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Abstract

Definitional interpreters are difficult to test
with a pre-defined test suite. This paper
tries to determine the effectiveness of auto-
matic testing of definitional interpreters, us-
ing concolic execution. First we develop a
model for concolic execution of a functional
language. Then we identify different categories
of common mistakes when writing interpreters
and test which are caught by concolic execu-
tion. We find that while concolic execution is
promising, as it can find counterexamples for
most errors in a small language, the model de-
veloped in this paper is not sufficient to gener-
ate counterexamples for more complicated lan-
guages.

1 Introduction

The course “Concepts of Programming Lan-
guages” uses predefined test-cases to grade
and provide feedback to students’ submissions.
Each year they manage to find missing test
cases in the test-suite. This, of course, is not
a desirable situation, because grading should
be as complete and sound as possible. There
are multiple approaches to solve this, and this

paper will focus on testing these submissions
using concolic execution.

Concolic execution is a form of symbolic ex-
ecution where the program that is tested gets
a random concrete input which evolves after
each execution. During execution the tester
records all the constraints on the input that
are encountered, for example whether the in-
put matches a specific pattern. After execu-
tion ends a new input is generated where one
of these constraints is falsified. This new in-
put is then fed back to the program, and given
that one of the path constraints has been falsi-
fied this input is guaranteed to follow an unex-
plored path. Thereby automatically covering
all possible execution paths.

The existing research on concolic execution
does not focus on validating definitional inter-
preters or compilers. While an adjacent tech-
nique, generating constrained random data,
has been used to verify the correctness of the
Go compiler (Griesemer et al., 2020), concolic
testing has not been researched for this use.

The goal of this paper is to investigate how
effective concolic execution is for testing defi-
nitional interpreters.

To achieve this, we first define a simple
concolic executor and evolution engine. This
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model will be inspired by the arithmetic part
of You, Findler, and Dimoulas (2021) and the
LambdaPix language defined in Clune, Rama-
murthy, Martins, and Acar (2020). The deci-
sion to base the concolic executor on Lamb-
daPix is because this language was designed
to be able to be converted to logical formu-
las, something that is very useful for an evolu-
tion engine. Furthermore the approach is very
similar to the one presented in Giantsios, Pa-
paspyrou, and Sagonas (2017) but has been de-
veloped independently.

We then determine the effectiveness of this
model to find certain classes of mistakes often
seen in students’ submissions. To determine
whether a “student submission” (in our case a
correct/incorrect interpreter) is correct or in-
correct, we compare its output with that of a
known correct interpreter.

This paper contributes the following:

• A model of concolic execution of a func-
tional language with recursive data struc-
tures in Section 2;

• A first look at the effectiveness of concolic
execution as a method for verifying inter-
preters in Section 3.

Lastly Section 4 is a reflection on the model
of concolic execution developed and the areas
for improvement.

2 Concolic Execution
In this section we describe a model of concolic
execution. To be able to do this we first define
a language that we interpret. This language,
called LambdaPix, and its behaviour are de-
scribed in the Clune et al. (2020) paper.

In figure 1 the grammar for values and ex-
pressions in LambdaPix is described, together
with a grammar for the representation of the
execution path a value has taken.

To be able to record the constraints set on
the input by the program that is run, extra
information needs to be passed through an in-
terpreter. With each value a representation of
the execution path it has taken is associated.
Figure 2 shows how this path is recorded by
adding new information on top of the existing
dynamic semantics of LambdaPix.

Conc1 shows that a constant is evaluated
as its value and the equivalent execution path
is the constant itself and given that there is
no constraint when evaluating a constant the
constraints are empty. Conc2 shows that to
interpret a record we first need to interpret all
the sub-expressions then construct the record
value and equivalent execution path and finally
concatenate all the constraints of the sub-paths
followed. This is analogous for Conc3 and
Conc4, where injections are evaluated.

Then we have Conc5 where we evaluate
primitive binary operations. The operation is
applied on the values, if they are of the correct
type, but for the respective execution path we
record the fact that an operation has been ap-
plied to be able to reason about constraints on
numbers.

Conc6 regards the evaluation of function
application. The constraints when interpret-
ing the function and its argument are saved
and concatenated with the constraints when
the body is interpreted. Before interpreting
the body the environment is extended by as-
sociating the variable name with the value and
its respective execution path.

Finally there is Conc7, when a case expres-
sion is evaluated we record all pairs of patterns
and execution paths, until the pattern that
matched the value, and whether the pattern
matched with the corresponding value.

