bores and flows over a weir.

3. Discretization on unstructured triangular meshes

This paper is not intended to provide an outline of the over-
all numerical methodology of SWASH, but rather to explain the
essential steps of the discretization of the governing equations
on unstructured staggered grids since this topic differs from the
structured-grid version of SWASH as described in Zijlema et al.
[24]. Therefore, the discussion on temporal discretizations and the
solution procedure is not included in the present study as they
have been previously treated in depth (in, e.g. [24]).

The starting point is that the flow velocities are segregated
from the surface elevation and non-hydrostatic pressure and are
assigned to different grid locations based on a staggered grid ar-
rangement. This is further discussed in Section 3.1. Note also that
the solution of non-hydrostatic pressure is not pursued herein. The
interested reader is referred to the aforementioned reference for
detailed description of the pressure correction technique aiming to
enforce local mass conservation. Section 3.2 outlines the concept
of the covolume scheme for spatial discretization. The implementa-
tion of this method in SWASH is elaborated in detail in Section 3.3.
Next, the discretization of the advective acceleration is dealt with
in Section 3.4. Finally, a simple wet-dry scheme is treated briefly
in Section 3.5.

3.1. Staggered grid

Staggered grid methods typically employ velocity components
as the primary discrete unknowns in the spatial discretization. In
this respect, the flow velocity component iy is a proper one. This
physical variable is located at the face midpoint in the direction
n; normal to the cell face, whereas the physical scalars (e.g. water
depth, pressure) are positioned at the cell circumcentre. As a re-
sult, the flow velocity normal through the face of the grid cell is
influenced directly by the water depth and non-hydrostatic pres-
sure at the circumcenters on either side, because it is the pressure
gradient that drives the flow. In addition, the change in volume
cell, confined by the surface elevation, is due to the mass fluxes
huy at the faces of the grid cell. This physical duality expresses a
natural property of the staggered mesh approach.

Staggered schemes thus require the existence of the cell cir-
cumcentres since the line segment connecting the circumcentres of
the two cells intersects with their shared face, while they are or-
thogonal to each other. The most common polygons with a unique
circumcenter are the triangles and rectangles. Furthermore, any
two non-colinear sides of such cells span a basis in R2. (Note that
the third side of a triangle is a linear combination of the other two
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sides.) This implies that the velocity vector u (momentum per unit
volume normalised by the density) at an arbitrary location within
the cell can be described by a linear combination of the normal
components u; at the cell faces; see also next section. However,
in the case of rectangles, both independent velocity components, u
and v, are required to characterize momentum in the two dimen-
sional space due to their mutual orthogonality.

3.2. The covolume method

The main merit of the above staggered treatment of the prim-
itive variables is the proven robustness and efficiency as these
variables are located in optimal positions on the mesh with two
unique consequences. First, it prevents the odd-even decoupling
between the pressure and the normal velocity component. Second,
it yields excellent conservation properties. For example, both pri-
mary (mass and momentum) and secondary (e.g. kinetic energy
and enstrophy) quantities are conserved by Cartesian staggered
grid methods for the incompressible Navier-Stokes equations (see,
e.g. [14,32,33]). The conservative behaviour of staggered schemes is
due to the discrete divergence and gradient operators that mimic
the physical properties of their continuous counterparts. As a con-
sequence, the physical accuracy is preserved at the discrete level.
In this context, the staggered discretization is classified as the
mimetic approach [15].

The covolume method [12,13] is one of the many mimetic dis-
cretizations that have appeared in literature, of which an excellent
overview is given by Lipnikov et al. [15]. The mimetic character
of discrete covolume operators provides conservation properties in
the resulting numerical methods. For instance, the local and global
conservation properties of the covolume scheme applied to the in-
compressible Navier-Stokes equations have been extensively exam-
ined by Perot [14] and Zhang et al. [34].

The covolume method usually requires two orthogonal meshes
to compute the change in mass and momentum of shallow wa-
ter flows. The Delaunay mesh and its dual, the Voronoi tessella-
tion, are the obvious choice. The vertices of the Voronoi mesh are
the circumcentres of the Delaunay cells. Like the Cartesian stag-
gered approach, only the normal vector component is employed at
the face midpoint of the primal grid and the pressure is conse-
quently defined at the cell circumcentres, i.e. the vertices of the
dual grid. In contrast, for instance, the method implemented in EL-
CIRC [35] is not based on the covolume approach as it requires
the solution of the velocity component tangential to the cell face.
Such a semi-staggered scheme can give rise to erroneous pressure-
velocity oscillations [36]. In general, preservation of the key phys-
ical variables, i.e. the pressure at the cell centre and the normal
velocity component u; at the cell face rather than the full momen-
tum vector u, in distinct discrete structures such as primal and
dual meshes is crucial to prevent non-physical artefacts. (See Tonti
[16] for details on the central role of the relationship between
physical variables and mesh topologies, i.e. points, lines, surfaces
and volumes, in computational physics.) In addition, vector fields
can be reconstructed by means of an interpolation method. Exam-
ples related to triangular meshes can be found in [37-40].

