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Abstract: Land administration constitutes the socio-technical systems that govern land tenure, use,
value and development within a jurisdiction. The land parcel is the fundamental unit of analysis.
Each parcel has identifiable boundaries, associated rights, and linked parties. Spatial information is
fundamental. It represents the boundaries between land parcels and is embedded in cadastral sketches,
plans, maps and databases. The boundaries are expressed in these records using mathematical or
graphical descriptions. They are also expressed physically with monuments or natural features.
Ideally, the recorded and physical expressions should align, however, in practice, this may not
occur. This means some boundaries may be physically invisible, lacking accurate documentation,
or potentially both. Emerging remote sensing tools and techniques offers great potential. Historically,
the measurements used to produce recorded boundary representations were generated from
ground-based surveying techniques. The approach was, and remains, entirely appropriate in many
circumstances, although it can be timely, costly, and may only capture very limited contextual
boundary information. Meanwhile, advances in remote sensing and photogrammetry offer improved
measurement speeds, reduced costs, higher image resolutions, and enhanced sampling granularity.
Applications of unmanned aerial vehicles (UAV), laser scanning, both airborne and terrestrial (LiDAR),
radar interferometry, machine learning, and artificial intelligence techniques, all provide examples.
Coupled with emergent societal challenges relating to poverty reduction, rapid urbanisation, vertical
development, and complex infrastructure management, the contemporary motivation to use these new
techniques is high. Fundamentally, they enable more rapid, cost-effective, and tailored approaches
to 2D and 3D land data creation, analysis, and maintenance. This Special Issue hosts papers
focusing on this intersection of emergent remote sensing tools and techniques, applied to domain of
land administration.

Keywords: UAV; LiDAR; automated feature extraction; cadaster; land registration; land use
planning; SDGs

1. Introduction

Land administration is the process of recording, securing, and disseminating information about
land tenure, value, use, and development, within a jurisdiction [1]. As a study area, soft systems
methodology, socio-technical systems, and geo-information science provide contemporary theoretical
foundations [2]. Conventionally, the primary unit of concern is the land parcel-a multi-dimensional
spatial extent, with associated rights, and a party who is said to hold those rights [3]. In practice,
land administration aggregates all the land parcel information into a system, enabled through the
mandate of prescribed administrative roles, processes, and supportive technologies [4]. The functioning
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system enables land dispute resolution, transaction controls, credit access, land transfer, land valuation,
land taxation, changes in land use, and development decisions [5]. Modern land administration
systems utilize information technology: existing paper records are digitized, manual recording and
dissemination processes digitalized, with all aspects being constituted into a publicly accessible land
information system [6].

In more developed contexts, land administration systems have generally developed, over the
centuries, from narrowly purposed land registries and cadastres, into whole-of-jurisdiction
multi-purpose systems, to support the contemporary policy objectives of good governance and
sustainable development [7,8]. In developing contexts, much effort is afforded in establishing or
renewing systems. Challenges stemming from anachronous colonial-era systems; limited techniques
for recording customary forms of tenure; the lack land rights records of women; the want of legal
documentation for the legitmate rights of the poor and vulnerable; and scarce technical skills and
capacity—all conspire to impede responsible land administration development [9–11]. Meanwhile,
all systems, regardless of the country context, are challenged by the emergent demands of rapid
urbanization, climate-change response, digital transformation (and e-services), gender equality,
and demands for openness and transparency [12,13]. In practical terms, this results in research,
development and implementations relating to 3D (and 4D) cadastres [14,15], domain standardization
and interoperability [3,16,17] (e.g., ISO 19152 Land Administration Domain Model LADM and
ISO TC211), land rights fractionalization and new database structures [18] (e.g., big data analytics,
NoSQL, and blockchain), fit-for-purpose land administration [19], and novel land data collection
approaches [20–22].

The abovementioned developments confirm spatial information is a central concern of land
administration systems. Spatial information delineates the boundaries between lands parcels.
These boundaries can be ‘general’ or ‘fixed’ in nature [1]. To be recognized, the boundaries require
‘perception’ of existence by a community; an explicitly defined ‘purpose’; an actual or physical field
‘presence’, a defined ‘period-in-time’ of application, and a ‘presentation’ or documented representation
(which may be digital) [23]. More recently, clarification of the interrelationship between the physical,
documented, and digital aspects is provided [24,25].