Pattern matching has been extended by run-
ning the pattern matching algorithm in paral-
lel on the value and path. When a symbolic
variable is found as part of the path being
matched, its value is looked up in the environ-
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base types b ::= int|boolean|char
types τ ::= b base type

| δ data type
| {ℓ1 : τ1, . . . , ℓn : τn} product type
| τ1 → τ2 function type

injection labels i ::= label1|label2| . . .
patterns p ::= _ wildcard pattern

| x variable pattern
| {ℓ1 = p1, . . . , ℓn = pn} record pattern
| x as p alias pattern
| c constant pattern
| i · p injection pattern (with argument)
| i injection pattern (without argument)

primitive operations o ::= +| − | ∗ | < | > | ≤ | ≥
| =τ | ̸=τ |++ (concat)

expressions e ::= c constant
| x variable
| {ℓ1 = e1, . . . , ℓn = en} record
| i · e injection (with argument)
| i injection (without argument)
| case e{p1.e1| . . . |pn.e1} case analysis
| λx.e abstraction
| e1 e2 application
| fix x is e fixed point
| o primitive operation

paths r ::= c constant
| x symbolic input variable
| {ℓ1 = r1, . . . , ℓn = rn} record path
| i · r injection path (with argument)
| i injection path (without argument)
| o r1 r2 application of a primitive operation

Figure 1: The syntax of the LambdaPix language
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c ⇒ (c val, c path, []) Conc1

e1 ⇒ (vi val, ri path, csi)
{ℓ1 = e1, . . . , ℓn = en}

⇒ ({ℓ1 = v1, . . . , ℓn = vn} val, {ℓ1 = r1, . . . , ℓn = rn} path, cs1 ++ . . .++ csn)

Conc2

i ⇒ (i val, i path, []) Conc3
e ⇒ (v val, r path, cs)

i · e ⇒ (i · v val, i · r path, cs) Conc4

e1 ⇒ (v1 val, r1 path, cs1) e2 ⇒ (v2 val, r2, cs2)
o e1 e2 ⇒ (v1 o v2 val, o r1 r2 path, cs1 ++ cs2)

Conc5

e1 ⇒ (λx.e,, cs1) e2 ⇒ (v2 val, r2 path, cs2)
[(v2, r2)/x] e ⇒ (v val, r val, cs3)

e1.e2 ⇒ (v val, r path, cs1 ++ cs2 ++ cs3)

Conc6

e ⇒ (v val, r path, cs) v //\ p1 . . . v //\ pi−1 v // pi
ei ⇒ (vi val, ri path, csi)

case e {p1.e1 | . . . | pn.en} ⇒ (vi val, ri val, cs++ [false.p1.r, . . . , true.pi.r] ++ csi)

Conc7

Figure 2: Adjustments to dynamic semantics of LambdaPix to record path constraints

ment and we record the value of that variable
in the constraints, to link the variable with its
substructure.

2.1 Evolution

These recorded path constraints are then
passed to Z31 to generate a new value to pass
to the program that is being tested. These val-
ues are generated through a three step process:

1. One of the path constraints is falsified, all
the path constraints after that one are ig-
nored;

2. The path constraints are then fed into Z3
in two ways:

(a) First the matching patterns are as-
serted to be equal and non-matching
patterns unequal to the constraint’s

1https://github.com/Z3Prover/z3

respective path, including the vari-
ables of primitive type present in the
pattern;

(b) Second we generate a new value ig-
noring the primitive type variables
by using the patterns to assert prop-
erties about the structure of the
paths.

3. The top path constraint variable is then
converted back from a Z3 value to a
LambdaPix value.

Step 2 is split up because the naive method,
the first one, will generally not generate more
complex structures because Z3 will generate
terms where the numbers are different. To be
able to test an interpreter we want to generate
structurally complex terms to create interest-
ing cases, these are generated by then purely
focusing on the structure of the symbolic val-
ues. The combination of these two methods
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creates terms that are both structurally com-
plex, which leads to interesting test cases, and
terms that follow all paths with conditionals
on expressions with numbers.

3 Setup and results
We distinguish several categories of mistakes
in definitional interpreters.

1. Structural matching

2. Constant values

3. Mistaken variables

Structural matching is when instead of inter-
preting the sub-elements of an expression, an
interpreter matches on the structure of the in-
put expression. So if an interpreter expects an
expression of the form a+ b where a and b are
numbers, an expression like (a+ b) + c should
fail, as the left sub-expression would not be
successfully matched to a number.

A constant value mistake is when, instead of
using the expression provided, a constant value
is returned.

An error is categorised as a mistaken vari-
able when an interpreter performs an opera-
tion on incorrect variables. For example, in
an expression of the form (a + b) instead of
adding a to b the following value is computed
a + a. Another common example, that is not
a typo but a conceptual misunderstanding, is
specific to the behaviour of functions. This lies
in the difference between a dynamic and static
scope, where in the interpretation of a func-
tion instead of using the closure environment
the dynamic environment is used.

