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a b s t r a c t 

This paper aims to present the extension of the non-hydrostatic wave-flow model SWASH with the co- 

volume method to build discretization schemes on unstructured triangular grids. Central to this method 

that is free of spurious pressure modes, is the use of dual pairs of meshes that are mutually orthogo- 

nal, such as the Delaunay-Voronoi mesh systems. The approximants sought are the components of the 

flow velocity vector normal to the cell faces of the primal mesh. In addition to the covolume approach, 

a novel upwind difference scheme for the horizontal advection terms in the momentum equation is pro- 

posed. This scheme obeys the Rankine-Hugoniot jump relations and prevents the odd-even decoupling 

of the velocity field accordingly. Moreover, cases with flow discontinuities, such as steady bores and bro- 

ken waves, are properly treated. In spite of the low-order accuracy of the proposed method, unstructured 

meshes easily allow for local refinement in a way that retains the desired accuracy. The unstructured-grid 

version of SWASH is applicable to a wide range of 2DH wave-flow problems to investigate the nonlinear 

dynamics of free surface waves over varying bathymetries. Its efficiency and robustness is tested on a 

number of these problems employing unstructured triangular meshes. 

© 2020 The Author. Published by Elsevier Ltd. 
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. Introduction 

A commonly encountered coastal engineering application in- 

olves the simulation of dispersive waves in coastal waters. Waves 

re usually present almost everywhere in the domain of interest, 

hile the wave dynamics can be dominant in a small part of the 

ntire domain, e.g. the surf zone due to wave breaking and gener- 

ting currents. For many large-scale wave problems, the mesh only 

eeds to be concentrated in particular areas with strong wave fea- 

ures and large current gradients. Local mesh refinement is there- 

ore a suitable approach to offer sufficient grid resolution in other- 

ise under-resolved areas (e.g. breaking zones, swash zones, wet- 

ands, coastal flood defences). 

The development to increase the flexibility of structured grid 

ethods to allow variable grid resolution and local mesh refine- 

ent has a long history. Traditional ocean and coastal models usu- 

lly employ curvilinear grids with domain decomposition tech- 

iques. Such grids are typically orthogonal so that the coordinate 

ransformation offers advantages in solution algorithm efficiency, 

hereas undesirable numerical artefacts arising from grid non- 

rthogonality, high cell aspect ratio and skewness are avoided. 
E-mail address: m.zijlema@tudelft.nl 
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Structured grids greatly facilitate the use of high-order dis- 

retization methods. Such methods provide a higher spatial ac- 

uracy and hence reduce the number of grid cells required for a 

iven level of solution accuracy. Nevertheless, we argue that low- 

rder discretizations on locally fine grids might be more efficient. 

ow-order upwind-biased schemes often exhibit desirable stability 

roperties but may suffer from numerical damping, especially at 

elatively coarse grids, which can easily be counteracted by grid 

efinements. Furthermore, they only require small discretization 

tencils and often deliver a good scaling capability for high per- 

ormance computing (HPC). In contrast, high-order discretization 

ethods usually lack robustness as they have the potential to de- 

troy the stability of the underlying numerical approach. In partic- 

lar, central and high-order upwind discretizations tend to display 

on-physical oscillations and commonly result in instabilities. 

On the other hand, when local mesh refinement is applied 

o flow problems in water of finite depth, the accuracy is of- 

en limited by the error in topographic and forcing data rather 

han the discretization error [1] . Hence, grid refinement substan- 

iates the benefit of low-order discretizations. Despite the fact that 

ow-order (upwind) methods are typically deprecated in the liter- 

ture, we believe that such methods are considered adequate for 

redicting wave processes including propagation, shoaling, refrac- 

ion and wave breaking, provided that sufficiently fine meshes are 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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1 Historically, the use of a staggered grid for the solution of the shallow water 

equations was first proposed by Richardson [8] in 1922. 
mployed. While such processes are governed by mass and mo- 

entum balances, this may not be true for the transport of con- 

aminants in surface waters and variable density solute transport 

e.g. salinity, temperature, sediment). That is to say, high resolution 

chemes are desired to avoid a detrimental loss of tracer concen- 

rations [2] . 

A drawback of structured meshes is the inherent difficulties as- 

ociated with the generation of appropriate boundary-fitted grids 

nd excessive grid refinement. The use of unstructured grids of- 

ers a remedy to these problems as they are more flexible and eas- 

ly provide highly variable grid resolution in complex geometries. 

n this regard, the domain is commonly discretized into triangular 

r tetrahedral elements with no implied connectivity. Unstructured 

eshes have received great attention for the past several years in 

he ocean and coastal modelling community. A general review on 

his topic can be found in [3] . One principle feature of an unstruc- 

ured grid is that advanced grid refinement techniques are easier 

o implement. Unstructured grid methods are therefore particu- 

arly suited for wave problems with complex geometries that re- 

uire a reasonably non-uniform grid resolution. However, they do 

ot allow for ease of implementation of high-order discretizations. 

lso, high-resolution schemes on unstructured grids usually do not 

ake the full advantage of higher order accuracy that can easily be 

chieved on structured grids [2] . In fact, low-order methods for un- 

tructured meshes are still in use today in established codes [1] . In 

pite of this lower order accuracy, we premise that a higher rate of 

onvergence is achieved by local grid refinement rather than use 

f high-order (central) discretizations. 

A common feature of the traditional numerical models employ- 

ng unstructured meshes is the application of the finite volume 

ethod, which is a widely used approach in the CFD community. 

his method directly utilizes the integral formulation of conserva- 

ion laws in divergence form which are subsequently discretized 

y means of flux approximations applied on non-overlapping con- 

rol volumes in either primal or dual grids. Standard finite volume 

chemes thus have the benefit to discretely conserve unknowns of 

DEs on arbitrary meshes. In the context of the solution of shallow 

ater problems, such schemes typically involve the vertex-centred 

r cell-centred discretization of the conserved variables, i.e. the 

ater depth and the depth-integrated velocity vector, on colocated 

nd semi-staggered grids. 

Yet, low-order vertex-centred finite volume schemes are known 

o be rather inaccurate or even inconsistent on irregular grids (for 

etails see, e.g. [4–6] ). Such schemes require polygon-shaped du- 

ls that typically provoke highly distorted volumes. For instance, a 

etailed analysis of Svärd et al. [4] reveal that vertex-centred fi- 

ite volume approximations yield order of accuracy less than one 

or non-smooth mixed grids of triangles and quadrilaterals. In par- 

icular, the non-uniformity in the size of dual mesh polygons re- 

ults in a loss in discretization accuracy of one order. The cause is 

he differences in fluxes on opposite sides of the control volume 

hat do not cancel in pairs when the mesh is non-uniform. It is 

ikely that their capacity to achieve desired physical accuracy on 

rregular grids is rather restricted. On the other hand, the solution 

uality of a cell-centred finite volume scheme, operating on primal 

ells, can easily be greater than that of a vertex-centred scheme. 

owever, cell-centred schemes incur larger overheads than vertex- 

entred schemes as they involve approximately twice as many un- 

nowns. Therefore, we argue that low-order finite volume methods 

sing unstructured meshes is less tractable for robust and efficient 

arge-scale simulations of wave dynamics requiring high accuracy. 

Another class of numerical methods involves the use of stag- 

ered grids. In such grids the velocity components are staggered 

ith respect to the pressure. The pressure is placed in the centre of 

he grid cells, while the velocities are stored at the cell faces. Con- 

rary to colocated and semi-staggered grid schemes, staggered grid 
2 
ethods prevent the well-known odd-even decoupling between 

elocity and pressure which is typically the key ingredient to the 

evelopment of robust and efficient incompressible flow models. 

taggered finite difference methods were first developed by Har- 

ow and Welch [7] for incompressible flows on Cartesian grids 1 and 

as a long history of successful achievements in coastal and ocean 

odelling (see, e.g. [9–11] ). 