Conventionally, ground-based survey methods, often underpinned by local or national geodetic
networks, support making observations, demarcating boundaries, and surveying boundary information.
This in turn enables the derivation of boundary coordinates [24]. These coordinates enable a parcel to be
recorded and represented on survey sketches, cadastral plans, cadastral maps, and in the contemporary
era, cadastral databases. Over time, surveying tools and techniques have improved: rudimentary
rope surveys, plane table usage, theodolite application, and electronic distance measurement (EDM),
have given way to total stations and high-precision global navigation satellite systems (GNSS) (Note:
whilst the survey and receiver are ground-based, the space segment (i.e. GNSS satellites) are not) [1,8].
These approaches have been argued to deliver the prescribed coordinate accuracies, often set, it must
be said, overly bluntly, at centimeter-level in surveying laws and regulations [19].

More recently, increasing attention is afforded to applying advances in photogrammetry and remote
sensing to the domain land administration. In the context of land administration, these approaches
are considered ‘indirect’ surveying techniques, in contrast to ‘direct’ or ground-based methods [26].
Photogrammetry is the techniques and tools for extracting multi-dimensional geospatial information
from images, needed for mapping activities [27]. Remote sensing is the process of scanning or
monitoring the physical characteristics of the surface of the earth, measuring the emitted radiation at a
distance. For this purpose, cameras, sensors or scanners with RGB (red, green, blue), hyperspectral,
LiDAR (light detection and ranging), or RADAR (radio detection and ranging) capabilities are used.
These sensors can be mounted on conventional aerial vehicles (i.e., airplanes), space-borne satellites
(i.e., enabling high and very-high resolution satellite imagery (HRSI and VHRSI), unmanned aerial
vehicles (UAVs), amongst others [28]. It is worth noting that whilst application of photogrammetry and
remote sensing to land administration has a lengthy history [29], it is the novel tools and techniques
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emerging in those fields that drive renewed and increased interest. These are specifically focused on
the transfer of ‘cadastral intelligence’ from human actors to machines [30], and make use of enhanced
image processing tools, artificial intelligence, and machine learning techniques [31].

The abovementioned developments in remote sensing and photogrammetry, applied to land
administration, are the focus of this special issue. The aim is to provide a snapshot of contemporary
experimentations, demonstrations, implementations, and impacts from a diverse range of case contexts.
From a broad perspective, the special issue presents: (i) comparisons of alternate remote sensing
techniques for 2D and 3D data capture relevant to land administration (including UAV imagery,
VHRSI, RADAR, LiDAR, and multi-spectral approaches); (ii) design and testing of techniques for 2D
and 3D cadastral feature extraction from remotely-sensed data sources (including machine learning,
pattern recognition, neural networks, semi-automated methods, algorithm design, and object-based
approaches); (iii) modelling of data production workflows for scaled 2D and 3D cadastral production
(including segmentation techniques, line extraction, contour generation, and pre/post-processing
requirements); and (iv) observations from illustrative cases highlighting leading practices in data
integration and utilization for 2D and 3D land administration (including both city, provincial,
and national level examples). More specifically, the special issue consists of nine (9) individual
works; developed by multi-disciplined research and practitioner teams; across Europe, Asia, and Africa;
variously using qualitative and quantitative research methods with a diversity of daya sources; all with
reference back to land administration applications (Table 1). The next section outlines each work and
synthesizes the overarching contribution of the special issue.

Table 1. Remote sensing applications for land administration presented in this issue.

