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Identification of deformation pattern changes caused by
enhanced oil recovery (EOR) using InSAR
Ling Changa, Ou Kub and Ramon F. Hanssenc

aDepartment of Earth Observation Science, University of Twente, Enschede, The Netherlands; bSkyGeo
Netherlands B.V, Delft, The Netherlands; cDepartment of Geoscience and Remote Sensing, Delft University
of Technology, Delft, The Netherlands

ABSTRACT
Continuous hydrocarbon production and steam/water injection
cause compaction and expansion of the reservoir rock, leading
to irregular downward and upward ground movements. Detecting
such anthropogenic ground movements is of importance, as they
may significantly influence the safety and sustainability of hydro-
carbon production activities, in particular, enhanced oil recovery
(EOR) and even lead to local hazards, e.g. earthquakes and sink-
holes. As InSAR (Interferometric Synthetic Aperture Radar) can
routinely deliver global ground deformation observations on a
weekly basis, with millimetre-level precision, it can be a cost-
effective, and less labour intensive tool to monitor surface defor-
mation changes due to hydrocarbon production activities. Aimed
at identifying the associated deformation pattern changes, this
study focuses on InSAR deformation model optimization, in
order to automatically detect irregularities, both spatially and
temporally. We apply multiple hypothesis testing to determine
the best model based on a library of physically realistic canonical
deformation models. We develop a cluster-wise constrained least-
squares estimation method for parameter estimation, in order to
directly introduce contextual information, such as spatio-temporal
correlation, into the mathematical model. Here a cluster repre-
sents a group of spatially correlated InSAR measurement points.
Our approach is demonstrated over an enhanced oil recovery site
using a stack of TerraSAR-X images.
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1. Introduction

Petroleum reservoir compaction and expansion – due to steam/water injection –may unveil
itself as ground surface subsidence and uplift, which has significant and often negative
effects on wells, production efficiency, and safety. Consecutively monitoring ground defor-
mations and early identification of anomalies in the expected deformation patterns can
prevent damage or even disasters. For this goal, many in-situ and satellite-based techniques
can be applied. For instance, in-situ instruments such as GPS (Global Positioning System)
and tilt meters can be deployed at predefined locationswhere the changes in the behaviour
would be most harmful, and deliver valuable observations at those specific locations.
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However, anomalies may unexpectedly occur at locations where no in-situ instru-
ments are installed. In addition, it is costly and laborious to collect continuous observa-
tions with in-situ instruments. To overcome those limitations, satellite Interferometric
Synthetic Aperture Radar (InSAR) (Bamler and Hartl 1998; Ferretti, Prati, and Rocca 2001;
Hanssen 2001) is a viable complementary or even alternative technique. InSAR is able to
monitor ground movements and the associated deformation time series with competi-
tive millimetre-level precision over wide areas. Many historical SAR data can be retrieved
back to the early 1990s. With a relatively short revisit cycle, e.g. up to 3 day for Sentinel-
1a/b (Torres et al. 2012), InSAR can deliver the relevant observations in a near-real time
manner.

In principle, InSAR deformation time series can be parameterized in order to
detect spatial and temporal pattern changes. However, the parameterization of the
deformation time series is not straightforward, when the temporal (and spatial)
deformation behaviour is not very systematic. For example, a temporal model may
suffice for many years of continuous oil production, but fail when other activities,
such as steam injection, start to play a role. In that case, the parameterization should
be modified. A complicating factor in this requirement for reparameterization is the
intrinsic 2 phase ambiguity (Bamler and Hartl 1998). Consequently, a sudden change
in the deformation behaviour over an EOR site may be (erroneously) accommodated
by a 2 phase jump, or by a change in the functional model parameterization. There is
no unique solution for this problem unless additional constraints are introduced to
the problem. Therefore, in this case, i) we analyse the variogram to determine the
spatial and temporal correlation of adjacent and subsequent points, respectively, and
categorize spatio-temporally correlated adjacent points as a cluster; ii) we apply
cluster-wise multiple hypothesis testing to select the best deformation model, cf.
Chang and Hanssen (2015); and iii) we develop a cluster-wise constrained least-
squares estimation method to estimate the unknowns, thereby identifying changes
in the deformation pattern. Compared to the point-wise method, which focused on
fitting a temporal model per point, the cluster-wise method has the advantage to
include spatial correlation in the functional and stochastic model, and use contextual
information to constrain the model estimation.