A fruitful extension of the classical staggered grid approach to 

nstructured triangular and tetrahedral meshes is the covolume 

ethod [12,13] . This method is designed as a low-order method 

hat does not encounter spurious pressure modes. The covolume 

ethod makes use of two dual orthogonal grids to approximate 

he flow velocity and pressure. In this respect, the Delaunay tri- 

ngulation (primal grid) and the corresponding Voronoi diagram 

dual grid) are the natural choice. Only the normal velocity com- 

onents are defined on the faces of the primal mesh, whereas 

he pressure is stored at the vertices of the dual grid, i.e. the 

ircumcentres of the primal cells. The accuracy of the covolume 

cheme is generally first order in space but can be second or- 

er accurate for a regular mesh [14] . However, more importantly, 

ovolume techniques usually respect underlying physical princi- 

les due to a range of fundamental properties, such as topology, 

onservation and symmetry, leading to the development of high- 

delity discretization methods for incompressible Navier-Stokes 

nd Maxwell’s equations [15,16] . The effect of discretization error 

riginated from such discretization approximations is thus limited, 

n that the numerical solution is merely influenced by the mesh 

esolution and mesh quality. 

Over the past two decades, the covolume method, frequently 

eferred to as the unstructured C-grid discretization, has been 

uccessfully employed for the modelling of large-scale ocean and 

oastal flows. See, for instance, Perot and Nallapati [17] , Stuhne and 

eltier [18] , Kramer and Stelling [19] and Kleptsova et al. [20] . Ad-

itionally, regional coastal and estuarine ocean models like UnTRIM 

21] , SUNTANS [22] and D-Flow FM [23] are widely used by many 

esearchers. Both UnTRIM and SUNTANS can also be applied to in- 

lude non-hydrostatic dynamics for environmental flow problems 

e.g. internal waves and oceanic fronts). 

SWASH is a non-hydrostatic wave-flow model developed at 

elft University and exploits the finite difference method on stag- 

ered Cartesian grids [24] . This phase-resolving model has been 

ubjected to extensive benchmarking and has been successfully ap- 

lied to a numerous wave and flow applications. Recent examples 

an be found in [25–28] . The present work describes the exten- 

ion of SWASH to unstructured triangular grids. To this purpose, 

e adopt the covolume strategy because of the wish to maxi- 

ize the physical accuracy, stability and efficiency of the numerical 

ave simulation. The focus of the present study is on tailor-made 

iscretizations suitable for the simulation of wave dynamics. They 

nsure the correct handling of discontinuities and shocks as mani- 

ested in bores, hydraulic jumps and broken waves. 

In what follows, the shallow water equations including non- 

ydrostatic pressure are introduced in Section 2 . In order to facil- 

tate transparency on discretization schemes, the governing equa- 

ions are presented in a depth-averaged form. Next, the concept 

f the covolume approach and its numerical implementation are 

reated in Section 3 . Special attention is paid to the discretiza- 

ion of momentum advection based on a genuinely upwind-biased 

pproach that guarantees conservation of momentum flux locally. 

he key contribution of the present study is to demonstrate the 

fficiency and robustness of the proposed method for wave-related 

imulations. In Section 4 a number of test cases are presented for 
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alidation purposes and the results are discussed. Conclusions are 

rovided in Section 5 . 

. Governing equations 

The governing two-dimensional, primitive variable equations 

or the depth-averaged, non-hydrostatic, free surface flow of an in- 

ompressible fluid over a bed topography d ( x, y ) are given by 

∂ζ

∂t 
+ ∇ · q = 0 (1) 

∂h u 

∂t 
+ ∇ · ( q � u ) + gh ∇ ζ = −

∫ ζ

−d 

∇ p dz − c f u ‖ u ‖ (2)

ith the coordinate directions x, y and z aligning in the east, north, 

nd vertical directions, respectively. The bed level d ( x, y ) is mea-

ured from the reference level z = 0 (positive downwards), whereas 

( x, y, t ) is the surface elevation with respect to the reference

evel (positive upwards). The water depth is given by h (x, y, t) = 

(x, y, t) + d(x, y ) . Furthermore, u = (u, v ) is the flow velocity with

he depth-averaged components u ( x, y, t ) and v ( x, y, t ) along the

 and y coordinates, respectively, q = h u is the mass flux, p ( x, y,

, t ) is the non-hydrostatic pressure (normalised by the density), g 

s the gravitational acceleration, and c f is the dimensionless bottom 

riction coefficient. The shallow water equations (1) and (2) are de- 

ived from integrating the mass conservation and the momentum 

alance over the depth, respectively, whereas the total pressure is 

ecomposed into its hydrostatic and non-hydrostatic components 

see, e.g. [21,22,24] ). In the case of a hydrostatic pressure distri- 

ution, i.e. p ≡ 0, these equations can be reformulated as a set 

f nonlinear hyperbolic equations, and may thus generate discon- 

inuous solutions featuring shock waves [29] . Such solutions can 

eadily be understood as weak solutions in the variational context. 

Using Leibniz’ rule, a conservative expression for the gradient 

f non-hydrostatic pressure is obtained [30] 
 ζ

−d 

∇ p dz = 

1 

2 

∇ ( hp b ) − p b ∇ d 

ith p b the non-hydrostatic pressure at the bed. This pressure is 

ssociated with the vertical motion that is governed by the follow- 

ng equation 

∂w s 

∂t 
= 

2 p b 
h 

− ∂w b 

∂t 

here w s is the velocity in the z−direction at the free surface. This 

quation is derived using the Keller-box method to further improve 

he dispersive behaviour of the waves [24,30] . The vertical velocity 

t the bed w b can be found by means of the following kinematic 

ondition 

 b = −u · ∇d at z = −d 

inally, the system of equations is complete with the following 

quation 

 · u + 

w s − w b 

h 

= 0 (3) 

hich ensures conservation of local mass. 

The momentum equation (2) is symbolically written in vector 

orm which is not the most natural form to describe the underly- 

ng physics in wave-dominated regimes. Instead, we consider the 

ollowing momentum balance characterizing the flow below a free 

urface in water that moves in a nominal downstream direction 

efined by the unit vector n f , 

∂hu f 

∂t 
+ [ ∇ · ( q � u ) ] · n f + gh n f · ∇ζ

= −1 

n f · ∇ ( hp b ) + p b n f · ∇d − c f u f ‖ u ‖ (4) 

2 

3 
ith u f = u · n f the local streamwise, depth-averaged flow veloc- 

ty. Vector n f is assumed to be slowly varied such that pressure 

radients redirect momentum through bends whereas the flow ve- 

ocity u f is aligned with the direction of the pressure forces. Fur- 

hermore, the lateral variability in the free surface slope is neg- 

igible on the scale of flow induced motion, especially in coastal 

egions [31] . 

The depth-integrated momentum equation (4) essentially de- 

cribes a local balance between flow acceleration, frictional decel- 

ration and the pressure force acting on an element of fluid along 

treamlines, and governs momentum per unit volume normalised 

y the density, i.e. u f . The mass flux q is the transport velocity of

omentum and the second term of Eq. (4) represents the advec- 

ive acceleration of the flow field with a nonlinear spatial effect 

n u f . For instance, it causes the change in the momentum in an 

pen channel due to expansion or contraction, i.e. slowing down 

r speeding up the fluid locally. Such flow transitions are typically 

apid and frequently arise in hydraulic jumps, dam breaks, tidal 

ores and flows over a weir. 