Source Title Country Applications Techniques Data

Park and
Song

Discrepancy Analysis for
Detecting Candidate Parcels
Requiring Update of Land
Category in Cadastral Map
Using Hyperspectral UAV

Images: A Case Study in Jeonju,
South Korea

South Korea

Automated land
use classification;
land tenure and

cadastral
updating; land

value

Convolutional neural
network (CNN);

Inconsistency
comparison

UAV
hyperspectral;
cadastral map

Koeva et al.
Innovative Remote Sensing

Methodologies for Kenyan Land
Tenure Mapping

Kenya
Land tenure and

cadastral
mapping

UAV survey; Machine
learning; Nominal

Group Technique (NGT);
Semi-Structured

Interviews;
Questionnaires; Group

Discussion

UAV RGB; sketch
maps; human
perceptions

Lee and De
Vries

Bridging the Semantic Gap
between Land Tenure and EO

Data: Conceptual and
Methodological Underpinnings

for a Geospatially Informed
Analysis

North Korea
Land tenure and

cadastral
mapping; land

use change

Research synthesis;
Manual image
interpretation

HRSI and aerial
RGB (Google

Earth); Landsat7;
academic
literature

Crommelinck
et al.

Application of Deep Learning
for Delineation of Visible

Cadastral Boundaries from
Remote Sensing Imagery

Ethiopia,
Kenya,

Rwanda

Land tenure and
cadastral
mapping

Image segmentation
(MCG); machine

learning (RF and CNN)

Aerial RGB UAV
RGB; cadastral

map

Koeva et al.
Towards 3D Indoor Cadastre

Based on Change Detection from
Point Clouds

The
Netherlands

Land tenure and
cadastral
updating

Point cloud change
detection techniques

Point clouds
(mobile mapping

system,
Zeb-Revo); Riegl;

architectural
plans

Yan et al.
Towards an Underground

Utilities 3D Data Model for
Land Administration

Singapore

Land tenure and
cadastral

mapping; land
use and

development

3D modelling and
visualisation

Stream EM GPR
and Leica

Pegasus Two
photo and laser
scanning data;
cadastral data

Xia et al.
Deep Fully Convolutional

Networks for Cadastral
Boundary Detection from UAV

Images
Rwanda

Land tenure and
cadastral

mapping and
updating

Machine learning; Fully
Convolutional Network
(FCN); Multi-Resolution

Segementation (MRS);
Globalized Probability

of Boundary (gPb)

UAV RGB;
cadastral map
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Table 1. Cont.

Source Title Country Applications Techniques Data

Fetai et al.
Extraction of Visible Boundaries
for Cadastral Mapping Based on

UAV Imagery
Slovenia

Land tenure and
cadastral

updating and
mapping

Exelis Visual
Information Solutions

(ENVI) feature
extraction

UAV RGB; GNSS;
cadastral map

Claudia
Stöcker et al.

Unmanned Aerial System
Imagery, Land Data and User

Needs: A Socio-Technical
Assessment in Rwanda

Rwanda

Land Use; Land
Tenure; Land
Development

Cadastral
Updating

NGT; interviews;
workshop; UAV survey

UAV RGB; GNSS;
cadastral map

2. Overview of Contributions

The works making up this Special Issue are presented in reverse chronological order of acceptance.
This was considered the most straight forward approach to administer and was also deemed to be the
most unbiased. Further justification lies in the fact that whilst there are demonstratable clusters of
like-contributions in terms of geographic focus, applications, techniques, and data used, the number of
contributions (9) is not considered onerous to comprehend, and each individual work brings its own
unique contribution.

First, inspired to deliver an alternative to ground-based surveying for the collection of
non-boundary cadastral information, Park and Song [32] present a study aimed at remote identification
of the discrepancy between existing cadastral maps (which include use information), and current
on-ground land uses. The proposed method involves updating the existing land cover attributes of
a land parcel maps using UAV hyperspectral imagery classified using CNN, and then composing a
discrepancy map showing land use differences. The experimental results out of South Korea demonstrate
performance relies heavily on the classification. An advantage of the approach is suggested to be
its flexibility regarding modification of the matching criteria between land use categories and land
coverage. The authors argue the method could be applied in other contexts and could significantly
reduce the time and effort for land use monitoring and field surveying.

Second, Koeva et al. [33] introduce a suite remote sensing approaches, developed, adapted,
applied, and tested for the case of land tenure recording in Kenya. These include a unique ontological
analysis approach using smart sketch maps (SmartSkeMa); UAV application; and automatic boundary
extraction techniques, based based on the acquired UAV images. To ensure applicability of the proposed
methodologies, local community needs and the broader governance implications are examined. For the
case location of Kajiado, the results show that SmartSkeMa requires little expertise for immediate
use, UAVs have high potential for creating up-to-date base maps, and automatic boundary extraction
appears an effective method for demarcation of visible tenure boundaries, even compared to traditional
methodologies and manual delineation.