It is important to note that the use of covolume or C-grid dis-
cretizations might be problematic for the simulation of geophysical
flows [41]. For instance, spurious geostrophic modes may occur on
both structured and unstructured meshes in the presence of the
Coriolis force and varying bathymetry. A proper reconstruction of
the tangential velocity is the key solution to this problem [39].
Furthermore, three-dimensional hydrostatic models for resolving
large-scale baroclinic currents tend to exhibit checkerboard pattern
in the divergence of the horizontal velocity field, and hence in the
vertical velocity (cf. Eq. (3)), due to the combined use of triangu-
lar geometry, notably equilateral triangles, and variable staggering
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[41,42]. Some remedies have been put forward in alleviating this
problem such as divergence averaging, increased diffusion, filter-
ing and mimetic discretizations (see, e.g. [42-44]), though the un-
wanted modes are usually not entirely absent. Nevertheless, such
checkerboard modes have not been encountered in the numerical
wave simulations as presented in this study. Therefore, no further
attention will be paid to this issue in this paper.

Although the covolume method is known to be first order accu-
rate for general unstructured meshes and second order for a class
of regular grids?, it yields physically consistent solution to the gov-
erning PDEs. Furthermore, discretizations should reflect accurate
changes in the response of the water wave motion to advective ac-
celeration and pressure gradient and, in turn, bathymetric forcing.
From this perspective, we postulate that low-order mimetic dis-
cretizations are a viable alternative to high-order finite-volume dis-
cretization schemes, including colocated and semi-staggered ones
employing the full momentum vector as the primary unknown.
Despite their higher order accuracy, numerical methods that do
not meet certain physical and mathematical properties can pro-
duce unacceptably large errors due, principally, to the presence
of nonphysical parasitic modes and the nonlinear amplification of
such modes and discretization errors [32]. The above reasoning
motivates the implementation of the covolume scheme in SWASH
which is presented in the next section.

3.3. Covolume discretization

We consider a two-dimensional grid consisting of Delaunay tri-
angles. Note that the faces in the dual mesh are orthogonal to the
cell faces in the primal mesh. Let indices ¢ and f enumerate tri-
angular cells and faces, respectively. In the discretization approach
we denote S¢ the set of faces forming the boundary of cell ¢ and
vector n.; the outward-pointing normal to face f of cell c. Rather
than employing the outward normal, the unit normal to face f co-
incided with the streamwise direction ny is adopted. Since this nor-
mal can either be outward or inward with respect to cell ¢, we se-
lect one of its direction to be fixed at all faces in the grid, so that
u; -ny = uy with uy the velocity vector at face f. The mutual orien-
tation of the outward normal n s and the unique normal ny at face
fof cell c is given by (cf. Fig. 1)

nC‘f:O(Canf, ac.f:nc,f'nf::l:l

The continuity equation (1) is integrated over a cell ¢ as fol-
lows

9g

Application of the midpoint rule and the divergence theorem of
Gauss yields

g
dt
with ¢, the water level stored at the cell circumcentre, A. the area
of cell ¢ and n. the outward unit normal vector to cell boundary

dc. The integral is approximated by taking the sum over the faces
of the cell

fé q~ncdl% qu-nf(ncyrnf)lf: ZaC,fo
Cc

feSc feSc

Ac + q-n.dl=0
dc

where Qf =qy -ngl is the mass flux integrated along cell face f
with [; the corresponding length. Note that o [Qf is negative if gy

2 Formally speaking, the discretization error for the pressure gradient term is sec-
ond order in space if the circumcentres of two adjacent cells are equally spaced
from the shared face.
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Fig. 1. The layout of the triangular mesh for the discretization of the momentum
equation at face f for u; > 0. This face with length I is shared by two triangle cells
c. and cg with distance As; between the associated circumcentres. Also depicted
are the unit outward-pointing normal n._, to face k of cell ¢, and the unit normal

vector ny indicating the flow direction. The normals are constant along each face.
Definitions of various geometric quantities and variables are provided in the text.

directs into cell ¢, otherwise, it is positive. (See Section 3.5 for fur-
ther details on the mass flux.) The resulting semi-discrete scheme
for Eq. (1) is

d
A LS a0y =0 (5)
feSe

Next, the momentum equation (4) is solved at the faces of each
interior cell. The approach to follow is essentially a finite difference
method as the spatial discretization will be carried out directly for
the equation instead of its integral form expressing the conserva-
tion balance of momentum.

Fig. 1 shows cell face f and its two adjacent cells ¢; and cg, with
the subscripts indicating the position of the cells with respect to
the face.