This paper is organized as follows. In section 2, we briefly review the concept of the
hypothesis testing theory, and present the principle of constrained least squares estima-
tion. Section 3 describes the geological situation of our area of interest (AoI) and the SAR
data used, followed by the results and discussion in Section 4. The conclusions are
drawn in Section 5.

2. Method

The key to identify the deformation pattern changes is first to properly select the best
deformation model. Given several potential best deformation models, we use the multi-
ple hypothesis testing to determine the most probable one, see detail in Chang and
Hanssen (2015). We briefly review this method in section 2.1. Then the parameters for
the best model can be estimated by a constrained least squares estimation method, in
which the contextual knowledge (indicating e.g. the signal smoothness either in space
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or time) is treated as pseudo observations to constrain the mathematical model, see
section 2.2.

2.1. Multiple hypothesis testing

Chang and Hanssen (2015) proposed a multiple hypothesis testing method for optimal
deformation model selection per point. In this study, we improve this method towards
deformation modelling per cluster. A cluster is a group of spatio-temporally correlated
InSAR measurement points which is defined by variogram analysis. Suppose there are b
points [p1; p2; � � � ; pb] within a cluster and m epochs in the time series, the mathematical
model for the null hypothesis H0 is expressed as

Efyg
bm�1

¼
Ap1

Ap2

. .
.

Apb

2
664

3
775

bm�n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

xp1

xp2

..

.

xpb

2
664

3
775

n�1|fflfflffl{zfflfflffl}
x

; Dfyg ¼ Qyy
bm�bm

;
(1)

where E :f g and D :f g represent the expectation and dispersion operator, respectively.
The bm� 1 observation vector is denoted by

y ¼ ½y p1
1 ; y p1

2 ; � � � ; y p1
m ; y p2

1 ; y p2
2 ; � � � ; y p2

m ; � � � ; y pb
1 ; y pb

2 ; � � � ; y pb
m ��T. Here the underscore

indicates that the observations are random variables. The bm� bm covariance matrix
Qyy describes the observation noise of all points within the cluster. The diagonal
elements of Qyy are the variances of all points, while the off-diagonal elements represent
the spatio-temporal correlation of the points. For instance, Qyp1m yp1m

represents the var-

iance of point p1 at the m th epoch of the deformation time series, and Qy
p1
m y

p2
m
represents

the spatial correlation of point p1 and p2 at the m th epoch of the deformation time
series. The design matrix A is composed of the design matrices for b points,

Ap1 ; Ap2 ; . . . ; Apb . The number of unknowns x ¼ ½xp1 ; xp2 ; � � � ; xpb �T is n, where
n ¼ np1 þ np2 þ � � � þ npb , (npi ; i 2 ½1; b�, is the number of unknown parameters for
point i). In case of identical unknowns of all point within a cluster, that is
xp1 ¼ xp2 ¼ � � � ¼ xpb , the number of unknowns x reduces to n=b.

Against the null hypothesis H0, several alternative models should be investigated. To
determine the most probable model per cluster, we test the null hypothesis H0 against
many alternative hypotheses Hj; "j, expressed as

H0 : E y
n o
bm�1

¼ A
bm�n

x
n�1

; D y
n o

¼ Qyy
bm�bm

Hj : E y
n o
bm�1

¼ A
bm�n

x
n�1

þ Cj
bm�q

�j
q�1

; �j
q�1

�0; D y
n o

¼ Qyy
bm�bm

:
(2)

Here a specification matrix Cj and an additional new vector of unknown parameters �j

with length of q are introduced in Hj.
An Overall Model Test (OMT) (Teunissen, Simons, and Tiberius 2005) is applied to test

for the correctness of the null hypothesis H0. The test statistic for the OMT is
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Tq¼bm�n ¼ êT0Q
�1
yy ê0; (3)

where ê0 is the vector of residuals between the observations and the functional model
under H0, that is ê0 ¼ y � Ax̂, in which x̂ is estimated by Equation. (8). If Tq¼bm�n is

greater than the predefined critical value χ2αðq; 0Þ (given a level of significance α), H0 will
be rejected. In favour of the rejection of H0, test ratio values of all alternatives Hjs are
calculated to find the most probable model. The test ratio is expressed as