Third, Lee and de Vries [34] seek to bridge the semantic gap between land tenure concepts
and remotely sensed or earth observation (EO) data. Specifically, they investigate the circumstances
where it is possible to rely on EO data to inform land administration applications, such as cadastral
mapping and land use change monitoring. Based on reviews of available EO data sources and
techniques, they hypothesize that it is possible to both qualify and quantify specific types of land tenure.
Furthermore, Lee and de Vries aim to standardize the identification and categorization of certain
objects, environments, and semantics visible in EO data that can support (re-)interpretation of land
tenure relations. Using North Korean as a case location, they illustrate that land tenure information,
in conjunction with EO data and image interpretation, support land administration practice.

Fourth, in a continuation of earlier work, Crommelinck et al. [35] present results from a semi-automatic
boundary delineation workflow, comprising image segmentation, boundary classification and an
interactive delineation based on UAV data. The application of CNN for boundary line classification is
shown to eliminate the previous need for Random Forest (RF) feature generation, and delivers a 71%
accuracy result. For the interactive delineation component, more intuitive delineation functionalities,
covering more application cases, are presented for large data sets in Kenya, Rwanda, and Ethiopia.
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The results show that the new approach is more effective in terms of minimizing clicks and time
requirements, compared to manual delineation of visible parcels boundaries. The most significant
advantages are observed for rural areas, where the delineation effort per parcel requires 38% less time
and 80% fewer clicks, compared to manual delineation.

Fifth, Koeva et al. [36] investigate the emerging areas of 3D cadastres and indoor boundary
recording. They demonstrate that most 3D cadastre research has focused on interrelations at the level of
buildings and infrastructures: analysis of interrelations in terms of indoor spaces has yet to be adequately
explored. The promising research illustrates the opportunity to use 3D point clouds to establish 3D
cadastral boundary data in indoor environments. The internal geometry changes of a building,
temporally speaking, can be automatically detected from point clouds. The geometry changes can be
linked with a data model such as LADM and included in a 3D spatial database, to support updating a
3D cadastre. The permanent changes (e.g., to walls and rooms) are automatically distinguished from
dynamic changes (e.g., human, furniture) and are able to be linked to the space subdivisions.

Sixth, Yan et al. [37] head below the surface to tackle the issue of underground land tenure mapping
and land use recordation. Increasing urban density and activity is resulting in public infrastructures
moving underground. However, precise and detailed spatial information of underground infrastructure,
the ownership of those underground objects, and knowledge on the interdependence of infrastructures
below and above the ground is still often missing. The research explores how to create reliable 3D
underground utility network maps for use in land administration. They investigate current issues
pertaining to existing underground utility databases, using Singapore as a case study. A framework
for underground utility data governance is proposed to manage the work process from data capture to
data usage. An initial design of the 3D underground utility data model is introduced. It describes 3D
geometric and spatial information about underground utilities data, and connects it to the cadastral
parcel for land administration. Additionally, data from mobile Ground Penetrating Radar is integrated
with the existing utility data in a 3D model in support of land administration of underground utilities.

Seventh, Xia et al. [38] explore the potential of deep FCNs for the novel application of cadastral
boundary detection in urban and semi-urban areas, based on UAV images. They test the performance
of FCNs against other state-of-the-art machine learning techniques, including MRS and gPb, in two
case study sites in Rwanda. Experimental results show that FCNs outperformed MRS and gPb in both
study areas and achieved an average accuracy of 0.79 in precision, 0.37 in recall and 0.50 in F-score.
Therefore, they are able to effectively extract cadastral boundaries, especially when a large proportion
of cadastral boundaries are visible. This automated method could minimize manual digitization and
reduce fieldwork, thus facilitating the current cadastral mapping and updating practices.