The distance between the associated circumcentres is given by

ASf = ASCL’f + ASCR'f

with As. the distance from the circumcentre of cell ¢ to face f.
We compute the rate of change of the streamwise momentum per
unit face length between two circumcentres adjacent to face f, i.e.
Asghsug, with uy the velocity component normal to face f and hy the
water depth at face f. This is determined by, amongst others, the
pressure forces acting on the area As; (per unit face length) and
the advective flow acceleration altering spatially the momentum
in the upstream part of the area, i.e. As.shl; (per unit face length),
either with ¢ = ¢ (if uf > 0) or ¢ = cg (if uy < 0). This upwind bias
ensures the stability of the present method since it inherits certain
physical conditions, as we will see in the next section.

By virtue of the mesh orthogonality property, we obtain the fol-
lowing finite difference form

dhu _
ASf C{t ! + Asc,faf +ghf<§cR - é-cL)

1 o -
=3 (thPcR - thch) + Py (ch - ch) — cpAsgug|[i]|
(6)
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where a; is the component of momentum advection in the stream-
wise direction. This will be treated in Section 3.4. Furthermore, pc,
he and d. denote the pressure, the water depth and the bed level
located at the circumcentre of cell ¢, respectively. Finally, h s Ef, Py
and @i are the interpolated water depths, non-hydrostatic pressure
and velocity vector at face f, respectively; see below. Note that sub-
script b has been dropped from the pressure variables. It is worth
noting that, owing to the mesh orthogonality, the discrete pres-
sure gradients of Eq. (6) and the discrete divergence of the mass
flux, Eq. (5), are mutually adjoint. This duality contributes to the
robustness of the covolume method (see, e.g. [15] for details).

We now provide appropriate interpolations for hy, py and uy, re-
spectively. Let us consider a flow across an abrupt bed change at
cell face f. A condition that must be met is the hydrostatic balance
between the (hydrostatic) pressure flux and the topography term

1
5 glhl; = ghyld];

where the operator [ - ]; denotes the jump across face f. This con-
dition preserves the quiescent water over varying bathymetry, i.e.
u = 0 and ¢ = constant. Hence, Eq. (6) reduces to

gﬁf (CCR - ch) =0

By defining
- 1
hi=3 (hfL * h“R)
we have
- 1
ghf (gcR - gCL) = §g<th + th) (th - th + ch - ch> =0
(7)
so that

1 2 2 ;N
ig(th - th) = ghf(ch - ch)
which is the hydrostatic balance at the discrete level.

Next, h £ in the time-derivative term of Eq. (6) represents the
volume per unit area at face f. Hence, for consistency, we define

ASf Flf = ASCL_thL + ASCR’thR

Likewise, the non-hydrostatic pressure at face f is approximated by
taking the volume-weighted average of the pressures of the two
cells adjacent to the face

ASCRJ
Asg Peg

Since the covolume scheme employs the face normal veloc-
ity components ug, a velocity vector u= (u,v) needs to be re-
constructed from these components. One reconstruction method is

due to Perot [14] and computes the cell-based velocity vector u
by means of the divergence theorem. The result is given by

1
u. = ATfXS:IfASC'fufnf (8)
€3¢

ASCL’f »
As; L

by=

which expresses the cell velocity vector in terms of the normal
velocity components at the faces of the cell. Perot [14] argued
that computing the cell-based velocity vector by means of inter-
polation (8) implies discrete conservation of momentum (see also
Appendix A). This interpolation is first order accurate and second
order if the grid is regular. An alternative is the method proposed
by Vidovic [38] using a least squares technique which provides bet-
ter accuracy, but is rather involved and computationally demanded.
We therefore prefer the use of Perot’s interpolation scheme (see
also [44]). Finally, the velocity vector at the face can be found as
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the volume-weighted average of the cell-based vectors of the two
cells adjacent to the face, as follows
As

cR.f

Ut as

A
b
s ASf

Uep

3.4. Discretization of momentum advection

In [45], the incorporation of the Rankine-Hugoniot jump rela-
tions in a numerical scheme is devised to preclude the odd-even
decoupling in the velocity field. In addition, fulfillment of these
jump conditions is desired to accurately capture flows with discon-
tinuities. In this regard, the advective flow acceleration is projected
on the direction ny at face f representing a local shock,

afzac-nf

with a. the upstream cell-based advection vector. The manner in
which this nonvolumetric vector is to be determined is closely
linked to the fulfillment of the jump conditions at the disconti-
nuity. More specifically, consider steady, frictionless flow across a
jump at face f, under the assumption of hydrostatic pressure, then
Eq. (6) becomes

As.say +gﬁf(§cR - CCL) =0 9)

and a, is constructed such that Eq. (9) reduces to the following
Rankine-Hugoniot relation

1 —
|qu+ 58| =ghyld, (10)

with g the mass flux per unit width. This will improve physical ac-
curacy at the discrete level since the balance between the advec-
tive acceleration and the pressure gradient is respected. Addition-
ally, such a scheme remains accurate on coarse meshes, whereas
any consistent scheme that does not adhere to jump conditions
explicitly converges relatively slower to a weak solution. Exam-
ples where such a latter scheme has been employed are [14,22,23].
Thus, fulfilling the Rankine-Hugoniot condition (10) has the poten-
tial to further enhance the robustness and efficiency of the numer-
ical method [45].