To test each category we have created differ-
ent variants of each mistake, for two languages
and compared them with a correct interpreter.
The first language is a language of arithmetic
expressions, the second one an extension of
that language with functions and closures.

The only possible mistakes for the arithmetic
language are structural matching and mistaken
variables. Given that the language is small all
mistaken variable mistakes can be written out.
These were all caught by the concolic executor.
Structural matching mistakes, up until 2 levels
deep, were also caught.

Structural matching mistakes in the func-
tional language, even a simple one where an
add expression only expects constants and can
not have deeper structure, were not caught by
the concolic tester. Some mistakes in cate-
gory 3 were caught, such as the example pro-
vided above, were caught, but more compli-
cated ones like a dynamic scope against static
scope did not manage to generate a counterex-
ample.

Mistakes regarding constant values were
caught in both languages. The values gener-
ated that caught these mistakes were always
generated by the first method (2a), which gen-
erates terms where the structure is the same
but the numbers are randomised.

3.1 Threats to Validity
A limited amount of languages have been
tested because the current implementation is
limited in its capabilities. It is possible that
these limitations are not specific to this case
but concolic testing in general. The variants
of the interpreters tested may not be represen-
tative of actual mistakes made in the wild.

4 Discussion
4.1 Limitations
There are several limitations with the current
approach and implementation of concolic ex-
ecution. There are several reasons for these
limitations.

The first reason for the limitations of our ap-
proach is the representation of the paths that
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have been followed and pattern matching ap-
plied to them. Because the symbolic values are
also deconstructed, some workarounds were
necessary to link sub-expressions with their
parent. The current implementation is not
complete which leads to insufficient function-
ality. This limitation can probably be lifted
by following the approach of Giantsios et al.
(2017) where substructures are referred to by
applying accessors, that way no extra effort is
necessary to refer to the full structure of a sym-
bolic value.

Secondly there is the representation of values
and their semantics in the SMT solver. The se-
mantics of values in LambdaPix differ from the
semantics in Z3, especially in the case of a pat-
tern not matching a value. This fact should be
taken into account and a proper way of trans-
lating the semantics of LambdaPix should be
identified.

During the implementation of the concolic
executor, the most difficulty was had imple-
menting the generation of new terms. The
type system of Z3 is pretty restrictive. It
does not have mutually recursive parametric
types. Therefore the current implementation
does not have full support for all types possi-
ble in LambdaPix.

The approach in this paper does not have
a sufficiently advanced heuristic for traversing
the full tree of all possible execution paths.
We traverse the execution tree with a naive
breadth first search. This leads to exploration
of paths that will not lead to a mistake being
found, slowing down testing and maybe even
ignoring paths that do lead to mistakes.

Lastly there is the issue of categorising er-
rors. This method of automatic testing allows
us to find mistakes in programs without too
much manual labour. But it is only able to find
these mistakes, it does not classify the type of
mistake or suggest what should be done to fix
it. If two programs are compared, where one is
known or assumed to be correct, the difference

in path constraints might be able to provide
some hint as to where the mistake lies. This
limitation should be kept in mind when using
concolic execution to check the correctness of
a program.

4.2 Process of Implementation
Concolic testing is popular because of the sup-
posed ease of implementation on an existing
language. The existing interpreters or com-
pilers can be used, and easily instrumented to
record the constraints on the test input. And
given the abundance of powerful SMT solvers
generating new values should not take much
more effort than converting the constraints
into logical formulas and feeding them to such
a solver.

This opinion is for the greatest part con-
firmed by the experience of implementing a
concolic executor for LambdaPix. While there
are still limitations in the implementation, it
is a working proof of concept for a functional
language.

Most of the difficulty lay in adapting the
methods developed for imperative languages,
which rely on values with a simple structure,
on structured values. Concolic execution for
functional languages are only a recent develop-
ment (Giantsios et al., 2017; Tikovsky, 2018).

5 Related works
5.1 Challenges and Limitations for

concolic testing
Kannavara et al. (2015) write about the chal-
lenges facing concolic testing. The most rele-
vant ones to this application of concolic test-
ing is the idea of path explosion and the ex-
pensiveness of constraint solving. Given that
the defined programming languages for such
courses as CPL are well defined allow us to im-
prove constraint solvers and concolic executors
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specifically for these languages.
Qu and Robinson (2011) categorise the ar-

eas where current limitations lie for concolic
testing of imperative languages and quantify
the scalability of such tools for industrial use.
They find that pointers and native calls are
the most common issues for concolic testing
and that the setup of such tools takes a con-
siderable amount of effort for industrial size
applications.