. Discretization on unstructured triangular meshes 

This paper is not intended to provide an outline of the over- 

ll numerical methodology of SWASH, but rather to explain the 

ssential steps of the discretization of the governing equations 

n unstructured staggered grids since this topic differs from the 

tructured-grid version of SWASH as described in Zijlema et al. 

24] . Therefore, the discussion on temporal discretizations and the 

olution procedure is not included in the present study as they 

ave been previously treated in depth (in, e.g. [24] ). 

The starting point is that the flow velocities are segregated 

rom the surface elevation and non-hydrostatic pressure and are 

ssigned to different grid locations based on a staggered grid ar- 

angement. This is further discussed in Section 3.1 . Note also that 

he solution of non-hydrostatic pressure is not pursued herein. The 

nterested reader is referred to the aforementioned reference for 

etailed description of the pressure correction technique aiming to 

nforce local mass conservation. Section 3.2 outlines the concept 

f the covolume scheme for spatial discretization. The implementa- 

ion of this method in SWASH is elaborated in detail in Section 3.3 .

ext, the discretization of the advective acceleration is dealt with 

n Section 3.4 . Finally, a simple wet-dry scheme is treated briefly 

n Section 3.5 . 

.1. Staggered grid 

Staggered grid methods typically employ velocity components 

s the primary discrete unknowns in the spatial discretization. In 

his respect, the flow velocity component u f is a proper one. This 

hysical variable is located at the face midpoint in the direction 

 f normal to the cell face, whereas the physical scalars (e.g. water 

epth, pressure) are positioned at the cell circumcentre. As a re- 

ult, the flow velocity normal through the face of the grid cell is 

nfluenced directly by the water depth and non-hydrostatic pres- 

ure at the circumcenters on either side, because it is the pressure 

radient that drives the flow. In addition, the change in volume 

ell, confined by the surface elevation, is due to the mass fluxes 

u f at the faces of the grid cell. This physical duality expresses a 

atural property of the staggered mesh approach. 

Staggered schemes thus require the existence of the cell cir- 

umcentres since the line segment connecting the circumcentres of 

he two cells intersects with their shared face, while they are or- 

hogonal to each other. The most common polygons with a unique 

ircumcenter are the triangles and rectangles. Furthermore, any 

wo non-colinear sides of such cells span a basis in R 

2 . (Note that

he third side of a triangle is a linear combination of the other two 
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2 Formally speaking, the discretization error for the pressure gradient term is sec- 

ond order in space if the circumcentres of two adjacent cells are equally spaced 

from the shared face. 
ides.) This implies that the velocity vector u (momentum per unit 

olume normalised by the density) at an arbitrary location within 

he cell can be described by a linear combination of the normal 

omponents u f at the cell faces; see also next section. However, 

n the case of rectangles, both independent velocity components, u 

nd v , are required to characterize momentum in the two dimen- 

ional space due to their mutual orthogonality. 

.2. The covolume method 

The main merit of the above staggered treatment of the prim- 

tive variables is the proven robustness and efficiency as these 

ariables are located in optimal positions on the mesh with two 

nique consequences. First, it prevents the odd-even decoupling 

etween the pressure and the normal velocity component. Second, 

t yields excellent conservation properties. For example, both pri- 

ary (mass and momentum) and secondary (e.g. kinetic energy 

nd enstrophy) quantities are conserved by Cartesian staggered 

rid methods for the incompressible Navier-Stokes equations (see, 

.g. [14,32,33] ). The conservative behaviour of staggered schemes is 

ue to the discrete divergence and gradient operators that mimic 

he physical properties of their continuous counterparts. As a con- 

equence, the physical accuracy is preserved at the discrete level. 

n this context, the staggered discretization is classified as the 

imetic approach [15] . 

The covolume method [12,13] is one of the many mimetic dis- 

retizations that have appeared in literature, of which an excellent 

verview is given by Lipnikov et al. [15] . The mimetic character 

f discrete covolume operators provides conservation properties in 

he resulting numerical methods. For instance, the local and global 

onservation properties of the covolume scheme applied to the in- 

ompressible Navier-Stokes equations have been extensively exam- 

ned by Perot [14] and Zhang et al. [34] . 

The covolume method usually requires two orthogonal meshes 

o compute the change in mass and momentum of shallow wa- 

er flows. The Delaunay mesh and its dual, the Voronoi tessella- 

ion, are the obvious choice. The vertices of the Voronoi mesh are 

he circumcentres of the Delaunay cells. Like the Cartesian stag- 

ered approach, only the normal vector component is employed at 

he face midpoint of the primal grid and the pressure is conse- 

uently defined at the cell circumcentres, i.e. the vertices of the 

ual grid. In contrast, for instance, the method implemented in EL- 

IRC [35] is not based on the covolume approach as it requires 

he solution of the velocity component tangential to the cell face. 

uch a semi-staggered scheme can give rise to erroneous pressure- 

elocity oscillations [36] . In general, preservation of the key phys- 

cal variables, i.e. the pressure at the cell centre and the normal 

elocity component u f at the cell face rather than the full momen- 

um vector u , in distinct discrete structures such as primal and 

ual meshes is crucial to prevent non-physical artefacts. (See Tonti 

16] for details on the central role of the relationship between 

hysical variables and mesh topologies, i.e. points, lines, surfaces 

nd volumes, in computational physics.) In addition, vector fields 

an be reconstructed by means of an interpolation method. Exam- 

les related to triangular meshes can be found in [37–40] . 

It is important to note that the use of covolume or C-grid dis- 

retizations might be problematic for the simulation of geophysical 

ows [41] . For instance, spurious geostrophic modes may occur on 

oth structured and unstructured meshes in the presence of the 

oriolis force and varying bathymetry. A proper reconstruction of 

he tangential velocity is the key solution to this problem [39] . 

urthermore, three-dimensional hydrostatic models for resolving 

arge-scale baroclinic currents tend to exhibit checkerboard pattern 

n the divergence of the horizontal velocity field, and hence in the 

ertical velocity (cf. Eq. (3) ), due to the combined use of triangu- 

ar geometry, notably equilateral triangles, and variable staggering 
4 
41,42] . Some remedies have been put forward in alleviating this 

roblem such as divergence averaging, increased diffusion, filter- 

ng and mimetic discretizations (see, e.g. [42–44] ), though the un- 

anted modes are usually not entirely absent. Nevertheless, such 

heckerboard modes have not been encountered in the numerical 

ave simulations as presented in this study. Therefore, no further 

ttention will be paid to this issue in this paper. 

Although the covolume method is known to be first order accu- 

ate for general unstructured meshes and second order for a class 

f regular grids 2 , it yields physically consistent solution to the gov- 

rning PDEs. Furthermore, discretizations should reflect accurate 

hanges in the response of the water wave motion to advective ac- 

eleration and pressure gradient and, in turn, bathymetric forcing. 

rom this perspective, we postulate that low-order mimetic dis- 

retizations are a viable alternative to high-order finite-volume dis- 

retization schemes, including colocated and semi-staggered ones 

mploying the full momentum vector as the primary unknown. 

espite their higher order accuracy, numerical methods that do 

ot meet certain physical and mathematical properties can pro- 

uce unacceptably large errors due, principally, to the presence 

f nonphysical parasitic modes and the nonlinear amplification of 

uch modes and discretization errors [32] . The above reasoning 

otivates the implementation of the covolume scheme in SWASH 

hich is presented in the next section. 