To achieve the desired jump condition at face f, we use one-
sided discretizations for momentum advection [45]. First, we con-
sider a cell ¢ upwind of face f whereby velocity uf is pointing out
of the cell. Let choose this cell ¢, i.e. uy > 0 (cf. Fig. 1). Vector ac
is the cell-based advection vector of the upwind cell and is com-
puted using Gauss’ theorem

_ 1 " _ 1 r
A =z-J, V- @ewdA=z-§, q-nudl
1 A
A kes, 9 M (m i - ) Tl
1 ~
E ZkeSCL acL,kauk

The transported flow velocity vector i, at the faces k of cell ¢ is
obtained by means of a one-sided interpolation (see, e.g. [19,20])

&

ﬁk ~ uCL.k
with LI the cell-based velocity vector of the upwind cell ¢ of

face k (see Fig. 1; keep in mind that u; > 0). In turn, this cell-
based velocity vector is interpolated from face normal components
using Eq. (8). Finally, we arrive at the following expression for the
face normal component of momentum advection

1
T D Y Qg oy (1)
CL keScL )

Approximation in the case of negative flow, i.e. uf < 0, is done sim-
ilarly. This completes our discretization of the momentum advec-
tion.

af:
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We now demonstrate that jump condition (10) is indeed ful-
filled. Substituting Eq. (11) in Eq. (9) and using Eq. (7) gives

ASCL'f
ACL

1 _
kXS: O5cL,ka uCL.k SNy + §g<h?R - th> = ghy (ch - ch>
€ CL

Let kq, ky and f denote the faces of the upwind cell ¢, see Fig. 1.
Expansion results in

L Ky

since uCLf My A UpNp = Uy Furthermore, let designate

ASCL,f
Ac

qx = Qk

L

the rate of volume flow per unit width of the upwind cell. Hence,
we have

1
L (QkI Ue, kauchZ> Ny 4+ jg(h?R - th)

—gh, (dCR ~de )

which is the Rankine-Hugoniot jump condition at the discrete
level. Note that this condition holds on face f representing the dis-
continuity, whereas the first two terms express the jump upstream
of that face.

For reasons of efficiency, Eq. (6) is not solved as it stands, but
the solution of an equation for flow velocity uy is considered in-
stead. For the purpose of deriving this equation, the right hand
side of Eq. (6) is set to zero. Furthermore, we consider the case
of positive flow at face f, i.e. uf > 0. We obtain

dth

- duf _
AthfW + ASCL'fT ur+ ASCL_faf +ghf<§cR - KCL) =0

as the outflow at face f only alters the water depth upstream. Next,
substituting Eq. (5) yields
ZkeSCL olCL,ka

~ du
=r_
Athf dt ASCL’f A

Up+ As. ras
L L

+ng<;CR - ch) ~0

and subsequently, the component of momentum advection ay. We
then have

ZkeSCL Och,ka (“ch My — ”f)
A

~ du
f
AthfF + ASCL’f
L

+ng<;CR - ;CL) ~0

The outgoing flux at face f can be omitted without changing the
amount of momentum because ucL Ny = Uy Hence, including

the right hand side of Eq. (6), the final semi-discretized momen-
tum equation is given by (cf. Fig. 1)
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@ i e m) o (v, o)
+g{l—f é‘cR - é‘cL _ 7é thpcR - thch N & ch - ch
hy Asg 2h; Asg hf Asg
i
i (12)
hy

A similar semi-discrete equation can be derived for the case with
negative flow (u; < 0). Note that the current discretization differs
from the one proposed by Kramer and Stelling [19] in that it is
able to resolve flow discontinuities more accurately. This is demon-
strated in Section 4.2.

An attractive characteristic of the resulting finite difference ap-
proximation, apart from preserving physical accuracy, is that it en-
sures total momentum is conserved at the discrete level. Such a
mathematical property is desired to keep the overall discretization
error low by eliminating the conservation errors. A proof is given
in Appendix A.

3.5. Wetting and drying

The mass flux integrated along a cell face in Eq. (5) is evaluated
with
Q =aqs-nglp=Iphpug

where f 7 is the water depth approximated at face f. Since the wa-
ter depth is stored at the circumcentres an upwind-biased interpo-
lation is applied, as follows

{CL + min (dCL’ ch> ,
;CR + min (cha ch> ,

max (£ g ) +min (dog o deg ). if up =0

so that the water depth in the outgoing mass flux of any cell is
that of the cell itself. As a consequence, a sufficient condition to
guarantee a non-negative water depth in cell ¢ can be derived. De-
tails can be found in Kramer and Stelling [19]. This condition is
given by

ifo>0

=
3
I

if up < 0 (13)

Atlf |llf| SAC

and so it forces at most one cell per time step to be flooded.