5.2 Concolic testing of functional
programming languages

Giantsios et al. (2017) provide a concolic exe-
cution method for Erlang. Their approach is
very close to the approach described in this pa-
per, but is more sophisticated in its selection of
future contraints to solve and in its represen-
tation of values. Given that Erlang is dynami-
cally typed they had to approach the represen-
tation of values in Z3, and the way the type of
a value is determined, in a manner more suit-
able for Erlang. Their approach shows that
concolic testing is also suitable for functional
languages that rely heavily on recursive struc-
tures, while previous research primarily shows
the effectiveness of concolic testing for impera-
tive languages and primitive types such as inte-
gers and booleans. In a similar vein is Tikovsky
(2018), implementing a prototype for concolic
execution of Curry, a functional logic language.

You et al. (2021) develop a method for test-
ing higher-order functions. SMT solvers do not
have theories for these, therefore a workaround
in the creation of concolic functions is nec-
essary. They prove that that the method is
sound, complete and manages to find mistakes
in benchmarks for concolic testing that previ-
ous methods have not been able to detect. Al-
though the paper only describes an approach
using numbers as the most basic value, it
should generalize to recursive data types such
as the ones seen in Giantsios et al. (2017).

Hallahan, Xue, Bland, Jhala, and Piskac
(2019) describes a method for lazy symbolic
execution. It allows verification of lazy lan-
guages such as Haskell. They also provide a
new technique, counterfactual symbolic execu-
tion. This allows not only the verification of
programs using pre- and post-conditions but
also the verification of those pre- and post-
conditions themselves by creating abstract
counterexamples to functions that fulfil their
specifications.

5.3 Improved heuristics
Jaffar, Murali, and Navas (2013) describe an
algorithm that improves concolic testing by
pruning the search tree. They mark branches
that are, by being fully explored, known to con-
tain no buggy paths with interpolants. When a
concrete value satisfies such an interpolant ex-
ecution is halted at that branch, as it is guar-
anteed that no bug will be found because it
will only be able to follow non-buggy execution
paths. The method provides a performance
improvement of about 10 to 20 times.

Cha, Hong, Lee, and Oh (2018) present an
algorithm that automatically generates search
heuristics for concolic testing. They do this by
defining a class of parameterised search heuris-
tics and then give an algorithm that finds the
parameters for the optimal search heuristic.
They show that their method generates heuris-
tics that outperform state of the art and man-
ually crafted heuristics.

6 Responsible Research
This program for comparing interpreters is
meant to be used in a course context where
student’s submissions are evaluated. This en-
tails a few concerns that should be taken into
consideration when using the program.

First of all is the fact that the implementa-
tion may not be correct, in that sense the re-
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sults the program reports should not be taken
at face value. For example a mistake in the
way new values are constructed could prevent
certain paths or constraints to be taken into
account, such that some incorrect interpreters
are erroneously reported as correct.

Then there is the issue of inherent limita-
tions of the method. The current method, for
example, does not allow automatic classifica-
tion of errors. The system can detect whether
an implementation is incorrect, by comparing
it to a correct interpreter, but the class of error
cannot detected. Additionally, some mistakes
can be so complex that to create an input by
iteration over the path can take quite a while
such that an adequate input may not be gen-
erated before a set timeout.

Taking this into account the program should
be mainly used to aid the teaching assistants
and professors helping students and grading
their submissions. Because the program can-
not classify errors, or if the difference in results
even constitute a mistake in the student’s sub-
mission, basing a grade only on the programs
output would be arbitrary. The technique de-
scribed in this paper can be used to guide the
attention of course staff to problematic loca-
tions in student’s code, but should not be used
without their supervision.

Lastly there is the question of reproducibil-
ity. This will be possible given that the code
that implements the concepts in this paper is
open-source.2 The code, together with the pa-
per, should provide enough material to be able
to be used as a base for reproduction.

7 Conclusion
Concolic execution is a promising way to test
variations of interpreters. Certain classes of
errors, for which manually generating tests is

2https://gitlab.ewi.tudelft.nl/cse3000-auto
-test/concolic-execution

cumbersome and prone to mistakes, could be
caught automatically. This can be seen es-
pecially for errors such as structural match-
ing and small typos which lead to a wrong
branch being interpreted. Structural matching
errors especially have the benefit of concolic or
symbolic execution because these methods will
generate expressions with the guidance of the
constraints, while a predefined set of test will
never be complete. More complicated errors,
such as a difference in dynamic and static scope
will have more difficulty being caught. How-
ever these limitations are suspected to lie in
the specific implementation used in this paper,
and not in the approach of concolic execution
in general.
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