.3. Covolume discretization 

We consider a two-dimensional grid consisting of Delaunay tri- 

ngles. Note that the faces in the dual mesh are orthogonal to the 

ell faces in the primal mesh. Let indices c and f enumerate tri- 

ngular cells and faces, respectively. In the discretization approach 

e denote S c the set of faces forming the boundary of cell c and

ector n c,f the outward-pointing normal to face f of cell c . Rather 

han employing the outward normal, the unit normal to face f co- 

ncided with the streamwise direction n f is adopted. Since this nor- 

al can either be outward or inward with respect to cell c , we se-

ect one of its direction to be fixed at all faces in the grid, so that

 f · n f = u f with u f the velocity vector at face f . The mutual orien-

ation of the outward normal n c,f and the unique normal n f at face 

 of cell c is given by (cf. Fig. 1 ) 

 c, f = αc, f n f , αc, f = n c, f · n f = ±1 

The continuity equation (1) is integrated over a cell c as fol- 

ows 
 

c 

(
∂ζ

∂t 
+ ∇ · q 

)
dA = 0 

pplication of the midpoint rule and the divergence theorem of 

auss yields 

 c 
dζc 

dt 
+ 

∮ 
∂c 

q · n c dl = 0 

ith ζ c the water level stored at the cell circumcentre, A c the area 

f cell c and n c the outward unit normal vector to cell boundary 

c . The integral is approximated by taking the sum over the faces 

f the cell 
 

∂c 

q · n c dl ≈
∑ 

f∈ S c 
q f · n f 

(
n c, f · n f 

)
l f = 

∑ 

f∈ S c 
αc, f Q f 

here Q f = q f · n f l f is the mass flux integrated along cell face f

ith l f the corresponding length. Note that αc,f Q f is negative if q f 
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Fig. 1. The layout of the triangular mesh for the discretization of the momentum 

equation at face f for u f > 0. This face with length l f is shared by two triangle cells 

c L and c R with distance �s f between the associated circumcentres. Also depicted 

are the unit outward-pointing normal n c 
L 

,k to face k of cell c L and the unit normal 

vector n k indicating the flow direction. The normals are constant along each face. 

Definitions of various geometric quantities and variables are provided in the text. 
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irects into cell c , otherwise, it is positive. (See Section 3.5 for fur-

her details on the mass flux.) The resulting semi-discrete scheme 

or Eq. (1) is 

 c 
dζc 

dt 
+ 

∑ 

f∈ S c 
αc, f Q f = 0 (5) 

Next, the momentum equation (4) is solved at the faces of each 

nterior cell. The approach to follow is essentially a finite difference 

ethod as the spatial discretization will be carried out directly for 

he equation instead of its integral form expressing the conserva- 

ion balance of momentum. 

Fig. 1 shows cell face f and its two adjacent cells c L and c R , with

he subscripts indicating the position of the cells with respect to 

he face. 

The distance between the associated circumcentres is given by 

s f = �s c 
L 

, f + �s c 
R 

, f 

ith �s c,f the distance from the circumcentre of cell c to face f . 

e compute the rate of change of the streamwise momentum per 

nit face length between two circumcentres adjacent to face f , i.e. 

s f h f u f , with u f the velocity component normal to face f and h f the

ater depth at face f . This is determined by, amongst others, the 

ressure forces acting on the area �s f (per unit face length) and 

he advective flow acceleration altering spatially the momentum 

n the upstream part of the area, i.e. �s c,f h f u f (per unit face length),

ither with c = c L (if u f > 0) or c = c R 

(if u f < 0). This upwind bias

nsures the stability of the present method since it inherits certain 

hysical conditions, as we will see in the next section. 

By virtue of the mesh orthogonality property, we obtain the fol- 

owing finite difference form 

s f 
d ̃ h f u f 

dt 
+ �s c, f a f + g h f 

(
ζc 

R 

− ζc 
L 

)
= −1 

2 

(
h c 

R 

p c 
R 

− h c 
L 

p c 
L 

)
+ 

˜ p f 

(
d c 

R 

− d c 
L 

)
− c f �s f u f ‖ ̃  u f ‖ 

(6) 
a

5 
here a f is the component of momentum advection in the stream- 

ise direction. This will be treated in Section 3.4 . Furthermore, p c , 

 c and d c denote the pressure, the water depth and the bed level 

ocated at the circumcentre of cell c , respectively. Finally, ˜ h f , h f , ˜ p f 
nd ˜ u f are the interpolated water depths, non-hydrostatic pressure 

nd velocity vector at face f , respectively; see below. Note that sub- 

cript b has been dropped from the pressure variables. It is worth 

oting that, owing to the mesh orthogonality, the discrete pres- 

ure gradients of Eq. (6) and the discrete divergence of the mass 

ux, Eq. (5) , are mutually adjoint. This duality contributes to the 

obustness of the covolume method (see, e.g. [15] for details). 

We now provide appropriate interpolations for h f , p f and u f , re- 

pectively. Let us consider a flow across an abrupt bed change at 

ell face f . A condition that must be met is the hydrostatic balance 

etween the (hydrostatic) pressure flux and the topography term 

1 

2 

g [ h ] 
2 
f = g h f [ d ] f 

here the operator [ · ] f denotes the jump across face f . This con- 

ition preserves the quiescent water over varying bathymetry, i.e. 

 = 0 and ζ = constant. Hence, Eq. (6) reduces to 

 h f 

(
ζc 

R 

− ζc 
L 

)
= 0 

y defining 

 f = 

1 

2 

(
h c 

L 
+ h c 

R 

)
e have 

 h f 

(
ζc 

R 

− ζc 
L 

)
= 

1 

2 

g 

(
h c 

L 
+ h c 

R 

)(
h c 

R 

− h c 
L 

+ d c 
L 

− d c 
R 

)
= 0 

(7) 

o that 

1 

2 

g 

(
h 

2 
c 
R 

− h 

2 
c 
L 

)
= g h f 

(
d c 

R 

− d c 
L 

)
hich is the hydrostatic balance at the discrete level. 

Next, ˜ h f in the time-derivative term of Eq. (6) represents the 

olume per unit area at face f . Hence, for consistency, we define 

s f ˜ h f = �s c 
L 

, f h c 
L 

+ �s c 
R 

, f h c 
R 

ikewise, the non-hydrostatic pressure at face f is approximated by 

aking the volume-weighted average of the pressures of the two 

ells adjacent to the face 

˜ p f = 

�s c 
L 

, f 

�s f 
p c 

L 
+ 

�s c 
R 

, f 

�s f 
p c 

R 

Since the covolume scheme employs the face normal veloc- 

ty components u f , a velocity vector u = (u, v ) needs to be re-

onstructed from these components. One reconstruction method is 

ue to Perot [14] and computes the cell-based velocity vector u c 

y means of the divergence theorem. The result is given by 

 c = 

1 

A c 

∑ 

f∈ S c 
l f �s c, f u f n f (8) 

hich expresses the cell velocity vector in terms of the normal 

elocity components at the faces of the cell. Perot [14] argued 

hat computing the cell-based velocity vector by means of inter- 

olation (8) implies discrete conservation of momentum (see also 

ppendix A ). This interpolation is first order accurate and second 

rder if the grid is regular. An alternative is the method proposed 

y Vidovic [38] using a least squares technique which provides bet- 

er accuracy, but is rather involved and computationally demanded. 