If a wet cell becomes dry, the water depth in the cell can be
arbitrary small, while there is no outgoing mass flux. The flow ve-
locity at face f is then set to zero if Ef < § with & the threshold
depth (8§ = 10710 m in the present study), while momentum equa-
tion (12) is not solved. This completes our description of the wet-
dry algorithm.

4. Test cases
4.1. Introduction

This section presents results for four test cases with an in-
creasing degree of difficulty in the unstructured mesh configura-
tion. With the exception of the first case, the selection of these
cases was motivated by the wish to investigate the main fea-
tures of the nearshore wave dynamics, such as wave transforma-
tion due to shoaling, refraction, diffraction and runup, and non-
linear processes, in particular the resonant three-wave interaction
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and depth-induced breaking. The objective is to assess the abil-
ity of the present unstructured staggered mesh approach to repro-
duce these wave processes with an emphasis on predictive accu-
racy. The predictive performance of SWASH for simulating these
wave-related cases on rectangular grids is well documented in, e.g.
[24,46,47]. The first academic test case is added to this study to
verify the numerical accuracy with which the momentum advec-
tion is approximated.

Some brief remarks are given here in relation to marching
in time and imposing boundary conditions. The semi-discrete
Eqgs. (5) and (12) are integrated in time using a second order
explicit leapfrog scheme in conjunction with the explicit Euler
method for the advection term and the implicit Euler method for
the non-hydrostatic pressure term [24]. For stability reasons the
time step is restricted to comply with the CFL condition that de-
pends on the wave celerity. This condition is given by

At <\/g~7f+ |uf|)

with At the time step and C; the Courant number evaluated at
a face midpoint. A variable time step is employed so that the
Courant number is less than a prescribed number ( < 1) in all wet
faces. The balance of experience derived from our various wave-
related studies suggests that this route has emerged as providing
the best compromise in terms of accuracy and stability. For further
details on the time integration see Zijlema et al. [24].

Furthermore, boundary conditions considered here pertain
mainly to the generation of incident free short waves and bound
infragravity waves. They are imposed as weakly reflective at the
offshore boundary. Details on their implementation can be found
in [24,47].

As a final note, the staggered mesh method described in this
paper will soon be released in a future version of SWASH (http:
/[swash.sourceforge.net), though the source code and a detailed de-
scription of the implementation can be obtained from the author
upon request.

4.2. Dam break over wet bed

The aim is to demonstrate the accuracy with which flow dis-
continuities are reproduced using the proposed upwind scheme
outlined in Section 3.4 and the scheme of Kramer and Stelling
[19] for the momentum advection. We consider an unsteady flow
with propagation of a dam break wave in a horizontal frictionless
channel. The pressure is assumed to be hydrostatic. The length and
the width of the basin was 100 m and 10 m, respectively, whereas
the dam was initially located in the centre of the basin. The initial
upstream water depth was 1 m, and the downstream water depth
was set to 0.1 m. The velocity was initially zero. The rather uni-
form triangular mesh employed has an averaged grid size of 0.4 m,
whereas the time step was set to 0.01 s.

At time t = 7 s after dam failure, the model results of the two
schemes are depicted in Fig. 2. Also shown is the analytical solu-
tion.

The results obtained with the proposed scheme are in better
agreement with the analytical solution than the scheme of Kramer
and Stelling [19]. In particular, the simulation shows that a cor-
rect speed and height of the bore was virtually rendered by the
proposed scheme that satisfies the Rankine-Hugoniot jump condi-
tions.

4.3. Wave deformation by a submerged shoal

In this test case, the UnSWASH model is applied to study wave
propagation over a submerged shoal on a sloped bottom. The
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Fig. 2. Comparison of free surface (top panel) and velocity (bottom panel) profiles at t =7 s for dam break over wet bed obtained with different schemes and analytical

solution.

experimental arrangement conducted by Berkhoff et al. [48] has
served as a classical test case for this study. The simulation is con-
sidered in a basin of 20 m wide and 35 m long with a plane slope
of 1/50 on which an elliptic shoal is rested. A monochromatic, uni-
directional wave with a period of 1 s and a height of 4.64 cm en-
ters the area and allows to propagate throughout the domain. De-
tailed information on the bathymetry and the wave conditions can
be found elsewhere (e.g. [30,48]).

The domain was meshed at a resolution in between 0.03 m and
0.07 m, with a total of approximately 370,000 triangular elements.
The mesh is quite uniform as the dominant waves are present ev-
erywhere in the domain. Furthermore, it is relatively coarse with
20 to 50 grid cells per incident wave length, while the wave length
becomes smaller on the slope and shorter waves are generated
over the shoal. The time step was taken initially as 0.005 s. The
maximum Courant number was set to 0.8 and the simulation time
equaled 30 s.