Tjqj ¼
êT0Q

�1
yy ê0 � êTj Q

�1
yy êj

χ2αjðqjÞ
; (4)

where qj is the degree of freedom for the alternative hypothesis Hj; êj is the residual
between the observations and the functional model under Hj . The most probable model
HB among all hypotheses is assumed to be

TBqB ¼ max
j

Tjqj

n o
; ðTBqB > 1Þ: (5)

2.2. Constrained least squares estimation

Information on the signal smoothness, e.g. by deciding to estimate identical unknowns
for all points within a cluster, or by defining a specific change pattern in space (e.g.
circular Gaussian-distributed pattern), can be introduced by defining pseudo observa-
tions for the parameter estimation. This can be generally expressed as

E df g
s�1

¼ G
s�n

x
n�1

; D df g ¼ Qdd
s�s

; (6)

where the s� 1 pseudo observation vector is denoted by d. The noise of the pseudo
observation vector is expressed in Qdd. Constrained by Equation. (6), the unknowns for
H0 in Equation. (2) are estimated by

x̂ ¼ ðATQ�1
yy Aþ GTQ�1

dd GÞ�1ðATQ�1
yy y þ GTQ�1

dd dÞ; (7)

following the criterion Ax̂ � yjj2Q�1
yy
þ

��� ������ ���Gx̂ � djj2Q�1
dd

¼ min (Teunissen, Simons, and
Tiberius 2005). As such an estimation method requires that both the norm of the
residuals of the InSAR observations and the residuals of the pseudo signal observations
is minimal, we refer to it as constrained least squares estimation (CLSE). Likewise, the
CLSE solution for Hj in Equation (2) is calculated by

x̂
�̂

� �
¼ AT

CT

� �
Q�1
yy ½A C� þ GTQ�1

dd G
� ��1

AT

CT

� �
Q�1
yy y þ GTQ�1

dd d

� �
: (8)

3. Geological situation of the AoI and data description

To investigate the performance of the cluster-wise multiple hypothesis testing and
constrained least squares estimation, a 500� 500 m area of interest is chosen. The
AoI, indicated by red in Figure 1, is located in a desert area In this hydrocarbon
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field there are more than 12,000 active oil/gas wells (DOGGER 2016). For instance, a
row of pumpjacks for oil wells at this site is depicted in the upper-right inset in
Figure 1. Continuous large-volume oil/gas extraction from shallow depths leads to
severe reduction in pore pressure and soil compaction. The surface settlement has
been reported by, e.g. Chase Jr, and Dietrich (1989); de Rouffignac et al. (1995);
Dale, Narahara, and Stevens (1996); Fredrich et al. (2000); van der Kooij and Mayer
(2002). Moreover, due to the local injection activities for the underground reservoir
(Patzek 1992), the surface presents upward movements, as it has been shown in
the literature such as Fielding, Blom, and Goldstein (1998); Wolhart et al. (2005).

We use 22 TerraSAR-X SAR data (Stripmap mode) acquired between day 0 and day
253 from an ascending orbit to demonstrate the proposed method. The radar sensor
operates in X-band with 31 mm wavelength. The spatial resolution is 3 m in range and
azimuth direction. The repeat cycle of TerraSAR-X satellite is 11 days.

4. Results and discussion

Due to the very irregular alternation between times of uplift (due to steam injection) and
times of subsidence (due to oil production), the displacement time series of scatterers
will be very non-stationary. As a consequence, assuming a single parametric model for
the entire time series will yield two problems related to the high residues between the
model and the observations. First, in estimating the coherence of the scatterer, model

Figure 1. The 500� 500 m AoI indicated by the red square in an optical Landsat image. This site is
located in an arid area. The upper-right photo shows an example of a row of pumpjacks for oil wells.