e therefore prefer the use of Perot’s interpolation scheme (see 

lso [44] ). Finally, the velocity vector at the face can be found as 
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he volume-weighted average of the cell-based vectors of the two 

ells adjacent to the face, as follows 

˜  f = 

�s c 
L 

, f 

�s f 
u c 

L 
+ 

�s c 
R 

, f 

�s f 
u c 

R 

.4. Discretization of momentum advection 

In [45] , the incorporation of the Rankine-Hugoniot jump rela- 

ions in a numerical scheme is devised to preclude the odd-even 

ecoupling in the velocity field. In addition, fulfillment of these 

ump conditions is desired to accurately capture flows with discon- 

inuities. In this regard, the advective flow acceleration is projected 

n the direction n f at face f representing a local shock, 

 f = a c · n f 

ith a c the upstream cell-based advection vector. The manner in 

hich this nonvolumetric vector is to be determined is closely 

inked to the fulfillment of the jump conditions at the disconti- 

uity. More specifically, consider steady, frictionless flow across a 

ump at face f , under the assumption of hydrostatic pressure, then 

q. (6) becomes 

s c, f a f + g h f 

(
ζc 

R 

− ζc 
L 

)
= 0 (9) 

nd a c is constructed such that Eq. (9) reduces to the following 

ankine-Hugoniot relation 

 

qu + 

1 

2 

gh 

2 
] 

f 
= g h f [ d ] f (10) 

ith q the mass flux per unit width. This will improve physical ac- 

uracy at the discrete level since the balance between the advec- 

ive acceleration and the pressure gradient is respected. Addition- 

lly, such a scheme remains accurate on coarse meshes, whereas 

ny consistent scheme that does not adhere to jump conditions 

xplicitly converges relatively slower to a weak solution. Exam- 

les where such a latter scheme has been employed are [14,22,23] . 

hus, fulfilling the Rankine-Hugoniot condition (10) has the poten- 

ial to further enhance the robustness and efficiency of the numer- 

cal method [45] . 

To achieve the desired jump condition at face f , we use one- 

ided discretizations for momentum advection [45] . First, we con- 

ider a cell c upwind of face f whereby velocity u f is pointing out 

f the cell. Let choose this cell c L , i.e. u f > 0 (cf. Fig. 1 ). Vector a c L 
s the cell-based advection vector of the upwind cell and is com- 

uted using Gauss’ theorem 

 c L = 

1 
A c L 

∫ 
c L 

∇ · ( q � u ) dA = 

1 
A c L 

∮ 
∂c L 

q · n c L u dl 

≈ 1 
A c L 

∑ 

k ∈ S c L q · n k 

(
n c L ,k · n k 

)
ˆ u k l k 

= 

1 
A c L 

∑ 

k ∈ S c L αc L ,k Q k ̂  u k 

he transported flow velocity vector ûk at the faces k of cell c L is 

btained by means of a one-sided interpolation (see, e.g. [19,20] ) 

ˆ 
 k ≈ u c L ,k 

ith u c L ,k 
the cell-based velocity vector of the upwind cell c L of 

ace k (see Fig. 1 ; keep in mind that u f > 0). In turn, this cell-

ased velocity vector is interpolated from face normal components 

sing Eq. (8) . Finally, we arrive at the following expression for the 

ace normal component of momentum advection 

 f = 

1 

A c 
L 

∑ 

k ∈ S c 
L 

αc 
L 

,k Q k u c 
L ,k 

· n f (11) 

pproximation in the case of negative flow, i.e. u f < 0, is done sim-

larly. This completes our discretization of the momentum advec- 

ion. 
6 
We now demonstrate that jump condition (10) is indeed ful- 

lled. Substituting Eq. (11) in Eq. (9) and using Eq. (7) gives 

�s c 
L 

, f 

A c 
L 

∑ 

k ∈ S c 
L 

αc 
L 

,k Q k u c 
L ,k 

· n f + 

1 

2 

g 

(
h 

2 
c 
R 

− h 

2 
c 
L 

)
= g h f 

(
d c 

R 

− d c 
L 

)

et k 1 , k 2 and f denote the faces of the upwind cell c L , see Fig. 1 .

xpansion results in 

−
�s c 

L 
, f 

A c 
L 

Q k 1 u c 
L ,k 1 

· n f −
�s c 

L 
, f 

A c 
L 

Q k 2 u c 
L ,k 2 

· n f 

+ 

�s c 
L 

, f 

A c 
L 

Q f u f + 

1 

2 

g 

(
h 

2 
c 
R 

− h 

2 
c 
L 

)
= g h f 

(
d c 

R 

− d c 
L 

)

ince u c L , f 
· n f ≈ u f · n f = u f . Furthermore, let designate 

 k = 

�s c 
L 

, f 

A c 
L 

Q k 

he rate of volume flow per unit width of the upwind cell. Hence, 

e have 

 f u f −
(

q k 1 u c 
L ,k 1 

+ q k 2 u c 
L ,k 2 

)
· n f + 

1 

2 

g 

(
h 

2 
c 
R 

− h 

2 
c 
L 

)
= g h f 

(
d c 

R 

− d c 
L 

)
hich is the Rankine-Hugoniot jump condition at the discrete 

evel. Note that this condition holds on face f representing the dis- 

ontinuity, whereas the first two terms express the jump upstream 

f that face. 

For reasons of efficiency, Eq. (6) is not solved as it stands, but 

he solution of an equation for flow velocity u f is considered in- 

tead. For the purpose of deriving this equation, the right hand 

ide of Eq. (6) is set to zero. Furthermore, we consider the case 

f positive flow at face f , i.e. u f > 0. We obtain 

s f ̃  h f 

du f 

dt 
+ �s c 

L 
, f 

dh c 
L 

dt 
u f + �s c 

L 
, f a f + g h f 

(
ζc 

R 

− ζc 
L 

)
= 0 

s the outflow at face f only alters the water depth upstream . Next, 

ubstituting Eq. (5) yields 

s f ̃  h f 

du f 

dt 
− �s c 

L 
, f 

∑ 

k ∈ S c 
L 

αc 
L 

,k Q k 

A c 
L 

u f + �s c 
L 

, f a f 

+ g h f 

(
ζc 

R 

− ζc 
L 

)
= 0 

nd subsequently, the component of momentum advection a f . We 

hen have 

s f ̃  h f 

du f 

dt 
+ �s c 

L 
, f 

∑ 

k ∈ S c 
L 

αc 
L 

,k Q k 

(
u c 

L ,k 
· n f − u f 

)
A c 

L 

+ g h f 

(
ζc 

R 

− ζc 
L 

)
= 0 

he outgoing flux at face f can be omitted without changing the 

mount of momentum because u c L , f 
· n f = u f . Hence, including 

he right hand side of Eq. (6) , the final semi-discretized momen- 

um equation is given by (cf. Fig. 1 ) 
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p

du f 

dt 
+ 

�s c 
L 

, f 

�s f ˜ h f A c 
L 

[ 
Q k 1 

(
u f − u c 

L ,k 1 
· n f 

)
+ Q k 2 

(
u f − u c 

L ,k 2 
· n f 

)] 

+ g 
h f 

˜ h f 

ζc 
R 

− ζc 
L 

�s f 
= − 1 

2 ̃

 h f 

h c 
R 

p c 
R 

− h c 
L 

p c 
L 

�s f 
+ 

˜ p f 
˜ h f 

d c 
R 

− d c 
L 

�s f 

−c f 
u f ‖ ̃  u f ‖ 

˜ h f 

(12) 

 similar semi-discrete equation can be derived for the case with 

egative flow ( u f < 0). Note that the current discretization differs 

rom the one proposed by Kramer and Stelling [19] in that it is 

ble to resolve flow discontinuities more accurately. This is demon- 

trated in Section 4.2 . 

An attractive characteristic of the resulting finite difference ap- 

roximation, apart from preserving physical accuracy, is that it en- 

ures total momentum is conserved at the discrete level. Such a 

athematical property is desired to keep the overall discretization 

rror low by eliminating the conservation errors. A proof is given 

n Appendix A . 