First, a few words concerning the computational efficiency. The
performance of the unstructured-mesh version of SWASH is com-
pared to the structured-grid version. The serial mode simulations
were run on an Ubuntu 16.04 desktop with a 64-bit Intel Xeon
processor (2.3 GHz). The execution time of UnSWASH needed for
the current case appeared to be about 108 CPU minutes, with the
highest level of resource required by the solution of the pressure
Poisson equation. Furthermore, the total CPU time per grid cell
per time step required for UnSWASH was approximately 2.7 s,
whereas for the regular-grid SWASH was about 1.8 ps. This increase
in the computation time is probably due to the overhead related
to unstructured mesh data structure access, causing low cache ef-
ficiency. It is clear that high-resolution UnSWASH must utilize HPC
resources in order to be scalable and efficient. A parallel code will
be build using message-passing paradigms and will be tested on
a commodity computer cluster. This will be reported in a future
paper.

Attention is turned next to the comparison between the com-
puted and observed normalised wave heights shown in Fig. 3.

Wave heights were measured along eight transects at regular
intervals (see [48] for details), of which four interesting ones are
considered in the present study. The wave focussing in the wake of
the shoal (transects 2 and 4), the wave shoaling and refraction on
the slope (transects 6 and 7), and the interference pattern caused
by diffraction (transect 4) are well captured by the model, despite
the use of low-order discretizations. In addition, these results are
in good agreement with previously computed results discussed by
Stelling and Zijlema [30].

4.4. Breaking waves over a barred topography

The laboratory flume test of Boers [49] is considered with ran-
dom waves propagating over a barred sandy beach (see Fig. 4).

The case 1C is discussed with waves generated at the wave-
maker based on a target JONSWAP spectrum with a significant
wave height of 0.103 m and a peak period of 3.33 s. This case has a
relatively low wave steepness, while waves shoal over the sloping
bottom until they break in the surf zone. For detailed analysis on
this test case including the infragravity wave dynamics, see Rijns-
dorp et al. [47].

The computational domain is 32 m long and 1 m wide. The
non-uniform unstructured grid employed in the present test case
consists of approximately 12,000 triangles with the cell size vary-
ing in between 0.2 m offshore and 0.01 m near the coast. This
mesh resolution should provide an economical representation of
the bathymetric variability in the considered area, while the nu-
merical approach must remain accurate in the presence of rela-
tively large depth gradients. An initial time step of 0.004 s was
taken with a maximum Courant number of 0.5. This time step
turned out to be unchanged throughout the simulation. Since the
present simulation is depth averaged, the so-called hydrostatic
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Fig. 3. Computed (solid line) and measured (circles) relative wave heights along four transects for the wave over submerged shoal. Hy is the incident wave height.
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Fig. 4. Bottom topography and location of the selected wave gauges of the experiment of Boers [49].
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Fig. 5. Computed and measured significant wave heights (left panel) and mean wave periods (right panel) along the flume for Boers 1C. Bullets: experimental data; solid

line: UnSWASH.

front approximation (HFA) of Smit et al. [46] is employed. Imple-
mentation details can be found in Appendix B. Furthermore, a fric-
tion coefficient ¢, = 0.001 was adopted. At the offshore boundary,
a weakly reflective condition is imposed based on the recorded
time series of surface elevation at the most seaward located wave
gauge.

Fig. 5 compares the computed and observed significant wave
heights Hpo = 4./my and mean wave periods Ty = mg/my of
short waves.

The moments m, = [ fTE(f)df are computed from the energy
density spectra E(f) (with f frequency) of the surface elevation.
Clearly, the trend of the integral wave parameters throughout the
domain is well reproduced by the model.

Next, we compare the computed wave spectra with the ob-
served ones in Fig. 6.

The location of the selected wave gauges is indicated in Fig. 4.
Both the generation of higher harmonics and the transfer of energy
towards low frequencies are properly predicted. Also, the energy
loss at the mid- to high-frequency range due to wave breaking is
resolved quite accurately. In general, the model is able to predict
the primary characteristics of the spectral evolution, both in the
shoaling region and the surf zone.

Though the potential of the present low-order unstructured
staggered mesh method is clearly demonstrated, the results can be
further improved by using two vertical layers [46]. Extension of the
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Fig. 6. Observed (thick line) and predicted (thin line) energy density spectra at selected gauges of shoreward propagating waves for case 1C of Boers [49].
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Fig. 7. Schematic views of the conical island experiment. Plane view of the wave
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unstructured-mesh version of SWASH to include vertical resolution
will be done in the future work.

4.5. Runup of waves on a conical island

In this last test case the runup of a solitary wave around a con-
ical island is discussed. The experimental configuration of Briggs
et al. [50] is selected and is depicted in Fig. 7. Surface elevations
were recorded using wave gauges at eight different locations as in-

10

Fig. 8. Non-uniform mesh used for the conical island test case with local refine-
ment towards the island.

dicated in the figure. This benchmark is challenging, because of the
wetting and drying cycles while waves run up and down on the is-
land.