Eigth, Fetai et al. [39] seek to further developments on automated boundary extraction, based on
the use of high-resolution optical sensors mounted on UAV platforms. They investigate the potential
of the ENVI feature extraction (FX) module for data processing using Slovenia as a case location.
The results of the accuracy assessment showed that almost 80% of the extracted boundaries are correct,
when compared to the reference data. Fetai et al. argue the proposed workflow has the potential to
accelerate and facilitate the creation of cadastral maps, especially for developing countries. However,
they caution that the boundaries must be validated by landowners and other beneficiaries after
being extracted.

Finally, in a detailed socio-technical study for Rwanda, Stöcker et al. [40] determine the overarching
alignment between land administration stakeholder perceptions, the characteristics of the UAV data
acquisition workflows, and the final spatial data products obtainable. Additionally, three different
UAVs are tested for the quality of data obtainable and the possibilities for using of the technology within
the current institutional setting. A priority list of needs for cadastral and non-cadastral information,
as well as insights into operational challenges, and data quality measures, of UAV-based data products
is presented. It is concluded from the results that UAVs match most of the prioritized needs in Rwanda.
However, it is also revealed that institutional and capacity conditions undermine the potential.
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Overall, the selected works in this Special Issue demonstrate the growing opportunities for
applying innovations in remote sensing and photogrammetry (including laser scanning) to the domain
of land administration. This applies to outdoor, indoor, underground, and above ground environments.
The opportunities highlighted cover a wide range of land administration applications, from 2D land
tenure data capture, cadastral updating, land use classification in developing contexts, through to
underground utilities administration, 3D cadastral development, and indoor boundary identification
in more developed contexts. The range of available and applicable remotely sensed data types and
techniques is shown to be highly relevant to the land sector, and this should encourage further fusion
of the disciplines into the future.
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2. Çağdaş, V.; Stubkjær, E. Doctoral research on cadastral development. Land Use Policy 2009, 26, 869–889.

[CrossRef]
3. Lemmen, C.; Van Oosterom, P.; Bennett, R. The land administration domain model. Land Use Policy 2015, 49,

535–545. [CrossRef]
4. Enemark, S.; Williamson, I.; Wallace, J. Building modern land administration systems in developed economies.

J. Spat. Sci. 2005, 50, 51–68. [CrossRef]
5. Henssen, J. Land Registration and Cadastre Systems: Principles and Related Issues. In Lecture Notes of

Technische Universität München; Technische Universität München: München, Germany, 2010.
6. Bennett, R.; Wallace, J.; Williamson, I. Organising land information for sustainable land administration.

Land Use Policy 2008, 25, 126–138. [CrossRef]
7. Williamson, I.; Ting, L. Land administration and cadastral trends—A framework for re-engineering.

Comput. Environ. Urban Syst. 2001, 25, 339–366. [CrossRef]
8. Williamson, I.; Enemark, S.; Wallace, J.; Rajabifard, A. Land Administration for Sustainable Development;

ESRI Press Academic: Redlands, CA, USA, 2010.
9. Zevenbergen, J.; De Vries, W.; Bennett, R.M. (Eds.) Advances in Responsible Land Administration; CRC Press:

Boca Raton, FL, USA, 2015.
10. Zevenbergen, J.; Augustinus, C.; Antonio, D.; Bennett, R. Pro-poor land administration: Principles for

recording the land rights of the underrepresented. Land Use Policy 2013, 31, 595–604. [CrossRef]
11. Hendriks, B.; Zevenbergen, J.; Bennett, R.; Antonio, D. Pro-poor land administration: Towards practical,

coordinated, and scalable recording systems for all. Land Use Policy 2019, 81, 21–38. [CrossRef]
12. Bennett, R.; Rajabifard, A.; Williamson, I.; Wallace, J. On the need for national land administration

infrastructures. Land Use Policy 2012, 29, 208–219. [CrossRef]
13. Bennett, R.; Rajabifard, A.; Kalantari, M.; Wallace, J.; Williamson, I. Cadastral futures: Building a new vision

for the nature and role of cadastres. In Proceedings of the FIG Congress, Sydney, Australia, 11–16 April 2010;
pp. 11–16.