.5. Wetting and drying 

The mass flux integrated along a cell face in Eq. (5) is evaluated 

ith 

 f = q f · n f l f = l f ˆ h f u f 

here ˆ h f is the water depth approximated at face f . Since the wa- 

er depth is stored at the circumcentres an upwind-biased interpo- 

ation is applied, as follows 

ˆ 
 f = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ζc 
L 

+ min 

(
d c 

L 
, d c 

R 

)
, if u f > 0 

ζc 
R 

+ min 

(
d c 

L 
, d c 

R 

)
, if u f < 0 

max 

(
ζc 

L 
, ζc 

R 

)
+ min 

(
d c 

L 
, d c 

R 

)
, if u f = 0 

(13) 

o that the water depth in the outgoing mass flux of any cell is 

hat of the cell itself. As a consequence, a sufficient condition to 

uarantee a non-negative water depth in cell c can be derived. De- 

ails can be found in Kramer and Stelling [19] . This condition is 

iven by 

t l f | u f | ≤ A c 

nd so it forces at most one cell per time step to be flooded. 

If a wet cell becomes dry, the water depth in the cell can be

rbitrary small, while there is no outgoing mass flux. The flow ve- 

ocity at face f is then set to zero if ˆ h f < δ with δ the threshold

epth ( δ = 10 −10 m in the present study), while momentum equa- 

ion (12) is not solved. This completes our description of the wet- 

ry algorithm. 

. Test cases 

.1. Introduction 

This section presents results for four test cases with an in- 

reasing degree of difficulty in the unstructured mesh configura- 

ion. With the exception of the first case, the selection of these 

ases was motivated by the wish to investigate the main fea- 

ures of the nearshore wave dynamics, such as wave transforma- 

ion due to shoaling, refraction, diffraction and runup, and non- 

inear processes, in particular the resonant three-wave interaction 
7 
nd depth-induced breaking. The objective is to assess the abil- 

ty of the present unstructured staggered mesh approach to repro- 

uce these wave processes with an emphasis on predictive accu- 

acy. The predictive performance of SWASH for simulating these 

ave-related cases on rectangular grids is well documented in, e.g. 

24,46,47] . The first academic test case is added to this study to 

erify the numerical accuracy with which the momentum advec- 

ion is approximated. 

Some brief remarks are given here in relation to marching 

n time and imposing boundary conditions. The semi-discrete 

qs. (5) and (12) are integrated in time using a second order 

xplicit leapfrog scheme in conjunction with the explicit Euler 

ethod for the advection term and the implicit Euler method for 

he non-hydrostatic pressure term [24] . For stability reasons the 

ime step is restricted to comply with the CFL condition that de- 

ends on the wave celerity. This condition is given by 

 f = 

�t 

(√ 

g ̃ h f + | u f | 
)

�s f 
≤ 1 

ith �t the time step and C f the Courant number evaluated at 

 face midpoint. A variable time step is employed so that the 

ourant number is less than a prescribed number ( < 1) in all wet 

aces. The balance of experience derived from our various wave- 

elated studies suggests that this route has emerged as providing 

he best compromise in terms of accuracy and stability. For further 

etails on the time integration see Zijlema et al. [24] . 

Furthermore, boundary conditions considered here pertain 

ainly to the generation of incident free short waves and bound 

nfragravity waves. They are imposed as weakly reflective at the 

ffshore boundary. Details on their implementation can be found 

n [24,47] . 

As a final note, the staggered mesh method described in this 

aper will soon be released in a future version of SWASH ( http: 

/swash.sourceforge.net ), though the source code and a detailed de- 

cription of the implementation can be obtained from the author 

pon request. 

.2. Dam break over wet bed 

The aim is to demonstrate the accuracy with which flow dis- 

ontinuities are reproduced using the proposed upwind scheme 

utlined in Section 3.4 and the scheme of Kramer and Stelling 

19] for the momentum advection. We consider an unsteady flow 

ith propagation of a dam break wave in a horizontal frictionless 

hannel. The pressure is assumed to be hydrostatic. The length and 

he width of the basin was 100 m and 10 m, respectively, whereas 

he dam was initially located in the centre of the basin. The initial 

pstream water depth was 1 m, and the downstream water depth 

as set to 0.1 m. The velocity was initially zero. The rather uni- 

orm triangular mesh employed has an averaged grid size of 0.4 m, 

hereas the time step was set to 0.01 s. 

At time t = 7 s after dam failure, the model results of the two

chemes are depicted in Fig. 2 . Also shown is the analytical solu- 

ion. 

The results obtained with the proposed scheme are in better 

greement with the analytical solution than the scheme of Kramer 

nd Stelling [19] . In particular, the simulation shows that a cor- 

ect speed and height of the bore was virtually rendered by the 

roposed scheme that satisfies the Rankine-Hugoniot jump condi- 

ions. 

.3. Wave deformation by a submerged shoal 

In this test case, the UnSWASH model is applied to study wave 

ropagation over a submerged shoal on a sloped bottom. The 

http://swash.sourceforge.net
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Fig. 2. Comparison of free surface (top panel) and velocity (bottom panel) profiles at t = 7 s for dam break over wet bed obtained with different schemes and analytical 

solution. 

e

s

s  

o

d  

t

t

b

0

T

e

2

b

o

m

e

p

p

w

p

t

h

P

p

w

i

t

fi

r

b

a

p

p

i

c

t

t

b

t

i

S

4

d

m

w  

r

b

t

d

n

c

i

m

t

m

t

t

t

xperimental arrangement conducted by Berkhoff et al. [48] has 

erved as a classical test case for this study. The simulation is con- 

idered in a basin of 20 m wide and 35 m long with a plane slope

f 1/50 on which an elliptic shoal is rested. A monochromatic, uni- 

irectional wave with a period of 1 s and a height of 4.64 cm en-

ers the area and allows to propagate throughout the domain. De- 

ailed information on the bathymetry and the wave conditions can 

e found elsewhere (e.g. [30,48] ). 

The domain was meshed at a resolution in between 0.03 m and 

.07 m, with a total of approximately 370,0 0 0 triangular elements. 

he mesh is quite uniform as the dominant waves are present ev- 

rywhere in the domain. Furthermore, it is relatively coarse with 

0 to 50 grid cells per incident wave length, while the wave length 

ecomes smaller on the slope and shorter waves are generated 

ver the shoal. The time step was taken initially as 0.005 s. The 

aximum Courant number was set to 0.8 and the simulation time 

qualed 30 s. 

First, a few words concerning the computational efficiency. The 

erformance of the unstructured-mesh version of SWASH is com- 

ared to the structured-grid version. The serial mode simulations 

ere run on an Ubuntu 16.04 desktop with a 64-bit Intel Xeon 

rocessor (2.3 GHz). The execution time of UnSWASH needed for 

he current case appeared to be about 108 CPU minutes, with the 

ighest level of resource required by the solution of the pressure 

oisson equation. Furthermore, the total CPU time per grid cell 

er time step required for UnSWASH was approximately 2.7 μs, 

hereas for the regular-grid SWASH was about 1.8 μs. This increase 

n the computation time is probably due to the overhead related 

o unstructured mesh data structure access, causing low cache ef- 

ciency. It is clear that high-resolution UnSWASH must utilize HPC 

esources in order to be scalable and efficient. A parallel code will 

e build using message-passing paradigms and will be tested on 

 commodity computer cluster. This will be reported in a future 

aper. 

p

8 
Attention is turned next to the comparison between the com- 

uted and observed normalised wave heights shown in Fig. 3 . 