The grid used to obtain accurate wave runup and inundation
on the island contains approximately 171,000 triangular cells and
is locally refined near the island, see Fig. 8.
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Fig. 9. Comparison with the data of Briggs et al. (1995) for the runup on a conical island: H = 0.045d (left panel), H = 0.096d (middle panel), and H = 0.181d (right panel).
Time histories of surface elevation at selected gauges around the island are shown. Dashed line: experimental data; solid line: UnSWASH.

The largest grid size away from the island is 0.4 m, whereas the
smallest size is around 0.01 m. Subsequently, a solitary wave with
given height H was imposed at the western boundary.

Three wave conditions are considered in the present study:
H =0.045d, H=0.096d and H = 0.181d with d = 0.32 m the still
water depth of the basin (cf. Fig. 7). The corresponding cases were
simulated with UnSWASH using the following settings. The ini-
tial time step was 0.001 s with the maximum CFL of 0.8 for
the first two cases, whereas for the last severe case they were
0.0005 s and 0.5, respectively. The simulation period was set to
25 s for all cases. Since wave breaking was observed on the lee
side of the island for the case H =0.181d, the HFA is applied
accordingly.

Fig. 9 provides a comparison between the model results and the
measured data at the selected gauges. The observed surface eleva-
tions are very well predicted by the UnSWASH model.

In particular, the computed arrival time and height of the in-
coming wave agrees with the measured data. There is, however,
a phase shift observed in the peak at gauge 22, especially for
the case H =0.181d. This known issue can be resolved by in-
cluding two vertical layers in the model. Finally, it is worth not-
ing that the model results are consistent with previously obtained
results for the structured mesh case [24]. The associated mesh
is uniform with a grid size of 0.05 m and the number of grid
cells is approximately twice as large as that of the unstructured
grid.

5. Conclusions

An extension of the wave-flow model SWASH to unstructured
triangular meshes has been discussed. The main motivation for
the application of such meshes for the simulation of wave dynam-
ics is the ease of local grid refinement. The covolume method has

1

been adopted for the spatial discretization of the depth-integrated
shallow water equations with the primitive variables. The velocity
components normal to the cell faces are employed as the primary
unknowns in the discretization. To account for wave dispersion the
non-hydrostatic pressure is included.

The covolume method has the great benefit of allowing to con-
struct finite difference discretizations that mimic desirable prop-
erties of PDEs (e.g. topology, conservation, jump relation) while
keeping the computational stencil compact. This significantly im-
proves both the robustness and the efficiency of SWASH. In addi-
tion, mimetic discretizations routinely enable physically meaning-
ful results to be obtained on relatively coarse meshes.

Still, the application of the covolume scheme is practically lim-
ited to Delaunay-Voronoi meshes, which may impede the user flex-
ibility to generate adequate grids comprising the necessary refine-
ments. However, the associated orthogonality requirement is found
not to be a limiting factor in wave-related applications. This is ex-
plained by the fact that the required mesh resolution is reasonably
non-uniform for the scale of wave dynamics across the entire do-
main.

A robust and efficient upwind-biased scheme has been pro-
posed. The scheme complies with the Rankine-Hugoniot jump re-
lations and is specifically designed with a view to preserving the
local momentum flux. This is crucial to the simulation of break-
ing waves and unsteady bores. This has been demonstrated by the
dam break test case.

The proposed method is generally first order accurate on non-
uniform meshes. Despite this fact, the model is capable of re-
producing essential wave processes, including shoaling, refrac-
tion, diffraction, nonlinear interactions, depth-induced breaking
and wave runup, owing to the mimetic nature of applied dis-
cretizations and the use of locally fine grids. This has been verified
by the three test applications presented in this paper.
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Appendix A. Proof of momentum conservation

The objective of this appendix is to demonstrate that recurrent
relation (12) does not produce a momentum conservation error,
given a uniform bed and a zero bed friction. Using Eq. (7), we ob-
tain the following finite difference form

de ASCL,f le ka
iy v (v - “‘L.h) T (v - ““L.kz) ny
L f f
= (P~ Py) (14)
where
1
P = o (gh? + hepe)

is the depth-averaged total pressure at the circumcentre. Discrete
momentum conservation can be expressed as the rate of change
in the total amount of momentum hu within a control volume is
due only to the net flux through the edges of the volume. Since
the normal face velocity uy is the primary unknown, interpolation
must be employed to obtain the momentum at a single location
within the mesh. To this end, the mesh cell is treated as the con-
trol volume. Subsequently, we derive an equation for the cell-based
momentum vector using Perot’s interpolation scheme (8). Finally,
summation of its flux contributions over the cell faces must lead
to a discrete equivalent of the momentum equation in divergence
form, which completes the proof. This formal procedure of proof
utilizes the geometric properties of the mesh and is also applica-
ble to Cartesian staggered schemes (see, e.g. [14,33]).
First, Eq. (14) is rewritten as