14. van Oosterom, P.; Bennett, R.; Koeva, M.; Lemmen, C. 3D Land Administration for 3D Land Uses.
Land Use Policy 2020, 104665. [CrossRef]

15. Stoter, J.E.; van Oosterom, P. 3D Cadastre in an International Context: Legal, Organizational, and Technological
Aspects; CRC Press: Boca Raton, FL, USA, 2006.

16. ISO. Geographic Information—Land Administration Domain Model (LADM); International Standard ISO 19152;
ISO: Geneva, Switzerland, 2012.

http://dx.doi.org/10.1016/j.landusepol.2008.10.012
http://dx.doi.org/10.1016/j.landusepol.2015.01.014
http://dx.doi.org/10.1080/14498596.2005.9635049
http://dx.doi.org/10.1016/j.landusepol.2007.03.006
http://dx.doi.org/10.1016/S0198-9715(00)00053-3
http://dx.doi.org/10.1016/j.landusepol.2012.09.005
http://dx.doi.org/10.1016/j.landusepol.2018.09.033
http://dx.doi.org/10.1016/j.landusepol.2011.06.008
http://dx.doi.org/10.1016/j.landusepol.2020.104665


Remote Sens. 2020, 12, 2497 7 of 8

17. Shnaidman, A.; van Oosterom, P.; Lemmen, C. LADM Refined Survey Model. In Proceedings of the 8th Land
Administration Domain Model Workshop, Kuala Lumpur, Malaysia, 1–3 October 2019; van Oosterom, P.,
Lemmen, C., Rahman, A.A., Eds.; FIG International Federation of Surveyors: Copenhagen, Denmark, 2019;
pp. 73–82.

18. Bennett, R.M.; Pickering, M.; Sargent, J. Transformations, transitions, or tall tales? A global review of
the uptake and impact of NoSQL, blockchain, and big data analytics on the land administration sector.
Land Use Policy 2019, 83, 435–448. [CrossRef]

19. Enemark, S.; Bell, K.C.; Lemmen, C.H.; McLaren, R. Fit-for-Purpose Land Administration; International
Federation of Surveyors (FIG): Copenhagen, Denmark, 2014.

20. Koeva, M.; Bennett, R.; Gerke, M.; Crommelinck, S.; Stöcker, C.; Crompvoets, J.; Ho, S.; Schwering, A.;
Chipofya, M.; Schultz, C.; et al. Towards innovative geospatial tools for fit-for-purpose land rights mapping.
In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives,
Proceedings of the ISPRS Geospatial Week 2017, Wuhan, China, 18–22 September 2017; ISPRS: Hannover, Germany,
2017; Volume 42, pp. 37–43.

21. Asiama, K.; Bennett, R.; Zevenbergen, J. Participatory land administration on customary lands: A practical
VGI experiment in Nanton, Ghana. ISPRS Int. J. Geo Inf. 2017, 6, 186. [CrossRef]

22. Lengoiboni, M.; Richter, C.; Zevenbergen, J. Cross-cutting challenges to innovation in land tenure
documentation. Land Use Policy 2019, 85, 21–32. [CrossRef]

23. Bennett, R.; Kitchingman, A.; Leach, J. On the nature and utility of natural boundaries for land and marine
administration. Land Use Policy 2010, 27, 772–779. [CrossRef]

24. Bennett, R.M.; Molen, P.V.; Zevenbergen, J.A. Fitted, Green, and Volunteered: Legal and Survey Complexities
of Future Boundary Systems. Geomatica 2012, 66, 181–193. [CrossRef]

25. Grant, D.; Enemark, S.; Zevenbergen, J.; Mitchell, D.; McCamley, G. The Cadastral triangular model.
Land Use Policy 2020, 97, 104758. [CrossRef]

26. Crommelinck, S.; Bennett, R.; Gerke, M.; Nex, F.; Yang, M.Y.; Vosselman, G. Review of automatic feature
extraction from high-resolution optical sensor data for UAV-based cadastral mapping. Remote Sens. 2016,
8, 689. [CrossRef]

27. Konecny, G. Geoinformation: Remote Sensing, Photogrammetry and Geographic Information Systems; CRC Press:
Boca Raton, FL, USA, 2014.
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