Wave heights were measured along eight transects at regular 

ntervals (see [48] for details), of which four interesting ones are 

onsidered in the present study. The wave focussing in the wake of 

he shoal (transects 2 and 4), the wave shoaling and refraction on 

he slope (transects 6 and 7), and the interference pattern caused 

y diffraction (transect 4) are well captured by the model, despite 

he use of low-order discretizations. In addition, these results are 

n good agreement with previously computed results discussed by 

telling and Zijlema [30] . 

.4. Breaking waves over a barred topography 

The laboratory flume test of Boers [49] is considered with ran- 

om waves propagating over a barred sandy beach (see Fig. 4 ). 

The case 1C is discussed with waves generated at the wave- 

aker based on a target JONSWAP spectrum with a significant 

ave height of 0.103 m and a peak period of 3.33 s. This case has a

elatively low wave steepness, while waves shoal over the sloping 

ottom until they break in the surf zone. For detailed analysis on 

his test case including the infragravity wave dynamics, see Rijns- 

orp et al. [47] . 

The computational domain is 32 m long and 1 m wide. The 

on-uniform unstructured grid employed in the present test case 

onsists of approximately 12,0 0 0 triangles with the cell size vary- 

ng in between 0.2 m offshore and 0.01 m near the coast. This 

esh resolution should provide an economical representation of 

he bathymetric variability in the considered area, while the nu- 

erical approach must remain accurate in the presence of rela- 

ively large depth gradients. An initial time step of 0.004 s was 

aken with a maximum Courant number of 0.5. This time step 

urned out to be unchanged throughout the simulation. Since the 

resent simulation is depth averaged, the so-called hydrostatic 
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Fig. 3. Computed (solid line) and measured (circles) relative wave heights along four transects for the wave over submerged shoal. H 0 is the incident wave height. 

Fig. 4. Bottom topography and location of the selected wave gauges of the experiment of Boers [49] . 

Fig. 5. Computed and measured significant wave heights (left panel) and mean wave periods (right panel) along the flume for Boers 1C. Bullets: experimental data; solid 

line: UnSWASH. 
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ront approximation (HFA) of Smit et al. [46] is employed. Imple- 

entation details can be found in Appendix B . Furthermore, a fric- 

ion coefficient c f = 0 . 001 was adopted. At the offshore boundary, 

 weakly reflective condition is imposed based on the recorded 

ime series of surface elevation at the most seaward located wave 

auge. 

Fig. 5 compares the computed and observed significant wave 

eights H m 0 = 4 
√ 

m 0 and mean wave periods T m 01 = m 0 /m 1 of 

hort waves. 

The moments m n = 

∫ 
f n E( f ) df are computed from the energy 

ensity spectra E ( f ) (with f frequency) of the surface elevation. 

learly, the trend of the integral wave parameters throughout the 

omain is well reproduced by the model. 
9 
Next, we compare the computed wave spectra with the ob- 

erved ones in Fig. 6 . 

The location of the selected wave gauges is indicated in Fig. 4 . 

oth the generation of higher harmonics and the transfer of energy 

owards low frequencies are properly predicted. Also, the energy 

oss at the mid- to high-frequency range due to wave breaking is 

esolved quite accurately. In general, the model is able to predict 

he primary characteristics of the spectral evolution, both in the 

hoaling region and the surf zone. 

Though the potential of the present low-order unstructured 

taggered mesh method is clearly demonstrated, the results can be 

urther improved by using two vertical layers [46] . Extension of the 
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Fig. 6. Observed (thick line) and predicted (thin line) energy density spectra at selected gauges of shoreward propagating waves for case 1C of Boers [49] . 

Fig. 7. Schematic views of the conical island experiment. Plane view of the wave 

basin and the island (top panel) and side view of the island along section A - A 

(bottom panel). 
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Fig. 8. Non-uniform mesh used for the conical island test case with local refine- 

ment towards the island. 

d

w

l

o

i

nstructured-mesh version of SWASH to include vertical resolution 

ill be done in the future work. 

.5. Runup of waves on a conical island 

In this last test case the runup of a solitary wave around a con- 

cal island is discussed. The experimental configuration of Briggs 

t al. [50] is selected and is depicted in Fig. 7 . Surface elevations

ere recorded using wave gauges at eight different locations as in- 
10 
icated in the figure. This benchmark is challenging, because of the 

etting and drying cycles while waves run up and down on the is- 

and. 

The grid used to obtain accurate wave runup and inundation 

n the island contains approximately 171,0 0 0 triangular cells and 

s locally refined near the island, see Fig. 8 . 
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Fig. 9. Comparison with the data of Briggs et al. (1995) for the runup on a conical island: H = 0 . 045 d (left panel), H = 0 . 096 d (middle panel), and H = 0 . 181 d (right panel). 

Time histories of surface elevation at selected gauges around the island are shown. Dashed line: experimental data; solid line: UnSWASH. 
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The largest grid size away from the island is 0.4 m, whereas the 

mallest size is around 0.01 m. Subsequently, a solitary wave with 

iven height H was imposed at the western boundary. 

Three wave conditions are considered in the present study: 

 = 0 . 045 d, H = 0 . 096 d and H = 0 . 181 d with d = 0 . 32 m the still

ater depth of the basin (cf. Fig. 7 ). The corresponding cases were 

imulated with UnSWASH using the following settings. The ini- 

ial time step was 0.001 s with the maximum CFL of 0.8 for 

he first two cases, whereas for the last severe case they were 

.0 0 05 s and 0.5, respectively. The simulation period was set to 

5 s for all cases. Since wave breaking was observed on the lee 

ide of the island for the case H = 0 . 181 d, the HFA is applied

ccordingly. 

Fig. 9 provides a comparison between the model results and the 

easured data at the selected gauges. The observed surface eleva- 

ions are very well predicted by the UnSWASH model. 

In particular, the computed arrival time and height of the in- 

oming wave agrees with the measured data. There is, however, 

 phase shift observed in the peak at gauge 22, especially for 

he case H = 0 . 181 d. This known issue can be resolved by in-

luding two vertical layers in the model. Finally, it is worth not- 

ng that the model results are consistent with previously obtained 

esults for the structured mesh case [24] . The associated mesh 

s uniform with a grid size of 0.05 m and the number of grid 

ells is approximately twice as large as that of the unstructured 

rid. 

. Conclusions 

An extension of the wave-flow model SWASH to unstructured 

riangular meshes has been discussed. The main motivation for 

he application of such meshes for the simulation of wave dynam- 

cs is the ease of local grid refinement. The covolume method has 
11 
een adopted for the spatial discretization of the depth-integrated 

hallow water equations with the primitive variables. The velocity 

omponents normal to the cell faces are employed as the primary 

nknowns in the discretization. To account for wave dispersion the 

on-hydrostatic pressure is included. 

The covolume method has the great benefit of allowing to con- 

truct finite difference discretizations that mimic desirable prop- 

rties of PDEs (e.g. topology, conservation, jump relation) while 

eeping the computational stencil compact. This significantly im- 

roves both the robustness and the efficiency of SWASH. In addi- 

ion, mimetic discretizations routinely enable physically meaning- 

ul results to be obtained on relatively coarse meshes. 

Still, the application of the covolume scheme is practically lim- 

ted to Delaunay-Voronoi meshes, which may impede the user flex- 

bility to generate adequate grids comprising the necessary refine- 

ents. However, the associated orthogonality requirement is found 

ot to be a limiting factor in wave-related applications. This is ex- 

lained by the fact that the required mesh resolution is reasonably 

on-uniform for the scale of wave dynamics across the entire do- 

ain. 

A robust and efficient upwind-biased scheme has been pro- 

osed. The scheme complies with the Rankine-Hugoniot jump re- 

ations and is specifically designed with a view to preserving the 

ocal momentum flux. This is crucial to the simulation of break- 

ng waves and unsteady bores. This has been demonstrated by the 

am break test case. 