d
(Asc, g+ Asep) G + (ASep € + ASqy £ Cq) - Mg

= _(PCR _PCL)
with
1 ~
cczf‘C;ac,k%‘(uk—uf) (15)
eS¢ f

the cell-based discretization of the advection term evaluated for
the two cells adjacent to face f. Note that the transported veloc-
ity @, is interpolated from face normal components from the cell
upwind of face k. As a consequence, Ceg "My = 0 if uf > 0, and like-
wise, ch ‘n;=0 if ur < 0. Next, the discretized equation is mul-
tiplied by the normal of the face n; and its length I;, and subse-
quently summed over the faces of cell ¢

duf
Z nflf<A5cL_f + ASCRJ") dat + Z lf (ASCLJ CCL + ASCR'f CCR)
feSc feSe

12
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. nfrlf = — Z nflf<PcR — PCL)
feSe

We now demonstrate conservation of momentum by transform-
ing the above equation into an equation for the cell-based mo-
mentum vector u. Each interior face is shared by two triangular
cells of which one contributes to the cell under consideration. Fur-
thermore, at the boundary face a flux of momentum is prescribed.
First, the rate of change in momentum can be recasted as

du d du
Z nflfASC,ng = a Z l'lflfASC_fo = ACTI'C
feSe feSe
following from Eq. (8). This holds for all cells in the computational
mesh.
Next, the advective acceleration term can be rearranged with
the aid of the following geometric identity

Z lfASC_f ngny = Acl

feSe

with I the identity matrix. This identity follows from the diver-
gence theorem [14]. Then, using Eq. (15), the advection term can
be expanded as

D IpAscpec-ngnyp=cc- Yy lAsc pngng = ¢ - 1A = Acce

feSe feSe

= Zac,k (ﬁk - uf)

keSe

Q
hy
which conserves momentum in the considered cell since ep ke =
—O k at each interior face k. This implies that the sum of con-

tributions to the left and right cells cancels the advective flux at
face k. This holds for all cells except the boundary cells where
the change in momentum is due to the fluxes across the bound-
ary faces.

Finally, the pressure term in the interior cell can be rewritten

as
anlfpc = —PCchyflf:O

feSe feSe

by noting that the pressure gradient is aligned with the flow di-
rection and the cell has a closed surface. In case the cell under
consideration is a boundary cell, then

D onylpPe=) neslPy
feSe feSe
with Py the contribution to the prescribed momentum flux.

In short, by rewriting the finite difference form (14) into a dis-
crete equation in divergence form without introducing any other
approximation, we have shown that it does not create or destroy
momentum in each individual mesh cell of the computational do-
main. This implies that the computed amount of momentum can
only change as a result of a non-zero net momentum flux over the
boundary of the domain, a non-uniform bed, or a non-zero bed
friction.

Appendix B. Hydrostatic front approximation

Due to coarse vertical resolutions some measures are required
to properly approximate wave breaking. They are introduced with
the HFA technique of Smit et al. [46]. In principle, to initiate the
onset of the breaking process at low resolutions, a steep bore-like
wave front is tracked and subsequently a hydrostatic pressure dis-
tribution is imposed locally. Furthermore, the HFA requires the in-
clusion of the diffusion term in momentum equation (4), as fol-
lows
ohuy
ot

=+ [V (vgpah Vu)] - ny
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with

2 2 2
Jau av du v
_ 2
VHFA—Z 2(_8)() +2<8y) +(ay+ax)

the horizontal viscosity coefficient and ¢ = uh the typical length
scale of horizontal mixing which is related to a fraction of the local
depth (u < 1). The diffusion term is added locally once the HFA is
activated (see [46] for details).

The spatial discretization of momentum diffusion is in line with
the one described in Fringer et al. [22]. Eq. (6) is extended accord-
ingly
dthf

dt

where d. is the cell-based diffusion vector, and is approximated as
follows

1 1
d=—/V-v hVudA=—?§v hVu - ndl
=7 |V (HEARVU)dA = 2= ¢ vy c
U, —u,
Lk
ASk

(16)

ASf +”':'”+(ASCL’deL+AsCR‘deR)'nf

1 : 9
~ 2= DOk VHFA el .
¢ keS.

with u.; the cell-based velocity vector evaluated in cell ¢ of face
k by means of Eq. (8). Next, the derivatives in Eq. (16) are approx-
imated in the two vertices of face k using Gauss’ divergence the-
orem applied on the centroid dual constructed by joining the cir-
cumcentres surrounding the vertex under consideration. Here, we
make use of the velocity components u and v at the circumcen-
tres. Finally, the viscosity coefficient at the face midpoint vyga is
approximated with the arithmetic averaging between the two ver-
tices.
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