INTERNATIONAL JOURNAL OF REMOTE SENSING 5



imperfections can be misinterpreted as loss of coherence, leading to the erroneous
rejection of coherent points, and missing the signal of interest. Second, the model
imperfections may lead to phase unwrapping errors, and effectively bias the results to
conservative (smooth) models.

Using information from local domain experts, reporting that steam injection started
day 190 we performed multi-epoch InSAR processing for the first 15 SAR images
acquired between day 0 and day 165, with a crop size of 30� 50 km. Within the 500�
500 m AoI, 6321 points are detected for which the values of the estimated temporal
coherence are larger than 0.3 (Touzi et al. 1999; Hanssen 2001). The deformation time
series for those coherent points are estimated accordingly. Using the remaining 7 SAR
images acquired between day 198 and day 253 the subsequent deformation time series
of those 6321 points are estimated. It is suspected that some of the detected points may
show abrupt deformation changes in relation to the reported injection activities. Hence,
we actively reduce the likelihood for unwrapping errors by relaxing the deformation
gradient threshold. During the processing, all 22 image data are aligned, and the 30 m
resolution SRTM DEM (van Zyl 2001) is used to remove the topographic phase contribu-
tion. The first SAR acquisition is assigned to be the equivalent master image, which
serves as the null-survey for the consecutive cumulative displacement estimates.
Atmospheric influence is assumed to be marginal within the 500� 500 m AoI.

Figure 2 shows the cumulative deformation maps over this area of interest, as well as
the velocity map, shown in the bottom-right. Every sub-map is draped over the

Figure 2. Cumulative deformation maps over the 500� 500 m AoI and the linear velocity map.
Every sub-map is draped over the incoherently average amplitude image. The first 22 maps show
the cumulative deformation, and the bottom-right sub-figure shows the corresponding linear
velocity map (between day 0 and day 253). The sudden uplift on day 198 is indicated by the
black circle. Note that the colour bar ranges are different between the cumulative maps and the
linear velocity map. No motion is assumed at the first (reference) acquisition.
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incoherently averaged amplitude image. It shows that the area indicated by the black
circle experienced a sudden upward movement on day 198. The velocity map (bottom-
right) is clearly not capable to detect such an atypical change in the deformation
behaviour.

In order to identify the specific nonlinear spatial and temporal patterns over this AoI,
we apply the method discussed in section 2. Acknowledging the expected temporal
jumps caused by hydrocarbon extraction, the library of canonical deformation models
includes the linear model, the outlier model, the step model, and the breakpoint model.
We then determine the most probable model combination for every cluster of points
using cluster-wise multiple hypothesis testing. The linear deformation model is consid-
ered as the null hypothesis, while all other models are tested as alternative models, i.e.
linear plus single/bi-/tri-steps, linear plus outliers, and single/bi-/tri-breakpoints. To find
the times of the steps, outliers, or breakpoints, in an alternative hypothesis, we use an
epoch-by-epoch progressive search method. All time options are sequentially tested for
each epoch except for the first and last acquisition. Hence, the number of the alternative
hypotheses can be easily in the order of hundreds. Benefiting from computing only the
test ratio as in Equation. (5), rather than estimating all parameters for each evaluated
model, the computational load is significantly reduced. The level of significance is
initially set to 1=ð2� 22Þ, or 2%, and the discriminative power of test is assumed to
be 50%, c.f. de Heus et al. (1994); Chang and Hanssen (2015).

The spatio-temporal variogram of the deformations, see Figure 3(a) and 3(b), derived
from all 22 acquisitions, shows increasing values for increasing spatial distances and
temporal intervals, due to the spatial and temporal variability of the deformation signal.
Fitting a Gaussian function to the empirical variogram yields a maximum spatial correla-
tion distance of 305 m for day 209, see the red dashed line in Figure 3(c), where the
variogram value is 11.6 mm2. It has a nugget of 8.8 mm2. By using a maximum allowable
variability of 9 mm2, we find that the corresponding spatial distance is 17 m, indicated
by the black cross in Figure 3(c). Hence, points within this maximum distance are
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Figure 3. (a) Spatio-temporal variogram. (b) Top-view of subfigure (a). (c) Variogram on day 11. The
red dashed line indicates the range for the variogram model in blue. Empirical variogram values are
marked by the black dots. The black cross indicates the correlated distance, given the variance of
9 mm2.
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assumed to behave identically. We uniformly divide the AoI into a regular grid of 30�
30 cells, to arrive at a cell size of 16.7 m.