The proposed method is generally first order accurate on non- 

niform meshes. Despite this fact, the model is capable of re- 

roducing essential wave processes, including shoaling, refrac- 

ion, diffraction, nonlinear interactions, depth-induced breaking 

nd wave runup, owing to the mimetic nature of applied dis- 

retizations and the use of locally fine grids. This has been verified 

y the three test applications presented in this paper. 
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ppendix A. Proof of momentum conservation 

The objective of this appendix is to demonstrate that recurrent 

elation (12) does not produce a momentum conservation error, 

iven a uniform bed and a zero bed friction. Using Eq. (7) , we ob-

ain the following finite difference form 

s f 
du f 

dt 
+ 

�s c 
L 

, f 

A c 
L 

[
Q k 1 

˜ h f 

(
u f − u c 

L ,k 1 

)
+ 

Q k 2 

˜ h f 

(
u f − u c 

L ,k 2 

)]
· n f 

= −
(

P c 
R 

− P c 
L 

)
(14) 

here 

 c = 

1 

2 ̃

 h f 

(
gh 

2 
c + h c p c 

)
s the depth-averaged total pressure at the circumcentre. Discrete 

omentum conservation can be expressed as the rate of change 

n the total amount of momentum h u within a control volume is 

ue only to the net flux through the edges of the volume. Since 

he normal face velocity u f is the primary unknown, interpolation 

ust be employed to obtain the momentum at a single location 

ithin the mesh. To this end, the mesh cell is treated as the con- 

rol volume. Subsequently, we derive an equation for the cell-based 

omentum vector using Perot’s interpolation scheme (8) . Finally, 

ummation of its flux contributions over the cell faces must lead 

o a discrete equivalent of the momentum equation in divergence 

orm, which completes the proof. This formal procedure of proof 

tilizes the geometric properties of the mesh and is also applica- 

le to Cartesian staggered schemes (see, e.g. [14,33] ). 

First, Eq. (14) is rewritten as 

�s c L , f + �s c R , f 

) du f 
dt 

+ 

(
�s c L , f c c L + �s c R , f c c R 

)
· n f 

= −( P c R − P c L ) 

ith 

 c = 

1 

A c 

∑ 

k ∈ S c 
αc,k 

Q k 

˜ h f 

(
ˆ u k − u f 

)
(15) 

he cell-based discretization of the advection term evaluated for 

he two cells adjacent to face f . Note that the transported veloc- 

ty ˆ u k is interpolated from face normal components from the cell 

pwind of face k . As a consequence, c c R 

· n f = 0 if u f > 0, and like-

ise, c c L 
· n f = 0 if u f < 0. Next, the discretized equation is mul-

iplied by the normal of the face n f and its length l f , and subse-

uently summed over the faces of cell c ∑ 

f∈ S c 
n f l f 

(
�s c 

L 
, f + �s c 

R 

, f 

)
du f 

dt 
+ 

∑ 

f∈ S c 
l f 

(
�s c 

L 
, f c c L 

+ �s c 
R 

, f c c R 

)

12 
· n f n f = −
∑ 

f∈ S c 
n f l f 

(
P c 

R 

− P c 
L 

)
We now demonstrate conservation of momentum by transform- 

ng the above equation into an equation for the cell-based mo- 

entum vector u . Each interior face is shared by two triangular 

ells of which one contributes to the cell under consideration. Fur- 

hermore, at the boundary face a flux of momentum is prescribed. 

irst, the rate of change in momentum can be recasted as 

 

f∈ S c 
n f l f �s c, f 

du f 

dt 
= 

d 

dt 

∑ 

f∈ S c 
n f l f �s c, f u f = A c 

du c 

dt 

ollowing from Eq. (8) . This holds for all cells in the computational 

esh. 

Next, the advective acceleration term can be rearranged with 

he aid of the following geometric identity 
 

f∈ S c 
l f �s c, f n f n f = A c I 

ith I the identity matrix. This identity follows from the diver- 

ence theorem [14] . Then, using Eq. (15) , the advection term can 

e expanded as ∑ 

f∈ S c 
l f �s c, f c c · n f n f = c c ·

∑ 

f∈ S c 
l f �s c, f n f n f = c c · I A c = A c c c 

= 

∑ 

k ∈ S c 
αc,k 

Q k 

˜ h f 

(
ˆ u k − u f 

)
hich conserves momentum in the considered cell since αc R 

,k = 

αc L ,k 
at each interior face k . This implies that the sum of con- 

ributions to the left and right cells cancels the advective flux at 

ace k . This holds for all cells except the boundary cells where 

he change in momentum is due to the fluxes across the bound- 

ry faces. 

Finally, the pressure term in the interior cell can be rewritten 

s 
 

f∈ S c 
n f l f P c = −P c 

∑ 

f∈ S c 
n c, f l f = 0 

y noting that the pressure gradient is aligned with the flow di- 

ection and the cell has a closed surface. In case the cell under 

onsideration is a boundary cell, then 

 

f∈ S c 
n f l f P c = 

∑ 

f∈ S c 
n c, f l f P f 

ith P f the contribution to the prescribed momentum flux. 

In short, by rewriting the finite difference form (14) into a dis- 

rete equation in divergence form without introducing any other 

pproximation, we have shown that it does not create or destroy 

omentum in each individual mesh cell of the computational do- 

ain. This implies that the computed amount of momentum can 

nly change as a result of a non-zero net momentum flux over the 

oundary of the domain, a non-uniform bed, or a non-zero bed 

riction. 

ppendix B. Hydrostatic front approximation 

Due to coarse vertical resolutions some measures are required 

o properly approximate wave breaking. They are introduced with 

he HFA technique of Smit et al. [46] . In principle, to initiate the 

nset of the breaking process at low resolutions, a steep bore-like 

ave front is tracked and subsequently a hydrostatic pressure dis- 

ribution is imposed locally. Furthermore, the HFA requires the in- 

lusion of the diffusion term in momentum equation (4) , as fol- 

ows 

∂hu f + · · · = · · · + 

[∇ ·
(
νHFA 

h ∇u 

)]
· n f 
∂t 
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∂v 
∂x 

)2 

(16) 

he horizontal viscosity coefficient and � = μh the typical length 

cale of horizontal mixing which is related to a fraction of the local 

epth ( μ < 1). The diffusion term is added locally once the HFA is 

ctivated (see [46] for details). 

The spatial discretization of momentum diffusion is in line with 

he one described in Fringer et al. [22] . Eq. (6) is extended accord- 

ngly 

s f 
d ̃ h f u f 

dt 
+ · · · = · · · + 

(
�s c 

L 
, f d c 

L 
+ �s c 

R 

, f d c 
R 

)
· n f 

here d c is the cell-based diffusion vector, and is approximated as 

ollows 

 c = 

1 

A c 

∫ 
c 

∇ ·
(
νHFA 

h ∇u 

)
dA = 

1 

A c 

∮ 
∂c 

νHFA 

h ∇u · n c dl 

≈ 1 

A c 

∑ 

k ∈ S c 
αc,k νHFA ,k 

˜ h k l k 

u c 
R ,k 

− u c 
L ,k 

�s k 

ith u c,k the cell-based velocity vector evaluated in cell c of face 

 by means of Eq. (8) . Next, the derivatives in Eq. (16) are approx-

mated in the two vertices of face k using Gauss’ divergence the- 

rem applied on the centroid dual constructed by joining the cir- 

umcentres surrounding the vertex under consideration. Here, we 

ake use of the velocity components u and v at the circumcen- 

res. Finally, the viscosity coefficient at the face midpoint νHFA, k is 

pproximated with the arithmetic averaging between the two ver- 

ices. 
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