Using the information that the points within a cluster behave in concert, the unknowns of
each point are therefore identical. We formulate this as pseudo observations to constrain the
parameter estimation. Applying our method, the results of cluster-wise multiple hypothesis
testing show that 324 out of 900 clusters sustain the null hypothesis, as shown in a transparent
colour, while 546 clusters follow the linear plus single/bi-/tri-steps deformation model,
indicated in purple in Figure 4(a). In yellow, the 17 clusters are indicated that follow a linear
plus single/bi-/tri-steps plus single/bi-/tri-breakpointsmodel, and in green, the 13 clusters that
follow a linear plus single/bi-/tri-breakpoints model. The number of steps per cluster is
depicted in Figure 4(b), which shows that the number of steps increases towards the centre
of the AoI. The step size and step location in time and space for the clusters with linear
+ single/bi-/tri-step(s) model are shown in Figure 5. There are 503 clusters showing an
instantaneous uplift on day 198, most likely due to steam/water injection activities. The
sequential subsiding for 306 clusters on day 209 and 196 clusters on day 220 responded to
the shut down of the well around day 200.

As an example, the parameter estimation results of a cluster are shown in Figure 6. The
locationof this cluster is indicatedby thewhite star in Figure 4. There are 6points in this cluster.
The deformation time series of these 6 points are shown in Figure 6(a) in the different colours.
For this cluster, the estimated linear velocity under the null hypothesis is � 84:1 mm year�1.
As the test statistic of the OMT in Equation. (3) is larger than the critical value, the null
hypothesis is rejected and cluster-wise multiple hypothesis testing is performed. The alter-
native hypothesis, with a linear plus bi-steps model, is found to be the best model for this
cluster, which is shown in black. According to the CLSE, the estimated parameters, the velocity

v̂, the first step Δ̂1 on day 198, and the second step Δ̂2 on day 209 are � 114:7 mm y�1, þ
40:2 mm, and � 25:4 mm, respectively. Figure 6(b) gives the temporal evolution of these 6
points. It can show that the spatial pattern of this cluster, in which all points were smoothly
subsiding till day 165, then they had a sudden upward movement on day 198 followed by
downward movement. Comparison with the velocity estimators under the null hypothesis H0

and the best alternative hypothesis HB shows that wemay overestimate or underestimate the
linear deformation if we stick to the null hypothesis, and an erroneous interpretation of the

Figure 4. (a) Deformation model classification. (b) The number of steps per cluster. The white five
star indicates the location of the cluster, which will be discussed in Figure 6.
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deformation time series may occur. Finding the best alternative hypothesis improves the
reliability of the estimators and unveils the deformation pattern anomalies.

Figure 5. Step size and step location in time and space for the clusters following linear + single/bi-/
tri-step(s) model.
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Figure 6. (a) Deformation time series of 6 points within a cluster. (b) Temporal evolution of these 6
points. The location of this cluster is indicated by the white five star in Figure 4. The estimated
velocity v̂ is � 114:7 mm year�1, the first step Δ̂1 on day 198, and the second step Δ̂2 on day 209
are þ 40:2 mm and � 25:4 mm, respectively.
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5. Conclusions

Spatial and temporal deformation pattern anomalies in relation to hydrocarbon produc-
tion can be detected by cluster-wise multiple hypothesis testing and constrained least
squares estimation (CLSE). Particularly, using cluster-wise multiple hypothesis testing, we
can determine the most probable time series model per cluster in a probabilistic and
efficient way, and the CLSE system has the advantage to directly involve contextual
knowledge such as spatio-temporal correlation in both a functional and stochastic
structure, and considers such contextual knowledge as pseudo observations to constrain
the model. The study on a hydrocarbon extraction area demonstrates that our method
can better model the InSAR deformation time series, and identify sudden uplift or
subsidence, at most about 4 cm, due to hydrocarbon production activities.
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